TRUCK WEIGHT SURVEY

INSTRUCTIONS

IOWA DEPARTMENT
 OF TRANSPORTATION

KEY PHONE NUMBERS
SUPERVISOR
MOTEL \qquad
HOME \qquad
OFFICE
515/239-
515/239- AFTER HOURS CALL: \qquad IF NO ANSWER, CALL
\qquad IF NO ANSWER, CALL

MAILING ADDRESS:

Iowa Department of Transportation Office of Transportation Inventory Building \#5 800 Lincoln Way Ames, IA 50010

REPORTING HAZARDOUS MATERIALS SPILLS OR ACCIDENTS

If you see any spills or accidents with hazardous materials of any kind you will call your supervisor or the Ames Office (see key phone numbers) as soon as possible. DO NOT approach any spill or accident involving hazardous materials. Obtain following data from a position of safety:

1. Your name, address and phone number where you can be reached.
2. Type of spill or accident (fire, explosion, truck, railroad, etc.)
3. Material and amount (if material is not known report the four (4) digit I.D. number displayed either on the placard or on an ORANGE panel on the vehicle or describe the placard).
4. Location (city, county, etc.).
5. Affecting land, water or air.
6. Date and time of occurrence.
7. Shipper.
8. Casualties.
9. Action taken.

TRUCK WEIGHT SURVEY
FIELD
INSTRUCTIONS

\& Iowa Department of Transportation

Prepared By
Office of Transportation Inventory
In Cooperation With
United State Department of Transportation
Federal Highway Administration

TABLE OF CONTENTS

Introduction 1
Truck Weight Station Locations 2
General Duties and Safety Procedures 5
Truck Weight Stations 6
Operation of Stations 13
Appendix A - Instruction For Survey Forms A-1
Section 1 - Interview Form A-1
Section 2 - Scale Operator's Form A-11
Section 3 - Recorder Form A-12
Section 4 - Vehicle Classification Counts A-17
Section 5 - Supplemental Measurements A-19
Appendix B - Order of Weighing Axles B-1
Appendix C - Station Location Maps C-1

The Truck Weight Survey is conducted by the Office of Transportation Inventory of the Iowa Department of Transportation, in cooperation with the Federal Highway Administration.

Weighing operations are conducted biennially and provide information with regard to trends of gross weight, axle loading, axle spacing, dimensions and commodities carried by commercial vehicles using the highways in Iowa.

The weighing schedule is prepared so that each station is operated during comparable periods as preceding years. Manual counts are made every year with the weighing operations conducted during odd numbered years.

Field operations will be conducted at the eighteen (18) locations shown on the map in Illustration 1. Seven (7) of these stations are located on rural Interstate highways; five (5) on rural Primary highways; two (2) on urban Primary highways; two (2) on rural Secondary roads, and two (2) on City Streets.

The weigh and count classification operations will be conducted at each of the seven (7) Interstate locations according to the following time periods:

$$
\begin{array}{rll}
\text { Weight Data } & & \text { Count Data } \\
\text { 6:00 a.m. to } 1: 00 \mathrm{p} . \mathrm{m} . & \text { 5:00 a.m. to } 1: 00 \mathrm{p} . \mathrm{m} . \\
\text { 2:00 p.m. to } 9: 00 \mathrm{p} . \mathrm{m} . & \text { 1:00 p.m. to } 9: 00 \mathrm{p.m} . \\
\text { 10:00 p.m. to } 5: 00 \mathrm{a} . \mathrm{m} . & 9: 00 \mathrm{p} . \mathrm{m} . \text { to } 5: 00 \mathrm{a} . \mathrm{m} .
\end{array}
$$

The remaining locations will be operated according to the following time periods:

Station Locations

Interstate Rural - Seven Locations

Station Number
915
(Tipton)

92N
(Des Moines)
93P
(Avoca)
94Q
(Ames)
95R
(Salix)
$96 T$
(Missouri Valley)

97 U
(Osceola)

Location
On I-80, at the permanent pit scale location two miles east of the west Jct. of I-80 and Ia. 38, nine miles south of Tipton.

On I-80, at the permanent pit scale location just west of U.S. 65, northeast of Des Moines.

On I-80, at the permanent pit scale location three miles east of U.S. 59, four miles northeast of Avoca.

On I-35, at the permanent pit scale location three miles north of la. 210, six miles southeast of Ames.

On I-29, at the permanent pit scale location five miles north of Ia. 141, one and one-half ($1 \frac{1}{2}$) miles south of Salix.

On I-29 and U.S. 75, at the permanent pit scale location two miles south of U.S. 30 , three miles southwest of Missouri Valley.

On I-35, at the permanent pit scale location two and one-half (212 miles south of U.S. 34 , three miles southwest of Osceola.

Primary Rural - Five Locations

Location

On U.S. 218, just south of Co. Rd. D-35, four miles southeast of Waterloo.

On Ia. 5, one mile north of Ia. 92, one mile south of Pleasantville.

On U.S. 30 and 169 , one mile west of the east Jct. U.S. 30 and 169 at the permanent pit scale location, southwest of Ogden.

On U.S. 71 and Ia. 141, just west of the east Jct. of U.S. 71 and Ia. 141, 10 miles south of Carroll.

On U.S. 34 and 169, one mile east of the west Jct. of U.S. 34 and 169 , one mile east of Afton.

ILLUSTRATIONS

I. Truck Weight Survey Locations (State Map) 4
Station Layouts
II. Two-Lane Portable Scales 7
III. Four-Lane Portable Scales 9
IV. Four-Lane Pit Scales 11
V. Two-Lane Pit Scales 12
VI. Flagging Methods 14
Interview Form. A-1
Vehicle Type Coding Chart A-2
Examples of Vehicle Types A-3
Scale Operations Form. A-11
Recorder Form. A-12
Recording Weights and Measurements A-16
Count Form. A-17
Supplemental Measurement Form A-19
Station Location Maps C-1

PURPOSE

The Truck Weight Survey is conducted to obtain information on commercial vehicles traveling about on the road system in Iowa.

The survey produces information on total vehicle weight and weight of individual axles and axle groups. It produces information on vehicle characteristics such as type of vehicle, age, and dimensions. It produces information on the commodities or loads the trucks are hauling, where these loads are coming from and going to, and how often trucks are moving empty.

Knowing the axle loadings (18 Kip equivalents) that a pavement has endeared is vital to pavement management analysis. Being able to estimate the expected 18 Kip axle loadings is the basis for pavement design. These truck observations are useful in evaluating size and weight enforcement efforts and in developing legislation, truck regulations, and highway cost allocation.

When asked for more detailed information, have the individual contact Patrick R. Cain, Office of Transportation Inventory, Iowa Department of Transportation, Ames, Iowa, 50010, 515/239-1073.

	```Station Locations Interstate Rural - Seven Locations```
Station Number	Location
$\begin{gathered} 91 \mathrm{~S} \\ \text { (Tipton) } \end{gathered}$	On I-80, at the permanent pit scale location two miles east of the west Jct. of I-80 and Ia. 38, nine miles south of Tipton.
$\begin{gathered} 92 \mathrm{~N} \\ \text { (Des Moines) } \end{gathered}$	On I-80, at the permanent pit scale location just west of U.S. 65, northeast of Des Moines.
$\begin{gathered} 93 \mathrm{P} \\ \text { (Avoca) } \end{gathered}$	On I-80, at the permanent pit scale location three miles east of U.S. 59, four miles northeast of Avoca.
$\begin{aligned} & 940 \\ & (\text { Ames }) \end{aligned}$	On I-35, at the permanent pit scale location three miles north of Ia. 210, six miles southeast of Ames.
$\begin{gathered} 95 R \\ (\text { Salix) } \end{gathered}$	On I-29, at the permanent pit scale location five miles north of Ia. 141, one and one-half (11 ) miles south of Salix.
$\begin{aligned} & 96 T \\ & \text { (Missouri Valley) } \end{aligned}$	On I-29 and U.S. 75, at the permanent pit scale location two miles south of U.S. 30 , three miles southwest of Missouri Valley.
$\begin{gathered} 97 U \\ \text { (Osceola) } \end{gathered}$	On I-35, at the permanent pit scale location two and one-half (21 $\frac{1}{2}$ miles south of U.S. 34, three miles southwest of Osceola.
	Primary Rural - Five Locations
Station Number	Location
$\begin{gathered} 24 B \\ \text { (Waterl00) } \end{gathered}$	On U.S. 218, just south of Co. Rd. D-35, four miles southeast of Waterloo.
$\begin{gathered} 59 \mathrm{~F} \\ \text { (Pleasantville) } \end{gathered}$	On Ia. 5, one mile north of Ia. 92, one mile south of Pleasantville.
$\begin{gathered} 74 \mathrm{H} \\ (0 \mathrm{gden}) \end{gathered}$	On U.S. 30 and 169 , one mile west of the east Jct. U.S. 30 and 169 at the permanent pit scale location, southwest of Ogden.
$\begin{gathered} 76 \mathrm{M} \\ \text { (Carrol1) } \end{gathered}$	On U.S. 71 and Ia. 141, just west of the east Jct. of U.S. 71 and Ia. 141, 10 miles south of Carroll.
$\begin{gathered} 85 \mathrm{~J} \\ \text { (Afton) } \end{gathered}$	On U.S. 34 and 169 , one mile east of the west Jct. of U.S. 34 and 169 , one mile east of Afton.

The Truck Weight Survey is conducted by the Office of Transportation Inventory of the Iowa Department of Transportation, in cooperation with the Federal Highway Administration.

Weighing operations are conducted biennially and provide information with regard to trends of gross weight, axle loading, axle spacing, dimensions and commodities carried by commercial vehicles using the highways in Iowa.

The weighing schedule is prepared so that each station is operated during comparable periods as preceding years. Manual counts are made every year with the weighing operations conducted during odd numbered years.

Field operations will be conducted at the eighteen (18) locations shown on the map in Illustration 1. Seven (7) of these stations are located on rural Interstate highways; five (5) on rural Primary highways; two (2) on urban Primary highways; two (2) on rural Secondary roads, and two (2) on City Streets.

The weigh and count classification operations will be conducted at each of the seven (7) Interstate locations according to the following time periods:

Weight Data Count Data

| 6:00 a.m. to $1: 00 \mathrm{p.m}$. | 5:00 a.m. to $1: 00 \mathrm{p.m}$. |
| ---: | :--- | :--- |
| 2:00 p.m. to $9: 00 \mathrm{p} . \mathrm{m}$. | 1:00 p.m. to 9:00 p.m. |
| 10:00 p.m. to $5: 00 \mathrm{a} . \mathrm{m}$. | 9:00 p.m. to $5: 00 \mathrm{a} . \mathrm{m}$. |

The remaining locations will be operated according to the following time periods:

Weight Data<br>6:00 a.m. to 1:00 p.m. 2:00 p.m. to 9:00 p.m.

Count Data
5:00 a.m. to 1:00 p.m.
1:00 p.m. to 9:00 p.m.
9:00 p.m. to 5:00 a.m.

	```Station Locations Interstate Rural - Seven Locations```
Station Number	Location
$\begin{gathered} 91 \mathrm{~S} \\ \text { (Tipton) } \end{gathered}$	On I-80, at the permanent pit scale location two miles east of the west Jct. of I-80 and Ia. 38, nine miles south of Tipton.
$\begin{gathered} 92 \mathrm{~N} \\ \text { (Des Moines) } \end{gathered}$	On I-80, at the permanent pit scale location just west of U.S. 65, northeast of Des Moines.
$\begin{gathered} 93 p \\ (\text { Avoca) } \end{gathered}$	On I-80, at the permanent pit scale location three miles east of U.S. 59, four miles northeast of Avoca.
$\begin{gathered} 94 Q \\ (\text { Ames) } \end{gathered}$	On I-35, at the permanent pit scale location three miles north of Ia. 210, six miles southeast of Ames.
$\begin{gathered} 95 \mathrm{R} \\ (\text { Salix }) \end{gathered}$	On I-29, at the permanent pit scale location five miles north of Ia. 141, one and one-half (11 $)$ miles south of Salix.
$\begin{aligned} & 96 T \\ & \text { (Missouri Valley) } \end{aligned}$	On I-29 and U.S. 75, at the permanent pit scale location two miles south of U.S. 30 , three miles southwest of Missouri Valley.
$\begin{gathered} 97 U \\ \text { (0sceola) } \end{gathered}$	On I-35, at the permanent pit scale location two and one-half (2 $\frac{1}{2}$) miles south of U.S. 34, three miles southwest of Osceola.
	Primary Rural - Five Locations
Station Number	Location
$\begin{gathered} 24 \mathrm{~B} \\ \text { (Waterl00) } \end{gathered}$	On U.S. 218, just south of Co. Rd. D-35, four miles southeast of Waterloo.
$\begin{gathered} 59 \mathrm{~F} \\ \text { (Pleasantville) } \end{gathered}$	On Ia. 5, one mile north of Ia. 92, one mile south of Pleasantville.
$\begin{gathered} 74 \mathrm{H} \\ (\text { Ogden }) \end{gathered}$	On U.S. 30 and 169, one mile west of the east Jct. U.S. 30 and 169 at the permanent pit scale location, southwest of Ogden.
$\begin{gathered} 76 \mathrm{M} \\ \text { (Carroll) } \end{gathered}$	On U.S. 71 and Ia. 141, just west of the east Jct. of U.S. 71 and Ia. 141, 10 miles south of Carroll.
$\begin{gathered} 85 \mathrm{~J} \\ \text { (Afton) } \end{gathered}$	On U.S. 34 and 169, one mile east of the west Jct. of U.S. 34 and 169 , one mile east of Afton.

	Primary Urban - Two Locations
Station Number	Location
$\begin{gathered} 32 C \\ \text { (Mason City) } \end{gathered}$	On U.S. 65, just south of 25 th St., N.W., in the northern part of Mason City.
$\begin{gathered} \text { 35D } \\ \text { (Davenport) } \end{gathered}$	On U.S. 61, just west of Credit Island Lane, southwest part of Davenport.
	Secondary Rural - Two Locations
Station Number	Location
$\begin{gathered} 41 \mathrm{~K} \\ \text { (Plymouth) } \end{gathered}$	On Co. Rd. S-56, at the Jct. of Co. Rd. B-20, two and one-half ($2 \frac{1}{2}$) miles south of Plymouth.
$\begin{gathered} 42 \mathrm{~L} \\ \text { (Vincent) } \end{gathered}$	On Co. Rd. P-71, at the Jct. of Co. Rd. D-18, five miles south of Vincent.
	treet, Federal Aid Urban - Two Locations
Station Number	Location
$\begin{gathered} 47 \mathrm{I} \\ \text { (Marshalltown) } \end{gathered}$	On South 12th Avenue, south of 0live St. in front of Fisher Governor Plant.
$\begin{gathered} 46 E \\ \text { (Boone) } \end{gathered}$	On Cpl. Roger Snedden Dr. south of Airport in the south part of Boone.

A. General Duties - the crew members will perform the following duties as assigned by the Supervisor.

1. Place, install and remove equipment at the stations.
2. Flag and/or direct traffic.
3. Direct vehicles on and off scales.
4. Interview truck drivers.
5. Operate scales.
6. Measure distance between axles.
7. Record axle weights and measurements.
8. Make traffic counts.
9. Code the data.
10. Other necessary duties as required.
B. Safety Procedures
11. The traveled way of public roads can be a very dangerous working area if not properly signed or if carelessly managed. Since much of the work performed by the crew will be on or near the traveled way of the road, strict safety procedures must be followed not only to protect the members of the crew but also the motoring public. The procedures outlined in the following sections will be followed unless deviations have been approved in advance by the by the Survey Supervisor.
12. All personnel when working on or near the traveled way of the road will wear safety vests, hard hats, and protective clothing. In addition, the flag person will have a safety flag and/or flashlight with a red wand.
13. All vehicles will be parked a safe distance off the traveled way in a manner that will not present a cluttered appearance to the traveling public. Vehicles will not be parked on the median strip of a divided roadway nor will drivers cross the median strip of a divided roadway except at grade level intersections or at interchanges. Maintenance crossovers will not be used.
14. When the equipment vehicles are dropping off or picking up equipment, all vehicle warning lights will be in operation.
15. Vehicles required to operate electrical signing equipment will be placed off the shoulder if possible, or on the shoulder behind the signing if necessary.
16. Unauthorized personnel will not be allowed at the stations at any time.
17. USE EXTREME CAUTION WHEN IT IS NECESSARY TO CROSS THE TRAVELED WAY.

TRUCK WEIGHT STATIONS

A. General

There are four types of stations, two for portable scales and two for pit scales. See Illustrations II, III, IV and V for signing layouts. See Appendix A for maps depicting the location of each station.
B. Station Equipment Markings

The Survey Supervisor will be responsible for having the equipment locations marked for each type of station prior to the time of operation. The distances may be determined using roadway station markers or may be measured with a tape or odometer.
C. Placing of Equipment

1. Portable Scale Stations

The barricades will be installed then the equipment will be placed on the right hand shoulder starting from the barricades. After all equipment for one side has been set, the equipment vehicle will turn around and set the equipment for the other side of the road. When the equipment vehicle is stopped and signing is being loaded or unloaded, a flagman will be located behind the vehicle to control traffic as needed.
2. Pit Scale Locations

The survey crew signs will be installed and then the equipment will be unloaded at the weigh site.
3. Lighting Equipment

The portable lighting will be placed when and where directed by the Survey Supervisor.
D. Installation of the Equipment

1. Portable Scale Stations

The signing and other equipment will be set up starting from the barricades and working toward the opposite end of the station. A flagman will accompany the people setting up the signing to control and warn traffic.

2. Pit Scale Stations

Equipment will be set up at prescribed locations before the scale is opened to trucks.
E. Removal of Equipment

The crew will dismantle the equipment in the reverse order that is was set up. The equipment will then be picked up in the manner it was set out with barricades the last to be picked up.

TRUCK WEIGH STATION
 PIT SCALE

DIVIDED HIGHWAY

(TRAFFIC CONES

TRUCK WEIGH STATION
 PIT SCALE

TWO LANE ROADWAY ONE SIDE

A traffic conesMICROPONE OPERATOR
tapemen
A interviewer
counter

- RECORDERMEN
-. flagmen

general notes
1 All distances amox. FT.
2 TAPER DISTANCE (A) WILL EE SPED Y IWIDTH OF CLOSED LANE (IN FEET)] EXAMALE: 30 MPM, LANE WIDTH $10{ }^{\circ}$
3 WORK AREA(B) APPROX. 200 FT.
4 NO VEHICLES WHL BE PARKED WITHIN WORK AREA
5 FIRST FOUR SIGNS BLACK ON ORANGE (REFLECTORIZED MATERIAL)

6 Last thaee signs black on white (reflectorized material)

- Traffic Sign

Flagger
窰 Work Area
Channelizing Devices

8 Iowa Departmentof Transportation

TRAFFIC CONTROL FOR TRUCK WEIGHT SURVEY

A. General

The Survey Supervisor will assign the various duties to the crew members and rotate personnel at convenient times. Personnel will be positioned as shown on the appropriate station layout or as directed by the Supervisor. During weighing operations all trucks and buses will be weighed, measured and the drivers interviewed. The Survey Supervisor will direct when trucks and RV's will be passed. All vehicles will be counted and classified by vehicle type.
B. Duties

1. Flag Person

Direct and control traffic. See Illustration VI for flagging methods.
2. Traffic Director

Directs the vehicles on and off the scales.
3. Interviewer

Interviews drivers of vehicle waiting to be weighed. Complete the interview form as shown in Appendix A, Section I.
4. Recorder

Records the weights and measurements on the recorder form. See Appendix A, Section III for a sample of the form and recording details.
5. Scale Operators
a. Portable Scale Sites

Weigh each axle and measure the distance from the center of the front axle to the center of each of the following axles. Announce the weights and distances to the Recorder.
b. Pit Scale Sites

Measure and announce distance to the Recorder. A third scale operator will weigh and record the weights on the scale operator's form. See Appendix A, Section II on how the form is to be completed.
c. The order that axles are to be weighed for the various vehicle types is shown in Appendix B.
6. Traffic Counter

Classifies and records traffic on count form. See Appendix A, Section IV for procedures and a sample of the count form.

FLAGGING METHODS

To stop traffic

Traffic proceed

To alert traffic

APPENDIX A

INSTRUCTIONS FOR SURVEY FORMS

SECTION 1 - INTERVIEW FORM

The interviewer will interview the drivers of all trucks and RV's in the order they are to be weighed, and record the information on the interview form. The interview form contains data for columns 18-41 of the recorder form, and lines for ten interviews. The ten lines on the interview form correspond to the ten lines on the recorder form. A sample of the interview form is shown below.

Complete the interview form in the following manner.

1. Make the appropriate entries in the heading.
2. Vehicle Type

This is a six digit code with the first digit describing the basic vehicle type. The following digits denote the number of axles on the power unit and trailers. The vehicle type coding chart below shows the complete codes. The next page shows examples of the vehicle types.

VEHICLE TYPE	15T CHARALTER BASIC VEHICLE TYPE	2 ND CHARACTER	3RD CHARACTER	4TH CHARACTER	5TM CHARACTER	6IH CHARALTER
Bus	1	$\begin{aligned} & 1 \text { =Intercity Comercial } \\ & 2=\text { Transit Conmercial } \\ & 6=\text { School \& : onrevenue } \\ & 7=\text { Camper } \end{aligned}$	0	$1=2$ Axle 4 Tire $2=2$ Axle 6 Tire $3=3$ Axle $4=4$ Axle Or More	0	$\begin{gathered} 0 \\ \text { For } 6: 1 \\ \text { Vehicle Types } \end{gathered}$
single Unit irucis Wi thout Trailers Or with Light Trailers	2		0	```Light Trailers O=No irailer \ell=5lant Back 9=All Liọht Trailers```	0	
Iractor Plus Semi-Trafler (TTST)	3	Number Axles On Power Unit	15? Trailer	0	0	
Single Unit Truck +Full Trailer	4			0	0	
Tractor Plus Semi-Trailer +full Trailer (Bouble 8ot.tom)	5		$\begin{aligned} & \text { Number Axles On } \\ & l=1 \text { Axle } \\ & 2=2 \text { Axles } \\ & 3=3 \text { Axles } \end{aligned}$	```2ND TRAILER ailer```	0	
Single Unit Truck +2 Full Trailers	6		$\begin{aligned} & 4=4 \text { Axles } \\ & 5=5 \text { Axles } \\ & 6=6 \text { Axles } \end{aligned}$		0	
Tractor plus Semi-7railer +2 Full Trailers	7		$\begin{aligned} & 7=2 \text { kx]es Mith } \\ & 8=3 \text { Axtes With } \\ & 9=4 \text { Axles With } \end{aligned}$	ead Tandem ead Tandem ead Tandem	3RD Trailer	
Single Unit Truck +3 full Trailers .	ε					

Pickup or Panel 4-tiheel Truck
$200000=$ Less than 1 ton rated capacity $210000=1$ ton or more rated capacity

230000

230000

331000

3コ2000

323il:

333000

TRUCKTRACTOR - SEMITRAILER UITH TRAILER \{DOUBLE BOTTOMF

521200

532200
3. Body Types

The interviewer will enter the two digit code for the various body types. All body type codes are shown on the interview form while a detailed explanation of each body type is shown below. Light trucks may have a body type under the general truck category such as a Multi-stop or Standup Delivery (Code 61).

LIGHT TRUCKS

Code
11

12
13

14

15

Description

Van - A fully enclosed body of limited capacity which includes driver's compartment.

Pickup - A small open box or express body.
Light Utility - A body designed to carry readily accessible tools, equipment, and supplies in integrally constructed compartments, with or without other cargo spaces.

Personnel and Cargo - A body with large integral enclosed passenger compartment and a separate open box or express body.

Minibus - An enclosed utility body with side windows and one or more removable seats designed for transporting either passengers, light cargo or both.

GENERAL TRUCK AND SEMI-TRAILER BODIES

21 Platform, Flat, or Stake - A body having a floor without sides or roof, with or without readily removable stakes, which may be tied together with chains, slats or panels.

22 Low-Boy Trailer - A truck trailer with a platform body constructed to provide a low loading height and designed for the transportation of extremely heavy or bulky property.

Rack - A body with fixed slatted sides and headboard.
Livestock Rack - A rack body with or without roof designed primarily for transportation of livestock.

25
Riggers or 0il Field - A platform body of heavy construction equipped with a rear end roller or bullnose adapted for loading by winch or crane mounted on the vehicle and designed primarily for rigging, construction or work in oil fields.

26 Lumber - A platform body usually with transverse rollers designed primarily for the trasnportation of sawed lumber.

Log or Pipe - A body comprised of sill, bolsters, with or without headboard, with provision for uprights, and designed primarily for the transportation of logs, pipes, poles, or other loads which may be boomed. (Use body type codes 21 or 23 for trucks hauling pulpwood).

Canopy - An express body with fixed or removable uprights and roof which may be integral or separate from cab.

Express - An open box body with or without flareboards.
Open Top Box or Van - A body with high closed sides and ends and a movable top which usually is a tarpaulin cover.

Grain - A low-side open box primarily designed to transport dry fluid commodities in bluk.

Dump - A low-side open box body designed primarily to transport dry fluid commodities in bulk which can be tilted or otherwise manipulated to discharge its load by gravity.

Hopper - A body which is capable of discharging its load by gravity or mechanical power through means other than tilting and usually loaded from the top.

Van - A fully enclosed body designed primarily for the transportation of packaged commodities.

Refrigerated Van - A van body designed primarily for the transportation of commodities at controlled temperatures. It is provided with equipment for refrigeration or heating.

Furniture or Moving Van - A van body designed primarily for transportation of furniture or household goods.

Tank - A body designed for bulk commodities other than petroleum.

Petroleum Tank - A body designed for transportation of petroleum products.

Bituminous Material Distributor - A tank body provided with means for distributing hot bituminous material under pressure, usually equipped with means for heating the material.

Bottler - A body designed primarily for the transportation of cased bottled beverages on open or closed shelves, A-frames or pallets.

Multi-stop or Standup Delivery - A fully enclosed body with driver's compartment integral and designed for eacy access.

Description

Automobile Transporter - A body designed primarily for the transportation of other vehicles.

Armored Car (Not Military) - An enclosed cargo body with integral driver's compartment so constructed as to protect cargo and crew from overt attack.

Boat Carrier - A body designed to transport two (2) or more boats.

Concrete Mixer or Agitator - A body designed and equipped to mix or agitate concrete.

Wrecker - A body designed primarily for transportation of equipment for salvaging disabled vehicles and equipped with means of hoisting and towing such vehicles.

Utilities - A body designed primarily for the transportation of tools, equipment, and supplies for construction, maintenance, and repair purposes.

Garbage and Refuse - A dump body designed primarily for the collection of garbage and refuse.

Container - A body designed to transport bundled, stacked, or palletized commodities or special containers, with special lifting, locking or loading devices.

Equipment - Any truck mounted or other self-propelled wheeled equipment designed for highway travel, such as truck-mounted cranes, well drills, compressors, etc.

Bare Chassis - A cargo type vehicle with no provision for carrying load. This code should be used also for the body type when one truck, without a body, is transporting a second without a body, where the front wheels of the second rest on the first.

Shop - A body constructed for use as a shop, laboratory, office, or for a similar purpose with tools, equipment, or supplied to be used, operated or dispensed from inside the body.

Dwelling Body - A body designed for use as an abode with bunk(s), including house body and camp body.

Truck-Tractor without Semi-Trailer or Trailer - Any vehicle constructed primarily to pull a semi-trailer, full trailer, pole trailer, house trailer or equipment.

89 Empty Log Truck - Carrying pole trailer.
91 Intercity Bus - A body constructed with reclining seats and large separate cargo compartment for transporting persons on journeys of long duration.

92 Suburban Bus - A body constructed with fixed or reclining seats, overhead passenger luggage space, provision for standing passengers, with our without quick opening separate entrance and exit doors.

93

94
City Transit Bus - A body constructed with fixed seats, provision for a high proportion of standing passengers, with quick opening entrance and exit doors.

School Bus - A light bus body constructed for the transportation of students.
4. Fuel Type

Classify fuel type by interviewing driver.

$\frac{\text { Code }}{1}$	Description
2	Gasoline
3	Diesel
4	Propane
8	Turbine
9	Other
9	Unknown

5. Gross Reg. Weight Group
6. Reg. Weight

$\frac{\text { Code }}{}$	$\frac{\text { Pounds }}{072}$
006	72,000
, 000	

a. Information can be obtained from:
(1) Truck License Plate - Double the tonnage sticker value to get thousand pound code as shown in the following example.

$\frac{\text { Code }}{}$	$\frac{\text { Sticker }}{072}$
006	$36 T$
T	

(2) Door of Truck or Side of Trailer
$\frac{\text { Code }}{072} \quad \frac{\text { Marked }}{\text { GRW 72,000 }}$
(3) The Driver (Ask about the registration or cab card).
7. Basis of Registration

Code a 1 in this column unless the only state the vehicle is registered in is one of the states shown below, then use the appropriate code. When a vehicle's home state is one of the following and it is also registered in a state not shown below, use the other state to determine the basis of registration and the licensed weight. Ask driver.

Code	State
3	Alaska
3	California
3	Colorado
3	Hawaii
5	Maryland
2	Montana
3	Nevada
3	Ohio
2	Oregon
7	Wyouth Carolina
3	District of Columbia
3	Canada and Mexico
9	

8. Model Year

Determine the actual model year of the vehicle by asking the driver. Code the last two digits of the year, example for 1981 code 81.
9. Class of Operation

Determine the class of operation by questioning the driver. Enter the appropriate code.

Code
1

2

3

9

Description
Privately operated vehicles in general service. The load carried is the property of the owner of the vehicle.

For hire operation under certification of the Interstate Commerce Commission; such vehicles bear a plate displaying the "MC" number of permit or certificate.

Other for hire operation, all vehicles not bearing ICC identification carrying cargo not property of the owner of the vehicle.

Class of operation not determined or does not apply. This code may be used for vehicles from Canada or Mexico.
10. Commodity

Determine the commodity the vehicle is carrying by observation and/or asking the driver. Enter the commodity in brief but precise wording.

Example: Wrong - Meat
Correct - Swinging meat or boxed meat Wrong - Grain Correct - Corn

When the body type is mounted equipment the commodity must agree, such as welding unit, wrecker, crane, etc.

If there is a Hazardous Materials Placard on the vehicle, enter the 4 digit code from the placard.
11. Empty or Loaded

The loaded or empty code must match the commodity columns exactly. A vehicle with a commodity code in the commodity column therefore must be coded as a loaded vehicle.

Code	Description
0	Empty
1	Loaded
2	Non-commodity movement (utility or mounted equipment)
3	Permitted Overload

Code "2" is used for vehicles which cannot be considered as transporting a commodity.

Examples: Utility trucks such as gas, telephone and power companies, plumbing, heating and electrical contractors.

Code " 3 " is used when driver's answer yes to the overweight permit question. All other answers will result in a blank answer space signifying No.

SECTION 2 - SCALE OPERATOR'S FORM
The form will be used only at the pit scale stations. There is room for forty trucks in groups of ten. Each group corresponds with one recorder form. Use the upper left group first, then the bottom left group of ten, third the upper right group, and finally the lower right group. The first sheet of the Scale Operator's Form will then correspond to the first four sheets of the Recorder Form. See sample below. Complete the form in the following manner.

1. Heading

Enter the station number, the direction of travel the weights will be for, the date, the hour, the sheet numbers for the hour and your name.
2. Axle Weights

Enter the axle weights for each vehicle. The first axle or steering axle will be under Axle A, the second axle under Axle B, etc. There are sufficient columns for seven axles; if a vehicle has more than seven axles start over again under Axle A and circle.

TRUCK WEIGHT SURVEY SCALEMAN'S FORM

	Axle Weights in Hundreds of Pounds								Axle Weights in Houndreds of Pounds						
	$\underset{A}{A \times 1 e}$	$\begin{gathered} \text { Axie } \\ E \end{gathered}$	${ }_{c}^{\text {Ax le }}$	$\begin{gathered} \text { Ax le } \\ D \end{gathered}$	$\underset{E}{A x l e}$	$\stackrel{A x}{\text { A }}$ f			$\underset{A}{A x i e}$	$\begin{gathered} \text { Axie } \\ B \end{gathered}$	$\underset{C}{A x i e}$	${ }_{\text {Axle }} \mathrm{D}$	$\underset{\text { E }}{\text { A }}$ ¢	$\underset{F}{\text { Axie }}$	$\underset{6}{\text { Axie }}$
1								1							
2								2							
3								3							
4								4							
5								5							
6								6							
1								7							
8								8							
9								9							
10								10							
1								1							
2								2							
3								3							
4								4							
5								5							
6								6							
7								7							
8								8							
9								\bigcirc							
10								10							

A sample of the recorder form is shown below and will be completed as indicated in this section.

Column 1: \quad Card Code (7) is precoded.
Column 2-3: State Code (19) is precoded.
Column 4-8: Highway System and Station Number.
Use the codes shown below:

06
24B (Waterloo)

32C
(Mason City)
12
35D
(Davenport)
41K
(Plymouth)
07

16
42L
(Vincent)
46E
(Boone)
16
471
(Marshalltown)
02
59F
(Pleasantville)
02
74 H
(Ogden)
76M
(Carroll)
02

01
85J
(Afton)
915
(Tipton)
11
92 N
(Des Moines)

Highway System (4-5)	$\frac{\text { Station Number }}{(6-8)}$
01	$\begin{gathered} 93 \mathrm{P} \\ (\text { Avoca }) \end{gathered}$
01	$\begin{aligned} & 940 \\ & (\text { Ames) } \end{aligned}$
01	$\begin{gathered} 95 \mathrm{R} \\ (\text { Salix) } \end{gathered}$
01	$\begin{aligned} & 96 \mathrm{~T} \\ & \text { (Missouri Valley) } \end{aligned}$
01	$\begin{gathered} 97 \mathrm{U} \\ \text { (0sceola) } \end{gathered}$

Column 9: Direction of Travel

The direction codes are:
For each station the following codes

Northbound - 1 Eastbound - 3
Southbound - 5
Westbound - 7
will be used:

STATION	DOT		STATION	DOT
24B	1 and	5	85 J	3 and 7
32 C	1 and	5	915	3 and 7
35 D	3 and	7	92 N	3 and 7
41K	1 and	5	93P	3 and 7
42L	1 and	5	940	1 and 5
46E	1 and	5	95R	1 and 5
47I	1 and	5	$96 T$	1 and 5
59 F	1 and	5	97 U	1 and 5
74 H	3 and	7		
76M	3 and			

Columns 10-11: Year of Survey
Code the last two digits of the year, example for 1980 - code 80.
Columns 12-13: Month
Use the appropriate two digit code for the month (01-12).
Columns 14-15: Day of the Month
Code the day of the month using a two digit code (01-31).
Columns 16-17: Hour
For the hour use the 24 -hour clock; code as shown on the following page.

| HOUR | CODE | HOUR | | CODE |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 12:00 AM - 1:00 AM | 00 | $12: 00 \mathrm{PM}-1: 00 \mathrm{PM}$ | 12 | |
| $1: 00 \mathrm{AM}-2: 00 \mathrm{AM}$ | 01 | $1: 00 \mathrm{PM}-2: 00 \mathrm{PM}$ | 13 | |
| $2: 00 \mathrm{AM}-3: 00 \mathrm{AM}$ | 02 | $2: 00 \mathrm{PM}-3: 00 \mathrm{PM}$ | 14 | |
| $3: 00 \mathrm{AM}-4: 00 \mathrm{AM}$ | 03 | $3: 00 \mathrm{PM}-4: 00 \mathrm{PM}$ | 15 | |
| $4: 00 \mathrm{AM}-5: 00 \mathrm{AM}$ | 04 | $4: 00 \mathrm{PM}-5: 00 \mathrm{PM}$ | 16 | |
| 5:00 AM - 6:00 AM | 05 | $5: 00 \mathrm{PM}-6: 00 \mathrm{PM}$ | 17 | |
| 6:00 AM - 7:00 AM | 06 | $6: 00 \mathrm{PM}-7: 00 \mathrm{PM}$ | 18 | |
| $7: 00 \mathrm{AM}-8: 00 \mathrm{AM}$ | 07 | $7: 00 \mathrm{PM}-8: 00 \mathrm{PM}$ | 19 | |
| 8:00 AM - 9:00 AM | 08 | $8: 00 \mathrm{PM}-9: 00 \mathrm{PM}$ | 20 | |
| $9: 00 \mathrm{AM}-10: 00 \mathrm{AM}$ | 09 | $9: 00 \mathrm{PM}-10: 00 \mathrm{PM}$ | 21 | |
| 10:00 AM - 11:00 AM | 10 | $10: 00 \mathrm{PM}-11: 00 \mathrm{PM}$ | 22 | |
| $11: 00 \mathrm{AM}-12: 00 \mathrm{AM}$ | 11 | $11: 00 \mathrm{PM}-12: 00 \mathrm{PM}$ | 23 | |

Columns 18-41:
These columns will be left blank by the recorder during station operations.

Columns 42-60: Weights
The weights will be recorded to the nearest 100 pounds as announced by the scale operators, Axle A for the first axle weighed, Axle B for the second, etc. Columns without axle weights will be left blank. Cheater axles off the surface will be coded 001. Enter the sixth axle weight for a vehicle in the total weight column, otherwise leave blank. Circle the sixth axle weight. See example of recorded weights on the following page.

Columns 61-76: Measurements
The measurements will be recorded to the nearest tenth of a foot as announced by the scale operators or tapemen depending on station type. The first measurement will be recorded in Axle $A-B$, the second in $B-C$, etc. The total wheel base will be left blank unless needed for a six axle vehicle. If used, circle. There will always be one less measurement than weight. See example on the following page.

Columns 77-80: Serial Number and Card Number
Leave blank.

beights in 100 lb . units
057 port. scales
214 pit scales
080 port. scales
274 nit scales
078 port. scales
430 pit scales

PORTABLE SCALES

PIT SCALES						
total WEIGHT	AXLE WEIGHTS					
	$\begin{gathered} A \times L E \\ A \end{gathered}$	$\begin{gathered} A \times L E \\ B \end{gathered}$	$\begin{gathered} A \times L E \\ C \end{gathered}$	$\begin{gathered} \text { AXLE } \\ D \end{gathered}$	$\begin{array}{r} A X L \\ E \end{array}$	
			n n	n n 0 n		
	$1 / 4$	274	430	194	019	4

SECTION 4 - VEHICLE CLASSIFICATION COUNTS

The vehicle classification counts will be made on the count form, example shown below.

Complete the heading in the same manner as the Recorder Form, however, leave the DOT (Column 9) blank.

The count portion of the form is divided into three sections. The left side is by vehicle classification for the most common vehicle types. The second and third sections of the form are arranged by vehicle type, and then by number of axles on the vehicle. Circle the direction of travel in each section used.
A. The passenger vehicles will be categorized into four different classes:

Standard and compact cars;
Motorcycles, motor scooters and mopeds;
Commercial buses; and
School buses

1. No distinction will be made between standard/compact cars and small cars as is indicated on the count form. All passenger cars will be entered on the count form under standard and compact. The space reserved for small cars will be left blank.
2. Motorcycles, Mopeds and Motor Scooters (Columns 38-40)

Motorcycle travel has considerable seasonal variation. This type of classification data is of particular value and should be noted carefully.
3. Commercial Buses (Columns 41 - 44)
4. School Buses (Columns 45 - 57)

Some buses are reconstructed to carry a commodity such as tools, office equipment, or camping gear. These are to be classified as a truck, depending on the wheel arrangement.
B. Trucks will be classified the same as by the interviewer. See Vehicle Type Coding Chart page B-2.

Single unit trucks (including pickups and panels) with light trailers will be counted in the section marked "with light trailers", with full trailers (including all fifth wheel trailers) the trucks will be counted in the appropriate vehicle type 4 category. Single unit trucks with campers, either demountable or permenently installed, will be counted in the 2-0079 series.
fruck weight survey
SUPPLEIENTAL MEASUREMENT FORM

$\begin{array}{\|c} w \\ 0 \\ 2 \\ 2 \\ 2 \end{array}$	$\frac{山}{6}$	宔它		$\frac{1}{n} \underset{z}{\dot{0}}$	0		$\begin{aligned} & \stackrel{\alpha}{\underset{\sim}{\omega}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Z } \\ & \mathrm{O} \\ & \hline \end{aligned}$	$\stackrel{\rightharpoonup}{\Sigma}$	$\xrightarrow{\square}$
	1	T								

\qquad
SHEET of RECORDER

1

Supplemental measurements will be taken on all trucks in the order that they weighed. To ensure uniformity, vehicle and body type will be recorded in the order that trucks are weighed. The vehicle type and body type will be used to later identify these measurements.

Measurements A and B will be in FEET and TENTHS of feet on all trucks. The measurements for C/D will be in INCHES on all trucks.

The following measurement instructions will be followed to obtain data:
MEASUREMENT A: Measure the overall length of the truck from the leading edge of the front bumper to the trailing edge of the box or trailer.
MEASUREMENT B: Measure the length of the trailer from the front of the load carrying platform or container (EXCLUDE ANY EQUIPMENT SUCH AS REEFER UNITS OR AIRFOILS MOUNTED ON FRONT OF TRAILERS) to the rear edge of trailer or bumper. NOTE: When measuring Double-Bottoms EXCLUDE dolly or booge towing connection for second trailer from trailer length.
MEASUREMENT C: Measure the widest part of the load carrying platform or container including any load tiedown devices. (EXCLUDE SAFETY DEVICES SUCH AS side marker lights, splash/spray surpressent equipment or other items that appear to be safety related).
*If truck is a Double-Bottom measure width of both trailers.

MEASUREMENT D: Measure width of tires from outside to outside including any bulge due to load.

NOTE: MEASURE ONLY LENGTH OF SADDLE/SLANTBACK UNITS. DON'T TRY TO MEASURE EACH UNIT AS A TRAILER.

NOTE: INCLUDE TONGUE OF PUP TRAILERS AS PART OF LENGTH.

APPENDIX B

ORDER OF WEIGHING AXLES

Portable Scales

1. Two axle trucks: Weigh both axles at the same time.
2. Three axle trucks: Weigh the steering (front) axle and then both drivers at the same time.
3. Three axie tandems: Weigh the first two together and the last two together (the middle axle will be weighed twice but only one reading will be recorded).
4. Trailers: Weigh in the same manner as the trucks.

Pit Scales

1. Trucks and buses: The steering axle will be weighed alone, then each following axle on the driver unit will be added until all axles are on the scale.
2. Trailers: Weigh all axles first and then remove one axle at a time from the scale.

Examples on the order to weigh the axles of various truck types are on the following pages.

Order of Weighing Vehicles by Axles on Pit or Portable Scales

Pit Scales
Portable Scales
Vehicle Type
2000
Weigh A

Vehicle Type
2000
Weigh A \& B Weigh A \& B

2100
Weigh A
Weigh A \& B
2200
Weigh A
Weigh A \& B

2100 Weigh A \& B

2300
Weigh A
Weigh A \& B
Weigh A \& B \& C

2400
Weigh A
Weigh A \& B
Weigh $A \& B \& C$

Weigh $A \& B \& C \& D$
3210
Weigh A
Weigh A \& B
Weigh C

Weigh A \& B Weigh C

Pit Scales		Portable Scales
Vehicle Type		Vehicle Type
3320		3320
Weigh A		Weigh A
Weigh A \& B		Weigh B \& C
Weigh $A \& B \& C$	\square	Weigh D \& E
Weigh D \& E		
Weigh E		
3370		3370
Weigh A		Weigh A
Weigh A \& B		Weigh B \& C
Weigh $A \& B \& C$Weigh D \& E		Weigh D \& E
Weigh E		
3330		3330
Weigh A		Weigh A
Weigh A \& B		Weigh B \& C
Weigh $A \& B \& C$		Weigh D \& E
Weigh D \& E \& F		Weigh E \& F
Weigh E \& F	9140, 000-	
Weigh F		
3340		3340
Weigh A		Weigh A
Weigh A \& B		Weigh B \& C
Weigh $A \& B$ \& C	410	Weigh D \& E
Weigh D \& E \& F \& G		Weigh F \& G
Weigh E \& F \& G		
Weigh F \& G		
Weigh G		

Pit Scales	Portable Scales
Vehicle Type	Vehicle Type
3430	3430
Weigh A	Weigh A \& B
Weigh A \& B	Weigh C \& D
Weigh $A \& B$ \& C	Weigh E \& F
Weigh A \& B \& C \& D	Weigh F \& G
Weigh E \& F \& G	
Weigh F \& G	
Weigh G	
4210	4210
Weigh A	Weigh A \& B
Weigh A \& B	Weigh C
Weigh C	
4220	4220
Weigh A	Weigh A \& B
Weigh A \& B	Weigh C \& D
Weigh C \& D	
Weigh D	
4230	4230
Weigh A	Weigh A \& B
Weigh A \& B	Weigh C \& D
Weigh C \& D \&	Weigh D \& E
Weigh D \& E	
Weigh E	


```
Pit Scales
Vehicle Type
5212 (32/24 platform)
Weigh A
Weigh A & B
Weigh C
Weigh D
```



```
5212
Weigh E
5311 (40' platform)
Weigh A
Weigh A & B
Weigh A & B & C
Weigh D & E
```



```
Weigh E
5311 (32/24 platform)
    Weigh A
    Weigh A & B
    Weigh A & B & C
    Weigh D
    Weigh E
5312 (40' platform)
    Weigh A
    Weigh A & B
    Weigh A & B & C
    Weigh D & E & F
    Weigh E & F
```

 5312

```
Weigh A \& B Weigh C \& D Weigh E
Weigh A
Weigh B \& C
Weigh D \& E
Weigh A
Weigh B \& C
Weigh D \& E
Weigh A
Weigh B \& C Weigh D \& E Weigh F
\begin{tabular}{|c|c|}
\hline Pit Scales & Portable Scales \\
\hline Vehicle Type & Vehicle Type \\
\hline 4340 & 4340 \\
\hline Weigh A & Weigh \(A\) \\
\hline Weigh A \& B & Weigh B \& C \\
\hline Weigh A \& B \& C & Weigh D \& E \\
\hline Weigh D \& E \& F \& G & Weigh F \& G \\
\hline Weigh E \& F \& G & \\
\hline Weigh F \& G & \\
\hline Weigh G & \\
\hline 5211 (40' platform) & 5211 \\
\hline Weigh A & Weigh \(A\) \& \(B\) \\
\hline Weigh A \& B & Weigh C \& D \\
\hline Weigh C \& D & \\
\hline Weigh D & \\
\hline 5211 (32/24 platform) & 5211 \\
\hline Weigh \(A\) & Weigh \(A\) \& \(B\) \\
\hline Weigh A \& B & Weigh C \& D \\
\hline Weigh C & \\
\hline Weigh D & \\
\hline 5212 (40' platform) & 5212 \\
\hline Weigh A & Weigh \(A\) \& \(B\) \\
\hline Weigh \(A\) \& \(B\) & Weigh C \& D \\
\hline Weigh C \& D \& & Weigh E \\
\hline Weigh D \& E & \\
\hline Weigh E & \\
\hline
\end{tabular}

Pit Scales
Vehicle Type
5312 (32/24 platform)
Weigh A
Weigh A \& B
Weigh \(A \& B \& C\) Weigh D

Weigh E
Weigh F
6222
Weigh \(A\)
Weigh \(A\) \& \(B\)
Weigh C \& D
Weigh D
Weigh E \& F
Weigh F

Portable Scales
Vehicle Type
5312
Weigh A
Weigh B \& C Weigh D \& E Weigh \(F\) 6222

Weigh A \& B Weigh C \& D Weigh E \& F

Vehicles not assigned an axle weighing order or due to abnormal spacing cannot be weighed according to its assigned weighing order, will be weighed in the most expedient manner possible. The order in which the axles were weighed will be recorded in the following scheme \(A, A \& B, A \& B \& C\), etc.

















\section*{R-26 W}
```

