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EXECUTIVE SUMMARY 

This project explored alternative power sources and power budgets for sensors and associated 

components used in remote (off-grid) road weather information systems (RWIS) through an 

investigation of recent developments and technologies for remote RWIS applications and a 

survey of remote RWIS configurations and methodologies across the Aurora states.  

A review of current power sources found that propane or natural gas-fired internal combustion 

(IC) generators used to charge battery banks are either being supplemented or replaced by 

alternative power sources. These alternative power sources include renewables, such as solar 

photovoltaics and small wind turbine generators; propane- or natural gas-fired fuel cells; and 

thermoelectric generators.  

The review also found that remote RWIS sites include sensors in separate packages to measure 

various weather-related parameters, such as air temperature, humidity, wind, precipitation, road 

temperature, visibility, and road surface temperature; provide visual observations (via camera); 

and include communications equipment. Some of these sensors and associated components have 

been integrated into individual packages with a lower power budget (e.g., power-over-ethernet 

and wireless cameras). All-in-one low-power wireless weather stations powered by small 

batteries are being developed for year-round operation but need to be adapted for the harsh 

climatic conditions that tend to exist at many remote RWIS sites. 

The results of the Aurora survey showed that, generally, a combination of fossil fuel-based and 

renewable power sources for charging battery banks are employed to maintain year-round 

operation of remote RWIS sites. Power sources used at remote RWIS sites included propane- or 

natural gas-fired internal combustion generators, solar photovoltaics, small wind generators, fuel 

cells or thermoelectric generators, and batteries. The type and capacity of the power sources 

largely depend on the power budget of the weather sensors, camera(s), and associated 

components and the renewable resources available at the site.  

General findings from the survey suggest that the operation of some remote RWIS sites could be 

improved by incorporating a combination of alternative power sources and sensors, cameras, and 

equipment with a lower power budget. Based on these findings, it is recommended that remote 

RWIS sites be evaluated for the potential use of alternative power sources and low-power 

sensors with wireless technology.  
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CHAPTER 1 – INTRODUCTION AND RESEARCH APPROACH 

1.1 Problem Statement and Research Objective 

The deployment of different alternative power sources and low-power sensors and associated 

equipment packages for remote road weather information system (RWIS) sites in the Aurora 

states in recent years has resulted in a number of system configurations and operational 

strategies. Consequently, the Aurora states have a research need for a comprehensive review, 

investigation, and analysis of alternative power sources and power budgets for sensors and 

related RWIS equipment. The objective of this study was to make recommendations and draw 

conclusions on alternative power sources and power utilization based on a wide array of 

methodologies, recent developments, and operational experience.  

1.2 Scope of Study 

This research project reviewed the power supply problem for remote RWIS applications and 

explored alternative power sources and low-power weather sensor technology. A survey (see 

Appendix A) of the Aurora states was conducted to determine methods of power generation, 

sensor technologies used, and power budgets for remote RWIS sites. For each state that 

responded to the survey, the researchers reviewed existing power sources, sensor technologies, 

and power budgets and made recommendations for improvements in four areas:  

 Replacement or supplementation of fossil fuel-based internal combustion (IC) generators 

 Use of currently available alternative power sources, such as wind, solar, fuel cells, 

thermoelectric generators, and batteries 

 Use of weather sensors and associated components with lower power budgets, including all-

in-one sensors, cameras, and wireless communications 

 Operating scenarios that could allow for more efficient and optimal use of power 

The expected outcomes of this project were (1) a review of current and developing power 

sources, weather sensors, and associated equipment for remote RWIS applications and (2) a 

comprehensive report that documents findings and makes recommendations on alternative power 

sources and power budgets based on a wide array of methodologies, recent developments, and 

operational experience across the Aurora states. 
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1.3 Research Approach 

This study was completed using the following research methods in the order listed: 

1. A literature review on methodologies and past work relevant to the remote RWIS power 

supply problem using available department of transportation (DOT) and online resources 

2. Investigation of recent developments in alternative power sources for remote RWIS 

applications 

3. Analysis of the results of a survey of the Aurora states (conducted by Aurora) regarding 

remote RWIS sensors and equipment power budgets to determine (1) alternative power 

sources and (2) sensors (and associated power budgets) used for remote RWIS 

4. Analysis of the current alternative power sources and power budgets of sensors and 

associated remote RWIS components used in the Aurora states 

5. A report that documents the alternative power sources and power budgets of the sensors and 

associated components used for remote RWIS applications and provides recommendations 

and conclusions based on the review, investigation, and analysis 

The University of Alaska-Fairbanks (UAF) issued a draft final report to the project team for 

review and a final report to the Iowa DOT and Aurora Program containing the results of the 

investigation and recommendations for alternative power sources, low-power sensors, and power 

budgets for remote RWIS sites.  

1.4 Review and Evaluation Methods  

Information about the power sources, weather sensors, and associated components used at 

existing remote RWIS sites in the Aurora Program states was collected using an online survey 

developed by the researcher and Lisa Idell-Sassi at the Alaska Department of Transportation and 

Public Facilities (ADOT&PF). Past methodologies and investigations, including current and 

potential alternative power sources, weather sensors, and associated components used at remote 

RWIS sites, were reviewed (Chapter 2). This was followed by an analysis of the alternative 

power sources, weather sensors, and associated components reported in the survey results 

(Chapter 3). Recommendations and conclusions were developed for implementing alternative 

power sources and reducing power budgets at remote RWIS sites (Chapter 4). A discussion of 

future research and development for remote RWIS is presented at the end of Chapter 4.  
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CHAPTER 2 – REMOTE RWIS POWER SOURCES AND SENSORS  

The following chapter (1) reviews the remote RWIS power supply problem; (2) documents 

power sources, sensors, and associated equipment used for remote RWIS; and (3) explores recent 

developments in alternative power sources and low-power sensors for remote RWIS 

applications. 

2.1 Remote RWIS Power Supply Methodologies and Past Investigations 

The challenges of implementing and operating remote RWIS sites have been investigated 

previously in Alaska (Wies 2014) and other Aurora Program states, including Idaho, Michigan 

(URS 2007), and New York. The reliability (continuous operation) of remote RWIS sites is of 

particular importance to states with harsh winter weather conditions. Strategies for continuous 

unattended operation of remote RWIS sites have included the use of fossil fuel-based IC engine 

generators coupled with solar photovoltaics (PV) and/or small wind turbine generators (WTGs) 

to charge battery banks, with power budgets in the 200 to 500 W range. A major portion of the 

power budget (over 75%) comes from the resistive heating required on weather sensors 

(precipitation gauges) and cameras required during periods with near- to sub-freezing 

temperatures. Some of these systems have suffered from reliability issues due to failure of the IC 

engine and the complexity of the control systems and converters required to operate multiple 

power supplies and sensors at a single site.  

More recently, thermoelectric generators (TEGs) and fuel cells (FCs) have been implemented at 

a few very remote sites in combination with low-power weather sensors and associated 

equipment. These types of power sources are operated using natural gas or propane, which must 

be high grade to prevent corrosion of the highly susceptible materials used to create the power 

cells. While TEGs have initially proven to be a good alternative power supply for low-power 

RWIS applications, some FCs have experienced problems with corrosion from contaminated fuel 

supplies, fracturing of the ceramic cells in shipment, repeated failures of internal bundles, and 

inconsistent operation of the control equipment used to provide data for remote diagnosis. 

However, other FCs have provided uninterrupted service in remote RWIS applications. If the 

problems with FCs are solved, they could prove to be a good alternative for low-power remote 

RWIS applications.  

Low-power RWIS have become more prevalent in recent years as weather sensors and 

associated equipment (cameras and communication devices) with power budgets below 50 W 

have become more readily available. This has been accomplished through the development of 

all-in-one sensor packages and low-power camera technologies. In fact, one company has been 

developing an all-in-one weather sensor and smart phone-style camera package that is 

completely self-contained with its own battery power supply (WeatherCloud/Fathym 2017). The 

system is designed not only to provide weather-related information from sensors at the remote 

RWIS site, but also to be fully integrated with the current GPS and weather sensor technology 

used in modern vehicles. Prototypes of the all-in-one technology minus the camera have already 

been developed and are currently being tested by the ADOT&PF and DOTs in other states. This 
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is likely the future of remote RWIS, which will allow for both point source and nearby roadway 

and weather information while also providing weather information directly to vehicles. 

2.2 Power Sources for Remote RWIS 

The current and alternative power sources, including IC engine generators, solar PV modules, 

wind turbine generators, batteries, fuel cells, and thermal electric generators, used at remote 

RWIS sites in the Aurora Program states are discussed in the following sections, with 

information drawn from interactions with DOT personnel and the survey developed by the 

authors and conducted by Aurora. As an example, power sources and associated converter 

equipment for a remote RWIS site in Alaska are listed in Table 1, with some representative 

photos shown in Figure 1.  

Table 1. Power sources and converters at a remote RWIS site in Alaska 

Power Source/Charge Controller/Inverter 

Power Rating 

(W or Amp-hr) 

8340K-WG972 propane DC generator with Kubota 

WG972 engine and 8340 alternator (24 V DC, 8 kW) 
8000 W 

6-Kyocera 120 W solar PV modules 120 W per module 

4-Rolls 12 V DC, deep-cycle marine batteries 275 Amp-hr 

4-Trojan 12 V DC, deep-cycle marine batteries 230 Amp-hr 

Acumentrics RP500 fuel cell DC generator 500 W 

Gentherm 5060 Thermoelectric Generator 50 W 

Outback Flexmax 80 Charge Controller 1000 W 

Outback VFX2812 inverter 2800 W 

 

   
© 2011 Alaska DOT&PF © 2016 Polar Power Inc. 

Figure 1. Power supplies at a remote RWIS site in Alaska, from left to right: overall site, 

8340K-WG972 propane DC generator, and six Kyocera 120 solar PV modules 
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2.2.1 Internal Combustion Engine Generators 

IC engine generators for remote RWIS applications (see Figure 1 center) include small-format 

diesel-, propane-, and natural gas-fired units rated at 1 to 2.5 kW. While the IC engine generators 

can be used to directly power the RWIS, they are typically used to recharge the battery banks 

when solar PV or wind does not provide sufficient charging capability. The capacity of the 

generators is also normally two to five times more than that required to directly power the RWIS 

because they are used to recharge a higher capacity battery bank that can sustain the RWIS for 

long periods of time.  

IC engine generators have historically been problematic for remote RWIS sites due to the routine 

maintenance required and operational issues, particularly because many of the remote RWIS 

sites are difficult to access in the winter. Operational problems have consisted of the generator 

engine running continuously until running out of fuel, the low battery voltage switch not 

triggering the generator on so that it can recharge the batteries, gas concentration safety sensors 

tripping the system off, and mechanical engine and generator failures. Mechanical failures are 

often compounded by limited or no availability of replacement parts and units that are not 

serviceable on site. Furthermore, in order to manage proper air flow into the engine and exhaust 

gases, IC engine generators must be mounted outside or in a well-ventilated enclosure with gas 

concentration safety sensors to control ventilation.  

Many of the previous small-format IC engine generators used an alternating current (AC) output, 

which needs to be rectified to direct current (DC) and use a common charge controller for 

charging the batteries. Newer models of these small-format IC engine generators have a DC 

output and integrated charge controller and have shown promise for remote RWIS applications. 

However, the introduction of low-power all-in-one sensors and associated equipment to the 

weather monitoring market has significantly reduced power budgets for RWIS. This has allowed 

a transition to to alternative power supply technologies with lower power output capacities, as 

discussed in the following sections. 

2.2.2 Solar Photovoltaics  

Solar PV modules (see Figures 1 left and 1 right and Figure 2) are generally employed at remote 

metrological sites to charge the battery bank during daylight hours when solar energy is 

available.  
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Shyla Keays, UAF INE undergraduate assistant 

Figure 2. Alaska DOT RWIS site at Little Coal Creek, Parks Highway MP 163.2 

The installed solar PV capacity at a remote RWIS site typically ranges from 0.2 to 0.9 kW and 

uses three to six modules (75 to 150 W each) with nominal 12 or 24 V DC outputs depending on 

the configuration of the connections of the individual modules. However, the actual power 

output and voltage level depend on the available solar energy impacting the surface of the 

modules, which is dependent on the season, hour of the day, and weather conditions. Therefore, a 

charge controller is needed to maintain maximum charging power at a voltage above the nominal 

battery voltage when the solar PV output voltage is lower than nominal. Additionally, an 

advantage in efficiency is achieved in winter months due to lower operating temperatures of 

solar cells, but reduced daylight hours and increased cloud and snow cover (see Figure 1 right) 

has significantly more impact, reducing the overall solar PV power output.  

The current PV modules used in many remote RWIS sites are polycrystalline due to their lower 

capital cost than thin-film technologies. Thin-film solar PV technologies typically cost between 

1.5 and 2 times more per watt than standard polycrystalline and amorphous silicon technologies. 

Thin-film copper indium gallium selenide (CIGS) solar PV modules, such as the Stion STN 

series, offer improved performance in capturing the available solar energy due to a higher 

efficiency (15% to 18%) than standard polycrystalline or amorphous silicon-based modules 

(10% to 14%) (Stion 2012). However, the small efficiency improvement with thin-film CIGS 

modules does not provide enough additional output power to offset the increased capital cost in 

cases where replacement of existing functional solar PV modules is considered. Therefore, thin-

film CIGS solar PV modules are suggested as possible power supplies for the development of 

new remote RWIS sites or as a point of failure replacement at an existing site.  
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2.2.3 Wind Turbine Generators 

A variety of small-format wind turbine generators are used for power supply applications at 

remote meteorological sites. These small-format wind turbine generators, with typical power 

output capacities of 100 W or less, are commonly used in conjunction with solar PV modules to 

charge batteries at remote RWIS sites where wind resources are available. The actual power 

output from wind turbine generators, which is normally three-phase AC rectified to DC at 12 to 

48 V, can be quite variable based on the wind resource, which is dependent on the seasonal and 

diurnal weather patterns. The DC output is generally held constant by the rectifier and can be 

directly connected to the system’s battery charge controller. Also, because wind turbine 

generators are often used in conjunction with solar PV, the variability in wind and the times 

when wind is available may not complement solar PV resources. A more complex controller is 

required to manage the power generated from wind and solar PV to sustain the charge in the 

batteries.  

Other significant challenges with employing small-format wind turbine generators at remote 

RWIS sites include the generators’ durability and reliability in harsh weather conditions, such as 

extremely high winds and conditions in which ice covers the blades. A small-format harsh 

weather-rated wind turbine, such as the WT10 (see Figure 3), could be installed at sites with 

good wind potential. The turbine has been used by the Federal Aviation Administration (FAA) 

on its meteorological modules (discussed in Section 2.4.1), which are designed for monitoring 

extreme weather conditions at remote airports. 

    
APRS World, LLC 

Figure 3. WT10 wind turbine, from left to right: on FAA module, brochure view, and 

remote mountaintop application 

However, such small-format harsh weather wind turbine generator systems have not provided a 

cost-effective alternative as a remote RWIS power source. For example, the cost of the basic 

WT10 turbine is listed from $3,000 to $3,500 depending on the blade, yaw, and mast connection 

types. Cabling ($100 to $150) for power output to the RWIS module and quick coupler mounts 

($300 to $500) and an associated mast for mounting the turbine would also have to be installed, 
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given that the current anemometer is already mounted on top of the existing meteorological 

sensor mast. 

When the addition of a wind turbine generator to a new or existing remote RWIS site is 

considered, a meteorological study of the site should be performed to determine if wind is even a 

viable power source, and, if so, to determine the best wind turbine for the site. Even if 

meteorological studies have shown a consistent and complementary wind resource at the site, the 

system’s complexity and the cost and reliability of small-format wind turbine generators need to 

be considered. Consequently, it was found in this study that wind turbine generators have not 

been historically used at remote RWIS sites, which is supported by the fact that only one failed 

wind turbine generator was reported in the survey (see Section 3.1). However, wind turbine 

generators could still be used in critical remote RWIS applications where a viable wind resource 

is available and additional alternative power sources are available to supplement the charging of 

the batteries.  

2.2.4 Batteries 

Deep-cycle lead-acid and, more recently, lithium ion have been the most common battery 

chemistries used for remote meteorological applications. The number of batteries required for a 

remote RWIS application depends on the power budget and the length of time the batteries are 

expected to provide power without being recharged. A battery bank with a nominal 12 or 24 V 

DC output (depending on the configuration) is connected to the system through a bidirectional 

converter/charge controller. The bidirectional converter/charge controller is used for charging the 

batteries from all available power sources and delivering power to the RWIS loads (sensors, 

cameras, and associated equipment).  

Both battery chemistries have exhibited failures due to their inherent limitations in remote 

meteorological applications. Batteries have generally suffered from decreased charge potential as 

the number of charge/discharge cycles increases. In the case of lithium ion batteries, a 

specialized battery management system is required to monitor and regulate the cell voltage and 

temperature. Overcharging or completely discharging a lithium ion battery can result in 

individual cell damage or potential catastrophic failures of the entire bank due to thermal 

runaway. With these limitations in mind, the push has been towards the use of lithium ion battery 

technology for remote RWIS applications, especially considering the decrease in power budgets 

for sensors and associated equipment.  

2.2.5 Fuel Cells 

Fuel cells using propane, natural gas, or methanol as a fuel source could be added to keep the 

system operational when solar PV and/or wind do not produce enough energy to maintain the 

charge on the battery bank. Fuel cells have been coveted as a non-mechanical and non-

combustive fossil fuel-based power source. In general, fuel cells are designed to use hydrogen 

extracted from a fuel source to combine with oxygen across a ceramic cell membrane, thus 

producing electrical energy and water as a byproduct. However, there have been issues with cells 

fracturing during transport due to their fragile ceramic cell membranes and operational 
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challenges due to corrosion from fuel impurities and the need to keep the fuel cell active once 

operational to prevent the cell from freezing up in cold climates, given that water is a byproduct 

of the process.  

Two types of fuel cells, solid oxide and methanol (see Figure 4) have been deployed as primary 

power sources on remote RWIS platforms.  

                 
© 2012 Acumentrics Holding Corp. © EFOY SFC Energy, Inc. 

Figure 4. Fuel cells for RWIS, from left to right: Atrex ARP500 (formerly Acumentrics RP 

500), EFOY 600, 1600, and 2200 Pro, and EFOY 800 and 2400 Pro 

The Atrex Acumentrics RP500 (Figure 4 left), fueled by propane or natural gas, was designed as 

a solid oxide fuel cell (SOFC) with a 500 W maximum power output capacity, ideal for use with 

traditional RWIS applications with higher power budgets. It was deployed at the Klondike 

Highway remote RWIS site in Alaska on the US/Canada border in 2012, but it failed due to a 

fractured ceramic cell during shipment. There were also problems with an oversensitive fuel 

sniffer sensor relay shutting off the system, though these problems were later resolved. The cost 

of the RP 500 is estimated at about $30,000 for remote RWIS applications based on the 

deployment in Alaska. The EFOY 800 and 2400 Pro series (Figure 4 center) were designed as 

methanol fuel cells (MFCs) with 45 W and 110 W maximum power output capacities, ideal for 

use with currently available low-power sensor packages and associated equipment. The units 

were designed to use up to two pre-charged methanol cartridges using an adapter, with the ability 

to double the number of fuel cartridges (Duo model) for extended operation. The first-generation 

EFOY Pro series (600, 1600, 2200) MFC was replaced in June 2013 by a second-generation 

EFOY Pro series (800 and 2400) MFC (Figure 4 right). An EFOY 1600 Pro fuel cell (65 W 

maximum power output capacity) was deployed at the Fourth of July Pass remote RWIS site in 

Idaho and has been operational ever since. The EFOY Pro MFC has also been used in a variety 

of remote applications in Alaska and northern Canada, such as remote oil platforms and 

communication sites. The EFOY pro series fuel cells were designed for cold climate operation, 

with temperature ratings to -40 C (-40 F) and heat regulation aided by a special insulated 

enclosure provided by the manufacturer. The cost of the EFOY 800 Pro fuel cell with a cold 

climate enclosure is estimated to range from $15,600 to $21,000 depending on the amount of 

fuel required to achieve the desired autonomy in terms of hours of unattended operation. 

2.2.6 Thermoelectric Generators 

TEGs, which are fueled by propane or natural gas, could be added to a remote RWIS site for 

continuous operation through winter months or as the primary power supply for low-power 
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RWIS. TEGs are designed to use the Seebeck effect by combusting fuel to heat one side of a 

thermoelectric material while the opposite side is exposed to ambient air (Wikipedia 2016). A 

potential difference (voltage) between the two sides of the thermoelectric material is generated 

due to the large temperature difference. These units must either be mounted outside or in a well-

ventilated enclosure due to the combustion of gases. This has presented problems in some RWIS 

power supply applications that employ a completely enclosed utility container to house the 

power supply converters and associated communications equipment.  

In particular, the Gentherm Global Power Solutions 5060 TEG (see Figure 5) has been deployed 

as a power source on remote meteorological platforms in Alaska and Canada.  

                     
Gentherm Global Power Technologies Scrimshaw 2016 

Figure 5. Thermoelectric generator for RWIS: Gentherm GPS 5060 (left) and GPS 5060 as 

installed outside the Divide remote RWIS module near Seward, Alaska (right) 

The GPS 5060 TEG was designed to generate a maximum of 55 W. This particular TEG was 

installed at the Divide remote RWIS site near Seward, Alaska (see Figure 5 right), in early 2016 

and has operated reliably as the site’s primary power source ever since. These TEGs have also 

been deployed by the FAA at its remote meteorological platforms (discussed in Section 2.4.1) in 

Alaska to provide approximately 50 W of power to keep the batteries charged during the winter 

season when sunlight for PV arrays is minimal and wind speeds are low. The cost of the GPS 

5060 TEG is estimated at about $6,000 but could be as much as $500 higher with additional 

costs for mounting hardware (pole mast versus stand), depending on the application. 

2.2.7 Summary of Alternative Power Sources 

Alternative power sources such as thin-film solar PV, small-scale harsh weather-resistant wind 

turbines, lithium ion battery banks, fuel cells, and TEGs, discussed in Sections 2.2.2 through 

2.2.6, were evaluated for use in remote RWIS applications. The alternative power sources 

reviewed in this study, their power capacities, capital costs, and fuel consumption rates (when 

applicable) are listed in Table 2. 
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Table 2. Alternative power sources, power capacity, cost, and fuel consumption rates 

Power Source Power Capacity (W) Capital Cost ($) 

Fuel Rate 

(gal/kWh) 

Stion STO-135A Thin-Film 

CIGS Solar PV Framed Module 
135 W $105/module NA 

APRS World WT10 Wind 

Turbine (24 VDC) 

75 W @ 40 mph and 

12 VDC 
$4,000 NA 

Acumentrics RP500 Fuel Cell 500 W @ 12 VDC $30,000 0.12 

EFOY Pro 800 Fuel Cell 45 W @ 12 VDC $21,500 0.24 

Gentherm Global Power 

Solutions 5060 TEG 
54 W @ 12 VDC $6,500 1.16 

 

2.3 Weather Sensors, Cameras, and Associated Communications Equipment 

Weather sensors, cameras, and associated communications equipment used at remote RWIS sites 

in the Aurora Program states are documented in the following sections, with information drawn 

from interactions with DOT personnel and the survey developed by the authors and conducted by 

Aurora.  

2.3.1 Weather Sensors for Remote RWIS 

Weather sensors typically used for remote RWIS and their power budgets are listed in Table 3, 

with a representative image of an RWIS-based meteorological tower in Figure 6.  

Table 3. General weather sensors with power budget for RWIS 

Weather Sensors Power Budget (W) 

Air Temperature/Humidity/Dewpoint 0.1 W 

Barometric Pressure 0.1 W 

Wind Speed/Direction 0.25 – 0.5 W 

Snow Depth 0.6 – 1 W 

Pavement Temperature Sensors 0.1 W 

Precipitation (Accumulation and Occurrence) 0.75 – 3 W; 250 – 400 W (w/ heater) 

Soil Moisture 0.1 W 

Soil Temperature 0.1 W 

Pyranometer (Solar Irradiance) 0.1 – 0.5 W 
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Figure 6. Weather sensors and communications equipment at remote RWIS site in Alaska, 

from left to right: meteorological tower, satellite dish, and communications antenna 

Weather sensors used at remote RWIS sites include ambient air temperature, humidity, 

barometric pressure, wind speed and direction, dew point, pavement surface temperature, snow 

depth, precipitation (gauges), soil moisture, and solar irradiance (pyranometer). 

2.3.1.1 Individual Weather Sensors 

Individual weather sensors rather than all-in-one sensor packages are still used at a number of 

remote RWIS sites. While some temperature sensors have always offered the three basic 

measurements of ambient air temperature, humidity, and barometric pressure, most RWIS have 

been designed using multiple sensors with information collected and transmitted through a 

central remote processing unit (RPU). While reliability and the need for information from 

multiple weather-related parameters has been a factor in this type of RWIS design, the 

integration of numerous sensors has resulted in much higher power budgets than would 

otherwise be necessary. The higher power budgets imposed by multiple sensors has created a 

especially difficult power supply problem in remote RWIS. 

2.3.1.2 All-in-One Weather Sensor Packages 

Low-power (2 to 6 W) all-in-one weather sensor packages are available, with new technologies 

currently under development and testing, as robust alternatives to the use of multiple separate 

weather sensor packages. All-in-one weather sensor packages offer the lower power budgets that 

would allow remote RWIS sites to operate using the alternative power sources discussed in 

Sections 2.2.2 through 2.2.6. Basic all-in-one weather sensor packages are designed to measure 

up to six weather parameters, including air pressure, temperature, humidity, rainfall, wind speed, 

and wind direction, while also offering analog input options for solar irradiance and external 

temperature sensors. However, separate additional sensor packages would still be required for 

snowfall and road surface temperature measurements. 
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2.3.2 Cameras and Associated Communications Equipment 

Cameras and associated communications equipment used for remote RWIS and their power 

budgets are listed in Tables 4 and 5, respectively, with representative photos of an RWIS-based 

wireless communications interface, including a satellite dish and cellular antenna, shown in 

Figures 6b and 6c.  

Table 4. Remote RWIS cameras and power budget 

Camera Power Budget (W) 

Single-View 

Fixed with low POE 3 – 13 W; 12 – 27 W (w/ heater) 

Fixed with high POE 20 – 30 W; 50 – 150 W (w/ heater) 

Point-Tilt-Zoom (PTZ) 

PTZ with low POE 12 – 25 W; 12 – 27 W (w/ heater) 

PTZ with high POE 25 – 60 W; 100 – 150 W (w/ heater) 

 

Table 5. Remote RWIS communication equipment and power budget 

Communications Equipment Power Budget (W) 

Security Firewall Typical: 20 W; Max: 96 W 

Switch Typical: 3 W; Max: 9 W 

Communications interface and Ku-band 

transmitter 
Typical: 25 W; Max: 100 W 

4G LTE Cellular Modem 

Transmit/Receive (Typical/Max) 

3.0-3.6/3.6-4.5 W; Idle 0.9-3 W; Dormant 

0.05-0.1 W 

CDMA Cellular Modem 
Transmit/Receive (Typical/Max) 

1.44/3.0 W; Idle 0.6 W 

Multiband 3G and 4G LTE Cellular 

Antennas 
Typical: 25-50 W; Max: 100 W 

Yagi Antenna Typical: 25 W; Max: 50 W 

FreeWave Radios 
Transmit/Receive (Typical/Max) 

4.2-4.5/0.51-0.78 W; Idle 0.114-0.24 W 

ClearRF Amplifiers Typical: 4 W; Max: 12 W; Idle: 3.3 W 

 

Cameras at remote RWIS sites include both single-view and pan-tilt-zoom (PTZ) varieties, while 

communication equipment includes both wired (dial-up modem and fiber optics) and wireless 

(4G cellular modem with antennas) technologies. 
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2.3.2.1 Cameras 

Both high- and low-power-budget single-view and PTZ and low-power and power-over-ethernet 

(POE) cameras are used at remote RWIS sites, as listed in Table 4 with estimated power budgets. 

The highest percentage of the remote RWIS power budget (over 1/3 in some cases) is not only 

consumed by the operation of the cameras (more than one at many RWIS sites), but also the 

heater required to keep the lens clear of ice, snow, and condensation in winter and transitional 

months. Modern POE cameras and improved lenses and anti-fog coatings offer a significantly 

lower power budget, allowing remote RWIS sites to operate using alternative power sources.  

2.3.2.2 Communications Equipment 

Wireless communications technologies, including cellular modems, antennas, and transmitters, 

as listed in Table 5 with estimated power budgets, are generally used at remote RWIS sites.  

At some remote RWIS sites near fiber optic lines or standard phone lines, a wired 

communications interface is employed, but those same signals can also be transmitted back to 

the central server using a microwave satellite modem and transmitter. The 4G LTE cellular 

modems combined with a lower power transmitter and antenna offer a communications interface 

for remote RWIS sites with a much lower power budget than microwave (Ku band) satellite-

based transmitters. 

2.4 State-of-the-Art and Cutting-Edge Weather Information Systems 

State-of-the-art weather information systems (WIS) have been developed for a variety of remote 

transportation applications, including road, air, and sea. The FAA has developed WIS modules 

for remote airport locations. More recent cutting-edge developments have included very low-

power (< 10 W) all-in-one RWIS packages that incorporate on-board battery power with 

currently available mobile GPS, weather sensors, and smart phone-style camera technology. 

2.4.1 FAA Off-Grid Meteorological Module 

The FAA has designed a complete off-grid power module (see Figure 7) for weather monitoring 

that employs a 54 W TEG fueled by propane (Figure 4), a 500 W thin-film tube CIGS solar PV 

array (Figure 7a), and a 400 W APRS World military-grade wind turbine generator (Figure 7c) to 

supply the power to charge eight Odyssey 12 V DC, 200 Amp-hr AGM batteries. These modules 

offer the reliability of operating throughout the winter season and in harsh climates and have 

been deployed at a number of remote airport sites in Alaska. 
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Figure 7. FAA remote WIS module, from left to right: thin-film solar PV tube array, 

control cabinet and satellite dish, and wind turbine and weather sensors 

2.4.2 All-in-One RWIS System 

A new all-in-one low-power weather sensor package that can be powered by a single 12 V DC 

battery is being developed and tested for remote RWIS applications. The system is designed to 

be a self-contained pole-mountable unit with an onboard battery that can be recharged using a 

small solar PV module or wind generator. The system is controlled from a remote terminal and 

can provide weather-related information that is transmitted wirelessly to a central server for 

access via computer or mobile devices (WeatherCloud/Fathym 2017).  

A prototype system (see Figure 8) using less than 10 W has been in the testing phase and has 

been collecting data at a grid-connected RWIS site in Fairbanks, Alaska, since July 2016.  

 
Billy Connor, UAF AUTC 

Figure 8. Prototype all-in-one low-power RWIS system (circled in red) installed at grid-

connected site in Fairbanks, Alaska 
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Other tests are being planned for the prototype system at off-grid RWIS sites in Alaska to verify 

continuous operation and reliability. The test system was designed to monitor the basic weather 

parameters for RWIS applications, including ambient air and road surface temperature, humidity, 

wind speed, precipitation, and solar irradiance (see the data interface screen capture in Figure 9). 

The developer plans to integrate a smart phone-style camera into the package in early 2017, 

increasing the overall power budget to 15 to 20 W, which includes a small heating element for 

the camera lens. Future integration with GPS and weather sensor technology used in modern 

vehicles is also planned. These types of all-in-one low-power RWIS devices are expected to be 

the future of remote meteorological monitoring for transportation information systems. 
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Figure 9. Partial data interface screen capture for prototype all-in-one low-power RWIS system (Fairbanks, Alaska, December 

12, 2016 at 3:11:16 p.m.) 
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CHAPTER 3 – SURVEY RESULTS AND ANALYSIS 

A review, analysis, and summary of the results of an eight-question Aurora survey, RWIS 

Alternative Power Sources, Sensors, Equipment, and Power Budget (see Appendix A), 

conducted during the summer of 2016 is presented in this chapter. The chapter is divided 

according to the survey questions, which concern alternative power sources, sensors, associated 

equipment, and power budgets for remote RWIS applications. A comparative power source and 

power budget analysis for the integration of alternative power sources and low-power sensors 

and associated equipment into existing RWIS sites is presented in the last section of this chapter.  

3.1 Alternative Power Sources 

Alternative power sources and configurations used for remote RWIS in the Aurora Program 

states were documented based on responses to Questions 1 through 3 of the survey, which were 

as follows: 

1. What alternative power sources, including manufacturer and model, do you currently use 

at your remote (i.e., off-grid) RWIS sites (e.g., solar PV, wind turbines, fuel cells, 

TEGs)? 

2. If there is more than one power source, what is the power configuration? (e.g., Is there 

more than one TEG? Or one TEG and two solar PV modules? Or wind turbines?) 

3. What types of batteries, if any, are used in conjunction with alternative power supplies at 

your remote RWIS sites? 

Based on the eight responses to Question 1, solar PV was the most frequently used alternative 

power source at remote RWIS sites (see Figure 10).  
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Figure 10. Alternative power sources at remote RWIS sites by percentage of respondents 

Solar PV was followed by other sources, including fuel cells and TEGs; power generators, 

including propane- and natural gas-fired IC engine generators; and wind turbine generators. It 

was also noted based on the responses that wind turbine generators are not generally used at 

remote RWIS sites. This could be a result of the lack of a consistent wind resource and reliability 

in extreme weather conditions.  

In response to Question 2, four of the six respondents indicated that only one source of power is 

used at their remote RWIS sites. One of these respondents indicated that different combinations 

of alternative power sources, including solar PV, fuel cells, and TEGs, are used in conjunction 

with IC engine generators to charge deep-cycle lead-acid batteries. Two respondents indicated 

that all of their RWIS sites were grid-connected or used no alternative sources.  

Six out of seven responses to Question 3 indicated that 12 V DC, 100 to 130 Amp-hr lead-acid 

batteries, including absorbent glass mat (AGM) and gel cell deep-cycle formats, are used at their 

remote RWIS sites. One of those six respondents also indicated that lithium-ion batteries will be 

tested in the future.  
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3.2 Weather Sensors and Associated Equipment 

Weather sensors and associated equipment used for remote RWIS in the Aurora Program states 

were documented based on responses to Questions 4 through 6 of the survey, which were as 

follows. 

4. What types of weather sensors, including manufacturer and model, are employed at your 

remote RWIS sites (e.g., air temperature, humidity, road surface temperature, 

precipitation)? 

5. What types of cameras, including manufacturer and model, are used at your remote 

RWIS sites?  

6. What types of communication and associated equipment are used at your remote RWIS 

sites? 

All eight respondents to Question 4 indicated that air temperature, humidity, wind, and pavement 

temperature sensors are used at their remote RWIS sites (see Figure 11).  

 

Figure 11. Weather sensor types used at remote RWIS sites by percentage of respondents 

Out of the eight named sensors, fewer respondents reported that they deployed sensors for 

barometric pressure, dewpoint, and snow depth, in that order. The lowest percentage of 

respondents indicated the use of other sensors, including pyranometers (solar irradiance), tipping 

rain gauges, and sensors to measure subsurface temperature and soil moisture. Common 

individual weather sensors used for remote RWIS are listed in Table 3 in Section 2.3.1. 
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In response to Question 5, six out of the eight respondents indicated that cameras are used at 

their remote RWIS sites. These cameras included high- and low-power-budget single-view and 

PTZ varieties, including many with POE, as listed in Table 4 in Section 2.3.2. 

In response to Question 6, all eight respondents indicated that some type of wired or wireless 

communication technology is used at their remote RWIS sites. Wired communication 

technologies include dial-up modem and fiber-optics, while wireless communication 

technologies include cellular modems and wireless systems along with transmitters and antenna 

hardware, as listed in Table 5 in Section 2.3.2. 

3.3 Power Budget and Other Power Configuration Considerations 

Power budgets and other power configuration considerations for remote RWIS were documented 

based on responses to Questions 7 and 8 of the survey, which were as follows. 

7. What is the typical range of power usage for your remote RWIS sites? 

8. Is there anything not covered in the previous questions about your remote RWIS site 

power configuration that would be helpful to know? 

Six out of the eight respondents to Question 7 indicated an approximate range of either power 

(W) or energy (kWh) consumption at their remote RWIS sites. Power consumption ranged from 

about 25 W to 150 W, with indications from two respondents that the type of cameras and 

sensors used, and more so the heaters added to cameras and precipitation sensors, considerably 

increased the power consumption. 

In four of the responses to Question 7, respondents provided additional notes. Two respondents 

indicated problems with using alternative power sources at remote RWIS sites due to the high 

power consumption of cameras and infrared illumination. In one case, no alternative power 

sources were used, and in the other case additional solar PV and batteries were added to 

overcome the additional power consumption that resulted when cameras were added to the site. 

Another respondent reported that lithium ion batteries would be tested in the near future as a 

replacement for deep-cycle lead-acid AGM batteries. The last respondent reported that a new 

ultra-low-power all-in-one RWIS package is currently being developed and tested for use in 

remote and harsh weather applications. 

This survey and prior investigations (Weis 2014) identify the limitations of using alternative 

power sources in remote RWIS due to the high power consumption of cameras and precipitation 

gauges, particularly the heaters required to defog lenses and melt snow.  

3.4 Power Budget, Power Supply Capacity, and Energy Demand Analysis 

An example comparative analysis of a high-power versus a low-power remote RWIS 

configuration like those found among the surveyed Aurora Program states was conducted.  
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3.4.1 Power Budget Analysis 

The power budgets for a high-power (see Table 6) and a low-power (see Table 7) remote RWIS 

were estimated based on manufacturers’ specifications for the power consumption of installed 

weather sensors, cameras, and associated communications equipment.  

Table 6. Power budget for high-power RWIS site 

Sensors, Camera, and Communications Equipment Power Budget (W) 

Air Temperature/Humidity Sensor 0.10 W 

Wind Monitor (Anemometer w/ Vane) 0.48 W 

Pavement Temp Sensor 0.01 W 

Temperature Data Probe 0.01 W 

Optical Infrared Y/N Precipitation Sensor 0.78 W 

Ultrasonic Snow Depth Sensor 0.60 W 

PTZ Camera 27 W; 104 W (w/ heaters & PTZ) 

Microwave (Ku-band) Satellite Modem and Transmitter Typical: 25 W; Max: 100 W 

Total Demand 54 W; 131 W (w/heater) 

 

Table 7. Power budget for low-power RWIS site 

Sensors, Camera, and Communications 

Equipment Power Budget (W) 

Air Temperature/Humidity Sensor 0.10 W 

Wind Monitor (Anemometer w/ Vane) 0.48 W 

Pavement Temp Sensor 0.01 W 

Temperature Data Probe 0.01 W 

Optical Infrared Y/N Precipitation Sensor 0.78 W 

Ultrasonic Snow Depth Sensor 0.60 W 

Single-View Fixed Low POE Cameras (X2) 
6 W; 12 W (w/ heaters) includes two 

cameras 

4G LTE Cellular Modem 
Transmit/Receive (Typical/Max) 

3.0/3.6 W; Idle 0.9 W; Dormant 0.053 W 

Total Demand 11 W; 17 W (w/heater) 

 

The power budgets were based on continuous operation and assumed to be relatively constant at 

two levels (with and without heaters on cameras). Camera heaters were activated using a 32F 

set point based on temperature data at a representative remote RWIS site (see Table 8). The 

overall power budget would be lower if cameras were cycled on for a few seconds at 10- to 20-

minute intervals. 
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Table 8. Average monthly temperatures (F) for remote RWIS site 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Remote 

RWIS 

Site 

22.8 24.4 30.9 41.5 45.9 54.3 57.4 55.3 50.5 43.0 17.5 28.7 

 

3.4.2 Power Supply Capacity and Energy Demand Analysis 

The estimated power budgets were then used to determine the required type, capacity, and 

configuration of power sources required to continuously operate the RWIS. All available power 

generation was used to charge the batteries, while the batteries were used to meet the power 

budget of the system. Any solar PV and wind generation in excess of the power budget was 

stored in the battery bank if the batteries were not fully charged. Any remaining portion of the 

power budget was assumed to be picked up using fuel cells or TEGs.  

First, the estimated power generation capacity from solar PV and wind was determined for the 

representative remote RWIS site using solar and wind data available from the Alaska DOT&PF, 

the FAA, and NASA Langley Atmospheric Sciences Data Center (ASDC) archives.  

3.4.2.1 Solar PV Resource 

The available solar energy at the representative remote RWIS site was estimated based on the 

average daily insolation and the specifications of the current solar PV modules. The dimensions, 

surface area, and efficiency of one Kyocera 120 W solar PV module (Kyocera n.d.) were used 

with the average daily insolation at the site (NASA 2016) to determine the available daily solar 

energy as follows: 

Available Daily Solar Energy=Average Daily Insolation×Module Efficiency× 

Module Surface Area×Number of Modules (1) 

The solar module specifications from the manufacturer’s data sheet (Kyocera n.d.) were as 

follows: 

 Dimensions: (1425 x 653 x 59 mm) 

 Surface Area: 1.425 m x 0.653 m = 0.9305 m2 

 Solar Module Efficiency: 14%  

The average daily solar insolation values provided by 22-year monthly averages (NASA 2016), 

as shown in Table 9 for the site location, were used to calculate the available average daily solar 

energy for each month, as shown in Table 10. 



24 

Table 9. Average daily solar insolation (kWh/m2/day) for remote RWIS site 

22-Year 

Average Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Ann. 

Avg. 

Remote 

RWIS 

Site 

0.41 1.01 2.24 3.73 4.88 5.43 4.8 3.86 2.54 1.37 0.59 0.23 2.59 

 

Table 10. Available daily solar energy (kWh/day) for remote RWIS site 

22-Year 

Average Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Ann. 

Avg. 

Remote 

RWIS 

Site 

0.32 0.79 1.75 2.92 3.81 4.24 3.75 3.02 1.99 1.07 0.46 0.18 2.03 

 

3.4.2.2 Wind Turbine Generator Resource 

The available wind energy at the remote RWIS site was estimated based on archived wind speed 

data (NASA 2016) and the specifications for the WT10 wind turbine (APRS World n.d.). The 

average monthly wind speeds for the site (see Table 11) and the power versus wind speed curve 

for the WT10 turbine in Figure 12 were used to calculate the available average daily wind energy 

for each month.  

Table 11. Average monthly wind speeds (mph) for remote RWIS site 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Ann. 

Avg. 

Remote 

RWIS 

Site 

4.3 5.1 4.6 5.4 4.5 4.6 8.7 4.3 4.4 5.7 5.1 4.1 5.1 
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Figure 12. Power versus wind speed curve for WT10 24 V turbine charging a 12 V DC 

system 

The available average daily wind energy for each month was calculated by taking wind speed 

data sampled at 30-minute intervals and then determining the power output from the curve fit in 

Figure 12. The daily average wind energy shown in Table 12 was then calculated by adding the 

calculated average power of two 30-minute intervals and multiplying each value by 24 hours.  

Table 12. Available average daily wind energy (kWh/day) for remote RWIS site 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Ann. 

Avg. 

Remote 

RWIS 

Site 

1.63 4.35 1.92 6.67 1.73 2.06 2.38 1.60 2.29 2.86 3.32 3.22 2.84 

 

3.4.2.3 Energy Demand Analysis 

A maximum power capacity of 720 W for the representative remote RWIS site was determined 

using the six 120 W solar PV modules in place and information provided in Table 1 in Section 

2.2. The surface area and efficiency of each Kyocera 120 W solar PV module was used with the 

average daily insolation values in Table 9 to determine the available average daily solar energy 

(kWh/day) using (Weis 2014).  
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The high-power-budget RWIS site was estimated to require 131 W × 6 h = 786 Wh or 0.786 

kWh for daylight operation in the winter months, with camera heaters activated and assuming 

operation only during daylight hours. With the average daily solar insolation values in Table 10, 

the energy budget of the system was more than the daily solar energy provided in December and 

January. Because the values in Table 10 were estimated based on daily averages over a month, 

the actual available solar energy would also likely be below the required level in late November 

and early February. Consequently, additional power capacity would be required to operate the 

site through the winter season from mid-November to mid-February. 

For the low-power-budget RWIS system, if just the current high-power Cohu 3920 PTZ cameras 

at the representative site were replaced with two single-view low-power POE cameras, the total 

power budget of the site would be reduced from 54 and 131 W without and with the camera 

heater, respectively, to 33 and 39 W. With the new cameras and heaters, the energy required 

during the winter months would be reduced to 39 W × 6 h = 231 Wh or 0.231 kWh for daylight 

operation. However, additional power capacity would still be required in December and most of 

January and even parts of late November and early February. 

If the current communications interface, which uses a Ku-band transmitter, was replaced with the 

4G LTE cellular modem gateway with the power requirements shown in Table 5 in Section 

2.3.2, the power consumption for data transmit and receive functions would be reduced from 25 

W to about 3 W. However, if the modem was polled to transmit data at 10-minute intervals, the 

modem would not draw 3 W continuously, but only during times when data are transmitted and 

received. In this analysis, a demand of 3 W for 1 minute every 10 minutes and 1.25 W for the 

remaining idle time as the minimum was used based on information from Vaisala field service 

engineers. The total power budget of the site with the new POE cameras and 4G LTE cellular 

modem, based on the manufacturers’ power specifications provided in Tables 4 and 5 in Section 

2.3, would be reduced to 11 W and 17 W without and with the camera heater, respectively. The 

energy required during the winter months with the low-power-budget RWIS system would be 

further reduced to 17 W × 6 h = 102 Wh or 0.102 kWh for daylight operation, but additional 

power capacity would still be required in December and January. 

Average monthly energy analyses were conducted using the representative RWIS site for 

continuous and daylight operation with high and low power budgets and different supply 

configurations, as shown in Tables 13 through 16, which provide the following: 

1. Table 13 shows energy demand for continuous operation with solar PV alone and either of 

the two fuel cells or TEG. 

2. Table 14 shows energy demand for continuous operation combining solar PV and wind and 

either of the two fuel cells or TEG. 

3. Table 15 shows energy demand for daylight operation plus an hour before sunrise and after 

sunset with solar PV alone and either of the two fuel cells or TEG. 

4. Table 16 shows energy demand for daylight operation plus an hour before sunrise and after 

sunset with combinations of solar PV and wind and either of the two fuel cells or TEG. 
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Table 13. Energy analysis for continuous operation of remote RWIS site (solar PV + fuels cells or TEG) 

Month 

Current 

Energy Budget 

(kWh) 

Energy Budget 

After Replacing 

Cameras and 

Communications 

Equipment 

(kWh) 

Energy 

Demand After 

Incorporating 

Solar (kWh) 

Energy 

Demand: Solar 

and 

Acumentrics 

Fuel Cell 

(kWh) 

Energy 

Demand: Solar 

and EFOY Fuel 

Cell (kWh) 

Energy 

Demand: Solar 

and 

Thermoelectric 

Generator 

(kWh) 

January 109.7 22.6 12.7 -359.3 -20.8 -27.5 

February 93.5 20.0 -2.1 -338.1 -32.4 -38.4 

March 98.6 21.7 -32.5 -404.5 -66.0 -72.7 

April 56.2 18.0 -69.5 -429.5 -101.9 -108.4 

May 52.4 18.1 -100.1 -472.1 -133.6 -140.3 

June 50.7 17.6 -109.8 -469.8 -142.2 -148.6 

July 52.4 18.1 -98.2 -470.2 -131.6 -138.3 

August 52.4 18.1 -75.4 -447.4 -108.9 -115.6 

September 50.7 17.6 -42.0 -402.0 -74.4 -80.9 

October 59.8 18.7 -14.5 -386.5 -48.0 -54.6 

November 106.1 21.9 8.0 -352.0 -24.4 -30.8 

December 109.7 22.6 17.0 -355.0 -16.4 -23.1 
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Table 14. Energy analysis for continuous operation of remote RWIS site (solar PV + wind + fuel cells or TEG) 

Month 

Current 

Energy Budget 

(kWh) 

Energy Budget 

After Replacing 

Cameras and 

Communications 

Equipment 

(kWh) 

Energy 

Demand After 

Incorporating 

Solar and Wind 

(kWh) 

Energy 

Demand: Solar, 

Wind, and 

Acumentrics 

Fuel Cell 

(kWh) 

Energy 

Demand: Solar, 

Wind, and 

EFOY Fuel 

Cell (kWh) 

Energy 

Demand: Solar, 

Wind, and 

Thermoelectric 

Generator 

(kWh) 

January 109.7 22.6 12.6 -359.3 -20.8 -27.5 

February 93.5 20.0 -2.2 -338.1 -32.4 -38.4 

March 98.6 21.7 -32.6 -404.5 -66.0 -72.7 

April 56.2 18.0 -69.7 -429.5 -101.9 -108.4 

May 52.4 18.1 -100.1 -472.1 -133.6 -140.3 

June 50.7 17.6 -109.8 -469.8 -142.2 -148.6 

July 52.4 18.1 -98.2 -470.2 -131.6 -138.3 

August 52.4 18.1 -75.4 -447.4 -108.9 -115.6 

September 50.7 17.6 -42.1 -402.0 -74.4 -80.9 

October 59.8 18.7 -14.6 -386.5 -48.0 -54.6 

November 106.1 21.9 7.9 -352.0 -24.4 -30.8 

December 109.7 22.6 16.9 -355.0 -16.4 -23.1 
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Table 15. Energy analysis for daylight operation of remote RWIS site (solar PV + fuels cells or TEG) 

Month 

Current 

Energy Budget 

(kWh) 

Energy Budget 

After Replacing 

Cameras and 

Communications 

Equipment 

(kWh) 

Energy 

Demand After 

Incorporating 

Solar (kWh) 

Energy 

Demand: Solar 

and 

Acumentrics 

Fuel Cell 

(kWh) 

Energy 

Demand: Solar 

and EFOY Fuel 

Cell (kWh) 

Energy 

Demand: Solar 

and 

Thermoelectric 

Generator 

(kWh) 

January 42.0 8.7 -1.3 -373.3 -34.7 -41.4 

February 44.9 9.6 -12.5 -348.5 -42.8 -48.8 

March 57.5 12.7 -41.6 -413.6 -75.1 -81.8 

April 42.6 13.6 -73.8 -433.8 -106.2 -112.7 

May 42.6 14.8 -103.5 -475.5 -137.0 -143.7 

June 44.3 15.3 -112.0 -472.0 -144.4 -150.9 

July 42.7 14.8 -101.5 -473.5 -135.0 -141.7 

August 38.4 13.3 -80.2 -452.2 -113.7 -120.4 

September 33.2 11.5 -48.1 -408.1 -80.5 -86.9 

October 31.9 10.0 -23.2 -395.2 -56.7 -63.4 

November 47.5 9.8 -4.0 -364.0 -36.4 -42.9 

December 42.0 8.7 3.1 -368.9 -30.4 -37.1 
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Table 16. Energy analysis for daylight operation of remote RWIS site (solar PV + wind + fuel cells or TEG) 

Month 

Current 

Energy Budget 

(kWh) 

Energy Budget 

After Replacing 

Cameras and 

Communications 

Equipment 

(kWh) 

Energy 

Demand After 

Incorporating 

Solar and Wind 

(kWh) 

Energy 

Demand: 

Solar,Wind, 

and 

Acumentrics 

Fuel Cell 

(kWh) 

Energy 

Demand: Solar, 

Wind, and 

EFOY Fuel 

Cell (kWh) 

Energy 

Demand: Solar, 

Wind, and 

Thermoelectric 

Generator 

(kWh) 

January 42.0 8.7 -1.3 -373.3 -34.7 -41.4 

February 44.9 9.6 -12.6 -348.5 -42.8 -48.8 

March 57.5 12.7 -41.6 -413.6 -75.1 -81.8 

April 42.6 13.6 -74.0 -433.8 -106.2 -112.7 

May 42.6 14.8 -103.5 -475.5 -137.0 -143.7 

June 44.3 15.3 -112.0 -472.0 -144.4 -150.9 

July 42.7 14.8 -101.6 -473.5 -135.0 -141.7 

August 38.4 13.3 -80.3 -452.2 -113.7 -120.4 

September 33.2 11.5 -48.1 -408.1 -80.5 -86.9 

October 31.9 10.0 -23.3 -395.2 -56.7 -63.4 

November 47.5 9.8 -4.1 -364.0 -36.4 -42.9 

December 42.0 8.7 3.0 -368.9 -30.4 -37.1 
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In many cases, even with just solar PV and batteries, negative values for energy demand (kWh) 

indicated that surplus energy was available from the power sources. The energy demand in these 

cases would therefore be met, with excess energy available to keep the batteries charged so they 

can provide energy when the available solar energy is low due to cloudiness. However, another 

power source was clearly required for this site to operate continuously or for strict daylight 

operation through the winter months, even after the reduction in the power budget through 

replacement of the existing camera with two POE cameras and the Ku-band transmitter with a 

4G LTE cellular modem. Because the wind resource at this site was insufficient to supply the 

additional energy required during the winter months, other alternative energy sources, such as 

the Acumentrics or EFOY fuel cell or the Gentherm 5060 TEG, would be required. 
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CHAPTER 4 – RECOMMENDATIONS AND CONCLUSIONS 

4.1 General Recommendations 

The following sections offer recommendations based on previous investigations and the results 

of a survey of the Aurora Program states. Recommendations are grouped into three topic areas:  

 Assessment of alternative power supplies 

 Determination of the power budget of weather sensors, cameras, and associated equipment 

for remote (off-grid) RWIS 

 Development of operating scenarios to save energy 

4.1.1 Alternative Power Supplies 

Based on previous investigations, discussions with DOT personnel, and the results of the survey 

concerning alternative power supplies for remote RWIS, it is recommended that DOTs in the 

Aurora Program states consider the use of alternative power sources in addition to or as 

replacements for existing power sources such as IC engine generators and solar PV. While the 

survey results indicated that solar PV was the most widely used alternative power source for 

remote RWIS, wind turbine generators were not reported as a power source among Aurora 

Program states. The successful deployment of other alternative power sources, such as TEGs in 

Alaska, has shown them to be viable options for remote RWIS.  

In considering the use of alternative power supplies for remote RWIS, the following steps are 

recommended: 

1. In the case of solar PV or wind, a resource assessment should be conducted at the remote 

RWIS site under consideration.  

2. The current power budget for the remote RWIS configuration should be determined. 

3. If the site is determined to have a high power budget (> 100 W), possible scenarios for 

lowering the overall power budget should be explored. 

4. The alternative power source should be selected based on the available capacity and the 

power budget required for the RWIS site to operate continuously and reliably throughout the 

year. 

Recommendations for assessing and potentially reducing the power budget of a remote RWIS 

site are provided in the following section.  
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4.1.2 Power Budget of Weather Sensors, Cameras, and Associated Equipment 

Based on previous investigations and the results of the survey concerning the current weather 

sensors, cameras, and associated equipment used for remote RWIS and the overall power budget, 

it is recommended that DOTs in the Aurora Program states consider replacing high-power 

weather sensors and cameras with low-power equivalents to lower the overall power budget.  

As an example, the comparative analysis conducted in Section 3.4 for a high- and low-power 

remote RWIS configuration replaced high-power Cohu PTZ cameras with two low-power POE 

Mobotix M24 cameras, which yielded a reduction in the power budget of over 90 W. This 

reduction in the overall power budget allowed the example system to operate continuously by 

using solar PV and/or wind power to charge a battery bank for the majority of the year, except 

for late November through early February, at the representative location. The addition of a 

propane- or natural gas-fired fuel cell or TEG allowed for continuous operation throughout the 

year.  

The majority of the power budget for remote RWIS was determined to result from the use of 

resistive heaters for defogging cameras and melting snow for certain types of precipitation 

gauges in the winter and transitional months. However, the POE cameras required significantly 

less power for heating to keep the lens clear, and precipitation gauge technology has improved to 

use infrared and beam-type technology to measure snowfall amounts. Therefore, it is 

recommended that cameras and weather sensor packages that require less power for heating be 

considered. It is also recommended that RWIS systems with individual weather 

sensor/transmitter packages be evaluated for replacement with an all-in-one weather 

sensor/transmitter package to reduce system complexity and the overall power budget of the 

system.  

Steps to reduce the overall power budget for remote RWIS, as discussed above, combined with 

the energy saving operating scenarios discussed in the next section, facilitate the use of 

alternative power sources with a lower power capacity. 

4.1.3 Operating Scenarios 

This study determined that both the RWIS configuration and the operating scenarios play 

significant roles in the ability of the system to operate without the need for an IC engine 

generator. The two operating scenarios analyzed in this research, i.e., (1) continuous operation 

and (2) daylight operation, with different combinations of power supplies, including current and 

revised system configurations, showed that using existing solar PV technologies and either a fuel 

cell or TEG provided enough power to maintain operation for continuous or daylight operation.  

In addition to moving to low-power weather sensors, cameras, and associated equipment, it is 

recommended that devices be turned off or placed in a low-power standby mode while not in 

use. This operating strategy could be applied to cameras, except for the lens heater. Images could 

be polled from the site at 10-minute intervals, significantly reducing the daily energy required to 
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operate the site. This same operating procedure could also be followed for communications 

equipment, including modems and transmitters. Although the communication link must stay 

connected to the central server in order to poll data, the system could be operated in standby 

mode for much of the time.  

Daytime versus nighttime operation must also be considered. While 24-hour meteorological data 

are often desired at critical RWIS locations, camera images may not be necessary during the 

nighttime hours. If nighttime images are necessary, an infrared camera must be installed, 

significantly increasing the power budget. Therefore, it is recommended that these and other 

operating scenarios that can reduce the overall energy requirements for remote RWIS sites be 

considered to facilitate the deployment of alternative power sources. 

4.2 Overall Recommendations  

Based on previous investigations, discussions with DOT personnel, and the results of the survey 

concerning alternative power supplies and power budgets for RWIS, the following overall 

recommendations are provided: 

 IC engine generators at some remote RWIS sites could be replaced by combinations of solar 

PV, wind turbine generators, and propane- or natural gas-fired fuel cells and TEGs. 

Furthermore, fuel cells and TEGS could be used to supplement existing solar PV systems for 

continuous or daylight operation through the winter months. 

 Low-power POE cameras, all-in-one weather sensors/transmitters, and communications 

equipment could be used to reduce the overall power budget, increase the available stored 

energy in batteries, and decrease the fuel used by fossil fuel-based power supplies. 

 Operating scenarios such as strict daytime camera use and the polling of camera images and 

the cycling of equipment at 10-minute intervals could be employed to reduce daily energy 

consumption and facilitate the use of alternative power sources by decreasing the required 

power capacity of the system. 

4.3 Conclusions 

This report documented the findings of a review of alternative power supplies and power budgets 

for weather sensors, cameras, and associated equipment for remote (off-grid) RWIS applications 

based on previous investigations, experiences of DOT personnel, and the results of a survey of 

the Aurora Program states.  

Three distinct conclusions regarding alternative power supplies, power budgets, and operating 

scenarios for remote RWIS were drawn from the findings: 
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 Combinations of alternative power sources, such as solar PV, wind generation, fuel cells and 

TEGs, are required in combination with a battery bank (energy storage) at remote RWIS sites 

for continuous or daylight operation throughout the year.  

 The use of low-power all-in-one weather sensors/transmitters, POE cameras, and associated 

communications equipment was determined to significantly reduce the overall power budget 

for remote RWIS. 

 The operating scenario used at the site is critical to energy savings and is largely dependent 

on continuous versus daylight operation and the duty cycles of the cameras, heaters, and 

communications equipment.  

In summary, this investigation concluded that reducing the overall power budget for remote 

RWIS sites is critical not only for selecting and using alternative power sources, but also for 

continuous and reliable operation throughout the year. 

4.4 Future Research and Development  

The results of this investigation point to future research and development of remote RWIS in the 

areas of alternative power supplies and all-in-one RWIS packages, including in the following 

areas: 

 Evaluation of alternative power supplies such as wind turbine generators, fuel cells, and 

TEGs through deployment and testing at remote RWIS sites. 

 Further and more detailed analysis of the energy generation, energy storage, and power 

budgets at remote RWIS sites through data logging by operation and maintenance 

contractors. 

 Development and harsh/cold weather testing of a self-contained low-power all-in-one RWIS 

package. 
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APPENDIX A – RWIS ALTERNATIVE POWER SOURCES AND POWER BUDGET 

SURVEY 

AURORA Survey 

RWIS Alternative Power Sources, Sensors, Equipment, and Power Budget 

The following survey is being conducted as part of an Aurora pooled fund project, Review 

Synthesis of Alternative Power Supply, to review alternative power sources, sensors, equipment, 

and power budgets for remote (off-grid) RWIS in the Aurora states. Information received from 

this survey will be used as part of a comprehensive report to review the current state of remote 

RWIS and provide general recommendations on alternative systems, technologies, and operation.  

1. What alternative power sources, including manufacturer and model, do you currently use 

at your remote (i.e., off the grid) RWIS sites (ex: solar PV, wind turbines, fuel cells, 

thermoelectric generators (TEGs))? 

2. If there is more than one power source, what is the power configuration? (i.e., is there 

more than one TEG? Or one TEG and 2 solar PV panels, wind turbine? etc.) 

3. What types of batteries, if any, are used in conjunction with alternative power supplies at 

your remote RWIS sites? 

4. What types, including manufacturer and model, of weather sensors are employed at your 

remote RWIS sites (ex: air temperature, humidity, road surface temperature, precipitation 

gauges, etc.)? 

5. What types of cameras, including manufacturer and model, are used at your remote 

RWIS sites?  

6. What types of communication and associated equipment are used at your remote RWIS 

sites?  

7. What is the typical range of power usage for your remote RWIS sites? 

8. Is there anything not covered in the previous questions about your remote RWIS site 

power configuration that would be helpful to know? 
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