prepared for

EQ

TD 425 .W37 1971 ocation

iowa department of environmental quality

Water Quality Management Division

STATE LIBRARY COMMISSION OF IOWA Historical Building DES MOINES, IOWA 50319

WASTE LOAD ALLOCATION STUDY

POINT SOURCE WASTEWATER DISCHARGES

SIATE LIBRARY COMMISSION OF IOWAHistorical BuildingPART IIIDES MOINES, IOWA 50319

POINT SOURCE WASTEWATER DISCHARGES

General

esp. 1-

nonegy couclety 7122175

Point source wastewater discharges consist of effluents from municiptal, industrial, and semi-public wastewater treatment facilities. Wastewater discharges identified in the lowa Department of Environmental Quality (IDEQ) files, discharging to the surface waters of the Upper Des Moines River Basin have been inventoried and are compiled in the attached tables. Tabulations include location and identification of dischargers, quantity and quality of wastewater discharged, and operational data and descriptions of treatment facilities.

Owners and locations of individual wastewater discharges are listed in Table III-1. An identification system has been established with municipal wastewater discharge reference numbers preceded by "M", industrial discharges by "I", and semi-public discharges by "S". Stream mile locations are identified for each discharge with reference to mile zero at the mouth of each major stream or tributary. Minor tributaries are indicated in parentheses along with the stream mile of the confluence with the major tributary.

Table III-2 identifies characteristics of each point source wastewater discharge. Beginning with the upstream end of the West Fork Des Moines River, discharges are listed in order proceeding downstream to the confluence with East Fork Des Moines River. The tabulation then picks up at the upstream end of the East Fork Des Moines River and continues downstream. For each tributary, the point source furthest upstream is identified and the tabulation continues downstream to the main channel. The location of each point source is shown on Figure III-1.

Available wastewater quantity and quality information is tabulated in Table III-2. Flow rate, BOD₅, suspended solids, ammonia nitrogen, total phosphorus, total dissolved solids, temperature, and other miscella-

Municipal

Municipal sewage flow and quality data for 37 municipalities were extracted from IDEQ records and files. Average sewage flow values contained in reports submitted by treatment plant operators have been extracted by IDEQ and were published in "Wastewater Treatment Plant Flow Data - 1970, 1971, and 1972." Flow values shown in Table III-2 are the averages obtained for the last full year of record; in most instances 1972.

Most quality data was collected from IDEQ's "Effluent Quality Analysis Program (EQAP)." This data was supplemented by review of reports supplied by treatment facility operators. Data reported through EQAP are results of tests conducted by the Iowa State Hygienic Laboratory (ISHL) on wastewater samples supplied by the individual dischargers. In most instances, no more than 4 BOD₅ values, 2 ammonia nitrogen values, and 2 total phosphorus values are reported each year. Because of large seasonal variations in BOD₅ and ammonia nitrogen removal, both summer and winter values have been tabulated for these two constituents.

 BOD_5 analysis results from the ISHL (reported in EQAP) are reported between 25 mg/l and 150 mg/l. For some communities, a large percentage of the values reported are 25 or "25-" mg/l. Since some of these values should probably be less than 25 mg/l, lower average summer BOD_5 values would result. The adequacy of this reporting procedure should be reviewed since some dischargers are, or soon will be, required to provide BOD_5 removals to less than 25 mg/l. In some instances, due to the sparsity and scatter of the data, engineering judgment was applied to arrive at representative values rather than taking strict averages of the available data.

Industrial

Information for 25 Industries discharging wastewater to streams within the study area was obtained. U. S. Corps of Engineers discharge permit Although these sources provide the best available discharge information, caution must be exercised in data interpretation. Information tabulated in Table III-2 has been submitted by the individual industries with very little verification. Also, some U. S. Corps of Engineers permit applications are not administratively complete.

Semi-Public

Information identifying semi-public treatment facilities was obtained from IDEQ files. Only eight semi-public facilities could be identified in the study area. Description of semi-public facility discharges is difficult due to the minimal surveillance provided. Quantity and quality relationships are practically non-existent and in most cases, design information is all that is available. Therefore, values in Table III-2 are based upon design characteristics and may not reflect actual operating conditions.

Existing Wastewater Treatment Facilities

Inventory information for existing wastewater treatment facilities from IDEQ files and records is compiled in Table III-3. The order of presentation in Table III-3 is identical to that utilized in Table III-2. Facilities are listed beginning with upstream reaches and continuing downstream.

Table 111-3 contains existing design average day capacity, present average day flow, BOD₅ and suspended solids influent and effluent values, type of treatment processes, and comments. Influent values are only available for the larger treatment facilities. Specific processes identify primary treatment, secondary treatment, and solids dewatering operations. The treatment abbreviations are those presently used by IDEQ; a list is included at the end of the table. The "Comments" column includes information obtained by IDEQ personnel on existing operation, age of existing facilities, specific IDEQ permit requirements, IDEQ orders for additional treatment and delineation of proposed facilities A total of 37 municipal, 6 industrial, and 8 semi-public treatment facilities have been identified in the study area. In addition, 8 small communities presently without municipal collection or treatment systems are included in Table III-3. These communities are in various stages of development of municipal treatment facilities.

Summary

Distribution of hydraulic and organic loads upon the streams in the Upper Des Moines River Basin from the three point wastewater discharge classifications is summarized in Table III-4.

TABLE 111-4

POINT SOURCE

WASTEWATER DISCHARGE SUMMARY

	Municipal	Industrial	Semi-Public
Flow, mgd	13.575	12.128	0.359
%	52	47	1
BOD ₅ , 1b/day	5,130	939	74
	84	15	1
Ammonia-N, lb/day	908	788	10
%	53	46	1
Phosphorus-P, Ib/day	2,494	197	45
%	91	7	2

The relatively low percentage of BOD_5 discharged by industries compared to flow is due to the following:

- 1. Several quarries discharge large volumes of water, but add little BOD_r to the stream.
- Several industrial discharges consist only of cooling water; therefore, negligable amounts of BOD₅ are discharged.

Table III-5 summarizes the classifications of municipal treatment facilities and populations served. The smaller communities are typically served by waste stabilization pond systems, while most larger cities

TABLE III-5 WASTEWATER TREATMENT FACILITIES

PROCESS SUMMARY

Type of Plant	Communities Served	Population Served
Trickling Filter	17	93,267
Waste Stabilization Pond	18	10,944
Imhoff Tank	1	1,103
Extended Aeration	1	710

None of the communities in the study area presently operate advanced waste treatment facilities. However, IDEQ is currently reviewing plans for two new high-level treatment facilities. The city of Estherville has submitted plans for polishing ponds and dual media filters following secondary activated sludge treatment. The city of Emmetsburg has also prepared preliminary plans for a treatment facility capable of reducing BOD₅ to 10 mg/l and ammonia nitrogen to 2 mg/l.

TABLE III-1

POINT SOURCE

WASTEWATER DISCHARGE POINTS

		Reference	Stream*		Page Reference		
	Discharger	Number	Mile	<u>Discharge To</u>	Quantity	Treatment	
	<u>Municipal</u>						
	Algona	M-1	42	East Fork Des Moines River	111-12	111-21	
	Armstrong	M-2	90	East Fork Des Moines River	111-11	-2]	
	Badger	M-3	320	Des Moines River (Badger Creek)	111-13	-22	
	Bancroft	M-4	64	East Fork Des Moines River (Mud Creek)	111-11	-2	
	Bode	M-5		Trulner Creek	111-12	-2]	
•	Boone	M-6	246	Des Moines River (Honey Creek)	111-19	111-25	
	Boxholme	M-7				111-25	
	Britt	м-8		East Branch Boone River	111-17	111-23	
	Burt	M-9	61	East Fork Des Moines River	111-12	111-21	
	Clare	M-10				111-22	
	Clarion	M-11		Eagle Creek	111-18	111-24	
	Corwith	M-12	89	Boone River	111-17	111-23	
	Dakota City	M-13	5	East Fork Des Moines River	111-12	-2	
	Dayton	M-14	274	Des Moines River (Skillet Creek)	111-19	111-24	
	Duncombe	M-15		Brushy Creek	111-17	111-23	
	Eagle Grove	M-16	47	Boone River (Drainage Ditch 94)	111-18	111-23	
	Emmetsburg	M-17	48	West Fork Des Moines River	111-10	111-20	
	Estherville	M-18	79	West Fork Des Molnes River	111-10	111-20	
	Fort Dodge	M-19	311	Des Moines River	111-14	111-22	
	Gilmore City	M-20		Lizard Creek	111-13	111-22	
	Goldfield	M-21	61	Boone River	111-17	111-23	
	Graettinger	M-22	64	West Fork Des Moines River	111-10	J 11-20	
	Humboldt	M-23	4	West Fork Des Moines River	111-11	111-20	
	Kanawha	M-24		Otter Creek	111-17	111-23	

TABLE III-1 (Continued) POINT SOURCE WASTEWATER DISCHARGE POINTS

Discharger	Reference Number	Stream* Mile	Discharge To	Page Re Quantity	eference Treatment
Municipal (cont.)				<u></u>	
Lehigh	M-25	292	Des Moines River (Crooked Creek)	111-17	111-23
Livermore	H-26	20	East Fork Des Moines River	111-12	111-21
Luverne	M-27				111-23
Madrid	M-28		Big Creek	111-19	111-25
Mallard	M-29				111-20
Otho	M-30	302	Des Moines River	111-16	111-22
Pilot Mound	M-31				111-25
Pocahontas	M-32		Lizard Creek	111-13	-22
Renwick	M-33	67	Boone River (Joint Drainage Ditch 3, 47)	111-17	111-23
Ringstead	M-34		Black Cat Creek	-12	-21
Rolf	M-35	21	West Fork Des Moines River (Pilot Creek)	[[]-]]	111-20
Stratford	M-36	281	Des Moines River	- 19	111-24
Swea City	M-37		Mud Creek	111-11	[]]-2]
Thor	M-38				-23
Titonka	M-39		Buffalo Creek	111-12	111-21
Vincent	M-40		Brushy Creek	111-17	111-23
Wallingford	M-41				111-20
Webster City	M-42	24	Boone River	111-19	-24
West Bend	M-43	27	West Fork Des Moines River (Prairie Creek)	\$11-11	111-20
Whittemore	M-44		Lotts Creek	111-12	111-21
Woolstock	M-45				111-24
Industrial					
American Can Co.	1-1	311	Des Moines River	- 4	
Boone Valley Coo	op. 1-2	47	Boone River (Drainage Ditch 94)	111-17	
Cooperative Farm Chemicals Assn		301	Des Moines River	111-16	-22

TABLE III-1 (Continued) POINT SOURCE WASTEWATER DISCHARGE POINTS

	f Discharger	leference Number	Stream* Mile	Discharge To	Page Reference To Quantity Treatment				
	Industrial (cont.)				<u></u>				
-	Corn Beit Power Coop:	1-4	328	Des Moines River	1-12				
÷.	Culligan Water Conditioning,								
5	tnc.	1-5	310	Des Moines River	111-14				
	Dickey Clay Mfg.	1-6	292	Des Molnes River (Crooked Creek)	-17				
	Emmetsburg Rendering Works	; 1-7	48	West Fork Des Moines River	[][~]]				
	Farmegg Productio	on, I-8	322	Des Moines River (Bass Creek)	111-13	111-22			
	Farmland Industri	es I-9	302	Des Moines River (Holiday Creek)	111-16	111-22			
	Fort Dodge Creame	ry 1-10	311	Des Moines River	111-14				
	Franklin Mfg.	1-11	24	Boone River	111-18				
	Hallett Construc- tion Co.	1-12		Lizard Creek	111-13				
	Hormel and Co.	1-13	312	Des Moines River	111-14				
	lowa Beef Processors	1-14	309	Des Moines River	111-15	-22			
	lowa Industrial Hydraulics, Inc	. 1-15		Lizard Creek	111-13				
	lowa Public Servi Co.	ce I-16	47	Boone River (Drainage Ditch 94)	111-17				
	Land O'Lakes, Inc	:. I - 17	310	Des Moines River	-14				
	Morrell and Co.	1-18	79	West Fork Des Moines River	01-111	-20			
	National Gypsum (io. 1-19	307	Des Moines River (Gypsum Creek)	111-16				
	Northern Natural Gas Co.	I-20		Soldier Creek	111-14				
	P and M Stone Co., Inc.	1-21	17	West Fork Des Moines River	-1				
	United States Gypsum Co.	I - 22	308	Des Molnes River	111-15				

TABLE III-1 (Continued) POINT SOURCE WASTEWATER DISCHARGE POINTS

	Reference	Stream*		Page Ref	erence
Discharger	Number	Mile	Discharge To	Quantity	Treatment
<u>industrial</u> (cont	.)				
Wadco Foods, 1	nc. I-23	79	West Fork Des Moines River	111-10	
Webster Pro- cessing Co.	1-24	307	Des Moines River	111-15	111-22
-		101			111-22
Welp and McCar	ter I-25		Lizard Creek	111-13	
<u>Semi-Public</u>					
Boone County H	ome S-1	261	Des Moines River (Poor Farm Creek)	111-19	111-24
Burr Oak Manor	S-2		East Fork Des Moines River	111-12	-2]
Camp Laurie	S-3		Des Moines River	111-19	111-24
Episcopal Cent and Conferen Camp		261	Des Moines River (Poor Farm Creek)	[-19	111-24
Oak Lake Devel ment	op- \$-5	52	East Fork Des Molnes River	111-12	111-2}
Savage Sanitar Sewer Distri Fort Dodge		308	Des Moines River	111-15	111-22
Sentral Commun School Distr			Black Cat Creek	111-12	111-21
Woodward State Institution	S-8	231	Des Moines River (Preston Branch)	111-19	111-25

* Main Stem Des Moines River: 0 mile at confluence with Mississippi River.
West Fork Des Moines River: 0 mile at confluence with East Fork Des Moines River.
East Fork Des Moines River: 0 mile at confluence with West Fork Des Moines River.

Boone River: O mile at confluence with Des Molnes River.

ALA CALL AND ALA CALL

•

•

TABLE 111-2 (Continued) POINT SOURCE VASTEMATER DISCHARGE QUANTITIES

<u>Other</u> (mg/l unless noted otherwise)	pH = 6.0 units	COD = 44.20 TS = 1684 TVS = 14.32	011 = 14 F Celi = 559 × 10 ⁹ /100 m1 T Celi = 757 × 10 ⁶ /100 m1	COD = 24,800 TS = 2776	TVS = 2068 011 = 1070 5 feit = 6merren =1	T Coli < 1/100 ml			TS = 696 	Alk as $CaCO_3 = 320$								
ature Vinter (*F)	175								8									
Temperature Summer <u>Minte</u> (9F)	361								56									
ssolved ds b/day)	3,8			9.6														
Total D mg/f	2268			508														
Fhoseners (Total 2) (hg/1) (15/dav)							13	4		711	~	ę	41					
							20	ž		20	t.	<u>۽</u> ۽	20					
Ammonia Nitrosen (N) Summer Mitrosen (N) 3/1) (h/day) (m2/1) (h/day)							8 . E	4		5 28	бл 24	8	18		· ·	÷		
(0.3			5.1				15			13	20	2					:
mer (lb/day) (lb/day)				-			m	2		57		2	eo	1 N 1		- 19 - 19		
A Stum (1)/pm)	180			1060			4	9		2	-	4	2	•				
ended ids [1b/day]	0.8			5.1					6725									
Sol Sol	508			1176					160							· · ·		
005 Winter (mg/1) (1b/day)							26	12		171	R	24	£	- 1 - 1		••••		
5 (1) (1)							01	54		20	3	60	8					
BOD ₅ Trib/day)	3.5 3.5			16			61	60		11 1	61	12	17					
Sume (1) (1b	nes River (Cont.) 2.100 3.5			13 , 000			30	30		20	us Rìvar 25	Ŗ	50				1. 1.	

(mg/l uniess noted otherwise) PH = 6.95 units COD = 40 Kjel-N = 0.43 Alk as CaCO₃ = 16 TS = 2209 TVS = 322 Cr = 9.96 Cu = 0.02 Fe = 0.10 NO₃-N = 5.8 $\frac{\text{Ammonia Witcoden (W)}}{(mg/1)} \frac{Vinter}{(mg/1)} \frac{Vinter}{$ 22 ŝ 618 2178 . 0 V თ ۴ -- 12 511 (*) 33 ۲۰. TABLE III-2 (Continued) POINT SOURCE MASTEWATER DISCHARGE QUANTITIES . · ۍ^ړ 9 5⁴5 25 15^b 16 õ Β ω œ 8 m 5 \$ -1 ₽ 2 1 91 ŝ ñ ٩ N 5 23 0.6 < 0.1 0.3 - :: 0.3 m 4 ---N ---وم ۲. ۲ ---°", ţ, т. 0°~и N 12 2 Suspended Solids (mg/l) (lb/day) თ Ē /mg/l) (mg/l) (1b/day) ዮ б С თ 230 2 ΞŦ 17 5 60 곀 25 20 35 5 115 ß 800₅ Summer (mg/1) (1b/day) < 0.3 σ 33 115 1 •--σñ t. Moines River 57 25 51 25 <u>reek</u> 30 7 30 10<u>ines River</u> 14 25 14 < 1 * L

TABLE 111-2 (Continued) POINT SOURCE WASTEWATER DISCHARGE QUANTITIES

rage			5		Suspe	ended	Ammo	nia Nitr	ogen (N)		Phosp	tórus	Total Dis	solved		ature	
ow igd)	Summ (mg/1)	er .	(mg/l)	nter	Soli (mg/1)		Summer (mg/1)		Win (mg/l)	ter	<u>(Tota)</u> (лg/l)	<u>P)</u>	Soli (mg/1)	ds	Summer (°F)	Winter ("F)	Other (mg/I unless noted otherwise)
	(1	b/day)	(ib/day)	(lb/day)	(1	b/day)		b/day)	(11	/day}	(1	b∕day)			(mg/i unless notes otherwise)
iver (I	Cont.)																
.0066 ^b																	
<u>ek</u> .032 ⁵			•														
	30	8	36	10			2	0.5	12	3	10	3					
eek.					_												
003	0	0			57	I	17.6	1			< .01		2515	63	68		pH = 6.74 units
																	COD = 41.2
																	CN = 0.024
																	C1 ⇒ 280
																	A1 = 0.51
																	Cd = 0.038
																	Cr = 0.058
																	Cu = 0.031
																	Hg < 0.05 Ni = 0.071, Ag = 0.051
																	$NO_3 - N = 35$
236	30	59	45	89			1	2	7	14	18	35					103 H = 35
500	-		-	-	5	63		_	,				84	1051	76		pH = 7.8 units
													-		<i>,</i> •		Alk as $CaCO_3 = 61$
.087	25	18	36	26			3	2	12	9	11	8					3
123					o								640	657	54	52	pH = 8.2 units
																	TS = 640
05					14	6							566	236	68	70	pH ≈ 8.5 units
																	TS - 580
210					42	74							469	821			pH = 8.2 units
																	TS = 511

a a chuir ann an Aonaichtean Ann an Aonaichtean Ann an Aonaichtean Ann an Aonaichtean Ann an Aonaichtean

Other (mg/l unless noted otherwise) PH = 7.2 units COD < 10 C1 = 5050. W0₃ → 1.6 Kjei-N < 0.1 PH = 8.0 units C00 = 181. W0₃ → 1 Kjei-H = 4.7 H = 7.9 units C00 = 16 F105 = 33. W0₃ → <1 Kjei-H = 4.0 PH = 8.1 units C00 = 28 F105 = 26. W0₃ → <1 Kjei-H = 6.8 pH = 8.0 units pH = 2 units 0il = 10 pH = 6.9 units Temperature Summer Vinter (*F) (*F) . 3 8 3 65 120 75 3 63 5 ۶ Phosphorus Total Dissolved (Total P) (mg/l) (1b/day) (1b/day) 2219 160 35 5 26 730 0.15 0.01 9188 2597 938 5 < 0.001 ---- 0,001 ---; • 0.001 TABLE !!!-Z (Continued) POINT SOURCE WASTENATER DISCHARGE QUMNTITLES Ammonis Nitrogen (N) Summer Mincer (mg/l) (lb/day) (lb/day) 871 ñ 0,06 9°9 161 \$. 7 <0.1 6.1 2.2 4°.1 Suspended Solids (mg/l) (1b/day) N 635 σ. ~ 3 3804 ы z 2 Vinter (mg/l) (1b/day) 1264 ÷ 500 0.1 Sumer (ng/1) (1b/day) 5 8 7 2 2 in v ц.Т Ϋ́ς 125 m

.

0ther (mg/1 unless noted otherwise) pH = 7.9 units COD = 27, NO₃−N = 0.4 NO₂ = 0.2 pH = 7.9 units COD = 18 NO₃−H = 0.7 pH = 8.0 units coo = 200 TOC = 130 TYS = 110 TS = 1300. NO + 2 MO + 4 = 5 Graph = 5 Graph = 60 Ortho-P = 9 Ortho-P = 100 Fe = 0.05 Mo = 0.05 Mo = 230 F = 2100 ml F = 10/100 ml F = 10/100 ml 쿻 3 3 33 3 3 1250 10.425 1067 8 0.1 2709 6 0.03 2778 ۴ 15^b 0.08 0.08 TABLE 111-2 (Continued) Point sounce WASTEMATEN DISCHAREE QUANTITIES თ Ammonia Nitrogen (M) Summar (mg/l) (15/day) (15/day) m 417 **م** 20 Suspended Soilds (mg/l) (1b/day) 120 1001 ~ (Ib/day) Vinter (mg/1) 80 Summer (mg/1) (1b/day) 250 8 (Sert.)

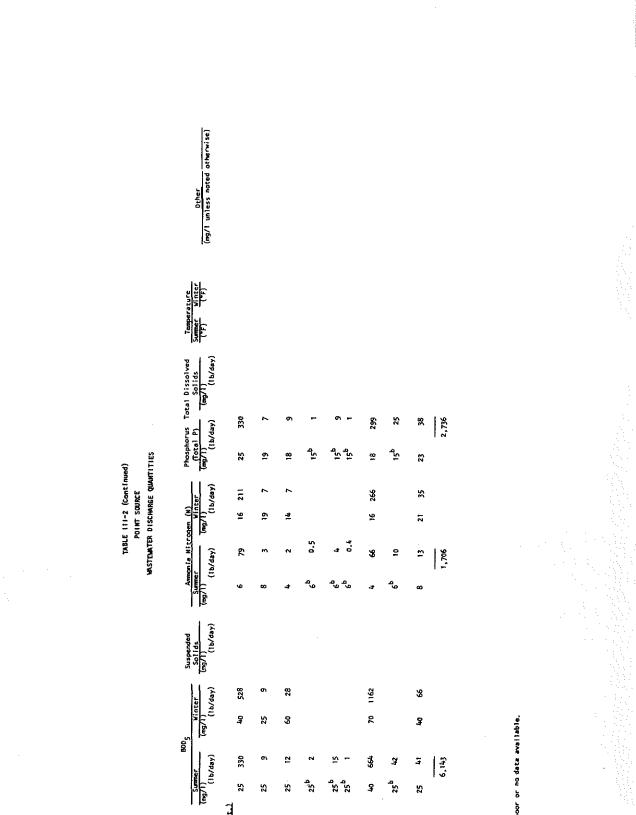
TABLE III-2 (Continued) POINT SOURCE WASTEWATER DISCHARGE QUANTITIES

۲

ige ()	Summe	B0(Wir	iter	Susper Solid	nded is	Summer	nia Nitro		ter	Phosphor (Total	P)	Soli	ds	Temper Summer {*F}	Winter (*F)	Other
1)	(mg/1) (1b	/day}	(mg/1) (1	b/day)	(mg/l) (1	b/day)	(mg/1) (1b	o/day)	(ng/l) ()	b/day)	(mg/1) (15/c	lay)	(mg/1) (lb/day)	(,,	(77	(mg/l unless noted otherwise)
r (Co	<u>nt.)</u>																
288	30	1			15	0.4	0.56	0.01			0.24	0.01	1381	33			COD = 42. NO ₃ -N = 2.00 Kjel-N = 12.26
85	T .	0.6			17	10	0.22	0.1			0.20	0.1	2575	1471			$CoD = 12, NO_3 - N = 6.90$ Kjel-N = 5.6
216	10	0.2			28	0.5	0.22				0.38	0.01	1051	19			$COD = 23$, $NO_3 - N = 1.400$ Kjel-N 3.08
+32	10	0.4			28	1.0	0.22	0.01			0.38	0.01	1051	38			$COD = 23$, $NO_3 - N - 1.40$ Kjel-N = 3.08
7	25	12	41	19			2	١	8	4	8	4					
								100		100							
	6	42		·	0		20	140			0.09	0.6	3000	21017		40	$C00 = 32, NO_3 - N - 2$ Org - N = 3 Kjel - N = 22 Na = 450 0il = 1 SO_4 = 2260 Cl = 320 Ca = 260 Al = 0.6 Mg = 0.07 Cr = 0.05 Fe = 4.6 Pb = 0.01

÷

a na mining olohaka da Mana


TABLE III-2 (Continued) POINT SOURCE WASTEWATER DISCHARGE QUANTITIES ,

							· · · ·									
c	Summe (mg/1)	r	(mg71)	inter	Suspe Soli (mg/l)	ds	Summer (mg/1)		Win (mg/l)	ter	(Total P (mg/l)	(mg/1)	id s	Temper Summer (°F)	Winter (°F)	Other (mg/l unless noted otherwise)
	(15	/day}	1	(16/day)		Ib/day)	. (1	b/day)	(1	b/day)	(15/0	lay} (lb/day)			
r (Co	nt.)															
																Mn = 0,29
																Ni = 0.02
																Zn = 0,16
																F Coli = 75/100 m3
																T Coli = 7800/100 ml
7	25	10	40	16												
4					9	4					0.05	0.02 1619	729	65	57	pH = 7.9 units, $NO_3 - N = 0.12$
Þ	25 ^b	5 ⁶														
2	25	5	35	6			2	0.4	8	1	10	2				
3	28	5	40	8			2	0.4	12	2	6	1				
6000	River															
2	27	54	50	101			2	4	14	z 8	10	20				
	itch 3, 4				•											
Ö	25	8	35	12			1	0.3	12	4	15	5				
							-									
3	31	21	46	32			3	0.7	14	10	10	7				
4	31	6	80	16			1	0.2	17	2	25	5				
ch <u>9</u> 4		•	00				,	v	.,	-	43	2				
0	2															
5	3	0.4			4	0.5	1.1	0.2			0.5	0.07 495	66	84	71	pH = 7.6 units
											-			-	•	cop = 4
																Kjel-N = 1.54
																0rtho-P = 1.6
																TS = 499
																NO ₃ -N = 0.07

офоруцияли на виналот и благо проболого в селано на каки на вина на проболого проболого (каки село на торо на 19 и г. – 19 г -

. 0ther (mg/l unless noted otherwise) TVS = 0.2 Alk as CaCO₃ = 280 SO₄ = 166 C1 = 4 Zn = 0.06 Phenois = 0.009 Ca = 179 Algal inhibitor = 0.08 Ts = 734Tys = 65Cob = 40Atk as Caco₃ = 102 So₄ = 310 C1 = 56 C1 = 56 C1 = 0.52 Fe = 0.15 Fe = 0.1 Mg = 16.3 Mn = 0.03 Mn = 0.01 Mg = 16.3 Mn = 0.01 pH = 9.5 units Kjel-N = 1,13 Ortho-P = 3 Temperature Summer Winter ("F) ("F) 23 2 Phosphorus Total Dissolved (Total P) Solids (mg/l) (mg/l) (lb/day) 710 2724 3 12 20 3.62 TABLE 111-2 (Continued) Point source MASTENATER DISCHARGE QUANTITIES Ξ on, Ammonia Nitrogen (N) Summer Vinter (mg/l) (lb/day) (lb/day) 26 3 1 4 3 ማ en. 0.77 .t 4 Suspended Solids (mg/l) (1b/day) 138 Ж 2 Ulnter (mg/l) (lb/day) **4**08 152 22 2 ຮັ Summer (mg/1) (1b/day) 245 ጽ 7 94 (Cent.)

¥ ŝ 50

,

TABLE 111-3 WASTEWATER TREATMENT FACILITIES

Existing Design Present Average Average			800 ₅		<u>Suspended Solids</u> Influent Effluent		Ivpe of Treatment				
Day	Day		Effluent Conc.		Effluent Conc.	Primary	Secondary	Solids Treatment	Comments		
(mgd)	Flow (mgd)	<u>Conc.</u> (mg/l)	(mg/1)	<u>Conc.</u> (mg/1)	(mg/1)	PT Instry			Commences		
2,92	2.025	1128	135	1147	145	(Sf Oa Ka) Gm Sm Cm	Fo Ca Ftr Ca	Dfh Ls X1	Plans and specifications for new treatment facility are presently being reviewed by IDEQ. Proposed treatment processe include primery clarification, high rate trickling filters, activated sludge aeration, flow equalization and polishing ponds, dual media filters, and chlorination.		
	0.37		150		230		Lo				
									No existing municipal treatment facility. Presently pre- paring preliminary report.		
0,246	0.185		35				Lo		Plant put into operation during 1968.		
0.266	0,222		40	·		GæSchOm	Ftr Cp	Ga Sch Om	Existing plant is heavily overloaded during periods of wet weather. City is in the process of designing new treatment facility. Consent order issued by IDEQ requires final plans and specifications to be prepared by 1/1/14 with con- tract awarded by 6/1/74. Plant to be designed for effluent BOO and ammonia concentrations of 10 mg/l and 2 mg/l, respectively.		
0.111	0.077		35		1	Ci	Ftr Cp	80	Existing treatment facility was constructed during the 1940's and is in rather poor condition.		
0.054									No existing municipal treatment facility. Weste stabili- zation pond has been designed to replace private septic tenks. Construction permit was issued by IDEQ in September, 1973.		
0.085	0.032		40				[0		Waste stabilization pond was put into operation during May, 1970; replaced imhoff tank and sand filters.		
				4-4							
0.926	0,683	219	19	676	70	Sh Gw Cm	Ftr Cm	Dfr Bo XI			
	;										
				1.1	1						
				А. Д.							
		1			1. A. A.						

.

TABLE 111-3 (ContInued) WASTEWATER TREATMENT FACILITIES

.

.

Existing Design Average	Present Averege	800 ₅	_Suspended_Solids	T	voe of Treatmen	•	
Day Capacity (mgd)	Day Flow (mgd)	Influent Effluent <u>Conc.</u> <u>Conc.</u> (mg/1) (mg/1)	Influent Effluent <u>Conc.</u> <u>Conc.</u> (mg/1) (mg/1)	Primery	Secondary	Solids Treatment	Comments
0.175	0.089	30			Lo		Plant placed in operation during 1966.
0.063	0.047	45			٤٥		Plant placed in operation during 1969.
	0.099	90		Ci	Fs	80	Presently designing new waste stabilization pond to replace existing plant.
0.073	0.157	45			Lo		Plant placed in operation during 1964.
0.115	0.056	35		Cp Ftoc	Lo		
;)							Construction of a one-acre waste stabilization pond to treat the flow from 100 people was approved by the lows National Resources Council on June 5, 1973.
0.077	0.043	25			Lo		Plant placed in operation during 1969.
(\$-7)0.006				Cm	ft		Constructed in 1957.
0.655	0.552	40		Sg Gm (Km Cm)	Ftr Cm	Dfh Bo	Plant constructed during 1954.
0.015					A#	НА	
0,110	0.033	30			Lo		Plant placed in operation during 1968.
0.147	0.151	75		Sh Gh Cm	Ftr Cp	Ofh Bo	Plant constructed in 1960.
0,050	0.017	45	4 - A		Lo		Plant placed in oceration during 1968.
0,10	0.044	45	÷.,	Sh Cl	Ftr Cp	Bo	Plant constructed in 1958.
1							

er 1995 - Alexandre Marine, and a statistical strategicture of the statistical strategicture of the statistical st 1996 - Alexandre Marine, and a statistical strategicture of the strategicture of the statistical strategicture s

nalionio e an anti o el porte al tra constructura a substancia de constructiva Esta de constructiva de constructiv

.

.

TABLE 111-3 (Continued) WASTEWATER TREATMENT FACILITIES

•

٠

sign erage	Present Average	800 5		Suspended Solids		Type of Treatment			
y city	Day Flow	Influent Conc.	Effluent Conc.	Influent Conc.		Primary	Secondary	Solids Treatment	Comments
1)	(mgd)	(mg/1)	(mg/1)	(mg/1)	(mg/1)	<u>.</u>			
. 0066							Lo		Plant constructed in 1970.
. 045	0.032		35				Lo		Two-cell waste stabilization pond with first cell constructed in 1961 and second cell constructed in 1968.
. 156	0.236		40			Sch Cm	Ftr	Dfh Bo	Plant constructed in 1951. Preliminary report is being prepared for new facilities,
. 100	0.087		30				Lo		Plant placed in operation during 1959.
	_								No existing municipal treatment facilities. Community has attempte to obtain grant assistance for waste stabilization pond since 1967 with active interest in August, 1973.
.30	3.367	420	38	375	34	Sm Gm Da Ka Cm	Fto Cm Eg Ftr Cm	Dfhemt Ds Bo Ls	Lest plant expansion was completed in 1965.
.20	1_00		30		120	0 Af	Ln Lo	TXI	Plant placed in operation during 1970. Weste stabilization pond covers about 40 acres. No discharge allowed when river flow is less than 32 cfs.
- 05						4	La Lo		Plant constructed in 1970 to serve Webster County Home and new residential development.
.05						.*	Lo		Treatment facility was constructed during 1957-58. In 1971, waste stabilization pond was being re-designed as a complete retention facility with no discharge.
044	0.057	1.1 T.	35				Lo		Plant placed in operation during 1968.
		2					Lo		Plant placed in operation during 1966.
	0.52		6		0.		L		Package aeration plant is provided for sanitary flow. Chemical process water is also treated to reduce chromate and ammonia.
			. * *						
			• •	•					
			1.11		1.1.2				
							e Al an an an an an Anna		
			المحاصي مراكبات مراجع مراكبات					e production La sette del care i	

•

.

TABLE III-3 (Continued) WASTEWATER TREATMENT FACILITIES

Existing Design Average Day <u>Capacity</u> (mgd)	Present Average Day <u>Flow</u> (mgd)	BOD ₅ Influent Effluent <u>Cons. Cons.</u> (mg/l) (mg/l)	<u>Suspended Solids</u> Influent Effluent <u>Conc.</u> <u>Cons.</u> (mg/l) (mg/l)	1	Type of Treatment	Solids Treatment	Comments
0,150	0.047	35			La		
0.034	0.027	30			Lo Lo		Plant placed in operation during October, 1972. Plant placed in operation during 1967.
0.034	0.022	30			LO		Plant proced in operation out ing 1967.
0.091	0.023	35			Lo		Waste stabilization pond placed in operation during October. 1971; replaced Imhoff tank and sand filters.
0,18	0.242	40		Sc Cm	Ftr Cm	Och Bo Xl	Existing plant was constructed in 1935 and is in poor condition. A site has been approved for a new waste stabi- lization bond designed to replace the existing facility.
							No existing municipal treatment facility, Preliminary plans have been prepared for three-cell waste stabilization pond.
0.096	0,040	30			Lo		Plant constructed in 1962,
0.087	0.083	40			Lo		Waste stabilization pond placed in operation in March, 1970; replaced inhoff tank and sand filters.
0.219	0.024	50			Lo		Plant constructed in 1963,
							No existing municipal treatment facility. Plans and specifications prepared in 1973 for waste stabilization pond system.
0.504	0.652	106 52		Sm Sc Cm	Fth Cm	Dfht Dop Bo	Existing sewers have a large quantity of infiltration during periods of wet weather. Treatment plant is overloaded and raw sewege is by-passed frequently. City had preliminary report prepared which recommended construction of a large aerated lagoon and oxidation pond to treat all flow collected.

n e and degeneration of the statement of the state of the statement of the

-

TABLE III-3 (Continued) WASTEWATER TREATMENT FACILITIES

Existing Design Average	Present Average	BODS	Suspended Solids		Type of Treatmen		
Day <u>Capacity</u> (mgd)	Day <u>Flow</u> (mgd)	Influent Effluent <u>Conc.</u> <u>Conc.</u> (mg/1) (mg/1)	Influent Effluent <u>Conc.</u> <u>Conc.</u> (mg/1) (mg/1)	Primary	Secondary	Solids <u>Treatment</u>	Comments
0.145	0.261	60		Sh Cm	ftr Çp	Dch Bo	Plant constructed in 1933-34. Presently making modifications to recirculate trickling filter effluent. No existing municipal treatment facility. Preliminary plans were made for sanitary sewers and waste stabilization pond system in 1967-68, and city made application for a loan from FHA. City is still served by Individual septic tanks.
1.50	1,582	341 22	108 90	Sh Gw Cm	Ftr Cm	Dfh 8o Xl	Plant was built in 1939 and expanded in 1963. Preliminary report issued October 30, 1973, recommends adding another digestor. two more trickling filters and final clarifiers.
0.070	0.042	25		Sh Ae	Ae Lp		Treatment plant was constructed in 1965. Existing sewers have a large quantity of infiltration during periods of wet weather. A compliance order was issued by UEQ to correct the infiltration problem. The compliance order requires: preliminary report by 6/1/74, final plans and specifications by 12/1/74, construction contract be awarded by 4/1/75, and project completed by 12/31/75.
0_084	0.057	40		Sh Ci	Ftr Cp	во	Plant was constructed in 1956 and is in poor condition. Compliance order issued by IDEQ requires in-plant and operation modifications to be completed by 6/1/74.
0.010							Permit issued to construct waste stabilization pond in September, 1969,
0.008		-			Lo		Plant constructed in 1967.
0.007							Permit issued 1/18/73 to construct waste stabilization pond to replace septic tank. No discharge allowed during summer low flow periods.

*

<u>___</u>

1.1

.

TABLE 111-3 (Continued) WESTEWATER TREATMENT FACILITIES

.

Present Average Day Flow (mgd)		2				Type of Treatment	Solids <u>Treatment</u>	Comments
								No existing municipal treatment system. Final plans and speci- fications received by IDEQ on 11/26/73 for waste stabilization pond.
								No existing municipal treatment system. Plans and specifications for waste stabilization pond have been approved by IDEQ and are waiting for EPA funding.
1.99	165	42	149	34	Sch Gam Ka Cm	Ftr C+	Ho Zil Vv Xp	Plant constructed in 1958.
0.20					Sm G Cm	Ft Cm E	O B	Plant constructed in 1941. Plans are being prepared for polishing pond to follow existing facilities.
0,198		35			Sh Ga (Cp Do)	ftr Cm	XI	Plant constructed in 1967.
	Average Day Flow (mgd)	Average <u>BUU</u> Day <u>Influent</u> <u>Flow</u> <u>Conc.</u> (mgd) (mg/l)	Average <u>buy</u> Day Influent Effluent <u>Elow</u> <u>Conc.</u> <u>Conc.</u> (mgd) <u>(mg/1)</u> (mg/1)	Present Average Day Flow (mgd) (mg/1) Cont (mg/1) (mg/1) (mg/1) 1.99 165 42 149 0.20	Present Average Day Flow (mgd) 1.99 165 42 149 34	Present Average Day B005 Influent Effluent (mgd) Suspended Solids Influent Effluent Conc. Primary 1.99 165 42 149 34 Sch Gam Ka Cm 0.20 Sm G Cm 0,198 35 Sh Ga	Present Average Day B005 Influent Effluent (mgd) Suspended Solids Influent Effluent Conc. Type of Treatment 1.99 165 42 149 34 Sch Gam Ftr C+ Ka Cm 0.20 Sm G Cm Ft Cm E 0.198 35 Sh Ga Ftr Cm	Present Average Day B005 Influent Effluent (mgd) Suspended Solids Influent Effluent Conc. Type of Treatment Solids 1.99 165 42 149 34 Sch Gam Ftr C+ Ho Zil Vv Xp 0.20 Sm G Cm Ft Chi E 0 B 0,198 35 Sh Ga Ftr Cm X1

. **.**

•

ABBREVIATIONS

SEWAGE TREATMENT FACILITIES

A ----Aeration (in tanks or basins) Aa----Activated sludge, diffused air aeration Ac----Contact stabilization Ad----Aerobic digestion Ae----Extended aeration Af----Air flotation Am----Activated sludge, mechanical aeration Ao----Oxidation ditch Ap----Aeration, plain, without sludge return

B ----Sludge beds Bo----Open Bc----Glass covered

C ----Settling tanks Ci----Two-story (Imhoff) Cm----Mechanically equipped Cp----Plain, hopper bottom or intermittently drained for cleaning Cs----Septic tank Ct----Multiple tray, mechanically equipped CmDm--Two-story "Clarigester" CpDo--Two-story "Spiragester"

D ----Digesters, separate sludge Dc----With cover (fixed if not otherwise specified) D(cg)-Gasometer in fixed cover De----Gas used in engines (heat usually recovered) Df----With floating cover Dg----With floating cover Dh----Gas used in heating Dm----Mixing Do----Open top Dp----Unheated Dr----Heated E ----Chlorination Ec----With contact tank Eg----By chlorine gas Eh----By hypochlorite

F ----Filters Fc----Covered filter Fo----Roughing filter Fr----Rapid sand or other sand straining Fs----Intermittent sand Ft----Trickling (no further details) Fth---High capacity Ft2H--High capacity, two-stage Ftn---Fixed nozzle, standard capacity Ftr---Rotary distributor, standard capacity Ftt---Traveling distributor, standard capacity

G ----Grit chambers Ga----Aerated grit removal Gh----Without continuous removal mechanism Gm----With continuous removal mechanism Gp----Grit pocket at screen chamber Gw----Separate grit washing device H ----Sludge storage tanks (not

Ha----Aerated Ha----Covered Hm----With stirring or concentrating mechanism Ho----Open

I ----Sewage application to land If----Ridge and furrow irrigation

ABBREVIATIONS

SEWAGE TREATMENT FACILITIES

K ----Chemical treatment-flocculation. Chemical treatment-type units or equipment not necessarily complete or operated as chemical treatment. Ka----Flocculation tank, air agitation Kc----Chemicals used Km----Flocculation tank, mechanical agitation Kx----No chemicals used

L ----Lagoons La----Aerated lagoon Le----Evaporation lagoon Ln----Anaerobic lagoon Lo----Waste stabilization lagoon Lp----Polishing lagoon Ls----Sludge lagoon - not for treatment of sewage

O ----Grease removal or skimming tanks - not incidental to settling tanks Oa----Aerated tank (diffused air) Om----Mechanically equipped tank Ov----Vacuum type

S ----Screens Sc----Comminutor (screenings ground in sewage stream) Sf----Fine screen (less than 1/8" opening) Sg----Screenings ground in separate grinder and returned to sewage flow Sh----Bar rack, hand cleaned 1/2" -2" openings Si----Intermediate screen 1/8" -1/2" openings Sm----Bar rack mechanically cleaned 1/2'' - 2'' openings Sr----Coarse rack (openings over 2") St----Garbage ground at plant and returned to sewage flow

V ----Mechanical sludge dewatering Vc----Sludge centrifuge Vp----Pressure filter Vv----Rotary vacuum filter Vo----Other

X ----Sludge drying or incineration Xd----Used for fertilizer Xf----Sludge burned for fuel Xl----Disposal to land Xn----Incinerated Xp----Used for fill

Z ----Sludge conditioning Za----Chemicals used, alum Zc----Chemical used (unidentified) Zi----Chemicals used, iron salts Zl----Chemicals used, lime Zp----Polyelectrolytes used Zx----No chemicals used Zy----Elutriation