
•.,

'

T
385
.837
1971

COIPUTITIII CUTER
Iowa State Ualvaraity

MIY1171
Dacullllld No. 4

Rlilllll No. 3

SI.UTT:Efl,

A Higl.l Level Plaltlfli SVStlln

D. G. Scranton
E; G. Mancheat•

n

....

u

0

•i

0

·· '

u

ii

1~~!1-~QIIh~

This report was prepared as an account of Govern
ment sponsored wo~k. Neither the United States r nor
the commission, nor any person actinq on b~half of the
Commission :

A. ~akes any warranty or representation, expressed
or implied, with respect to the accuracy , com
pleteness, or usefulness of the information
contain~d in this report, or that the use of
any information, apparatus, method , or process

· disclosed in this report may not infringe
privately owned riqhts; or

B. Assumes any liabilities with respect to the use
of, or for damages resulting from the use of
any information, apparatus, method, or proces~
d~sclosed in this report.

As used in the above, "person acting on behalf of
the Commissiob" includes any employee or contractor of
the commission, or employee of such contractor, to the
extent that such employee or contractor of the
Commission , or employee of such contractor prepares,
disseminates, or provides access to, any information
pursuant to his employment or contract with the
Commission, or his employment with such contractor .

~
~

iii

TABLE OF ~ONTENTS

gg,.g:~

ABSTRACT v

CHAPTER I: INTROP OCT ION TO SIMP LOTTER

The Need for a High Level Plottinq system

Scope and Application Area of SI~PLOTTER

SlMPLOTTER Plotting Concepts

overview of SIMPLOTTER Problem- Oriented Routines

conventions Followed in tnis Manual

Using SIMPLOTTER for the First Time

CHAPTER II: GRAPH -THE G~NERAL PUR~OSE fiOUTINE

Us age of GRAPH

CALL List Format

Parameter Definition

Information about the data points

Information about the plotting method

Axes and implying superposition

lnformation about scaling

Producing linear axes

Producing logarithmic axes

Information about labelinq

Automatic Data and Label Taqqing

Automatic Data Point Elimination

Cl:iAt>TER III: SPECIAL PURPOSE ROUTINES

1

2

4

8

9

11

12

1 L

13

1J

13

14

17

20

~0

23

2o

28

29

30

DISTRI, DISTRA, and DISTRP - Pl otting Distributions 30

0

~·

u

iv

Chapte~ Three (continued)

Usage 33 f
CALL List Format 34

i Paramet~~ definition 3 4

ORIGIN - Modifying the Standard Graph Format 3H

Usage 38

,,
CALL List Format 39

Parameter and option definition 39

Cont~ollinq the or~gin and omitting axes 39

Changinq the height of plottinq symbols 40

Repositioning graph label area 40

Restorinq SIMPLOTTER standard qraph format 41

LETTER - Additional Labelinq and Data Taqginq 4 2

Usage 42

CALL List Format 42

Parameter definition 42

ACKNOWLEDGEMENT S 44

APPENDl X

A. Debugginq and the SIMPLOTTER Param~ter Dump 45

B. The Printer Plotter 47

c. Plotting Symbols Availanle 4 9

D. The Incremental Plotter 51

E. Restrictions of SIM~LOTTER 53

L SHiPl.OTTER Plotting System Job Control 5b

G. Interpolation, Smoothing, and sortinq Techniques 61

() H. Sample PLograms 75

v

THE USE OF SIMPLOTTER, A HIGH LEVEL PLOTTING SYSTEM
by

D. G. sc~anton and E. G. Manchester

ABSTRACT

SIMPLOTTER is a high level plotting system used for producing

typi~al g~aphs quickly and easily. A typical graph might b~ com-

posed of several ·curves, numbered axes, a~d a small amount of

labeling. The system is designed tor the needs of the casual com-

puter user and an environment of program experimentation and

chan~e. A set of data is graphed by specifying options when

"calling" a problem-o~iented plotting routine. Graphing options

include: points, lines, interpolated or smoothed curves,

superposition of additional data sets, automatic or· programmer

specified scaling, linear oc logarithmic axes, labeling,

histograms and ideograms. Automatic scaling is based on all data

sets of a graph. Plots can be genecated fcom PL/1 (F), FORTRAN IV

(G, H, and WATFIV) and COBOL using a common plotting concept.

User progcam logic and plotting logic can oe debuqqea in parall~l.

SIMPLOTTER is written in FORTRAN IV. SIMfLOTTER enters core stor-

age upon completion of the usee progcam execution. The pcogrammer

can direct plot$ to either a print~r or an incremental plotter.

Graphs drawn on the incremental plotter are suitao~e for publica-

tion.

n

..

u

1

CHAPTER I· I N-T RODUCT .ION ·TO S.ItlPLOTTER ---------£----------------------------

Historically, the generation of graphs from diqital computers

has presented nagging problems for programmers. Otten a

disproportionate amount of time is spent merging plottinq logic

into an existing program. In some cases the merqe is extremely

difficult as the more common plottinq routines impose a specific

loqic structure on the user program. Because of the interaction

between the plotting routines and the user pi. og ram, deb uqginq time

increases significantly. Furth~rmore, after plotting has been

successfully merged into a program, the plotting loqic is so

entwined in the program logic that even a minor change becomes

difficult to implement. Many manage·rs and programmers have found

that to change ~ven the length of an axis r.equires a ma;or re-

writing of the program logic. Managers uniformly complain of du-

plication of effort after surveying compltted proqcams. Most

plotting packages presently available not only influence the loqic

., of the user progcam but also dictate the computer lanquage the

programmer must use (usually FORTRAN). These plotting routines

generally use a significant portion of the user regiou of core

storage, placing further restrictions on the usee's program

design.

The basic problems are twofold: plotting routines are usual -

ly supplied by the man~tacturers of digital plotters and are or-

u ganized into the basic elements of plott~nq, such as a routine to

2

generate an axis, a routine to connect a set of points by straiqht

lines, a routine to compute a scale factor for subsequent uss by

the user program, etc •• Consequently, plotting loqJ.c is scattered

throughout the program, making seemingly simple modifications dif

ficult to implement.

secondly, scale factors must be determined and applJ.sd by the

user to his internal data (usually plotting routin&s demand data

in units of inches) Thus, the user modifies his data arrays

based on the scale factor value provided by a plottinq routine.

Frequently this kind of interaction causes debuqqing problems. In

addition, his arrays have been modified. If he needs to continue

using them, they must be restored or a copy of the or4qinal data

re-loaded. If the user wishes to plot several sets of data on the

same graph (superposition), he must determine a scale factor based

ou all data arrays. The programmer can see that this is a

jumping-off place where bookkeeping, core storage considerations,

and other trivia ~tart to influence the design of the user

program- -a situati6n to be avoided if possible.

~~Q.I2~-~D.sl_!,2E.lis:~ti.QQ._!£~SLQ.f._§.!.11f1.Q.ITE]

SictPLOTTER is characterized by the followinq :

1. Plotting concepts are straight-forward and easy to

use.

2. Programs using SIMPLOTTER are easily modified.

3. Plots can be easily directed to either a printer

plotter or an incremental plotter (output suitable

u

for publication~ without program recomp~lation.

4. Debugging plot logic and usGr proqraw loqic can be

done simultaneously (in parallel) .

5. The same plottinq concepts can be us Gd fro m PL/1 (F) ,

FORTRAN IV (G,H, and WATFIV), and COBOL. D
Toe system is desiqned to generate typical qraphs quickly and

easily. A typical graph might be considered to be composed of

several curves, numbered axes, and some labels. SIMPLOTTER

minimizes the above problems for a lar~e class of users, namely,

thosa typical of the scientific community . The prime desiqn cri-

teria is to allow the casual user a simple but economical means of

graphing. Programmers with "one shot" or rapidly cbanqinq

programs will find SIMPLOTTER well suited to their needs. Graphs

drawn on the incremental plotter are suitab~e for publication. A

staniard graph format is assumed. Axes are drawn at 0 and 90

degrees to the horizontal and are ticked and n umbered (scientLfic

notc1tion) at every inch with numbei:s increasing uniformly. In

cases where a logarithmic axis is opted, only an inteqral numbe r

of logarit hmic cycles are drawn. Axis labelinq areas are provided

.. adja:ent to the axes, and graph labeling is normally done in the

upp .. er right-hand corner of the qraph. Th~s format is commonly

seen in journals of physics, enqineering, applied mathematics, and

statistics.

Although this assumed format can be alter~d somewhat by the

user, the proqramming trivia increas~s accordinqly. For extreme

u

4

dev~itions from the assumed format, the trivia can be nearly as

great as when using the manufacturer • s routines.

The FORTRAN version of SIMPLOTTER has been in use at r.s.u.

since 1966 and has survived three computer exchanges (IBM 7074 to

IBM 360/40 to 360;50 to 360;65). Within three months after its

creation and implementation, SIMPLOTTER vas generatinq 96 percent

of all plot jobs handled by our digital plotter. This percentage

has remained constant. Generally, p~rsons using the

manufacturer's package are d~awing 3-dimensional and contour

graphs, applications out of the scope of SIMPLOTTER. Programmers

are encouraged to use the printer plotter· initially. All plots at

r.s.u. are directed to the printer by default. If the use r

chooses to use the incrementil plotter, he need change only one

job cont:.rol card. Note that no change is made in his source pro-

gL am logic to d~rec t the plots to the higher resolution

incramental plotter. Although it is intended primarily for debug

ging, the printer plotter has resolution adequate f oL· many

applications and is a boon to turnaround time.

SIMf~QITE~_£1211ing_~2n~gE!§

Restrictions on the user's loqic structure are kept at an ab

solul:.e minimum~ The user sets up arrays contain~nq the (x,r)

points to be plotted (in arbitrary un its, not necessarily inches).

He ~!~~s one ot SIMPLOTTER's problem-oriented routines and

u

5

specifies the options to be appli£d to his data. At this point

the user may consider the data as having oeen plotted, and can

modify , re-use, or destroy the data array s as needed. The lenqth

or the x-axis, called XSIZ1, is also specified in the CALL list.

If XSIZE is non-zero, a new graph is begun. This type of CALL is

referred to as a ~£~m~£l-~Abb· Later in the program the user may

wish to superimpose a second data set onto the graph. He forms

the (x, y) I>Oint arrays, specifies the options to be applied to

that data, and specifies XSIZE as zero. This is referred to as a

XSIZEIO.O primacy CALL

XSI.ZE=O. 0 superposition CALL

a new graph, labe l~d
and with axes, is bequn.

a data set is super
imposed on the previous
ly formed qraph.

A second method of specifying superposition, a special

superposition routine with a shortened CALL list, is provided for

convenience also. As many as 99 data set superpos~tions can be

made on one graph, but no more than a total of 5000 points can be

plotted on one graph. Ther~ is no inherent limit to the number of

qraphs that can be drawn.

This concept is simple enouqh that many users miss some im-

portant implications. To be more specific:

1. If only one data set is to be plotted on a qraph, one

CALL (XSIZ E # 0.0) is sufficient t o plot the complete

graph.

6

2. After the CALL is executed, the user ne~d not maintain

the data arrays. He can consider the data as havinq been

plotted.

3. When superimposing (XSIZE = 0.0):

a. Different optior.s may be specified for each data set

being superimposed (po~nts only, smoothed curve,

line, etc.)

b. If automatic sea ling is opted, scalin q (user data

units per inch) is determined by SIMPLOTTER on the

basis of all data sets tor the graph to be plotted,

that is, the primary data set and all the

superposition ddta sets. This bookkeeping

convenience is probably the strongest reature of the

Sll'iPLOTTER plotting system. Automatic scalir1q is an

option; however, the use r may specify the scaling

which is applied to all data (primary and

superposition) appearing on a graph.

4. None of the parameters specified in the CALL list are

modified by the problem-oriented routines (including the

(x,y) data arrays to be plotted).

5. Debugging user program and plotting lcgic is done in

parallel. Because o£ (4) there is little interact ion be -

tween the two logics. Tile user may well make an error in

his logic which will lead to an incorrect graph. Howev-

er, merely calling one ot the problem-oriented plott inq

u

u

7

routines will not cause his program to terminate aonor

mally. Thus, his program will continue beyond the

plotting error to either normal termination or until a

user program error is encountered. After his program has

terminated, he will see that the generated graph is

incorrect. Aided by .SHlPLOTTER' s g__g];:g.!!!~.t~k: !!·.Y.J!!.I2, he will

see precisely what parameters he passed to the problem

oriented plotting routine. This allows him to correct,

simultaneously, his program and plotting logic, tnus,

considerably reducing debugging time.

6. Debugging turnaround time is no lonqer when plotting than

when not plotting. The printer plotter provides graphs

conn~cted to the end of the user's normal printed output;

there is no waiting for the separate hiqh resolution

graph drawn by the incremental plotter.

7. Many options are easily available to the SIMPLOTTER user

which he ordinarily would not take time to program

himself, such as smoothing and second order Lagrangian

interpolation. This avoids duplication of eftort and ex

cessive debugging time.

8

Q~~£!~~~21-~l~f~QI1~R--f£Qbl~~~Q£~~n!~Q-~QY1ill~§

The main body of this manual describes the problem-oriented

routines. Most users are not expected to require assistance in

usin~ the SIMP~OTTEB system. The description of the routin~s is

mainly tutorial# and without reference to a specif1c proqramminq

lanq uag e. It is hoped that the descriptions are br ie.t enough that

the manual can also be used for reference. The most qeneral of

the routines, GRAPH, is described first. Most users will not need

to read beyond that section. Special purpose routines are de

scribed following GRAPH. To summarize the problem-oriented

routines• pur poses:

G8APH is the most general ot SIMPLOTTBR's problem-oriented

routines. Linear, log-log, or semi-loq axes can be

specified. Scaling is automatic or can be spec1fied.

Points can be 1} plotted with a variety of symbols,

2) connect€d by straight lines or an interpolated

curve, or 3) r-epresented by a smoothed curve. Axes

are generated and labeling specified by the user is

drawn.

DISTRI, DISTRA, and DISTRP provide all bookkeeping and

calculations necessary for the construction of

histograms (bar qraphs representing a distribut1on of

eventsb and ideograms (distribution or ev~nts ~ach

having a unique inherent error).

ORIGIN provides the user a method of altering the basic

...

(_)

u

LETTER

9

format of a graph. The user may take the responsibil

ity of moving the origin trom graph to graph (a way of

putting one gca ph on top of another) , elim1.natinq the

drawing of an axis, etc.

allows the user to letter a graph in addition to the

labeling that is pLovided by the other routines. In

particular, this routine is useful for constructing

special purpose axes and labeling particular data

points.

These routin~s may be used in vacious combinations to produce

a griph. For instance, a curve may be generated by GiAPH, a

histogram superimposed by DISTRP, additional lettering

superimposed by LETTER, etc •••

The usage of each routine is described without reference to a

specific programming Language. Sample programs written in

FOR·ra AN , P L/1, and COBOL, are shown in Appendix H. · The user is

encouraged to pick a sample program similar to his problem and

work through it. Programming hints and conventions peculiar to

the various languages are l.llustrated in sample programs.

~2n1~nfi2u2~f2ll2~~4-i~_ihi§_~~n~~l

SIMPLOTTER's problem-oriented routines follow the conventions

and defaults of the programming lanquaqe being used. Thus, in all

the programfuing langu~ges the number and type of parameters specl.

fied in the CALL list of a proolem-oriented routine must corre-

spond to the number and type th~ routine expects. For example,

10

GRAPH expects 15 parameters; the user must supply 15 parameters in

the specified order when calling Gl\APH.

Naming conventions used in this manual follow those of the

majoc programming languages. Character strings, used for labeling

pucposes, are explicitly specified in the parameter definition of

each problem-oriented routine. variables beginning with letters I

- N are implicitly intended to be in1~~£ type, all others are of

f:~S!b type. "Integer" and "real" translati: into each language's

data attributes as follows:

.Integer INTEGER* 4 FIXED BINARY(15~ COMP UTATIONAL

Real REAL *4 FLOAT DECIMAL (6) S(9) COMPUTATIONAL-1

When XSIZE = 0 . 0 in any CALL list, SIMPLOTT ER handles the set

of dita in that CALL list as a superposition upon the last primary

data set graphed. In this case, many of the parameters in the

list are not used or referred to by the problem-oriented plotting

routine (such as scaling and some labels). However, as the num-

ber, type, and order of the parameters in the CALL list are very

important, all positions in the CALL list must be occupied even if

not used. The user therefore must 11 pad 11 his call list so that all

positions are occupied by parameters of the correct type and

length. As previously mentioned, special routines are prov1ded

for superimposing data which minimize the need f or •paddinq•.

a
/

n

u

')

u

11

Q~in[~IMfLOII~~-l2~-~h~_1!£~~-Iim~

Those who have not previously used SIMPLOTTER should follow

the general instructions below:

1. Read the section "SIMPLOTTER Plotting Concepts" to get an

overview of the plotting concepts.

·2. Choose an appropriate problem-oriented routine and read

its sec:tions on "Purpose" and 11 Usage 11 •

3. Work through one of the sample programs written in the

programming langu~ge you choose to use. Note the associ

atEd explanations, as they point out hints,

peculia~ities, and the job control in the chosen proqram

ming language.

4. use the automatic scaling feature when plottinq data sets

for the first time. automatic scaling will insure that

all data is plotted on the graph, which qives insiqht t o

debugging problems and optimum scalinq pa~ameters . I f

the scaling is not satisfactory, specify scalinq diLec t ly

and/or change the axis length on subsequent runs.

5. When debugging, always check the SIMPLGTTEB Parameter

Dump to ver~fy that the intended parameters were p~ssed

to the problem-oriented routine. Always use the printer

plotter when debugging; it improves · your turnaround time

considerably. Switch to the incremental plotter only

when your pr:o gram is buy free.

12

GRAPH is the most general of SIM FLOTTER's proble m

oriented routines • . Linear, log-log, or semi-log axes can be

specifiEd. Data points can be: 1) plot ted with a variety of

symbols, 2) connected by straight lines or an interpolated

curve, or 3~ represented by a smoothed curve. Axes are qen

erated and labeling specified by the user is drawn.

Q§_gg~_Q,!_Q-!HH!!!

The user forms two arrays containing the X and Y

coor~inates of the points to be plotted. The names of these

arrays, the number of points to be plotted, and other

graphical information is passed to GRAPH throuqh a subroutine

CA~L list. Included in this graphical information is the

length of the x - axis. When this lenqth is non-zero , the data

set points in the arrays will be plotted on a new graph; that

is, the origin is moved to a point such that the new qraph

will not overlay any portion of the previous one . If in the

CALL li st of GRAPH, the x-axis length is s pecified as zero,

the (X , Y) data set points will be superimposed upon the q raph

of the previous data set. A second method o f implyinq

superposition is provided by subroutine GhAPHS, which has

fewer arguments than does GRAPH. Scaling is calculated and

applied on the basis of all ~oints on a graph, primary and

super- posit ion.

u

13

CALL G RA PH (N P l S , X, Y , I S Y M , M 0 DE , X S I Z E , Y S I Z E,
XSF, XMHl, YSF, YMIN, XLAB, YLAB, GLAB, DATLAB)

CALL GRA.PHS (NPTS, X, Y, ISYI1, MODE, DATLAB)

Note: Except for character strings, all parameters in the

list beginning with characters I-N are intended to be inteqer

type variables or constants. All others are intended to be of

real type.

A. Information about the data points:]gi~, !, X·

NPTS - an int&ger type variable or constant that

G represents the number of (X,Y) data set

points to be plotted.

X - the name of tne real typ6 array containinq

t~~ x-coordinates of the points of this data

set.

Y - the name of the real type array containinq

the Y-coordinates of the points of this data

.. set.

FOiiTRAN NOTE: In FORTRAN G, H, and WATFIV, NP'IS may

be negative. The rna gni tude of NPTS then

represents the number of pointo to be

plotted. 1he siqn of NPTS specif~es preci-

sion as follows:

u NP1S positive: X and Y contain sinqle

prec~siou number~.

14

NP1S negativG: X and Y contain double

precision numbers.

Both X and ¥ must be of the same precision.

B. Information about the plotting method : I~X~. ~Q~~.

ISYM - the integer t ype va riabld or constant that

represents one of the th~rteen plot- centered

symbols to be used (if an y) • See Appendix c

for a list of availa ble symbols.

MODE - specifies the plotting met hod to be used.

several terms used to explain plottinq

methods pertaining to curves are explained

below.

!Rte££~ia£~~-~~£y~: A curve is drawn connecting and

passing throuqh each of the data points $e

quentially, that is, points are ordered ~n

the arrays. Since the curve passes throuqh

every point, interpolation is intended for

use with well-behaved continuous points.

Interpolation can result in a multi - v alued

curve, such as a circle .

Note: interpolation is effec ti ve only on data

sets ot more than 5 points.

~~QQth~Q_£~~y~: A smoothed curve attempts to define

the tendency o f ~he data set points by

passing through a "n eighborhood" o f points

with a small amount of scatter. Smoothinq

can only produce sinqle-valu € d curves which

..

u

u

15

are monotone increasinq iu the X direction.

Note: smoothing is effective only on data

sets of mor~ than 20 points .

Example: For purposes of illustration, points are

numbered to indicate their sequence in the

(X,Y) arrays.

~nterpolated curve Smoothed Curve

Q~n CY[lg: The interpolated curve is open if · drawn

such that the first and last points are not

connected.

~lQ§ed_~~£!~: A closed curve is a multi-valued curve

which is drawn such that all data points are

connected (including a connectinq line be

tween the first and last points).

Example:

Open curve Closed Curve

16

Interpolation and smoothing methods are de-

scribed in Appendix G. The plottinq method MODE must

be an integer type variable or constant. The follow-

ing values w~ll determine the corresponding plottinq

method:

MODE = 1 points plotted with symbol LSYM and connected by an

open interpolated curve .

= 2 open interpolated curve is drawn from point to point

but points are not plotted with a symbol.

= 3 points plotted with symbol ISYM and connectEd by

straight lines drawn from point to point .

= 4 straight lines are drawn from point to point but the

points are not plotted with a symbol.

= 5 points plotted with symbol ISYM and connected by a

clos~d interpolated curve.

= 6 clos~d interpolated curve is drawn from point · to

point but points are not plotted with a symbol.

= 7 points plotted with symbol ISYM.

= 11-20 origiaal points are plotted with symbol ISYM

and a smoothed curve is drawn. ~lOD~ = 11 specifies

the lowest level of smoothing. Hiqher values of MODE

provide a greater degree of smoothinq.

= 21- 30 points are not plotted, but a smoothed curve

is drawn with smoothing increasing as MODt is in-

creased toward 30.

u

0

17

NOTE: Because excessive smoothing can conceal the origi

nal structure of the data and because smoothing is a

relatively expensive operation, the lowest level of

smoothing (MODE = 11 or 2 1) is r€commended as an

initial try. See Appendix G for more informat ion.

NOTE: For more information on other uses of MODE, see

"Automatic Data and Label Tagging" (page 28) and "Au

tomatic Data Point Elimination" (page 29).

c. Axes and implying superposition: X~~~,!~!Z~

XSIZE - is a real type variable or constant which

defines the length of the horizontal axis in

inches. The linear or log axis option is

specified by the siqn of XSLZE while

superposition is specifi~d by XSIZE as zero.

Linear and logarithmic axes are illustrated

in Figures 1 and 2 respectively.

Positive: XSIZE specifiEJs length of linear

x-axis in inches and that a new

graph is to be start·ed.

Negative: tXSIZEj specifies _length of

logarithmic x-axis in inches and

that a new graph is to be started.

Zero: specifies superposition of this

data set upon the last primary

data set's graph.

18

YSIZE - is a real type var iable or constant which

specifies the length of the ,vertical axis in

inches. The linear or log option is speci-

tied by the sign of YSIZE.

Positive: Y srz E specifies length of linear

Y-axis in inches. ...

Negative: 'YS~ZEI specifies length of

logarithmic Y-axis in inches.

zero : treated like XSIZE=O, to specit y

superposition of this data set

upon the last primary data set•s

graph.

u

19

8 +

~ .
CD

.('
c D ..
)(

""""0
0 .
:I'

+
+

0
c;:l .
0

1.00 3.00 s.ao 7.00 g;oo

Figure 1. Generation of linear axes.
r,
h

+

+ . .

+

0
)(

Figure 2. Generation of loqarithmic axes.

u

20

D. Information about scaling: !~f, !.tliJ!, 1.§:!:, .X.tl!~· ~ -.
The meaning of the scaling parameters (XSF,

XMIN, YSP, YMlN~ depends upon whether a linear or

logarithmic axis is implied by the XSIZE and YSIZE

parameters (see above). The horizontal or x-axis

parameters are completely independent of the vertical

or Y-axis parameters. Thus linear, semi-log, or log-

log graphs can be drawn. For both linear and

logarithmic axes, the user has the option of specify-

ing the scaling factors or letting SIMPLOXTEB deter-

mine the necessary scaling factors. If SIMPLOTTER

chooses the scaling, all points in the X and Y arrays

wi£1 be plotted within the specified axis lengths .

If the user specifies scaling, some points may fall

outside the range of the graph as defined by a~is

lengths and scale factors. Thes6 points will be

plotted 1/2" beyond the extremes of either axis.

XSf and XMIN are explained for each case for the

horizontal axis. YSF and YMIN are simila~ for the Y-

direction. Note that SIM.I?LOTTEB does the actual

scaling internally; that is , the X and Y arrays

formed by the user are not altered .

1. Producing linear axes (XSIZE positive)

The axis is ticked at every inch and a

number printed in scientific notation (tnree

u

21

significant digits). The number is printed

at each tic and depends upon the values of

XSF and Xi'liN, as explained below.

XSF pos: SIMPLOTTER will use the value of

XSF to scale data of this primary

data set and all superposition

data sets of this graph. XMIN

will be the b~ginning point of the

ax~s and will appear under the

first tic. The following tics

will be label~d with the values

XSF+XMIN, 2*XSF+XMIN,

3*XSF+XHIN, and so on.

XSF zero: SIMiLOTTER will define the scale

factor and the beginning point

axis value f or you. Determination

of the scale factor is based upon

consideration of all data sets to

be plotted, primary and

superposition. The scale factor

and the beginning axis value are

chosen so that visual

interpolation between tics is

easy. Specifically, 1) all data

points will appear on the graph,

u

22

2) the beginning axis value is a

multiple of the scale factor, 3)

the smallest (X, Y) point wil.l fall

into the first inch of the graph.

Only "nice" numbers, such as ±

(1.0, 2.0, 4.0, 5.0, and 8.0)

times 10 rai~ed to an integer

power, are chosen as sca.le

factors.

Example: The following parameters passed to GRAPH would pro

duce the graph shown in Figure 1.

NPTS = 4 2.0 20.0

5.0 30.0 XSIZE = 5.0 XSF = 2.0 XMIN =
ISYM = 3 X = 7. 0

y =
90.0

YSIZE = 2.5 YSF = 0.0 YMIN =
MODE = 7 15.0 100.0

To summarize what these parameters indicatG to SIMPLOTTER:

a. linear axes are to be drawn (XSIZE and YSIZE are

positive).

1.0

0.0

b. the · user specified the scaling tor the x-axis (XSF =

2.0). Notice that one of the data points fa.lls out

of the range of the x-axis and is plotted on ~he 1;2

inch boundary beyond the end of the x-axis.

c. SIMPLOTTER is to scale the y-axis (YSF=O.O).

u

u

23

2. Producing logarithmic axes (XSIZE neqative)

Only complete logarithmic cycles are

drawn. The user must place logarithms of

the coordinates (rather than the coordinates

themselves) in the X array . That is, the

GRAPH routine does not form the logarithms

for the user. Two types of logarithmic

arrays can be plotted, base 10 (common~

logarithms and base e (natural) logarithms.

XSF defines the number of logarithmic

cycles to be graphed. The sign of XSF

specifies the type of logarithms the user

has placed in the X array, while the maqni

tude specifies the number of cycles to be

drawn. Figure 2 shows an example of the

generation of logarithmic axes.

a. base 10 logarithms (XSF positive)

XSF = 0.5 means that the X array

contains base 10 logarithmic

values. SIMPLOTTER wi~l de

termine the number of cycles

needed to qraph all points

and the power of 10 to be

printed as a label for the

cycles.

I

24

XSF ~ 1.0 means that the X a~ray

contains base 10 loqa~ithmic

values and the user requests

that XSF cycles be drawn.

XMIN is then conside~ed to be

the power of 10 to be printed

as a label for the first

cycle.

b. base e logarithms (XSF negative)

XSF = -0.5 means that the X array

contains base e logarithmic

values. SIMPLOTTER will de

termin~ the number ot cycles

needed to graph the points

and the power of 10 to be

printed as a label for the

cycles.

XSF ~ -1.0 means that the X array

contains base e logarithmic

values and the user requests

IXSFf cycles. XMIN is then

considered to be the power of

10 to be printed as a label

of the first cycle.

Example: ~he following parameters passed to GRAPH would pro-

u

25

duce the graph sho.w n in Figure 2.

NPTS-4 0.693 1.301

1.609 1.477 XSIZEa-5.0 XSF=-0.5 XMIN::::~O.O
ISYM=3 X= 1 . 946 Y= 1. 954 YSIZE=-2.5 YSF= 1. 0 YMIN=l. 0
MODE• 7 2. 708 2.000

Note that the X and Y arrays have been filled with the natural

and common logarithms, respectively, of the X and Y a rrays of

the previous example. To summarize what these paramet ers in-

dicate to SfMFLOTTEB:

1. x-axis specification:

a. logarithmic axis is to be drawn (XSIZE negative)

b. X array indicated to contain natural logar1thms

(XSF negative) ·

c. SIMPLOTTER is to determine the number of cycles

drawn (XSF = -0.5)

2. Y-axis specifications:

a. logarithmic axis to be drawn (YSIZE negative)

b. Y array stated to contain common logar ithms (YSF

positive)

c. the number of cycles and the power of ten of the

initial cycle is specified by the user.

(YSF=1.0, YMIN=1.0, means that one cycle 1s to be

drawn, and 101 is to be printed as the label of

the first cycle) •

u

26

E. Information about labeling:]1A~*11~,g~~,~A~kA~

Axis labeling areas are located along each axis

and a graph identification area is located .in the

upper right corner of a graph. If specified, each

data set can have an identifying label also wh~ch is

list€d under the graph label. Graphs in Appendix H

illustrate the areas where labels are drawn. When no

labels are wanted, the label parameters must be spec

ified as blank character strings. Figures 1 and 2

were produced with blank labels, for instance.

In most languages label strinq parameters may be

specified in the CALL list by either variable names

or by literal character strinqs. The label appearinq

under the x-axis, XLAB, will be explained in detail;

the others are similar in form.

1. Labels as variable names

XLAB - the name of the character strinq of

up to 20 characters which will be used to label

the horizontal axis. The user can create the

string in a variety of ways, several of which are

shown in Appendix H. Note: semi-colons in

labels should be used carefully, as s~mi-colons

are interpreted as termination symbols for

labels.

u

u

27

2. Labels as literals in the CALL list

Xl.AB may appear in the CALL list as a

literal character string constant of up to 20

characters enclosed between quotes. If the

literal is less than 20 characters long, the last

character must be a semi-colon. If there are

more than 20 characters in the label, only the

first· 20 w i 11 be drawn.

Note to COBOL users: most COBOL compilers do not support

literals in CALL lists.

Example: The following CALL l~st shows the use of both vari-

able names and character literals to specify labels:

CALL GRAPH (NPTS, X, 'i, ISYH, MODE, XSIZE, YSIZE,
XSF, XM.IN, YSF, YMIN, XLAB, YLAB,
1 EXPEHifiENTAL DATA #1', 1 GRAPH ONE;')

The different label positions in the CALL list are:

XLAB - label for the horizontal axis.

YLAB - label for the vertical axis.

GLAB - label for graph identification. GLAB occupies

one line and is positioned in the upper riqht

hand corner with the first character beqinninq

at (XSIZE-2. 2, YSIZE-0. 3) inches.

DATLAB - label to identify the data sets. It

occupies one line per data set and is

positioned immediately under GLAB or a previ-

28

ous DATLAB. DATLAB can be used to tag

superposition data sets (see notes on "Data

and Label Tagging" below~.

Note that these standard labelinq opt ions (and other

options as well} can be changed somewhat by the use

o t r~utine ORIGIN . The user is cautioned however,

that graphing trivia becomes more abundant when the

standard graph f ormat is altered.

A~!Q!~Si~-~s!~s~g-~Qel_l~ggi~~

Often it is useful to assoc~ate a label with a set o f

superposition data points as well as with a primary data set.

The DA~LAB variable or literal o f the primary data set CALL is

always drawn regardless of the valu e o f MODE. For

superposition CALLs, DATLAB is drawn only when specified by a

special value of MODE .

By specifying MODE between 100 and · 130 in a superposition

CALL containing a legitimate variable or literal in the DATLAB

position of the CALL list, the following action will be taken

by SIMP LOTTER:

1. the superposition data set indicated will be plotted

according to the plotting method indicated by the

last two digits of MODB.

2. the character string variable or literal in the

DATLAB position of the CALL list will be printed im

mediately under the labels of previous data sets.

u

29

3. the symbol ISYM specified to plot the points of this

data set will be printed just t o the riqht of the

data set label.

Occasionally data sets contain points which the user

wouli like to throw out at plotting time. This situation

could arise, for instance, if data w~re beinq recorded by a

faulty mach1ne and the fifth piece of data oi each record were

known to be in error. In a case s uch as this the user would

like to omit the plotting of the fifth pi~ce of data of ~ach

recor-d.

The user can omit erroneous data by givinq MODE a neqa-

tive value and setting either coordinate of the unwanted data

equal to zero. If MODE is negative, all data points whose X

or Y coordinates are zero, will be iqnored by SIMPLOTTER at

plotting time. All other- points w1ll be plotted as specitied

by the absolute value of the last two digits of MODE, as

outlined in the Parameter Definition of MODE.

u \.

30

CHAPTER 111: SPECIAL PURPOSE ROUTINES

Q.l_g!ifL_Q!, S T E.L.-~1~ X R g_=_EJ.2t.i.!!!.9_£J:e:t!:.i!m.1=~Q!!.§

These routines form and plot histograms and ideograms.

brief description of histograms and ideograms follows:

Histograms (bar graphs): used to show distributions of

discrete events. Discrete events are treated as if

they have no inherent error. The abscissa (usually

the x-axi~ is divided into a number ot intervals

(bars) . ~hen an event falls within the boundaries

of a particular .bar, the height of that bar is iu

creasdd by a certain specifi€d amount. No other

bars are affected. A histogram miqht be used to

show graphically the number of babies born each

month (heights of 12. bars) with each month repre

sented sequentially by one bar.

A

Ideograms: used to show distributions of events, each

event having an inherent error associated. such a

situation commonly arises when difficult

measurements, or other error inducing methods, are

involved in obtain~ng data. The exact coordinate of

an event is not known precisely in this case . How

ever, the event•s coordinate can usually be narrowed

to some interval surrounding a most probable value .

...

u

3 1

This type of data can be stated in the form:

A ± a

where A is the most probable coordinate of the

event, and a is the associated error (usually in

uni~s of standard deviation). SIMPLOTTER's ideogram

method treats each event as a normal probability
,

(Gaussian~ curve of unit area, centered at A, and of

standard deviation a • The resultant distribution

is the sum of all the individual event normal

curves.

Ideograms differ trom histograms in that they

take errors into consideration. Histograms lump all

events equally into one interval regardless of

error. Ideograms distribute events into all

intervals according to the error. Th~ following ex-

ample illustrates this point:

Example: Three events will be plotted on both a histogram and

an ideogram. The solid line represents the res-ult-

ant distributions, the dashed lines represent the

individual normal curves.

Al = 4.0 crl = 1.0

A2 = 4.0 crz = 0.5

A3 = 6.0 cr3 = 1.0

u

32

. r--

' 4.0 ' 6.0 8.0 4.b 6.0 sb
HISTOGRAM IDEOGRAM

The fo~lowing point should be noted concerninq

ideograms:

Well-defined events (small a) contribute more to the struc- .

ture of the resultant distribution than do il~-defined events.

A well-defined normal curve has a high, narrow peak at its

most probable coordinate A. Thus it contc~butes heavily to

the resultant curve at A but contributes relatively little

elsewhere. An ill-defined event (larqe a) is spread out

having a low, broad rise at A, so it contributes sliqhtly to

all portions of the distribution and is commonly called "back-

ground".

u

u

33

There are three types of CALLs. The in.!.t;i.,gJ,_j.~g·t·iQ.n.

CALL defines the number of intervals (bars) and their

width. The ~~iigiQg CALLs add events to the histogram or

ideogram being constructed. One bui~ding CALL is needed

for each event to be added. The fiDsli~i9B CALL is

made to notify SIMPLOTTER that the building process is

complete; that is, the histogram or ideogram is ready to

be plottEd. the x-axis length. XSIZE, is specified in

the finalization CALL. If XSIZE is non-zero, the

histogram or ideogram is begun on a new graph. If XSIZE

is zer6, or if the superposition routine is CALLed, the

histogram or ideogram is superimposed on previous data

sets. DISTRA does all the bookkeeping necessary to con-

struct the histogram or ideogram. It needs two arrays to

remember the information however, between CALLs. This

form of implementation was chosen to allow the user to

construct more . than one distribution at a time. The user

must not tamper with these work arrays between building

CALLs.

Distributions, histograms or ideograms, often are

created from large volumes of data stored on magnetic

tape or disk. Notice that the use of DISTRA does not re-

quire all events to be in storage at the same time. The

normal use of these routines to form a distribution is:

34

1. define the range of the distribution by calling

DIST RI.

2. read an event from tape (or disk) and CALL DISTRA to

add the event · to the distribution.

3. repeat 2. until all events have been added to the

distribution.

4. when all events have been read, CALL DISTRP or DISTRS

to plot the distribution.

Initialization: CALL DISTRI (ABCISA, HTS, INTVLS, AMIN,
AMAX)

Building: CALL DISTRA (ABCISA, HTS, A, SIGMA,
WEIGHT}

FinaLization: CALL DISTRP (THETA, ABCISA, HTS, ISYM,
MODE, XSIZE, YSIZE, XSF, XMIN, YSE' ,
YMIN, XLAB, YLAB, GLAB, DATLAB.)

CALL DIST&S (THETA, AB~ISA, HTS, ISYM,
MODE, DATLAB)

Note: Except for characters strings, all parameters begin-

ning with the characters I - N are intended to be

integer type variables or constants. All o t hers are

intended to be real type variables or constants .

ABCISA AND HTS - work arrays used to store the distri -

bution between CALLs to DISTRI, DISTRA, UISTRP .

These real type arrays must each be declar e d

u

35

(dimensioned) in the user program for (INTVLS +

2~ words. A pair of these arrays must exist for

each distribution being simultaneously con-

structed.

INTVLS - an integer variable or constant specifying the

number of intervals of evaluation to be con -

structed.

AMIN the beginning coordinate of the 1st i nterval.

AMAX - the coordinate of the end of the last interval.

A - the coordinate (abcissa) ot the most probable

value of the event.

SIGMA -histogram: SIGMA = 0.0 is necessary to indi-

cate that a histogram is being constructed and

the event, A, is to be treated as if it has no

inhex:ent error.

- ideogram: SIGMA > 0.0 indicates that an

ideogram is being constructed and SIGMA is the

standard deviation (error) associated with the

event.

WEIGHT - histQgram: the amount added to the appropriate

'bar•. WEIGHT= 1.0 is the usual case.

- ideogram: the area (in usee units) of the nor-

mal curve representing the event. Usually

WEIGHT= 1.0. The equation of the normal curve

used is:

u

Note:

THETA

Y .., NORM*e

36

1 (A-X)
2

-2 SiGMA
where NORM c WEIGHT

~SIGMA

where Y is the height contribution at the evalu-

ation point x.

the angle, in degrees, relative to the

horizontal at which the abscissa is to be drawn.

Allowable angles are o.o and 90.0 degrees.

ISYM, MODE, XSIZE, YSIZE, XSF, XMIN, YSF, YMIN, XLAB,

YLAB, GLAB, and DATLAB are as defined in routine

GRAPH.

Knowl~dge of the structure and contents of the work

arrays, ABCISA and Hrs, is not necessary for normal

applications of distributions. However, for special cases,

the programmer may wish further insight into the structure of

the arrays.

The length of each array (in words) is stored in the

first word of ABCISA. The remaining elements of ABCISA con-

tain the evaluation points of th,e distribution. For a

histogram, the points of evaluo.tion are the maximum abscissas

of each "bar" to be formed. The points of evaluation must be

u

u

37

storad in increasing order. DISTRI initializes HTS to zero

and ABCISA to the following values:

ABCISA (1) = INTVLS + 2.0

A BCIS A (2~ = AM IN

ABCISA (3~ = AtliN + (AMAX- A.M~N) /INTVLS

ABCISA (4) = AMIN + 2 (AMAX-AMIN) /INTV LS

•

ABCISA(.INTVLS+2) = AMAX

The first time DISTRA is CALLed a positive or negative

'1.0 1 is stored in HTS(1) indicating the construction of a

histogram or ideogram respectively. After €ach CALL DISTRA,

the HTS array is updated to contain the following information:

histogram: HT s (1) contains the number of times DIST RA

ideogram:

has been CALLed. For I>1, HTS(l) contains

the height of the bar whose greatest

abscissa is ABCISA(I)

HTS(1) contains the negative of the number

of times DISTRA has been CALLed. For I>1,

HTS(I) contains the subtotal o f all

Gaussians evaluated · at ABCISA(I)

DISTRP and DISTRS use the information collected in ABCISA

and HTS to draw the distributions but do not alter the arrays.

38

ORIGIN allows the user to change several o£ the

SIMPLOTTER defaults concerning graph formatting. Axes can be

omitted, the graph and data set label area can be

repositioned, the size of the plotting symbols can be

modified, and the automatic origin positioning between graphs

can be cancelled. The user is advised, however, that program

writing time, debugging time, and frustration time may in

crease if these defaults are altered. ThE defaults were

chosen to minimize user interaction with plotting trivia.

Modifications to the graph format arc introduced into

SIMPLOTTER by specifying a modification number when

referencing ORIGIN. Modifications stay in effect until

changed by another CALL ORIGIN. Modifications apply to entire

graphs, and must be specified before the graph to which they

are to apply is begun. A superposition CALL immediately fol

lowing a CALL ORIGIN is illegal.

one modification can be made per CALL; multiple CALLs are

required for more than one modification. However, one CALL

OBIGIN can restore the SIMPLOTTER default format.

u

\

u

39

CALL ORIGIN (AA, BB, LATCH)

The value of LAT~H specifies the modification to be in-

troduced into SIMPLarTER. AA and BB have different meanings

for each valu~ of LATCH.

1. controlling the Origin and Omitting Axes (LATCH =
1, 2, 3, 4}

The user may assume the responsibility of

controlling the position of the origin at all

times. This is a means of stacking graphs on top .

of one another, a means of effectively plotting

more than 5000 points on one graph. The origin

is a reference point used by the plotter to con-

struct a graph. Initially, the position of the

origin is (0.0, 0.0). Normally SIMPLOTTER moves

the origin when a new graph is to be plotted.

When the user assumes control of the ori9in, he

must move the origin when starting a new graph .

If the origin is not moved before beginning a new

graph, the ne~ graph will be drawn on top of the

previous graph.

AA - the number of inches the x-oriqin

is to be moved from the previous po-

sition of t he origin

40

BB the number of inches the Y-oriqin is -

to be moved from the previous posi-

tion of the origin

LATCH= 1 Draw both axes~ XLAB and YLAB.

2 Omit the x-axis and XLAB.

3 Omit the Y-axis and YLABo

4 Omit x-a xis~ Y-axis~ XLAB, and

YLAB.

2. Changing the height of plotting symbols (LATCH=5)

· To alter the height of the plotting symbol

referenced by ISYM:

AA - the new height (inches) of the

plotting symbols

BB - 0.0 (not used)

LATCH = 5

3. Repositioning Graph Label Area (LATCH=6~7)

Normally the graph labels are positioned in the

upper right hand corner of each graph. The qraph

label, GLAB~ is drawn at coordinates

(XSIZE-2.2, YSIZE-0.3) . All of the superposition

data set labels, DATLABs~ are downward ~isted under

the graph label, The position of this block of

labels can be changed by the user, by calling ORIGIN

vi th LATCH = 6.

AA - the X coordinate (in inches) of the

u

u

41

new starting position of the graph

label, GLAB.

BB - the Y coordinate (in inches) of the

new starting position of the graph

label, GLA.B.

LATCH = 6

A call to ORIGIN with LATCH = 7 restores the

label block to its normal position .

4. Restoring the sta.ndard graph format (LATCH=0,8)

AA the number of inches the X oriq i n is

to be moved for the next graph. If

the user aas had control of the

origin, AA should be large enouqh to

move the origin beyond the previous

graph. After this, SIMPLOTTER will

move the origin between qraphs.

BB - 0. 0 (not used)

LATCH = 0 01: 8

If LATCH = 0, the SIMPLOTTER parameter dump will not

be printed.

If LATCH = 8, the parameter dump will be printed.

42

LETTER allows additional lettering to be drawn on a

grapn. A string of up to 80 characters can be drawn at vari-

ous positions and angles . LETTER provides a convenient means

of producing annotations in a fixed position of a graph. For

example, a blqck of lettering is often used as a key and

placed in one of the corners of the graph .

The user forms a character string and passes it to LETTER

or LETTRS for drawing. LETTER provid es the capability of

starting a new graph, and LETTBS provides a convenient mean s

of superimposing strings.

s;.Abb_Li§i_l.Qus.t

CALL LETTER (XO, YO, HEIGHT, S~RING, THETA; NCHAR,
XSIZE, YSIZE, XS F, HUN, YSF, H1IN,
XLAB, YLAB, GLAB, DATLAB}

CALL LETTRS (XO, YO, HEIGHT, STRING, THET A, NCH AR)

XO and YO - the coordinates in inches of the lower left

hand corner of the first cha ra c ter to be

drawn.

HEIGHT - the height of the charac ters (in inches) to

be drawn.

STRING - the character string to be drawn. The string

u

()

43

can contain up to 80 characters. STRING can

be the name of a character string, or the

actual character string enclosed between

quotes . In the latter case, the string

should be terminated by a semi-colon.

THETA the angle in degrees relative to the

horizontal at which STRING is to be drawn.

NCHAR - the maximum length of STRING (number of

characters). If a semi-colon is encountered

before NCHAR characters have been plott~d,

the semi-colon is taken to indicate the end

of the string. That is, the semi-colon and

remaining characters are not drawn. If there

is no semi-colon in STRING, the first NCHAR

characters of STRING are draw n. If NCHAR is

greater than 80, only the first 80 characteLs

are drawn.

XSIZE, YSIZE, XSF, XMIN, YSF, HllN, XLAB, YLAB, GLAB, and

DATLAB are defined in routine GRAPH .

Example: A string named STR is to be plotte d vertically be

ginning at the point (1.0, 2.0) inches with character heiqht

of 0.1 inch. At the time LETTER is called STR contains the

characters HI - THERE, an 8 character string. The statement to

plot STR is:

CALL LETTRS (1 . 0, 2.0, 0.1, STR, 90.0, 8)

44

ACKNOWLEDGEMENTS

SIMPLOTTER has been operational at r.s.u. since 1966 and

has been maintained and modified slightly by several persons.

The authors wish to thank David Erbeck and JoAnn Eischi~d for

their early work with the smoothing and sorting routines used

in SIMP LOTTER. steven Hollatz pioz,ee red the printer plotter

and demonstrated it•s effectiveness. Thanks to F. s. Carlsen

for helping with many aspects of the system, and to George

Covert, whose presence always serves as a stabilizing force.

u

u

45

APPENDIX A: DEBUGGING AND THE SIMPLOTTf.B PARAMETER DUMP

SIMPLOTTER is designed such that the user can debug his

program logic in parallel with his plotting logic. This fea

ture means that the time required to get a proqram debuqqe d is

usually no longer when plotting than when not plotting. For

instance, when a mistake exists in the parameter list of a

SIMPLOTTER problem-oriented routine, the proqram usually does

not terminate at that point; the program usually continues on

to a terminal error in the user program logic. After lookinq

at the user output, the SIMPLOTTER Parameter Dump , and the

grap~ical output, an attempt can be made to correct both pro

gram logic and plotting logic exrors before re-submitting for

the nex t debugging trial.

Debugginy the plot logic errors is made considerably

easi3r by using the SIMPLOTTER parameter dump which is printed

before each graph is generated. The parameter dump lists all

param e ters given to the problem-oriented routines. As it is

impractical to list completely all the (X,Y) coordinates of

each data set, only the first four (X,Y) data points of the

first three data sets are shown. When the user notices that

one of the parameters given to the problem- oriented routine

does not match what he intended, he has a handle on his pro

gr amm in g error.

46

The printer-plotter feature of SIMPLOTTER should be used

until a program is thought to be debugged. As the printer-

plots immediately follow the user's printtd output, there is

no time wasted waiting for the graphs to be p~otted on the

incremental plotter. The resolution of the printer is nearly

always adeguate for debugging purposes, and quite often is

good enough for production use. In any case, after a proqram

has ~een debugged, no chan9e in program logic is needed to

produce the plots on the higher resolution incremental

plotter. Only one job control card change is needed.

The problem-oriented routines are available in PL/1(F),

FORTH AN IV (G, H, and WATFI V) and COBOL. The PL/1 (F) and COBOL

user should normally debug his program using the printer-

plotter. The FORTRAN user should, as usual, debuq with WATFIV

and the printer-plotter. For production work FORTRAN proqrams

should be run using FORTRAN G or H with either the printer or

incremental plotter.

u

u

47

APPENDIX B: THE PRINTER PLOTTEE

The printer plotter facility of SIMPLOTTER was designed

as a debugging tool. For many purposes the printer plotter is

used for production jobs also.

Advantages of the printer plotter:

1) Printed graphs are attached to the normal printed

output.

2) Turna~ound time is reduced because no time is spent

waiting for the incremental plotter to draw the

graph. Typical wait time for the incremental plotter

at I.s.u. is several hours.

Peculiarities of printer plotter:

1) Only the first 9 by 1~ inches of a graph are plotted.

For example, the user may specify an x-axis of 15

inches. That graph is completely calculated on the

basis of a 15 inch axis; th~t is, the scale factor is

chosen and points scaled, as if a 15 inch axis were

going to be drawn. However, only that portion of the

graph which can be plotted on one page is printed.

Thus, axes longer than a printed page can accommodate

are truncated at plot time.

2) The order of CALLs to problem-oriented routines is

important if two data sets plot points in the same

area of a graph. The rule adoptEd is:

48

a) all axis generation and labeling are formed

before any data is plotted. Thus data, when

plotted, can overlay and destroy labels.

b) data sets are plotted in the order that

their pr o blem-oriented routines were called.

Note: character strings plotted by CALLing

LETTER are plotted before any data

points are plotted. For example, if

a curve extends into the upper riqht

hand corner of the graph, it may re

place a portion of the previously

generated graph label. A second data

set passing near the first one may

replace part of the first data se t .

3) The printer plotter puts as many complete graphs on

one page as possible. All graphs produced while the

user has control of the origin will be on one paqe.

4) There are some discrepencies between the symbols

plotted by the printer, and those (ISYM) of the

incremental plotter. Not all the plotter sy~bols

have equivalents on the printer, although some do.

Substitutions are made wh~n necessary and are shown

in Appendix c.

5) Printer plots are uesigned to be print e d a t 6 lines

per- indt. 1\ plot pr:inte1i ctt. 8 li.nM; peL' 1.n c h will be

com press eel i 11 t he y- di r ~·c tion .. 0

u

49

APPENDIX C: PLOTTING SYMBOLS AVAILABLE

NOTES:

1) The plot centered symbols are uS&d to plot (X , Y) data

points, and ar-e r-efer-enced by ISYM (see GRAl?H). Note

that the printer plotter must make some substitutions

as not all symbols are available on printers.

2) The specia.l characters, used for- labeling, can be

drawn by the incremental plotter only; the printer

plotter ignor-es them. They usually are multi- punched

onto cards and read into the computer- as character

strings.

3) Special control char-acters are provided to allow

s uperscr- ipting, subscripting, etc. Al t houqh these

characters are not drawn, they must be counte d as

part of the length of a character string. These con

trol characters are effective only with the

incr-emental plotter; the printer- plotter will treat

them as blanks.

l

50

f~lii~E~Q_Q!I!_£Q!lii_~l]~Q1~

Prtr I ncr Sym Prtr I ncr Sym
$ ym Sym Ref# Sym Sym Ref#

0 7 X 7
0 (!) 1 z z 8
2 A 2 y y 9
+ + 3 A l!l 10
X X 4 * • 11
5 • 5 c X 12
6 ~ 6 I I 13

1!~]1lliQ_~tl!li!~I~B~-!!~-~QliiSQ1_fQ!~g~~

~iau£a£g_~Y£~Q£~~ha£a£!~£2 !QU=~iansS£g_ligi£~~£h_£Da£a£!~£§

Char Multi - Char Multi-
punch punch

A-Z 0-9 • • 1 l .3 -984 v -985

0 • + "' - 986 ~ - 987 • - - } { s { J I 7. ~ < >
- 0981 091

" 092 .. 093
I

§=i

• • N • 094 • 095 , • , • .. 096 • 097
• 098). 0981
Cit 0982 I 0983
~ 0984 • 0985 r &- 0981 + 91
s 9 2 ~ 93
A 94 r 95

1aB~liug_fha£~£!~£_~2~i£21] 96 \ 97
f 98 I 981

Function Multi-- f 982 ' 983
punch - 984 X 985

begin superscripting 0986 t 986 ' 987
end superscripting 0987 * &986 &987
begin subscripting 0987 &- 981 A - 92
end subscripting 0986 5 - 93 ... - 94
backspace -91 - -96 :t - 97
null -981 - 98 - - 982
carriage return -95 j - 983 tiO &-

Figure 3. Plotting symbols and characters available.

0

51

APPENDIX D: THE INCREMENTAL PLOTTER

High quality plotting is done at the ISU Computation Center

by a CalComp Digital Incremental Pl .otter. It feat11res a liq11id

ink pen which moves in increments o f 1/100 . inch. The incremental 0
plotter is intended for the production of finished, publishable

plots.

The maximum size of a plot on the incremental plotter is 11

inches by 120 feet. There is \lsually a delay o f several hours

between the computation and the drawing of a graph.

several types .of graph paper are available for plots. Paper

types can be specified to the plotter operator by usinq the FORM r
i-=

parameter or the PARM.PLOT parameter on a //SMPLTTR EXEC card.

For example:

//SaPLTTR EXEC PLOT,PLOTTER=INCRMNTL,FORM=F

(This specifies type 0 2 paper.)

The FORM field is optional. If it is omitted, FORM=F, indi-

eating type 0 2 paper, will be assumed.

The most commonly used types of paper are:

00 plain white w

02 20 divisions/inch F

0

52

When the FORM parameter (F or W) is used, plots are reccrded ~

in disk data sets and a~e later transferr~d to a plot tape, which

is tben manually mounted on the plotter for off-line plottinq.

When special pen points, o~ paper types o~her than 00 or 02 a~e

used, plots are recorded directly onto magnetic tape durinq exe-

cution of the job. To provide for direct taping, the user must

insert the PLOT.PLOTTAPE DD card in his deck after the

//SnPLTTR EXEC card. The form of the PLOT.PLOTTAPE DD card is

as follows:

//PLOT.PLOTTAPE DD DSNAME=SPLOTCC,

DISP=(NEW,KEEP),U~IT=(TAPE7,,DEFER) ,

VOLUME=(PRIVATE,SER=TPPLOT)

In addition, the PARM field should be us6d on the EXEC card

instead of the FORM parameter. This will cause a message to be

printed to the plotter operator. Examples of this usaqe follow:

//SMPLTTR EXEC PLOT,PLOTTER=INCRMNTL,

PARM.PLOT='SEE SUBMITTAL SHEET'

//SMPLTTR EXEC PLOT,PLOTTER=INCRMNTL,

PARK.PLOT='PLOT ON TYPE 09 PAPER'

u

53

APPENDIX E: RESTRICTIONS OF SIMPLOTTER i
At Iowa State, the graphing subroutines are currently imple-

mented in PL/1 (F) , FORTRAN l.V (G, H, and WATFl.V) and COBOL .

The following absolute restrictions are part of the basic

design of SIMPLOTTER and cannot be altered. Very seldom will

these restrictions affect the design of a user's progra~.

1. The total number of data set superpositions on any one

graph must not exceed 99.

2. The total number of data points (pri ma ry and all

superposit i on data sets~ must not exceed 5000 on any one

graph. However , there.is no inherent limit to the num-

ber of graphs drawn.

3. When the user's program uses overlay concepts, subrou-

tine SHINIT must be placed in the root section. SMINIT

is the communications routine between the various

problem-oriented plotting routines.

4. Axes can be drawn only at 0.0 and 90.0 degrees t o the

horizontal .

5. The file name (or DDNAME) , FT14F001; is used by the

S~MPLOTTER routines and must not be used by the user

program. This file is used to store the SIMPLOTTER Data

set (SDS) which is subsequently plotte d vh.en the

//SMPLTTR EXEC PLOT jon control card is encountered.

u

54

The following restrictions are also implemented within

SIMPLOTTER in order to insure reasonable qraphs.

1. XSIZE and YSIZE should be greater than 2.0 inches. Oth-

erwise, graphs are not very meaningful as only one la

beled tic will a ppear.

2. YSIZE must be less than the height of plotting paper

being used. This ma~imum vertical axis size depends

upon the type of plotter a~ your installation. At

r.s.u. this limits YSIZE to 10.0. If YSIZE is greater

than the maximum size, SIMPLOTTER will plot as much of

the axis as possible.

3. The axis label (XLAB or YLAB) requires about 3~8 inches.

If an axis is less than 3 inches, part of the label may

extend outside the graph area. In the case of YLAB, this

could force the plotter pen off t h e paper. To · avoid this

for short axes, the label could start with blanks and

the data could be scal~d so that SIMPLOTTEB need not

print a scale factor. (See Figure 22, page 100 for an

example of a label printed with a scale factor.)

4 . Interpolation (MODE = 1, 2, 5, or 6~ requires at least

four points. If the number of points is less than fou r,

the curve will not be drawn.

5. smoothing ~ODE = 11 to 30~ requires at least six points

with distinct x coordinates. (For smoothing, SIMPLOTTER

lumps points with x coordinates very close together into

u

55

a single point whose y coordinate is the average y.)

After smoothing, the curve is plotted using

interpolation. If the number of points to smooth is less

than six, no smoothing is done. If less than four, the

curve will not be drawn. 0

u

56

APPEND.IX F; S.IMPLOTTER Po~.OTTING SYSTEM JOB CONTROL

To use S.IMPLOTTER, simply add the S.IM~LOTTEH job con

tr-ol car-ds to the end of your "normal job." In the ·follow

iug a xamples, th~ "normal job" is considerE-d to be th~ por

t~on of the job prior to the SIMFLOTTER job control car-ds .

Therefore, the "normal job," excluding tbe CALLs to

SIM~LOTTER's pr-oblem-orient6d routines, is a typical user

job which runs without plotting .

Note: There are three SIMPLOTTER job control cards, as

shown on the following r.wo pages.

Example 1. Figure 4 illustrates r. he canst r-uction of a

typical WATFIV printer plotter job.

Example 2. FOHTRAN G and H, PL/1 (F), and COBOL jobs us~ng

the printer plotter are typitied by the job con

struction of Figure 5. The "normal job" shown

uses r.he procedure FORTG. "Normal jobs" us~ng

or.her procedures can be substitutE-d. Some com

mon~y used procedures namEd on the t/SXEP1 LX~C

card of "normal joos" are:

.FORTG CG FORTH PL1F COBU CLG

u

Normal
Job

c

SIMPLOTTER
Job Control

1'//SMPLTTR EXEC PLOT,PLOTTER=PRINTER

//GO . FT14F001 DD DSNAME=&SM,UNIT=SCRTCH,DISP=(NEW, PASS),

$STOP

(data, if any, for FORTRAN program)

FORTRAN program calli~g SJMPLOTTER 1s problem-oriented
routines ? GRAPH, DISTRP~ etc.

programmer,TIME=tt,PAGES=pp

//GO . SYSIN DD *
//STEPl EXEC WATF IV

//jobname JOB acctng,username

Figute 4. w&TFIV job construction usi ng the printer plottero

c

Normal
Job

IISMPLTTR EXEC PLOT,PLOTTER=PRINTER
SIMPLOTTER II SPACE=(800,(120, 15)),DCB=(RECFM=VBS,LRECL=796,BLKSIZE=800)

IIGO . FT14F001 DD DSNAME=&SM,UNIT=SCRTCH,DISP=(NEW,PASS),

(Data, if any, read by source program)

IIGO.SYSIN DD *

Source program using SIMPLOTTER 1 s problem-oriented
routines - - GRAPH, DISTRP, etc .

IIFORT . SYS IN DD *
IISTEP1 EXEC FORTG

lljobname JOB acctng , username

Figure 5. FOR TBAli G and H, PL/1 (FJ and COBOL job construction
using the print.er plotter.

U1
CP

u

59

Example 3. To convert the jobs of Examples 1 and 2 to the

incremental plotter, modify only the //SMPLTTR card

to read,

//SMPLTTR EXEC PLOT,PLOTTER=INCRMNTL

Gen~£!l-1nfo~~!i£D-~QD£~!DiDg_JQ~~~Qn!!2l-~ith_§!~PLOll~g

SIMPLOTTEB is currently implemented on an IBM 360;65 comput

er at I.s.u. The job control in the preceding examples reflects

OS/3&0 conventions and the following SIMPLOTTEB c oncepts:

1. The problem-oriented routines are supplied automatically

to the "normal job." The FORTRAN, PL/1, and COBOL user

does not have t o supply an object deck or a iob control

card to repLesent these routines; they are supplied in

the same manner as commonly used functions; SQRT, EXP,

etc ••

2. The //FT14F001 job control cards are mandatory when

calling any of the problem-oriented routines. If not

supplied, the user program will terminate the first time

a problem-oriented routine is called .

3. The //SMPL TTR job control card directs graphs to either

the printer or the incremental plotter . If this card is

omitted, no plots will be drawn. However, the "normal

job" will run as if no reference has . been made to the

plotting routines. That is, the job will not terminate

due to the omission of this card. The general form of

the //SMPLTTR card is shown in Figure 6.

//SMPLTTR EXEC

Choose either
· I NCRMNTL or

PRINTER. If
th is parameter
is omitted,
PLOTTER=PRINTER
is assumed.

_INCRMNTL _F _ ,
PLOT,PLOTTER-PRINTER ,FORM- w,PARM . PLOT- a message'

This designates the
type of plott ing paper
desired: F for 02 paper
and W for 00 paper.
If omitted, FORM=F
is assumed. For other
papers , see the box
to the right.

A message of 40 characters or
less can be printed to the plotter
operator by using this PARM field.
Include a message he re and add a
//PLOT PLOTTAPE DO card to your deck
to use spec ial papers or pens . See
Appendix D, p . 51.

Figur:i 6. The general. form of the //SMPLTTB job control card.

c 0

61

APPENDIX G: INTERPOLATION, SMOOTHING, and SORTING TECHNIQUES

The user may specify that a curve is to be drawn coanectinq

each of his data points by setting MODE = 1, 2, 5, or 6 when

CALLing GRAPH. SIMPLOTTER uses a second degree Langranqian

interpolation polynomial in constructing the curve. For a set of

data points (u,v} the interpolation polynomial of degree m may be

concisely stated as:

m
(1) I(u) = ~1 (u) L

j=o

v.
J

For the case of second degree (m = 2) polynomial connectinq the

r-oints (u0 ,v 0), (u 1 ,v1), and (u 2 ,v2), the computational foz:-m

becomes:

(2) I(u)
(u-u

0
) (u-u

2
) (u-u

0
) (u-u

1
) .

------- + v 2 ----------

SIMPLOTTER uses the followinq algorithm when intez:-polatinq

alon~ a set of data:

step 1: To begin the interpolation in the segment x . thz:-ouqh
I

xi+l , we construct a work data set including the immediate

L
I

D

62

neighboring points (x i - 1 , Yi -d, (x . ,y.) ,
I I

(xi+l' Yi+l), and (x i+Z' yi +Z) ·. The work set is rotated, if uec

essary, such that th~ x-coordinates are monotone increasing . The

rotated set will be denoted by (Xj,Yi)r,

(x i+l ,y i+l)r , etc. •

Step 2: Two interpolation polynomials are evaluated using equa-

tion (2 }.

I 1 (x) is evaluated substituting

is evaluated substituting

r
(ul,vl) ~ (xi,yi)

(u2,v2) ~ (xi+l'yi+l)r

r (u ,v) ~ (x.,y .)
0 0 1 1

That is, r 1 uses the data point to the left of the segment, and r
2

Qses the data point to the right. The interpolated value chosen

is the one nearest an imaginary straight line connecting (x. , y.)
I I

and (x i+ l , y i+l) • This method is used to reduce • bubbles• which

otherwise may occur near sharp corners of ill-behaved data.

Step 3. The chosen interpolated value is rotated back to the

original coordinate system and a straight line drawn to i t from

0

\.)

63

the previous interpolated point.

step 4. The point of evaluation, x, is incremented by 0.1 inch.

If tne new x lies within the segment being interpolated, the

process is repeated from Step 2. Otherwise the next segment is

begun (i~ i + 1) and the process returns to Step 1.

The user should note the following when interpo~atinq:

1. Curves constructed go from point to point as the points are

ordered in the (x,y) arrays. Thus multivo.lued curves can be con-

structed, such as a circle.

2. The method gives best results when more than 10 points are

given and tbe angle between points is less than 90 degrees.

The user may specify that a •smoothed' curve be drawn

through his data points by specifying MODE from 11 through 29 in

a ~ALL GRAPH statement. By a smoothed or graduated curve, we

mean a -curve passing through the neighborhood of the data points

and not necessarily through the points themselves.

Let the set of user data points be denoted by (x, y)O , and

let us consider one of these points (x 1,y1 ~. By least square~

we fit a polynomial of degree m to p+1 consecutive points of

(x,yfO, where pis an even number and is qreater than m. We

choose the p points such that p/2 points lie on each side of the

point under consideration, (x1 ,y 1)0. We evaluate the polynomial

at X j to Obtain a generally 'smoother• point, (x.,y.) 1 than the
I I

64

original point (x.,y .) 0 • The process is repeated for each point ~
· I I

of (x,y) 0 to produce a smoother set of data (x,y) 1 • If MODE is

specified to be 11 or 21, an inteLpolated curve is drawn through

the set of points (x, y~ 1 •

A still smoother set of points is generated by applying the

same process to (x,y~ 1 to obtain (x,y) 2 • MODE= 1~ or 22 draws

an interpolated curve through the set (x,y) 2 • Higher levels of

smoothing are obtained similarly. However, using SIMPLOTTER, no

higher level of smoothing than (x,y) 9 can be specified.

The user should note the following when smoothing with this

technique:

1. smoothing is most effective on data sets of

more than 20 points.

2. Data points should be arranged in the (x,y)

arrays to be monotonely increasing in x-

coordinates.

3. First attempts at smoothing a data set should

use MODE = 11 or 21, that is, the lowest level

of smoothing. Too much smoothing can result

in the loss of the trend of tae original data

points. High levels of smoothing are expen-

sive also, as all lower levels must be calcu -

lated in the computation of the high level

set.

u

u

65

* * *
And now a little rhetoric for those who turn on for numeri-

cal analysis . Formation and evaluation of a polynomial of de qree

3 for every point in a given data set, repeated f or each l e ve l of

smoothing, could be prohibitive. Milnet outl ines a computat ion -

ally efficient method for data points equally spaced in x-

coordinates.

suppose there ~s a function y=f(x) satisfi ed by each of the

given data points. Let the values of y be denoted by (y 0 , v 1•

, • • • ,y) and the respective x values by (0,1 , • • • , n). The app r ox
n

imation polynomial derived by Milne is:

n
L: P (x)f(x)

m x=o k,n

(3) Q (x) =6 p (x)
m n

p2 (x)
k,n

k=o
6

x=o k,n

wh ere

m is the degree of the polynomial

n+1 is the number of consecutive poi nts use d to eval-

uate the polynomial

pm n (x) is one of a set of orthogonal polynomials
'

66

such that

This forbidding looking polynomial simplifies to a compact

computational form when evaluated at one of the given data

points, as is shown by the following illustration.

Let us take the degree m = 3 and five points, so that n = 4.

The midpoint is then x = 2, the point at which the approximatinq

polynomial will be evaluated. Let (y 0,y1 ,y 2,y3 ,y~ be the five

consecutive data values of f (x) and let Y2 be the va~ue obtained.

·rhen putting m = 3, n = 4, x = 2 in equation (3), we have

(4)
I 3

y = 6
2 k=o

4

6 Pk,4(j)yj
j=o

4 2
6 pk 4 (j)

j=o '

pk,4(2)

Interchanging the summations with respect to j and k, we can

write

(5)
4

y2 = L. y
j=o j

3

k~o pk,4(j)Pk,4(2)

Now th-e quantity iu square brackets is independent of the given

data; that quantity can be computed once and for all. Milne has

0

67

calculated those values and, when plugged into equation (5) ,

yield

(6)

This type of equation is ideal for a comput er and makes the

method previously described feasible.

SIMPLOTTER uses a degree 3 polynomial calculated from 13

consecutive points whenever possible. Near the beginning and end

of the given data set, the number of consecutive points available

drops below 13 and other equations are usEd . All equations used

are o£ the same form as equation (6l and are evaluated at the

midpoint. The following chart lists the polynomial coefficients

used (note the n + 1 coefficients are symmetr1cal about their

midpoint) :

m n+1 ~ coefficients

3 13 6
1

[- 11,
143

o, 9, 16, 21, 24, 2.5, . J

3 7 3 1 [- 2, 3, 6, 7, . J
21

3 5 . 2 1 [- 3, 12, 17' . l
35

1 3 1 1
2

[1, 1, 1 J

1 0 1 (i.e. , y'
0 yo)

68

As stated previously, the approximating polynomials are

derived under the assumption of equally spaced points. When a

data set is encountered which does not satisfy this condition,

SIMPLOTTER •weights• the points in an attempt to approximate the

condition. Years of observation o f smoothed curves indicates

that this technique produces visually acceptable curves .

Note: The following sorting technique is not implemented in

SIMPLOTTER at present. However, this section may be o f

instructional value to users wishing to perform sorts on their

data sets for efficient plotting.

Plotting symbols at the (x,y) points is a commonly used

option when CALLing GRAPH, that is, specifying MODE=?. The

incremental plotter draws the points in the sequence that they

app~ar in the (x,y) arrays. Time is wasted travelling from point

to point when drawing unordered arrays. As it makes no differ-

ence in the final appearance of the graph, SIMPLOTTER reorders or

sorts all MODE=? data sets of more than 200 points. Note, howev -

~r, that the sorting is done at plotting time, that is, the

user• s (x, y) data arrays are not changed or reordered in any way

when CALLing GRAPH.

The sorting technique used is designed to eliminate

unnecessary travelling time between points. A larqe am ount of

plotter time can be saved if large data sets are sorted by

SIHPLOTTER before plotting. Rough estimates of plottinq u

0

69

times, based on random point positions, are:

n(30 + 48w) . (sorted time)= 15000 m1nutes

(unsorted time)= n(30 + 33 JXSIZE
2

+ YSIZE
2

) minutes
15000

where w = Max[O.S,
3*XS i ZE,~YS I ZE]

n

n = number of points to plot

X SIZE = length (inches) of t he x:-axis

YSIZE = length (inches) of the y-axis

For example, a 7 112 by 10 inch, 500 point graph requires about

14 minutes to plot if the points are randomly distributed.

SIMPLOTTER sorts the points into good plotting order in 0. 5

seconds (IBM 360165) and plotting time is cut to 2 minutes. At

current r.s.u. charge rates, the user saves about $1.00 and

obtains better plotter turnaround time. For 2,500 random points

the sort requires 3.0 seconds; a net savinqs of 61 plot ter

minutes and about $5.00 is obtained. The dashe d lines in Fiqures

7 and 8 illustrate paths travelled by the pen while drawing

unsorted and sorted points.

70

- --P
/

' I

o-- - -- ')._-J-

Figure 7. Path through original points.

w ~

?, \
\

' b
p /

/

q <
' \ ' / \ ' _.:t>

/ \ -rl' -

Figure a. Path through sorted po i nts.

0

71

However, a disadvantage of SIMP~OTTER•s sorting technique is

that resoluticn drops to 1/32 inch. For those ~ho find this ob-

jectionable (the eye can hardly detect it) an •unsorted' MODE is

provided. MODE=O is equivalent to MODE=7 except that plottinq

time is increased and point resolution is approximately 1/50 inch:

that is, no sort is performed.

Let us first obtain an approximation of the number of plotter

steps required t o plot the original points . Plotter steps can be

easily converted to time; the I.s.u. plotter moves at a rate of

15,000 steps per ·minute. Assume that the points are in uniform,

random order. Drawing the average symbol requires 30 steps, that

is 3 steps to lower the pen, 17 steps to draw the average symbol,

and 10 steps to raise the pen. The number of steps to move the

pen 1 inch is 100 steps and the axpected distance to connect any

two points, uniformly distributed over a range XSIZE, is XSIZE/3.

If S is the number of steps to draw ·n random points,

XSIZE YSIZE J < n[30 + lOOJxsr
3
zE)

2
+ (YSI

3
ZE)

2
] n[30 + lOO,\max(-3-,-3-) <So

The sorting method first sorts the (x,y~o points into ascend-

ing x-or der, defined as the set (x, YO 1 having x 1 ~ x 1 • The x-
i i+l

coordinate range is divided then into a number of intervals or

strips, which we will conceptually number 1,2,3, ••• from left to

right:. The points whose x-coordinates lie in strip 1 are sorted

into ascending y-order, the points in strip 2 into descending y-

order, strip 3 ascending, etc. The path followed in drawinq the

72

points is shown in Figure 8.

The width of each strip is chosen such that we qet much of

the V9rtical movement 'free•. The incremental plotter is capable

of incrementing both the x and y motors simultaneously. so if we

arrange the strip width such that the expected x move is greater

than the mean y move~ we will make most of the y moves during the

plotter steps of the x moves. Let the strip width be denoted by

w. T~en the average x move to the next random point is w/3. If

there are n random points per graph, there will be an average of m

points per strip~ where m=n*w/XSIZE, and the mean y distance be-

tween the points in a strip is YSIZE/m • To minimize the cost of

vertical movements,

w ~ XS IZE*YXIZE
3 n'i<"W

The liquid ink pen clots when w is less than 1/ 2 inch, so,

J
3'>'cXS IZE'icYXIZE

w = max(O.S, -)
n

If this condition actually gave us all y- movement . free of charge,

the number of steps to travel bet~een points would equal the num-

ber of steps to travel between the x-coordinates of the points i n

a strip. The total steps over all strips would be:

S ~ n (30 + 100*}] + 100,'<-XSIZE

Expecimentally it is found that our chosen strip width effectively

0

u .

73

gives us about 70% of the y movement •tree•. The expression for

estim~ting plotting steps required is then:

S ltt = n [30 + 48w] + lOO*XSIZE smp r

The sorting method applied to each strip is of the Bucharest

type arid is discussed by Iverson2. The execution time is propor-

tional to C*n*log 2n, where the constant c depends on the machine

and compiler used, and on the order (disorder) of the input

points. Briefly describEd, the method considers an input list to

be made of a number of shorter sublists already in order. Half

the sublists are stored in forward order beqinning at P
1

, the

other half in backward order beginning at Pn • The first pass

through the list merges pairs of these sublists from each end of

the input list, and stores them in the output list. The output

list is stored in P n+l through P2n, and like the input list, is

made of sublists stored forward from P n+l and backward from P Zn.

On successive passes through the list, the . input and output areas

are switched. Thus, each pass halves the number of sublists.

When only one suhlist remains, the list is in order.

74

REFERENCES

1. w. E. Milne, liY~~~~£a!_Ana~si§, Princeton Uni versity Press,

New jersey (1949~ , pp 83-84, 2 75-280.

Ne w York (1962), pp 206-211.

l.J

l)

75

APPENDIX H. SAMPLE PROGRAMS

The following proqrams illustrate th6 use of SIMPLOTTER

plotting c6ncepts in each of the languages . sample jobs inqlude:

1.

2.

3.

4 .

5.

6.

7.

a problem definition

method of solution

comments and programming hints

a complete listing of the iob deck

the SIMPLOTTEH Parameter Dump generated by the sample

job

the printer plotter graphs produced

the incremental plotter graphs which were obtained by

resubmitting the sample job

76

Problem Definition:

A set of measured data points are to be visually compared

with a predicted curve. Display the information on two separate

graphs, one with linear axes and the other with semi-logarithmic

axes.

Method:

Axis labels and the measured data points are read from cards

and 10 points computed along the predicted curve. The measured

data points are plotted specifying linear axes (XSIZE and YSIZE

positive), automatic scaling in the Y direction ('lSF=O.O), and

user specified scaling in the X direction (XSF=0.4~ • An

interpolated curve (MODE=2) through the 10 predicted points is

superimposed on the measured data po i nts.

Prior to starting the second graph, natural logarithms are

stored in the plot arrays. On the second graph the predicted

curve is plotted first, specifying that the Y direction is

logarithmic (YSIZE negative) and Y scaling is automatic

(YSF=- 0.5). The measured data points are superimposed, specify-

ing t,hat the data label should be locate d in the qraph label area

(MODE> 100) •

u

u

77

Comments:

1. on the first printer plotter graph only 7 of the 8

measured data points appear. one of the points was

overlayed by the predicted curve which was

superimposed. On the second graph all 8 data points

appear as the data was superimposed on the predicted

curve. The order of superposition is sometimes impor

tant when using the printer plotter, but is not a

factor when using the incremental plotter.

2. Two data points have X coordinates which fall outside

the X direction r.ange. specified by the user. They are

plotted 1;2 inch beyond the end of the X axis, as a de-

bugging aid. For initial views of data, automatic

scaling is recommended, as scalinq is determined such

that all data falls within the specified graphical

area.

PL/1 Notes:

A DECLARE ENTRY GRAPH statement is used to insur e that all

arguments will be of proper base, scale, and · precision, when

received by subroutine GRAPH.

//C376#PLG JOB A0900rGIB
II S 1 EXEC P L 1 F
//PL1L .SY SIN DD *

78

SAMPLE_GRAPH: PROCEDURE OPTIONS(MALN);

DCL (DATA_X(8), DATA_Y(8)r PRED X(10), PRED_Y(10)) FLOAT(6);
DCL (X_LABL, Y_ LABL) CHARACTER(20);
DCL GRAPH ENTRY (FIXED BIN, (*)FLOAT, (*)FLOAT,FIXED BiN,FIXED BIN ,

FLOAT,FLOAT,FLOAf,FLOAT ,FLOAT,FLOAT,
CHAR (20) ,CHAR (20) ,CHAR (20) ,CHAR (20)),

GRAPHS ~NTRI (FIXED BINr (*) FLOATr (*) FLOAT,FLXED BIN,FIXED BIN,
CHAR (20)) ;

GET EDIT (X_LABLr Y_LABL) (2 A (20)) ;
GET SKIP EDIT ((DATA_X (I), DATA_Y (.I) DO 1=1 TO 8)) (16 F (4,0));

DO 1=1 TO 10; PRED_X{I)=(I-4)15.0.; PRED_Y(I)=EXP (PRED_X{I)); . END ;

CALL GRAPH (8, DATA_ X,DATA_Y, 3r 7, 4.25, 6.25, 0 . 4 , - 0 .8, 0.0, 0 . 0 ,
X_LABL, Y_I.AliL, 'SAMPLE PROGRAM', 'SUBROUTINE GRAPH 0 };

CALL GRAPHS (1 0, PRED_Xr PRED_Y , 0 , 2, 1 1 ~ ;

DO I=1 TO 8; DATA_Y(I)=LOG{DATA_Y(I)); END;
DO I=1 TO 10; PRED_Y(I)=LOG (PRED_Y(I)); END;

CALL GRAPH(10 , PRED_X,PRED_Yr 0, 2, 4 .25, -6.25, 0.4, -0. 8, -0.5, 0 . 0 .
X_I.ABLr Y_ I.ABL, ' SUlFLE PROGRAM', 'PREDICTED CURVE');

CALL GRAPHS(Br DATA_X,DATA_¥, 3, 107 , 'MEASURED DATA ');

END SAMPLE _ GRAPH;
IIGO .S YSI!i DD *

X-COORDINATES Y-C OORDINATES
-.4 .8 .7 1. 75 -. 1 1.0 0 . 5 1.6 1.2 3.3 .3 1.4 1.0 2.5 2.0 3.5
//GO . FT 14F0 01 DD DSNA ME=& SM, UNIT= SCRTCH, DIS P= (NEW, PASS) ,
II SPACE= (800 , (120, 15)) ,DCB=(RECFM=VBS,LRECL=796,BLKSIZE=800)
//SMPLTTR EXEC PLOT,PLOTTER=PRINTER
II

Figure 9. Listing of PL11 sample job#1 input deck.

u

c l

SUPLO'I''l'EP PAP AI!!T ER DU!IP .•• • PRINTER PLOTT£? V'!:!IS:O !I •••• Oll /1 3/70 (5Cii.A!HO!f & !IAIIC!IESTER, CO!I POTl1IO~ :Ut£11, £.5.0., ,\liES, tOll &)
1. A SO~!A5T C? P13!!£!l?.5 ~IV2' SI!IPLOTTER VIA CAL L LIST~
2. f'l!IST f'OUR (I,J) ?0I If!5 0! OP TO THREE DATl SETS
3. SCALE ~ lCTORS lCTr!L~! USED ~y Sl ~ PLOT!!R

ElCH GR AP H IS REPRESEWT!D 9! 0~! SLOC~ 0? DAT A

••••••••••!I?l~D!D SI~PLO!TER· V12/2/70-A; PL /1 - SI IIP LO!TER

I SIZE !SIZ! ISF I!IIR JSF J!IU I-AXIS LABEL
11.250 6 .250 0 . 1100£ 00 -0.800! 00 0.0 0.;) X- COORDUlTES

e&Tl 10 0~ ST!I OPT
S!T POI!ITS 90L IO!I (X1,J1) (X2,J 2l (X3, J3)

1 8 3 1 -0.1100£ 00, 0 . 800£ . 00 0.7 (1 0£ 00, 0 . 17~! 01 -0 . 100E 00 , 0. 1 00!
2 10 () 2 -0.600E 00, 0 . 5119! 00 -0.11(1 0 ! 00, 0.670! 00 -0.200! 00, 0.819!

CHC ts f'. O. llOO! 00 ClLC XIlii. - 0.800! 00 CALC TSP. 0.500! 00 C&LC J!II .

ISIZ! JSI%! X Sf' XIli i YSP JIIIJ X- lXIS LlB!L
•• 250 -6.250 0.1100! 00 -o. 800! oo -o. soo r; 00 o.o X- COORDI llT!S

Dltl 10 OP ST ! OPT
S!T POUTS !OL !01 (X1,!1) (12,J 2) (13, J3)

1 10 ·o 2 - 0 . 600! 00,-0.600! 00 - 0.1100! 00, - 0.1100! 00 - 0.200! 00, - 0.200!
2 ! 3 107 -0. 1100! 00,-0.223! 00 0.700!11 00, 0. 5 60! 00 - 0.100! 00 , 0.0

CaLC I SP. O. •OO! 00 CaLC IIIII. - o. 80oe oo C aLC JSP. 0.200! 01 ClLC !!III.

•••••PIII!!I-PLO~BI DIIGJOSYIC IIIS51GI S•••••

J-liiS LlB EL
J-COORDI ll T!S

(Ill, JIIJ
01 0.500! 00, 0.160!
00 0.0 • 0.100!

0.500! 00 TOTlL 10.

t - l iiS LIB!L
t - COORDI II T!S

(XII, !II)
00 o.o • 0.0

0 . 500! oo, O. a70!

- 0.100! 01 TOTaL 10.

•••lOTI: ISTIIIITID !Ill! !0 PLOT !815 GIIPII. 0 1 1'8! I I CIBB!ITIL PLOTT!! IS 3 11110!1$

~!'lPP. l l 9EL
S l!tPlE PROGRlll

!ll'!'l S!T LAB!L
:) 1 SOEROOTI !I! GRlPB
01

Of' DaTI S!TS !I!Q:

GBIPB LlB!L
5 UPL! PROGRlll

Dat a S!T LIB!L
PR!DICT!D COllY!

00 ll!l50li!D OlTl

Of' DlTl S!TS R!Q:

Figure . 10. SI MPLOTTER Parameter Dump produced by sa mp~e jobt1.

2

2

...,J
~

[!D] L I

CD

T-COOBOilllT!S
I

3. 50 - I +
I S li!PL! PBOGBlll
I SOBROOTII2 Gl!lPII
I +

I
I

3.00 -1
I
I
I
I
I

2.50 -1 +
I
I
I
I
I

2.00 -1
I
I
I +
I
I

1. 50 -I
I • ..
I
I
I
I

1.00 -1 •
I ·
I
I +
I
I

5.00!-01-l----.-------------------------------------
l I I I I

- s.OOE-01 -4.00!-01 0 .00 4.00!-01 8.00!-01
X-COORDIIlT!S

J-COOROIUT!S
·-- 1
--I

8-- 1 SliiPL! PROGRl!l
-- 1 PBEDICT!O COR Y!
--1 l!!lSURED DlTl +

5--I
I

--I
I +

3 .I +
--J

I •
I

--I
I •
I .. . +
I . + .
I

1.00 -1 +
--I

8--1 •
-- I

I
--I

5--1
I __ ,
I

3-- 1
I
I
I

--I
I
I
I
1

1.00!-01-l------------------- - -------------------- - -
l I I I I

-8.00!-01 - 4.00!-01 o.oo ~.00!-01 9.00!- 01
l-COORDIJlTES

Figure 11. Printer plotter graph of sample jobt1.

I

ro
0

c 1

**** * PRINTER PLOTTER ENDS *****
ALL PLOTS GE~~RAfEO IN THIS PROGRA~ WOULD TAKE 3 ~!MOTES (ESTI~ATE} TO PLOT ON THE INCRE8ENTAL PLOTTER.
TOO ftAY OSE THE INCREMENTAL PLOTTER BY CRAMGING ONLY YOUR ~XEC PLOT CARD AT THE BACK OF YOUR DEC~ TO :

//STEP2 EXEC PLOT,PLOTTER=IMCRft MTL

Figure 12. Printer plotter termination. messaqe from sample jobt 1

,_
-.1
w
r
VI

..J
a: ,_

LJ
_j

Q_

CD
r-
(1)

u

-,....
' (JI
0

' ,....
I
w

0
0
...,

(J')O

U.J~
l-1'\1
a:
z
0
a:::o
olfl
o.....:
u

I

)-

0
0

0
'oJ'

+

+

SRMPLE PAOGRqM
SUBROUTINE GRAPH

+

04-------~--------r-------,-------~--

-0 . 80 -0 .~0 0 . 00
X-COORDI NATES

0.40 0 . 9G

<n
w
t
cr:
z
0
cr:
D
D
u

I
>-

' ;::)

X

SAMPLE PAOGAAA
PREDICTED CURVE
MERSUREO QRTR +

4-------r------,-------r------~-
-0 .80 -0. 40 0.00

X-COORDINATES
0.80

Figure 13. Incremental plotter graph of saaple jobt1.

l

" " " " n
\M
-.I

"' • .,
r
(;')

1.11

z

Ul

3: -z .,
r
a
...,

(X)

tv

l)

83

FORTRAN G Notes:

The labels passed in CALL lists must be terminated by a

semi-colon if the label is less than 20 characters long.

The output of FORTRAN G sample job#1 is the same as the

output of the PL/1 sample job#1. The paramete~ dump, p~inte~

plotter graphs, and incremental plotter graphs, are shown in

Figures 10, 11, 12, and 13, respectively.

84

I/C376#F4G JOB A0900,GIB
!IS 1 EXEC FORTG
1/FORT.SYSIN DO *
c

c

c

REAL DATAX(8> 1 DATAY(8), PREDX(10~, PREDY(10), XL(5), YL(5)

READ (5, 10~ XL, YL
READ (5,20) (DATAX(I), DATAY(lJ, 1=1,8)

DO 10 0 I= 1,10
PRE OX (I)= (I-4) /5.0

100 PREDY (I) = EXP (PREDX (I))
c

c

200

300
c

c

CALL GRAPH (8, DATAX,DATAY, 3, 7, 4.25, 6.5, 0.4, -0.8, 0.0 1 0 . 0 ,
& XL, YL I I SAMPLE PROGRAM ; I I I suBROUTINE GRAPH;.)

CALL GRAPHS (10 1 PREDX 1 PREDY 1 0, 2, 1 ; 1)

DO 200 I= 1, 8
DAXAY(I) = ALOG(DATAY(I~)
DO 300 I=1,10
PRE DY (I) = ALOG (P RED Y (I))

CALL GRAPH (10, PREDX,PREDY 1 0 1 2, 4.25, -6.5 1 0.4 1 -0.8, - 0.5 1 0 . 0 ,
& XL, YL, 1 SAM£1LE PROGRAM;', 'PREDICTED CUB VE ;')

CALL GRAPHS (8, DATAX,DATAY 1 3, 107, 1 l1EASURED DATA;')

1 0 FOR M A T (1 0 A 4)
20 FORMAT (16P4.0~

STOP
END

//GO.SYSIN DD *
X-COORDINATES . Y-COORDINAXES

-.4 .8 .7 1.75-.1 1 . 0 0.5 1.6 1.2 3.3 .3 1.4 1.0 2.5 2.0 3.5
//GO.FT14F001 DD DSNAME=&SM,ONIT=SCRTCH 1 DISP=(NEW 1 PASS),
II SPACE= (800, (120, 15)) ,DCB=(RECf'll=VBS,LRECL=796,BLKSIZE=800)
//SMPLTTR EXEC PLOT,PLOTTER=PRINTER
II

Figui:e 14. Listing of PORTRAN G sample job#1 input deck.

u

85
I

~
WATFI V Notes: l

The labels passed in CALL lists must be terminated hy a f

i
semi-colon if the label is less than 20 characters in length.

Notice that the FORTRAN source and data cards are the

same as in the FORTRAN G sample program. Following good eco-

nomical debugging procedure, programs can be debugged in

WATJIV and switched to FORTRAN G AND H for production running

with only a change of control cards.

The output of WATFIV sample job#1 is the same as the out-

put of the PL/1 sample job#1. The parameter dump, printer

plotter graphs, and incremental plotter graphs, are shown in

Figu['es 10, 11, 12, and 13, respectively.

H
Note to non-r.s.u. users:

Some releases of WATFIV will not allow variable length

labels to be passed through a CALL list. In such cases all

label parameters passed to GRAPH must be 20 characters in

length. The labels named XL and YL in the sample program are

20 characters in length, as is the literal

'123~56789 ABCDEFGUIJK'. Label -parameters 20 characters in

length can be pass~d to GRAPH sucessfully in all versions of

WATFIV and FORTRAN G and H.

86

//C376#W5G JOB A0900,GIB
//51 EXEC WATFIV
//GO .S YSIN DD *
$JOB GIB,TIME=5,PAGES=50
c

c

c

R1AL DATAX(8), DATAY(8~, PREDX(10), PREDY(10) , XL(5), YL(5)

READ (5 I 1 0 b XL I y L
READ (5, 20) {DATA X(I.), DATAY (I~, 1=1 1 8)

DO 100 I=1,10
PREDX (I)= (I-4~{5.0

100 PRI.DY(I) = E.XP(PREDX(I))
c

CALL GRAPH (8, DATAX,DATAY, 3,1 1 4.25, 6.5, 0.4 1 - 0 .8, O.<J , 0 .0,
& XL, YL, 'SAMFLE PROGRAM;', 'SUBROUTINE GRAPH;')

CALL GRAPHS (10, PREDX,PREDY, 0 1 2, '; 't
c

DO 200 1=1, 8
200 DATAY(I) = ALOG(DATAY(.I.)

DO 300 .I=1 1 10

300
c

c

PRE D Y (I) = ALOG (P REDY (I)~

CAL'L GRAPH (10, PREDX,PREDY, 0,2, 4.25, -6.5, 0 .4, - 0.8 , - 0.5, 0 . 0,
& XL, YL, 'SAMPLE PROGRAM; ', 'PREDICTED CUR VE ;')

CALL GRAPHS (8, DATAX,DATAY, 3, 107, 'MEASURED DATA;')

10 FORMAT (10A4)
20 FORMAT (1614.0)

S'fO P
END

$ENTRY
X- COORDINATES Y-COORDINATES

-. 4 .8 . 7 1.75-.1 1.0 0.5 1.6 1.2 3.3 .3 1.4 1.0 2 .5 2.0 3.5
$STOP
//GO. FT 14 FO 01 DD DSNAME =SSM, UNI T=SCRTC H, DISP= (NEW, PASS} ,
II SPACE= (800, (120, 15)) , DCB= (RECFM =V BS, LR ECL=796, BLKSI ZE =800)
//SMPLTTR EXEC PLOT,PLOTTER=PRINTER
II

Figure 15. Listing of WATFIV sample job#1 input deck.

0

87

Problem Definition:

Four sets of data representing a breakdown of unit record

jobs by four catagories covering a 10 month period are to be

plotted. The breakdown is to be by: keypunch , reproducer,

card sorter, and card interpreter. A second graph is to be

plotted displaying only the keypunch data.

Method:

The data is punched on 12 cards. The first contains the

X axis label, Y axis label, graph label, and the data label

for the keypunch data. The second data card contains the data

labels for the reproducer, . card sorter, and card inerpreter,

respectively. The following 10 cards contain data for the

four types of data. The X coordinate data (0,1, ••• 9) is gen

erated by the program.

GRAPH is called to establish a primary qraph for the

keypunch data (XSIZE positive). GRAPHS is called 3 times to

superimpose the other sets of data. The user specifies scal

ing in the Y direction since it is known that a scale factor

of 25. 0 fits the data and 2 s. 0 is not a "nice scaling number"

in sr MP LOTTEB's opinion. Data labels are n tag_ged" (MODE> 100)

by their plotting symbol.

A second CALL of graph is made to form a new graph con

taining the keypunch data alone.

88

Comments:

1. The first point of •reproducer• and 'keypunch' data

both occupy the same point on the printer plotter

graph. rhe most recent superposition overlays the

previous symbol at the contest~d print position.

The order of superposition is not a factor when

using the incremental plotter.

2. The third data point of •card interpreter• falls

outside the bounds of the user defined Y ranqe and

is plotted 1/2 inch above the Y axis as a debugqinq

aid.

3. American National standard COBOL does not support

either character or arithmetic literals in CALL

lists.

//C376#CBG JOB A0900.GIB
//STEP33 EXEC COBUCLG
//COB.SYSIN DD *
010010 IDENTIFICATION DIVISION.
010020 PROGRAM-ID. MAINPROG.
0 1 0 0 7 0 EN VI RON 4 EN T D I VI SI 0 N •
010080 CONFIGURATION SECTION.

89

010090 SJURCE-COMPUTER. IBM-360-I65.
010100 OBJECT-COMPUTER. IBM-360-I65.
0 1 0 110 IN P U T-0 UTP UT SECTION.
010120 FILE-CONTROL.
0 10130 SELECT CARD- FILE ASSIGN TO UT-2314-S-CARDIN.
010140 DATA DIVISION.
010150 FILE SECTION.
010160 FD CARD-FILE
010170 RECORDING MODE F, BLOCK CONTAINS 0 RECORDS,
010180 LABEL RECORD IS STANDARD, DATA RECORD IS CARD-REC.
010190 01 CARD-REC PICTURE X(80).
010200 WORKING-STORAGE SECTION.
010210 01 NPTS PICTURE 59(8) 1 COMPUTATIONAL.
0102~0 01 KS PICTURE 59 (8), COMPUTATIONAL.
010230 01 MOD, PICTURE 59(8), COMPUTATIONAL.
010240 01 XSIZE, VALUE 4.5E+O, CONPUTATIONAL-1.
010250 01 YSIZE, VALUE 8.5E+O, COMPUTATIONAL-1.
020010 01 XSF VALUE .OE+1, COMPUTATIONAL-1.
020020 01 XMIN VALUE .OE+1, COMPUTATIONAL-1.
020030 01 YSF VALUE 2.5E+1, COMPUTATIONAL-1 .
020040 01 YMIN VALUE .OE+1, COMPUTATIONAL-1.
020050 01 TX.
020060 02 ARAY COMPUTATIONAL-1.
020070 03 XT OCCURS 10 TIMES.
020080 01 TY.
020090 02 ARAY2 CO~PUTATIONAL-1.
020100 03 YT OCCURS 10 TIMES.
020110 01 UY.
020120 02 YU, OCCURS 10 TIMES, COMPUTATIONAL-1.
020130 01 VY.
020140 02 YV OCCURS 10 TIMES, COMPUTATIONAL-1.
020150 01 WY.
020160 02 YW OCCURS 10 TIMES, COMPUTATIONAL-1.
020170 01 I PICTURE S9(4) VALUE ZERO, CCl'lPUTATIONAL.

Figu~e 16. Listing of COBOL sample job#2· input deck.

020180
0 20190
020200
020210
020220
0 20 230
020240
0 20250
030010
0 3002 0
030030
030040
030050
0 30060
030070
0 30080
030090
0 30 100
030110
0 30120
030130
030140
030150
030160
030170
030180
030190
030200
030 2 10
030220
0 30230
030240
0 30250
040010
0 40020
040030
0 40040
040050
040060
040070
040080
0 40090

01 PNT S-V ALUE.
02 Y1, PICTURE 999.
02 Y2, PICTURE 999.
0 2 y 3 I pIc T UR E 9 9 9 •
02 Y4, PICTURE 999.

90

02 FILLER, PICTURE X(68,).
01 LABL-V ALUE.

02 XLAB
02 YLAB
02 GLAB
02 DATLAB

PICTURE X (20).
PICTUBE X (20~.
PICTURE X (20) .
PICTURE X (20).

01 LAB EL2.
02 SUPER1, PICTURE
02 SUPER2, PICTURE
02 SUPER], PICTURE
02 FILLER, PICTURE

PROCEDU BE DIVISION.
READ-1.

X (20) •
X(20).
X(20).
X(20.).

OPEN INPUT CARD-FILE.
READ CARD-FILE INTO LABL-VALUE; AT END, GO TO CALL~G.
READ CARD-FILE INTO LABEL2; AT END, GO TO CALL-G.

LJOP-1.
READ CARD-FILE INTO
ADD 1 TO I.
~OVE Y2 TO YU (I).
MOVE Y4 TO YW (I).
GO TO LOOP-1.

CALL-G.
COMPUTE NPTS = I.
COMPUTE KS = 3.

PNTS-VALUE; AT END, GO TO CALL-G.
MOVE Y1 TO YT (I).
MOVE Y3 TO YV (I).
COMPUTE XT (I) = I - 1.

COMPUTE MOD = 103.

CALL 'GRAPH' USING NPTS TX TY KS MOD XSIZE YSIZE XSF
XlHN YSF YMIN XLAB YLAB GLAB DATLAB.

COMPUTE KS = 4.
CALL 'GRAPHS' USING NPTS TX UY KS MOD SUPER1.
COMPUTE KS = 10.
CALL 'GRAPHS' USING NPTS TX VY KS MOD SUPER 2 .
COMPUTE KS = 11.
CALL 'GRAPHS' USING NPTS TX HI KS MOD SUPER 3.
CALL ~ GRAPH' USING NPTS TX TY KS MOD XS I ZE YSI ZE XSF

XMIN YSF YMIN XLAB YLAB GLAB DAT LAB.
CLOSE CARD-FILE.
STOP RUN .

Figure 16. continued.

u

u

9 1

I /GO. S YSOUT DD S YSOUT= A, DC B= (RECFM=FA, LRECL= 121, BLK SIZE= 121 ,B UFNO= 1)
//GO.CARDIN DD *

SAMPLE COBOL PLOT Y-COORDINATES SPECIAL SERVICES KEYPUNCH ;
REPRODUCER CARD SOfiTER CARD INTERPRETER
100100004152
07010102~185
060092012226
125079011158
0 9 8 0 7 2 00 8 16 1
07306000~ 117
061044003104
098084005146
053106012 165
107150012164
//GO.FT14F001 DD DSNAME=&SM,UNIT=SCRTCH,DISP=(NEW,PASS~,
I I SPACE= (800, (120, 15)) , DCB= (RECFM =V BS, LRECL=796, BL KSIZE =800)
//SMPLTTR EXEC PLOT,PLOTTER=PRINTER
II

Figure 16. continued.

<I

SI!PL0~~2 Pl~A!ET!P OO!P •• . • PBIJT!R PLOTTER V!BSI0"···•0~/13/70
1. l SO!!lRY OP PlRl!E~!2S

(5CiAN!ON & !A~CaZS!ER, CO!PO!l!IO" CE~TER, I.S . ~., lft!S, IO•Al
IV!~ SI!PLOTT!R VIA CALL LIS~S

2. PI"ST POOR (I,!) POI !ITS
3. SCALE· PlCTOBS &CTOlLLY J

EACH GRAPH IS REPRES!"TEO BY 01! BLOC~ OF OA'l

~ ~~ TO THREE DATA SETS
E~ 3! SI~PLOTT !R

••••••••••EIPA"OEO Sill PLOTTER 912/2/70-A; COBOL-SIIPLO!tfR

I SIZE JSIZ E ISP I!I" I Sf' J!H l-UIS LABEL T-AUS LABEL
II. 500 8.500 0.0 0.0 0.250E 02 0.0 Sl!IPLE COBOL PLOT 1'-COORDIIU !ES

Dl'!l ~0 OP SY! OPT
S!T POIITS BOL 101 (11,11) (12, 121 (13, T3) (Ill, !II)

1 10 3 103 0.0 . 0.100! 03 0.100! 01, 0.700! J2 0 . 200! 01, 0.600! 02 0.300! 01, 0. 125!
2 10 Q 103 0.0 ' 0. 100! 03 0. 100! 01, o. 101! 03 0 . 200! 01, 0.920! 02 0.300! 01, 0.790!
3 10 10 103 0.0 ' 0.1100! 01 0.100! 01, 0.21108 02 0.200! 01, 0 . 120! 02 o. 300! 01, 0. 110!

ClLC ISP. 0.200! 01 ClLC X!II. o.o ClLC JSP. 0.250! 02 CltC J!II. 0.0 TOTlL 10.

I SIZE !SUE ISP XIlii YSP !IIlii l-UIS .LlBEL J-liiS LABEL

'· 500 8.500 o.o o . o 0.250! 02 0.0 Sl!IPLE COBOL PLOT J-COOBDIIlT!S
Dltl 10 OP SY! OPT
SET POI ITS BOL IOI (11,!1) (12,!2) (I 3, Y 3) (I., !II)

1 10 11 103 0.0 • 0. 1001! 03 0 . 100! 01, 0.700! 02 0.200! 01, 0.600! 02 o. 300! 01, 0.125!

ClLC XSP. 0.200! 0 1 ClLC I !III. 0.0 CALC TSP. 0.250! 02 ClLC T!!II. 0.0 TOTlL 10.

•••••PJIITBI-PL~!R DllGIOSTIC B!SSlGIS•••••
•••JOT!: !STI!lf!D Till! TO PLOT T8IS GR&PB 01 TB! IICR!!!ITlL PLO!T!J IS • IIIIDT!S

03
02
02

OP

03

01'

Figure 17. Simplotter Parameter Dump produced by samp~e jobt2.

GP.lPI! L!Bf!.
SPECilL S!PfY=!S

DUl SE'! LlB!L
f;!YPDICB
R!PBODOCEP
ClRD SOU!!!

DlTl S!'!S B!Q: Q

GRlPB LABEL
SP!CilL SERVICES

DlTl S!'! LlB!L
lt!TPDICB

DlTl S!TS !I!Q:

"" N

c

T- COO'RDIIlT!S

I
I

2.00!+02-1
I
I
I
I
I

1. 75!+02-1
I
I

•

•

SP!CilL S!ITIC~
II:!TPOICB
B!PBOD!JC!R
Cl i O SORT!B
CIBD IITEBPII!TER

+
I
l
•

I .
I
I .

.....
t. 50!+ 02 - •

I
I
I
I
I

1. 251!:+02- 1
I
I
I
I
I

1. 00!+02- 1 •• • • 1.
I ·
I .
I .
I
I

1 . 501!+01- 1
I
I
I
I
I

5. 001!+01-1
I
I
I
I
I

2. 501!+ 0.1- I
I
I

•

a

....

. ·,

•
.I

I

.I •

•

I

•

•

• I •
•

• I .

..
. .

•

I

1 • .a •• . &- --l
I · . l • .. . l
l l &.

o. oo -1--------------1 ---------------
1 I I I I

o.oo 2.00 -.00 6.00 8.00
Sl!IPLJI COBOL PLO!'

T-COORDIIlT!S

I
I SPECilL S!!'t'IC!S .

2 . 00!+02- 1 F<ETPOliCR *
I
I
I
I
I

1. 7 5!+02-1
I
I
I
I
I

1 . 50!+02- 1
I
I
I
I
I

1 . 251!:+02- 1 •
I
I
I
I
I *

1.00!+02- •
1- • •
I
I .
I
I

1.5 01'!+01- 1
I • • .
I
I
I • *
I •

5.00!+01- 1
I
I
I
I
I

2.50!+01-t
I
I
I
I
I

o.oo -1--
l I I I I

o.oo 2.00 o.oo 6 .00 8.00
Sl!PL! COBOL PLO!'

Figure 18. Printer plotter graph of sample jobi2.

••••• PiiiTEB PLOTTER EJDS •••••
ALL PLOTS GBJ!BlTEO II THIS PROGRl! IOULD TllE - BIJUT!S (ESTI"lTE) TO PLOT 01 THE IJC~E!EJTlL PLOTTER.
YOU BAY US! THE IICR!BEITlL PLOTTER Bt CBl iGII~ o•Lt tOOR !I!C PLOT CARD AT TBE BlCl OF YOUR DECK TO:

//ST!P2 EI!C ~LOT,PLOTTER=IICB!ITL

Figure 19. Printer plotter termination message from saaple job•2.

J

...
w
w
:z::
tf)

...J
cr

C)

m
u
i;

CD
r-
(Y)

u

-,....
' 01
0

' r-
• 1&.1 -cr
0

0
0

0
1'\j

0
II'
,.... -
0
0

ltl --
0

)C

-o
ltl

N

en
wo
..-o
a::c:)
z-
0
a:
0
oo
u~
I,._

>-

0
0

ltl

SPECJAL SE~VJCES
KEYPUhC"1 +
AEPRCOUCER X
CRRO SCATEA (!)
CRRO I NTEf!PAE.TEfl •

0
0

0
N

0
ltl
,....

0
0

ltl --
0 -~

0
ltl

"'
en
Wo
..-o
a::c:) z ... -a
a:
0
00
u": .,....
>-

0
0

"'
0
ltl

1'\j

1

SPECI~l SERVlC.ES
KEYPUNCii

Figure 20 . Inc rea ental plotter gr a ph of s ample job t 2 ..

• • • • n
1.11,
i'
n ..
G'

... .., ...
z

&

.5 1.0
Vl z ..,

r
0
-4

..,

96

Problem Def inition:

A set of 256 consecut ive Y coordinates has been punched

on cards by an automatic data recording dtvice. The corre-

spon1ing 256 X cordinates of the data are to be pr ogram gener-

ated such that adjacent points will be separated by a constant

distance. A second graph is to be drawn directly above the

first showing a smoothed curve representing the path of the

data points. As several o f the data points are known to be

erroneous, they should not be included in the calculation of

the smoothed curve. The erroneous values hav e zero Y

coordinates on the input cards.

Method:

The graph labels and Y coordinates are read from cards

and the associated X coordinates generated. As the points are

numerous, a r~duced plotting symbol size is specified (ORIGIN,

LATCH=5). Graph labels are specified to be in the upper left

hand corner of the graph (ORIGIN, LATCH=6). The second graph

is to be located directly above the first, so the automatic

origin movement between graphs is cancelled (ORIGIN, LATCH=1) .

GRAPH is CALLed to plot the points with automatic scaling

specified (XSF=YSF=O.O).

u

u

97

The origin for the second graph is moved vertically

upward 4.5 inches and the X axis is markEd for omission

(ORIGIN, LATCH=2). GRAPH is CALLed specifying a 5th level

smoothed curve (IMODEl=25} calculated on the basis of all non

zero data points (MODE negative~. LETTER is used to draw a

message on the second graph.

comments:

As the usage of the SIMFLOTTER routines is similar in all

the languages, only the WATFIV listing and its incremental

plot are included. sample job#1 and job#2 illustrate the

particulars for each of the languages.

//C376AW50 JOB A0900,GIB
//51 EXEC WATF.IV

98

//GO.SYSIN DD *
$JOB GIB ,TIME=10 ,PAGES=50

BEAL*4 X(256} ,Y (256~ ,XL{5) ,YL(5) ,GL(5) ,DL (5), MESSG (20)
DO 3 0 I= 1 , 2 56

30 X (I}= I
BEAD (5,100) XL,YL,GL,DL
READ (5 , 2 0 0) Y
CALL ORIGIN (0.05, 0.0, 5)
CAI..L ORIGIN (0.2, 3.6, 6)
CALL ORIGIN (0. 0, 0. 0, 1)
CALL GBAPH(256, X,Y, 13, 7, 6.5, 4.0, 0.0, 0 . 0, 0.0-, 0.0,

& XL, YL , GL, DL)

&

CALL
R:E.AD
CALL

ORIGIN (0.0,4.5,2)
(5 I 1 0 0) XL , y L, G L , D L

GRAPH (256, X,Y, 0, -25, 6.5, 4.0, 0.0, 0.0,
XL,

READ (5, 1 00~ ME SSG
CALL LETTRS (3.0, 1.0, 0.15, MESSG, 0.0, 80)
STOP

100 FORMAT (20A4)
2 0 0 FOR M A T (1 6P 5. 0)

END
$ENTRY

0.0, 0.0,
YL, GL, DL)

CHANNELS NO. OF COUNTS SAMPLE JOB#3 NO POINT ELIMINATIO t
0·0000000000 0 000 00000000000000 00000000 00000001 000000000000 0010000 OvOOOOOO 00000001
00000000010000000000000020000000000000000000100001000000000000000000010000100000
00000000010000~0002300004000000000100000000020001100000002C0002q100~800027900357
00403004120045100439004320043000413004280000000468004700046400425004460038000427
00406003550035800322003400034700290002850026000255000000025500303002410027400254
002980026900289002660032300356004030048200512006300078500954011000 14840 1703020 28
022660269002801029860308902959028840~7960239402125018740148301305009380075400566
00000003220025800183001150007600068000480004000022000300002500022000 2500019000 15
0003700COOOOOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOC0010000 0
00000000000000200018000040000000001000010000100005000920016200178001960023200221 -
00000003220030000343002870034300330003120034000313003100034000321003090030500287
0027300253002610022500224002130021100215002160019300 181 0017500 2040 0 1930017300 188
00213002130020800240002400026300279003240039900455006040072000916010380134901509 '
01785019820214902152000000228402126018930179601522012890107000862006610048900371
00260001620013900116000760005500040000270001900024000170002100018000170001500015
CHANNELS NO. OF COUNTS SA~PLE JOB I3 ZEHO PTS. ELIMINATED

IS NOT THOU ART PLOTTER FUN?; $$$
$STOP
//GOoFT14F001 DD DSNAME=&SM,UN.IT=SCRTCH,DISP=(NE W,PASS),
II SPACE= (800, (120, 15)) ,DCB=(RECFM=VBS,LRECL=796,BLKSIZE=800)
//SMPLTTR EXEC PLOT, PLarT EB=INCRMNTL, FORM=F

Figure 21. Listing of WATFIV sample job# 3 input deck.

u

Figure 22. Incremental plotter _graph of sample iob#3.

0

100

Problem Definition:

A set of meas~red data is to be plotted as a distribu-

tion. The first graph is to show the data in histogram and

ideogram form, with the abscissa along the horizontal. The

second graph is to show the histogram with the abscissa in the

vertical direction. An ideogram~ normalized to the area of

the histogram, is to be superimposed upon the second graph.

Method:

Three distributions will be created simultaneously. The

abscissa and height work arrays for ·the histogram, ideogram,

and normalized ideogram are named (AH,HH), (AI,HI), and

(AN,HN), respectively. Three CALLs to DISTRI initialize the

work arrays. The events and their associated eirors are read

and added to each of the three distribu tions by CALLinq

DISTRA. Note that the weighting factor, WT, of the normalized

ideogram is specified as the area of one event on the

histogram. The area of one histogram event is:
'·'

ABEAH = WT*(AMAX - AMIN)/INTVLS

which is merely the product of the height and 'bar• width of

one histogram event.

u

H

u

10 1

Comments:

No~ce that the un-normalized ideoqram is much smallei:

than the corx:esponding histogram on the first qraph.

Histograms are constructed on the basis of each event havinq a

specified height; ideograms are construct~d on the basis of

each event having a specified area. The "'eiqht~nq factor:, WT,

provides a convenient means of nox:malizin4 histoqrams and

ideograms to each other as is illustrated by the sample iob .

As the usage of the SIMPLOTTER routines is similar in all

the languaqes, only the WATFIV listing and its incremental

plot are included. Sample iob#1 and iob#2 illustrate the

particulars fo~ each of the lanquaqes.

10 2

//C376AW50 JOB AG900,GIB
II S 1 E XEC W AT F IV
//GO. S YSIN DD *
$JOB GIB,TIME=10, PAGES=50

100

REAL AH(303 , HH(30) ,AI (102) , HI (102) ,AN (102) ,H N (102)
REAL XL(5), YL (5), GL (5), DL (5)
CALL DISTRI (AH,HH, 2 0, 100.0,
CALL DISTRI (AI , HI, 100, 100. 0,
CALL DI ST RI (AN ,.HN, 100, 100. 0,
DO 100 I=l, 10

READ (5,901) A,SIGMA

500.0)
500.0)
500. 0)

CALL DISTRA (AH ,HH, 1,
CALL DIST RA (AI, HI, A,
CALL DISTRA (AN , H N, A,

0 .0, 1.0)
SIGMA, 1. 0)
SIGMA, 20.0)

CONTINUE
XL 1 YL,GL,DL

&

Rl:.AD (5, 902)
CALL DISTRP (0. 0 , AH, H H, 0, 4, 4 . 0, 6. 0, 0. 0, 0. 0 , 0 . 0 , 0 . 0,

XL, Y L, G L , D L)
DL

(0.0, AI, H.I , 0, 102, DL)
XL, YL,GL,DL

READ
CALL
READ
CALL

(5,90 2)
DISTRS
(5, 90 2)
DISTBP (90.0,AH,HH, 0, 4, 6 .0, 4 .0, 0 . 0,

XL , Y L , G L , D L)
o.o, o. o, 0.0,

&
REA D (5 , 9 0 2) DL

CALL DISTRS (90.0,AN ,HN , 0, 10 2, DL)
STOP

901 FOHMAT (2 F10.0)
902 FOUlAT (2 0A 4)

END
$ENT RY
325.0 13 . 0
125.0 100 . 0
3 0 3.0 15.0
575.0 70 . 0
J 40 . 0 1 7.0
375. 0 15.0
2 70 . 0 15.0
653.0 90. 0
300 . 0 13. 0
398.0 25. 0

ABSC I SSA ;
AND .IDEOGRA M;

NORM. I DEOGRAM;
$STOP

ABSCISSA;

SAMPJ ... E JOB#4;

SAMPLE JOB#4 ;

//GO.FT14F001 DD DSNAME =&SM,UNIT=SCRTCH,D ISP={NEW,PASS),

HI S'IOG RAM ;

HLSTOGRAM AN

II SPACE=(B OO, (1~0,15)) , DCB =(RECFM = VBS ,LRECL=796,BLKSIZE=800)
//SIMPLTT R EXEC PLOT, PLOTT ER=INCRMNTL, FORM=F

Figure 23. Listing of WAT FI V sample iob#4 inpu~ deck.

u

c]

t • c I
~ n

~ L

I 8 Ul ... Sfii"U JaB
a

L ,_ KJ 5TISiiiWC -.... AND I DE&Mft ~

D 8
...
z

Ln N - - ..
~ a -a: z

i ;!
C.D - !
r- 5IN'lE .Jail

• HI ST~~ii~Rt fall II

(T) a I DtCIIIiiWI , -
u .. ~ ~

N 0 - ~ w
• &.

I - -
0 8 ·-... • -I a - ..,

"' s ... ,_

- a ~ ,.. ~, r.n -., a cnn~ -.... ,.. u

i
r.n

a ~ a-- .
a -l.OU z.aa ,_oa .. . CJD 0 . 00 O. ljG 0.80 l.ZO 1.60 z.aa

ABSCISSA txlu& J

Figure 24G Inc remental plotter graph of s ample job#4.

..

u

