Groundwater Availability Modeling Under Drought Conditions

Lower Raccoon River Aquifer Dallas and Polk Counties, Iowa Drought Assessment

Iowa Geological and Water Survey Water Resources Investigation Report 7

Iowa Department of Natural Resources Chuck Gipp, Director January 2013

Groundwater Availability Modeling Under Drought Conditions

Lower Raccoon River Aquifer Dallas and Polk Counties Drought Assessment

Prepared by

J. Michael Gannon

Iowa Geological and Water Survey Water Resources Investigation Report 7

Iowa Department of Natural Resources Chuck Gipp, Director

January 2013

TABLE OF CONTENTS

INTRODUCTION	1
CLIMATE	1
SURFACE WATER	2
GEOLOGY	5
HYDROGEOLOGY Groundwater Storage and Availability	5
Public Drinking Water Wells Irrigation Wells Aquifer Test Results Estimated Well Yield	7 9
GROUNDWATER MODELING Calibration Results MODFLOW Simulations Time of Travel Results Water Balance Analysis Estimated Additional Pumping Capacity	. 12 . 14 . 14 . 16
CONCLUSION.	. 22
REFERENCES	. 24
APPENDIX A. PUMP TEST DATA AND RESULTS 1. City of Adel 2. City of De Soto 3. City of West Des Moines	. 26 . 28

LIST OF FIGURES

Figure 1.	Extent of the Lower Raccoon River aquifer study area
Figure 2.	Deviations from normal annual precipitation at Des Moines Airport (1983 to 2012) 2
Figure 3.	Daily average streamflow at USGS Stream gage at Van Meter (1983 to 2012) 3
Figure 4.	Isopach (thickness) map of the Lower Raccoon River aquifer and its tributaries 6
Figure 5.	Location of active public wells in the Lower Raccoon River aquifer
Figure 6.	Location of irrigation wells and surface water intakes in Lower Raccoon River aquifer 8
Figure 7.	Aquifer test locations in the Lower Raccoon River aquifer and the horizontal hydraulic conductivity distribution
Figure 8.	Potential maximum well yield in gallons per minute (gpm) based on specific capacity values and available drawdown
Figure 9.	Simulated drawdown in feet for the City of Adel pump test
Figure 10.	Simulated drawdown in feet for the City of De Soto pump test
Figure 11.	Simulated drawdown in feet for the City of West Des Moines pump test
Figure 12.	Simulated drawdown in feet for the Lower Raccoon River aquifer under drought conditions
Figure 13.	Source water capture zones for the City of Dallas Center using Visual MODFLOW particle tracker
Figure 14.	Source water capture zones for the City of De Soto using Visual MODFLOW particle tracker
Figure 15.	Source water capture zones for the City of Van Meter using Visual MODFLOW particle tracker
Figure 16.	Source water capture zones for the Southwest Polk Water District using Visual MODFLOW particle tracker
Figure 17.	Source water capture zones for the City of West Des Moines using Visual MODFLOW particle tracker
Figure 18.	Contaminant transport analysis for the former Delevan Site near West Des Moines Well 19
Figure 19.	Contaminant transport analysis for the former Delevan Site near West Des Moines Well 21

LIST OF TABLES

Table 1.	Minimum annual precipitation for select communities along the Raccoon River $\ldots \ldots 2$
Table 2.	The number of days streamflow discharge was below USGS low-flow measurements at the USGS Van Meter gage station
Table 3.	Wells and surface water intakes found in the 1/8 mile and 1/4 mile buffers for protective low-flow and 7Q10 streamflow values
Table 4.	Permitted water use and actual water use for public, industrial, and irrigation wells in the Lower Raccoon River aquifer
Table 5.	Aquifer pump test results for wells open in the Lower Raccoon River aquifer. (Methods based on Freeze and Cherry, 1979.)
Table 6.	Observed versus simulated head elevations for steady-state non-pumping conditions 13
Table 7.	Observed versus simulated drawdowns in feet for aquifer pump tests
Table 8.	Simulated source water capture zones for select public water systems
Table 9.	Water balance analyses using output from Visual MODFLOW
Table 10.	Streamflow values at the USGS Van Meter gage station that were below or approaching the critical streamflow value of 17.1 cfs
Table 11.	Formulas for calculating the minimum streamflow on the Raccoon River at the I-35 Bridge based on streamflow values at Van Meter. These formulas are part of the Des Moines Water Works water-use permit
Table 12.	Streamflow values on the Raccoon River at Van Meter and I-35 Bridge. Minimum calculated streamflows at the I-35 gage (based on formulas from Table 11) are also included. The difference in streamflow values represents the approximate induced recharge provided to the Des Moines Water Works radial collector wells
Table 13.	Maximum simulated pumping rates at select wellfields along the Lower Raccoon River aquifer using Visual MODFLOW

ACKNOWLEDGEMENTS

The author would like to acknowledge the contributions of the individuals who assisted in the production of this report. First, much of our understanding of the Lower Raccoon River aquifer in Iowa is built on the work of previous Iowa Geological Survey geologists. The report layout was completed by Mindy Kralicek. Editorial reviews were conducted by Keith Schilling, Ryan Clark, Jason Vogelgesang, Michael Anderson, and Lynette Seigley.

EXECUTIVE SUMMARY

Increased demands for groundwater by agriculture, industries, and municipalities have raised concerns about the future availability of groundwater in Iowa. In 2007, the Iowa Legislature began funding a comprehensive Water Resources Management program, which was implemented by the Iowa Department of Natural Resources. A key aspect of the program is to evaluate and quantify the groundwater resources across the state using computer simulation models. These models help answer questions such as: "How much water can be pumped from an aquifer over 10, 20, or 100 years?" or "Will my well go dry?"

A groundwater study was initiated to understand the shallow groundwater resources in the Lower Raccoon River aquifer. The primary objective of this study was to evaluate the aquifer for future water supply development under drought conditions. A groundwater flow model of the Lower Raccoon River aquifer was created using Visual MODFLOW 2011.1. The model was used to generate source water capture zones, evaluate surface water and groundwater interaction, and estimate maximum sustainable pumping rates. Water level data during the summer of 2012 were used to help calibrate the model. Based on the mass balance calculations in the model, the percentage of water production supplied by the Raccoon River (from Dallas Center to West Des Moines) was 52 percent, and 29 percent was supplied by induced recharge from the numerous sand and gravel quarries. The remaining 19 percent of the water production is supplied by precipitation recharge and groundwater inflow into the model area. The percentage of induced recharge varied from 0 percent at Van Meter to 89 percent at Des Moines Water Works radial wellfield. Induced recharge from the Raccoon River (from Dallas Center to West Des Moines) allows public wells to maintain water production during prolonged dry periods. Limitations in water production exist when streamflow along the Raccoon River drops below 17.1 cubic feet per second (43.4 cfs if the Fleur Drive infiltration gallery is included).

Based on available pumping records, an average of 14.6 billion gallons of water are pumped from the Lower Raccoon River aquifer each year. Additional water production is available from the aquifer, but limitations exist during extremely dry years. Additional pumping capacity ranges from 10 percent in the West Des Moines wellfield, to over 1,000 percent at Adel. Potential well yields greater than 500 gallons per minute (gpm) are found near Adel, Van Meter, and West Des Moines. The highest potential well yields occur east of Adel, and are the result of the cobble and boulder zone found at the base of the aquifer, and the abundance of induced recharge from the nearby sand and gravel quarries and the Raccoon River.

Figure 1. Extent of the Lower Raccoon River aguifer study area.

INTRODUCTION

The purpose of this study was to evaluate the groundwater resources in the alluvial aquifer located along the Raccoon, North Raccoon, and South Raccoon rivers in Dallas and Polk counties, Iowa (Figure 1). For the purpose of this report, the alluvial aquifer will be referred to as the Lower Raccoon River aquifer. The primary objective of this study is to evaluate the water resources of the Lower Raccoon River aquifer under severe drought conditions. The field activities and evaluation was conducted by the Geology and Groundwater Section of the Iowa Department of Natural Resources (IDNR).

CLIMATE

The climate of central Iowa is classified as sub-humid. Based on data compiled by Iowa State University (Iowa State University, 2012), the average annual precipitation in Dallas and Polk counties ranges from 33 to 34 inches per year. The Des Moines International Airport has averaged 33.8 inches per year from 1893 to present. Approximately 18 to 20 inches of precipitation typically occurs during the months of April through October.

Central Iowa has historically experienced moderate to severe droughts. Table 1 shows the minimum annual precipitation amounts for a select number of cities in central Iowa (Iowa

Figure 2. Deviations from normal annual precipitation at Des Moines Airport (1983 up to Nov. 1, 2012).

State University, 2012). The minimum annual precipitation amounts ranged from 15.31 inches in Indianola to 17.97 inches in Perry. Figure 2 shows the deviation from normal annual precipitation for the last 30 years at the Des Moines airport. Based on historical precipitation data, there has been an increasing trend in annual precipitation in Des Moines over the last 118 years ranging from 33.09 inches from 1893 to 1922, to 35.3 inches from 1983 to 2012.

SURFACE WATER

Figure 3 shows the average daily streamflow in the Raccoon River based on the United States Geological Survey (USGS) gaging station near Van Meter, Iowa, over the last 30 years. The lowest average daily flow at Van Meter over the last 30 years was 65 cubic feet per second (cfs) on December 11, 2000, and the lowest recorded average daily flow was 10 cfs measured from January 30 through February 1, 1940.

The Iowa Administrative Code (IAC) 567 Chapter 52.4 has rules that protect consumptive water users during moderate to severe droughts for rivers with watersheds greater than or equal to 50 square miles (this includes the Raccoon River watershed). These rules involve

Table 1. Minimum annual precipitation for select communities along the Raccoon River.

Location	Minimum Inches (Year)
Ankeny	17.52 (1988)
Des Moines	17.07 (1956)
Indianola	15.31 (1894)
Perry	17.97 (1988)

Figure 3. Daily average streamflow at USGS Stream gage at Van Meter (1983 to 2012).

the concept of protective low-flow in streams and rivers. The protective low-flow value is defined as the discharge in cfs that is equal to or exceeds this discharge 84 percent of the time over a certain period of time (generally 10 years or more). When streamflow measurements are below the protective low-flow value, withdrawals from irrigation wells and surface water intakes within 1/8 mile from the river must cease. The protected low-flow discharge measurements as listed in Chapter 52.4 for the Van Meter gage is 190 cfs. Table 2 lists the number of times the low-flow value has been reached in any given water year from 1983 to 2012. Note the higher frequency of low streamflow conditions from 1988 through 1989 and 2000 through 2005, and the lack of low streamflow conditions from 2007 to 2011. Low streamflow conditions can be attributed to low average annual rainfall in Des Moines during 1988, 1989, and 2000 through 2005 (Iowa State University, 2012).

In addition to the low-flow values at Van Meter, the Des Moines Water Works is required to maintain minimum streamflows in the Raccoon River at the Interstate 35 bridge, which is downstream of their radial collector wells.

The 7Q10 value is defined as the lowest average flow for seven consecutive days that is expected to occur once over a 10-year period. When streamflow drops below the 7Q10 value, withdrawals from irrigation wells within 1/4 mile from the river and irrigation intakes must cease pumping. The 7Q10

Table 2. The number of days streamflow discharge was below USGS low-flow measurements at the USGS Van Meter gage station.

	# of Exceedances of Chapter 52 low flow	Average Annual Precipitation	
Water Year	Van Meter Gage (190 cfs)	Inches	
1983	0	41.17	
1984	3	41.78	
1985	38	28.50	
1986	6	42.58	
1987	0	36.97	
1988	26	21.99	
1989	89	29.14	
1990	31	43.93	
1991	1	39.77	
1992	0	33.51	
1993	0	55.88	
1994	2	28.20	
1995	5	32.00	
1996	5	25.08	
1997	0	28.53	
1998	0	37.70	
1999	7	27.15	
2000	123	26.14	
2001	33	29.76	
2002	1	29.25	
2003	40	31.57	
2004	29	33.80	
2005	59	28.05	
2006	5	33.38	
2007	0	41.71	
2008	0	49.43	
2009	0	38.81	
2010	0	51.70	
2011	0	37.20	
2012*	110	23.01	

^{*}Data from January 1-November 1, 2012

discharge measurements for the Van Meter gaging station based on Chapter 52.4 is 37 cfs. Streamflow values at the Van Meter gaging station did not exceed the 7Q10 discharge throughout the period from January 1, 1983, through September 18, 2012. The last time the streamflow value at Van Meter dropped at or below 37 cfs was October 9 through 12, 1956.

The 1/8 mile low-flow zone and the 1/4 mile 7Q10 zone for the Raccoon River and its major

tributaries were delineated using ESRI ArcMap software. One well was located within the protected low-flow zone and a total of four wells were located in the 7Q10 zone (includes the low-flow zone well). The wells found in each of these zones are listed in Table 3. In addition to the wells found within the low-flow zone, three surface water intakes used for irrigation are also listed in Table 3.

Table 3. Wells and surface water intakes found in the 1/8 mile and 1/4 mile buffers for protect low-flow
and 7O10 streamflow values.

Water Use Permit Owner	Туре	Buffer Distance from River	Flow Restriction
Glenn Oaks Country Club	3 Irrigation wells	1/4-mile	7Q10
West Des Moines Soccer	Irrigation well	1/8-mile	Low Flow & 7Q10
Hill Crest Country Club	Surface Intake	Not Applicable	Low Flow & 7Q10
Van Meter Recreation	Surface Intake	Not Applicable	Low Flow & 7Q10
Ruan Jonbar Ranch	Surface Intake	Not Applicable	Low Flow & 7Q10

GEOLOGY

The thickness of alluvial deposits along the Raccoon River varies from two to 60 feet, but averages approximately 30 feet (Iowa Geological Survey, 1979). The alluvial deposits are not uniform or homogeneous but vary from silt and clay to cobbles and boulders (Thompson, 1982). The yields expected in wells screened in these sediments depend on the thickness of alluvium, the grain size or texture, and interconnectedness of the various sand and gravel units.

The Lower Raccoon River aquifer consists of sand, gravel, cobbles, and boulders deposited by the modern river system and is highly variable in both thickness and grain size. Cobble and boulder zones are found near Van Meter, Adel, and in isolated areas throughout the aguifer. Tremendous well yields are produced in these cobble zones. Based on existing data from 139 geologic logs, the sand and gravel thickness is shown on Figure 4. The sand and gravel is overlain by fine-grained sediments that consist of clay, silt, and siltysand. These finer grained sediments range in thickness from two to 20 feet. The Lower Raccoon River aquifer is underlain by either glacial till, or Pennsylvanian shale and limestone throughout the study area.

HYDROGEOLOGY

Regional groundwater flow is directed toward the Raccoon River. The hydraulic gradient is assumed to be similar to the land surface topography in most locations, and during most of the year the Raccoon River is a gaining stream. Exceptions to this likely occur during high river stage when temporary bank storage may cause a transient reversal in flow direction, and near high capacity wells where pumping stress may reverse the groundwater flow direction and create induced recharge from the river into the aquifer. Groundwater recharge sources are precipitation, induced recharge from surface water, and seepage from glacial drift and terraces along the valley wall.

It is difficult to measure the groundwater recharge based on annual precipitation data. In Iowa much of the groundwater recharge occurs in the early spring and fall. The actual amount of groundwater recharge depends on the intensity and distribution of the precipitation events, and when they occur seasonally.

Groundwater Storage and Availability

Based on a surface area of approximately 32 square miles within our study area (Figure 1), an average saturated aquifer thickness of 20 feet, and an effective porosity of 25 percent, approximately 33 billion gallons of groundwater is stored in the Lower Raccoon River aquifer within our study area. Based on an average recharge of six inches per year, approximately 3.2 billion gallons per year (bgy) of water recharges the aquifer directly as precipitation (based on modeling result). Based on a severe drought recharge of three inches per year, approximately 1.6 billion gallons of water recharges the aquifer (based on modeling result). The amount of induced recharge from

Figure 4. Isopach (thickness) map of the Lower Raccoon River aguifer and its tributaries.

the Raccoon River, its tributaries, and the many sand and gravel quarries was estimated using Visual MODFLOW, and will be discussed in the Groundwater Modeling section. The other important water supply consideration is the impact caused by local pumping stress, which is different than the aquifer average storage or recharge. The application of a calibrated groundwater flow model will help evaluate the local water concerns, and will be discussed in the Groundwater Modeling section of this report.

Total current groundwater use for the study area, not including private wells, is approximately 7.77 bgy. Approximately 5.1 bgy is removed by the six Des Moines Water Works

radial collector wells. The Des Moines Water Works infiltration gallery located on Fleur Drive also removes 6.9 bgy, but is approximately four miles downstream of our study area. The radial collector wells and infiltration gallery receive the vast majority of their recharge from the Raccoon River, and the water pumped from these wells is considered groundwater under the direct influence of surface water.

Public Drinking Water Wells

Thirteen public water supplies are located within the study area. They include the City of Adel (four active alluvial wells), City of Dallas Center (four active alluvial wells), Des Moines

Figure 5. Location of active public wells in the Lower Raccoon River aquifer.

Water Works (six radial collector wells), City of De Soto (two active alluvial wells), City of Van Meter (two active alluvial wells), City of West Des Moines (19 active alluvial wells), Beach Girls (one active alluvial well), River Oaks Development (one active alluvial well), Fox Creek Water District (two active alluvial wells), Prairie Village mobile home park (2 active alluvial wells), Southwest Polk Water Supply (3 active alluvial wells), West Grand Golf Course (1 active alluvial well), and Wildwood Water Corporation (1 active alluvial well). The locations of the public wells within the aquifer are shown in Figure 5. Total permitted annual water use is shown in Table 4.

Irrigation Wells

A large percentage of the land use in the study area is in row crop agriculture. Some of the corn acreage is irrigated due to the sandy soil in the valley. In addition to agricultural irrigation, four golf courses (three have irrigation wells and one has a surface water intake) and one soccer facility also have water use permits. There are eight known irrigation wells identified within the study area (Figure 6). Maximum annual irrigation water usages were obtained from the IDNR water-use database and are listed in Table 4. The actual pumping rate per well is unknown, and the withdrawal per well is

Figure 6. Location of irrigation wells and surface water intakes in Lower Raccoon River aquifer.

Table 4. Permitted water use and actual water use for public, industrial, and irrigation wells in the Lower Raccoon River aquifer.

Water Use Permit Owner	Туре	Permited Usage (mgy)	Maximum Historical Actual Usage (mgy)
Shattluck RMP (Dallas Co.)	Irrigation well	68.4	16.1
Shattluck RMP (Polk Co.)	Irrigation well	65.2	5.4
Shattluck Sod Farm	Irrigation well	48.9	1.3
Glenn Oaks Country Club	3 Irrigation wells	73.3	47.7
West Des Moines Soccer	Irrigation well	16.0	1.2
Des Moines Water	Wells	2.3	0.0
RVG Golf Course	Irrigation well	40.4	25.1
Hill Crest Country Club	Surface Intake	32.6	21.5
West Grand Golf Course	Public Water Supply	Not Available	0.1
Van Meter Recreation	Surface Intake	9.1	0.0
Ruan Jonbar Ranch	Surface Intake	137.8	0.0
Hallett Material Van Meter	Quarry de-watering	252.0	17.1
Hallett Material Booneville	Quarry de-watering	1303.0	0.0
Martin Marietta (Raccoon River)	Quarry de-watering	263.0	13.1
Prairie Village MHP (2 wells)	Public Water Supply	Not Available	2.7
Fox Creek Water Dist. (2 wells)	Public Water Supply	51	40.1
River Oaks Development	Public Water Supply	Not Available	2.9
Van Meter (2 wells)	Public Water Supply	32	34.3
Beach Girls	Public Water Supply	Not Available	0.3
Southwest Polk (3 wells)	Public Water Supply	24	13.4
De Soto (2 Wells)	Public Water Supply	40	35.2
West Des Moines (19 Wells)	Public Water Supply	2990	2153
Wildwood Water Corporation	Public Water Supply	18	5
Adel (4 Wells)	Public Water Supply	375	157.9
Dallas Center (4 Wells)	Public Water Supply	88	66.9
Des Moines Water Works (6 Radial wells)	Public Water Supply	Not Available	5110

Figure 7. Aquifer test locations in the Lower Raccoon River aquifer and the horizontal hydraulic conductivity distribution.

the average based on the total usage divided by the number of known irrigation wells.

Aquifer Test Results

Hydraulic properties are used to define and characterize aquifers and include specific yield or storage, transmissivity, and hydraulic conductivity. The most reliable aquifer properties are those obtained from controlled aquifer tests with known pumping rates, pumping duration, accurate well locations, and accurate water level measurements. Four new aquifer pump tests were conducted in the Lower Raccoon River aquifer and include Adel Well 1, De Soto Well 1, and two pump tests using West Des Moines Well 21.

In addition to the aquifer pump tests, a total of 31 specific capacity tests were made available by various consultants, well drillers, and communities. The distribution of these tests is shown in Figure 7. Table 5 lists the pump test results and the specific capacity results for each test, the method of analyses, transmissivity values, aquifer thickness, hydraulic conductivity values, and storativity values (aquifer pump test results only). Original data and graphs of the test results are shown in Appendix A.

Based on aquifer test results, the transmissivity of the Lower Raccoon River aquifer was found to range from 1,500 feet²/day at Dallas Center Well 8 to 44,000 feet²/day at Adel Well 1. The arithmetic mean transmissivity value is 8,300 feet²/day. The relatively high transmis-

Table 5. Aquifer pump test results for wells open in the Lower Raccoon River aquifer. (Methods based on Freeze and Cherry, 1979.)

Wnumber	Well Name	Well Depth (ft)	Thickness (ft)	Method	Transmissivity (ft2/day)	Hydraulic Conductivity (ft/day)	Storativity
37863	Fox Creek #3	48	25	Specific Capacity	16600	664	Not Applicable
57592	Van Meter #3	66	32	Specific Capacity	2857	89	Not Applicable
42693	Van Meter #2	61	50	Specific Capacity	7200	144	Not Applicable
39235	West Grand Golf #1	42	37	Specific Capacity	20000	541	Not Applicable
42737	Southwest Polk #4	38	24	Specific Capacity	3200	133	Not Applicable
42735	Southwest Polk #2	37	23	Specific Capacity	4400	191	Not Applicable
42736	Southwest Polk #3	38	24	Specific Capacity	3300	138	Not Applicable
38719	De Soto #1	40	22	Specific Capacity	1960	89	Not Applicable
53395	De Soto #2	46	22	Specific Capacity	4700	214	Not Applicable
40319	West Des Moines 20	36	27	Specific Capacity	5600	207	Not Applicable
40317	West Des Moines 18	41	26	Specific Capacity	9600	369	Not Applicable
40316	West Des Moines 17	38	28	Specific Capacity	9000	321	Not Applicable
56849	West Des Moines 16	32	25	Specific Capacity	7500	300	Not Applicable
40318	West Des Moines 19	43	30	Specific Capacity	8100	270	Not Applicable
56848	West Des Moines 15	34	23	Specific Capacity	8100	352	Not Applicable
56847	West Des Moines 14	35	20	Specific Capacity	8100	405	Not Applicable
56850	West Des Moines 22	45	18	Specific Capacity	5600	311	Not Applicable
43093	West Des Moines 9	42	24	Specific Capacity	4000	167	Not Applicable
43092	West Des Moines 8	42	34	Specific Capacity	6600	194	Not Applicable
37867	Wildwood	45	25	Specific Capacity	8400	336	Not Applicable
34350	Adel #5	59	43	Specific Capacity	1740	40	Not Applicable
34348	Adel #2	45	28	Specific Capacity	12993	464	Not Applicable
34351	Adel #3	42	11	Specific Capacity	20130	1830	Not Applicable
34349	Adel #1	44	33	Specific Capacity	6800	206	Not Applicable
38704	Dallas Center 7	57	26	Specific Capacity	2000	77	Not Applicable
45615	Dallas Center 9	49	34	Specific Capacity	5500	162	Not Applicable
37884	Dallas Center 8	50	25	Specific Capacity	1500	60	Not Applicable
59770	W. Des Moines Soccer	28	18	Specific Capacity	2000	111	Not Applicable
47069	Glenn Oaks #3	48	33	Specific Capacity	16700	506	Not Applicable
47067	Glenn Oaks #1	41	13	Specific Capacity	7500	577	Not Applicable
37861	East Dallas	32	19	Specific Capacity	3300	174	Not Applicable
34349	Adel #1	44	30	Cooper-Jacobs	44000	1467	0.5
40320	W. Des Moines OB1	37	20	Theis	13700	685	0.01
40320	W. Des Moines OB2	37	20	Theis	14600	730	0.2
38719	De Soto #1	40	31	Cooper-Jacobs	14700	474	0.05

sivity values near Adel are the result of cobble and boulder zones found near the base of the alluvial aquifer.

Hydraulic conductivity can be calculated by dividing the transmissivity by the overall aquifer thickness. Hydraulic conductivity was found to range from 40 to 1,830 feet/day, with an arithmetic mean of 360 feet/day. The regional horizontal hydraulic conductivity distribution is shown on Figure 7 and is based on data found in Table 5.

Estimated Well Yield

The potential well yield was estimated by converting the transmissivity value to specific capacity (Table 5) and multiplying by one-half of the saturated sand and gravel thickness (average value of the available head in the Lower Raccoon River aquifer). The potential well yield distribution is shown on Figure 8. Potential well yields greater than 500 gallons

per minute (gpm) may be possible near Adel, Van Meter, and West Des Moines. The highest potential well yields occur east of Adel. Actual well yields may vary considerably from those shown on Figure 8 due to local conditions.

GROUNDWATER MODELING

The model software Visual MODFLOW version 2011.1 was used to simulate the groundwater flow in the alluvial aquifer in the proposed study area under severe drought conditions. A three-layered model was used for the simulation. Borehole logs were obtained from the IDNR GEOSAM database, and elevation data were obtained from LiDAR (two-foot contour intervals). The model boundary conditions and inputs include the following:

 Layer 1 varies in thickness from 11 feet to 25 feet, and is primarily silty sand. The horizontal hydraulic conductivity was assigned a value of 25 feet/day. The verti-

Figure 8. Potential maximum well yield in gallons per minute (gpm) based on specific capacity values and available drawdown.

- cal hydraulic conductivity value was assigned a value 1/10 of the horizontal hydraulic conductivity.
- Layer 2 is the sand and gravel aquifer. The horizontal hydraulic conductivity was calibrated within the model and is shown in Figure 7. The vertical hydraulic conductivity value was assigned a value 1/10 of the horizontal hydraulic conductivity.
- Layer 3 is primarily silty clay (glacial till or shale). The horizontal hydraulic conductivity was assigned a value of 0.03 feet/day. The vertical hydraulic conductivity value was assigned a value 1/10 of the horizontal hydraulic conductivity.
- The uplands were considered no-flow

- boundaries. This was represented by de-activating the grids outside the alluvial aquifer boundary. This was estimated using Natural Resources Conservation Service (NRCS) soils data and LiDAR elevation data.
- The Raccoon River and its tributaries were represented as river boundaries. The surface water elevations were estimated using stage data from USGS gage stations near Van Meter, West Des Moines, and at 63rd Street in Des Moines. LiDAR data was used to supplement river elevations between gage stations. A water level depth of 1 foot was used. The vertical conductivity of the streambed was estimated at 1/10 the average horizontal

Figure 9. Simulated drawdown in feet for the City of Adel pump test.

- conductivity of the alluvial aquifer. The model represented baseflow (summertime) conditions, and the stage was kept the same throughout the simulated time period.
- General head boundaries were used in the numerous sand and gravel pits in the area. These general head values were obtained from LiDAR elevation data.
- General head boundaries were used to represent smaller tributaries and benches. Groundwater elevations were estimated from the closest well or observation point.
- Public wells and additional water use wells were included in the model simulation. Annual usage was obtained from the IDNR water-use database for year 2011.
 Additional information was obtained from

- the water operators in De Soto, Adel, West Des Moines, and Des Moines Water Works.
- Specific yield values ranged from 0.1 to 0.2, and were based on the pump test results. Specific storage values ranged from 0.0002 and 0.003.
- Average annual recharge was calibrated to be six inches per year. Drought conditions were calibrated to be three inches per year.
- The total number of rows and columns were 463 by 474. The grid size varied from 7.5 feet to 290 feet.

Calibration Results

The model was initially run to simulate nonpumping conditions. The model was calibrated using static water levels measured in IDNR

Figure 10. Simulated drawdown in feet for the City of De Soto pump test.

observation wells and non-pumping production wells. Table 6 compares simulated values to observed water levels. The overall error was -1.8 feet for the nine observation wells.

Local scale calibration was performed using pump test results from City of Adel Well 2, City of De Soto Well 1, and City of West

Table 6. Observed versus simulated head elevations for steady-state non-pumping conditions.

	Observed	Simulated
Well Owner	Head Elev. (ft)	Head Elev. (ft)
RVG Golf Course	881.27	880.91
Adel Observation Well	870.12	871.89
Wildwood	853.00	852.70
De Soto Observation Well	850.67	850.70
Fox Creek	833.15	833.55
East Dallas	819.28	817.90
West Des Moines Soccer	803.99	803.08
West Des Moines #21	799.99	801.93
Des Moines MET	799.99	800.62

Des Moines well 21 (using two observation wells). Hydraulic conductivity and specific yield values were adjusted to match the simulated water levels to the observed values. Figures 9, 10, and 11 show the simulated drawdown values. The simulated versus observed drawdowns are shown in Table 7. Figure 12 shows the simulated drawdown map for the Lower Raccoon River aquifer using data from the summer of 2012.

Table 7. Observed versus simulated drawdowns in feet for aquifer pump tests.

	Observed	Simulated
Well Owner	Drawdown (ft)	Drawdown (ft)
Adel Observation Well	0.27	0.31
De Soto Observation Well	0.67	0.54
West Des Moines #21 OB 1	1.95	1.96
West Des Moines #21 OB 2	0.66	0.95

Figure 11. Simulated drawdown in feet for the City of West Des Moines pump test.

MODFLOW Simulations

Following the calibration of the model, several simulations were conducted to simulate a severe drought. Pumping rates for the known public wells were obtained from city water operators, and represent the water use during the summer of 2012. The pumping rates for the irrigation wells and other water use wells were

Table 8. Simulated source water capture zones for select public water systems

Community	Number of Active Wells
City of Dallas Center	4
City of De Soto	2
City of Van Meter	2
Southwest Polk Water District	3
City of West Des Moines	19 Alluvial Wells

the maximum historical seasonal withdrawals listed in Table 4.

Time of Travel Results

Using the particle tracking module in Visual MODFLOW, groundwater movement or travel time was simulated for the public water systems listed in Table 8. The City of Adel wells and the Des Moines Water Works radial collector wells were not modeled using particle tracking because most, if not all, of the recharge was provided by the former sand and gravel quarries and the nearby Raccoon River.

The particle tracking results can be used to evaluate the source water capture zones. The 2-, 5-, and 10-year capture zones were evaluated for

Figure 12. Simulated drawdown in feet for the Lower Raccoon River aquifer under drought conditions.

the public water systems listed in Table 8, and are shown in Figures 13, 14, 15, 16, and 17. The Source Water Protection program can use these capture zones to prioritize potential point and non-point sources of contamination, and implement best management practices. These best management practices have the potential to improve and/or protect an aquifer's long-term water quality. Source Water Protection is a U.S. Environmental Protection Agency program designed to improve water quality in public water supplies.

In addition to the capture zone analyses, the time of travel was used to evaluate the plume migration at the former Turbine Fuel/Delevan contaminant site (Delevan Site) located at 2250 Fuller Road, West Des Moines, Iowa (Figure

18). The time of travel analyses assumes that the contaminant plume would migrate at the same rate as the average groundwater flow velocity. It does not take into account any biodegradation or natural attenuation. The migration of the contaminant plume also depends on the pumping schedule of the City of West Des Moines alluvial wells. When City Well 21 is not pumping, the particle tracking indicates that the contamination would make it to Well 19 in approximately 800 days or 2.2 years as shown in Figure 18. If Well 19 is not pumping, the particle tracking indicates that the contamination would make it to Well 21 in approximately 600 days or 1.6 years as shown in Figure 19. Based on information provided in the IDNR

Figure 13. Source water capture zones for the City of Dallas Center using Visual MODFLOW particle tracker.

Contaminated Sites database, both City Wells 19 and 21 have detected contaminants associated with the Delevan Site.

Water Balance Analysis

Based on the mass balance output from Visual MODFLOW, the percentage of water production supplied by the induced recharge from the Raccoon River during a severe drought was 52 percent, and 29 percent was supplied by induced recharge from the sand and gravel quarries. The remaining 19 percent of the water production is supplied by precipitation recharge and groundwater inflow into the model area.

The total water balance was broken down into smaller areas or zones as shown in

Table 9, and the percentage of induced river recharge, induced recharge from quarries, precipitation recharge, aquifer storage, and groundwater inflow were calculated. The percentage of induced recharge varied from 0 percent at Van Meter, to 89 percent at Des Moines Water Works radial wellfield. The City of West Des Moines had the highest percentage of induced recharge from former sand and gravel quarries at 60 percent.

Based on the mass balance output from Visual MODFLOW, the induced recharge provided by the Raccoon River during a severe drought was calculated to be 11.08 mgd or 17.1 cfs. Based on data from the USGS gage station near Van Meter, the lowest average daily flow

Figure 14. Source water capture zones for the City of De Soto using Visual MODFLOW particle tracker.

at Van Meter over the last 30 years was 65 cfs on December 11, 2000, and the lowest recorded average daily flow was 10 cfs from January 30 through February 1, 1940. Streamflow values below or approaching the 17.1 cfs value are shown in Table 10. The last time a streamflow value was below the 17.1 cfs threshold was February 4, 1940, and was 10 cfs.

In order to provide adequate streamflow downgradient of the Des Moines Water Works radial wellfield, minimum streamflow values need to be maintained at a gaging station located at Interstate 35 bridge (I-35). The I-35 gage is maintained by the USGS (5484600), and was installed on August 20, 2008. The formulas used to calculate minimum streamflow

Table 9. Water balance analyses using output from Visual MODFLOW.

		Precipitation	Induced	Induced	Percentage	From	
Budget Zone	Discharge (Q) (mgd)	Recharge (R) (mgd)	River Recharge (mgd)	Quarry Recharge (mgd)	Induced Recharge	Storage (mgd)	Inflow (mgd)
West Des Moines	6	0.93	0.47	3.6	68%	0.2	0.8
Des Moines Radials	14.4	0.6	10.2	2.6	89%	0.2	0.8
Van Meter	0.1	0.7	0	0	0%	0	0
De Soto	0.07	0.09	0.02	0	35%	0	0
Adel	0.3	0.09	0.19	0.02	70%	0	0
Dallas Center	0.16	0.1	0.06	0	38%	0	0
Rural Areas	0.3	1.9	0.14	0	46%	0	0
•			·			-	
Total	21.33	4.41	11.08	6.22		0.4	1.6

Figure 15. Source water capture zones for the City of Van Meter using Visual MODFLOW particle tracker.

values at the I-35 gage are shown on Table 11. The difference in streamflow values (gpd) between the Van Meter gage and the I-35 gage are shown in Table 12. The time period of

September 5 to October 12, 2012, was chosen based on the lack of measurable precipitation during this period. The regulatory minimum streamflow values (using formulas in Table 11)

Table 10. Streamflow values at the USGS Van Meter gage station that were below or approaching the critical streamflow value of 17.1 cfs.

Date(s)	Streamflow (cfs)	Difference from Critcal Flow (17.1 cfs)
October 22, 1918	28	10.9
August 30, 1934	21	3.9
August 30, 1936	17	-0.1
August 31, 1936	16	-1.1
January 17-19, 1937	18	0.9
December 20, 1937	22	4.9
September 17, 1939	24	6.9
January 10 - February 4, 1940	10	-7.1
December 11, 2000	65	47.9
January 5, 2004	68	50.9

Figure 16. Source water capture zones for Southwest Polk Water District using Visual MODFLOW particle tracker.

that must be maintained at the I-35 gage are also listed in Table 12. All of the streamflow values measured during this time period at the I-35 gage are above the regulatory minimum.

The average difference in streamflow discharge between the Van Meter gage and the

Table 11. Formulas for calculating the minimum streamflow on the Raccoon River at the I-35 bridge based on streamflow values at Van Meter. These formulas are part of the Des Moines Water Works water-use permit.

Actual Flow (Q _{vm}) at	Minimum Flow required
Van Meter (cfs)	I-35 Bridge (cfs)
100 +	53 + [0.1 x (Q _{vm} - 70)
70-100	[0.5 x Q _{vm}] + 3 + [0.1 x (Q _{vm} - 70)]
6-70	[0.5 x Q _{vm}] + 3
0-6	Q _{vm}

I-35 gage (Table 12) also represents the average volume of induced recharge from the Raccoon River that enters the Des Moines Water Works radial collector wells. The average difference in streamflow from September 5 to October 12, 2012, was 11.2 mgd, which is very close to our model mass balance of 10.2 mgd (Table 9). Part of this difference may be related to how much induced recharge is derived from the former quarries and how much is derived from the Raccoon River. Variability in local permeability values would influence these percentages. The Visual MODFLOW model used an average permeability value throughout the radial wellfield area.

Our model does not take into account the Des Moines Water Works Fleur Drive infiltration

Table 12. Streamflow values on the Raccoon River at Van Meter and I-35 Bridge. Minimum calculated streamflows at the I-35 gage (based on formulas from Table 11) are also included. The difference in streamflow values represents the approximate induced recharge provided to the West Des Moines radial collector wells.

Date	e Van Meter Gage (cfs) I-35 Gage (cfs) Regulatory		Regulatory	Difference Between
			Minimum (cfs)	Van Meter and I-35 (gpd)
9/5/2012	141	119	60	14,217,940
9/6/2012	128	117	59	7,108,970
9/7/2012	114	110	57	2,585,080
9/8/2012	115	108	58	4,523,890
9/9/2012	113	106	57	4,523,890
9/10/2012	116	104	58	7,755,240
9/11/2012	112	104	57	5,170,160
9/12/2012	108	100	57	5,170,160
9/13/2012	117	113	58	2,585,080
9/14/2012	150	113	61	23,911,990
9/15/2012	155	128	62	17,449,290
9/16/2012	153	123	61	19,388,100
9/17/2012	147	121	61	16,803,020
9/18/2012	138	118	60	12,925,400
9/19/2012	141	114	60	17,449,290
9/20/2012	127	108	59	12,279,130
9/21/2012	119	101	58	11,632,860
9/22/2012	110	98	57	7,755,240
9/23/2012	104	95	56	5,816,430
9/24/2012	108	95	57	8,401,510
9/25/2012	115	96	58	12,279,130
9/26/2012	114	97	57	10,986,590
9/27/2012	108	90	57	11,632,860
9/28/2012	110	89	57	13,571,670
9/29/2012	114	89	57	16,156,750
9/30/2012	115	90	58	16,156,750
10/1/2012	113	118	57	-3,231,350
10/2/2012	110	87	57	14,864,210
10/3/2012	108	85	57	14,864,210
10/4/2012	105	84	57	13,571,670
10/5/2012	97	83	54	9,047,780
10/6/2012	94	83	52	7,108,970
10/7/2012	95	82	53	8,401,510
10/8/2012	107	82	57	16,156,750
10/9/2012	103	83	56	12,925,400
10/10/2012	107	83	57	15,510,480
10/11/2012	103	82	56	13,571,670
10/12/2012	102	80	56	14,217,940
			Average	11,190,675

gallery, which is located approximately 4 miles downstream of the West Des Moines wellfield and is outside the model study area. The Fleur Drive infiltration gallery produces on average 18.9 mgd, and approximately 17 mgd or 26.3 cfs is obtained from induced recharge from the Raccoon River. (Information provided by Des Moines Water Works.)

Figure 17. Source water capture zones for the City of West Des Moines using Visual MODFLOW particle tracker.

Estimated Additional Pumping Capacity

Another use of a calibrated groundwater flow model is to estimate additional pumping capacity within a wellfield or budget zone. It is impossible to know the locations of proposed production wells, however, using existing infrastructure, pumping rates can be increased from the current rates until dry cells show up within the model. Using this approach, pumping rates were increased at 10 percent increments until dry cells appeared in the model. These additional pumping capacity rates are approximations and do not take into account pump settings or well specific aquifer parameters. Table 13 shows the

estimated maximum pumping rates for each pumping center based on existing production wells. Based on the results from Table 13, additional pumping capacity ranges from 10 percent in the West Des Moines wellfield to over 1,000 percent at Adel. The large amount of additional pumping capacity at Adel is related to the presence of nearby former sand and gravel quarries and the proximity of the Raccoon River. Both the former sand and gravel pits and river provide tremendous induced recharge for the Adel wells. In addition to the sources of induced recharge, the sand, gravel, and boulders beneath the Adel wellfield had the highest permeability within the model area (Table 5).

Figure 18. Contaminant transport analysis for the former Delevan Site near West Des Moines Well 19.

CONCLUSIONS

Based on the geologic and hydrogeologic data available in the study area, the following conclusions can be made:

 The Lower Raccoon River aquifer is one of the most intensely used aquifers in the state of Iowa. Current water use including the Fleur Drive infiltration gallery is approximately 14.6 bgy. Approximately 7.7 bgy is withdrawn from our study area.

- Transmissivity values range from 1,500 ft²/day at Dallas Center, to approximately 44,000 ft²/day near Adel Well 1.
- Based on several drought simulations using the groundwater flow model Visual

Table 13. Maximum simulated pumping rates at select wellfields along the Lower Raccoon River aquifer using Visual MODFLOW.

	Number of Active	Current Pumping	Maximum Potential Pumping	Percent Increase in Potential
Wellfield	Wells	Rate (Q) (gpd)	Rate (Q) (gpd)	Pumping Rate
West Des Moines	19	6,000,000	6,600,000	10%
Des Moines Radials	6 radial wells	14,400,000	18,000,000	25%
Van Meter	2	100,000	400,000	400%
De Soto	2	126,000	500,000	400%
Adel	4	300,000	>3,000,000	>1000%
Dallas Center	4	160,000	640,000	400%
RVG Golf Course	1	418,000	522,000	25%

Figure 19. Contaminant transport analysis for the former Delevan Site near West Des Moines Well 21.

MODFLOW, additional pumping capacity ranges from 10 percent at West Des Moines radial wellfield, to over 1,000 percent at the Adel wellfield.

- Severe drought conditions during the summer and fall of 2012 caused the Des Moines Water Works to reduce the withdrawal from their Fleur Drive infiltration gallery and radial collector wellfield.
- Potential well yields greater than 500 gpm may be possible near Adel, Van Meter, and West Des Moines. The highest potential well yields occur east of Adel, and are the result of the cobble and boulder zone found at the base of the aquifer, and the abundance of induced recharge from the

- nearby sand and gravel quarries and the Raccoon River.
- Using the particle tracking module within the groundwater flow model, the time of travel for a known contaminant plume to reach the City of West Des Moines Well #19 is approximately 2.2 years and to reach Well #21 is 1.6 years, depending on pumping schedules.
- The calibrated groundwater flow model was used to refine the source water capture zones for the cities of Dallas Center, De Soto, Van Meter, Southwest Polk Water District, and West Des Moines.

REFERENCES

- Freeze, R.A, and Cherry, J.A., 1979, Groundwater, Prentice-Hall, Inc. Englewood Cliffs, NJ, 604 p.
- Iowa Geological Survey (IGS), Groundwater resources of Dallas County, Open File County Groundwater Report No. 25, 1979, 20 p.
- Iowa State University, 2012, available at http://mesonet.agron.iastate.edu/archive/data, accessed November 2012.
- Thompson, C. A., Groundwater resources of Polk County, Open File County Groundwater Report No. 77, 1982, 28 p.

APPENDIX A

Aquifer Pump Tests
Data and Graphs

Contact Info Address Company Name City, State/Province

Pumping Test - Water Level Data	Page 1 of 1
Project: Adel City Wellfield	
Number:	
Client:	

	Location: Adel, Iowa	Pumping Test: City Well 3	Pumping Well: Well 3	
Test Conducted by: Mike Gannon		Test Date: 9/10/2012	Discharge Rate: 297 [U.S. gal/min]	
	Observation Well: OB Well 1	Static Water Level [ft]: 14.93	Radial Distance to PW [ft]: 50	

	Time [min]	Water Level [ft]	Drawdown [ft]
1	0	14.931	0.00
2	135	15.033	0.102
3	200	15.077	0.146
4	260	15.105	0.174
5	330	15.132	0.201
6	395	15.155	0.224
7	455	15.169	0.238
8	520	15.179	0.248
9	575	15.188	0.257
10	650	15.196	0.265
11	705	15.199	0.268

Contact Info Address Company Name City, State/Province Pumping Test Analysis Report

Project: Adel City Wellfield

Number:

Client:

Location: Adel, Iowa Pumpi		Pumping Test: City Well 3	Pumping Well: Well 3	
	Test Conducted by: Mike Gannon	Test Date: 9/10/2012		
	Analysis Performed by: New analysis 4		Analysis Date: 9/11/2012	
	Aguifer Thickness: 30 00 ft	Discharge Rate: 297 [LLS_gal/min]		

Calculation using COOPER & JACOB Observation Well Transmissivity Hydraulic Storac

Observation Well	Transmissivity	Hydraulic Conductivity	Storage coefficient	Radial Distance to PW	
	[ft²/d]	[ft/d]		[ft]	
OB Well 1	4.40 × 10 ⁴	1.47 × 10 ³	5.00 × 10 ⁻¹	50.0	

Contact Info Address Company Name City, State/Province

Pumping Test - Water Level Data

Page 1 of 3

Project: De Soto Pump Test

Number: Client:

 Location: De Soto, Iowa
 Pumping Test: Well 3
 Pumping Well: Well 3

 Test Conducted by: Mike Gannon
 Test Date: 9/9/2012
 Discharge Rate: 150 [U.S. gal/min]

Observation Well: OB Well 1 Static Water Level [ft]: 17.51 Radial Distance to PW [ft]: 78

Time [min] Water Level [ft] Drawdown [ft] 1 0 17.511 0.00 2 5 17.555 0.039 3 10 17.566 0.075 4 15 17.616 0.105 5 20 17.643 0.132 6 25 17.765 0.154 7 30 17.687 0.176 8 35 17.707 0.196 9 40 17.723 0.212 10 45 17.735 0.224 11 50 17.75 0.239 12 55 17.762 0.251 13 60 17.774 0.263 14 65 17.781 0.27 15 70 17.784 0.283 17 80 17.811 0.30 18 85 17.811 0.30 17 80 17.811 0.30 19	Obser	vation well: OB wel	Static water Level [ft]:	
2 5 17.556 0.039 3 10 17.586 0.075 4 15 17.616 0.105 5 20 17.643 0.132 6 25 17.665 0.154 7 30 17.787 0.176 8 35 17.707 0.196 9 40 17.723 0.212 10 45 17.735 0.224 11 50 17.75 0.239 12 55 17.762 0.251 13 60 17.774 0.263 14 65 17.781 0.27 15 70 17.794 0.283 16 75 17.80 0.289 17 80 17.781 0.27 15 70 17.794 0.283 16 75 17.80 0.289 17 80 17.781 0.30 17.811				
3 10 17.586 0.075 4 15 17.616 0.105 5 20 17.643 0.132 6 25 17.665 0.154 7 30 17.687 0.176 8 35 17.707 0.196 9 40 17.723 0.212 10 45 17.735 0.224 11 50 17.75 0.239 12 55 17.762 0.251 13 60 17.774 0.263 14 65 17.781 0.27 15 70 17.784 0.283 16 75 17.80 0.289 17 80 17.811 0.30 18 85 17.815 0.304 19 90 17.828 0.317 20 95 17.849 0.332 21 100 17.844 0.329 22 <td< td=""><td>1</td><td>0</td><td>17.511</td><td>0.00</td></td<>	1	0	17.511	0.00
4 15 17.616 0.105 5 20 17.643 0.132 6 25 17.665 0.154 7 30 17.687 0.176 8 35 17.707 0.196 9 40 17.723 0.212 10 45 17.785 0.224 11 50 17.75 0.239 12 55 17.762 0.251 13 60 17.774 0.263 14 65 17.781 0.27 15 70 17.794 0.283 16 75 17.80 0.289 17 80 17.811 0.30 18 85 17.815 0.304 19 90 17.822 0.317 20 95 17.832 0.321 21 100 17.84 0.329 21 100 17.84 0.329 22 <td< td=""><td>2</td><td>5</td><td>17.55</td><td>0.039</td></td<>	2	5	17.55	0.039
5 20 17.663 0.132 6 25 17.665 0.154 7 30 17.667 0.176 8 35 17.707 0.196 9 40 17.723 0.212 10 45 17.735 0.224 11 50 17.75 0.239 12 55 17.762 0.251 13 60 17.774 0.263 14 65 17.781 0.27 15 70 17.794 0.283 16 75 17.80 0.289 17 80 17.811 0.30 18 85 17.815 0.304 19 90 17.828 0.317 20 95 17.832 0.321 21 100 17.84 0.329 22 105 17.849 0.338 23 110 17.851 0.34 24 <	3	10	17.586	0.075
6 25 17.665 0.154 7 30 17.687 0.176 8 35 17.707 0.196 9 40 17.723 0.212 10 45 17.735 0.224 11 50 17.75 0.239 12 55 17.762 0.251 13 60 17.774 0.263 14 65 17.781 0.27 15 70 17.794 0.283 16 75 17.80 0.289 17 80 17.811 0.30 18 85 17.815 0.304 19 90 17.828 0.317 20 95 17.832 0.321 21 100 17.84 0.329 21 100 17.84 0.329 23 110 17.851 0.34 24 115 17.866 0.355 26	4	15	17.616	0.105
6 25 17.665 0.154 7 30 17.687 0.176 8 35 17.707 0.196 9 40 17.723 0.212 10 45 17.735 0.224 11 50 17.75 0.239 12 55 17.762 0.251 13 60 17.774 0.263 14 65 17.781 0.27 15 70 17.794 0.283 16 75 17.80 0.289 17 80 17.811 0.30 18 85 17.815 0.304 19 90 17.828 0.317 20 95 17.832 0.321 21 100 17.84 0.329 21 100 17.84 0.329 23 110 17.851 0.34 24 115 17.866 0.355 26	5	20	17.643	0.132
7 30 17.687 0.176 8 35 17.707 0.196 9 40 17.723 0.212 10 45 17.735 0.224 11 50 17.75 0.239 12 55 17.762 0.251 13 60 17.774 0.263 14 65 17.781 0.27 15 70 17.794 0.283 16 75 17.80 0.289 17 80 17.811 0.30 18 85 17.815 0.304 19 90 17.828 0.317 20 95 17.832 0.321 21 100 17.84 0.329 22 105 17.849 0.338 23 110 17.851 0.34 24 115 17.859 0.348 25 120 17.866 0.355 26		25		
8 35 17.707 0.196 9 40 17.723 0.212 10 45 17.735 0.224 11 50 17.75 0.239 12 55 17.762 0.251 13 60 17.774 0.263 14 65 17.81 0.27 15 70 17.794 0.283 16 75 17.80 0.289 17 80 17.811 0.30 18 85 17.815 0.304 19 90 17.828 0.317 20 95 17.832 0.321 21 100 17.84 0.329 22 105 17.849 0.338 23 110 17.851 0.34 24 115 17.859 0.348 23 120 17.866 0.355 26 125 17.87 0.366 28				
9 40 17.723 0.212 10 45 17.735 0.224 11 50 17.75 0.239 12 55 17.762 0.251 13 60 17.774 0.263 14 65 17.781 0.27 15 70 17.794 0.283 16 75 17.80 0.289 17 80 17.811 0.30 18 85 17.815 0.304 19 90 17.828 0.317 20 95 17.832 0.321 21 100 17.84 0.329 22 105 17.849 0.338 23 110 17.851 0.34 24 115 17.859 0.348 25 120 17.866 0.355 26 125 17.87 0.366 28 135 17.889 0.372 29 140 17.889 0.378 30 145 17.889 0.385 31 150 17.901 0.39 32 155 17.903 0.392 33 160 17.901 0.39 34 165 17.914 0.403 35 17.927 0.416 36 175 17.927 0.416 37 180 17.927 0.416 38 185 17.933 0.422 39 190 17.94 0.429 39 190 17.991 0.439 40 195 17.94 0.429 40 195 17.94 0.429 40 195 17.94 0.429 40 195 17.94 0.429 40 195 17.94 0.429 40 195 17.94 0.429 40 195 17.94 0.429 40 195 17.94 0.429 40 195 17.94 0.429 40 195 17.947 0.436 44 225 17.968 0.485 45 220 17.968 0.487 47 230 17.977 0.446 48 225 17.968 0.445 44 215 17.966 0.445 45 220 17.968 0.445 46 225 17.968 0.445 47 230 17.977 0.464 48 235 17.998 0.487 47 230 17.977 0.464 49 240 17.982 0.471 50 245 17.998 0.487 50 245 17.998 0.487 51 250 17.998 0.487 52 255 17.998 0.487 55 270 18.006 0.495	8	35		
10 45 17.735 0.224 11 50 17.75 0.239 12 55 17.762 0.251 13 60 17.774 0.263 14 65 17.781 0.27 15 70 17.794 0.283 16 75 17.80 0.289 17 80 17.811 0.30 18 85 17.815 0.304 19 90 17.828 0.317 20 95 17.832 0.321 21 100 17.84 0.329 22 105 17.849 0.338 23 110 17.851 0.34 24 115 17.859 0.348 25 120 17.866 0.355 26 125 17.87 0.366 27 130 17.877 0.366 28 135 17.883 0.372 29	-			
11 50 17.75 0.239 12 55 17.762 0.251 13 60 17.774 0.263 14 65 17.781 0.27 15 70 17.794 0.283 16 75 17.80 0.289 17 80 17.811 0.30 18 85 17.815 0.304 19 90 17.828 0.317 20 95 17.832 0.321 21 100 17.84 0.329 22 105 17.849 0.338 23 110 17.851 0.34 24 115 17.859 0.348 25 120 17.866 0.355 26 125 17.87 0.366 27 130 17.877 0.366 28 135 17.883 0.372 29 140 17.889 0.385 31				
12 55 17.762 0.251 13 60 17.774 0.263 14 65 17.781 0.27 15 70 17.794 0.283 16 75 17.80 0.289 17 80 17.811 0.30 18 85 17.815 0.304 19 90 17.828 0.317 20 95 17.829 0.321 21 100 17.84 0.329 22 105 17.849 0.338 23 110 17.851 0.34 24 115 17.859 0.348 25 120 17.866 0.355 26 125 17.87 0.359 27 130 17.877 0.366 28 135 17.883 0.372 29 140 17.889 0.378 30 145 17.990 0.39 32 <td></td> <td></td> <td></td> <td></td>				
13 60 17.774 0.263 14 65 17.781 0.27 15 70 17.794 0.283 16 75 17.80 0.289 17 80 17.811 0.30 18 85 17.815 0.304 19 90 17.828 0.317 20 95 17.832 0.321 21 100 17.84 0.329 22 105 17.849 0.338 23 110 17.851 0.34 24 115 17.859 0.348 25 120 17.866 0.355 26 125 17.87 0.359 27 130 17.877 0.366 28 135 17.883 0.372 29 140 17.889 0.378 30 145 17.896 0.385 31 150 17.901 0.39 32 <td></td> <td></td> <td></td> <td></td>				
14 65 17.781 0.27 15 70 17.794 0.283 16 75 17.80 0.289 17 80 17.811 0.30 18 85 17.815 0.304 19 90 17.828 0.317 20 95 17.832 0.321 21 100 17.84 0.329 22 105 17.849 0.338 23 110 17.851 0.34 24 115 17.859 0.348 25 120 17.866 0.355 26 125 17.87 0.356 26 125 17.877 0.366 28 135 17.883 0.372 29 140 17.889 0.378 30 145 17.896 0.385 31 150 17.901 0.39 32 155 17.903 0.392 33 </td <td></td> <td></td> <td></td> <td></td>				
15 70 17.794 0.283 16 75 17.80 0.289 17 80 17.811 0.30 18 85 17.815 0.304 19 90 17.828 0.317 20 95 17.832 0.321 21 100 17.84 0.329 22 105 17.849 0.338 23 110 17.851 0.34 24 115 17.859 0.348 25 120 17.866 0.355 26 125 17.87 0.359 27 130 17.877 0.366 28 135 17.883 0.372 29 140 17.889 0.378 30 145 17.896 0.385 31 150 17.901 0.39 32 155 17.903 0.392 33 160 17.909 0.398 34				
16 75 17.80 0.289 17 80 17.811 0.30 18 85 17.815 0.304 19 90 17.828 0.317 20 95 17.832 0.321 21 100 17.84 0.329 22 105 17.849 0.338 23 110 17.851 0.34 24 115 17.859 0.348 25 120 17.866 0.355 26 125 17.87 0.359 27 130 17.877 0.366 28 135 17.883 0.372 29 140 17.889 0.378 30 145 17.896 0.385 31 150 17.901 0.39 32 155 17.903 0.392 33 160 17.901 0.39 34 165 17.914 0.403 35				
17 80 17.811 0.30 18 85 17.815 0.304 19 90 17.828 0.317 20 95 17.832 0.321 21 100 17.84 0.329 22 105 17.849 0.338 23 110 17.851 0.34 24 115 17.859 0.348 25 120 17.866 0.355 26 125 17.87 0.366 28 135 17.883 0.372 29 140 17.889 0.378 30 145 17.896 0.385 31 150 17.901 0.39 32 155 17.901 0.39 32 155 17.901 0.39 33 160 17.909 0.398 34 165 17.914 0.403 35 170 17.921 0.416 3				
18 85 17.815 0.304 19 90 17.828 0.317 20 95 17.832 0.321 21 100 17.84 0.329 22 105 17.849 0.338 23 110 17.851 0.34 24 115 17.859 0.348 25 120 17.866 0.355 26 125 17.87 0.359 27 130 17.877 0.366 28 135 17.883 0.372 29 140 17.889 0.378 30 145 17.896 0.385 31 150 17.901 0.39 32 155 17.903 0.392 33 160 17.909 0.398 34 165 17.914 0.403 35 170 17.921 0.41 36 175 17.927 0.416 <t< td=""><td></td><td></td><td></td><td></td></t<>				
19 90 17.828 0.317 20 95 17.832 0.321 21 100 17.84 0.329 22 105 17.849 0.338 23 110 17.851 0.34 24 115 17.859 0.348 25 120 17.866 0.355 26 125 17.87 0.366 28 135 17.883 0.372 29 140 17.889 0.378 30 145 17.896 0.385 31 150 17.901 0.39 32 155 17.903 0.392 33 160 17.909 0.398 34 165 17.914 0.403 35 170 17.921 0.41 36 175 17.927 0.416 37 180 17.927 0.416 38 185 17.933 0.422 <				
20 95 17.832 0.321 21 100 17.84 0.329 22 105 17.849 0.338 23 110 17.851 0.34 24 115 17.859 0.348 25 120 17.866 0.355 26 125 17.87 0.359 27 130 17.877 0.366 28 135 17.883 0.372 29 140 17.889 0.378 30 145 17.896 0.385 31 150 17.901 0.39 32 155 17.901 0.39 33 160 17.903 0.392 33 160 17.904 0.403 35 170 17.921 0.41 36 175 17.927 0.416 37 180 17.927 0.416 38 185 17.933 0.422 <				
21 100 17.84 0.329 22 105 17.849 0.338 23 110 17.851 0.34 24 115 17.859 0.348 25 120 17.866 0.355 26 125 17.87 0.359 27 130 17.877 0.366 28 135 17.883 0.372 29 140 17.889 0.378 30 145 17.896 0.385 31 150 17.901 0.39 32 155 17.901 0.39 32 155 17.903 0.392 33 160 17.909 0.398 34 165 17.914 0.403 35 170 17.921 0.41 36 175 17.927 0.416 37 180 17.927 0.416 38 185 17.933 0.422				
22 105 17.849 0.338 23 110 17.851 0.34 24 115 17.859 0.348 25 120 17.866 0.355 26 125 17.87 0.359 27 130 17.877 0.366 28 135 17.883 0.372 29 140 17.889 0.378 30 145 17.896 0.385 31 150 17.901 0.39 32 155 17.903 0.392 33 160 17.909 0.398 34 165 17.914 0.403 35 170 17.921 0.41 36 175 17.927 0.416 37 180 17.927 0.416 38 185 17.933 0.422 39 190 17.94 0.429 40 195 17.944 0.433				
23 110 17.851 0.34 24 115 17.859 0.348 25 120 17.866 0.355 26 125 17.87 0.359 27 130 17.877 0.366 28 135 17.883 0.372 29 140 17.889 0.378 30 145 17.896 0.385 31 150 17.901 0.39 32 155 17.903 0.392 33 160 17.909 0.398 34 165 17.914 0.403 35 170 17.921 0.41 36 175 17.927 0.416 37 180 17.927 0.416 38 185 17.933 0.422 39 190 17.94 0.429 40 195 17.944 0.433 41 200 17.947 0.436				
24 115 17.859 0.348 25 120 17.866 0.355 26 125 17.87 0.359 27 130 17.877 0.366 28 135 17.883 0.372 29 140 17.889 0.378 30 145 17.896 0.385 31 150 17.901 0.39 32 155 17.903 0.392 33 160 17.909 0.398 34 165 17.914 0.403 35 170 17.921 0.41 36 175 17.927 0.416 37 180 17.927 0.416 38 185 17.933 0.422 39 190 17.94 0.429 40 195 17.944 0.433 41 200 17.947 0.436 42 205 17.956 0.445				
25 120 17.866 0.355 26 125 17.87 0.359 27 130 17.877 0.366 28 135 17.883 0.372 29 140 17.889 0.378 30 145 17.896 0.385 31 150 17.901 0.39 32 155 17.903 0.392 33 160 17.909 0.398 34 165 17.914 0.403 35 170 17.921 0.41 36 175 17.927 0.416 37 180 17.927 0.416 38 185 17.933 0.422 39 190 17.94 0.429 40 195 17.944 0.433 41 200 17.947 0.436 42 205 17.956 0.445 43 210 17.957 0.446				
26 125 17.87 0.359 27 130 17.877 0.366 28 135 17.883 0.372 29 140 17.889 0.378 30 145 17.896 0.385 31 150 17.901 0.39 32 155 17.903 0.392 33 160 17.909 0.398 34 165 17.914 0.403 35 170 17.921 0.41 36 175 17.927 0.416 37 180 17.927 0.416 38 185 17.933 0.422 39 190 17.94 0.429 40 195 17.944 0.433 41 200 17.947 0.436 42 205 17.956 0.445 43 210 17.957 0.446 44 215 17.961 0.45	24	115	17.859	0.348
27 130 17.877 0.366 28 135 17.883 0.372 29 140 17.889 0.378 30 145 17.896 0.385 31 150 17.901 0.39 32 155 17.903 0.392 33 160 17.909 0.398 34 165 17.914 0.403 35 170 17.921 0.41 36 175 17.927 0.416 37 180 17.927 0.416 38 185 17.933 0.422 39 190 17.94 0.429 40 195 17.944 0.433 41 200 17.947 0.436 42 205 17.956 0.445 43 210 17.957 0.446 44 215 17.961 0.45 45 220 17.968 0.457	25	120	17.866	0.355
28 135 17.883 0.372 29 140 17.889 0.378 30 145 17.896 0.385 31 150 17.901 0.39 32 155 17.903 0.392 33 160 17.909 0.398 34 165 17.914 0.403 35 170 17.921 0.41 36 175 17.927 0.416 37 180 17.927 0.416 38 185 17.933 0.422 39 190 17.94 0.429 40 195 17.944 0.433 41 200 17.947 0.436 42 205 17.956 0.445 43 210 17.957 0.446 44 215 17.961 0.45 45 220 17.968 0.457 46 225 17.968 0.457	26	125	17.87	0.359
29 140 17.889 0.378 30 145 17.896 0.385 31 150 17.901 0.39 32 155 17.903 0.392 33 160 17.909 0.398 34 165 17.914 0.403 35 170 17.921 0.41 36 175 17.927 0.416 37 180 17.927 0.416 38 185 17.933 0.422 39 190 17.94 0.429 40 195 17.944 0.433 41 200 17.947 0.436 42 205 17.956 0.445 43 210 17.957 0.446 44 215 17.961 0.45 45 220 17.968 0.457 46 225 17.968 0.457 47 230 17.974 0.463	27	130	17.877	0.366
30 145 17.896 0.385 31 150 17.901 0.39 32 155 17.903 0.392 33 160 17.909 0.398 34 165 17.914 0.403 35 170 17.921 0.41 36 175 17.927 0.416 37 180 17.927 0.416 38 185 17.933 0.422 39 190 17.94 0.429 40 195 17.944 0.433 41 200 17.947 0.436 42 205 17.956 0.445 43 210 17.957 0.446 44 215 17.961 0.45 45 220 17.968 0.457 47 230 17.974 0.463 48 235 17.975 0.464 49 240 17.982 0.471	28	135	17.883	0.372
31 150 17.901 0.39 32 155 17.903 0.392 33 160 17.909 0.398 34 165 17.914 0.403 35 170 17.921 0.41 36 175 17.927 0.416 37 180 17.927 0.416 38 185 17.933 0.422 39 190 17.94 0.429 40 195 17.944 0.433 41 200 17.947 0.436 42 205 17.956 0.445 43 210 17.957 0.446 44 215 17.961 0.45 45 220 17.968 0.457 47 230 17.974 0.463 48 235 17.975 0.464 49 240 17.982 0.471 50 245 17.985 0.471	29	140	17.889	0.378
32 155 17.903 0.392 33 160 17.909 0.398 34 165 17.914 0.403 35 170 17.921 0.41 36 175 17.927 0.416 37 180 17.927 0.416 38 185 17.933 0.422 39 190 17.94 0.429 40 195 17.944 0.433 41 200 17.947 0.436 42 205 17.956 0.445 43 210 17.957 0.446 44 215 17.961 0.45 45 220 17.968 0.457 46 225 17.968 0.457 47 230 17.974 0.463 48 235 17.975 0.464 49 240 17.982 0.471 50 245 17.985 0.471	30	145	17.896	0.385
33 160 17.909 0.398 34 165 17.914 0.403 35 170 17.921 0.41 36 175 17.927 0.416 37 180 17.927 0.416 38 185 17.933 0.422 39 190 17.94 0.429 40 195 17.944 0.433 41 200 17.947 0.436 42 205 17.956 0.445 43 210 17.957 0.446 44 215 17.961 0.45 45 220 17.968 0.457 46 225 17.968 0.457 47 230 17.974 0.463 48 235 17.975 0.464 49 240 17.982 0.471 50 245 17.985 0.474 51 250 17.988 0.477	31	150	17.901	0.39
34 165 17.914 0.403 35 170 17.921 0.41 36 175 17.927 0.416 37 180 17.927 0.416 38 185 17.933 0.422 39 190 17.94 0.429 40 195 17.944 0.433 41 200 17.947 0.436 42 205 17.956 0.445 43 210 17.957 0.446 44 215 17.961 0.45 45 220 17.968 0.457 46 225 17.968 0.457 47 230 17.974 0.463 48 235 17.975 0.464 49 240 17.982 0.471 50 245 17.985 0.474 51 250 17.988 0.477 52 255 17.998 0.481	32	155	17.903	0.392
35 170 17.921 0.41 36 175 17.927 0.416 37 180 17.927 0.416 38 185 17.933 0.422 39 190 17.94 0.429 40 195 17.944 0.433 41 200 17.947 0.436 42 205 17.956 0.445 43 210 17.957 0.446 44 215 17.961 0.45 45 220 17.968 0.457 46 225 17.968 0.457 47 230 17.974 0.463 48 235 17.975 0.464 49 240 17.982 0.471 50 245 17.985 0.474 51 250 17.988 0.477 52 255 17.998 0.481 53 260 17.998 0.487	33			
35 170 17.921 0.41 36 175 17.927 0.416 37 180 17.927 0.416 38 185 17.933 0.422 39 190 17.94 0.429 40 195 17.944 0.433 41 200 17.947 0.436 42 205 17.956 0.445 43 210 17.957 0.446 44 215 17.961 0.45 45 220 17.968 0.457 46 225 17.968 0.457 47 230 17.974 0.463 48 235 17.975 0.464 49 240 17.982 0.471 50 245 17.985 0.474 51 250 17.988 0.477 52 255 17.998 0.481 53 260 17.998 0.487	34	165	17.914	0.403
36 175 17.927 0.416 37 180 17.927 0.416 38 185 17.933 0.422 39 190 17.94 0.429 40 195 17.944 0.433 41 200 17.947 0.436 42 205 17.956 0.445 43 210 17.957 0.446 44 215 17.961 0.45 45 220 17.968 0.457 46 225 17.968 0.457 47 230 17.974 0.463 48 235 17.975 0.464 49 240 17.982 0.471 50 245 17.985 0.474 51 250 17.988 0.477 52 255 17.992 0.481 53 260 17.998 0.487 54 265 17.998 0.487	35	170	17.921	
37 180 17.927 0.416 38 185 17.933 0.422 39 190 17.94 0.429 40 195 17.944 0.433 41 200 17.947 0.436 42 205 17.956 0.445 43 210 17.957 0.446 44 215 17.961 0.45 45 220 17.968 0.457 46 225 17.968 0.457 47 230 17.974 0.463 48 235 17.975 0.464 49 240 17.982 0.471 50 245 17.985 0.474 51 250 17.988 0.477 52 255 17.992 0.481 53 260 17.998 0.487 54 265 17.998 0.487 55 270 18.006 0.495				
38 185 17.933 0.422 39 190 17.94 0.429 40 195 17.944 0.433 41 200 17.947 0.436 42 205 17.956 0.445 43 210 17.957 0.446 44 215 17.961 0.45 45 220 17.968 0.457 46 225 17.968 0.457 47 230 17.974 0.463 48 235 17.975 0.464 49 240 17.982 0.471 50 245 17.985 0.474 51 250 17.988 0.477 52 255 17.992 0.481 53 260 17.998 0.487 54 265 17.998 0.487 55 270 18.006 0.495 56 275 18.006 0.495				
39 190 17.94 0.429 40 195 17.944 0.433 41 200 17.947 0.436 42 205 17.956 0.445 43 210 17.957 0.446 44 215 17.961 0.45 45 220 17.968 0.457 46 225 17.968 0.457 47 230 17.974 0.463 48 235 17.975 0.464 49 240 17.982 0.471 50 245 17.985 0.474 51 250 17.988 0.477 52 255 17.992 0.481 53 260 17.998 0.487 54 265 17.998 0.487 55 270 18.006 0.495 56 275 18.006 0.495				
40 195 17.944 0.433 41 200 17.947 0.436 42 205 17.956 0.445 43 210 17.957 0.446 44 215 17.961 0.45 45 220 17.968 0.457 46 225 17.968 0.457 47 230 17.974 0.463 48 235 17.975 0.464 49 240 17.982 0.471 50 245 17.985 0.474 51 250 17.988 0.477 52 255 17.992 0.481 53 260 17.998 0.487 54 265 17.998 0.487 55 270 18.006 0.495 56 275 18.006 0.495				
41 200 17.947 0.436 42 205 17.956 0.445 43 210 17.957 0.446 44 215 17.961 0.45 45 220 17.968 0.457 46 225 17.968 0.457 47 230 17.974 0.463 48 235 17.975 0.464 49 240 17.982 0.471 50 245 17.985 0.474 51 250 17.988 0.477 52 255 17.992 0.481 53 260 17.998 0.487 54 265 17.998 0.487 55 270 18.006 0.495 56 275 18.006 0.495				
42 205 17.956 0.445 43 210 17.957 0.446 44 215 17.961 0.45 45 220 17.968 0.457 46 225 17.968 0.457 47 230 17.974 0.463 48 235 17.975 0.464 49 240 17.982 0.471 50 245 17.985 0.474 51 250 17.988 0.477 52 255 17.992 0.481 53 260 17.998 0.487 54 265 17.998 0.487 55 270 18.006 0.495 56 275 18.006 0.495				
43 210 17.957 0.446 44 215 17.961 0.45 45 220 17.968 0.457 46 225 17.968 0.457 47 230 17.974 0.463 48 235 17.975 0.464 49 240 17.982 0.471 50 245 17.985 0.474 51 250 17.988 0.477 52 255 17.992 0.481 53 260 17.998 0.487 54 265 17.998 0.487 55 270 18.006 0.495 56 275 18.006 0.495				
44 215 17.961 0.45 45 220 17.968 0.457 46 225 17.968 0.457 47 230 17.974 0.463 48 235 17.975 0.464 49 240 17.982 0.471 50 245 17.985 0.474 51 250 17.988 0.477 52 255 17.992 0.481 53 260 17.998 0.487 54 265 17.998 0.487 55 270 18.006 0.495 56 275 18.006 0.495				
45 220 17.968 0.457 46 225 17.968 0.457 47 230 17.974 0.463 48 235 17.975 0.464 49 240 17.982 0.471 50 245 17.985 0.474 51 250 17.988 0.477 52 255 17.992 0.481 53 260 17.998 0.487 54 265 17.998 0.487 55 270 18.006 0.495 56 275 18.006 0.495	-			
46 225 17.968 0.457 47 230 17.974 0.463 48 235 17.975 0.464 49 240 17.982 0.471 50 245 17.985 0.474 51 250 17.988 0.477 52 255 17.992 0.481 53 260 17.998 0.487 54 265 17.998 0.487 55 270 18.006 0.495 56 275 18.006 0.495				
47 230 17.974 0.463 48 235 17.975 0.464 49 240 17.982 0.471 50 245 17.985 0.474 51 250 17.988 0.477 52 255 17.992 0.481 53 260 17.998 0.487 54 265 17.998 0.487 55 270 18.006 0.495 56 275 18.006 0.495				
48 235 17.975 0.464 49 240 17.982 0.471 50 245 17.985 0.474 51 250 17.988 0.477 52 255 17.992 0.481 53 260 17.998 0.487 54 265 17.998 0.487 55 270 18.006 0.495 56 275 18.006 0.495		-		
49 240 17.982 0.471 50 245 17.985 0.474 51 250 17.988 0.477 52 255 17.992 0.481 53 260 17.998 0.487 54 265 17.998 0.487 55 270 18.006 0.495 56 275 18.006 0.495				
50 245 17.985 0.474 51 250 17.988 0.477 52 255 17.992 0.481 53 260 17.998 0.487 54 265 17.998 0.487 55 270 18.006 0.495 56 275 18.006 0.495				
51 250 17.988 0.477 52 255 17.992 0.481 53 260 17.998 0.487 54 265 17.998 0.487 55 270 18.006 0.495 56 275 18.006 0.495				
52 255 17.992 0.481 53 260 17.998 0.487 54 265 17.998 0.487 55 270 18.006 0.495 56 275 18.006 0.495				
53 260 17.998 0.487 54 265 17.998 0.487 55 270 18.006 0.495 56 275 18.006 0.495				
54 265 17.998 0.487 55 270 18.006 0.495 56 275 18.006 0.495				
55 270 18.006 0.495 56 275 18.006 0.495				
56 275 18.006 0.495	54	265	17.998	0.487
	55	270	18.006	0.495
57 280 18.012 0.501	56	275	18.006	0.495
	57	280	18.012	0.501
				•

Pumping Test - Water Level Data Page 2 of 3
Project: De Soto Pump Test
Number:
Client:

58 59 60 61 62 63 64 65 66 67 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 97 98 99 90 90 90 90 90 90 90 90 90				
59 60 61 62 63 64 65 66 67 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 117		Time	Water Level	Drawdown
59 60 61 62 63 64 65 66 67 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 117		[min]	[ft]	[ft]
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 90 91 91 92 93 94 95 96 97 97 98 99 100 101 102 103 104 105 105 105 105 105 105 105 105 105 105		285	18.014	0.503
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 90 91 92 93 94 95 96 97 97 98 99 100 101 102 103 104 105 106 107 108 108 108 108 108 108 108 108 108 108		290	18.019	0.508
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 97 98 99 100 101 102 103 104 105 106 107 108 109 100 100 100 100 100 100 100		295	18.022	0.511
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 97 98 99 100 101 102 103 104 105 106 107 108 109 109 100 100 100 100 100 100		300	18.026	0.515
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 107 108 108 108 108 108 108 108 108		305	18.027	0.516
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 107 108 109 107 108 109 109 109 109 109 109 109 109		310	18.033	0.522
66 67 68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 109 110 110 111 111 112 113 114 115 116 117		315	18.033	0.522
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 97 98 99 100 101 102 103 104 105 106 107 108 109 110 110 110 110 110 111 111		320	18.037	0.526
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 106 107 108 108 109 109 109 109 109 109 109 109		325	18.043	0.532
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115		330	18.044	0.533
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115		335	18.045	0.534
71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115		340	18.054	0.543
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 99 91 92 93 94 95 96 97 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115		345	18.055	0.544
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116		350	18.054	0.543
74 75 76 77 78 79 80 81 82 83 84 85 86 87 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116		355	18.061	0.55
75 76 77 78 80 81 82 83 84 85 86 87 90 91 92 93 94 95 96 97 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115		360	18.063	0.552
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115		365	18.066	0.555
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116	75	370	18.069	0.558
78 79 80 81 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117		375	18.073	0.562
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116	77	380	18.076	0.565
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 100 101 102 103 104 105 106 107 108 109 111 111 112 113 114 115 116 117	78	385	18.081	0.57
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 100 101 102 103 104 105 106 107 108 109 111 111 112 113 114 115 116 117		390	18.083	0.572
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 100 101 102 103 104 105 106 107 108 109 110 111 111 112 113 114 115 116 117		395	18.085	0.574
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 111 112 113 114 115 116 117		400	18.087	0.576
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 111 112 113 114 115 116 117		405	18.09	0.579
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 111 111 112 113 114 115 116 117		410	18.094	0.583
85 86 87 88 89 90 91 92 93 94 95 96 97 100 101 102 103 104 105 106 107 108 109 110 111 111 112 113 114 115 116 117		415	18.10	0.589
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117		420	18.099	0.588
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117		425	18.107	0.596
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117		430	18.103	0.592
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 111 111 112 113 114 115 116 117		435	18.11	0.599
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 111 112 113 114 115 116 117		440	18.112	0.601
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117		445	18.114	0.603
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 111 112 113 114 115 116 117		450	18.115	0.604
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 111 112 113 114 115 116 117		455	18.121	0.61
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 111 111 112 113 114 115 116 117		460	18.122	0.611
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117		465	18.124	0.613
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117		470	18.128	0.617
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117		475	18.131	0.62
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117		480	18.132	0.621
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116		485	18.131	0.62
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117		490	18.134	0.623
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116		490		
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116		500	18.14 18.137	0.629 0.626
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117				
104 105 106 107 108 109 110 111 112 113 114 115 116 117		505	18.14	0.629
105 106 107 108 109 110 111 112 113 114 115 116 117		510	18.143	0.632
106 107 108 109 110 111 112 113 114 115 116 117		515	18.146	0.635
107 108 109 110 111 112 113 114 115 116 117		520	18.146	0.635
108 109 110 111 112 113 114 115 116 117		525	18.147	0.636
109 110 111 112 113 114 115 116 117		530	18.148	0.637
110 111 112 113 114 115 116 117		535	18.154	0.643
111 112 113 114 115 116 117		540	18.152	0.641
112 113 114 115 116 117		545	18.153	0.642
113 114 115 116 117		550	18.152	0.641
114 115 116 117		555	18.155	0.644
115 116 117	113	560	18.159	0.648
116 117	114	565	18.157	0.646
116 117	115	570	18.159	0.648
117		575	18.163	0.652
110		580	18.159	0.648
118	118	585	18.161	0.65
119		590	18.163	0.652
120		595	18.165	0.654

Pumping Test - Water Level Data Page 3 of 3
Project: De Soto Pump Test
Number:
Client:

	Time [min]	Water Level [ft]	Drawdown [ft]
121	600	18.164	0.653
122	605	18.169	0.658
123	610	18.172	0.661
124	615	18.169	0.658
125	620	18.171	0.66
126	625	18.173	0.662
127	630	18.175	0.664
128	635	18.174	0.663
129	640	18.176	0.665
130	645	18.178	0.667
131	650	18.177	0.666
132	655	18.18	0.669
133	660	18.182	0.671
134	665	18.185	0.674

Pumping Test Analysis Report

Project: De Soto Pump Test

Number:

Client:

Location: De Soto, Iowa		Pumping Test: Well 3	Pumping Well: Well 3
	Test Conducted by: Mike Gannon		Test Date: 9/9/2012
	Analysis Performed by:	New analysis 3	Analysis Date: 9/11/2012
	Aquifer Thickness: 31.00 ft	Discharge Rate: 150 [U.S. gal/min]	

Calculation using COOPER & JACOB					
Observation Well	Transmissivity	Hydraulic Conductivity	Storage coefficient	Radial Distance to PW	
	[ft²/d]	[ft/d]		[ft]	
OB Well 1	1.47 × 10 ⁴	4.75 × 10 ²	3.96 × 10 ⁻²	78.0	

Pumping Test - Water Level Data Page 1 of 15
Project: West Des Moines Pump Test
Number:
Client:

Location: West Des Moines, Iowa Pumping Test: Well 21 Pumping Well: Well 21

Test Conducted by: Test Date: 9/11/2012 Discharge Rate: 243 [U.S. gal/min]

Observation Well: 0B1 Static Water Level [ft]: 9.99 Radial Distance to PW [ft]: 63

Time				
1 0 9.986 0.00 2 5 10.125 0.139 3 10 10.283 0.297 4 15 10.345 0.359 5 20 10.403 0.417 6 25 10.446 0.46 7 30 10.491 0.505 8 35 10.527 0.541 9 40 10.563 0.577 10 45 10.599 0.613 11 50 10.631 0.645 12 55 10.667 0.681 13 60 10.691 0.705 14 65 10.714 0.728 15 70 10.739 0.753 16 75 10.77 0.784 17 80 10.793 0.807 18 85 10.806 0.82 19 90 10.832 0.846 20 95 <td></td> <td>Time</td> <td>Water Level</td> <td></td>		Time	Water Level	
2 5 10.125 0.139 3 10 10.283 0.297 4 15 10.345 0.359 5 20 10.403 0.417 6 25 10.446 0.46 7 30 10.491 0.505 8 35 10.527 0.541 9 40 10.563 0.577 10 45 10.599 0.613 11 50 10.631 0.645 12 55 10.667 0.681 12 55 10.667 0.681 13 60 10.991 0.705 14 65 10.714 0.728 15 70 10.739 0.783 16 75 10.77 0.784 17 80 10.793 0.807 18 85 10.806 0.82 20 95 10.851 0.865 21 1	1			
3 10 10.283 0.297 4 15 10.345 0.359 5 20 10.403 0.417 6 25 10.446 0.46 7 30 10.491 0.505 8 35 10.527 0.541 9 40 10.563 0.577 10 45 10.599 0.613 11 50 10.631 0.645 12 55 10.667 0.681 13 60 10.691 0.705 14 65 10.714 0.728 15 70 10.739 0.753 16 75 10.77 0.784 17 80 10.793 0.807 18 85 10.806 0.82 19 90 10.832 0.846 20 95 10.851 0.865 21 100 10.964 0.878 22 <t< td=""><td></td><td></td><td></td><td></td></t<>				
4 15 10.345 0.359 5 20 10.403 0.417 6 25 10.446 0.46 7 30 10.491 0.505 8 35 10.527 0.541 9 40 10.563 0.577 10 45 10.599 0.613 11 50 10.631 0.645 12 55 10.667 0.681 13 60 10.691 0.705 14 65 10.714 0.728 15 70 10.739 0.783 16 75 10.77 0.784 17 80 10.793 0.807 18 85 10.806 0.82 21 100 10.832 0.846 20 95 10.851 0.865 21 100 10.864 0.878 22 105 10.888 0.902 23				
5 20 10.403 0.417 6 25 10.446 0.46 7 30 10.491 0.505 8 35 10.527 0.541 9 40 10.563 0.577 10 45 10.599 0.613 11 50 10.631 0.645 12 55 10.667 0.681 13 60 10.691 0.705 14 65 10.714 0.728 15 70 10.739 0.753 16 75 10.77 0.784 17 80 10.793 0.807 18 85 10.806 0.82 19 90 10.832 0.846 20 95 10.851 0.865 21 100 10.864 0.878 22 105 10.888 0.902 23 110 10.899 0.913 24				
6 25 10.446 0.46 7 30 10.491 0.505 8 35 10.527 0.541 9 40 10.563 0.577 10 45 10.599 0.613 11 50 10.631 0.645 12 55 10.667 0.681 13 60 10.691 0.705 14 65 10.714 0.728 15 70 10.739 0.753 16 75 10.77 0.784 17 80 10.793 0.807 18 85 10.806 0.82 19 90 10.832 0.846 20 95 10.851 0.888 0.902 21 100 10.899 0.913 24 115 10.921 0.935 25 120 10.948 0.962 26 125 10.95 0.964 27 130 10.963 0.977 28 135 10.983 0.997 29 140 10.991 1.005 30 145 11.008 1.022 31 10 10.963 0.977 28 135 10.983 0.997 29 140 10.991 1.005 30 145 11.008 1.022 31 110 10.91 1.034 1.044 34 165 11.053 1.067 35 170 11.053 1.067 36 175 11.068 1.062 37 180 11.07 1.091 1.005 39 190 11.033 1.044 44 1.048 1.049 44 1.049 1.0991 1.005 30 1.096 1.0991 1.005 30 1.096 1.0991 1.005 30 1.096 1.0991 1.005 30 1.096 1.0991 1.005 31 1.096 1.0991 1.005 32 1.0991 1.005 33 1.0997 1.111 40 195 11.119 1.333 34 160 11.037 1.044 35 170 11.053 1.067 36 175 11.068 1.062 37 180 11.087 1.101 38 185 11.087 1.101 40 195 11.119 1.133 41 200 11.12 1.134 41 200 11.12 1.134 42 205 11.148 1.162 44 215 11.147 1.161 45 220 11.148 1.162 46 225 11.163 1.177 47 230 11.176 1.19 48 235 11.165 1.179 49 240 11.183 1.197 50 245 11.195 1.209 51 1.225 1.239 56 275 11.231 1.245				
7 30 10.491 0.505 8 35 10.527 0.541 9 40 10.563 0.577 10 45 10.599 0.613 111 50 10.631 0.645 12 55 10.667 0.681 13 60 10.691 0.705 14 65 10.714 0.728 15 70 10.739 0.753 16 75 10.77 0.784 17 80 10.793 0.807 18 85 10.806 0.82 19 90 10.832 0.846 20 95 10.851 0.865 21 100 10.864 0.878 22 105 10.888 0.902 23 110 10.899 0.913 24 115 10.921 0.935 25 120 10.948 0.962 26 125 10.95 0.964 27 130 10.963 0.977 28 135 10.983 0.997 29 140 10.991 1.005 30 145 11.008 1.022 31 150 11.034 1.048 32 155 11.067 33 1.067 34 1.053 1.067 35 170 11.053 1.067 36 175 11.068 1.082 37 180 11.097 1.111 40 195 11.108 1.082 41 115 1.0921 1.033 33 160 11.034 1.048 34 165 11.053 1.067 35 170 11.053 1.067 36 175 11.068 1.082 37 180 11.097 1.111 40 195 11.119 1.133 39 190 11.097 1.111 40 195 11.119 1.133 41 200 11.12 1.134 42 205 11.129 1.143 43 210 11.165 1.165 44 215 11.165 1.179 47 230 11.165 1.179 48 235 11.165 1.179 49 240 11.183 1.197 47 230 11.165 1.179 49 240 11.198 1.228 51 255 270 11.225 1.239 56 275 11.231 1.245				
8 35 10.527 0.541 9 40 10.563 0.577 10 45 10.599 0.613 11 50 10.631 0.645 12 55 10.667 0.681 13 60 10.691 0.705 14 65 10.714 0.728 15 70 10.739 0.753 16 75 10.77 0.784 17 80 10.793 0.807 18 85 10.806 0.82 19 90 10.832 0.846 20 95 10.851 0.865 21 100 10.864 0.878 22 105 10.888 0.902 23 110 10.9899 0.913 24 115 10.921 0.935 25 120 10.948 0.962 26 125 10.95 0.964 27				
9 40 10.563 0.577 10 45 10.599 0.613 11 50 10.631 0.645 12 55 10.667 0.681 13 60 10.691 0.705 14 65 10.714 0.728 15 70 10.739 0.753 16 75 10.77 0.784 17 80 10.793 0.807 18 85 10.806 0.82 19 90 10.832 0.846 20 95 10.851 0.865 21 100 10.864 0.878 22 105 10.888 0.902 23 110 10.899 0.913 24 115 10.921 0.935 25 120 10.948 0.962 26 125 10.955 0.964 27 130 10.963 0.977 28 135 10.983 0.997 29 140 10.991 1.005 30 145 11.008 1.022 31 150 11.034 1.048 32 155 11.019 1.033 33 160 11.03 1.044 34 165 11.053 1.067 36 175 11.068 1.082 37 180 11.087 1.101 38 185 11.087 1.101 39 190 11.097 1.111 40 195 11.119 1.133 41 200 11.12 1.134 42 205 11.149 1.133 44 215 11.109 1.133 45 11.01 1.087 1.101 46 225 11.165 1.165 47 230 11.176 1.119 48 235 11.183 1.197 49 240 11.183 1.197 49 240 11.183 1.197 49 240 11.183 1.197 49 240 11.198 1.165 50 245 11.199 1.133 40 1.176 1.199 41 1.161 44 225 11.195 1.119 49 240 11.183 1.197 47 230 11.176 1.19 49 240 11.183 1.197 50 245 11.198 1.222 53 260 11.214 1.228 54 265 11.215 1.229 55 270 11.225 1.239				
10 45 10.599 0.613 11 50 10.631 0.645 12 55 10.667 0.681 13 60 10.691 0.705 14 65 10.714 0.728 15 70 10.739 0.753 16 75 10.77 0.784 17 80 10.793 0.807 18 85 10.806 0.82 19 90 10.832 0.846 20 95 10.851 0.865 21 100 10.864 0.878 22 105 10.888 0.902 23 110 10.999 0.913 24 115 10.921 0.935 25 120 10.948 0.962 26 125 10.95 0.964 27 130 10.963 0.977 28 135 10.983 0.997 29 </td <td></td> <td></td> <td></td> <td></td>				
11 50 10.631 0.645 12 55 10.667 0.681 13 60 10.691 0.705 14 65 10.714 0.728 15 70 10.739 0.753 16 75 10.77 0.784 17 80 10.793 0.807 18 85 10.806 0.82 19 90 10.832 0.846 20 95 10.851 0.862 21 100 10.864 0.878 22 105 10.888 0.902 23 110 10.899 0.913 24 115 10.921 0.935 25 120 10.948 0.962 26 125 10.95 0.964 27 130 10.963 0.977 28 135 10.983 0.997 29 140 10.991 1.005 30<		-		
12 55 10.667 0.681 13 60 10.691 0.705 14 65 10.714 0.728 15 70 10.739 0.753 16 75 10.77 0.784 17 80 10.793 0.807 18 85 10.806 0.82 19 90 10.832 0.846 20 95 10.851 0.865 21 100 10.864 0.878 22 105 10.888 0.902 23 110 10.899 0.913 24 115 10.921 0.935 25 120 10.948 0.962 26 125 10.95 0.964 27 130 10.963 0.997 28 135 10.983 0.997 28 135 10.983 0.997 29 140 10.991 1.005 30		-		
13 60 10.691 0.705 14 65 10.714 0.728 15 70 10.739 0.753 16 75 10.77 0.784 17 80 10.793 0.807 18 85 10.806 0.82 19 90 10.832 0.846 20 95 10.851 0.865 21 100 10.864 0.878 22 105 10.888 0.902 23 110 10.899 0.913 24 115 10.921 0.935 25 120 10.948 0.962 26 125 10.95 0.964 27 130 10.963 0.977 28 135 10.983 0.997 29 140 10.991 1.005 30 145 11.008 1.022 31 150 11.034 1.04 32				
14 65 10.714 0.728 15 70 10.739 0.753 16 75 10.77 0.784 17 80 10.793 0.807 18 85 10.806 0.82 19 90 10.832 0.846 20 95 10.851 0.865 21 100 10.884 0.878 22 105 10.888 0.902 23 110 10.899 0.913 24 115 10.921 0.935 25 120 10.948 0.962 26 125 10.95 0.964 27 130 10.963 0.977 28 135 10.983 0.997 29 140 10.991 1.005 30 145 11.008 1.022 31 150 11.034 1.048 32 155 11.019 1.033				
15 70 10.739 0.753 16 75 10.77 0.784 17 80 10.793 0.807 18 85 10.806 0.82 19 90 10.832 0.846 20 95 10.851 0.865 21 100 10.864 0.878 22 105 10.888 0.902 23 110 10.899 0.913 24 115 10.921 0.935 25 120 10.948 0.962 26 125 10.95 0.964 27 130 10.963 0.977 28 135 10.983 0.997 29 140 10.991 1.005 30 145 11.008 1.022 31 150 11.034 1.048 32 155 11.019 1.033 33 160 11.03 1.044				
16 75 10.77 0.784 17 80 10.793 0.807 18 85 10.806 0.82 19 90 10.832 0.846 20 95 10.851 0.865 21 100 10.864 0.878 22 105 10.888 0.902 23 110 10.899 0.913 24 115 10.921 0.935 25 120 10.948 0.962 26 125 10.95 0.964 27 130 10.963 0.977 28 135 10.983 0.997 29 140 10.991 1.005 30 145 11.008 1.022 31 150 11.034 1.048 32 155 11.019 1.033 33 160 11.03 1.044 34 165 11.053 1.067 <td< td=""><td></td><td></td><td></td><td></td></td<>				
17 80 10.793 0.807 18 85 10.806 0.82 19 90 10.832 0.846 20 95 10.851 0.865 21 100 10.864 0.878 22 105 10.888 0.902 23 110 10.899 0.913 24 115 10.921 0.935 25 120 10.948 0.962 26 125 10.95 0.964 27 130 10.963 0.977 28 135 10.993 0.997 29 140 10.991 1.005 30 145 11.008 1.022 31 150 11.034 1.048 32 155 11.019 1.033 33 160 11.03 1.044 34 165 11.053 1.067 35 170 11.053 1.067 <				
18 85 10.806 0.82 19 90 10.832 0.846 20 95 10.851 0.865 21 100 10.864 0.878 22 105 10.888 0.902 23 110 10.899 0.913 24 115 10.921 0.935 25 120 10.948 0.962 26 125 10.95 0.964 27 130 10.963 0.977 28 135 10.983 0.997 29 140 10.991 1.005 30 145 11.008 1.022 31 150 11.034 1.048 32 155 11.019 1.033 33 160 11.03 1.044 34 165 11.053 1.067 35 170 11.053 1.067 35 170 11.087 1.101				
19 90 10.832 0.846 20 95 10.851 0.865 21 100 10.864 0.878 22 105 10.888 0.902 23 110 10.989 0.913 24 115 10.921 0.935 25 120 10.948 0.962 26 125 10.95 0.964 27 130 10.963 0.977 28 135 10.983 0.997 29 140 10.991 1.005 30 145 11.008 1.022 31 150 11.034 1.048 32 155 11.019 1.033 33 160 11.03 1.044 34 165 11.053 1.067 35 170 11.053 1.067 35 175 11.068 1.082 37 180 11.087 1.101				
20 95 10.851 0.865 21 100 10.864 0.878 22 105 10.888 0.902 23 110 10.899 0.913 24 115 10.921 0.935 25 120 10.948 0.962 26 125 10.95 0.964 27 130 10.963 0.977 28 135 10.983 0.997 29 140 10.991 1.005 30 145 11.008 1.022 31 150 11.034 1.048 32 155 11.019 1.033 33 160 11.03 1.044 34 165 11.053 1.067 35 170 11.053 1.067 36 175 11.068 1.082 37 180 11.097 1.111 40 195 11.197 1.133				
21 100 10.864 0.878 22 105 10.888 0.902 23 110 10.899 0.913 24 115 10.921 0.935 25 120 10.948 0.962 26 125 10.95 0.964 27 130 10.963 0.977 28 135 10.983 0.997 29 140 10.991 1.005 30 145 11.008 1.022 31 150 11.034 1.048 32 155 11.019 1.033 33 160 11.03 1.044 34 165 11.053 1.067 35 170 11.053 1.067 36 175 11.068 1.082 37 180 11.087 1.101 38 185 11.097 1.111 40 195 11.119 1.133				
22 105 10.888 0.902 23 110 10.899 0.913 24 115 10.921 0.935 26 125 10.948 0.962 26 125 10.95 0.964 27 130 10.963 0.977 28 135 10.983 0.997 29 140 10.991 1.005 30 145 11.008 1.022 31 150 11.034 1.048 32 155 11.019 1.033 33 160 11.03 1.044 34 165 11.053 1.067 36 175 11.068 1.082 37 180 11.087 1.101 38 185 11.087 1.101 39 190 11.097 1.111 40 195 11.119 1.133 41 200 11.12 1.134				
23 110 10.899 0.913 24 115 10.921 0.935 25 120 10.948 0.962 26 125 10.95 0.964 27 130 10.963 0.977 28 135 10.983 0.997 29 140 10.991 1.005 30 145 11.008 1.022 31 150 11.034 1.048 32 155 11.019 1.033 33 160 11.03 1.044 34 165 11.053 1.067 35 170 11.053 1.067 35 170 11.053 1.067 35 175 11.068 1.082 37 180 11.087 1.101 38 185 11.087 1.101 39 190 11.097 1.111 40 195 11.119 1.133				
24 115 10.921 0.935 25 120 10.948 0.962 26 125 10.95 0.964 27 130 10.963 0.977 28 135 10.983 0.997 29 140 10.991 1.005 30 145 11.008 1.022 31 150 11.034 1.048 32 155 11.019 1.033 33 160 11.03 1.044 34 165 11.053 1.067 35 170 11.053 1.067 35 170 11.053 1.067 36 175 11.068 1.082 37 180 11.087 1.101 38 185 11.087 1.101 39 190 11.097 1.111 40 195 11.119 1.133 41 200 11.12 1.143				
25 120 10.948 0.962 26 125 10.95 0.964 27 130 10.963 0.977 28 135 10.983 0.997 29 140 10.991 1.005 30 145 11.008 1.022 31 150 11.034 1.048 32 155 11.019 1.033 33 160 11.03 1.044 34 165 11.053 1.067 35 170 11.053 1.067 36 175 11.068 1.082 37 180 11.087 1.101 38 185 11.087 1.101 38 185 11.087 1.111 40 195 11.119 1.133 41 200 11.12 1.134 42 205 11.129 1.143 43 210 11.151 1.165				
26 125 10.95 0.964 27 130 10.963 0.977 28 135 10.983 0.997 29 140 10.991 1.005 30 145 11.008 1.022 31 150 11.034 1.048 32 155 11.019 1.033 33 160 11.03 1.044 34 165 11.053 1.067 35 170 11.053 1.067 36 175 11.068 1.082 37 180 11.087 1.101 38 185 11.097 1.111 40 195 11.119 1.133 41 200 11.12 1.134 42 205 11.129 1.143 43 210 11.151 1.165 44 215 11.147 1.161 45 220 11.148 1.162				
27 130 10.963 0.977 28 135 10.983 0.997 29 140 10.991 1.005 30 145 11.008 1.022 31 150 11.034 1.048 32 155 11.019 1.033 33 160 11.03 1.044 34 165 11.053 1.067 36 175 11.068 1.082 37 180 11.087 1.101 38 185 11.087 1.101 39 190 11.097 1.111 40 195 11.119 1.133 41 200 11.12 1.134 42 205 11.129 1.143 43 210 11.151 1.165 44 215 11.147 1.161 45 220 11.148 1.162 46 225 11.165 1.179				
28 135 10.983 0.997 29 140 10.991 1.005 30 145 11.008 1.022 31 150 11.034 1.048 32 155 11.019 1.033 33 160 11.03 1.044 34 165 11.053 1.067 35 170 11.053 1.067 35 170 11.087 1.067 37 180 11.087 1.101 38 185 11.087 1.101 39 190 11.097 1.111 40 195 11.119 1.133 41 200 11.12 1.134 42 205 11.129 1.143 43 210 11.151 1.165 44 215 11.147 1.161 45 220 11.148 1.162 46 225 11.163 1.177				
29 140 10.991 1.005 30 145 11.008 1.022 31 150 11.034 1.048 32 155 11.019 1.033 33 160 11.03 1.044 34 165 11.053 1.067 35 170 11.053 1.067 36 175 11.068 1.082 37 180 11.087 1.101 38 185 11.087 1.101 39 190 11.097 1.111 40 195 11.119 1.133 41 200 11.12 1.143 42 205 11.129 1.143 43 210 11.151 1.165 44 215 11.147 1.161 45 220 11.148 1.162 46 225 11.168 1.177 47 230 11.176 1.19				
30 145 11.008 1.022 31 150 11.034 1.048 32 155 11.019 1.033 33 160 11.03 1.044 34 165 11.053 1.067 35 170 11.053 1.067 36 175 11.068 1.082 37 180 11.087 1.101 38 185 11.087 1.101 39 190 11.097 1.111 40 195 11.119 1.133 41 200 11.12 1.134 42 205 11.129 1.143 43 210 11.151 1.165 44 215 11.147 1.161 45 220 11.148 1.162 46 225 11.163 1.177 47 230 11.176 1.19 48 235 11.165 1.179				
31 150 11.034 1.048 32 155 11.019 1.033 33 160 11.03 1.044 34 165 11.053 1.067 35 170 11.053 1.067 36 175 11.068 1.082 37 180 11.087 1.101 38 185 11.087 1.101 39 190 11.097 1.111 40 195 11.119 1.133 41 200 11.12 1.134 42 205 11.129 1.143 43 210 11.151 1.165 44 215 11.147 1.161 45 220 11.148 1.162 46 225 11.163 1.177 47 230 11.176 1.19 48 235 11.165 1.179 49 240 11.183 1.197				
32 155 11.019 1.033 33 160 11.03 1.044 34 165 11.053 1.067 35 170 11.053 1.067 36 175 11.068 1.082 37 180 11.087 1.101 38 185 11.087 1.101 39 190 11.097 1.111 40 195 11.119 1.133 41 200 11.12 1.134 42 205 11.129 1.143 43 210 11.151 1.165 44 215 11.147 1.161 45 220 11.148 1.162 46 225 11.163 1.177 47 230 11.176 1.19 48 235 11.165 1.179 49 240 11.183 1.197 50 245 11.198 1.212		-		
33 160 11.03 1.044 34 165 11.053 1.067 35 170 11.053 1.067 36 175 11.068 1.082 37 180 11.087 1.101 38 185 11.087 1.101 39 190 11.097 1.111 40 195 11.119 1.133 41 200 11.12 1.134 42 205 11.129 1.143 43 210 11.151 1.165 44 215 11.147 1.161 45 220 11.148 1.162 46 225 11.163 1.177 47 230 11.176 1.19 48 235 11.165 1.179 49 240 11.183 1.197 49 240 11.183 1.197 50 245 11.195 1.209				
34 165 11.053 1.067 35 170 11.053 1.067 36 175 11.068 1.082 37 180 11.087 1.101 38 185 11.087 1.101 39 190 11.097 1.111 40 195 11.119 1.133 41 200 11.12 1.143 42 205 11.129 1.143 43 210 11.151 1.165 44 215 11.147 1.161 45 220 11.148 1.162 46 225 11.183 1.177 47 230 11.176 1.19 48 235 11.165 1.179 49 240 11.183 1.197 50 245 11.195 1.209 51 250 11.198 1.212 52 255 11.208 1.222				_
35 170 11.053 1.067 36 175 11.068 1.082 37 180 11.087 1.101 38 185 11.087 1.101 39 190 11.097 1.111 40 195 11.119 1.133 41 200 11.12 1.134 42 205 11.129 1.143 43 210 11.151 1.165 44 215 11.147 1.161 45 220 11.148 1.162 46 225 11.163 1.177 47 230 11.176 1.19 48 235 11.165 1.179 49 240 11.183 1.197 50 245 11.195 1.209 51 250 11.198 1.212 52 255 11.208 1.222 53 260 11.214 1.228				
36 175 11.068 1.082 37 180 11.087 1.101 38 185 11.097 1.101 39 190 11.097 1.111 40 195 11.119 1.133 41 200 11.12 1.134 42 205 11.129 1.143 43 210 11.151 1.165 44 215 11.147 1.161 45 220 11.148 1.162 46 225 11.163 1.177 47 230 11.176 1.19 48 235 11.165 1.179 49 240 11.183 1.197 49 240 11.183 1.197 50 245 11.195 1.209 51 250 11.198 1.212 52 255 11.208 1.222 53 260 11.214 1.228				
37 180 11.087 1.101 38 185 11.087 1.101 39 190 11.097 1.111 40 195 11.119 1.133 41 200 11.12 1.134 42 205 11.129 1.143 43 210 11.151 1.165 44 215 11.147 1.161 45 220 11.148 1.162 46 225 11.163 1.177 47 230 11.176 1.19 48 235 11.165 1.179 49 240 11.183 1.197 49 240 11.183 1.197 50 245 11.195 1.209 51 250 11.198 1.212 52 255 11.208 1.222 53 260 11.214 1.228 54 265 11.215 1.239				
38 185 11.087 1.101 39 190 11.097 1.111 40 195 11.119 1.133 41 200 11.12 1.143 42 205 11.129 1.143 43 210 11.151 1.165 44 215 11.147 1.161 45 220 11.148 1.162 46 225 11.163 1.177 47 230 11.176 1.19 48 235 11.165 1.179 49 240 11.183 1.197 50 245 11.195 1.209 51 250 11.198 1.212 52 255 11.208 1.222 53 260 11.214 1.228 54 265 11.215 1.229 55 270 11.225 1.239 56 275 11.231 1.245				
39 190 11.097 1.111 40 195 11.119 1.133 41 200 11.12 1.134 42 205 11.129 1.143 43 210 11.151 1.165 44 215 11.147 1.161 45 220 11.148 1.162 46 225 11.163 1.177 47 230 11.176 1.19 48 235 11.165 1.179 49 240 11.183 1.197 50 245 11.195 1.209 51 250 11.198 1.212 52 255 11.208 1.222 53 260 11.214 1.228 54 265 11.215 1.229 56 270 11.225 1.239 56 275 11.231 1.245				
40 195 11.119 1.133 41 200 11.12 1.134 42 205 11.129 1.143 43 210 11.151 1.165 44 215 11.147 1.161 45 220 11.148 1.162 46 225 11.163 1.177 47 230 11.176 1.19 48 235 11.165 1.179 49 240 11.183 1.197 50 245 11.195 1.209 51 250 11.198 1.212 52 255 11.208 1.222 53 260 11.214 1.228 54 265 11.215 1.229 56 275 11.231 1.245				
41 200 11.12 1.134 42 205 11.129 1.143 43 210 11.151 1.165 44 215 11.147 1.161 45 220 11.148 1.162 46 225 11.163 1.177 47 230 11.176 1.19 48 235 11.165 1.179 49 240 11.183 1.197 50 245 11.195 1.209 51 250 11.198 1.212 52 255 11.208 1.222 53 260 11.214 1.228 54 265 11.215 1.229 56 275 11.231 1.245				
42 205 11.129 1.143 43 210 11.151 1.165 44 215 11.147 1.161 45 220 11.148 1.162 46 225 11.163 1.177 47 230 11.176 1.19 48 235 11.165 1.179 49 240 11.183 1.197 50 245 11.195 1.209 51 250 11.198 1.212 52 255 11.208 1.222 53 260 11.214 1.228 54 265 11.215 1.229 55 270 11.225 1.239 56 275 11.231 1.245				
43 210 11.151 1.165 44 215 11.147 1.161 45 220 11.148 1.162 46 225 11.163 1.177 47 230 11.176 1.19 48 235 11.165 1.179 49 240 11.183 1.197 50 245 11.195 1.209 51 250 11.198 1.212 52 255 11.208 1.222 53 260 11.214 1.228 54 265 11.215 1.229 55 270 11.225 1.239 56 275 11.231 1.245				
44 215 11.147 1.161 45 220 11.148 1.162 46 225 11.163 1.177 47 230 11.176 1.19 48 235 11.165 1.179 49 240 11.183 1.197 50 245 11.195 1.209 51 250 11.198 1.212 52 255 11.208 1.222 53 260 11.214 1.228 54 265 11.215 1.229 55 270 11.225 1.239 56 275 11.231 1.245				
45 220 11.148 1.162 46 225 11.163 1.177 47 230 11.176 1.19 48 235 11.165 1.179 49 240 11.183 1.197 50 245 11.195 1.209 51 250 11.198 1.212 52 255 11.208 1.222 53 260 11.214 1.228 54 265 11.215 1.229 55 270 11.225 1.239 56 275 11.231 1.245				
46 225 11.163 1.177 47 230 11.176 1.19 48 235 11.165 1.179 49 240 11.183 1.197 50 245 11.195 1.209 51 250 11.198 1.212 52 255 11.208 1.222 53 260 11.214 1.228 54 265 11.215 1.229 55 270 11.225 1.239 56 275 11.231 1.245				
47 230 11.176 1.19 48 235 11.165 1.179 49 240 11.183 1.197 50 245 11.195 1.209 51 250 11.198 1.212 52 255 11.208 1.222 53 260 11.214 1.228 54 265 11.215 1.229 55 270 11.225 1.239 56 275 11.231 1.245				
48 235 11.165 1.179 49 240 11.183 1.197 50 245 11.195 1.209 51 250 11.198 1.212 52 255 11.208 1.222 53 260 11.214 1.228 54 265 11.215 1.229 55 270 11.225 1.239 56 275 11.231 1.245				
49 240 11.183 1.197 50 245 11.195 1.209 51 250 11.198 1.212 52 255 11.208 1.222 53 260 11.214 1.228 54 265 11.215 1.229 55 270 11.225 1.239 56 275 11.231 1.245				
50 245 11.195 1.209 51 250 11.198 1.212 52 255 11.208 1.222 53 260 11.214 1.228 54 265 11.215 1.229 55 270 11.225 1.239 56 275 11.231 1.245				
51 250 11.198 1.212 52 255 11.208 1.222 53 260 11.214 1.228 54 265 11.215 1.229 55 270 11.225 1.239 56 275 11.231 1.245				
52 255 11.208 1.222 53 260 11.214 1.228 54 265 11.215 1.229 55 270 11.225 1.239 56 275 11.231 1.245				
53 260 11.214 1.228 54 265 11.215 1.229 55 270 11.225 1.239 56 275 11.231 1.245				
54 265 11.215 1.229 55 270 11.225 1.239 56 275 11.231 1.245				
55 270 11.225 1.239 56 275 11.231 1.245				
56 275 11.231 1.245				
5/ 280 11.24 1.254				
	5/	280	11.24	1.254

Pumping Test - Water Level Data Page 2 of 15
Project: West Des Moines Pump Test
Number:
Client:

				Client:
	Time [min]	Water Level [ft]	Drawdown [ft]	
58	285	11.248	1.262	
59	290	11.254	1.268	
60	295	11.259	1.273	
61	300	11.271	1.285	
62	305	11.276	1.29	
63	310	11.279	1.293	
64	315	11.288	1.302	
65	320	11.288	1.302	_
66	325	11.291	1.305	_
67 68	330 335	11.298 11.307	1.312 1.321	_
69	340	11.315	1.329	-
70	345	11.319	1.333	-
71	350	11.319	1.333	7
72	355	11.336	1.35	
73	360	11.33	1.344	7
74	365	11.336	1.35	7
75	370	11.35	1.364	
76	375	11.345	1.359	
77	380	11.349	1.363	
78	385	11.349	1.363	
79	390	11.354	1.368	
80	395	11.363	1.377	
81	400	11.365	1.379	
82	405	11.369	1.383	
83	410	11.375	1.389	_
84 85	415 420	11.38 11.383	1.394 1.397	_
86	425	11.387	1.401	-
87	430	11.386	1.40	-
88	435	11.401	1.415	_
89	440	11.389	1.403	
90	445	11.396	1.41	7
91	450	11.409	1.423	
92	455	11.401	1.415	
93	460	11.428	1.442	
94	465	11.403	1.417	
95	470	11.408	1.422	
96	475	11.436	1.45	
97	480	11.445	1.459	
98	485	11.433	1.447	_
99 100	490 495	11.438 11.407	1.452 1.421	_
100	500	11.438	1.452	\dashv
102	505	11.426	1.44	+
103	510	11.461	1.475	†
104	515	11.444	1.458	1
105	520	11.455	1.469	7
106	525	11.441	1.455	
107	530	11.46	1.474	
108	535	11.456	1.47	
109	540	11.463	1.477	
110	545	11.463	1.477	4
111	550	11.473	1.487	4
112	555	11.463	1.477	\dashv
113	560	11.477	1.491 1.495	-
114	565 570	11.481 11.48	1.495	\dashv
115 116	570	11.48	1.494	-
117	580	11.481	1.495	-
118	585	11.487	1.501	\dashv
119	590	11.49	1.504	†
120	595	11.49	1.504	1
ــــــــــــــــــــــــــــــــــــــ		-		-

Pumping Test - Water Level Data Page 3 of 15
Project: West Des Moines Pump Test
Number:
Client:

				Client:
	Time	Water Level	Drawdown	
121	[min] 600	[ft] 11.49	[ft] 1.504	_
122	605	11.493	1.507	-
123	610	11.496	1.51	-
124	615	11.501	1.515	7
125	620	11.504	1.518	7
126	625	11.513	1.527	
127	630	11.511	1.525	
128	635	11.513	1.527	
129	640	11.517	1.531	_
130 131	645 650	11.514 11.518	1.528 1.532	-
132	655	11.529	1.543	-
133	660	11.529	1.543	-
134	665	11.53	1.544	
135	670	11.528	1.542	
136	675	11.53	1.544	
137	680	11.536	1.55	1
138	685	11.539	1.553	4
139 140	690	11.542	1.556 1.559	-
140	695 700	11.545 11.548	1.559 1.562	-
141	705	11.546	1.56	1
143	710	11.554	1.568	_
144	715	11.549	1.563	
145	720	11.558	1.572	
146	725	11.56	1.574	
147	730	11.564	1.578	
148	735	11.565	1.579	
149 150	740	11.564	1.578	_
151	745 750	11.565 11.57	1.579 1.584	-
152	755	11.57	1.584	+
153	760	11.575	1.589	-
154	765	11.578	1.592	
155	770	11.576	1.59	
156	775	11.578	1.592	
157	780	11.583	1.597	4
158 159	785 790	11.583	1.597 1.60	_
160	795	11.586 11.585	1.599	4
161	800	11.588	1.602	-
162	805	11.592	1.606	-
163	810	11.595	1.609	
164	815	11.595	1.609	
165	820	11.597	1.611	
166	825	11.601	1.615	-
167	830	11.598	1.612	-
168 169	835 840	11.60 11.603	1.614 1.617	-
170	845	11.606	1.62	1
171	850	11.606	1.62	1
172	855	11.609	1.623	1
173	860	11.61	1.624	
174	865	11.615	1.629	
175	870	11.616	1.63	
176	875	11.612	1.626	4
177	880	11.617	1.631	-
178 179	885 890	11.62 11.62	1.634 1.634	-
180	895	11.622	1.636	1
181	900	11.621	1.635	1
182	905	11.625	1.639	1
183	910	11.627	1.641	
				=

Pumping Test - Water Level Data Page 4 of 15
Project: West Des Moines Pump Test
Number:
Client:

				Client:
	Time	Water Level	Drawdown	
184	[min] 915	[ft] 11.628	[ft] 1.642	_
185	920	11.635	1.649	-
186	925	11.633	1.647	-
187	930	11.631	1.645	7
188	935	11.634	1.648	7
189	940	11.637	1.651	
190	945	11.639	1.653	
191	950	11.639	1.653	_
192	955	11.638	1.652	_
193 194	960 965	11.643 11.645	1.657 1.659	-
195	970	11.645	1.659	-
196	975	11.647	1.661	-
197	980	11.65	1.664	
198	985	11.652	1.666	
199	990	11.649	1.663	
200	995	11.655	1.669	1
201	1000	11.655	1.669	4
202	1005 1010	11.657	1.671 1.669	-
203	1010	11.655 11.659	1.669	-
204	1020	11.659	1.673	1
206	1025	11.664	1.678	-
207	1030	11.662	1.676	
208	1035	11.668	1.682	
209	1040	11.663	1.677	
210	1045	11.665	1.679	
211	1050	11.668	1.682	
212	1055	11.669 11.668	1.683	_
213 214	1060 1065	11.672	1.682 1.686	4
215	1070	11.672	1.686	+
216	1075	11.676	1.69	-
217	1080	11.677	1.691	
218	1085	11.681	1.695	
219	1090	11.678	1.692	
220	1095	11.68	1.694	
221	1100	11.683	1.697	_
222 223	1105 1110	11.679 11.684	1.693 1.698	
223	1115	11.687	1.701	+
225	1120	11.689	1.703	1
226	1125	11.688	1.702	1
227	1130	11.691	1.705	1
228	1135	11.691	1.705	
229	1140	11.689	1.703	
230	1145	11.693	1.707	
231	1150	11.696	1.71	
232 233	1155 1160	11.693 11.695	1.707 1.709	-
233	1165	11.695	1.713	-
235	1170	11.70	1.714	1
236	1175	11.701	1.715	
237	1180	11.702	1.716	1
238	1185	11.702	1.716	
239	1190	11.699	1.713	
240	1195	11.707	1.721	
241	1200	11.707	1.721	
242 243	1205 1210	11.708 11.708	1.722 1.722	-
243	1210	11.708	1.722	-
244	1220	11.709	1.722	1
246	1225	11.712	1.726	1
	· · · · · · · · · · · · · · · · · · ·	1		

Pumping Test - Water Level Data Page 5 of 15
Project: West Des Moines Pump Test
Number:
Client:

				Client:
	Time [min]	Water Level [ft]	Drawdown [ft]	
247	1230	11.713	1.727	
248	1235	11.715	1.729	
249	1240	11.717	1.731	
250	1245	11.715	1.729	
251	1250	11.721	1.735	
252	1255	11.717	1.731	
253	1260	11.717	1.731	
254	1265	11.719	1.733	
255	1270	11.719	1.733	
256 257	1275 1280	11.719 11.722	1.733 1.736	
258	1285	11.726	1.74	
259	1290	11.724	1.738	
260	1295	11.725	1.739	
261	1300	11.727	1.741	
262	1305	11.731	1.745	
263	1310	11.728	1.742	
264	1315	11.731	1.745	
265	1320	11.734	1.748	
266	1325	11.733	1.747	
267	1330	11.73	1.744	
268	1335	11.739	1.753	
269	1340	11.738 11.738	1.752 1.752	
270 271	1345 1350	11.741	1.755	
272	1355	11.737	1.751	
273	1360	11.742	1.756	
274	1365	11.74	1.754	
275	1370	11.743	1.757	
276	1375	11.748	1.762	
277	1380	11.745	1.759	
278	1385	11.75	1.764	
279	1390	11.746	1.76	
280	1395	11.749	1.763	
281	1400	11.752	1.766	
282 283	1405 1410	11.752 11.747	1.766 1.761	
284	1415	11.747	1.767	
285	1420	11.754	1.768	
286	1425	11.756	1.77	
287	1430	11.756	1.77	
288	1435	11.756	1.77	
289	1440	11.76	1.774	
290	1445	11.759	1.773	
291	1450	11.761	1.775	
292	1455	11.766	1.78	
293	1460	11.764	1.778	
294	1465	11.765	1.779	
295 296	1470 1475	11.768 11.776	1.782 1.79	
296	1480	11.775	1.789	
298	1485	11.771	1.785	
299	1490	11.769	1.783	
300	1495	11.779	1.793	
301	1500	11.771	1.785	
302	1505	11.773	1.787	
303	1510	11.768	1.782	
304	1515	11.776	1.79	
305	1520	11.766	1.78	
306	1525	11.77	1.784	
307	1530	11.78	1.794	
308	1535	11.77	1.784	
309	1540	11.778	1.792	i

Pumping Test - Water Level Data Page 6 of 15
Project: West Des Moines Pump Test
Number:
Client:

				Client:
	Time	Water Level	Drawdown	
310	[min] 1545	[ft] 11.779	[ft] 1.793	_
311	1550	11.775	1.789	-
312	1555	11.782	1.796	-
313	1560	11.773	1.787	
314	1565	11.78	1.794	
315	1570	11.782	1.796	
316	1575	11.775	1.789	_
317 318	1580 1585	11.779 11.78	1.793 1.794	_
318	1590	11.783	1.797	_
320	1595	11.793	1.807	-
321	1600	11.787	1.801	-
322	1605	11.788	1.802	1
323	1610	11.788	1.802	
324	1615	11.794	1.808	
325	1620	11.788	1.802	
326	1625	11.788	1.802	4
327	1630	11.776	1.79	-
328 329	1635 1640	11.796 11.786	1.81	-
330	1645	11.789	1.803	†
331	1650	11.791	1.805	†
332	1655	11.786	1.80	
333	1660	11.798	1.812	
334	1665	11.783	1.797	
335	1670	11.796	1.81	
336	1675	11.782	1.796	_
337 338	1680 1685	11.797 11.796	1.811	_
339	1690	11.798	1.812	-
340	1695	11.776	1.79	-
341	1700	11.795	1.809	7
342	1705	11.798	1.812	
343	1710	11.784	1.798	
344	1715	11.801	1.815	
345	1720	11.799	1.813	_
346 347	1725 1730	11.795 11.798	1.809 1.812	_
348	1735	11.793	1.807	-
349	1740	11.785	1.799	-
350	1745	11.809	1.823	_
351	1750	11.80	1.814	
352	1755	11.795	1.809	
353	1760	11.803	1.817	
354	1765	11.798	1.812	4
355 356	1770 1775	11.798 11.803	1.812 1.817	-
356	1775	11.818	1.832	-
358	1785	11.807	1.821	†
359	1790	11.797	1.811	†
360	1795	11.805	1.819	
361	1800	11.808	1.822	
362	1805	11.81	1.824	
363	1810	11.814	1.828	4
364	1815	11.807	1.821	-
365 366	1820 1825	11.815 11.823	1.829 1.837	-
367	1830	11.808	1.822	-
368	1835	11.809	1.823	†
369	1840	11.817	1.831	†
370	1845	11.817	1.831	
371	1850	11.822	1.836	
372	1855	11.802	1.816	

Pumping Test - Water Level Data Page 7 of 15
Project: West Des Moines Pump Test
Number:

				Client:
	Time	Water Level	Drawdown	
373	[min]	[ft] 11.812	[ft]	
374	1860 1865	11.819	1.826 1.833	
375	1870	11.824	1.838	_
				_
376 377	1875 1880	11.813 11.819	1.827 1.833	_
				_
378	1885	11.817	1.831	
379 380	1890	11.813 11.817	1.827	_
	1895 1900		1.831	_
381		11.813		_
382	1905	11.813	1.827	_
383 384	1910 1915	11.82	1.834	
_		11.812	1.826	
385	1920	11.812	1.826	
386	1925	11.821	1.835	_
387	1930	11.828	1.842	
388	1935	11.81	1.824	
389	1940	11.816	1.83	
390	1945	11.812	1.826	_
391	1950	11.814	1.828	_
392	1955	11.806	1.82	_
393	1960	11.808	1.822	_
394	1965	11.813	1.827	
395	1970	11.813	1.827	_
396	1975	11.817	1.831	_
397	1980	11.822	1.836	_
398	1985	11.816	1.83	
399	1990	11.818	1.832	_
400	1995	11.824	1.838	_
401	2000	11.823	1.837	
402 403	2005 2010	11.828 11.83	1.842	
404	2015		1.844	_
405	2020	11.826 11.825	1.839	_
406	2025	11.825	1.839	_
407	2030	11.823	1.837	
408	2035	11.824	1.838	_
409	2040	11.822	1.836	_
410	2045	11.822	1.836	_
411	2050	11.826	1.84	
412	2055	11.821	1.835	
413	2060	11.827	1.841	_
414	2065	11.825	1.839	_
415	2070	11.831	1.845	_
416	2075	11.829	1.843	_
417	2080	11.829	1.843	_
418	2085	11.826	1.84	_
419	2090	11.826	1.84	_
420	2095	11.835	1.849	_
421	2100	11.832	1.846	_
422	2105	11.827	1.841	_
423	2110	11.831	1.845	
424	2115	11.836	1.85	_
425	2120	11.834	1.848	_
426	2125	11.835	1.849	-
427	2130	11.831	1.845	_
428	2135	11.833	1.847	_
428	2140	11.833	1.847	_
430				\dashv
-	2145	11.841 11.84	1.855	_
431	2150		1.854	_
432	2155	11.843	1.857	_
433	2160	11.839	1.853	_
434	2165	11.845	1.859	\dashv
435	2170	11.84	1.854	

Pumping Test - Water Level Data Page 8 of 15
Project: West Des Moines Pump Test
Number:
Client:

				Client:
	Time [min]	Water Level	Drawdown	
436	2175	[ft] 11.844	[ft] 1.858	-
437	2180	11.843	1.857	
438	2185	11.848	1.862	
439	2190	11.844	1.858	
440	2195	11.851	1.865	
441	2200	11.848	1.862	
442 443	2205 2210	11.845 11.846	1.859 1.86	_
444	2215	11.849	1.863	
445	2220	11.848	1.862	
446	2225	11.845	1.859	
447	2230	11.853	1.867	
448	2235	11.853	1.867	
449	2240	11.848	1.862	
450	2245	11.853	1.867	
451 452	2250 2255	11.844 11.851	1.858 1.865	\dashv
453	2260	11.849	1.863	\dashv
454	2265	11.847	1.861	7
455	2270	11.852	1.866	
456	2275	11.848	1.862	
457	2280	11.856	1.87	_
458	2285	11.849	1.863	_
459 460	2290 2295	11.849 11.851	1.863 1.865	_
461	2300	11.857	1.871	
462	2305	11.85	1.864	
463	2310	11.852	1.866	
464	2315	11.857	1.871	
465	2320	11.856	1.87	
466	2325	11.853	1.867	
467	2330	11.855	1.869	
468 469	2335 2340	11.855 11.851	1.869 1.865	\dashv
470	2345	11.855	1.869	
471	2350	11.858	1.872	7
472	2355	11.858	1.872	
473	2360	11.856	1.87	
474	2365	11.858	1.872	
475	2370	11.858	1.872	
476 477	2375 2380	11.857 11.863	1.871 1.877	\dashv
478	2385	11.858	1.872	\dashv
479	2390	11.859	1.873	7
480	2395	11.861	1.875	
481	2400	11.86	1.874	_
482	2405	11.861	1.875	_
483 484	2410	11.865	1.879	\dashv
484	2415 2420	11.867 11.863	1.881	\dashv
486	2425	11.86	1.874	\dashv
487	2430	11.863	1.877	7
488	2435	11.863	1.877	
489	2440	11.862	1.876	
490	2445	11.86	1.874	_
491	2450	11.86	1.874	\dashv
492 493	2455 2460	11.862 11.864	1.876 1.878	\dashv
493	2465	11.861	1.875	\dashv
495	2470	11.864	1.878	╡
496	2475	11.862	1.876	
497	2480	11.862	1.876	
498	2485	11.865	1.879	

Pumping Test - Water Level Data Page 9 of 15
Project: West Des Moines Pump Test
Number:
Client:

				Client:
	Time	Water Level	Drawdown	
499	[min] 2490	[ft] 11.868	[ft] 1.882	-
500	2495	11.867	1.881	-
501	2500	11.865	1.879	-
502	2505	11.864	1.878	
503	2510	11.867	1.881	
504	2515	11.87	1.884	
505	2520	11.866	1.88	
506	2525	11.865	1.879	
507	2530	11.869	1.883	_
508	2535	11.866	1.88	_
509	2540 2545	11.869	1.883	-
510 511	2550	11.871 11.869	1.885 1.883	_
512	2555	11.871	1.885	-
513	2560	11.867	1.881	-
514	2565	11.871	1.885	
515	2570	11.873	1.887	
516	2575	11.87	1.884	
517	2580	11.867	1.881	
518	2585	11.87	1.884	_
519	2590	11.873	1.887	4
520	2595	11.872	1.886	_
521	2600	11.87	1.884	4
522 523	2605	11.875	1.889	_
523	2610 2615	11.867 11.872	1.881	-
525	2620	11.874	1.888	-
526	2625	11.874	1.888	-
527	2630	11.871	1.885	
528	2635	11.877	1.891	
529	2640	11.875	1.889	
530	2645	11.873	1.887	
531	2650	11.879	1.893	_
532	2655	11.878	1.892	
533 534	2660 2665	11.875 11.877	1.889	-
535	2670	11.877	1.891	-
536	2675	11.877	1.891	-
537	2680	11.876	1.89	
538	2685	11.877	1.891	
539	2690	11.879	1.893	
540	2695	11.877	1.891	
541	2700	11.876	1.89	
542	2705	11.88	1.894	4
543 544	2710 2715	11.882	1.896 1.895	-
544	2715	11.881 11.88	1.894	-
546	2725	11.886	1.90	†
547	2730	11.881	1.895	1
548	2735	11.881	1.895	
549	2740	11.879	1.893	
550	2745	11.88	1.894	
551	2750	11.884	1.898	4
552	2755	11.881	1.895	4
553	2760	11.881	1.895	-
554 555	2765 2770	11.883 11.887	1.897	-
556	2775	11.883	1.897	-
557	2780	11.88	1.894	†
558	2785	11.886	1.90	1
559	2790	11.882	1.896	1
560	2795	11.887	1.901	
561	2800	11.89	1.904	

Pumping Test - Water Level Data Page 10 of 15
Project: West Des Moines Pump Test
Number:
Client:

				Client:
	Time [min]	Water Level [ft]	Drawdown [ft]	
562	2805	11.885	1.899	
563	2810	11.89	1.904	
564	2815	11.89	1.904	
565	2820	11.895	1.909	
566	2825	11.889	1.903	
567	2830	11.89	1.904	
568	2835	11.887	1.901	
569 570	2840 2845	11.891 11.889	1.905 1.903	
571	2850	11.89	1.904	
572	2855	11.891	1.905	
573	2860	11.89	1.904	
574	2865	11.894	1.908	
575	2870	11.89	1.904	
576	2875	11.892	1.906	
577	2880	11.893	1.907	
578 579	2885 2890	11.897 11.895	1.911 1.909	
580	2895	11.895	1.909	
581	2900	11.896	1.91	
582	2905	11.90	1.914	
583	2910	11.896	1.91	
584	2915	11.897	1.911	
585	2920	11.895	1.909	
586	2925	11.897	1.911	
587	2930	11.898	1.912	
588 589	2935 2940	11.899 11.895	1.913 1.909	_
590	2945	11.902	1.916	
591	2950	11.903	1.917	
592	2955	11.90	1.914	
593	2960	11.897	1.911	
594	2965	11.898	1.912	
595	2970	11.901	1.915	
596	2975	11.906	1.92	
597 598	2980 2985	11.904 11.903	1.918 1.917	_
599	2990	11.889	1.903	
600	2995	11.898	1.912	
601	3000	11.896	1.91	
602	3005	11.903	1.917	
603	3010	11.893	1.907	
604	3015	11.908	1.922	
605	3020	11.914	1.928	
606	3025	11.89	1.904	
607 608	3030 3035	11.901 11.901	1.915 1.915	_
609	3040	11.90	1.914	
610	3045	11.898	1.912	
611	3050	11.898	1.912	
612	3055	11.893	1.907	
613	3060	11.89	1.904	
614	3065	11.898	1.912	
615	3070	11.893	1.907	
616	3075	11.899	1.913	_
617 618	3080 3085	11.909 11.901	1.923 1.915	\dashv
619	3085	11.901	1.918	
620	3095	11.904	1.918	
621	3100	11.899	1.913	
622	3105	11.915	1.929	
623	3110	11.907	1.921	
624	3115	11.889	1.903	
=				

Pumping Test - Water Level Data Page 11 of 15
Project: West Des Moines Pump Test
Number:
Client:

				Client:
	Time	Water Level	Drawdown	
625	[min] 3120	[ft] 11.908	[ft] 1.922	4
626	3125	11.905	1.919	+
627	3130	11.896	1.91	-
628	3135	11.898	1.912	7
629	3140	11.905	1.919	
630	3145	11.904	1.918	
631	3150	11.897	1.911	
632	3155	11.901	1.915	_
633 634	3160 3165	11.90 11.90	1.914 1.914	_
635	3170	11.901	1.915	+
636	3175	11.902	1.916	-
637	3180	11.901	1.915	7
638	3185	11.903	1.917	
639	3190	11.905	1.919	
640	3195	11.904	1.918	
641	3200	11.905	1.919	
642	3205	11.899	1.913	-
643 644	3210 3215	11.90 11.899	1.914 1.913	-
645	3220	11.902	1.916	1
646	3225	11.909	1.923	-
647	3230	11.897	1.911	
648	3235	11.908	1.922	
649	3240	11.917	1.931	
650	3245	11.911	1.925	
651	3250	11.906	1.92	_
652 653	3255 3260	11.914 11.903	1.928 1.917	_
654	3265	11.903	1.924	-
655	3270	11.907	1.921	-
656	3275	11.904	1.918	†
657	3280	11.911	1.925	
658	3285	11.901	1.915	
659	3290	11.911	1.925	
660	3295	11.894	1.908	_
661 662	3300	11.907	1.921	_
663	3305 3310	11.901 11.911	1.915 1.925	-
664	3315	11.904	1.918	-
665	3320	11.90	1.914	7
666	3325	11.916	1.93	
667	3330	11.901	1.915	
668	3335	11.908	1.922	4
669	3340	11.901	1.915	4
670 671	3345 3350	11.909 11.903	1.923 1.917	-
672	3355	11.908	1.922	+
673	3360	11.908	1.922	1
674	3365	11.911	1.925	1
675	3370	11.911	1.925	
676	3375	11.905	1.919	
677	3380	11.91	1.924	
678	3385	11.902	1.916	4
679	3390	11.904	1.918	-
680 681	3395 3400	11.905 11.90	1.919 1.914	-
682	3405	11.902	1.916	1
683	3410	11.901	1.915	1
684	3415	11.903	1.917	1
685	3420	11.901	1.915	
686	3425	11.909	1.923	
687	3430	11.908	1.922	

Pumping Test - Water Level Data Page 12 of 15
Project: West Des Moines Pump Test
Number:
Client:

	Time	Water Level	Drawdown
	[min]	[ft]	[ft]
688	3435	11.907	1.921
689	3440	11.912	1.926
690	3445	11.913	1.927
691	3450	11.913	1.927
692	3455	11.911	1.925
693	3460	11.909	1.923
694	3465	11.903	1.917
695	3470	11.905	1.919
696	3475	11.905	1.919
697	3480	11.907	1.921
698	3485	11.904	1.918
699	3490	11.905	1.919
700	3495	11.908	1.922
701	3500	11.907	1.921
702	3505	11.913	1.927
703	3510	11.909	1.923
704	3515	11.911	1.925
705	3520	11.915	1.929
706	3525	11.911	1.925
707	3530	11.911	1.925
708	3535	11.912	1.926
709	3540	11.907	1.921
710	3545	11.91	1.924
711	3550	11.91	1.924
712	3555	11.912	1.926
713	3560	11.912	1.926
714	3565	11.918	1.932
715	3570	11.914	1.928
716	3575	11.913	1.927
717	3580	11.917	1.931
717	3585	11.917	1.929
718	3590	11.915	1.929
719			1.929
720	3595 3600	11.916	1.93
		11.916	
722	3605	11.918	1.932
723	3610	11.918	1.932
724	3615	11.918	1.932
725	3620	11.924	1.938
726	3625	11.918	1.932
727	3630	11.919	1.933
728	3635	11.92	1.934
729	3640	11.923	1.937
730	3645	11.918	1.932
731	3650	11.922	1.936
732	3655	11.92	1.934
733	3660	11.923	1.937
734	3665	11.922	1.936
735	3670	11.921	1.935
736	3675	11.924	1.938
737	3680	11.92	1.934
738	3685	11.922	1.936
739	3690	11.921	1.935
740	3695	11.921	1.935
741	3700	11.92	1.934
742	3705	11.923	1.937
743	3710	11.927	1.941
744	3715	11.926	1.94
745	3720	11.925	1.939
745	3725	11.925	1.939
747	3730	11.924	1.938
747	3735	11.929	1.943
748	3740	11.924	1.938
749 750	3740 3745	11.924	1.938
/50	3/45	11.928	1.942

Pumping Test - Water Level Data Page 13 of 15
Project: West Des Moines Pump Test
Number:
Client:

	Time	Water Level	Drawdown
	[min]	[ft]	[ft]
751	3750	11.927	1.941
752	3755	11.923	1.937
753	3760	11.923	1.937
754	3765	11.926	1.94
755	3770	11.925	1.939
756	3775	11.926	1.94
757	3780	11.926	1.94
758	3785	11.925	1.939
759	3790	11.925	1.939
760	3795	11.929	1.943
761	3800	11.926	1.94
762	3805	11.926	1.94
763	3810	11.926	1.94
764	3815	11.928	1.942
765	3820	11.926	1.94
766	3825	11.928	1.942
767	3830	11.926	1.94
768	3835	11.929	1.943
769	3840	11.926	1.94
770	3845	11.929	1.943
771	3850	11.928	1.942
772	3855	11.93	1.944
773	3860	11.929	1.943
774	3865	11.925	1.939
775	3870	11.929	1.943
776	3875	11.932	1.946
777	3880	11.931	1.945
778	3885	11.931	1.945
779	3890	11.933	1.947
780	3895	11.929	1.943
781	3900	11.929	1.943
782	3905	11.93	1.944
783	3910	11.926	1.94
784	3915	11.93	1.944
785	3920	11.935	1.949
786	3925	11.93	1.944
787	3930	11.932	1.946
788	3935	11.932	1.946
789	3940	11.931	1.945
790	3945	11.929	1.943
791	3950	11.93	1.944
792	3955	11.931	1.945
793	3960	11.932	1.946
794	3965	11.931	1.945
795	3970	11.934	1.948
796	3975	11.934	1.948
797	3980	11.934	1.948
798	3985	11.931	1.945
799	3990	11.932	1.946
800	3995	11.934	1.948
801	4000	11.935	1.949
802	4005	11.932	1.946
803		11.932	
	4010		1.946
804	4015	11.936	1.95
805	4020	11.936	1.95
806	4025	11.934	1.948
807	4030	11.936	1.95
808	4035	11.937	1.951
809	4040	11.933	1.947
810	4045	11.934	1.948
811	4050	11.94	1.954
812	4055	11.936 11.939	1.95 1.953

Pumping Test - Water Level Data Page 14 of 15
Project: West Des Moines Pump Test
Number:
Client:

				Client:
	Time [min]	Water Level	Drawdown	
814	4065	[ft] 11.937	[ft] 1.951	
815	4070	11.936	1.95	
816	4075	11.937	1.951	
817	4080	11.935	1.949	
818	4085	11.933	1.947	
819	4090	11.936	1.95	_
820 821	4095 4100	11.937 11.94	1.951 1.954	_
822	4105	11.936	1.95	
823	4110	11.942	1.956	
824	4115	11.933	1.947	
825	4120	11.937	1.951	
826	4125	11.938	1.952	
827 828	4130 4135	11.941 11.937	1.955 1.951	
829	4140	11.934	1.948	_
830	4145	11.938	1.952	
831	4150	11.935	1.949	
832	4155	11.94	1.954	
833	4160	11.942	1.956	
834	4165	11.941	1.955	
835	4170	11.94	1.954	
836 837	4175 4180	11.939 11.94	1.953 1.954	
838	4185	11.945	1.959	
839	4190	11.944	1.958	
840	4195	11.94	1.954	
841	4200	11.939	1.953	
842	4205	11.942	1.956	
843	4210	11.943	1.957	
844 845	4215 4220	11.941 11.943	1.955 1.957	_
846	4225	11.943	1.957	-
847	4230	11.946	1.96	
848	4235	11.939	1.953	
849	4240	11.939	1.953	
850	4245	11.939	1.953	
851	4250	11.938	1.952	_
852 853	4255 4260	11.942 11.94	1.956 1.954	
854	4265	11.935	1.949	
855	4270	11.94	1.954	
856	4275	11.937	1.951	
857	4280	11.941	1.955	
858	4285	11.935	1.949	
859	4290	11.934	1.948	_
860 861	4295 4300	11.942 11.935	1.956 1.949	_
862	4305	11.935	1.949	
863	4310	11.937	1.951	
864	4315	11.941	1.955	
865	4320	11.943	1.957	
866	4325	11.942	1.956	
867	4330	11.943	1.957	_
868 869	4335 4340	11.945 11.945	1.959 1.959	\dashv
870	4345	11.948	1.962	
871	4350	11.946	1.96	
872	4355	11.941	1.955	
873	4360	11.942	1.956	
874	4365	11.946	1.96	
875	4370	11.945	1.959	\dashv
876	4375	11.941	1.955	
	-			

Pumping Test - Water Level Data	Page 15 of 1
Project: West Des Moines Pump Test	
Number:	
Client:	

	Time	Water Level	Drawdown
077	[min]	[ft]	[ft]
877	4380	11.94	1.954
878	4385	11.94	1.954
879	4390	11.942	1.956
880	4395	11.937	1.951
881	4400	11.942	1.956
882	4405	11.943	1.957
883	4410	11.936	1.95
884	4415	11.938	1.952
885	4420	11.939	1.953
886	4425	11.947	1.961
887	4430	11.944	1.958
888	4435	11.936	1.95
889	4440	11.942	1.956
890	4445	11.944	1.958
891	4450	11.934	1.948
892	4455	11.945	1.959
893	4460	11.944	1.958
894	4465	11.938	1.952
895	4470	11.936	1.95
896	4475	11.951	1.965
897	4480	11.942	1.956
898	4485	11.951	1.965
899	4490	11.937	1.951
900	4495	11.931	1.945
901	4500	11.946	1.96
902	4505	11.943	1.957
903	4510	11.943	1.957
904	4515	11.946	1.96
905	4520	11.938	1.952
906	4525	11.946	1.96
907	4530	11.947	1.961
908	4535	11.94	1.954
909	4540	11.951	1.965
910	4545	11.944	1.958
911	4550	11.955	1.969
912	4555	11.946	1.96
913	4560	11.955	1.969
914	4565	11.948	1.962
915	4570	11.94	1.954
		1	

Pumping Test - Water Level Data

Page 1 of 5

Project: West Des Moines Pump Test

Number: Client:

 Location: West Des Moines, Iowa
 Pumping Test: Well 21
 Pumping Well: Well 21

 Test Conducted by:
 Test Date: 9/11/2012
 Discharge Rate: 243 [U.S. gal/min]

Observation Well: OB2 Static Water Level [ft]: 22.61 Radial Distance to PW [ft]: 115

Obser	rvation well: OB2	Static water Level [π]:	
	Time [min]	Water Level [ft]	Drawdown [ft]
1	0	22.611	0.001
2	5	22.63	0.02
3	10	22.636	0.026
4	15	22.641	0.031
5	20	22.648	0.038
6	25	22.653	0.043
7	30	22.661	0.051
8	35	22.667	0.057
9	40	22.67	0.06
10	45	22.678	0.068
11	50	22.68	0.008
12	55	22.691	0.081
13	60	22.695	0.085
14	65	22.698	0.088
15	70	22.702	0.092
16	75	22.711	0.101
17	80	22.712	0.102
18	85	22.718	0.108
19	90	22.726	0.116
20	95	22.73	0.12
21	100	22.732	0.122
22	105	22.736	0.126
23	110	22.744	0.134
24	115	22.748	0.138
25	120	22.751	0.141
26	125	22.758	0.148
27	130	22.763	0.153
28	135	22.764	0.154
29	140	22.77	0.16
30	145	22.77	0.16
31	150	22.776	0.166
32	155	22.770	0.171
		22.783	
33	160		0.173
34	165	22.785	0.175
35	170	22.794	0.184
36	175	22.796	0.186
37	180	22.801	0.191
38	185	22.805	0.195
39	190	22.81	0.20
40	195	22.814	0.204
41	200	22.816	0.206
42	205	22.821	0.211
43	210	22.823	0.213
44	215	22.826	0.216
45	220	22.83	0.22
46	225	22.835	0.225
47	230	22.838	0.228
48	235	22.843	0.233
49	240	22.842	0.232
50	245	22.848	0.238
51	250	22.852	0.242
52	255	22.859	0.249
53	260	22.859	0.249
54	265	22.864	0.254
55	270	22.864	0.254
56	275	22.872	0.262
57	280	22.875	0.265

Pumping Test - Water Level Data Page 2 of 5
Project: West Des Moines Pump Test
Number:
Client:

	Time	Water Level	Drawdown
	[min]	[ft]	[ft]
58	285	22.879	0.269
59	290	22.884	0.274
60	295	22.879	0.269
61	300	22.885	0.275
62	305	22.887	0.277
63	310	22.89	0.28
64	315	22.898	0.288
65	320	22.898	0.288
66	325	22.903	0.293
67	330	22.901	0.291
68	335	22.908	0.298
69	340	22.914	0.304
70	345	22.917	0.307
71	350	22.916	0.306
72	355	22.92	0.31
73	360	22.923	0.313
74	365	22.925	0.315
75	370	22.931	0.321
76	375	22.931	0.321
77	380	22.936	0.326
78	385	22.938	0.328
79	390	22.938	0.328
80	395	22.942	0.332
81	400	22.942	0.334
82	405	22.944	0.334
83	410	22.953	0.343
84	415	22.951	0.341
85	420	22.954	0.344
86	425	22.959	0.349
87	430	22.96	0.35
88	435	22.961	0.351
89	440	22.966	0.356
90	445	22.967	0.357
91	450	22.969	0.359
92	455	22.972	0.362
93	460	22.979	0.369
94	465	22.982	0.372
95	470	22.982	0.372
96	475	22.982	0.372
97	480	22.984	0.374
98	485	22.989	0.379
99	490	22.99	0.38
100	495	22.995	0.385
101	500	22.996	0.386
102	505	22.997	0.387
103	510	23.005	0.395
104	515	22.999	0.389
105	520	23.004	0.394
106	525	23.005	0.395
107	530	23.008	0.398
108	535	23.013	0.403
109	540	23.015	0.405
110	545	23.017	0.407
111	550	23.016	0.406
112	555	23.021	0.411
113	560	23.021	0.411
114	565	23.023	0.411
115	570	23.025	0.415
116	575	23.028	0.418
117	580	23.033	0.423
118	585	23.032	0.422
119	590	23.033	0.423
120	595	23.037	0.427

Pumping Test - Water Level Data Page 3 of 5
Project: West Des Moines Pump Test
Number:

-				Client
Щ			-	Client:
	Tir [m	Water Level [ft]	Drawdown [ft]	
121	600	 23.038	0.428	
122	605	23.041	0.431	
123	610	23.043	0.433	
124	615	 23.046	0.436	
125	620	23.048	0.438	
126 127	625 630	 23.051 23.052	0.441 0.442	_
128	635	23.052	0.442	-
129	640	23.054	0.444	
130	645	 23.055	0.445	
131	650	23.057	0.447	
132	655	23.062	0.452	
133	660	23.062	0.452	
134	665	 23.063	0.453	_
135 136	670 675	 23.065 23.065	0.455 0.455	-
137	680	 23.074	0.464	=
138	685	23.071	0.461	
139	690	23.074	0.464	
140	695	 23.073	0.463	
141	700	23.078	0.468	
142	705	23.079	0.469	
143 144	710 715	23.078 23.079	0.468 0.469	_
145	713	23.079	0.469	-
146	725	23.083	0.473	-
147	730	 23.087	0.477	
148	735	23.087	0.477	
149	740	23.093	0.483	
150	745	23.093	0.483	
151	750	 23.092	0.482	_
152 153	755 760	23.095 23.096	0.485 0.486	_
154	765	23.101	0.480	-
155	770	23.10	0.49	_
156	775	23.10	0.49	
157	780	 23.101	0.491	
158	785	23.102	0.492	
159	790	23.108	0.498	
160 161	795 800	 23.108 23.109	0.498 0.499	_
162	805	 23.111	0.499	
163	810	23.11	0.50	\dashv
164	815	23.115	0.505	
165	820	23.115	0.505	
166	825	 23.117	0.507	
167	830	23.117	0.507	
168	835	23.119	0.509	\dashv
169 170	840 845	 23.122 23.121	0.512 0.511	\dashv
171	845 850	23.121	0.511	\dashv
172	855	23.125	0.515	
173	860	23.13	0.52	
174	865	23.128	0.518	
175	870	23.132	0.522	
176	875	 23.131	0.521	
177	880	 23.132	0.522	_
178 179	885 890	23.136 23.137	0.526 0.527	\dashv
180	895	23.142	0.532	\dashv
181	900	 23.142	0.532	
182	905	23.14	0.53	
183	910	23.139	0.529	
				_

Pumping Test - Water Level Data Page 4 of 5
Project: West Des Moines Pump Test
Number:
Client:

				Client:
	Time	Water Level	Drawdown	
184	[min] 915	[ft] 23.141	[ft] 0.531	-
185	920	23.145	0.535	-
186	925	23.145	0.535	1
187	930	23.149	0.539	
188	935	23.147	0.537	
189	940	23.15	0.54	
190	945	23.153	0.543	
191	950	23.152	0.542	
192 193	955 960	23.153 23.159	0.543 0.549	_
193	965	23.158	0.548	-
195	970	23.156	0.546	-
196	975	23.16	0.55	
197	980	23.162	0.552	
198	985	23.161	0.551	
199	990	23.165	0.555	
200	995	23.166	0.556	
201	1000	23.164	0.554	4
202	1005	23.168	0.558	-
203 204	1010 1015	23.167 23.169	0.557 0.559	-
204	1015	23.169	0.559	+
205	1025	23.171	0.561	1
207	1030	23.172	0.562	-
208	1035	23.175	0.565	
209	1040	23.177	0.567	
210	1045	23.176	0.566	
211	1050	23.181	0.571	
212	1055	23.181	0.571	
213 214	1060 1065	23.178 23.181	0.568 0.571	_
214	1070	23.181	0.573	-
216	1075	23.182	0.572	=
217	1080	23.187	0.577	
218	1085	23.185	0.575	
219	1090	23.189	0.579	
220	1095	23.188	0.578	
221	1100	23.186	0.576	
222	1105	23.189	0.579	
223	1110	23.189	0.579	_
224 225	1115 1120	23.196 23.194	0.586 0.584	-
225	1125	23.194	0.587	1
227	1130	23.194	0.584	1
228	1135	23.196	0.586	1
229	1140	23.197	0.587	
230	1145	23.198	0.588	
231	1150	23.199	0.589	
232	1155	23.203	0.593	4
233	1160	23.20	0.59	-
234 235	1165 1170	23.199 23.205	0.589 0.595	-
235	1175	23.205	0.593	1
237	1180	23.208	0.598	1
238	1185	23.206	0.596	1
239	1190	23.209	0.599	1
240	1195	23.21	0.60	
241	1200	23.21	0.60	
242	1205	23.211	0.601	
243	1210	23.214	0.604	4
244	1215	23.212	0.602	-
245 246	1220 1225	23.215 23.219	0.605 0.609	-
246	1220	23.219	0.609	

Pumping Test - Water Level Data Page 5 of 5
Project: West Des Moines Pump Test
Number:
Client:

Time Water Level Drawdown [II] [III] [III] [III] [III]					Client:
247 1230 23 214 0.604 248 1235 23 221 0.611 250 1245 23 22 0.61 251 1250 23 222 0.61 251 1250 23 222 0.612 252 1255 23 224 0.614 253 1260 23 222 0.612 254 1255 23 233 0.613 255 1270 23 227 0.617 255 1275 22 226 0.618 257 1280 0.227 0.617 258 1225 23 23 0.62 258 1226 23 23 0.62 259 1280 23 23 0.62 260 1285 23 23 0.62 260 1285 23 23 0.62 261 1300 23 231 0.621 262 1305 23 234 0.624 263 1310 23 234 0.624 <th></th> <th></th> <th></th> <th></th> <th></th>					
248 1235 23 221 0.611 250 1244 23 226 0.61 251 1259 23 222 0.612 252 1255 23 224 0.614 253 1260 23 222 0.612 254 1265 23 223 0.613 255 1270 23 227 0.617 256 1275 23 226 0.616 257 1280 23 227 0.617 256 1275 23 227 0.617 256 1285 23 229 0.619 259 1290 23 23 0.62 260 1295 23 23 0.62 261 1300 23 231 0.62 261 1300 23 231 0.62 262 1305 23 234 0.624 263 1310 23 234 0.624 264 1315 23 233 0.623 266 1320 23 234 0	247				
250 1245 23 22 0.61 251 1250 23 222 0.612 252 1255 23 224 0.614 253 1260 23 222 0.612 254 1255 23 223 0.617 255 1270 23 327 0.617 256 1275 23 322 0.617 256 1276 23 227 0.617 258 1280 23 227 0.617 259 1290 23 232 0.62 260 1295 23 23 0.62 261 1300 23 231 0.62 262 1305 23 224 0.624 263 1310 23 234 0.624 264 1315 23 232 0.622 265 1320 23 234 0.624 266 1325 23 238 0.624 266 1325 23 233 0.622 267 1330 23 235	248				
251 1250	249	1240	23.216	0.606	
252 1255 23 224 0.614 253 1260 23 222 0.612 254 1265 23 223 0.613 255 1270 23 227 0.617 256 1275 23 226 0.617 257 1280 23 227 0.617 258 1285 23 227 0.617 259 1290 23 23 0.62 260 1295 23 23 0.62 261 1300 23 231 0.62 262 1305 23 234 0.624 283 1310 23 234 0.624 264 1315 23 234 0.624 265 1320 23 234 0.624 266 1325 23 238 0.628 267 1330 23 233 0.623 267 1330 23 235 0.626 270 1345 23 235 0.626 270 1345 23 233 <td< td=""><td>-</td><td></td><td></td><td>0.61</td><td></td></td<>	-			0.61	
253 1260 23.222 0.612 254 1285 23.227 0.617 266 1275 23.226 0.616 257 1280 23.227 0.617 258 1285 23.229 0.619 259 1290 23.23 0.62 260 1295 23.23 0.62 261 1300 23.231 0.621 262 1305 23.244 0.624 263 1310 23.234 0.624 264 1315 23.232 0.622 265 1320 23.234 0.624 266 1325 23.239 0.622 265 1320 23.234 0.624 266 1325 23.238 0.628 267 1330 23.233 0.623 268 1335 23.236 0.626 270 1345 23.24 0.63 271 1350 23.238					
254 1265 23,227 0.613 256 1276 23,227 0.617 257 1280 23,227 0.617 256 1275 23,229 0.619 256 1285 23,229 0.619 259 1290 23,23 0.62 260 1295 23,23 0.62 261 1300 23,231 0.621 262 1305 23,234 0.624 263 1310 23,234 0.624 264 1315 23,232 0.622 266 1320 23,234 0.624 266 1320 23,234 0.624 267 1330 23,233 0.623 267 1330 23,233 0.623 268 1335 23,235 0.626 270 1345 23,24 0.63 271 1356 23,241 0.63 272 1355 23,24 0.	-				
255 1270 23 227 0.617 256 1275 23 226 0.616 257 1280 23 227 0.617 258 1285 23 229 0.619 259 1296 23 23 0.62 260 1296 23 23 0.62 261 1300 23 234 0.624 262 1305 23 234 0.624 263 1310 23 234 0.624 264 1315 23 232 0.622 265 1325 23 239 0.628 266 1325 23 239 0.628 267 1330 23 239 0.628 267 1330 23 239 0.628 268 1325 23 239 0.628 269 1340 23 236 0.626 270 1345 23 236 0.626 271 1350 23 238 0.628 272 1345 23 244 <t< td=""><td>-</td><td></td><td></td><td></td><td>_</td></t<>	-				_
256 1275 23 226 0.616 257 1280 23 229 0.617 258 1285 23 229 0.619 259 1280 23 23 0.62 260 1295 23 23 0.62 261 1300 23 231 0.624 262 1305 23 234 0.624 263 1310 23 234 0.624 264 1315 23 232 0.622 265 1320 23 234 0.624 266 1325 23 238 0.628 266 1325 23 239 0.628 267 1330 23 235 0.625 268 1335 23 235 0.625 269 1340 23 244 0.63 271 1350 23 238 0.628 272 1355 23 241 0.63 272 1355 23 241 0.63 273 1360 23 244 0					_
257 1280 23.227 0.617 258 1285 23.229 0.619 259 1290 23.23 0.62 260 1295 23.23 0.62 261 1300 23.234 0.624 263 1310 23.234 0.624 264 1315 23.232 0.622 265 1320 23.234 0.624 266 1325 23.239 0.628 266 1325 23.239 0.628 267 1330 23.233 0.623 268 1335 23.236 0.626 270 1346 23.24 0.63 271 1350 23.238 0.628 272 1355 23.241 0.631 271 1350 23.238 0.628 272 1355 23.241 0.631 273 1366 23.241 0.631 273 1365 23.244					-
258	-				
259	-				
261 1300 23.231 0.621 262 1305 23.234 0.624 263 1310 23.234 0.624 264 1315 23.232 0.622 266 1325 23.238 0.628 267 1330 23.233 0.623 268 1335 23.235 0.625 269 1340 23.266 0.626 270 1345 23.24 0.63 271 1350 23.238 0.626 271 1350 23.241 0.63 272 1355 23.241 0.631 273 1360 23.242 0.632 274 1365 23.244 0.634 275 1370 23.245 0.635 276 1375 23.245 0.635 277 1380 23.241 0.631 278 1395 23.251 0.644 279 1390 23.245 <					
282 1305 23.234 0.624 263 1310 23.234 0.624 264 1315 23.232 0.622 265 1320 23.234 0.624 266 1325 23.234 0.628 267 1330 23.233 0.623 268 1335 23.235 0.625 269 1340 23.236 0.626 270 1345 23.24 0.63 271 1350 23.231 0.628 272 1355 23.241 0.631 273 1360 23.242 0.632 274 1365 23.244 0.632 275 1370 23.245 0.634 276 1376 23.246 0.636 277 1380 23.241 0.631 278 1385 23.241 0.631 279 1390 23.245 0.635 279 1390 23.245 0.635 280 1395 23.25 0.641 281 1400 23.25 0.64 281 1400 23.25 0.64 283 1410 23.25 0.64 284 1415 23.25 0.64 285 1420 23.251 0.641 286 1425 23.251 0.641 287 1430 23.255 0.64 288 1440 23.255 0.64 289 1440 23.255 0.64 281 1440 23.255 0.64 282 1405 23.251 0.641 283 1410 23.255 0.64 284 1415 23.255 0.64 285 1420 23.251 0.641 286 1425 23.251 0.641 287 1430 23.257 0.647 288 1440 23.258 0.645 289 1440 23.258 0.645 289 1440 23.256 0.64 280 1455 23.257 0.647 281 1455 23.256 0.64 282 1465 23.257 0.647 283 1440 23.258 0.645 289 1440 23.258 0.645 289 1440 23.258 0.646 290 1445 23.257 0.647 291 1455 23.256 0.655 297 1480 23.256 0.655 297 1480 23.256 0.655 299 1490 23.263 0.655 290 1495 23.265 0.655 300 1495 23.265 0.655 301 1500 23.265 0.655 302 1505 23.265 0.666 303 1505 23.265 0.666 304 1515 23.271 0.661 305 1530 23.271 0.661 306 1525 23.280 0.659 307 1530 23.271 0.661	260	1295	23.23	0.62	
263	-				
264 1315 23.232 0.622 265 1320 23.234 0.624 266 1325 23.238 0.628 267 1330 23.233 0.623 268 1335 23.235 0.625 269 1340 23.236 0.626 270 1345 23.24 0.63 271 1350 23.238 0.628 272 1355 23.241 0.631 273 1360 23.242 0.632 274 1365 23.244 0.634 275 1370 23.245 0.635 276 1375 23.246 0.636 277 1380 23.241 0.631 278 1380 23.241 0.631 279 1380 23.251 0.644 279 1380 23.25 0.64 280 1395 23.25 0.64 281 1400 23.249	-				
265 1320 23.234 0.624 266 1325 23.238 0.628 267 1330 23.233 0.623 268 1335 23.235 0.626 269 1340 23.236 0.626 270 1345 23.24 0.63 271 1350 23.238 0.628 271 1350 23.234 0.631 272 1355 23.241 0.631 273 1360 23.242 0.632 274 1365 23.244 0.634 275 1370 23.245 0.635 276 1375 23.246 0.636 277 1380 23.241 0.631 278 1385 23.251 0.641 279 1390 23.245 0.635 280 1395 23.25 0.64 281 1400 23.249 0.639 282 1405 23.25 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
266 1325 23.238 0.623 267 1330 23.235 0.625 268 1335 23.235 0.626 270 1345 23.24 0.63 271 1350 23.238 0.628 272 1355 23.241 0.631 273 1360 23.242 0.632 274 1365 23.244 0.634 275 1370 23.245 0.635 276 1375 23.246 0.636 277 1380 23.241 0.631 278 1375 23.246 0.636 277 1380 23.241 0.631 278 1390 23.245 0.635 280 1395 23.25 0.64 281 1400 23.249 0.639 282 1405 23.25 0.64 283 1410 23.255 0.64 284 1415 23.251 0					
267 1330 23.233 0.625 268 1335 23.235 0.626 270 1345 23.24 0.63 271 1350 23.238 0.628 271 1350 23.241 0.631 273 1360 23.242 0.632 274 1365 23.244 0.634 275 1370 23.245 0.635 276 1375 23.246 0.636 277 1380 23.241 0.631 276 1375 23.246 0.636 277 1380 23.241 0.631 278 1385 23.251 0.641 279 1390 23.245 0.635 280 1395 23.25 0.64 281 1400 23.249 0.639 282 1405 23.25 0.64 283 1410 23.255 0.645 284 1415 23.251					_
268 1335 23.235 0.625 269 1340 23.236 0.626 270 1345 23.24 0.63 271 1350 23.238 0.628 272 1355 23.241 0.631 273 1360 23.242 0.632 274 1366 23.244 0.634 275 1370 23.245 0.635 276 1375 23.246 0.636 277 1380 23.241 0.631 278 1385 23.251 0.641 279 1390 23.245 0.635 280 1395 23.25 0.64 281 1400 23.249 0.639 282 1405 23.25 0.64 283 1410 23.255 0.64 284 1415 23.251 0.641 285 1420 23.251 0.641 286 1420 23.251 0					\dashv
269 1340 23.236 0.626 270 1345 23.24 0.63 271 1350 23.238 0.628 272 1355 23.241 0.631 273 1360 23.242 0.632 274 1365 23.244 0.634 275 1370 23.245 0.635 276 1375 23.246 0.636 277 1380 23.241 0.631 278 1385 23.251 0.641 279 1390 23.245 0.635 280 1395 23.25 0.64 281 1400 23.249 0.639 282 1400 23.249 0.639 283 1410 23.255 0.645 284 1415 23.254 0.644 285 1420 23.251 0.641 286 1425 23.251 0.641 286 1425 23.251 <t< td=""><td></td><td></td><td></td><td></td><td>\dashv</td></t<>					\dashv
270 1345 23.24 0.63 271 1350 23.238 0.628 272 1355 23.241 0.631 273 1360 23.242 0.632 274 1365 23.244 0.634 275 1370 23.245 0.636 276 1375 23.246 0.636 277 1380 23.251 0.641 279 1390 23.245 0.635 280 1395 23.25 0.64 281 1400 23.249 0.639 282 1405 23.25 0.64 281 1400 23.249 0.639 282 1405 23.25 0.64 283 1410 23.255 0.645 284 1415 23.254 0.644 285 1420 23.251 0.641 287 1430 23.257 0.647 288 1435 23.255 0.	-				\dashv
271 1350 23.238 0.628 272 1355 23.241 0.631 273 1360 23.242 0.632 274 1365 23.244 0.634 275 1370 23.245 0.636 276 1375 29.246 0.636 277 1380 23.241 0.631 278 1385 23.251 0.641 279 1390 23.245 0.635 280 1395 23.25 0.64 281 1400 23.249 0.639 281 1400 23.249 0.639 282 1405 23.25 0.64 283 1410 23.255 0.646 284 1415 23.254 0.641 285 1420 23.251 0.641 286 1425 23.251 0.641 286 1425 23.251 0.641 280 1440 23.258 <t< td=""><td></td><td></td><td></td><td></td><td>┪</td></t<>					┪
273 1360 23.242 0.632 274 1365 23.244 0.634 275 1370 23.245 0.635 276 1375 23.246 0.636 277 1380 23.241 0.631 279 1390 23.245 0.635 280 1395 23.25 0.64 281 1400 23.249 0.639 282 1405 23.25 0.64 283 1410 23.255 0.644 284 1415 23.254 0.644 285 1420 23.251 0.641 286 1425 23.251 0.641 287 1430 23.257 0.641 287 1430 23.257 0.647 288 1440 23.258 0.648 289 1445 23.257 0.647 291 1455 23.256 0.648 290 1445 23.256 <t< td=""><td>271</td><td>1350</td><td>23.238</td><td>0.628</td><td></td></t<>	271	1350	23.238	0.628	
274 1365 23.244 0.634 275 1370 23.245 0.635 276 1375 23.246 0.636 277 1380 23.241 0.631 278 1385 23.251 0.641 279 1390 23.245 0.635 280 1395 23.25 0.64 281 1400 23.249 0.639 282 1405 23.25 0.64 283 1410 23.255 0.645 284 1415 23.255 0.645 284 1415 23.254 0.644 285 1420 23.251 0.641 286 1425 23.251 0.641 287 1430 23.257 0.647 288 1435 23.255 0.645 289 1440 23.258 0.648 290 1445 23.257 0.647 291 1450 23.257 <t< td=""><td>272</td><td>1355</td><td>23.241</td><td>0.631</td><td></td></t<>	272	1355	23.241	0.631	
275 1370 23.245 0.635 276 1375 23.246 0.636 277 1380 23.241 0.631 278 1385 23.251 0.641 279 1390 23.245 0.635 280 1395 23.25 0.64 281 1400 23.249 0.639 282 1405 23.25 0.645 283 1410 23.255 0.645 284 1415 23.251 0.641 285 1420 23.251 0.641 286 1425 23.251 0.641 286 1425 23.251 0.641 286 1425 23.251 0.641 288 1435 23.255 0.645 289 1440 23.258 0.648 299 1445 23.257 0.647 291 1450 23.257 0.647 291 1450 23.258 <	273	1360	23.242	0.632	
276 1375 23.246 0.636 277 1380 23.241 0.631 278 1385 23.251 0.641 279 1390 23.245 0.635 280 1395 23.25 0.64 281 1400 23.249 0.639 282 1405 23.25 0.64 283 1410 23.255 0.645 284 1415 23.251 0.641 285 1420 23.251 0.641 286 1425 23.251 0.641 286 1425 23.251 0.641 286 1425 23.251 0.641 287 1430 23.257 0.647 288 1435 23.255 0.648 290 1445 23.257 0.647 291 1450 23.257 0.647 292 1455 23.256 0.648 293 1460 23.256 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
277 1380 23.241 0.631 278 1385 23.251 0.641 279 1390 23.245 0.635 280 1395 23.25 0.64 281 1400 23.249 0.639 282 1405 23.25 0.64 283 1410 23.255 0.645 284 1415 23.254 0.644 285 1420 23.251 0.641 286 1425 23.251 0.641 287 1430 23.257 0.647 288 1435 23.255 0.645 289 1440 23.258 0.648 289 1440 23.258 0.647 291 1450 23.257 0.647 292 1455 23.257 0.647 292 1455 23.257 0.647 292 1455 23.258 0.648 292 1455 23.256 <t< td=""><td>-</td><td></td><td></td><td></td><td></td></t<>	-				
278 1385 23.251 0.641 279 1390 23.245 0.635 280 1395 23.25 0.64 281 1400 23.249 0.639 282 1405 23.25 0.64 283 1410 23.255 0.645 284 1415 23.254 0.641 286 1420 23.251 0.641 286 1425 23.251 0.641 287 1430 23.257 0.647 288 1440 23.255 0.645 289 1440 23.258 0.648 290 1445 23.257 0.647 291 1450 23.257 0.647 292 1455 23.257 0.647 291 1450 23.257 0.647 292 1455 23.258 0.648 293 1460 23.256 0.648 293 1460 23.260 <t< td=""><td>-</td><td></td><td></td><td></td><td>_</td></t<>	-				_
279 1390 23.245 0.635 280 1395 23.25 0.64 281 1400 23.249 0.639 282 1405 23.25 0.64 283 1410 23.255 0.645 284 1415 23.254 0.644 285 1420 23.251 0.641 286 1425 23.251 0.641 287 1430 23.257 0.647 288 1435 23.255 0.645 288 1440 23.258 0.648 289 1440 23.258 0.648 290 1445 23.257 0.647 291 1450 23.257 0.647 291 1450 23.257 0.647 292 1455 23.258 0.648 293 1460 23.256 0.654 294 1465 23.262 0.652 295 1470 23.262 <t< td=""><td>-</td><td></td><td></td><td></td><td>_</td></t<>	-				_
280 1395 23.25 0.64 281 1400 23.249 0.639 282 1405 23.25 0.64 283 1410 23.255 0.645 284 1415 23.254 0.644 285 1420 23.251 0.641 286 1425 23.251 0.641 286 1425 23.257 0.647 288 1435 23.255 0.645 289 1440 23.258 0.648 290 1445 23.257 0.647 291 1450 23.257 0.647 291 1450 23.257 0.647 291 1450 23.257 0.647 292 1455 23.258 0.648 293 1460 23.256 0.646 294 1465 23.262 0.652 295 1470 23.262 0.652 296 1475 23.26 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
281 1400 23.249 0.639 282 1405 23.25 0.64 283 1410 23.255 0.645 284 1415 23.254 0.644 285 1420 23.251 0.641 286 1425 23.251 0.641 287 1430 23.257 0.647 288 1435 23.255 0.645 289 1440 23.258 0.648 290 1445 23.257 0.647 291 1450 23.257 0.647 292 1455 23.258 0.648 290 1445 23.257 0.647 292 1455 23.258 0.648 293 1460 23.256 0.648 294 1465 23.262 0.652 295 1470 23.262 0.652 296 1475 23.26 0.653 299 1490 23.263 <					_
283 1410 23.255 0.645 284 1415 23.254 0.644 285 1420 23.251 0.641 286 1425 23.251 0.641 287 1430 23.257 0.647 288 1435 23.255 0.645 289 1440 23.258 0.648 290 1445 23.257 0.647 291 1450 23.257 0.647 292 1455 23.258 0.648 293 1460 23.256 0.646 294 1465 23.262 0.652 295 1470 23.262 0.652 295 1475 23.26 0.65 297 1480 23.263 0.653 298 1485 23.264 0.654 299 1490 23.263 0.653 300 1495 23.265 0.655 303 1510 23.265					
284 1415 23.254 0.644 285 1420 23.251 0.641 286 1425 23.251 0.641 287 1430 23.257 0.647 288 1435 23.255 0.645 289 1440 23.258 0.648 290 1445 23.257 0.647 291 1450 23.257 0.647 292 1455 23.258 0.648 293 1460 23.258 0.648 293 1460 23.256 0.646 294 1465 23.262 0.652 295 1470 23.262 0.65 296 1475 23.26 0.65 297 1480 23.263 0.653 298 1485 23.264 0.654 299 1490 23.265 0.655 300 1495 23.265 0.655 301 1505 23.265 <	282	1405	23.25		
285 1420 23.251 0.641 286 1425 23.251 0.641 287 1430 23.257 0.647 288 1435 23.255 0.645 289 1440 23.258 0.648 290 1445 23.257 0.647 291 1450 23.257 0.647 292 1455 23.258 0.648 293 1460 23.256 0.646 294 1465 23.262 0.652 295 1470 23.262 0.652 296 1475 23.26 0.65 297 1480 23.263 0.653 298 1485 23.264 0.654 299 1490 23.263 0.653 300 1495 23.265 0.655 301 1505 23.265 0.659 302 1505 23.265 0.659 303 1510 23.269	283	1410	23.255	0.645	
286 1425 23.251 0.641 287 1430 23.257 0.647 288 1435 23.255 0.645 289 1440 23.258 0.648 290 1445 23.257 0.647 291 1450 23.257 0.647 292 1455 23.258 0.648 293 1460 23.256 0.646 294 1465 23.262 0.652 295 1470 23.262 0.652 296 1475 23.26 0.653 297 1480 23.263 0.653 298 1485 23.264 0.654 299 1490 23.263 0.653 300 1495 23.265 0.655 301 1500 23.269 0.659 302 1505 23.265 0.655 303 1510 23.269 0.659 304 1515 23.271	284	1415			
287 1430 23.257 0.647 288 1435 23.255 0.645 289 1440 23.258 0.648 290 1445 23.257 0.647 291 1450 23.257 0.647 292 1455 23.258 0.648 293 1460 23.256 0.646 294 1465 23.262 0.652 295 1470 23.262 0.652 296 1475 23.26 0.65 297 1480 23.263 0.653 298 1485 23.264 0.654 299 1490 23.263 0.653 300 1495 23.265 0.655 301 1500 23.269 0.659 302 1505 23.265 0.659 303 1510 23.269 0.659 304 1515 23.271 0.66 305 1520 23.27 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
288 1435 23.255 0.645 289 1440 23.258 0.648 290 1445 23.257 0.647 291 1450 23.257 0.647 292 1455 23.258 0.648 293 1460 23.256 0.646 294 1465 23.262 0.652 295 1470 23.262 0.652 295 1475 23.26 0.65 297 1480 23.263 0.653 298 1485 23.264 0.654 299 1490 23.263 0.653 300 1495 23.265 0.655 301 1500 23.269 0.659 302 1505 23.265 0.659 303 1510 23.269 0.659 304 1515 23.271 0.66 305 1520 23.27 0.66 307 1530 23.27					
289 1440 23.258 0.648 290 1445 23.257 0.647 291 1450 23.257 0.647 292 1455 23.258 0.648 293 1460 23.256 0.646 294 1465 23.262 0.652 295 1470 23.262 0.652 296 1475 23.26 0.65 297 1480 23.263 0.653 298 1485 23.264 0.654 299 1490 23.263 0.653 300 1495 23.265 0.655 301 1500 23.269 0.659 302 1505 23.265 0.659 303 1510 23.269 0.659 304 1515 23.271 0.66 305 1520 23.27 0.66 306 1525 23.269 0.659 307 1530 23.27					_
290 1445 23.257 0.647 291 1450 23.257 0.647 292 1455 23.258 0.648 293 1460 23.256 0.646 294 1465 23.262 0.652 295 1470 23.262 0.65 296 1475 23.26 0.65 297 1480 23.263 0.653 298 1485 23.264 0.654 299 1490 23.263 0.653 300 1495 23.265 0.655 301 1500 23.269 0.659 302 1505 23.265 0.655 303 1510 23.269 0.659 304 1515 23.271 0.661 305 1520 23.27 0.66 307 1530 23.27 0.66 308 1535 23.271 0.661					_
291 1450 23.257 0.647 292 1455 23.258 0.648 293 1460 23.256 0.646 294 1465 23.262 0.652 295 1470 23.262 0.652 296 1475 23.26 0.65 297 1480 23.263 0.653 298 1485 23.264 0.654 299 1490 23.263 0.653 300 1495 23.265 0.655 301 1500 23.269 0.659 302 1505 23.265 0.655 303 1510 23.269 0.659 304 1515 23.271 0.661 305 1520 23.27 0.66 306 1525 23.269 0.659 307 1530 23.27 0.66 308 1535 23.271 0.661					\dashv
292 1455 23.258 0.648 293 1460 23.256 0.646 294 1465 23.262 0.652 295 1470 23.262 0.652 296 1475 23.26 0.65 297 1480 23.263 0.653 298 1485 23.264 0.654 299 1490 23.263 0.653 300 1495 23.265 0.655 301 1500 23.269 0.659 302 1505 23.265 0.655 303 1510 23.269 0.659 304 1515 23.271 0.661 305 1520 23.27 0.66 307 1530 23.27 0.66 308 1535 23.271 0.661					
293 1460 23.256 0.646 294 1465 23.262 0.652 295 1470 23.262 0.652 296 1475 23.26 0.65 297 1480 23.263 0.653 298 1485 23.264 0.654 299 1490 23.263 0.653 300 1495 23.265 0.655 301 1500 23.269 0.659 302 1505 23.265 0.659 303 1510 23.269 0.659 304 1515 23.271 0.661 305 1520 23.27 0.66 307 1530 23.27 0.66 308 1535 23.271 0.661					
295 1470 23.262 0.652 296 1475 23.26 0.65 297 1480 23.263 0.653 298 1485 23.264 0.654 299 1490 23.263 0.653 300 1495 23.265 0.659 301 1500 23.269 0.659 302 1505 23.265 0.655 303 1510 23.269 0.659 304 1515 23.271 0.661 305 1520 23.27 0.66 306 1525 23.269 0.659 307 1530 23.27 0.66 308 1535 23.271 0.661	293	1460	23.256	0.646	
296 1475 23.26 0.65 297 1480 23.263 0.653 298 1485 23.264 0.654 299 1490 23.263 0.653 300 1495 23.265 0.655 301 1500 23.269 0.659 302 1505 23.265 0.655 303 1510 23.269 0.659 304 1515 23.271 0.661 305 1520 23.27 0.66 306 1525 23.269 0.659 307 1530 23.27 0.66 308 1535 23.271 0.661					
297 1480 23.263 0.653 298 1485 23.264 0.654 299 1490 23.263 0.653 300 1495 23.265 0.655 301 1500 23.269 0.659 302 1505 23.265 0.655 303 1510 23.269 0.659 304 1515 23.271 0.661 305 1520 23.27 0.66 306 1525 23.269 0.659 307 1530 23.27 0.66 308 1535 23.271 0.661					
298 1485 23.264 0.654 299 1490 23.263 0.653 300 1495 23.265 0.655 301 1500 23.269 0.659 302 1505 23.265 0.659 303 1510 23.269 0.659 304 1515 23.271 0.661 305 1520 23.27 0.66 306 1525 23.269 0.659 307 1530 23.27 0.66 308 1535 23.271 0.661	-				_
299 1490 23.263 0.653 300 1495 23.265 0.655 301 1500 23.269 0.659 302 1505 23.265 0.655 303 1510 23.269 0.659 304 1515 23.271 0.661 305 1520 23.27 0.66 306 1525 23.269 0.659 307 1530 23.27 0.66 308 1535 23.271 0.661					\dashv
300 1495 23.265 0.655 301 1500 23.269 0.659 302 1505 23.265 0.655 303 1510 23.269 0.659 304 1515 23.271 0.661 305 1520 23.27 0.66 306 1525 23.269 0.659 307 1530 23.27 0.66 308 1535 23.271 0.661					\dashv
301 1500 23.269 0.659 302 1505 23.265 0.655 303 1510 23.269 0.659 304 1515 23.271 0.661 305 1520 23.27 0.66 306 1525 23.269 0.659 307 1530 23.27 0.66 308 1535 23.271 0.661					\dashv
302 1505 23.265 0.655 303 1510 23.269 0.659 304 1515 23.271 0.661 305 1520 23.27 0.66 306 1525 23.269 0.659 307 1530 23.27 0.66 308 1535 23.271 0.661					
303 1510 23.269 0.659 304 1515 23.271 0.661 305 1520 23.27 0.66 306 1525 23.269 0.659 307 1530 23.27 0.66 308 1535 23.271 0.661	-				
305 1520 23.27 0.66 306 1525 23.269 0.659 307 1530 23.27 0.66 308 1535 23.271 0.661					
306 1525 23.269 0.659 307 1530 23.27 0.66 308 1535 23.271 0.661	304			0.661	
307 1530 23.27 0.66 308 1535 23.271 0.661					
308 1535 23.271 0.661	-				
	-				
I 309 1540 23,273 0.663	-				\dashv
	309	1540	23.2/3	0.663	

Iowa Department of Natural Resources Geological and Water Survey 109 Trowbridge Hall Iowa City, Iowa 52242-1319 (319) 335-1575 www.igsb.uiowa.edu