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EXECUTIVE SUMMARY 

Connected and autonomous vehicle (CAV) technologies are likely to be gradually implemented 

over time. This project proposes the use of rule-based ecological adaptive cruise control (ACC) 

strategies—the ecological smart driver model (Eco-SDM) for gasoline CAVs and the energy-

efficient electric driving model (E3DM) for electric CAVs (e-CAVs)—to improve energy 

efficiency of individual vehicles and traffic flow.  

By adjusting the spacing between leading and following vehicles, the Eco-SDM provides 

smoother deceleration and acceleration than the adaptive cruise control strategies based on the 

intelligent driver model (IDM-ACC) and the Nissan model (Nissan-ACC). The E3DM is able to 

maintain high energy efficiency of regenerative braking by adjusting the spacing between 

leading and following vehicles.  

To estimate vehicle energy consumption in a mixed fleet, the Virginia Polytechnic Institute and 

State University (Virginia Tech) microscopic energy and emission (VT-Micro) model is 

calibrated for gasoline vehicles, and a power-based electricity consumption model is developed 

for battery electric vehicles (BEVs). Single-lane vehicle dynamics in a traffic stream with a mix 

of CAVs and human-driven vehicles are simulated.  

The key findings regarding the energy efficiency of gasoline CAVs in a traffic stream with 

mixed CAVs and human-driven vehicles were as follows: 

 By simulating single-lane vehicle dynamics in a platoon with different percentages of CAVs, 

the result shows that CAVs are generally more fuel efficient than the manually driven 

vehicles. 

 The Eco-SDM outperforms IDM-ACC and Nissan-ACC in terms of fuel efficiency and travel 

time. 

 Higher market penetration of CAVs results in better fuel efficiency of the fleet. When the 

market penetration of Eco-SDM-equipped CAVs exceeds 30%, the marginal improvement of 

fuel efficiency decreases. 

 One Eco-SDM CAV may result in up to 2% reduction in total fuel consumption if placed at 

the front of the platoon. 

The key findings regarding the energy efficiency of electric CAVs in a traffic stream with mixed 

e-CAV and human-driven vehicles were as follows: 

 By simulating single-lane vehicle dynamics in a platoon with different percentages of e-

CAVs, the result shows that e-CAVs equipped with the E3DM and Nissan-ACC consume 

less energy than the human-driven vehicles. 
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 The E3DM outperforms IDM-ACC, cooperative adaptive cruise control (CACC), and Nissan-

ACC in terms of energy efficiency. 

 Higher market penetration of e-CAVs may not result in better energy efficiency of the entire 

fleet. With the E3DM, the highest energy efficiency is achieved when the market penetration 

of e-CAVs is 20%. This is because more e-CAVs in the traffic stream results in faster string 

stabilization and decreases the regenerative energy. 

 Considering mixed traffic streams with BEVs (e-CAVs and manual-BEVs [m-BEVs]) and 

internal combustion engine vehicles (manual-ICEV), the marginal improvement in energy 

efficiency decreases when the market penetration of BEVs, including e-CAVs and m-BEVs, 

exceeds 20%. 

 The larger the market penetration ratio of e-CAVs to m-BEVs is, the faster the marginal 

improvement in energy efficiency reaches the turning point. 
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INTRODUCTION 

In the United States, the fuel economy of personal vehicles is estimated as 24.7 miles per gallon 

(mpg) in 2016 and is projected to be 54.5 mpg in 2025 (EPA 2016). Previous studies have shown 

that driver behavior could affect the fuel economy of conventional gasoline vehicles by 10~40% 

(De Vlieger 1997, De Vlieger et al. 2000, Van Mierlo et al. 2004). Recent developments in 

advanced driving-assistance systems, such as adaptive cruise control (ACC), present 

opportunities to improve energy efficiency and fuel efficiency through automated vehicle 

operations. Several ACC methods have been proposed in the literature. For example, Davis 

(2004) proposed an ACC that automatically maintained a safe distance and minimized the speed 

difference between the following vehicle and its immediate preceding vehicle. Kesting et al. 

(2010) proposed an ACC based on the intelligent driver model (IDM) (which inherited its 

intuitive parameters from those proposed by Treiber et al. 2000) called IDM-ACC. A rule-based 

ACC, which is proprietary to Nissan, was described by Shladover et al. (2012), called Nissan-

ACC. Furthermore, battery electric vehicle (BEV) technology is continuously implemented and 

considered as a solution to reduce oil dependence and vehicle emissions because of its high 

energy efficiency and zero tailpipe emissions (Jung and Jayakrishnan 2012, Yang et al. 2016). 

To further improve the driving efficiency and extend the vehicle range, an energy-efficient 

management strategy specifically for BEV is desired (Schwickart et al. 2015). 

By modeling ACC-equipped vehicle behavior, the impact of ACC on traffic flow is widely 

studied (Fancher et al. 2002, Kikuchi et al. 2003, Liang and Peng 2000). Davis showed that 

ACC-equipped vehicles can suppress wide moving jams by making the flow string stable (Davis 

2004). Kesting et al. (2008) reported that the traffic congestion was completely eliminated when 

the share of ACC-equipped vehicle reaches 25%. Moreover, by simulating a mixed traffic flow 

consisting of ACC-equipped and manually driven vehicles, Jiang et al. (2007) found that the 

introduction of ACC-equipped vehicles would enhance the free flow stability. Yuan et al. (2009) 

investigated the transition probability from synchronized flow to congestion and pointed out that 

ACC-equipped vehicles enhanced the traffic stability of the synchronized flow. 

The energy efficiency of ACC-equipped vehicles has also been studied in the literature. Mersky 

and Samaras (2016) investigated the fuel efficiency of ACC based on existing fuel economy 

tests. The results showed that ACC-equipped vehicles can degrade fuel economy by up to 3%. 

To improve the energy efficiency of the vehicle system, one typical method is to optimize the 

vehicle speed profile with smoother deceleration and acceleration rates (Wu et al. 2015). Using 

simulations and experiments, Ioannou and Stefanovic (2005) found that the smooth response of 

ACC-equipped vehicles decreased the emissions even with the presence of disturbances that are 

due to high-acceleration maneuvers, lane cut-ins, and lane exiting. Several control strategies 

have been proposed to improve fuel efficiency or decrease emissions of ACC-equipped vehicles 

(Li et al. 2015a, Luo et al. 2015, Kamal et al. 2011). Park et al. (2012) and Ahn et al. (2013) 

developed eco-ACC systems based on optimal control and demonstrated its potential in 

improving fuel efficiency. Yang et al. (2017) developed an eco-cooperative ACC, which 

computes the fuel-optimum vehicle trajectory through a signalized intersection. Vajedi and Azad 

(2016) proposed an eco-ACC for the Toyota Prius Plug-in Hybrid to reduce the total energy cost. 

Moreover, considering ACC-equipped vehicles in a mixed traffic environment, Wang et al. 

(2015) proposed two model predictive control (MPC)-based control strategies. The simulation 
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results showed that a 20% share of ACC-equipped vehicles could reduce emissions of a platoon 

of vehicles by 18~27%. Moreover, Li et al. (2015b) studied the performance of a fuel-optimized 

ACC strategy, called pulse-and-glide, on traffic smoothness and fuel economy in a mixed traffic 

flow. They pointed out that a pulse-and-glide strategy can significantly decrease the fuel 

consumption of individual vehicles. However, the fuel consumption of the platoon, which 

contains ACC-equipped and manually driven vehicles, may increase with an under-damped 

pattern. In summary, most of the existing ecological ACC strategies are formulated as an 

optimization problem. For this work, a rule-based ecological ACC system is proposed and tested 

using a fuel consumption model that is calibrated using on-road fuel economy data. 

Recently, a few ACC models have been proposed for electric vehicles (Huang and Wang 2012, 

Wu et al. 2015, Zhang et al. 2017). For regenerative braking control, Huang and Wang (2012) 

proposed a nonlinear model predictive controller that is capable of restoring more regenerative 

braking energy than a conventional controller. Based on forward terrain profile preview 

information, Chen and Wang (2014) and Chen et al. (2014) introduced an energy-efficient 

driving control strategy that can optimally distribute the torque between the front and rear motors 

to save driving energy.  

Akhegaonkar et al. (2016) proposed a longitudinal controller to minimize energy consumption 

and maximize energy regeneration. Schwickart et al. (2016) designed an ACC system based on a 

model predictive control method with a quadratic cost function, a linear prediction model, and 

linear constraints. Considering terrain characteristics and preceding vehicle information, Zhang 

et al. (2017) developed an energy management strategy for BEVs equipped with in-wheel 

motors. The simulation results showed that using the preceding vehicle movement information 

results in additional energy savings.  

In summary, most of the existing energy-efficient ACC strategies are formulated as optimization 

problems, using either global or local optimization methods, such as particle swarm optimization 

and model predictive control. In particular, the existing control strategies for BEVs mostly 

focused on optimizing the speed profile of individual vehicles. The main drawbacks of 

optimization-based approaches are the complicity and computational intensity. Rule-based 

control strategies, on the other hand, have monopolized the production vehicle market because of 

their low computational demand, natural adaptability to online applications, and reliability 

(Enang and Bannister 2017).  

Furthermore, connected and autonomous vehicle (CAV) technologies are likely to be gradually 

implemented over time. Thus, CAV and manually driven vehicles are likely to share the road 

network in the near future. The environmental benefit may vary with the location and penetration 

of CAVs in the string of mixed traffic (Ioannou and Stefanovic 2005). In addition, in a mixed 

traffic stream, the fuel-saving of individual vehicles does not always result in fuel-saving of the 

entire system. Therefore, the location of CAVs in a platoon need to be taken into account when 

designing ACC systems that are targeted at decreasing the energy consumption of individual 

vehicles and the entire system.  



3 

In this project, two rule-based energy-efficient ACC models are proposed, considering a mixed 

traffic stream with CAVs and human-driven vehicles. The proposed ACC systems are evaluated 

using the energy consumption models developed and calibrated based on on-road vehicle fuel 

economy data. The impacts of ACC strategies on energy consumption were investigated using an 

urban driving cycle. 

This report is organized as follows. First, car-following models for human drivers, adaptive 

cruise control, and cooperative adaptive cruise control are reviewed. Two adaptive cruise control 

models are proposed for gasoline CAVs and electric CAVs, respectively. Then, the Virginia 

Polytechnic Institute and State University (Virginia Tech) microscopic energy and emission 

(VT-Micro) fuel consumption model is calibrated for gasoline vehicles and a BEV electricity 

consumption model is proposed. These models were used to estimate vehicle energy 

consumption in the simulation study. After that, the energy efficiency of gasoline CAVs and 

electric CAVs in a mixed fleet are evaluated. Finally, the conclusions and key findings are 

summarized. 
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SIMULATION OF MANUAL VEHICLES AND CAVS USING CAR-FOLLOWING 

MODELS 

Review of Existing Car-Following Models 

Human Driver Car-following Models 

In the past decades, a number of car-following models have been introduced to simulate human 

driver behavior (Newell 1961, Talebpour et al. 2011). In particular, based on the Gipps model 

(Gipps 1981), Treiber et al. (2000) proposed a human driver model named the intelligent driver 

model (IDM). Since the IDM provides greater realism than most of the deterministic acceleration 

modeling frameworks, it is widely applied to investigate the impact of autonomous vehicles on 

traffic flow stability, fuel consumption, and emissions in traffic streams with mixed autonomous 

and human-driven vehicles (Li et al. 2015b, Talebpour and Mahmassani 2016, Wang et al. 

2015). Accordingly, the IDM was used in this study to simulate the human-driven vehicles. The 

IDM is formulated as follows: 

𝑎𝐼𝐷𝑀
𝑛 = 𝑎𝑚𝑎𝑥 [1 − (

𝑣𝑛

𝑣0
)
𝛿

− (
𝑠∗

∆𝑥 
)
2

] (1) 

𝑠∗ = 𝑠0 + 𝑣𝑛𝑇 +
𝑣𝑛(𝑣𝑛−𝑣𝑛−1)

2√𝑎𝑚𝑎𝑥𝑏
 (2) 

where 

𝑎𝐼𝐷𝑀
𝑛  is the acceleration of the following vehicle (m/s2) 

𝛿 is the acceleration exponent 

𝑠0 is the standstill distance between stopped vehicles (m) 

𝑎𝑚𝑎𝑥 is the maximum acceleration (m/s2) 

∆𝑥 is the spacing between the leading and the following vehicle (m) 

𝑇 is the desired time headway (s) 

𝑣0 is the maximum speed (m/s) 

𝑣𝑛 is the speed of the following vehicle (m/s) 

𝑣𝑛−1 is the speed of the leading vehicle (m/s) 

𝑠∗ is the desired spacing (m) 

𝑏 is the desired deceleration (m/s2) 

Adaptive Cruise Control 

In recent years, car-following models have evolved to describe the behavior of vehicles with 

advanced cruise controls, which take advantage of the sensing and communication technologies. 

Several rule-based ACC models have been proposed in the literature (e.g., Davis 2004, Kesting 

et al. 2010, and Shladover et al. 2012). In particular, Kesting et al. (2010) proposed an ACC 

based on the IDM, called IDM-ACC, which inherited the parameters proposed by Treiber et al. 
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(2000). The acceleration according to the constant-acceleration heuristic (CAH) is written as 

follows: 

𝑎𝐶𝐴𝐻
𝑛 = {

𝑣𝑛
2�̃�𝑙

𝑣𝑛−1
2 −2∆𝑥�̃�𝑙

         𝑖𝑓 𝑣𝑛(𝑣𝑛 − 𝑣𝑛−1) ≤ −2∆𝑥�̃�𝑙

�̃�𝑙 −
(𝑣𝑛−𝑣𝑛−1)

2𝛩(𝑣𝑛−𝑣𝑛−1)

2∆𝑥
               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3) 

where 

𝑎𝐶𝐴𝐻
𝑛  is the constant-acceleration heuristic acceleration of the following vehicle (m/s2) 

Θ is the Heaviside step function 

𝑎𝑛−1 is the acceleration of the leading vehicle 

�̃�𝑙 is the effective acceleration used to avoid artefacts that may be caused by leading vehicles 

with higher acceleration capabilities, and �̃�𝑙 = min (𝑎𝑛−1, 𝑎𝑚𝑎𝑥) 

The adaptive cruise control based on the IDM is formulated as follows: 

𝑎𝐼𝐷𝑀−𝐴𝐶𝐶
𝑛 = {

𝑎𝐼𝐷𝑀
𝑛                                                                              𝑎𝐼𝐷𝑀

𝑛 ≥ 𝑎𝐶𝐴𝐻
𝑛

(1 − 𝑐)𝑎𝐼𝐷𝑀
𝑛 + 𝑐 [𝑎𝐶𝐴𝐻

𝑛 + 𝑏𝑡𝑎𝑛ℎ (
𝑎𝐼𝐷𝑀
𝑛 −𝑎𝐶𝐴𝐻

𝑛

𝑏
)]      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4) 

where 

𝑎𝐼𝐷𝑀−𝐴𝐶𝐶
𝑛  is the acceleration of the following vehicle equipped with IDM-ACC (m/s2) 

𝑐 is the coolness factor 

Another rule-based ACC strategy, which is proprietary to Nissan and was described by 

Shladover et al. (2012), is called the Nissan-ACC model. The simplified representations of the 

Nissan-ACC model contain speed control and spacing control. In the speed control, the control 

law is as follows: 

𝑣𝑒 = 𝑣𝑛 − 𝑣0 (5) 

𝑎𝑠𝑐 = 𝑏𝑜𝑢𝑛𝑑(−0.4 × 𝑣𝑒 , 𝑎𝑚𝑎𝑥, 𝑏𝑚𝑎𝑥) (6) 

𝑎𝑁𝑖𝑠𝑠𝑎𝑛−𝐴𝐶𝐶
𝑛 = 𝑎𝑠𝑐 (7) 

where 

𝑎𝑁𝑖𝑠𝑠𝑎𝑛−𝐴𝐶𝐶
𝑛  is the acceleration of the following vehicle equipped with Nissan-ACC (m/s2) 

𝑏𝑚𝑎𝑥 is the maximum deceleration (m/s2) 

𝑎𝑠𝑐 is the acceleration by speed control (m/s2) 

𝑣𝑒 is the speed error (m/s) 
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The function bound ( ) is defined as bound (x, xub, xlb) = max(min(x, xub), xlb), where xub is the 

upper bound and xlb is the lower bound. This function restricts the acceleration to the range 

between the maximum acceleration and deceleration. 

In the spacing control, the speed control law also applies. In addition, to maintain a constant time 

headway between vehicles, the spacing control law requires the following: 

𝑠∗ = 𝑇 × 𝑣𝑛 (8) 

𝑠𝑒 = ∆𝑥 − 𝑠∗ (9) 

𝑎𝑁𝑖𝑠𝑠𝑎𝑛−𝐴𝐶𝐶
𝑛 = 𝑏𝑜𝑢𝑛𝑑(�̇� + 0.25 × 𝑠𝑒 , 𝑎𝑠𝑐, 𝑏𝑚𝑎𝑥) (10) 

where 

�̇� is the acceleration adjustment parameter (m/s2) 

When 𝑣𝑛−1 = 0, 𝑣𝑛 = 0 and 𝑠𝑒 = 𝑠0, 𝑎𝑁𝑖𝑠𝑠𝑎𝑛_𝐴𝐶𝐶
𝑛  should equal 0. Since the desired speed and 

maximum acceleration are larger than 0, we have the following: 

𝑎𝑠𝑐 = 𝑏𝑜𝑢𝑛𝑑(0.4 × 𝑣0, 𝑎𝑚𝑎𝑥 , 𝑏𝑚𝑎𝑥) > 0 (11) 

Since 𝑎𝑁𝑖𝑠𝑠𝑎𝑛_𝐴𝐶𝐶
𝑛 = 0 and 𝑎𝑠𝑐 > 0, �̇� + 0.25 × 𝑠0 should equal 0. Therefore, the acceleration 

adjustment parameter (�̇�) can be derived as follows: 

�̇� = −0.25 × 𝑠0 (12) 

As a result, the spacing control law is modified as follows: 

𝑠∗ = 𝑇 × 𝑣𝑛 + 𝑠0 (13) 

𝑠𝑒 = ∆𝑥 − 𝑠∗ (14) 

𝑎𝑁𝑖𝑠𝑠𝑎𝑛−𝐴𝐶𝐶
𝑛 = 𝑏𝑜𝑢𝑛𝑑(0.25 × 𝑠𝑒 , 𝑎𝑠𝑐, 𝑏𝑚𝑎𝑥) (15) 

Cooperative Adaptive Cruise Control 

As an extension of ACC, several cooperative ACC (CACC) strategies have been proposed, e.g., 

Shladover et al. (2012), Dey et al. (2016), Milanés and Shladover (2014), and Xiao et al. (2017). 

In particular, Van Arem et al. (2006) proposed a CACC in which the acceleration at every 

decision point is calculated as follows: 
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𝑎𝐶𝐴𝐶𝐶
𝑛 = 𝑚𝑖𝑛( 𝑎𝑑, 𝑘(𝑣0 − 𝑣𝑛)) (16) 

𝑎𝑑 = 𝑘𝑎𝑎𝑛−1 + 𝑘𝑣(𝑣𝑛−1 − 𝑣𝑛) + 𝑘𝑑(∆𝑥 − 𝑠
∗) (17) 

𝑠∗ = 𝑚𝑎𝑥 (𝑇𝑣𝑛, 𝑠0,
𝑣𝑛
2

2
 (

1

𝑑𝑝
−

1

𝑑
)) (18) 

where 

 𝑘𝑎, 𝑘𝑣, and 𝑘𝑑 are constants 

 𝑑𝑝 and 𝑑 are the deceleration capabilities of the leading and following vehicles, which are equal 

to 𝑏𝑚𝑎𝑥 in this report 

𝑘 is the constant-speed error factor 

Based on the recommendations of Van Arem et al. (2006), = 1, 𝑘𝑎 = 1, 𝑘𝑣 = 0.58, and 𝑘𝑑 =
0.1. 

In this study, IDM-ACC, Nissan-ACC, and Van Arem CACC are applied to simulate the CAVs. 

The performance of these models are compared with the proposed energy-efficient ACC model. 

Adaptive Cruise Control for CAVs 

A single-lane car-following scenario is considered to derive the properties of the proposed 

ACCs. The following assumptions are made: (1) only CAVs are capable of communicating with 

other CAVs through vehicle-to-vehicle communication, which is an ideal wireless connection 

(Davis 2017); (2) on-board sensors measure vehicle speed, gap (relative distance), and relative 

speed with respect to the preceding vehicle at regular time intervals (Wang et al. 2018); and (3) 

there is no computational, sensor, or communication delays for CAVs. 

An example of a platoon containing CAVs and manually driven vehicles is shown in Figure 1.  

 

Figure 1. A platoon with CAVs (yellow) and manually driven vehicles (green) 

The manually driven vehicles and CAVs are represented by green vehicles and yellow vehicles, 

respectively. According to the aforementioned assumptions, only CAVs can share the 

information and the CAV can detect the manually driven vehicle immediately in front of it. 

#1 #2 #M #2 #1 #1 

Vehicle Set 3 Vehicle Set 1 Vehicle Set 2 
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Therefore, the number of manually driven vehicles between CAVs is unknown. As a result, 

manually driven vehicles separate the platoon into several vehicle sets. A manually driven 

vehicle is always the first vehicle in a vehicle set. That is, the location (N) of a manually driven 

vehicle is labeled as 1. The locations of CAVs in the vehicle sets are labeled as 2 to M. Note that 

the vehicle set definition is used to determine the location of CAVs and design the ACC 

strategies. A manually driven vehicle can still follow a CAV in the platoon, according to its car-

following rules.  

Ecological Smart Driver Model for Gasoline CAVs 

Most of the existing ecological cruise control methods are optimization-based and do not 

consider the location of CAVs in a platoon. A rule-based ecological ACC model, named the 

ecological smart driver model (Eco-SDM) is proposed (Lu et al. 2018). The acceleration of a 

following vehicle equipped with the Eco-SDM is determined by the following equation: 

𝑎𝐸𝑐𝑜−𝑆𝐷𝑀
𝑛 = 𝑎𝑚𝑎𝑥 −

𝑎𝑚𝑎𝑥+
𝑣𝑛
2−𝑣𝑛−1

2

2∆𝑥

𝑒
(

∆𝑥
𝑠0+𝑣𝑛×𝑇

 −1−𝛽×
𝑣𝑛
𝑣0
×
(𝑣0−𝑣𝑛)

𝑣0
)
 (19) 

where, 

𝑎𝐸𝑐𝑜−𝑆𝐷𝑀
𝑛  is the acceleration of the following vehicle that is equipped with the Eco-SDM (m/s2) 

𝛽 is an adjust parameter considering the location of the CAV in the vehicle set 

In addition, the maximum speed constraint requires 𝑣 ≤ 𝑣0, which guarantees a speed not 

exceeding the maximum speed. 

To stabilize the string of vehicles in a mixed traffic stream quickly, the CAVs located closer to 

the manually driven vehicles need to react more dramatically to attenuate the disturbance from 

manually driven vehicles in front of them. Therefore, the parameter (𝛽) of the Eco-SDM is 

determined as follows: 

𝛽 =
1

𝑙𝑛 (𝑁 )
+ 1 (20) 

where, 

𝑁 is the location of a CAV in a vehicle set, and 𝑁 ≥ 2 

According to Equation 19 and Equation 20, CAVs with the Eco-SDM tend to accelerate with 

𝑎𝑚𝑎𝑥 when ∆𝑥 is large. A CAV will brake when the speed of the CAV is greater than the leading 

vehicle speed and ∆𝑥 is less than the desired spacing. When there is no speed difference between 

the leading and following vehicles, a CAV’s acceleration increases with the ratio of ∆𝑥 to the 

desired spacing. According to the characteristics of the exponential function, the jerk of the 

CAV, which represents the changing rate of a CAV’s acceleration, decreases with the ratio of ∆𝑥 

to the desired spacing. Moreover, a CAV would adjust its speed-dependent spacing based on the 
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location of the CAV in a vehicle set. Consequently, the CAVs equipped with the Eco-SDM can 

achieve smoother acceleration and deceleration. 

Several properties of the Eco-SDM are discussed as follows, considering special cases. 

First, when a CAV is cruising (i.e., 𝑎𝐸𝑐𝑜−𝑆𝐷𝑀
𝑛 = 0 and 𝑣𝑛 − 𝑣𝑛−1 = 0), the speed-dependent 

spacing ∆𝑥 between the preceding and the following vehicles are given by the following: 

∆𝑥 = (1 + β ×
𝑣𝑛

𝑣0
×
(𝑣0−𝑣𝑛)

𝑣0
) (𝑠0 + 𝑣𝑛 × 𝑇) (21) 

In particular, when the vehicle is stopped or reached the maximum speed (i.e., 𝑣𝑛 = 0 or 𝑣𝑛 =
𝑣0), the speed-dependent spacing ∆𝑥 equals the desired spacing, which is ∆𝑥 = 𝑠0 + 𝑣𝑛 × 𝑇. The 

desired spacing is composed of a standstill distance (𝑠0) and a speed-dependent term, 𝑣𝑛𝑇. When 

a CAV follows other CAVs, β decreases with the location (N), and the speed-dependent spacing 

∆𝑥 of the CAV is closer to the desired spacing. Note that in equilibrium traffic of arbitrary 

density, the speed-dependent spacing ∆𝑥 of both the IDM-ACC and Nissan-ACC models are the 

desired spacing, while the speed-dependent spacing ∆𝑥 of the Eco-SDM would only equal the 

desired spacing when 𝑣𝑛 is equal to 0 or 𝑣0. 

Second, when the traffic density is low (i.e., ∆𝑥 is large), CAVs will accelerate to the maximum 

speed. When ∆𝑥 → ∞, 
𝑣n
2−𝑣n−1

2

2∆𝑥
 is close to 0. At the same time, 𝑒

(
∆𝑥

𝑠0+𝑣𝑛×𝑇
−1−𝛽×

𝑣𝑛
𝑣0
×
(𝑣0−𝑣𝑛)

𝑣0
)
 is close 

to infinity. As a result, the acceleration with the Eco-SDM is approximately equal to the 

maximum acceleration, i.e., 𝑎𝐸𝑐𝑜−𝑆𝐷𝑀
𝑛 ≈ 𝑎. After the speed of the CAV reaches the maximum 

speed, acceleration with the Eco-SDM is 0. 

Third, when a CAV is following a slower vehicle or approaching a stopped vehicle (i.e., 𝑣𝑛 −
𝑣𝑛−1> 0) with the limited spacing (∆𝑥 → 𝑠0 + 𝑣0 × 𝑇), the acceleration equation of the Eco-

SDM is given by the following: 

𝑎𝐸𝑐𝑜−𝑆𝐷𝑀
𝑛 → 𝑎𝑚𝑎𝑥 −

𝑎𝑚𝑎𝑥+
𝑣𝑛
2−𝑣𝑛−1

2

2(𝑠0+𝑣𝑛×𝑇)

𝑒𝑥𝑝(−𝛽×
𝑣𝑛
𝑣0
×
(𝑣0−𝑣𝑛)

𝑣0
)
 (22) 

Specifically, when a CAV with the maximum speed approaches a stopped vehicle (i.e., 𝑣𝑛 = 𝑣0, 

𝑣𝑛−1 = 0), the maximum kinematic deceleration is applied to avoid a collision, as follows: 

𝑎𝐸𝑐𝑜−𝑆𝐷𝑀
𝑛 = −

𝑉0
2

2(𝑠0+𝑣0×𝑇)
 (23) 

Fourth, when the spacing is much less than the desired spacing (∆𝑥 ≪ 𝑠0 + 𝑣0 × 𝑇) and there are 

no significant speed differences (𝑣𝑛 − 𝑣𝑛−1 ≈ 0), the acceleration is determined as follows: 
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𝑎𝐸𝑐𝑜−𝑆𝐷𝑀
𝑛 ≈ 𝑎𝑚𝑎𝑥 (1 −

1

𝑒
(

∆𝑥
𝑠0+𝑣𝑛×𝑇

−1−𝛽×
𝑣𝑛
𝑣0
×
(𝑣0−𝑣𝑛)

𝑣0
)
) (24) 

Specifically, when ∆𝑥 → 0, Equation 24 reduces to the following: 

𝑎𝐸𝑐𝑜−𝑆𝐷𝑀
𝑛 ≈ 𝑎𝑚𝑎𝑥 (1 −

1

𝑒
(−1−𝛽×

𝑣𝑛
𝑣0
×
(𝑣0−𝑣𝑛)

𝑣0
)
) (25) 

Since 𝛽 ×
𝑣𝑛

𝑣0
×
(𝑣0−𝑣𝑛)

𝑣0
 is always greater than 0, 𝑒

(−1−𝛽×
𝑣𝑛
𝑣0
×
(𝑣0−𝑣𝑛)

𝑣0
)
 is always less than 1. The 

following vehicle will adjust its deceleration according to its speed. 

Energy-Efficient Electric Driving Model (E3DM) for E-CAVs 

Existing energy-efficient BEV cruise control strategies are optimization-based and do not 

consider mixed traffic consisting of autonomous and human-driven vehicles. A rule-based ACC, 

named the energy-efficient electric driving model (E3DM), is proposed for BEVs in mixed traffic 

streams. Fiori et al. (2016) showed that a marginal increment of energy regeneration efficiency 

decreases exponentially with the increase of deceleration. Thus, to achieve high energy 

efficiency of regenerative braking, the electric-CAVs (e-CAVs) should maintain a small 

deceleration for a long duration instead of applying a large deceleration for a short duration. 

Consequently, the acceleration of a following vehicle equipped with the E3DM is determined by 

the following equation: 

𝑎𝐸3𝐷𝑀
𝑛 = 𝑎𝑚𝑎𝑥 × [1 − (

𝑣𝑛

𝑣0
)
4

] −
𝑎𝑚𝑎𝑥×[1−(

𝑣𝑛
𝑣0
)
4
]+
𝑣𝑛
2−𝑣𝑛−1

2

2∆𝑥

𝑒

∆𝑥

𝑠0+𝑣𝑛×𝑇+
𝑣𝑛(𝑣𝑛−𝑣𝑛−1)

2𝛽√𝑎𝑚𝑎𝑥𝑏

−1−𝛽2×
𝑣𝑛
𝑣0
×[
(𝑣0−𝑣𝑛)

𝑣0
]
𝛾 (26) 

where  

𝑎𝐸3𝐷𝑀
𝑛  is the acceleration of the following vehicle that is equipped with the E3DM (m/s2) 

𝛾 is a parameter indicating the preceding vehicle type 

The parameter (𝛾) of the E3DM is determined as follows: 

𝛾 = {
1,        𝑖𝑓 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑎𝑛 eCAV
0.5,                                     𝑒𝑙𝑠𝑒

 (27) 

According to Equation 26 and Equation 27, e-CAVs with the E3DM accelerate with 

𝑎𝑚𝑎𝑥 [1 − (
𝑣𝑛

𝑣0
)
4

] when ∆𝑥 is large, which is the same as with the IDM (Treiber et al. 2000). An 

e-CAV will brake while the speed of the e-CAV is greater than the leading vehicle speed and ∆𝑥 
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is less than the desired spacing. When there is no speed difference between the leading and 

following vehicle, an e-CAV’s acceleration increases with the ratio of ∆𝑥 to the desired spacing.  

According to the characteristics of the exponential function, the jerk of an e-CAV, which 

represents the changing rate of an e-CAV’s acceleration, decreases with the ratio of ∆x to the 

desired spacing. Moreover, an e-CAV adjusts its speed-dependent spacing based on the location 

of the e-CAV in a vehicle set and type of leading vehicle. Consequently, the e-CAVs equipped 

with the E3DM can achieve smooth acceleration and efficient regenerative braking. 

Several properties of the E3DM are discussed as follows, considering special cases. 

First, when an e-CAV is cruising (i.e., 𝑎𝐸3𝐷𝑀
𝑛 = 0 and 𝑣𝑛 − 𝑣𝑛−1 = 0), the speed-dependent 

spacing ∆𝑥 between the preceding and the following vehicle is given by the following: 

∆𝑥 = (1 + 𝛽2 ×
𝑣𝑛

𝑣0
× [

(𝑣0−𝑣𝑛)

𝑣0
]
𝛾

) (𝑠0 + 𝑣𝑛 × 𝑇) (28) 

In particular, when the vehicle is stopped or reached the maximum speed (i.e., 𝑣𝑛 = 0 or 𝑣𝑛 =
𝑣0), speed-dependent spacing ∆𝑥 equals the desired spacing, that is, ∆𝑥 = 𝑠0 + 𝑣𝑛 × 𝑇. The 

desired spacing is composed of a standstill distance (𝑠0) and an additional speed-dependent term, 

𝑣𝑛𝑇. When an e-CAV follows other e-CAVs, β decreases with the location (N), and the speed-

dependent spacing ∆𝑥 of the e-CAV is closer to the desired spacing. Note that in equilibrium 

traffic of arbitrary density, the speed-dependent spacing ∆𝑥 of both the IDM-ACC and Nissan-

ACC models are the desired spacing, while the speed-dependent spacing ∆𝑥 of the E3DM would 

only equal the desired spacing when 𝑣𝑛 is equal to 0 or the maximum speed. 

Second, when the traffic density is low (i.e., ∆𝑥 is large), e-CAVs will accelerate to the 

maximum speed. When ∆𝑥 → ∞, 
𝑣𝑛
2−𝑣𝑛−1

2

2∆𝑥
 is close to 0. At the same time 

𝑒

(
∆𝑥

𝑠0+𝑣𝑛×𝑇+
𝑣𝑛(𝑣𝑛−𝑣𝑛−1)

2𝛽√𝑎𝑏

−1−𝛽2×
𝑣𝑛
𝑣0
×[
(𝑣0−𝑣𝑛)

𝑣0
]
𝛾
)

 is close to infinity. As a result, the acceleration of the 

E3DM is approximately equal to the maximum acceleration, 𝑎𝐸3𝐷𝑀
𝑛 ≈ 𝑎. After the speed reaches 

the maximum speed, acceleration of the E3DM is 0. 

Third, when an e-CAV is following a slower vehicle or approaching a stopped vehicle (i.e., 𝑣𝑛 −
𝑣𝑛−1 > 0) with a limited spacing (∆𝑥 → 𝑠0 + 𝑣0 × 𝑇), the acceleration equation is given by 

𝑎𝐸3𝐷𝑀
𝑛 → 𝑎𝑚𝑎𝑥 × [1 − (

𝑣𝑛

𝑣0
)
4

] −
𝑎𝑚𝑎𝑥×[1−(

𝑣𝑛
𝑣0
)
4
]+

𝑣𝑛
2−𝑣𝑛−1

2

2(𝑠0+𝑣𝑛×𝑇)

𝑒𝑥𝑝(−𝛽2×
𝑣𝑛
𝑣0
×[
(𝑣0−𝑣𝑛)

𝑣0
]
𝛾
)

 (29) 

Specifically, when an e-CAV with the maximum speed approaches a stopped vehicle (i.e., 𝑣𝑛 =
𝑣0, 𝑣𝑛−1 = 0), the maximum kinematic deceleration is applied to avoid a collision, as follows: 
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𝑎𝐸3𝐷𝑀
𝑛 = −

𝑉0
2

2(𝑠0+𝑣0×𝑇)
 (30) 

Fourth, when the spacing is much smaller than the desired spacing (∆𝑥 ≪ 𝑠0 + 𝑣0 × 𝑇) and there 

are no significant speed differences (𝑣𝑛 − 𝑣𝑛−1 ≈ 0), the acceleration is determined as follows: 

𝑎𝐸3𝐷𝑀
𝑛 ≈ 𝑎𝑚𝑎𝑥 × [1 − (

𝑣𝑛

𝑣0
)
4

] −
𝑎𝑚𝑎𝑥×[1−(

𝑣𝑛
𝑣0
)
4
]

𝑒

∆𝑥

𝑠0+𝑣𝑛×𝑇+
𝑣𝑛(𝑣𝑛−𝑣𝑛−1)

2𝛽√𝑎𝑏

−1−𝛽2×
𝑣𝑛
𝑣0
×[
(𝑣0−𝑣𝑛)

𝑣0
]
𝛾 (31) 

Specifically, when ∆𝑥 → 0, Equation 31 reduces to 

𝑎𝐸3𝐷𝑀
𝑛 ≈ 𝑎𝑚𝑎𝑥 × [1 − (

𝑣𝑛

𝑣0
)
4

] × (1 −
1

𝑒
−1−𝛽2×

𝑣𝑛
𝑣0
×[
(𝑣0−𝑣𝑛)

𝑣0
]
𝛾) (32) 

Since 𝛽2 ×
𝑣𝑛

𝑣0
× [

(𝑣0−𝑣𝑛)

𝑣0
]
𝛾

 is always greater than 0, 𝑒
−1−𝛽2×

𝑣𝑛
𝑣0
×[
(𝑣0−𝑣𝑛)

𝑣0
]
𝛾

 is always less than 1. 

The following vehicle will adjust its deceleration according to its speed. 

In the numerical experiment, a traffic stream containing both CAVs and human-driven vehicles 

is simulated. The IDM is used to describe the driver behavior of the human-driven vehicles. The 

CAVs are simulated using the Eco-SDM, IDM-ACC, and Nissan-ACC models. Meanwhile, the 

e-CAVs are simulated using the E3DM, IDM-ACC, Nissan-ACC, and CACC models. The 

acceleration model parameters of the human-driven vehicles and CAVs are based on the 

parameters of IDM proposed by Kesting et al. (2010), as listed in Table 1. 

Table 1. Parameters of the acceleration models 

Parameters IDM 

IDM-

ACC 

Nissan

-ACC E3DM 

Eco-

SDM CACC 

Maximum speed 𝑣0 (m/s)  33.3 

Free acceleration exponent 𝛿 4 4 — — — — 

Desired time headway 𝑇 (s)  1.5 

Standstill distance 𝑠0 (m)  2 

Maximum acceleration 𝑎𝑚𝑎𝑥 (m/s2)  1.4 

Desired deceleration 𝑏 (m/s2) 2 2 — 2 — — 

Maximum deceleration 𝑏𝑚𝑎𝑥 (m/s2)  6 

Coolness factor 𝑐 — 0.99 — — — — 
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ESTIMATED ENERGY CONSUMPTION OF GASOLINE VEHICLES AND BEVS 

Fuel Consumption Model for Gasoline Vehicles 

Review of Fuel Consumption Models 

Various fuel consumption models of gasoline vehicles have been proposed in the literature. Since 

vehicle speed and acceleration data can be collected by various devices, such as on-board 

diagnostics (OBD-II) loggers, on-board trackers and smartphones, instantaneous speed and 

acceleration are widely used as predictors to estimate vehicle fuel consumption. One pioneer 

work was done by Ahn et al. (2002) and Rakha and Ahn (2004) who proposed the Virginia Tech 

microscopic energy and emission (VT-Micro) model. This regression model takes polynomial 

combinations of speed and acceleration levels as the explanatory variables to estimate vehicle 

fuel consumption. Kamal et al. (2011) also developed a regression-based fuel consumption 

model that is similar to VT-Micro, but took different polynomial terms of speed and acceleration 

into account. Road inclination, if collected simultaneously with speed and acceleration, can also 

be included as an extra variable in fuel consumption estimation, such as by Ribeiro et al. (2013). 

In addition to the above-mentioned regression models, some power-based models have been 

proposed as well. These models first calculated the instantaneous power of engines based on 

vehicle speed and acceleration, and then established the relationships between fuel consumption 

and engine power. For example, the Virginia Tech comprehensive power-based fuel 

consumption model (VT-CPFM) (Park et al. 2013, Rakha et al. 2011) estimated vehicle fuel 

consumption using the linear and quadratic terms of engine power. The model avoids bang-bang 

control and can be calibrated using publicly available data. 

Calibration and Validation of the VT-Micro Model 

This study adopts the VT-Micro model developed by Ahn et al. (2002) to estimate fuel 

consumption of gasoline vehicles. VT-Micro is a hybrid linear regression model, which includes 

a combination of linear, quadratic, and cubic speed and acceleration terms. The model has two 

parts based on the value of acceleration, as shown by Equation 33 and Equation 34. 

ln 𝐹𝐶 = ∑ ∑ 𝐿𝑖,𝑗𝑣
𝑖𝑎𝑗3

𝑗=0
3
𝑖=0    (𝑎 ≥ 0) (33) 

ln 𝐹𝐶 = ∑ ∑ 𝑀𝑖,𝑗𝑣
𝑖𝑎𝑗3

𝑗=0
3
𝑖=0    (𝑎 < 0) (34) 

where 

FC is fuel consumption rate (mL/s) 

v is vehicle speed (m/s) 

a is vehicle acceleration (m/s2) 

Li,j are regression parameters for a ≥ 0 

Mi,j are regression parameters for a < 0 
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The data used to calibrate model parameters were collected using an OBD-II logger and a Global 

Positioning System (GPS) device installed on a passenger vehicle (2010 Honda CR-V) for seven 

months from October 2016 to May 2017. This vehicle was primarily used for daily commute 

between home and work, and was driven mainly on urban roads and major highways. A total of 

543 trips were recorded. The OBD-II logger collected instantaneous fuel consumption every five 

seconds. The GPS device collected vehicle speed every one second. The acceleration is 

calculated based on the difference in vehicle speeds. By fitting linear regression models between 

instantaneous fuel consumptions, speeds, and accelerations, the regression coefficients specific 

to the vehicle are determined. The adjusted R-squared is 0.8245 when 𝑎 ≥ 0, and 0.6616 when 

𝑎 < 0. In addition, the chi-squared goodness-of-fit test is conducted based on the actual and the 

estimated instantaneous fuel consumptions. The p-value is 0.2416 when 𝑎 ≥ 0 and 0.2685 when 

𝑎 < 0, indicating the estimated instantaneous fuel consumption is not significantly different from 

the actual one. The regression coefficients are listed in Table 2 and Table 3.  

Table 2. Parameters of the calibrated VT-Micro model for a ≥ 0 

a ≥ 0 Constant v v
2
 v

3
 

Constant -1.23E+00 6.05E-02 3.62E-04 -2.22E-06 

a 4.69E-01 3.39E-01 -1.91E-02 2.56E-04 

a
2
 -4.54E-02 -1.33E-01 7.45E-03 -5.44E-05 

a
3
 1.34E-02 2.08E-02 -2.01E-03 3.19E-05 

 

Table 3. Parameters of the calibrated VT-Micro model for a < 0 

a < 0 Constant v v
2
 v

3
 

Constant -7.89E-01 -2.14E-02 5.61E-03 -9.16E-05 

a 2.83E-01 -1.02E-01 2.01E-02 -4.43E-04 

a
2
 1.39E-01 -7.45E-02 1.40E-02 -3.44E-04 

a
3
 9.13E-03 -9.58E-03 2.16E-03 -5.77E-05 

The accuracy of the calibrated VT-Micro model is evaluated on a trip basis. The actual and 

estimated trip-level fuel consumptions are compared, as shown in Figure 2.  
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Figure 2. Validation of the calibrated VT-Micro model 

The dots are mostly distributed along the diagonal line. The mean absolute percentage error 

(MAPE) and the root mean square error (RMSE) are computed as follows: 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝐹𝐶𝑎,𝑖−𝐹𝐶𝑒,𝑖

𝐹𝐶𝑎,𝑖
|𝑛

𝑖=1 × 100% (35) 

𝑅𝑀𝑆𝐸 = √
∑ (𝐹𝐶𝑎,𝑖−𝐹𝐶𝑒,𝑖)

2𝑛
𝑖=1

𝑛
 (36) 

where 

𝐹𝐶𝑒,𝑖 is the estimated fuel consumption of trip 𝑖 (L) 

𝐹𝐶𝑎,𝑖 is the actual fuel consumption of trip 𝑖 (L) 

𝑛 is the total number of trips in the dataset (𝑛 = 543) 

Both metrics have low values: MAPE equals 9.76% and RMSE equals 0.069 L. Therefore, the 

calibrated VT-Micro model is adequate for estimating vehicle fuel consumption at the trip level 

and is applied in the subsequent simulation. 

Energy Consumption Model for BEVs 

Review of BEV Energy Consumption Models 

To assess energy efficiency of electric vehicles in a mixed traffic stream, appropriate energy 

consumption models are needed. Using the controller area network (CAN) bus and GPS 

trajectory data, several BEV energy consumption models have been proposed in the literature. 

Yao et al. (2014) used instantaneous speeds and accelerations as predictors to estimate BEV 

R2=0.9911 
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energy consumption rate. In their subsequent work, battery state of charge (SOC) was also taken 

into account as the energy consumption rate was found to be negatively correlated with SOC 

(Zhang and Yao 2015). Liu et al. (2017(b)) studied the effects of road gradients on electricity 

consumption and found that the consumption increases almost linearly with the absolute gradient 

increases. Wang et al. (2017) studied the impact of ambient temperature on BEV energy usage 

and used a third-order polynomial regression model to describe the relationship between energy 

efficiency and temperature. Another commonly used predictor in energy consumption models is 

vehicle specific power (VSP) that can be gauged by vehicle speed and acceleration. For example, 

Alves et al. (2016) and Yao et al. (2014) developed hybrid regression models to estimate BEV 

energy consumption based on different levels of VSP. One important feature of BEVs is 

regenerative braking—when the vehicle decelerates, the electric motor converts kinetic energy to 

electricity that can be stored in batteries. Researchers have not reached consensus on the energy 

efficiency of regenerative braking as it is a complex process. Fiori et al. (2016) modeled 

regenerative energy as a function of deceleration levels in their BEV energy consumption model, 

while Yang et al. (2014) and Genikomsakis and Mitrentsis (2017) assumed that regenerative 

braking efficiency is linearly related to vehicle speed. 

This section introduces two BEV energy consumption models that are representative of 

mainstream methods of estimating energy consumption and can be easily calibrated using the 

vehicle CAN bus data. 

First, Yao’s BEV energy consumption model is a multivariate regression model consisting of 

linear, quadratic, and cubic combinations of speed and acceleration (Yao et al. 2014). The model 

was developed based on chassis dynamometer experiment data. The model parameters are 

calibrated for different vehicle modes—acceleration, deceleration, cruising, and idling. Yao’s 

model is described as follows: 

𝐸𝐶𝑅 =

{
 
 

 
 ∑ ∑ (𝜔𝑖,𝑗 × 𝑣

𝑖 × 𝑎𝑗)3
𝑗=0

3
𝑖=0    𝑎 > 0

∑ ∑ (𝛽𝑖,𝑗 × 𝑣
𝑖 × 𝑎𝑗)3

𝑗=0
3
𝑖=0    𝑎 < 0

∑ (𝜃𝑖 × 𝑣
𝑖)3

𝑖=0    𝑎 = 0, 𝑣 ≠ 0
𝑒𝑐𝑟̅̅̅̅̅   𝑎 = 0, 𝑣 = 0

 (37) 

where 

𝐸𝐶𝑅 is energy consumption rate (W) 

𝜔𝑖,𝑗, 𝛽𝑖,𝑗, 𝜃𝑖 are coefficients 

𝑒𝑐𝑟̅̅̅̅̅ is average energy consumption (W) in idling mode 

Second, Yang et al. (2014) proposed a BEV energy consumption model, considering vehicle-

specific power and auxiliary load, as well as the energy efficiency of regenerative braking. When 

instantaneous acceleration 𝑎 ≥ 0, the energy consumption rate is calculated as 

𝐸𝐶𝑅 =
𝑚

𝜂𝑡𝑒𝜂𝑒
𝑉𝑆𝑃 + 𝑃𝑎𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑦 , 𝑎 ≥ 0 (38) 
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where 

𝑚 is vehicle mass (kg) 

𝜂𝑡𝑒 is BEV’s transmission efficiency 

𝜂𝑒 is driving efficiency of battery 

𝑉𝑆𝑃 is vehicle specific power (W/kg) 

𝑃𝑎𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑦 is the electricity consumed by accessories (W) 

When the vehicle decelerates, a portion of kinetic energy is recovered and restored in batteries 

due to the regenerative braking feature of motors. The regenerative braking factor η in Equation 

38 indicates the percentage of braking energy that can be recovered, which varies with speed. 

Note that in practice, η is influenced by many factors, such as speed, deceleration, and braking 

force. In Yang et al.’s model, η is defined as a function of speed, as in Equation 39. 

𝐸𝐶𝑅 = 𝜂𝑚𝜂𝑡𝑒𝜂𝑚𝑉𝑆𝑃 + 𝑃𝑎𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑦   𝑎 < 0 (39) 

𝜂 = {
0.5 ×

𝑣

5
 , 𝑣 < 5

0.5 + 0.3 ×
𝑣−5

20
,   𝑣 ≥ 5

 (40) 

where 

η is regenerative braking factor 

𝜂𝑚 is motor efficiency 

Proposed BEV Energy Consumption Model 

Most of the existing electricity consumption models were developed based on the data collected 

in heterogeneous driving conditions. For example, Yao et al. (2014) and Fiori et al. (2016) used 

data collected from chassis dynamometer experiments, and Zhang and Yao (2015) collected data 

in low-speed urban traffic conditions. Alves et al. (2016) collected data under constant ambient 

temperature. By using real-world driving data collected on urban roads and highways over an 

extended time period, an electricity consumption model that considers vehicle-specific power, 

regenerative braking, auxiliary load, and ambient temperature is proposed to estimate BEV on-

road energy consumption. 

VSP provides an estimate of the battery output power per mass unit for overcoming the 

resistance encountered by a BEV (Alves et al. 2016, Boroujeni and Frey 2014). It is calculated 

using vehicle dynamics in Equation 41. Energy consumption is heterogeneous at different VSP 

levels (Alves et al. 2016). Negative values of VSP indicate that due to regenerative braking, 

some electricity is converted from kinetic energy and restored in the batteries. Therefore, the 

proposed energy consumption model is calibrated based on VSP levels (>0, =0, or <0) to account 

for regenerative braking. 

𝑉𝑆𝑃 = 𝑣(1.1𝑎 + 𝐶𝑟𝑟) + 𝐶𝑎𝑒𝑟𝑜𝑣
3 (41) 
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where 

𝐶𝑟𝑟 is rolling resistance coefficient (N/kg) 

𝐶𝑎𝑒𝑟𝑜 is aerodynamics drag coefficient (N s2/m2 kg) 

Auxiliary systems, especially heating and air conditioning systems, consume considerable 

electricity (Fiori et al. 2016, Liu et al. 2017). The relationship between average auxiliary load 

and ambient temperature for each trip is illustrated in Figure 3.  

 

Figure 3. Relationship between auxiliary load and ambient temperatures 

The data were collected using an OBD-II logger and a GPS device installed on a passenger BEV 

(2013 Nissan Leaf) for six months in real-world driving conditions. Since the data were collected 

from November 2016 to April 2017 in Iowa, the ambient temperature range only covers -17 °C 

to 23 °C. Thus, part of the curve (i.e., ambient temperature from -17 °C to 23 °C) is calibrated 

using the data. The R-squared is 0.46. 𝑐0 and 𝑐1 are 6.71 and -0.0894, respectively. Yuksel and 

Michalek (2015), Wang et al. (2017), and Liu et al. (2017(a)) explored the U-shaped relationship 

between BEV energy consumption and ambient temperature, where the energy consumption is 

lowest at 20 °C ~ 25 °C and increases as the temperature becomes colder or hotter, with similar 

trends. In this study, a symmetric equation is assumed to estimate the auxiliary load from 23 °C 

to 40 °C, as shown in Equation 42. 

ln 𝑃𝑎𝑢𝑥 = {
𝑐0 + 𝑐1𝑡,   𝑖𝑓 − 17 ≤ 𝑡 ≤ 23

𝑐0 + 𝑐1(46 − 𝑡),   𝑖𝑓 23 < 𝑡 ≤ 40
  (42) 

where 

𝑃𝑎𝑢𝑥 is vehicle auxiliary load (W) 

𝑡 is ambient temperature (°C) 

𝑐0, 𝑐1 are coefficients 

Considering the VSP and auxiliary load, a hybrid linear regression model is proposed to estimate 

BEV electricity consumption. 
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𝐸𝐶𝑅 = ℎ0 + ℎ1𝑉𝑆𝑃 + ℎ2𝑃𝑎𝑢𝑥 (43) 

where ℎ0, ℎ1, ℎ2 are coefficients. 

The model parameters are calibrated at different VSP levels to account for regenerative braking. 

Moreover, unlike internal combustion engine vehicles that are more fuel efficient on highways, 

BEVs driving at high speeds consume more electricity per distance unit than at low speeds 

(Alves et al. 2016, Fiori et al. 2016, Yang et al. 2013, Wager et al. 2016). Therefore, the model 

parameters are calibrated at different instantaneous speed levels. The threshold of 12.5 m/s (or 45 

km/h) is used to separate high-speed driving from low-speed driving.  

Calibration and Validation of the Proposed BEV Energy Consumption Model 

The parameters of the proposed BEV energy consumption model are calibrated using the vehicle 

data collected from a 2013 Nissan Leaf. For this vehicle, 𝐶𝑟𝑟 equals 0.0981 N/kg and 𝐶𝑎𝑒𝑟𝑜 

equals 0.0002 N s2/m2 kg (Faria et al. 2012, Fiori et al. 2016, Wager et al. 2016). The vehicle 

was primarily used on urban roads and major highways. The data collected include timestamp, 

GPS location, vehicle speed, ambient temperature, battery current and voltage, and battery SOC. 

Energy consumption is the product of battery voltage and current. Acceleration is the derivative 

of vehicle speeds. During the six-month data collection period, 512 trips were recorded. The 

calibrated model parameters are listed in Table 4. 

Table 4. Parameters of the electricity consumption model 

VSP v h0 h1 h2 c0 c1 

>0 
<12.5 3.22E+03 1.16E+03 2.15E+00 

6.71E+00 -8.94E-02 

≥12.5 8.43E+03 7.57E+02 2.60E+00 

=0 
<12.5 6.10E+02 — 1.19E+00 

≥12.5 — — — 

<0 
<12.5 7.20E+02 5.58E+02 2.10E+00 

≥12.5 8.12E+03 5.94E+02 2.57E+00 

 

Moreover, Yao’s model and Yang et al.’s model are calibrated and validated using the same 

dataset. The trip-level energy consumptions estimated by the proposed model, Yao’s model, and 

the Yang et al.’s model are compared with the actual energy consumption for the same trip. As 

shown in Figure 4, the proposed model can estimate trip-level energy consumptions fairly close 

to the actual values and outperforms Yao’s and Yang et al.’s models. 



20 

 

Figure 4. Validation of the electricity consumption models 

The mean absolute percentage error and root mean square error are calculated and compared for 

these three models, as listed in Table 5.  

Table 5. Validation metrics for BEV electricity consumption model 

Electricity consumption models MAPE RMSE 

Proposed model 13.3% 0.296 kWh 

Yao’s model 19.5% 0.495 kWh 

Yang et al.’s model 16.7% 0.511 kWh 

 

𝑀𝐴𝑃𝐸 =
1

𝑝
∑ |

𝐸𝐶𝑎,𝑖−𝐸𝐶𝑒,𝑖

𝐸𝐶𝑎,𝑖
|𝑝

𝑖=1 × 100% (44) 

𝑅𝑀𝑆𝐸 = √
∑ (𝐸𝐶𝑎,𝑖−𝐸𝐶𝑒,𝑖)

2𝑛
𝑖=1

𝑝
 (45) 

where 

𝐸𝐶𝑒,𝑖 is the estimated energy consumption of trip 𝑖 (kWh) 

𝐸𝐶𝑎,𝑖 is the actual energy consumption of trip 𝑖 (kWh) 

𝑝 is the total number of trips in the dataset (i.e., 512) 

Among these models, the proposed model has the lowest MAPE and RMSE. Consequently, the 

proposed model is used to estimate electricity consumption of BEVs.  



21 

ENERGY EFFICIENCY OF CAVS IN A MIXED FLEET 

The numerical experiments are performed by simulating a traffic stream with 1,000 vehicles on a 

7.45-mile long single lane road. As the platoon size on urban arterials usually ranges from 14 to 

81 vehicles (Baas and Serge 1988, Bie et al. 2013) when the number of lane is less than 4, the 

traffic stream is divided into platoons with a size of 14 to 81 vehicles. The lead vehicle of each 

platoon is assumed to follow the Urban Dynamometer Driving Schedule (UDDS) (EPA 2017), as 

shown in Figure 5.  

 

Figure 5. Urban Dynamometer Driving Schedule (UDDS) 

In each platoon, the initial spacing and time headway are set as the desired spacing and desired 

time headway, respectively. Various scenarios are simulated, considering traffic streams with all 

CAVs, all manually driven vehicles, or a mix of the two. In the case of mixed traffic, different 

market penetrations of CAVs are simulated. The car following behavior of manually driven 

vehicles is assumed to follow the IDM. For gasoline CAVs, different adaptive cruise control 

strategies are tested, including IDM-ACC, Nissan-ACC, and the Eco-SDM. Moreover, 

considering traffic streams with all e-CAVs, all human-driven vehicles, or a mix of the two. In 

the case of a mixed traffic stream, different market penetrations of e-CAVs are simulated. The 

car-following behavior of human-driven vehicles is assumed to follow the IDM. For e-CAVs, 

different adaptive cruise control strategies are simulated, including IDM-ACC, Nissan-ACC, 

CACC, and the E3DM. 

Energy Efficiency of Gasoline CAVs 

To demonstrate the impact of CAVs on individual vehicle and platoon-level fuel consumption, 1 

platoon consisting of 16 vehicles is examined. Figure 6 compares the fuel consumption of each 

following vehicle in the traffic stream assuming all manually driven vehicles (i.e., manual) and 

all CAVs (i.e., IDM-ACC, Nissan-ACC, and the Eco-SDM).  
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Figure 6. Fuel consumption comparison assuming all manually driven vehicles or all CAVs 

In the homogeneous traffic stream, the CAVs consume less fuel than the manually driven 

vehicles. In addition, the Eco-SDM outperforms IDM-ACC and Nissan-ACC in terms of fuel 

economy. The Eco-SDM reduces fuel consumption of the entire fleet by approximately 10%, 

compared to the all-manual case.  

Figure 7 compares the travel times of different car following strategies.  

 

Figure 7. Travel time comparison assuming all manually driven vehicles or all CAVs 

IDM-ACC slightly increases travel time compared to the manually driven fleet. The Eco-SDM 

results in the least travel time among all the control strategies. 
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The reason for the better performance of the Eco-SDM is that it provides smoother deceleration 

and acceleration compared to Nissan-ACC and IDM-ACC. As shown in Figure 8, with ACC, 

CAVs toward the end of the platoon tend to reach smooth deceleration and acceleration. The 

Eco-SDM stabilizes the string much faster than Nissan-ACC or IDM-ACC. 

 
(a) Nissan-ACC 

 
(b) IDM-ACC 

 
(c) Eco-SDM 

Figure 8. Acceleration profiles of different ACC strategies 

Moreover, a mixed platoon with 1 CAV and 15 manually driven vehicles is selected to examine 

the impact of CAV location on the total fuel consumption of the fleet. The location of the CAV 

varies from immediately following the manually driven vehicle to the end of the vehicle set. As 

shown in Figure 9, all ACC strategies reduce fleet-level fuel consumption with only one 

equipped vehicle.  
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Figure 9. Impact of CAV location on total fuel consumption 

For the Eco-SDM, a CAV toward the front of the platoon has larger impacts on the fleet-level 

fuel efficiency, compared to the case when the CAV is toward the end of the platoon. One Eco-

SDM CAV may result in up to 2% reduction in total fuel consumption if placed at the front of 

the platoon. However, with Nissan-ACC and IDM-ACC, there is no obvious relationship 

between the location of the CAV and fuel consumption. 

Furthermore, the impact of different market penetration of CAVs on fuel consumption is 

examined by simulating traffic streams with mixed CAVs and manually driven vehicles. By 

changing CAV market penetration and the locations of CAVs in the platoon, 500 simulations 

were run for each ACC model. The mean fuel consumption reduction of the entire fleet, 

compared to the all manually driven vehicle scenario, is shown in Figure 10.  

 

Figure 10. Impact of CAV market penetration on total fuel consumption 
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Generally, the higher market penetration of CAVs results in better fuel efficiency of the fleet. 

With the Eco-SDM, the marginal improvement in fuel efficiency decreases when the market 

penetration of CAVs exceeds 30%. 

Energy Efficiency of Electric CAVs  

Homogenous Traffic Stream 

To demonstrate the impact of e-CAVs on individual vehicle and platoon-level energy 

consumption, 1 platoon consisting of 16 BEVs was examined. Figure 11 compares the energy 

consumption of each following vehicle in the traffic streams with all human-driven vehicles (i.e., 

manual) or all CAVs (i.e., IDM-ACC, Nissan-ACC, CACC, and the E3DM).  

 

Figure 11. Energy consumption comparison assuming all manually driven vehicles or all 

e-CAVs 

In the homogeneous traffic stream, the e-CAVs equipped with the E3DM and Nissan-ACC 

consume less energy than the manually driven vehicles. IDM-ACC-equipped e-CAVs, however, 

consume more energy than the manually driven vehicles. The reason is that IDM-ACC provides 

smoother deceleration, which may reduce the regenerative energy of BEVs. The E3DM 

outperforms IDM-ACC, CACC, and Nissan-ACC in terms of energy consumption. The E3DM 

reduces energy consumption of the entire platoon by approximately 5.2%, compared to the all-

manual case. Moreover, the average travel times of the IDM, IDM-ACC, Nissan-ACC, CACC, 

and the E3DM are 22.7, 22.6, 22.7, 22.5, and 22.8 minutes, respectively. The E3DM slightly 

increases travel time compared to the manually driven fleet. However, the increase in travel time 

is not significant. 

The reason for the better performance of the E3DM is its application of small decelerations for 

long durations instead of large decelerations for short durations, as shown in Figure 12.  
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(a) Nissan-ACC 

 
(b) IDM-ACC 

 
(c) CACC 

 
(d) E3DM 

Figure 12. Acceleration profiles of different ACC strategies 

Thus, the E3DM is able to keep high regenerative braking efficiency for a longer duration 

compared to Nissan-ACC, CACC, and IDM-ACC. In addition, the E3DM also provides smoother 

deceleration and acceleration compared to Nissan-ACC and IDM-ACC. As shown in Figure 12, 
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with ACC and CACC, e-CAVs toward the end of the platoon tend to reach smooth deceleration 

and acceleration. The E3DM stabilizes the string much faster than Nissan-ACC or IDM-ACC. 

Mixed Traffic Stream 

To examine the impact of e-CAV location on the total energy consumption, a platoon with 1  

e-CAV and 15 manually driven BEVs was selected. The location of the e-CAV varies from 

immediately following the manually driven vehicle to the end of the platoon. As shown in Figure 

13, the Nissan-ACC and E3DM strategies reduce fleet-level energy consumption with only one 

equipped vehicle.  

 

Figure 13. Impact of e-CAV location on total energy consumption 

For the E3DM, an e-CAV toward the front of the platoon has more significant impacts on the 

fleet-level energy efficiency, compared to the case when the e-CAV is toward the end of the 

platoon. One E3DM-equipped e-CAV may result in up to 2.4% reduction in total energy 

consumption if placed at the front of the platoon. However, with Nissan-ACC and IDM-ACC, 

there is no obvious relationship between the location of the e-CAV and total energy 

consumption. 

Furthermore, the impact of different market penetrations of e-CAVs on energy consumption was 

examined by simulating traffic streams with mixed e-CAVs and manually driven vehicles. Two 

scenarios were considered. 

First, to examine the impact of e-CAV market penetration on total energy consumption, 500 

simulations were generated for each ACC strategy and each market penetration rate, by 

randomly assigning e-CAV locations in the platoon. The mean energy consumption reduction of 

the entire fleet, compared to the all manually driven BEV scenario, is shown in Figure 14.  
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Figure 14. Impact of e-CAV market penetration on total energy consumption 

Higher market penetration of e-CAVs may not result in better energy efficiency of the entire 

fleet. With the E3DM, the highest fleet-level energy efficiency is achieved when the market 

penetration of e-CAVs is 20%. A higher percentage of e-CAVs in the traffic stream results in 

faster string stabilization, which decreases the regenerative energy. 

Second, to examine the synergistic effect of CAV and BEV technologies, mixed traffic streams 

with e-CAVs, manually driven BEVs (m-BEVs), and manually driven internal-combustion 

engine vehicles (m-ICEVs) were simulated. The fuel consumption of an m-ICEV was computed 

by applying the calibrated VT-Micro model and then converting the results to electricity (DOE 

2017). The electricity consumption of e-CAVs and m-BEVs was computed using the proposed 

BEV energy consumption model. The impact of different market shares of e-CAVs, m-BEVs, 

and m-ICEVs on energy consumption reduction of the entire fleet was investigated, as shown in 

Figure 15.  
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Figure 15. Impact of different market penetration of e-CAV, human-driven BEV, and 

manually driven ICEV on total energy consumption 

The marginal improvement in energy efficiency decreases when the market penetration of BEVs, 

including e-CAVs and m-BEVs, exceed 20%. Moreover, the larger the market penetration ratio 

of e-CAVs to m-BEVs is, the faster the marginal improvement in energy efficiency reaches the 

turning point. 
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CONCLUSIONS 

First, this report presented an ecological smart driver model (Eco-SDM) for adaptive cruise 

control (ACC) of gasoline CAVs in a mixed traffic stream. Considering the location of a CAV 

relative to other CAVs and manually driven vehicles, the Eco-SDM adjusts the desired spacing 

between the following and leading vehicle to provide smooth deceleration and acceleration. The 

impact of the Eco-SDM on fuel consumption was investigated, using the fuel consumption 

model calibrated based on on-road vehicle operational data.  

The key findings regarding the energy efficiency of gasoline CAVs in a mixed fleet were as 

follows: 

 By simulating single-lane vehicle dynamics in a platoon with different percentages of CAVs, 

the results show that CAVs are generally more fuel efficient than manually driven vehicles. 

 The Eco-SDM outperforms IDM-ACC and Nissan-ACC in terms of fuel efficiency and travel 

time. 

 Higher market penetration of CAVs results in better fuel efficiency of the fleet. When the 

market penetration of the Eco-SDM-equipped CAVs exceeds 30%, the marginal 

improvement of fuel efficiency decreases. 

 One Eco-SDM CAV may result in up to 2% reduction in total fuel consumption if placed at 

the front of the platoon. 

Second, an energy-efficient electric driving model, the E3DM, was proposed for ACC of e-CAVs 

in traffic streams mixed with human-driven vehicles. Considering the location of an e-CAV 

relative to other e-CAVs and human-driven vehicles, the E3DM is able to maintain high 

efficiency of regenerative braking and provide smooth deceleration and acceleration by adjusting 

the spacing between leading and following vehicles. Moreover, a power-based energy 

consumption model was proposed to estimate the on-road energy consumption for BEVs. Using 

the proposed BEV energy consumption model, the impact of the E3DM on energy consumption 

of individual vehicles and the entire fleet was investigated. 

The key findings about the energy efficiency of e-CAVs in a mixed fleet were as follows: 

 By simulating single-lane vehicle dynamics in a platoon with different percentages of e-

CAVs, the results show that e-CAVs equipped with the E3DM and Nissan-ACC consume 

less energy than human-driven vehicles. 

 The E3DM outperforms IDM-ACC, CACC, and Nissan-ACC in terms of energy efficiency. 
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 Higher market penetration of e-CAVs may not result in better energy efficiency of the entire 

fleet. With the E3DM, the highest energy efficiency is achieved when the market penetration 

of e-CAVs is 20%. This is because more e-CAVs in the traffic stream results in faster string 

stabilization and decreases the regenerative energy. 

 Considering mixed traffic streams with BEVs (e-CAVs and m-BEVs) and internal 

combustion engine vehicles (m-ICEVs), the marginal improvement in energy efficiency 

decreases when the market penetration of BEVs, including e-CAVs and m-BEVs, exceeds 

20%. 

 The larger the market penetration ratio of e-CAVs to m-BEVs is, the faster the marginal 

improvement in energy efficiency reaches the turning point. 

Study Limitations and Recommendations for Additional Research 

This study has the following limitations. First, lane-changing behavior is ignored. An energy-

efficient lane-changing strategy should be designed for CAVs and implemented in tandem with 

the Eco-SDM and E3DM to simulate real-world driving behavior. Second, since the lead vehicle 

in each platoon is assumed to follow UDDS, the simulation is not able to represent different 

traffic congestion levels. In the future, different traffic states should be simulated to investigate 

the impact of the Eco-SDM and E3DM under different congestion levels. Third, the 

communication delay and sensor failure are ignored in this study. The impact of these factors on 

the performance of CAVs will be investigated in the future. 
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