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EXECUTIVE SUMMARY 

This report describes two related projects, the second of which builds on the first. 

The Iowa Department of Transportation (DOT) and Federal Highway Administration (FHWA) 
Aurora Transportation Pooled Fund TPF-5(290) partners sponsored both projects, and the 
Institute for Transportation Center’s Midwest Transportation Center at Iowa State University and 
U.S. Department of Transportation Office of the Assistant Secretary for Research and 
Technology co-sponsored Part II. 

Part I: Improving Estimations of Real-Time Traffic Speeds During Weather for Winter 
Performance Measurement 

Winter weather in Iowa is often unpredictable and can have an adverse impact on traffic flow. 
The Iowa DOT attempts to lessen the impact of winter weather events on traffic speeds using 
various proactive maintenance operations. In order to assess the performance of these 
maintenance operations, a model was developed for estimating expected speed reductions based 
on weather variables and normal maintenance schedules. Such a model would allow the Iowa 
DOT to identify situations in which speed reductions are much greater or less than expected for a 
given set of storm conditions and modify maintenance operations to improve efficiency and 
effectiveness.  

For a previous Iowa DOT project, the authors of this report developed a sequential Bayesian 
dynamic model based on a non-stochastic model proposed in Iowa Highway Research Board 
Project TR-491. The sequential Bayesian dynamic model was designed to predict speed changes 
relative to baseline speeds under normal conditions. The model assumes nominal maintenance 
schedules and incorporates winter weather covariates (snow type, temperature, and wind speed) 
as measured by roadside weather stations. A limitation of this model is that it is not flexible 
enough to accommodate temporal heterogeneity. The speed change predictions are inconsistent 
across different locations and events, and measures of uncertainty in the model do not account 
for model uncertainty and are therefore overly optimistic.  

The objective of the work performed for the first part of this project was to improve that model 
to achieve real-time prediction of traffic speed changes with realistic uncertainty measures. 
Automated systems that record information on traffic speed and road conditions at particular 
points on a road system offer a way to improve the information available for building empirical 
models that relate weather variables to changes in traffic flow at a local level. For this 
application, we used data from two sources: road weather information systems (RWIS) and 
automated weather observing systems (AWOS). We further used maintenance crew reports to 
identify winter weather events throughout the year when reliable information on precipitation, 
such as snow intensity and type, was not available. Atmospheric variables, along with variables 
reflecting physical pavement condition, may contain a large number of complex interactions 
upon which realized changes in traffic speed depend, and these interactions vary with time. 
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To accommodate these types of interactions and temporal dynamics, we developed an empirical 
adaptive stochastic model. Our approach made use of a Bayesian model formulation in which the 
effects of weather variables are allowed to adapt over four-hour time segments. Data from prior 
four-hour time segments provide a prior quantification of the effects that variables such as lane 
condition, temperature, and wind are expected to have on changes in traffic speed over the next 
four hours. Additional data in the next time segment are then used to adjust these quantifications 
to better reflect observed traffic speeds during that period. This model would allow, for example, 
the effects of wind speed to change somewhat (but not radically) over the course of a longer 
storm event to reflect the fact that low or high wind speeds have different effects on traffic 
speeds.  

The effect of this modeling approach is to circumvent the impossible task of explicitly 
determining a plethora of temporally dependent interactions. Under this approach, interactions 
are not explicitly identified and modeled. Rather, the problem is approached by allowing the 
main effects associated with key factors to undergo small shifts over time. The model also 
incorporates an autoregressive error structure to reflect temporal dependencies in observations 
that occur at a reasonably high frequency, such as every few minutes. 

Part II: Data-Driven Urban Traffic Prediction for Winter Performance Measurements 

The model developed in Part I is for data from a single site, which is useful for predicting traffic 
speed changes in rural areas. In an urban setting, multiple sites collect traffic data from a network 
of roads, and the data are typically correlated in both time and space. Modeling data from 
multiple sites jointly can help in detecting abnormal traffic patterns earlier and in more 
accurately predicting traffic speed changes.  

The objective of Part II of this report was to use traffic data and limited weather information to 
develop models for detecting abnormal traffic patterns and predicting traffic speed and volume at 
any location on a network.  

We introduced several models for detecting abnormal traffic patterns based on two sources of 
traffic data, INRIX and Wavetronix, and limited weather information. Because the INRIX data 
included more locations than the Wavetronix data and the corresponding observations were self-
consistent, we used the INRIX data to detect abnormal traffic areas. We developed a method to 
estimate the multivariate quantiles for the INRIX observations, and the INRIX data were 
compared with the estimated quantiles to identify abnormal traffic patterns in both space and 
time. An online interactive app was developed to visualize the results and help the Iowa DOT 
make informed decisions about winter weather maintenance. 

A dynamic Bayesian model was implemented at two Wavetronix sensor locations where weather 
information was available, with the corresponding median curve as the baseline. The fitting 
results were satisfactory. Furthermore, we also explored the spatial structure of the traffic data 
using the INRIX dataset and used curve Kriging to predict traffic speed and volume at any 
location. The prediction method was tested at the Wavetronix locations and was found to work 
well. 
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PART I: IMPROVING ESTIMATIONS OF REAL-TIME TRAFFIC SPEEDS DURING 
WEATHER FOR WINTER PERFORMANCE MEASUREMENT 

1.1 Introduction and Overview of Previous Work 

Winter weather in Iowa is often unpredictable and can have a large impact on traffic flow. The 
Iowa Department of Transportation (DOT) attempts to lessen the impact of winter weather 
events on traffic speeds using various maintenance operations. In order to assess the performance 
of these maintenance operations, a model was developed for estimating expected speed 
reductions based on different winter weather variables and normal maintenance schedules. Such 
a model would allow the Iowa DOT to identify situations in which speed reductions are much 
greater than expected for a given set of storm conditions. 

Overview of Previous Work 

In 2009, Qiu and Nixon (2009) developed a model to predict speed reduction. This model was 
then modified in a study by Greenfield et al. (2012), which reviewed previously developed 
models and discussed modifications to introduce more variability into the model inputs. 
Although these modifications were an improvement, they failed to account for variability in the 
model structure itself. In Greenfield et al. (2012), an exploratory analysis of sensor data was used 
to help formulate a hierarchical model for estimating the effects of storm events at individual 
locations. This model is in the form of a dynamic linear regression and takes into account winter 
weather variables as well as plow operation schedules, which makes it different from previous 
models. In addition, the researchers use deviation from “normal,” or baseline, traffic speeds as 
the response variable instead of deviation from the posted speed limit. Temperature in the model 
is represented by the absolute deviation from freezing, as opposed to the raw temperature value. 
The model does a good job predicting the expected speed reduction and captures some of the 
variability inherent in the data. 

Model for Speed Reduction 

Traffic speeds are likely to be impacted by various factors, such as time of day or day of the 
week. In order to understand the impact of a winter storm on traffic speeds, we developed a 
baseline measure of traffic speed for each hour of each day. The baseline speeds represented the 
expected traffic speed for each hour of each day when conditions were favorable, i.e., when no 
winter events were recorded at the time speed was measured or in the previous 24 hours. We 
included three years of speed data to estimate the baseline speeds.  

Figure 1.1 shows the observed traffic speeds for the week of March 8 through March 14, 2013, 
when conditions were favorable, along with the estimates of the baseline speeds. 
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Black lines = Observed traffic speeds; Red line = Estimated baseline speeds 

Figure 1.1. Traffic speeds with favorable conditions for March 8 through March 14, 2013 
versus estimated baseline speeds during the respective hours of each day 

Using the baseline speeds, we defined the response variable as the difference between the 
observed speed and the baseline speed, 𝑦𝑦𝑡𝑡 = 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑𝑡𝑡 − 𝑜𝑜𝑏𝑏𝑜𝑜𝑜𝑜𝑏𝑏𝑏𝑏𝑏𝑏𝑜𝑜𝑡𝑡. When the response 
variable is negative, the observed traffic speed is lower than the baseline speed, and vice versa. 
In the event of a winter storm, we typically observe traffic speeds consistently in the negative 
range. 

Consider one storm event. Let {𝑌𝑌𝑡𝑡: 𝑡𝑡 = 1,2, … ,𝑇𝑇} denote the recorded speed reduction from the 
baseline at time (𝑡𝑡) during a given 10-minute time interval. The model for 𝑌𝑌𝑡𝑡 is as follows: 

𝑌𝑌𝑡𝑡 = ℎ(𝛽𝛽, 𝑥𝑥𝑡𝑡) + 𝑤𝑤𝑡𝑡 

𝑤𝑤𝑡𝑡 = 𝛾𝛾𝑤𝑤𝑡𝑡−1 + 𝑜𝑜𝑡𝑡 

where 𝑤𝑤0 = 0 and 𝑜𝑜𝑡𝑡 are independent, identically distributed, random variables following a 
normal distribution with a mean of 0 and a variance of 𝜏𝜏2. 

Let 𝑋𝑋𝑡𝑡,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,𝑋𝑋𝑡𝑡,𝑀𝑀𝑁𝑁𝑀𝑀𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁and 𝑋𝑋𝑡𝑡,𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 be indicator variables that take on values of 0 or 1 for 
provided values of snow type, e.g., 𝑋𝑋𝑡𝑡,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 1 if no snow is observed during a given time 
period and 0 if conditions are otherwise. We define 

ℎ∗(𝛽𝛽, 𝑥𝑥𝑡𝑡) =  𝛽𝛽𝑁𝑁𝑋𝑋𝑡𝑡,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝛽𝛽1𝑋𝑋𝑡𝑡,|𝑡𝑡𝐻𝐻𝑡𝑡𝑡𝑡−32| + 𝛽𝛽2𝑋𝑋𝑡𝑡,𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝛽𝛽3𝑋𝑋𝑡𝑡,𝑀𝑀𝑁𝑁𝑀𝑀𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝛽𝛽4𝑋𝑋𝑡𝑡,𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
+ 𝛽𝛽5𝑋𝑋𝑡𝑡,𝑁𝑁𝐿𝐿𝑁𝑁𝑀𝑀 
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and 

ℎ(𝛽𝛽, 𝑥𝑥𝑡𝑡) =

⎩
⎪
⎨

⎪
⎧

ℎ∗(𝛽𝛽, 𝑥𝑥𝑡𝑡), 𝑡𝑡 ≤ 4
ℎ∗(𝛽𝛽, 𝑥𝑥𝑡𝑡) +  𝜆𝜆(4 − 𝑡𝑡), 4 < 𝑡𝑡 ≤ 10
ℎ∗(𝛽𝛽, 𝑥𝑥𝑡𝑡) +  𝜆𝜆(10 − 𝑡𝑡), 10 < 𝑡𝑡 ≤ 16
ℎ∗(𝛽𝛽, 𝑥𝑥𝑡𝑡) +  𝜆𝜆(16 − 𝑡𝑡), 16 < 𝑡𝑡 ≤ 22

⋮ ⋮

 

ℎ(𝛽𝛽, 𝑥𝑥𝑡𝑡) is comprised of two components. The first component, ℎ∗(𝛽𝛽, 𝑥𝑥𝑡𝑡), is a linear combination 
of weather covariates. The second component takes into account the impact of snowplows on 
speed reduction, represented here by the parameter λ. The values of 4, 10, 16, etc., were chosen 
to reflect the time points at which the snowplow would pass.  

A Bayesian analysis was conducted using Markov chain Monte Carlo methods to simulate values 
from the joint posterior distributions. Prior distributions were placed on 𝛽𝛽𝐿𝐿 (𝑏𝑏 = 1,2, … ,5), λ, γ, 
and 𝜏𝜏2. The following diffuse priors were used: 

𝛽𝛽𝐿𝐿~𝑁𝑁�0,𝜎𝜎𝛽𝛽𝑖𝑖
2 = 100� 

𝜆𝜆~𝑁𝑁�0,𝜎𝜎𝜆𝜆2 = 100� 

𝛾𝛾~𝑈𝑈𝑏𝑏𝑏𝑏𝑈𝑈(−1,1)𝜏𝜏2~𝐼𝐼𝐼𝐼(0.01, 0.01), 

where 𝑁𝑁(𝜇𝜇,𝜎𝜎2) denotes a normal distribution with parameters 𝜇𝜇 and 𝜎𝜎2, 𝑈𝑈𝑏𝑏𝑏𝑏𝑈𝑈(𝑏𝑏, 𝑜𝑜) denotes a 
uniform distribution on the interval (𝑏𝑏, 𝑜𝑜), and 𝐼𝐼𝐼𝐼(𝛼𝛼,𝛽𝛽) denotes an inverse Gaussian distribution 
with parameters 𝛼𝛼 and 𝛽𝛽. 

1.2 Evaluation of the Hierarchical Model 

We applied the hierarchical model to traffic data from Newton/Colfax, Iowa, gathered during a 
number of winter events. We show three examples here to demonstrate the strengths and 
weaknesses of the model formulation.  

Event 74 with Periods of Heavy and Medium Snow 

Event 74 (as designated in the data provided by the Iowa DOT) was characterized by periods of 
heavy snow and medium snow. Most of the observations are negative, indicating a visible 
reduction in traffic speed during this time. There is a sharp drop in speed during the initial period 
of the winter weather event, with further general fluctuations occurring over this time period, i.e., 
increases in traffic speeds followed by decreases, and so on (Figure 1.2).  
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Solid black line = Observed changes in traffic speeds from the baseline speeds;  

Solid red line = Estimated changes in traffic speeds from baseline speeds;  
Dashed blue lines = 90% credible intervals for the expected changes in speeds 

Green vertical dashed-dotted line = Iowa DOT-designated change from heavy to medium snow 

Figure 1.2. Changes in traffic speed compared to baseline speed for Event 74 with periods 
of heavy and medium snow 

After fitting the model, the only variable that seems to significantly describe the change in traffic 
speed from the baseline is wind speed (Figure 1.3).  

 
Orange/red solid line = Traffic volume; Green dotted line = Wind speeds;  

Blue dashed line = Absolute temperature 

Figure 1.3. Traffic volume, wind, and absolute temperature (deviations from 32°F) for 
Event 74 with periods of heavy and medium snow 
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No other variables have significant effects on traffic speeds, including the maintenance variable 
(Table 1.1).  

Table 1.1. Parameter estimates and 90% intervals for Event 74 

Parameter Estimate 90% Interval 
𝛽𝛽0 (No Snow) -0.02 (-16.40, 16.47) 
𝛽𝛽1 (|temp - 32|) -0.16 (-0.81, 0.37) 
𝛽𝛽2 (Light Snow) -0.08 (-16.5, 16.46) 
𝛽𝛽3 (Moderate Snow) -9.19 (-19.90, 4.20) 
𝛽𝛽4 (Heavy Snow) -7.40 (-16.68, 3.97) 
𝛽𝛽5 (wind) -0.43 (-0.73, -0.10) 
𝜆𝜆  0.05 (-0.43, 0.57) 
𝜏𝜏2   23.25 (19.27, 27.93) 
𝛾𝛾  0.78 (0.65, 0.91) 

 

However, the fitted model does not capture the multiple increases and decreases in traffic speeds 
occurring over time, but rather seems to follow a somewhat decreasing linear trend overall.  

Event 78 with Freezing Rain 

Event 78 was categorized by freezing rain. We observe a dramatic decrease in traffic speeds at 
the beginning of the winter weather event, followed by a sharp increase, and then little overall 
change in the subsequent traffic speeds observed throughout the remainder of the time period 
(240 10-minute intervals or 40 hours) (Figure 1.4).  

 
Solid black line = Observed change in traffic speeds from the baseline speeds; 

Solid red line = Estimated change in traffic speeds from baseline speeds;  
Dashed blue lines = 90% credible intervals for the expected change in speeds 

Figure 1.4. Changes in traffic speed compared to baseline speed for Event 78 with freezing 
rain 
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The only variables that seem to significantly describe the changes in speeds from the baseline 
levels are absolute deviation in temperature from 32°F and the indicator variable for no snow 
(Figure 1.5).  

 
Orange/red solid line = Traffic volume; Green dotted line = Wind speeds;  

Blue dashed line = Absolute temperature 

Figure 1.5. Traffic volume, wind speed, and absolute temperature (deviations from 32°F) 
for Event 78 with freezing rain 

The maintenance parameter is not significant for this event (Table 1.2).  

Table 1.2. Parameter estimates and 90% intervals for Event 78 

Parameter Estimate 90% Interval 
𝛽𝛽0 (No Snow) -7.75 (-11.40, -3.79) 
𝛽𝛽1 (|temp - 32|) 2.16 (1.05, 3.33) 
𝛽𝛽2 (Light Snow) -0.01 (-16.48, 16.51) 
𝛽𝛽3 (Moderate Snow) 0.08 (-16.40, 16.59) 
𝛽𝛽4 (Heavy Snow) 0.00 (-16.45, 16.43) 
𝛽𝛽5 (wind) 0.01 (-0.35, 0.38) 
𝜆𝜆  0.13 (-0.17, 0.44) 
𝜏𝜏2   12.93 (11.02, 15.18) 
𝛾𝛾  0.85 (0.78, 0.93) 
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The model for this event fits better than the model for Event 74, although we can distinctly see 
that this model picks up the behavior of the temperature variable and therefore overestimates 
certain areas while underestimating others.  

Event 114 with Periods of Heavy and Blowing Snow 

Event 114 was categorized by periods of heavy and blowing snow. Reductions in observed 
speeds from the baseline slowly increase at the beginning of the event followed by a gradual 
decrease to zero (Figure 1.6).  

 
Solid black line = Observed change in traffic speeds from the baseline speeds; 
Solid red line = Estimated change in traffic speeds from the baseline speeds;  
Dashed blue lines = 90% credible intervals for the expected change in speeds 

Figure 1.6. Changes in traffic speed compared to baseline speed for Event 114 with periods 
of heavy and blowing snow 

We do not observe many fluctuations similar to the number of general increases and decreases 
that are present in Events 74 and 78. The model adequately describes the trend in changes in 
speed from the baseline levels in terms of capturing the mean deviations from the baseline. The 
intercept term and the parameter for wind are significantly different from zero in this model 
(Table 1.3).  
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Table 1.3. Parameter estimates and 90% intervals for Event 114 

Parameter Estimate 90% Interval 
𝛽𝛽0 (No Snow) 7.21 (2.91, 11.39) 
𝛽𝛽1 (|temp - 32|) 0.08 (-0.12, 0.30) 
𝛽𝛽2 (Light Snow) 0.01 (-16.34, 16.37) 
𝛽𝛽3 (Moderate Snow) 0.02 (-16.53, 16.59) 
𝛽𝛽4 (Heavy Snow) 2.01 (-3.37, 7.36) 
𝛽𝛽5 (wind) -0.96 (-1.16, -0.75) 
𝜆𝜆  -0.29 (-0.85, 0.28) 
𝜏𝜏2   25.53 (20.86, 31.66) 
𝛾𝛾  0.34 (0.20, 0.53) 

 

In particular, wind seems to be driving the pattern we observe in the deviations in traffic speeds 
from the baseline levels (Figure 1.7).  

 
Orange/red solid line = Traffic volume; Green dotted line = Wind speeds;  

Blue dashed line = Absolute temperature 

Figure 1.7. Traffic volume, wind speed, and absolute temperature (deviations from 32°F) 
for Event 114 with periods of heavy and blowing snow 

Comparing Event 74, Event 78, and Event 114, we see that the model can work well, but its 
performance is not consistent. That is, while the model as a function of type of snow variable, 
wind speed, and temperature may adequately describe the observed deviations in traffic speeds 
from the baseline for some event, it is not general or flexible enough to capture all patterns 
observed.  
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Issues with the Type of Snow Variable 

During the application of the model to traffic data, there seemed to be a problem with the 
formulation for the “type of snow” variable, where “type of snow” was provided as either no 
snow, medium snow, or heavy snow: 

• Events tended to be categorized as having only one type of snow. This formulation is the 
same as only having one intercept. For events that had more than one type of snow reported, 
there were very few (one or two) changes between snow type categories. This did not seem 
to truly capture the behavior of the storm.  

• The lack of a more informative “type of snow” variable led to inconsistent model fitting 
performance because the other variables, wind and temperature, were not sufficient to 
explain the overall pattern.  

The general formulation of the hierarchical model also included a maintenance parameter. The 
snowplow was scheduled to plow the roads every 30 minutes. The assumption was that speeds 
improve when the roads are recently plowed and decrease until the next time the roads are 
plowed. The maintenance parameter was included as a series of indicator functions, where the 
maintenance parameter had a linear effect for each 30-minute span. This formulation was used to 
capture the so-called sawtooth effect that is expected to be seen in traffic speed data.  

The maintenance parameter was not significant in any of the fitted models. We may not have had 
enough time to truly see the effects of the plow, or it could be unrealistic to see such a dramatic 
pattern within a 30-minute span. Additionally, the maintenance parameter was included using the 
assumption that the plow would pass by exactly every 30 minutes. If the plows did not adhere to 
this schedule, the maintenance parameter would not have adequately described the deviations in 
traffic speeds from the baseline. However, because we did not observe a sawtooth pattern, we 
suspect that the maintenance effect did not manifest itself as expected.  

After fitting the model to multiple datasets, we found that both the manner in which the “type of 
snow” variable was provided and the formulation of the maintenance parameter were inadequate.  

1.3 Modification of the Model 

In modifying the model, we removed the maintenance effect parameter and type of snow 
formulation. In order to denote winter weather events, we used maintenance crew reports to 
obtain the dates and times when there was a winter weather event. Although we did not explicitly 
include a term in the model for type of snow, we at least knew that there should be some effect 
of winter weather events on traffic speeds.  

We received data from road weather information systems (RWIS) and obtained visibility data 
from automated weather observing systems (AWOS). While most of the new information was 
provided in 10-minute intervals, there were some inconsistencies in the time duration between 
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observations. We used a linear imputation approach to provide the missing data in order to have 
an observation every 10 minutes, unless the gap between observations was more than 30 
minutes. With the new data, we developed five candidate models to supplement the previous 
hierarchical model. These new models resulted from redefinitions of the function ℎ(𝛽𝛽, 𝑥𝑥𝑡𝑡) used 
in the model described in the previous section. We were able to obtain data for two new 
variables: precipitation type (snow, rain, none) and lane condition (wet, ice, dry). While 
precipitation type and lane condition initially contained more than three categories each, we 
combined the information into the three categories listed above in order to have enough data for 
each type of event. 

Using this information about the new models, the covariates are defined as follows:  

• 𝑋𝑋𝑡𝑡,|𝑡𝑡𝐻𝐻𝑡𝑡𝑡𝑡−32| is the absolute deviation of the temperature from 32°F 

• 𝑋𝑋𝑡𝑡,𝑁𝑁𝐿𝐿𝑁𝑁𝑀𝑀 is the observed wind speed 

• 𝑋𝑋𝑡𝑡,𝐻𝐻𝐿𝐿𝑣𝑣𝐿𝐿𝑣𝑣 is the visibility (in miles) as reported by the nearest AWOS station in Newton, 
Iowa 

• 𝑋𝑋𝑡𝑡,𝑟𝑟𝐻𝐻𝐿𝐿𝑁𝑁, 𝑋𝑋𝑡𝑡,𝑣𝑣𝑁𝑁𝑁𝑁𝑁𝑁, and 𝑋𝑋𝑡𝑡,𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻 are weather condition indicator variables taking on the value 
of 1 if the weather condition was observed during the given time period and 0 if 
otherwise 

• 𝑋𝑋𝑡𝑡,𝑁𝑁𝐻𝐻𝑡𝑡, 𝑋𝑋𝑡𝑡,𝐿𝐿𝑖𝑖𝐻𝐻, and 𝑋𝑋𝑡𝑡,𝑀𝑀𝑟𝑟𝐻𝐻 are pavement condition indictor variables taking on the value of 
1 if the pavement was observed to have that condition and 0 if otherwise 

Using these covariates, the following forms of ℎ(𝜷𝜷,𝒙𝒙𝒕𝒕) were considered: 

ℎ(𝛽𝛽, 𝑥𝑥𝑡𝑡) =  𝛽𝛽1𝑋𝑋𝑡𝑡,|𝑡𝑡𝐻𝐻𝑡𝑡𝑡𝑡−32| + 𝛽𝛽2𝑋𝑋𝑡𝑡,𝑁𝑁𝐿𝐿𝑁𝑁𝑀𝑀 + 𝛽𝛽3𝑋𝑋𝑡𝑡,𝐻𝐻𝐿𝐿𝑣𝑣𝐿𝐿𝑣𝑣  

ℎ(𝛽𝛽, 𝑥𝑥𝑡𝑡) =  𝛽𝛽1𝑋𝑋𝑡𝑡,|𝑡𝑡𝐻𝐻𝑡𝑡𝑡𝑡−32| + 𝛽𝛽2𝑋𝑋𝑡𝑡,𝑁𝑁𝐿𝐿𝑁𝑁𝑀𝑀 + 𝛽𝛽4𝑋𝑋𝑡𝑡,𝑣𝑣𝑁𝑁𝑁𝑁𝑁𝑁 + 𝛽𝛽5𝑋𝑋𝑡𝑡,𝑟𝑟𝐻𝐻𝐿𝐿𝑁𝑁 +  𝛽𝛽6𝑋𝑋𝑡𝑡,𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻  

ℎ(𝛽𝛽, 𝑥𝑥𝑡𝑡) =  𝛽𝛽1𝑋𝑋𝑡𝑡,|𝑡𝑡𝐻𝐻𝑡𝑡𝑡𝑡−32| + 𝛽𝛽2𝑋𝑋𝑡𝑡,𝑁𝑁𝐿𝐿𝑁𝑁𝑀𝑀 + 𝛽𝛽7𝑋𝑋𝑡𝑡,𝑁𝑁𝐻𝐻𝑡𝑡 + 𝛽𝛽8𝑋𝑋𝑡𝑡,𝐿𝐿𝑖𝑖𝐻𝐻 + 𝛽𝛽9𝑋𝑋𝑡𝑡,𝑀𝑀𝑟𝑟𝐻𝐻  

ℎ(𝛽𝛽, 𝑥𝑥𝑡𝑡) =  𝛽𝛽1𝑋𝑋𝑡𝑡,|𝑡𝑡𝐻𝐻𝑡𝑡𝑡𝑡−32| + 𝛽𝛽2𝑋𝑋𝑡𝑡,𝑁𝑁𝐿𝐿𝑁𝑁𝑀𝑀 + 𝛽𝛽3𝑋𝑋𝐻𝐻𝐿𝐿𝑣𝑣𝐿𝐿𝑣𝑣 + 𝛽𝛽4𝑋𝑋𝑡𝑡,𝑣𝑣𝑁𝑁𝑁𝑁𝑁𝑁 + 𝛽𝛽5𝑋𝑋𝑡𝑡,𝑟𝑟a𝐿𝐿𝑁𝑁 +  𝛽𝛽6𝑋𝑋𝑡𝑡,𝑁𝑁𝑁𝑁𝑁𝑁𝐻𝐻  

ℎ(𝛽𝛽, 𝑥𝑥𝑡𝑡) =  𝛽𝛽1𝑋𝑋𝑡𝑡,|𝑡𝑡𝐻𝐻𝑡𝑡𝑡𝑡−32| + 𝛽𝛽2𝑋𝑋𝑡𝑡,𝑁𝑁𝐿𝐿𝑁𝑁𝑀𝑀 + 𝛽𝛽3𝑋𝑋𝐻𝐻𝐿𝐿𝑣𝑣𝐿𝐿𝑣𝑣 + 𝛽𝛽7𝑋𝑋𝑡𝑡,𝑁𝑁𝐻𝐻𝑡𝑡 + 𝛽𝛽8𝑋𝑋𝑡𝑡,𝐿𝐿𝑖𝑖𝐻𝐻 + 𝛽𝛽9𝑋𝑋𝑡𝑡,𝑀𝑀𝑟𝑟𝐻𝐻  

Using the same diffuse priors described above, we can simulate values from the joint posterior 
distributions for each of these five models using Markov chain Monte Carlo methods. We fit the 
models to multiple events and compared the performance of each model for each event.  



11 

Figure 1.8 presents the results of fitting the five models to one storm event.  

 
Black = Observed changes in traffic speeds; Orange = Estimated expected changes in speeds;  

Teal/aqua = 90% credible intervals for expected changes in speeds 

Figure 1.8. Hierarchical model under the five candidate mean structures 
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If the five models listed above are numbered 1 through 5, the first row of Figure 1.8 corresponds 
to Models 1 (left) and 2 (right), the second row to Models 3 (left) and 4 (right), and the final row 
to Model 5. The best fit is provided by Model 5, which contains covariates of temperature 
(departure from freezing), wind, visibility, and the three lane conditions (wet, ice, and dry). 
Model 5 was generally the best fit to various storm events at a number of locations, so the results 
depicted in Figure 1.8 are fairly general as an overall indication of the model’s performance. 

The model developed in this section incorporating temperature, wind, visibility, and lane 
condition improved the fit of the models compared to the initial hierarchical model, but there 
were still inconsistencies in performance. The effects of the covariates included in the improved 
models do not seem to affect traffic speeds in exactly the same manner over the entire course of a 
storm event. For instance, during a given 24-hour period defined by blowing snow, wind speed 
can be quite variable and snow may fall at different rates, and the effects that these variables 
have on traffic speed can differ depending on the overall conditions. In order to account for the 
possible heterogeneous effects of the covariates on observed traffic speeds, we modified the 
hierarchical model as described in the following section.  

1.4 Adaptive Bayesian Model Formulation 

One strength of the Bayesian approach to model development that we employed in this project is 
that it lends itself to sequential updating. If data are accumulated over successive time periods, 
the posterior from one period (reflecting what we believe after observing the data from that 
period) becomes the prior for the next period (reflecting what we believe before seeing the data 
from the new period). A sequential model fitting process thus consists of a sequence of prior-to-
posterior transitions in which the posterior for one transition becomes the prior for the next. To 
put this concept into practice in modeling traffic speeds, we partitioned the data into four-hour 
periods. In this manner, we used sequential modeling to account for the fact that covariates may 
impact traffic speeds differently throughout the course of the day (i.e., the model can vary across 
four-hour periods). The modeling assumption is that the effects of the covariates remain constant 
within each four-hour period, but those effects may vary across time periods. The selection of a 
four-hour period was somewhat arbitrary and was driven in part by the desire to ensure that 
sufficient data were available within each time period for estimating the number of parameters 
included in the model.  

Posterior to Prior Discounting 

In the process of turning the posterior from one period into the prior for the next, it is beneficial 
to allow the model to reflect an increased level of uncertainty at the start of the new data period. 
This is accomplished by the process of discounting, which increases the variance of a posterior 
before it is used as the next prior. Discounting typically involves increasing the variance using a 
fixed discounting factor, which, although arbitrary, is treated as a tuning parameter in the model 
and subject to sensitivity analysis. We used a discounting factor of 0.01 to update the variances 
for the prior distributions of 𝛽𝛽 across all segments of the data to fit the model. We assessed the 
fit under various values and selected 0.01 because this value provided flexibility while still 
allowing the prior means and variances to inform the estimates in a manner we deemed suitable. 
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Although this value is small, there is considerable difference between using a small value of 0.01 
and estimating each segment of the data using diffuse priors. 

Pavement Sensor Data Thresholding 

The manner in which the traffic sensors record lane condition makes it possible to assign 
multiple categories in a short span of time. For example, there may be intermittent periods of dry 
recordings during a snow storm for various reasons. However, it is likely that the roads are not, 
in fact, completely dry each time a sensor records a dry value, particularly when those values are 
embedded within a larger string of wet or icy values.  

In order to manage the effect of a few data points on the updating of priors, as detailed in the 
following section, we chose to impose a threshold on the number of data points required for each 
lane condition category to update the prior distribution. That is, if only a very small number of 
observations were connected with one or two of the wet, icy, or dry categories, we did not update 
the prior distribution. Conversely, if a large majority of the lane conditions reported fell into only 
one category, we adjusted this period to only reflect that particular category. The goal was to not 
allow a small number of observations for wet, icy, or dry conditions to impact the estimates 
drastically, which would thus improve the stability of the estimation in terms of the effect of lane 
conditions on changes in traffic speed.  

For the data thresholding, we tested whether to exclude changes in lane condition if there were 
only one, two, or three successive observations in a category. We decided to disallow changes in 
lane condition if a run of the same values had a length less than or equal to three observations 
across all events and all periods, which reflected a minimum of 12.5% of the data for each 
period.  

Each four-hour period had the same exact structure as the hierarchical model given so far. The 
one exception involved the prior distributions for the 𝛽𝛽 parameters. We had initially selected 
diffuse normal prior distributions, whereas after the thresholding we only used diffuse prior 
distributions for the first four-hour period. We subsequently updated the prior distributions for 
the second through last four-hour periods for 𝛽𝛽. This updating allowed the covariates to have 
different effects on traffic speeds throughout the day(s), yet we ensured that the changes were not 
drastic, and evolved gradually, through the use of the prior distributions.  

The thresholding algorithm was applied as follows: 

1. Segment the dataset into four-hour periods, each with a minimum length imposed. 

2. For each segment, if there are less than three observations for dry, wet, or icy conditions, 
change the values of all covariates to zero. Alternatively, if more than 87.5% of the 
observations for lane condition fall into one category, adjust all covariate values to one for 
that category.  
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3. For the first time period, use diffuse priors for all parameters. Update prior means and 
variances for 𝛽𝛽 for all subsequent periods, including a discount factor for the variance term.  

4. Use the posterior draws from the 𝑏𝑏𝑡𝑡ℎ segment to update the prior means and variances of the 
(𝑏𝑏 + 1)𝑡𝑡ℎ segment, until 𝑏𝑏 = the final four-hour period.  

We illustrate the use of this adaptive version of the model with two winter storm events, one 
occurring in 2013 and the other in 2012. 

Event 1 with Wet Snow and Blowing Snow 

We selected a winter storm that occurred in Newton, Iowa in February 2013. Based on a crew 
report from a member of the winter storm maintenance crew active during this event, this 
particular event began on February 26, 2013 at 04:50 and ended on February 28, 2013 at 14:20. 
The event was categorized by periods of wet snow and blowing snow. The changes in speed for 
this event are shown in Figure 1.9, along with the fitted model results (gray curve) for each four-
hour segment and 90% credible intervals (dotted curves) for the expected change in baseline 
traffic speeds.  

 
Top: Black lines = Changes in speed; Gray lines = Fitted model results; Gray dots = 90% credible intervals 

Figure 1.9. Fitted model for Event 1 with wet snow and blowing snow, along with covariate 
values observed over the course of the event 
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The lower panel of Figure 1.9 displays the observed wind speeds, visibility, deviation in 
temperature from 32°F, and lane condition. Traffic speeds are clearly affected by the winter 
storm, as evidenced by the large, consistently negative values in the deviations from the baseline 
levels (which are represented by 0 on the vertical axis of Figure 1.9). The largest decreases in 
speeds occurred a couple of hours after the storm began and from about 13:00 on February 26 to 
about 12:00 on February 27. Until February 28, there was wet snow combined with blowing 
snow, which perhaps more greatly impacted traffic speeds. Throughout February 28, blowing 
snow was observed, and speeds seemingly returned to normal. However, these classifications are 
based purely on observations by crew members and can vary slightly from person to person. 

There is one particular four-hour period for this event in the first hours of February 28 in which 
there is a very large decrease in estimated traffic speeds and a large discontinuity between the 
previous and subsequent estimates of the expected changes in baseline levels. However, there is 
quite a bit of missing information in this interval, and the resulting uncertainty is reflected in the 
wide 90% credible intervals. In addition, the large decrease in the expected deviation from the 
baseline for this one time period did not affect the performance of the model in the subsequent 
period when speeds increased. 

Overall, Figure 1.9 illustrates that the adaptive nature of the model depends on the amount and 
consistency of data across time periods. In the earlier time period of this event, shown in the left-
hand portion of the plot, transitions between time periods caused mostly minor adjustments to 
the estimated expected speed changes. One would infer that the effects of the covariates included 
in the model were fairly stable over this period (and that the storm event was meteorologically 
consistent over this stretch of time). From somewhere around the midpoint onwards there are a 
number of sharper change points in the estimated expected values, reflecting either relatively 
sudden changes in speeds (e.g., around midday on February 27) or discontinuities in the data 
record, as described above. 

Short-Term Forecasting 

As we developed a model that could adequately describe the changes in speeds from a baseline 
level, we used this model structure to forecast the behavior of traffic for each segment, given the 
values of the covariates, beginning with the second four-hour segment. We fit the model to the 
first segment and used the estimates to update the priors for the second segment and produced 
forecast estimates and prediction intervals using the covariate values from the second segment. 
Once we observed the speeds from the second segment, we fit the model again as described 
above and produced forecast estimates and prediction intervals for the third segment. We 
continued the pattern of forecast and fitting the model until we had produced forecasts for each 
segment.  

We used the forecasts to evaluate changes in the covariates’ effects from segment to segment and 
demonstrate the model’s potential use in assessing highway maintenance during winter storms. 
Each forecast represents what is expected to happen if the traffic speed model does not change 
from the previous period. If the forecast is higher than what is observed, then there is evidence 
that a change has occurred in highway conditions to impact traffic speeds negatively. If the 
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forecast estimates are lower than what is observed, then there is evidence that conditions have 
improved and traffic speeds have increased more than expected. As shown by the second storm 
event, described in the following section, this discrepancy between the estimated and expected 
speeds could indicate that the intensity of the storm subsided or that highway conditions 
improved due to better maintenance. 

Event 2 with Periods of Rain, Wet Snow, and Blowing Snow 

To further illustrate the use of the model, we selected a second winter weather event, which 
began on February 23, 2012 at 08:10 and ended on February 24, 2012 at 17:50. This storm 
featured periods of rain, wet snow, and blowing snow. This event was shorter than Event 1 and 
included a transition period from rain to snow, which is particularly troublesome for highway 
maintenance because of the potential for the rain to wash away salt and other road treatments. 
The changes in speeds for this event are shown in Figure 1.10, along with the fitted model results 
for each four-hour time period, 90% credible intervals for the expected change in baseline traffic 
speeds, and the estimates and intervals for the forecasts.  

 
Top: Black lines = Changes in speed; Gray lines = Fitted model results; Gray dots = 90% credible intervals;  

Red line = Forecast speed change; Red dots = Forecast intervals 

Figure 1.10. Fitted model for Event 2 with periods of rain, wet snow, and blowing snow, 
along with covariate values observed over the course of the event 
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Fitted (i.e., estimated) expected values in Figure 1.10 are shown as the solid gray curve, 90% 
credible intervals are indicated by gray dots, forecast speed changes are shown as the solid red 
curve, and forecast intervals are indicated by red dots. 

In the fourth segment of the dataset, the fitted model reflects a large decrease in speeds during 
this time period, but the forecast shows that this is not in line with what was expected to occur 
based on information from the previous segments. The fourth and fifth time periods include 
missing values in addition to the large decrease in speeds. These missing values affect the 
uncertainty of the data, which is reflected in wider forecast intervals in subsequent intervals. 
However, because the sixth and seventh segments do not have any missing data and the observed 
values are not highly variable, the forecast intervals are much smaller by the final segment. 

Overall, the fitted model estimated the expected change from the baseline well. The forecast 
estimates closely matched the estimates of the expected change from the baseline in most cases, 
with the exception of two segments. In the first exception, the segment saw a drastic change in 
traffic speeds that was not in line with the previous segment’s behavior. In the other exception, 
the forecast estimated lower traffic speeds than what was observed, providing evidence that 
highway conditions improved more than expected during this segment. This improvement could 
be connected to a change in weather conditions and/or improvements in road conditions due to 
highway maintenance.  

1.5 Conclusions 

In this part of the report, we have provided an overview of models developed to describe and 
potentially forecast changes in traffic speed during winter weather events in Iowa. The final 
adaptive model structure shows promise as a general approach for location-specific modeling. 
The key results of this research include the following: 

• Typical traffic speeds depend on location, day of week, and time of day. Assessing traffic 
speed patterns on a location-specific basis, rather than attempting to model speed itself, is 
important for assessing the effect of storm events on changes in speed from a typical or 
baseline measure. 

• The effects of winter weather variables and existing road conditions on changes in traffic 
speed are variable in both space and time. Important factors appear to be a mix of global 
effects, such as temperature and visibility, and highly localized effects, such as the condition 
of the pavement at sensor locations. 

• It is important to allow mathematical models to adapt to varying conditions over time. We 
have presented one reasonably straightforward way to achieve this goal that is appropriate for 
the data sources and frequencies available to us. The key to our approach is to model the 
dynamic main effects for a small set of primary covariates rather than to model the fixed 
interactions among a larger set of both primary and secondary covariates. It is our opinion 
that this latter approach is not possible given existing data collection programs. 
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• The goal of running models, such as those developed here, in real time for the purposes of 
obtaining instantaneous feedback and forecasts is potentially achievable. Reaching this goal 
will require additional technological improvements in data collection, transfer, and 
processing, as well as the development of more efficient computational algorithms than those 
used in this project.  
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PART II: DATA-DRIVEN URBAN TRAFFIC PREDICTION FOR WINTER 
MAINTENANCE PERFORMANCE MEASUREMENTS 

2.1 Introduction 

The model developed in Part I is for data from a single site, which is useful for predicting traffic 
speed changes in rural areas. In urban settings, multiple sites collect traffic data from a network 
of roads, and the data are typically correlated in both time and space. Modeling data from 
multiple sites jointly can help in detecting abnormal traffic patterns earlier and in more 
accurately predicting traffic speed changes.  

The objective of Part II of this report was to use traffic data and limited weather information to 
develop models for detecting abnormal traffic patterns and predicting traffic speed and volume at 
any location.  

We received two sets of data for this project: Wavetronix data and INRIX data. Both datasets 
were collected in 2013 and 2014 on I-35, I-80, US 65, and IA 5 in Des Moines, Iowa. 

The analysis of the data was based on each location and day of the week, and a multivariate 
quantile estimator was used for extreme value detection and baseline construction. The 
estimation of multivariate quantiles (Babu and Rao 1988, Liu 1990, Abdous and Theodorescu 
1992, Chaudhuri 1996, López-Pintado and Romo 2009) is nontrivial because there is no unique 
way to order multivariate data. The method proposed by Chaudhuri (1996) requires a directional 
vector, which is difficult to determine. The computation of data depth discussed by Liu (1990) 
and López-Pintado and Romo (2009) is expensive when the sample size is large.  

To circumvent such difficulties, we used the method by Abdous and Theodorescu (1992) in this 
project; the asymptotic properties of this method could be derived easily. Using this method, we 
estimated the median curve for traffic speed and volume for each day of the week and for each 
location, and the median curve provided us with a baseline of normal traffic conditions during 
various times of day and days of the week.  

We also used the 10th quantile curve to detect extreme deviations in traffic speed during four-
hour periods based on the INRIX data; an online app was developed for this task and is described 
in this report. During winter weather events, this method of extreme value detection gives an 
idea of the extent of the storm’s impact across the Des Moines area and provides a method to 
identity areas that are affected more than others (as measured by traffic speed and volume). Note 
that the Wavetronix locations are sparse, so we used the INRIX data to detect the areas affected 
by the weather events.  

We then fit a hierarchical Bayesian model to the deviations in Wavetronix speed data from the 
median speed curve at two locations where weather information was available. Furthermore, we 
demonstrated how a curve kriging (Giraldo et al. 2011) approach can be used to predict the speed 
and volume at any location in between by combining the two datasets. 
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This part of the report is organized as follows. Section 2.2 describes the data sources and the 
preliminary analysis of the data. In Section 2.3, the multivariate quantile estimation method is 
introduced, and Section 2.4 discusses the implementation of the method to detect extreme traffic 
conditions. By using the estimated median as the baseline, a dynamic Bayesian model is applied 
in Section 2.5 to the Wavetronix data from two Des Moines locations. Section 2.6 briefly 
introduces the curve Kriging method. The conclusions of this project and a discussion are given 
in Section 2.7. 

2.2 Data Sources and Preliminary Analysis of the Data 

Data Sources 

We received two sets of data for this project: Wavetronix data and INRIX data. Both datasets 
were collected in 2013 and 2014 on I-35 and I-80, US 65, and IA 5 in Des Moines, Iowa. The 
data collection locations are shown in Figure 2.1.  

   
Figure 2.1. Des Moines metropolitan area with black points showing Wavetronix (left) and 
INRIX (right) data collection locations (with the INRIX data collection locations jittered) 

The Wavetronix dataset included traffic speed and volume data collected at 5-minute intervals 
across 22 locations. The INRIX dataset was much denser spatially, and the corresponding 
temporal resolution was 2 minutes. Each location provided data from two lanes in either 
direction, including data collected from on/off-ramps. While the Wavetronix dataset was from 
Iowa DOT sensors, which provide high-quality readings for both speed and volume, the 
locations were sparse, and spatial dependence due to the long distances between sites was not 
evident; more details are provided below.  



21 

The INRIX speed dataset was not as consistently accurate as the Wavetronix dataset, but it was 
reasonable to assume that the INRIX dataset was self-consistent. The INRIX dataset did not 
include information about traffic volume. 

Preliminary Analysis of the Data 

We began the preliminary analysis by first examining the spatial correlation of the traffic speeds 
and volumes from the Wavetronix dataset across all available locations. To do this, we first 
selected a location and compared the observed traffic speeds at time n to the traffic speeds at 
time n-1, i.e., the observed traffic speeds were compared with those observed 5 minutes prior at 
every other location. A similar comparison was made for traffic volume. We expected that 
locations closer together would be more alike than those further apart. However, we did not find 
this. In general, there was no clear pattern in the data. This could have resulted from a number of 
factors, but we believe that the two main issues were the sparsity of the locations around the 
metropolitan area (in particular, the lack of data for certain highways) and the mismatch between 
the frequency at which the data were collected and the spatial distances among the sites.  

The frequency at which the Wavetronix data were provided was every 5 minutes. While this may 
be considered a fine-scale resolution for some applications, it may not be the correct time scale 
to study spatial dependence, for which the distance that a vehicle can travel during this time 
period in different directions needs to be taken into account. During a 5-minute period, it is 
possible that a vehicle may pass multiple locations at which there is a sensor to record traffic 
speed and volume. This possibility may have affected the spatial dependence among locations at 
various distances from each other in the Wavetronix data.  

If the time scale at which data were collected had corresponded well to the distances between the 
traffic sensor locations, the data would exhibit strong spatial dependence, and it would be 
possible to make accurate predictions regarding future traffic speeds or volumes utilizing this 
dependence structure. Because this was not the case for this dataset, it was difficult to extract the 
necessary information from the Wavetronix data to understand how a slow-down or speed-up 
event at one location affected traffic speeds in the next few minutes at a nearby location.  

We also thoroughly examined the INRIX data provided. The INRIX data were much denser in 
space, with one reading for each 1-mile segment, and the corresponding temporal resolution was 
2 minutes. We first compared the Wavetronix data, which can be considered as the gold 
standard in terms of traffic speed accuracy, with the INRIX data at each location. The INRIX 
traffic speed data had high variability and did not always match the Wavetronix data, and 
frequently the recorded INRIX data were simply the posted speed limit in the area. The INRIX 
data included a score for the quality of data that was intended to be used to assess the data 
quality, although it is not clear how it was defined exactly. In general, the mismatch between the 
Wavetronix and INRIX data was too great for us to have confidence that the INRIX data at the 
point level provided actual traffic speeds.  

However, the INRIX data were self-consistent and were collected at a finer time scale (every 2 
minutes) and at many more locations than the Wavetronix data. The INRIX data therefore 
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provided insight into the spatial structure of traffic speeds in the Des Moines area, which could 
be used in conjunction with the Wavetronix data for prediction; more details are provided in the 
section below on curve Kriging. While the traffic speeds reported were not always accurate at the 
point level, the data did reflect the general traffic pattern. For example, we saw a general pattern 
of lower traffic speeds reported by INRIX during winter storms, as we would expect. Using both 
sources of information, we could obtain a better picture of the impact of winter storms on traffic 
speeds across the Des Moines metropolitan area. In particular, we could identify when traffic 
speeds were greatly reduced and see which general locations were most affected. We discuss this 
further below in the section on extreme value detection.  

2.3 Multivariate Quantile Estimation 

Traffic speeds and volumes are likely to be impacted by numerous factors, such as time of day or 
day of the week. The morning rush, for instance, produces a spike in traffic volume, and speeds 
may be slower when traffic volume is too high. In general, for each location there tends to be 
similar traffic pattern on each day of the week, as seen in Figure 2.2 for traffic volume.  

  
Red=Estimation of the corresponding quantile curves; Gray=2013 Thursday observations 

Figure 2.2. Multivariate quantiles: median (left) and 10% (right) for Wavetronix volume 
data across all Thursdays in 2013 for location I-35/I-80 EB to Merle Hay Road WB 

With this consistency in traffic patterns in mind, we constructed a baseline traffic pattern for both 
speed and volume for each location by day of the week. With a collection of traffic speeds and 
volume curves for a particular day of the week across the entire year, we estimated the median 
curve and used it as the baseline. Using the median rather than the mean provided a robust metric 
that was not influenced by outliers in traffic conditions, which was critical because we expected 
to observe when a winter weather event occurred.  
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To obtain the quantile curves, we used a methodology discussed by Abdous and Theodorescu 
(1992) that allowed us to compute the quantile curve of interest. This method generalizes the 
definition of the thα  quantile in the univariate case, and a Newton-Raphson procedure is 
implemented to estimate the quantile curve in the multivariate case. It can be shown 
(Kemperman 1987, Abdous and Theodorescu 1992) that, under mild conditions, there exists one 
unique theoretical quantile curve to which the estimated one converges.  

We constructed the baseline (median) curves for both the Wavetronix (speed and volume) and 
INRIX (speed) data, as well as multiple quantile curves, for each location and day of the week. 
For the Wavetronix data, we applied the methodology to estimate the quantiles using the 
observed traffic speeds and volumes. For the INRIX data, we smoothed the observations by 
setting the weight to the quality score first, because some observations had a quality score of 
zero, indicating that the datum was not reliable. As such, we applied the method to the smoothed 
data.  

To demonstrate the methodology, we used volume data from each Thursday in 2013 at sensor 
location I-35/80 EB to Merle Hay Road WB. The results of the estimated median and 10th 
quantile are shown in Figure 2.2. The median curve captures the overall trend structure of the 
speed and volume data for each location by day of the week. The results for the Wavetronix and 
INRIX data are similar.  

A brief introduction to the function used to perform the multivariate quantile curve estimation is 
included in Appendix B.  

2.4 Extreme Value Detection 

In order to focus solely on how a winter storm affects traffic speeds, we initially examined the 
difference between the observed traffic speeds during a winter storm and the median curve for 
traffic speed for the specific location and day of the week, as described above. If traffic speeds 
are impacted by the winter storm, we expect that the response variable would be consistently 
negative. 

For any given location and for a particular time of day and day of the week, we produced a 
distribution of differences between the observed traffic speeds (or volumes) and the median 
traffic speeds. If the resulting difference was zero, then the observed speed was exactly the same 
as the median speed, which indicated that the observed speed was indicative of normal traffic 
conditions. We expected that, in general, most of the differences would be around zero, with 
slightly different amounts of variation for each location.  

In order to flag whether an observed speed was an extreme value (in the sense that it was lower 
than expected and very unlikely to be observed under normal traffic conditions), we compared it 
with the speed at that particular time of day from the 10% quantile curve. Then, we examined the 
results by four-hour periods as follows: 00:00 to 4:00, 4:01 to 8:00, etc. In this way, we could 
flag an entire four-hour period and visualize how the affected areas changed over time during a 
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winter weather event. Because the INRIX dataset included more observations and locations than 
the Wavetronix dataset, we used the proportion of INRIX values that were lower than the 
corresponding 10% quantile curve for each four-hour period to detect abnormal traffic during a 
winter weather event.  

An online app was developed using the Shiny package in R. The user interface is shown in 
Figure 2.3.  

 
Figure 2.3. User interface of the extreme value detection app 

Users can select the range of the dates they would like to examine. For example, if the range 
2013-01-01 to 2013-01-31 is chosen, there should be 186 results because 31 days are selected 
and there are 6 results per day. Depending on the speed of the server, it may take several minutes 
to prepare the results, as shown in Figure 2.4.  
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Figure 2.4. System preparing results for the user-selected dates, 2013-01-01 to 2013-01-31 

When the results are ready, the “Generating images…” message disappears, and the user can 
click the play icon, i.e., the triangle under the “Time intervals” panel, to view the results. The 
procedure for starting this app is briefly introduced in Appendix C. 

While there did not seem to be a strong spatial pattern evident in the normal traffic data, as 
described in Section 2.2, there was a spatial pattern in the decrease in traffic speeds induced by 
winter weather events. We demonstrate the results obtained for January 31, which were impacted 
by winter weather events, below. For illustration purposes, Figure 2.5 and Figure 2.6 show the 
detection results for the first two four-hour periods, i.e., from 00:00 a.m. to 08:00 a.m.  
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Figure 2.5. Locations that reported INRIX data from 00:00 a.m. to 04:00 a.m. on January 

31, 2013 

 
Figure 2.6. Locations that reported INRIX data from 04:00 a.m. to 08:00 a.m. on January 

31, 2013 

Each location is color-coded by the proportion of the observations that fall below the 
corresponding 10% quantile curve. Two dots near the same location indicate results from two 
directions. 
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From Figure 2.5, we see a moderate speed reduction on westbound I-35 and I-80, eastbound IA 
5, northbound US 65, and eastbound I-235 from 00:00 a.m. to 04:00 a.m. on January 31. From 
Figure 2.6, we clearly see that traffic speed is largely affected by the winter weather event from 
04:00 a.m. to 08:00 a.m., as is the case for the entire day of January 31.  

2.5 Dynamic Model for Traffic Speed for Locations with Corresponding RWIS 

Of the RWIS locations in the Des Moines area, two were close to locations provided in the 
Wavetronix dataset. These were Location 1: I-80 WB at US 65 SB LOOP and Location 2: IA 5 
at MILE MARKER 103.55. Each location provided data for multiple directions and lanes. For 
other locations, there was no direct measurement available for lane condition that would indicate 
whether a decrease in traffic speeds was due to icy/wet/other conditions.  

We selected Wavetronix speed data from the winter weather event on January 29 through 
January 31, which was characterized by initial periods of wet snow with a transition to blowing 
snow. We used the difference between the observed traffic speeds and the estimated median 
speeds as the response variable to remove deviations in traffic speeds that were due to the day of 
the week or the time of day. Previously, we had had success modeling deviations in traffic speed 
through a model that uses visibility, pavement temperature, lane condition (wet, ice, dry), and 
wind speed as covariates. However, in the previous analysis the data for pavement temperature 
and lane condition were collected at the same location as the data for traffic speed. In that case, 
we were confident that there would not be a mismatch, although there may have been a 
discrepancy between the lane conditions reported at the RWIS site and what was truly observed 
at the Wavetronix location for this project.  

To develop the model relating weather conditions to traffic speeds, we first partitioned the data 
into four-hour periods, as mentioned above, with the last period potentially being longer than 
four hours. The general model structure applied to each partition was as follows: 

𝑦𝑦𝑡𝑡 =  𝛽𝛽0 +  𝛽𝛽1𝑥𝑥𝑡𝑡,𝑁𝑁𝐿𝐿𝑁𝑁𝑀𝑀 +  𝛽𝛽2𝑥𝑥𝑡𝑡,𝐻𝐻𝐿𝐿𝑣𝑣𝐿𝐿𝑣𝑣 + 𝛽𝛽3𝑥𝑥𝑡𝑡,|𝑡𝑡𝐻𝐻𝑡𝑡𝑡𝑡−32| + 𝑤𝑤𝑡𝑡 

𝑤𝑤𝑡𝑡 = 𝛾𝛾𝑤𝑤𝑡𝑡−1 + 𝑜𝑜𝑡𝑡 

where 𝑤𝑤𝑁𝑁 = 0 and 𝑜𝑜𝑡𝑡  ~ 𝑁𝑁(0, 𝜏𝜏2).  

For the first four-hour period, we set diffuse normally distributed prior distributions for the βs, a 
diffuse inverse gamma distribution for 𝜏𝜏, and a uniform prior, from -1 to 1, for 𝛾𝛾. Given the 
posterior distributions for the parameters during the first four-hour period, we then updated the 
prior distributions for the βs for the second period and continued this process through the last 
time period. In this manner, we allowed the effects of wind speed and the other covariates to 
slowly evolve over time, if needed, because the effect of, for instance, wind speed can vary 
drastically under different weather conditions. We applied the model to the two locations with 
RWIS sites nearby, as discussed below.  
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Location 1: I-80 at US 65 SB LOOP 

At Location 1, the winter weather event was found to cause a steady decrease in traffic speeds 
below the baseline traffic speed, reaching the minimum at around 7:00 a.m. to 8:00 a.m. Traffic 
speeds slowed to over 30 miles per hour less than the baseline traffic speed in both directions. 
After 8:00 a.m., a steady increase in traffic speeds was observed in both directions. The 
eastbound traffic speeds returned to around the baseline traffic speed, with a small dip in traffic 
speeds, around 5:00 p.m. to 6:00 p.m. However, the westbound traffic speeds experienced 
another dip around 4:00 p.m.  

For Location 1, the values of visibility and wind speed were taken from the closest 
AWOS/automated surface observing system (ASOS) location, which in this case was Ankeny. 
Here again there may have been a disconnection between what happened at Location 1 versus 
what was observed in Ankeny. The closest lane condition reports showed periods of wet and icy 
conditions for the first 28 hours of the winter storm and only dry lane conditions for the last 20+ 
hours. 

The model results for Location 1 are displayed in Figure 2.7 and Figure 2.8. 

 
Black line = Observed speed reduction from the baseline 

Blue line = Fitted results based on the Bayesian dynamic model 
Blue dotted lines = Corresponding 90% credible region 

Figure 2.7. Eastbound I-80 at US 65 SB LOOP 
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Black solid lines = Observed speed reduction from the baseline 

Blue solid lines = Fitted results based on the Bayesian dynamic model 
Blue dotted lines = Corresponding 90% credible region 

Figure 2.8. Westbound I-80 at US 65 SB LOOP 

For the eastbound direction (Figure 2.7), we see a generally adequate fit for most of the four-
hour periods. The fitted models for the third and fourth four-hour periods, which coincide with 
the highest decreases in traffic speed, do not seem to match exactly with what was occurring 
during this period. At around 1:00 p.m. on January 30, traffic speeds plateau and do not deviate 
too far from zero, nor do they experience large increases or decreases. While the model performs 
well during this period, we would have liked the model to capture trends in terms of large 
deviations from the baseline traffic patterns.  

For the westbound direction (Figure 2.8), the model has similar issues. During the second four-
hour period, the fitted model does not capture the decrease in traffic speeds, while in the third 
and fourth four-hour periods the models generally capture the trend much better than the models 
in the eastbound direction. However, the fitted model underestimates the increase in traffic 
speeds following the large decrease. We again see that the model adequately describes minor 
changes to traffic speeds. Here, however, we see that the traffic speeds are consistently negative 
and do not include zero, and therefore there is a deviation from the baseline traffic speed in the 
westbound direction throughout the majority of this weather event.  
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Location 2: IA 5 at MILE MARKER 103.55 

Similarly to Location 1, at Location 2 the winter weather event was found to cause a steady 
decrease in traffic speeds below the baseline traffic speed, reaching the minimum at around 7:00 
a.m. to 8:00 a.m., as shown in Figure 2.9 and Figure 2.10.  

 
Black solid lines = Observed speed reduction from the baseline 

Blue solid lines = Fitted results based on the Bayesian dynamic model 
Blue dotted lines = Corresponding 90% credible region 

Figure 2.9. Eastbound for IA 5 at MILE MARKER 103.55 

 
Black solid lines = Observed speed reduction from the baseline 

Blue solid lines = Fitted results based on the Bayesian dynamic model 
Blue dotted lines = Corresponding 90% credible region 

Figure 2.10. Westbound for IA 5 at MILE MARKER 103.55 
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Traffic speeds slowed to more than 30 miles per hour less than the baseline traffic speed in both 
directions, again similarly to Location 1. After 8:00 a.m., a steady increase in traffic speeds is 
evident in both directions, although it takes much longer for traffic speeds to increase to baseline 
levels than at Location 1.  

For Location 2, the values of visibility and wind speed were taken from the Des Moines AWOS 
station. As mentioned above, there may have been a disconnection between the values of wind 
speed and visibility recorded at the Des Moines AWOS station and those observed at Location 2. 
The closest lane condition reports showed periods of mostly icy conditions for the first 28 hours 
of the winter storm and mostly dry lane conditions for the last 16+ hours. Wet lane conditions 
were only reported during the first four-hour period. 

Model performance in terms of deviations in traffic speed from baseline values is subpar for 
some of the four-hour intervals in the eastbound direction (Figure 2.9). It is difficult to assess the 
adequacy of the model, however, because the weather variables observed at the corresponding 
stations may have been much different than what was actually occurring at the location at which 
traffic speed was recorded. The fitted model for the westbound direction (Figure 2.10) does not 
capture the initial decrease in traffic speeds. By the third four-hour period, we see that the fitted 
model overestimates the decrease, and the model then overestimates the increase in the 
subsequent period. The trend is captured much better in the second half of the storm event, with 
the decrease and increase in traffic speeds being adequately modeled.  

Generally, in past analyses we found that the covariates included in this model are good 
indicators of traffic speed trends. When the combination of wind speed, visibility, pavement 
temperature, and lane condition cannot predict traffic speed well, we may be able to attribute 
decreases in speed to other factors, such as traffic incidents or maintenance. However, it is 
difficult to determine whether the model’s inadequacies are due to a mismatch between the lane 
conditions, wind speeds, and pavement temperatures recorded at nearby locations and those 
experienced at the actual locations where traffic speed data were collected.  

An example of this mismatch can be seen in Figure 2.11, where the point estimates for the 
coefficients of the fitted model do not always match expectations.  
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Figure 2.11. Point estimates for the coefficients of the fitted models for the westbound 

direction of Location 2 

The point estimates for lane conditions, in particular, are counterintuitive in some cases. Take, 
for instance, the point estimate for wet conditions in Figure 2.11. Typically, we expect that when 
the lane is wet, traffic speeds decrease. However, the estimate for each fitted model in Figure 
2.11 is consistently around zero or positive, which indicates that somehow wet lane conditions 
correspond to increases in traffic speed. This situation similarly occurs for the parameter 
estimates for icy road conditions. When the road is dry, traffic speeds should increase, or at least 
remain around zero. This occurs for the most part.  

2.6 Curve Kriging 

In spatial settings, Kriging methods (Cressie 1993) are often used for prediction; the 
methodologies are well developed for univariate observations. Given observations at different 
locations, Kriging methods, such as ordinary Kriging and universal Kriging, provide a weighted 
average of these observations such that the predictor for a new location is unbiased and the 
variance of the predicted value is minimized. Kriging for functional observations has been 
studied by Ramsay (2006) and many others (Goulard and Voltz 1993, Nerini et al. 2010, Giraldo 
et al. 2011, Franco-Villoria and Ignaccolo 2015, Menafoglio et al. 2013, Menafoglio and Petris 
2016).  

In this project, we used the curve Kriging method (Giraldo et al. 2011) to predict traffic speeds 
and volumes in the Des Moines metropolitan area. Because the Wavetronix sensor data were too 
sparse to provide information on the spatial dependence structure of the area, we derived the 
spatial structure from the INRIX data. More specifically, parameters for the trace-variogram, 
including the range and sill, were estimated based on the INRIX data to identify the spatial 
model. The same spatial model was then used in the curve Kriging method to predict the traffic 
speed and volume using the Wavetronix data. Historical data were used to derive the pointwise 
confidence band. 
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For any given location, we can use curve Kriging to predict the speed and volume of traffic using 
data from the two surrounding Wavetronix stations. As an illustration, we predicted the speed 
and volume of traffic at sensor IA 5 EB to SW CONNECTOR-EB on January 29, 2013 based on 
the observations at the sensor’s two nearest neighbors. Figure 2.12 shows the geometric 
information of the three locations. 

 
X = Location of the target sensor 

N1 and N2 = Locations of two nearest neighbors among the available sensor locations 

Figure 2.12. Locations of the target sensor (IA 5 EB to SW CONNECTOR-EB) and the two 
nearest neighbors 

Figure 2.13 shows the prediction results for traffic speed and volume. 

       
Orange/red line = Observation at the target location 

Teal line = Predicted result 
Green dotted lines = Corresponding 95% pointwise confidence bands 

Figure 2.13. Prediction of speed (left) and volume (right) based on curve Kriging 
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As Figure 2.13 shows, the original observations fall into the pointwise 95% prediction 
confidence band. The predicted traffic speed and volume closely follow the actual speed and 
volume, which indicates that the methodology works well in this case. We have examined other 
cases, and the results are similar. A method for using the curve Kriging estimation function in R 
is given in Appendix B. 

2.7 Conclusions 

In this part of the report, we introduced several models based on two sources of traffic data, 
INRIX and Wavetronix, and limited weather information. Because the INRIX data included 
more locations than the Wavetronix data and the corresponding observations were self-
consistent, we used the INRIX data to detect abnormal traffic areas.  

We developed a method to estimate the multivariate quantiles for the INRIX observations, and 
the INRIX data were compared with the estimated quantiles to identify abnormal traffic patterns 
in both space and time.  

An online interactive app was developed to visualize the results and help the Iowa DOT make 
informed decisions about winter weather maintenance.  

A dynamic Bayesian model was implemented at two Wavetronix sensor locations where weather 
information was available, with the corresponding median curve as the baseline. The fitting 
results were satisfactory.  

Furthermore, we also explored the spatial structure of the traffic data using the INRIX dataset 
and used curve Kriging to predict traffic speed and volume at any location. The prediction 
method was tested at the Wavetronix locations and was found to work well.
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APPENDIX A: BAYESIAN HIERARCHICAL MODEL 

All models presented here are fit using the statistical software R (R Core Team 2016) and JAGS. 
The R and JAGS software and the following R packages should be installed and loaded before 
using the functions listed below.  

Packages required: rjags, ggplot2, dplyr, lubridate, reshape2, gridExtra 

Forecast Traffic Speed Deviations from Baseline Speeds - DOTforecast.R 

Use: draws from prior distribution of β terms 
Function: beta_forecast  

Usage: beta_forecast(means, vars) 

Arguments: 
 means: vector of estimated means for the prior distributions of the β terms in the model 
 vars: vector of estimated variances for the prior distributions of the β terms in the model 

Use: forecast traffic speeds 
Function: data_model 

Usage: data_model(betpriors, tauprior, gamprior, data) 

Arguments: 
 betpriors: matrix of draws from the prior distributions of the β terms obtained through 

beta_forecast 
 tauprior: vector of draws from prior distribution of the τ parameter 
 gamprior: vector of draws from prior distribution of the γ parameter 
 data: dataset corresponding to winter weather event of interest 

JAGS Code for Sequential Bayesian Model - JAGSModels_Sequential.R 

Use: fitting model in JAGS 
JAGS Function: mod5.seq  

Usage: must be used using JAGS language 

Arguments: example provided in Example_FitModel.R 
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Plotting the Results of the Bayesian Model - MCMCresults_plots.R 

Use: plotting values of covariates 
Function: cov.plots 

Usage: cov.plots(event) 

Arguments: 
 event: event is the data corresponding to the winter weather event of interest 

Use: plotting results from fitted model 
Function: mcmcresults 

Usage: mcmcresults(mcmc, model, event) 

Arguments: 
 mcmc: posterior draws from JAGS object 
 model: model option – default is option model5 
 event:  event is the data corresponding to the winter weather event of interest 

Dealing with Missing Covariate Values during a Winter Weather Event - missing.R 

Use: imputing missing covariate values 
Function: missing.val 

Usage: missing.val(event) 

Arguments: 
 event: event is the data corresponding to the winter weather event of interest 

Applying a Threshold for Proportion of Values Corresponding to Lane Condition - 
propthres.R 

Use: adjusting values for lane condition 
Function: prop.thres 

Usage: prop.thres (event, thresh) 

Arguments: 
 event: event is the data corresponding to the winter weather event of interest 
 thresh: value of threshold – should correspond to a proportion (in Example_FitModel.R 

default is 13%) 
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Discounting Variance - variance_adj.R 

Use: discounting variance terms 
Function: var_fun 

Usage: var_fun (data, prvar, tau, gam, thres) 

Arguments: 
 data: data for one segment of winter weather event 
 prvar: variance of the prior distribution 
 tau: expected value from posterior distribution of τ  
 gam: expected value from posterior distribution of γ 
 thres: value of threshold – should correspond to a proportion (in Example_FitModel.R 

default is 13%) 

Step-by-step Procedure to Fit the Model to One Winter Weather Event – Further 
Functions Defined: Example_FitModel.R 

Instructions: It is important to first source the R functions and load the R packages required. The 
R code should then be run piece by piece. First, the data must be processed and subsetted. Then, 
the model should be fitted to the data, and finally the forecast estimates of the expected values 
under the observed covariate values can be produced.
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APPENDIX B: SHORT MANUAL FOR THE FUNCTIONS DEVELOPED FOR 
MULTIVARIATE QUANTILE CURVE ESTIMATION AND CURVE KRIGING 

The following packages should be installed and loaded before using the functions listed below.  

Packages required: fda, ggplot2, geofd  

The functions listed below are available in Auxiliary_function.R. 

Multivariate Quantile Estimation Function 

Function: median.curve.BMR 

Usage: median.curve.BMR(data, alpha = 0.1, ind.plot = FALSE, ind.value = "Speed") 

Arguments: 
 data: the matrix of the traffic observations. Each column represents one traffic 

observation, that is, speed or volume. Each row represents one specific observation time. 
There could be missing values in the data matrix, but observations with missing values 
are not used in the quantile curve estimation at this point. Therefore, it is recommended 
that observations with missing values should be handled before passing to data.  

 alpha: the quantile value. For example, alpha = 0.1 means that the 10% quantile is 
estimated. The default value for alpha is 0.1. 

 ind.plot: logic value, indicating whether the plot with the estimated quantile curves is 
shown. The default value is FALSE. 

 ind.value: auxiliary variable using to handle the outliers in the estimation procedure. If 
ind.value = "Speed", any estimated curve with a maximum value greater than 100 will be 
re-estimated. Additionally, this value appears in the y-axis of the plot if ind.plot = TRUE. 
ind.value = "Speed" corresponds to the speed observations. If the data matrix contains the 
volume observation, ind.value = "Volume". 

Values: 
 quantile.curve: The estimated quantile curve corresponding to the alpha quantile. 
 quantile.curve.smoothed: The smoothed version of the quantile.curve using B-spline with 

9 equally spaced inner knots.  

Example:  
data = matrix(rnorm(4000), nrow = 100)  

median.curve.BMR(data, alpha = 0.1, ind.plot = TRUE, ind.value = "Speed")  
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Curve Kriging Estimation Functions 

Two functions for performing curve Kriging estimation are listed below. The first is used to 
estimate the trace variogram, and the second is used in the curve Kriging estimation. 

Function: trace.variog.inrix  

Usage: trace.variog.inrix(trace.data, trace.geom, geom.tag) 

Arguments: 
 trace_data: the matrix of the observations at the available locations. Each column 

represent one observation. Observations with missing values are not used at this stage.  

 trace.geom: the data frame containing the location information of the observations in 
trace_data.  

 geom.tag: the column names of trace.geom that correspond to the location information of 
the observations in trace_data. The default value for geom.tag is 
c("Longitude_Corrected","Latitude_Corrected"). 

Values:  
 best.model: the best fitted trace variogram model. 

Example:  

data = matrix(rnorm(5000), ncol = 50) 

trace.geom = data.frame(lat= rnorm(50), lon = rnorm(50)) 

geom.tag = c("lat", "lon") 

trace.variog.inrix(trace.data = data,trace. geom = trace.geom, geom.tag = geom.tag) 

Function: curve.krig  

Usage: curve.krig(geom.target, geom.two.selected, candidata.curve, best.model, geom.tag, 
data.1.his, data.2.his) 

Arguments:  
 geom.target: the data frame that contains the location information of the target station. 

 geom.two.selected: the data frame containing the location information of the two nearest 
stations. Note that we only use two nearest station to predict the traffic values for the 
target station.  

 candidata.curve: the matrix that contains the observations for the two nearest locations in 
columns.  

best.model: the fitted model by trace.variog.inrix using the INRIX data. 

geom.tag: the column names of geom.two.selected that correspond to the location 
information of the observations in candidata.curve. The default value for geom.tag is 
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c("Longitude_Corrected","Latitude_Corrected"). Notice that geom.target must have the 
same location names as geom.two.selected. 

data.1.hist: the matrix of historical observations at the first location in geom.two.selected. 
Each column represents one observation. This data is used to compute the confidence 
band. 

data.2.hist: the matrix of historical observations at the second location in 
geom.two.selected. The format is the same as data.1.hist, and the observations in the 
same column of data.1.hist and data.2.hist should be made at the same time. 

Values: 
 cur.krig: the predicted traffic values for the target location by curve Kriging method. 
 sigma.band: the standard error of the predicted curve Kriging results. 

Example:  

data = matrix(rnorm(5000), ncol = 50) 

trace.geom = data.frame(lat= rnorm(50), lon = rnorm(50)) 

geom.tag = c("lat", "lon") 

best.model = trace.variog.inrix(trace.data = data,trace.geom = trace.geom, geom.tag = geom.tag) 

geom.target = data.frame(lat = 0, lon =0) 

dis.to.target = sqrt(trace.geom$lat^2 + trace.geom$lon^2 ) 

two.nearest.index = sort(dis.to.target,index.return=TRUE)$ix[1:2] 

geom.two.selected = trace.geom[two.nearest.index,] 

candidate.curve = data[,two.nearest.index] 

data.1.his = matrix(rnorm(5000),ncol = 50) 

data.2.his = matrix(rnorm(5000),ncol = 50) 

predicted.result = curve.krig(geom.target = geom.target, geom.two.selected = geom.two.selected, 
candidata.curve= candidate.curve, best.model = best.model, geom.tag = c("lat","lon"), data.1.his 
= data.1.his,data.2.his = data.2.his) 

plot(predicted.result$cur.krig,type = "l",ylim = c(-4,4)) 

lines(1:100,predicted.result$cur.krig + 1.96 * predicted.result$sigma.band,col = "red",lty=2) 

lines(1:100,predicted.result$cur.krig - 1.96 * predicted.result$sigma.band,col = "red",lty=2) 
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APPENDIX C: PROCEDURE FOR STARTING THE ONLINE APP 

The following packages should be installed and loaded before running the following code.  

Packages required: shiny, dplyr, ggplot2, ggmap.  

Before using the online app, the following preliminary files and folders should be prepared.  

TMC_Identification.txt: This file contains the location index for INRIX data. The name of the 
column containing INRIX location index should be tmc.  

A folder named as Reformation_files should be prepared, and the files in it are named as 
yyyy_tmc.csv. For example, 2013_118+04613.csv contains the observations made at INRIX 
location 118+04613 in 2013.  

The data format of yyyy_tmc.csv: The first column is the tmc of this location, i.e., repeat tmc, 
although it has no effect on calculations. The second column is the observation time, and it 
should have the format of 2013-01-01 03:32:14. The third column contains the observed speed. 
The fourth to sixth columns contain the information for the average speed, reference_speed, and 
travel_time_minutes. The last two columns contain the confidence score and cvalue. 

After preparing the data as shown above, run the code in combined.R. Notice that lines 4 to 6 
should be modified if necessary. 

By typing the following commands, this app can be generated: 

setwd("../traffic/") #The working directory should be set to "traffic/" 

shiny::runApp('/shiny/quantile/') 
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