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Abstract 

The development of the field-scale Erosion Productivity Impact Calculator (EPIC) 

model was initiated in 1981 to support assessments of soil erosion impacts on soil 

productivity for soil, climate, and cropping conditions representative of a broad spectrum 

of U.S. agricultural production regions. The first major application of EPIC was a 

national analysis performed in support of the 1985 Resources Conservation Act (RCA) 

assessment. The model has continuously evolved since that time and has been applied for 

a wide range of field, regional, and national studies both in the U.S. and in other 

countries. The range of EPIC applications has also expanded greatly over that time, 

including studies of (1) surface runoff and leaching estimates of nitrogen and phosphorus 

losses from fertilizer and manure applications, (2) leaching and runoff from simulated 

pesticide applications, (3) soil erosion losses from wind erosion, (4) climate change 

impacts on crop yield and erosion, and (5) soil carbon sequestration assessments. The 

EPIC acronym now stands for Erosion Policy Impact Climate, to reflect the greater 

diversity of problems to which the model is currently applied. The Agricultural Policy 

EXtender (APEX) model is essentially a multi-field version of EPIC that was developed 

in the late 1990s to address environmental problems associated with livestock and other 

agricultural production systems on a whole-farm or small watershed basis. The APEX 

model also continues to evolve and to be utilized for a wide variety of environmental 

assessments. The historical development for both models will be presented, as well as 

example applications on several different scales.   

 

Keywords: APEX, carbon sequestration, climate change, EPIC, modeling, soil erosion, 

water quality. 

 



 

 

HISTORICAL DEVELOPMENT AND APPLICATIONS OF THE  
EPIC AND APEX MODELS  

Introduction 
The 1977 Resources Conservation Act (RCA) charged the U.S. Department of Agri-

culture (USDA) with the responsibility to assess the status of the nation’s soil and water 

resources on a regular basis. The first RCA appraisal conducted in 1980 revealed a sig-

nificant need for improved technology for evaluating the impacts of soil erosion on soil 

productivity (Putnam, Williams, and Sawyer 1988). In response, the Erosion Productivity 

Impact Calculator (EPIC) model was developed by a USDA modeling team in the early 

1980s to address this technology gap (Williams, Jones, and Dyke 1984; Williams 1990; 

Sharpley and Williams 1990; Jones et al. 1991). The first major application of EPIC was 

for the second RCA appraisal in 1985, in which the model was used to evaluate soil ero-

sion impacts for 135 U.S. land resource regions (Putnam, Williams, and Sawyer 1988). 

Ongoing evolution of the model, including incorporation of additional functions related 

to water quality and atmospheric CO2 change, resulted in the model name eventually be-

ing changed to Environmental Policy Impact Climate (Williams et al. 1996). The latest 

version of EPIC features enhanced carbon cycling routines (Izaurralde et al. 2001) that 

are based on the approach used in the Century model (Parton et al. 1994). 

Numerous applications of EPIC have been performed in the United States and in other 

regions of the world across a broad spectrum of environmental conditions. Example appli-

cations include assessment of sediment and nutrient losses as a function of different tillage 

systems, crop rotations, and fertilizer rates (Phillips et al. 1993; King, Richardson, and Wil-

liams 1996); nutrient losses from livestock manure applications (Edwards et al. 1994; 

Pierson et al. 2001); nitrate-nitrogen (NO3-N) losses through subsurface tile drainage 

(Chung et al. 2001; Chung et al. 2002); nutrient cycling as a function of cropping system 

(Cavero et al. 1999; Bernardos et al. 2001); soil loss due to wind erosion (Potter et al. 1998; 

Bernardos et al. 2001); climate change impacts on crop yield and/or soil erosion (Favis-
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Mortlock et al. 1991; Brown and Rosenberg 1999); losses from field applications of pesti-

cides (Williams, Richardson, and Griggs 1992; Sabbagh et al. 1992); irrigation impacts on 

crop yields (Cabelguenne, Jones, and Williams 1995; Rinaldi 2001); estimation of soil tem-

perature (Potter and Williams 1994; Roloff, de Jong, and Nolin 1998a); and soil carbon 

sequestration as a function of cropping and management systems (Lee, Phillips, and Liu 

1993; Apezteguía, Izaurralde, and Sereno 2002). The flexibility of EPIC has also led to its 

adoption within several integrated economic and environmental modeling systems that 

have been used to evaluate agricultural policies at the farm, watershed, and/or regional 

scale (e.g., Taylor, Adams, and Miller 1992; Bernardo et al. 1993; Foltz, Lee, and Martin 

1993; Babcock et al. 1997).  

The Agricultural Policy EXtender (APEX) model (Williams et al. 1995; Williams 

2002) was developed in the 1990s to facilitate multiple subarea scenarios and/or manure 

management strategies, such as automatic land application of liquid manure from waste 

storage ponds, which cannot be simulated in EPIC. The catalyst for creating APEX was the 

U.S. Environmental Protection Agency (USEPA) funded “Livestock and the Environment: 

A National Pilot Project (NPP),” which was initiated in 1992 to study livestock environ-

mental problems on a watershed basis. The APEX model was used extensively for a wide 

range of livestock farm and nutrient management (manure and fertilizer) scenarios within 

the Comprehensive Economic Environmental Optimization Tool – Livestock and Poultry 

(CEEOT-LP), an economic-environmental modeling system developed for the NPP 

(Gassman et al. 2002; Osei et al. 2000; Osei, Gassman, and Saleh 2000; Osei et al. 2003a, 

b). It has also been applied within a number of other studies. 

A brief overview of the structure of both models is presented here, followed by re-

views of how the models have been applied up to the present time. Emerging applications 

of the two models are also discussed.  

 

Overview of EPIC 
The EPIC model can be subdivided into nine separate components defined as 

weather, hydrology, erosion, nutrients, soil temperature, plant growth, plant environment 

control, tillage, and economic budgets (Williams 1990). It is a field-scale model that is 

designed to simulate drainage areas that are characterized by homogeneous weather, soil, 
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landscape, crop rotation, and management system parameters. It operates on a continuous 

basis using a daily time step and can perform long-term simulations for hundreds and 

even thousands of years. A wide range of crop rotations and other vegetative systems can 

be simulated with the generic crop growth routine used in EPIC. An extensive array of 

tillage systems and other management practices can also be simulated with the model. 

Seven options are provided for simulating water erosion and five options are available for 

simulating potential evapotranspiration (PET). Detailed discussions of the EPIC compo-

nents and functions are given in Williams, Jones, and Dyke 1984; Williams 1990; 

Sharply and Williams 1990; and Williams 1995. 

 

EPIC Applications 
Initial tests of the EPIC model were reported by Williams, Renard, and Dyke (1983), 

which were performed in support of the 1985 RCA analysis. The model was shown to repli-

cate realistically mean surface runoff and sediment yields that were measured for three small 

watersheds in Falls County, Texas, and for corn, oat, or soybean yields that were measured in 

Iowa, Missouri, and Ohio. Nearly 12,000 100-year EPIC simulations were then performed 

for different crop, tillage, soil, climate, and conservation practice combinations to support the 

RCA analysis, which included economic assessments conducted with a linear programming 

model (Putnam, Williams, and Sawyer 1988).  

The EPIC model has continued to evolve and to be applied to an ever-increasing range 

of scenarios since the 1985 RCA analysis. Some applications have focused specifically on 

testing of different EPIC components, which in some cases resulted in modifications to exist-

ing routines and improved model performance. Other enhancements and refinements have 

been made to the model to facilitate the interest of various users or to meet the needs of spe-

cific applications. Table 1 lists examples of modifications that have been made to the EPIC 

model over roughly the past 15 years. “Spin-off” versions of the model have also been devel-

oped by several users for region- or task-specific applications, for example, the AUSCANE 

model created by Jones et al. (1989) to simulate Australian sugarcane production. Trends in 

the use of EPIC are highlighted here as a function of example applications for key EPIC indi-

cators such as estimation of crop yields and soil erosion losses by wind and water. 

Subcategories are also delineated for notable region- or application-specific uses.   



4 / Gassman et al. 

TABLE 1. Examples of modifications to EPIC components or input data since the 
second RCA study 
Modified Component or Input Data Sourcea  

Improved and expanded crop growth submodel Williams et al. (1989) 

Enhanced root growth functions Jones et al. (1991) 

Improved nitrogen fixation routine for legume crops that 
calculates fixation as a function of soil water, soil N, and 
crop physiological stage 

Bouniols et al. (1991) 

Incorporation of pesticide routines from GLEAMS model Sabbagh et al. (1991) 

Improved crop growth parameters for sunflower Kiniry et al. (1992a) 

Incorporation of CO2 and vapor pressure effects on radiation 
use efficiency, leaf resistance, and transpiration of crops 

Stockle et al. (1992a) 

Incorporation of functions that allow two or more crops to be 
grown simultaneously  

Kiniry et al. (1992b) 

Improved soil temperature component        Potter and Williams (1994) 

Improved crop growth parameters for cereal, oilseed, and 
forage crops grown in the North American northern Great 
Plains region 

Kiniry et al. (1995) 

Improved and expanded weather generator component                  Williams (1995) 

Incorporation of NRCS TR-55 peak runoff rate component           Williams (1995) 

Incorporation of MUSS, MUST, and MUSI water erosion 
routines 

Williams (1995) 

Incorporation of nitrification-volatilization component Williams (1995) 

Improved water table dynamics routine Williams (1995) 

Incorporation of RUSLE water erosion equation Renard (1997) 

Improved snowmelt runoff and erosion component Purveen et al. (1997) 

Improved EPIC wind erosion model (WESS) Potter et al. (1998) 

Incorporation of Baier-Robertson PET routine  Roloff et al. (1998) 

Incorporation of Green and Ampt infiltration function  Williams, Arnold, and Srinivasan 
(2000) 

Enhanced carbon cycling routine that is based on the Century 
model approach 

Izaurralde et al. (2004) 

Incorporation of a potassium (K) cycling routine De Barros, Williams, and Gaiser 
(2004) 

aSome sources do not explicitly document the modification but are the best description of the modification available or 
present an application of the specific subcomponent.  
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Crop Growth and Yield Studies  
A key output provided by EPIC is crop yield predictions. Several studies have been 

performed in the United States and other countries that focused specifically on testing the 

accuracy of EPIC crop growth and yield predictions. Such tests have also been incorpo-

rated as parts of other studies. One of the most comprehensive tests of the crop growth 

submodel was performed by Williams et al. (1989), who describe the results of testing an 

updated EPIC crop growth model (Table 1) for simulated barley, corn, rice, soybean, sun-

flower, and wheat yields at several U.S. locations and for sites in Asia, France, and South 

America. The predicted yields were compared with measured yields for periods ranging 

from 1 to 11 years. The average predicted yields were always within 7% of the average 

measured yields, and there was no significant difference between any of the simulated 

and measured yields at the 95% confidence level. However, r2 statistics computed be-

tween the simulated and measured yields of the six crops ranged from relatively strong 

values of 0.80 and 0.65 for wheat and corn to only 0.20 for barley and soybean. 

EPIC-predicted yields have been shown in other studies to replicate accurately both 

mean and annual yields for different crops and conditions. Bryant et al. (1992) found that 

EPIC accurately predicted mean and annual corn yields measured for 38 irrigation stress 

experiments conducted during the 1975-77 period at Bushland, Texas, after the effects of 

a hail storm were accounted for in 1976. Gray et al. (1997) reported r2 values of 0.82 and 

0.85 for corn yield production functions developed from EPIC simulations that were per-

formed for irrigation timing experiments conducted at Bushland, Texas, during the years 

1990-93. Geleta et al. (1994) found that predicted mean and annual yields accurately re-

flected irrigated corn, sorghum, and winter wheat yields measured near Goodwell in the 

Oklahoma Panhandle region between 1984 and 1988 using a version of EPIC called 

EPIC-PST (Sabbagh et al. 1991). Parsons, Pease, and Martens (1995) reported that EPIC 

predicted mean yields accurately and explained 55% to 89% of the measured yield vari-

ance for five of six treatments (excluding 1986 from four of the treatments) for corn 

grown during the 1978-93 period on three Virginia soil types fertilized with either inor-

ganic fertilizer or a “heavy” manure application. Cavero et al. (1997) and Cavero et al. 

(1999) found that EPIC replicated measured annual yields accurately, except when dis-

ease problems affected yields, for irrigated tomato, safflower, and winter wheat grown 
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during the 1994-95 period for conditions representative of the Sacramento Valley in Cali-

fornia. Roloff, de Jong, and Nolin (1998a) found that EPIC adequately simulated mean 

and annual soybean yields for two sites located at Barrhaven, Ontario, and St. Antoine, 

Quebec, but corn yields estimated by EPIC were less accurate. Mean and annual corn, 

soybean, and alfalfa yields estimated by EPIC generally reflected corresponding yields 

measured within continuous corn, corn-soybean, and continuous alfalfa rotations during 

the 1990-93 period near Lamberton, Minnesota, although errors of 25%-50% occurred 

for 4 of the 12 annual predicted yields (Chung et al. 2001). Perez-Quezada et al. (2003) 

found that EPIC replicated yield variability measured for wheat, tomatoes, beans, and 

sunflowers grown in a commercial field in the Sacramento Valley, California, but the 

model was weaker at reproducing yields measured at specific points in the field.  

Other studies have shown that EPIC was able to replicate measured mean or median 

yields but not observed interannual yield variability. Examples include (1) predicted 

yields from 144 EPIC simulations for soybeans grown in 40 fields in 1982 and/or 1983 in 

fields near Watkinsville, Georgia (Martin, Nearing, and Bruce 1993); (2) predicted spring 

wheat yields in long-term continuous wheat, fallow-wheat, or fallow-wheat-wheat rota-

tions grown over 30, 79, 15, and 27 years at Melfort, Saskatchewan (Moulin and Beckie 

1993), Lethbridge, Alberta (Touré, Major, and Lindwall 1994), Swift Current, Sas-

katchewan (Kiniry et al. 1995), and Swift Current, Saskatchewan (Roloff et al. 1998), 

respectively; and (3) predicted corn yields in continuous corn grown during the 1976-87 

period at Treynor, Iowa (Chung et al. 1999). Bernardos et al. (2001) found that long-term 

yield trends predicted by EPIC over several decades for the Argentine Pampa region were 

more accurate than the estimated yield variation, based on comparisons with historical 

yield data for corn, wheat, and sunflower. Warner et al. (1997a) report that annual yields 

estimated by EPIC did not correlate well with the measured yields and that the model ex-

hibited a bias toward overprediction of yields for corn grown over a total of 15 treatment 

years (five nitrogen fertilizer rates for three years each) at Storrs, Connecticut. However, 

some studies noted that EPIC tended to underestimate peak yields and overestimate low 

yields (Bryant et al. 1992; Touré, Major, and Lindwall 1994). Martin, Nearing, and Bruce 

(1993) further noted that differences in the predicted EPIC yields between erosion classes 
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were less those measured. Chung et al. (2002) also found that EPIC lacked sensitivity to 

tillage effects on yields. 

Moulin and Beckie (1993) and Kiniry et al. (1995) concluded that EPIC could be a 

valuable tool for simulating yields and environmental impacts for long-term studies rep-

resentative of Canadian Prairie conditions. Roloff et al. (1998) reached the same 

conclusion, provided the Baier-Robertson PET routine was used. Touré, Major, and 

Lindwall (1994) suggested that EPIC had the best potential for analyzing climate change 

impacts on agricultural production out of five models evaluated. Parsons, Pease, and 

Martens (1995) concluded that EPIC could be used to assess the effects of different nutri-

ent treatments, including very high manure rate applications, on crop yield. Martin, 

Nearing, and Bruce (1993) concluded that EPIC could be useful for performing relative 

comparisons between different erosion class soils. Bryant et al. (1992) pointed out that 

EPIC (and other simulation models) are best used to generate simulated yield distribu-

tions that are similar to measured yield distributions, rather than trying to match 

measured yields in each single year. Similar conclusions can be drawn from the majority 

of the other studies reviewed here. However, adjustments to standard EPIC input parame-

ters or to EPIC functions are sometimes necessary to achieve acceptable yield 

predictions, such as the adjustment made by Steiner, Williams, and Jones (1987) to the 

EPIC dry matter production conversion factor to facilitate more accurate simulation of 

winter wheat and sorghum yields during the 1958-84 period in a dryland wheat-sorghum-

fallow rotation at Bushland, Texas.  

Yield Simulation Studies in Southern France 
A more aggressive adaptation of EPIC was carried out in southern France as part of 

an extensive research effort by researchers at the National Institute of Research in 

Agronomy (INRA) Station at Toulouse-Auzeville. Cabelguenne et al. (1990) found that 

the standard EPIC model adequately replicated measured mean yields of corn, grain sor-

ghum, sunflower, and soybean (but not winter wheat) that were grown in complex 

rotations with varying levels of management and concluded that the model could be used 

for simulating a range of irrigated summer crop scenarios for southern France. However, 

concurrent research by Quinones and Cabelguenne (1990) revealed that EPIC could not 

adequately simulate some conditions of severe water stress. To address this weakness, the 
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latter authors incorporated a module that accounted for three corn phenological stages 

(vegetative, flowering, and grain filling), different levels of drought sensitivity impacts 

during each stage, including effects on the harvest index, and variation in water extrac-

tion by corn as a function of layer depth. Simulation results obtained with this modified 

version of EPIC for six irrigation strategies were consistent with reported effects of 

drought stress during critical periods of grain yield development and indicated that the 

modified model could produce more accurate results for southern France irrigation stud-

ies (Cabelguenne, Jones, and Williams 1995). Similar results were reported for evaluation 

of wheat irrigation strategies with the “EPICPHASE wheat simulation model” (Debaeke 

1995), another modified version of EPIC designed to more accurately simulate water 

stress impacts on wheat growth and yields. Further applications and development focused 

on a modified version of EPIC referred to as EPICPhase, which included real-time corn 

irrigation simulations (Cabelguenne et al. 1997), expanded water extraction and stress 

simulation capabilities for corn, sunflower, soybean, sorghum, and wheat (Cabelguenne 

and Debaeke 1998), and a yield validation study of the same five crops (Cabelguenne, 

Debaeke, and Bouniols 1999). (EPICphase, EPICPHASE, and EPIC-PHASE are versions 

of the name used for the modified EPIC in published literature.) The final version of 

EPICphase includes other modifications performed by the Toulouse INRA Agronomy 

Station such as improved crop parameters (Table 1) and modified functions for sunflow-

ers (Kiniry et al. 1992b; Texier, Blanchet, and Bouniols 1992) and an improved nitrogen 

fixation routine for legume crops (Table 1) developed by Bouniols et al. (1991). It is no-

table that second-generation usage of EPICphase has occurred in Spain, where the model 

has been further modified, validated, and applied for irrigation scenarios (Cavero et al. 

2000; Santos et al. 2000; Cavero et al. 2001). 

Irrigation Studies  

Crop yields generated by EPIC have served as a cornerstone of several studies fo-

cused on analyses of irrigation. Bryant et al. (1992) found that EPIC can be used to assess 

the impacts of different irrigation amounts and timings, based on validation of the model 

for the 38 different irrigation stress experiments at Bushland, Texas. Rinaldi (2001) used 

EPIC, following calibration by Ventrella and Rinaldi (1999) and others, to assess over 60 

45-year scenarios of irrigation timing and amount strategies for sunflowers at Foggia in 
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southern Italy. The results showed that the “bud flower stage” was the most important 

period for irrigation, 250-300 mm of seasonal irrigation water equated to the highest wa-

ter use efficiency value, and that the model is a useful tool for comparing multiple 

management strategies at the farm or regional scale. Tayfur et al. (1995) calibrated a “sa-

linity extended EPIC model” with alfalfa yield and salinity data collected at the Fruita 

Research Center of Colorado and then used the modified EPIC to assess the effects of 

different summer water stress management practices on alfalfa yields and salinity move-

ment in the Imperial Valley in California. They concluded that the modified model was a 

viable tool for simulating total alfalfa yield and average soil salinity for both optimal and 

stressed conditions, provided the stress period did not become overly prolonged. Geleta et 

al. (1994) used EPIC-PST to model corn, sorghum, and winter wheat yields within 20-

year rotation scenarios on four soil types that were representative of the Oklahoma Pan-

handle for both dryland production (sorghum and wheat only) and for four irrigation 

management schemes: conventional furrow, improved furrow, center pivot sprinkler, and 

low-energy precision application (LEPA). The predicted sorghum and winter wheat 

yields were influenced by both soil type and irrigation system while the estimated corn 

yields were unaffected by irrigation system. Ellis et al. (1993) simulated nine different 

irrigation practices in EPIC for cotton production in the Trans-Pecos region of western 

Texas. The predicted yields were used in the FLIPSIM whole-farm simulation model to 

determine the best strategies for debt-ridden producers in the region to maintain financial 

viability during the 1987-91 production period. The analysis showed that water-intensive 

strategies would be the most profitable. A cost and benefit analysis was performed by 

Gray et al. (1997) for the Texas High Plains using EPIC and FLIPSIM. The results 

showed that no-till was economically more viable for all irrigation strategies assessed in 

the study.       

Climate Change Effects on Crop Yields 
The EPIC crop growth routine was modified by Stockle et al. (1992a) in order to ac-

count for the effects of elevated CO2 on crop growth and yield (Table 1). The 

modifications consisted of incorporating functions that simulated the effects of changes 

in CO2 concentrations and a vapor pressure deficit on crop radiation-use efficiency, leaf 

resistance, and transpiration. An initial assessment of potential climate change impacts on 
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crop yields with the CO2 algorithms incorporated in EPIC was performed by Stockle et 

al. (1992b) for corn, wheat, and soybean cropping systems in the central United States. 

Yield increases were predicted for all crops in response to a CO2 increase from 330 to 

550 ppm, and mixed yield responses were predicted as a function of hypothetical in-

creases or decreases in temperature or precipitation, with and without the increase in 

CO2. The impact of an analog climate on crop production was analyzed by Easterling et 

al. (1992a) for the Missouri, Iowa, Nebraska, and Kansas (MINK) region using EPIC. 

They found that yields of grain crops, except wheat, would decline in response to the ana-

log climate. Other MINK studies were also performed by Easterling et al. (1992c), 

Easterling et al. (1998), Easterling et al. (2001), and McKenney, Easterling, and 

Rosenberg (1992). Phillips, Lee, and Dodson (1996) reported variable crop yield impacts 

in response to 36 different hypothetical climate/CO2 scenarios that were evaluated with 

EPIC for 100 USDA National Resource Inventory (NRI) points 

(http://www.nrcs.usda.gov/technical/land/nri01/) that were statistically representative of 

corn and soybean production in the U.S. Corn Belt. Touré, Major, and Lindwall (1995) 

used EPIC and three other models to evaluate the impacts of climate change on continu-

ous dryland spring wheat grown at Lethbridge, Alberta, as a function of both hypothetical 

adjustments to temperature and precipitation inputs and climatic inputs derived from a 

global change model (GCM) scenario. Yield gains of 25% and 28% were projected for a 

warmer climate at current CO2 levels (330 ppm) and a warmer climate with a doubling of 

CO2, respectively. 

A number of more recent studies have focused on driving EPIC with only GCM-

derived climate data. Brown and Rosenberg (1999) assessed the impacts of future climate 

change from scenarios generated by three different GCMs on U.S. corn and wheat yields 

by simulating in EPIC 45 representative farms, which represented key wheat and corn 

production regions. Predicted impacts on yields ranged from -20% to +5% for corn and  

-76% to +18% for wheat. Izaurralde et al. (2003) analyzed the impacts of projected cli-

mate change from a single GCM for 2030 and 2095 on the productivity of four 

agricultural crops (corn, soybeans, alfalfa, and wheat) by simulating 204 representative 

farms in EPIC. Among other impacts, corn yields were predicted to increase in the Corn 

Belt and Great Lakes regions but to decrease in the Northern Plains in 2030, and national 
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wheat production was predicted to decline in both 2030 and 2095. Downscaled GCM 

weather output obtained through a regional climate model was used by Thomson, Brown, 

and Ghan (2002) to assess the impact of a doubling of CO2 on dryland wheat yields in 

eastern Washington in EPIC. Average dryland wheat yields were predicted to increase by 

about 1 t/ha in response to the higher CO2 levels. Tan and Shibasaki (2003) performed a 

global assessment of projected future climate change with EPIC. Their results show that 

global warming will be harmful to most crops. Other studies that have coupled GCM 

output with EPIC yield or soil water predictions include Brown and Rosenberg (1997), 

Brown et al. (2000), Dhakhwa et al. (1997), Dhakhwa and Campbell (1998), Easterling et 

al. (1992b) Easterling et al. (1992d), Easterling et al. (1996), Easterling et al. (1997), 

Huzár et al. (1999), Mearns et al. (1999), Mearns et al. (2001), Rosenberg et al. (1992), 

and Schneider, Easterling, and Mearns (2000). 

Assessments of tropical Pacific El Niño, El Viejo, or La Niña Southern Oscillation 

(ENSO) phenomena effects on crop yields have also been assessed with EPIC in at least 

three other studies (Izaurralde et al. 1999; Adams et al. 2003; Legler, Bryant, and O’Brien 

1999). Meza and Wilks (2004) have further investigated the effects of sea surface tempera-

ture anomalies (SSTA) on potato fertilization management in Chile with EPIC. 

Nutrient Cycling and Nutrient Loss Studies 
An extensive number of nutrient cycling and nutrient loss validation and scenario 

studies have been performed with EPIC (Tables 2 and 3). Several validation studies 

found that EPIC satisfactorily simulated measured soil nitrogen (N) and/or crop N uptake 

levels (Engelke and Fabrewitz 1991; Jackson et al. 1994; Beckie et al. 1995; Richter and 

Benbi 1996; Roloff, de Jong, and Nolin 1998b; Cavero et al. 1998; Cavero et al. 1999). 

However, less accurate soil N and crop N uptake results were reported in EPIC validation 

studies by Chung et al. (2001), Warner (1997a), and Warner et al. (1997b). Generally ac-

curate predictions of leached N below the root zone or in tile flow, as compared with or 

implied by measured data, were found by Engelke and Fabrewitz (1991), Jackson et al. 

(1994), Richter and Benbi (1996), Cavero et al. (1997), Flowers, Easterling, and Hauck 

(1998), Cavero et al. (1999), and Chung et al. (2002). Somewhat weaker leached N or tile 

flow N loss predictions were found by Chung et al. (1999) and Chung et al. (2001), al-

though both studies showed that EPIC was sensitive to long-term cropping and  tillage  
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TABLE 2. Example nutrient cycling and/or nutrient loss validation studies 
Region/Location Description/Indicators Assessed Source  

Univ. of Georgia, Athens, 
Georgia 

Dissolved reactive P in runoff from applied broiler 
litter to 6 grassland paddocks (0.72-0.79 ha); 3 
years (1995-98) 

Pierson et al. (2001) 

Northwestern Arkansas Sediment; organic N; N and P in runoff; total P; 
poultry manure applied to 4 pastures (20 months) 

Edwards et al. 
(1994) 

Near Treynor in 
southwest Iowa 

Hydrologic balance, crop yield, and sediment; N 
leached and in runoff from fert.; 34 and 43 ha 
watersheds cropped in cont. corn; 12 years (1976-
87) 

Chung et al. (1999) 

Muamee and Sandusky 
watersheds, mainly in 
Ohio 

Sediment; N and P in runoff, organic N and P; 
fertilizer and manure applications; total area: 
2.06x106 ha; 50 years 

Forster et al. (2000) 

Salinas Valley, Monterey 
County, California 

Crop yield; N in soil, leached, and taken up by crop; 
crisphead lettuce; 11 ha field; 1990  

Jackson et al. (1994) 

Storrs, Connecticut Crop yield; N in soil and taken up by crop; cont. corn 
(15 treatment years); 1987-1990 

Warner et al. 
(1997a,b) 

Sacramento Valley,   
California 

Crop yield; N in soil, leached, and taken up by crop; 
tomato, wheat, and safflower rotations; 1994-95 

Cavero et al. (1997; 
1999) 

Lamberton, Minnesota Crop yield; tile flow; N in soil, in tile flow, and taken 
up by crop; cont. corn, corn-soybean, cont. alfalfa; 
1990-93 

Chung et al. (2001) 

Nashua, Iowa Crop yield; tile flow; N in tile flow; cont. corn, corn-
soybean; 3 tillage levels; 0.4 ha plots; 1990-93 

Chung et al. (2002) 

Six field sites in         
Denmark, Belgium, 
the Netherlands, and 
the UK 

Crop yields; N leached, mineralized, immobilized, 
denitrified, and/or in plant uptake; 1987-89 (1980-
85 in the Netherlands)  

Engelke and 
Fabrewitz 
(1991); Richter 
and Benbi (1996) 

Two fields in Arroyo in 
the Colorado 
Watershed, Cameron 
County, Texas  

Sediment; organic N and P; N and P in runoff; Total 
N and P in runoff and sediment; N in tile flow; 
sorghum-cotton rotation; 12 ha plots; 1 year 

Flowers, Easterline, 
and Hauck 
(1998) 

 

impacts on N losses. A sensitivity analysis by Benson et al. (1992) showed that EPIC N 

leaching estimates can be very sensitive to choice of evapotranspiration routine and soil 

moisture estimates. Roloff, de Jong, and Nolin (1998b) found that EPIC N leaching esti-

mates were also very sensitive to several input parameters, including curve number, 

precipitation, solar radiation, and soil bulk density. Engelke and Fabrewitz (1991) found 

that EPIC estimates of denitrification and mineralization were plausible; however, Rich-

ter and Benbi (1996) described EPIC’s mineralization predictions as very poor. Edwards  
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TABLE 3. Example nutrient cycling and/or nutrient loss scenario studies 
Region/Location Description/Indicators Assessed Source  

Rockingham County, 
Virginia 

N runoff and leaching losses from manure and 
fertilizer applications for 120 cropland sites; 44 
years (1949-92) 

Parsons, Pease, and 
Martens (1995) 

Texarkana, Fayettville, 
and Stuttgart, Arkansas 

Sediment; organic N; nitrate and soluble P in runoff; 
total P; poultry manure applied to hypothetical 
fields (50 years) 

Edwards, Daniel, 
and Marbun (1992) 

12-state U.S. north central 
region 

N leaching and N runoff losses using EPIC 
metamodels  based on 30-yr EPIC runs; ~130,000 
NRI cropland points 

Wu and Babcock 
(1999) 

East River Watershed 
near Green Bay,       
Wisconsin 

Sediment P, soluble P, and total P from dairy manure 
and fertilizer; total field area = 1272 ha; 42 years 

Sugiharto et al. 
(1994) 

Lithuania; representative 
agricultural regions 

N and P losses from applications of fertilizers; 17 
years Tumas (2000) 

Oklahoma Panhandle 
region 

Crop yields; N leaching losses in response to different 
irrigation practices; 20 years Geleta et al. (1994) 

Upper Mississippi Valley 
Crop yields; N runoff losses and organic N losses; 

1,500 EPIC simulations that were representative of 
region 

Atwood et al. (1999) 

 

et al. (1994) found that annual EPIC estimates of nutrient losses were significantly corre-

lated with measured values, except for nitrate-N. Relatively strong agreement was found 

by Pierson et al. (2001) between EPIC-predicted and measured phosphorus (P) losses in 

runoff, but predictions for single events were not as accurate. Long-term trends were ac-

curately predicted by EPIC for conditions at Treynor, Iowa (Chung et al., 1999), although 

predicted annual losses were not as accurate. EPIC output did not compare well with 

measured in-stream loads for two large Lake Erie subwatersheds (Forster et al. 2000), but 

relative results were correctly predicted except for soluble P.  

The studies listed in Table 3 point to the fact that EPIC has been applied to a wide 

range of nutrient management scenarios, in terms of both specific management practices 

and simulation scales. Further confirmation of the versatility of EPIC for nutrient man-

agement scenarios can be seen from the various studies described in the Economic and 

Environmental Studies and Comprehensive Regional Assessments sections. 
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Wind and Water Erosion Studies 
Assessment of erosion losses and erosion impacts on crop productivity are key proc-

esses that have been present in EPIC since its inception. The Onstad-Foster (AOF) 

version of the Universal Soil Loss Equation (USLE) equation (Williams, Jones, and Dyke 

1984) and the Modified USLE (MUSLE) were provided as options to estimate water ero-

sion in the original EPIC model. The standard USLE was added later in the 1980s and by 

the mid-1990s three additional erosion equations had also been incorporated into EPIC 

(Williams 1995): two MUSLE variants referred to as MUST and MUSS, and a fourth 

MUSLE option called MUSI that requires input coefficients. The energy component is 

the only difference between the six USLE-based equations. The RUSLE erosion estima-

tion method (Renard 1997) was incorporated later into the model, providing a seventh 

option for estimating water erosion. The original wind erosion model used in EPIC was 

the WEQ (Williams 1995), which has since been replaced by the Wind Erosion Stochas-

tic Simulator (WESS) approach (Potter et al. 1998). Numerous EPIC applications have 

been performed for soil erosion; example applications are presented here, including vali-

dation and scenario studies. 

Water Erosion Validation and Scenario Studies 
King, Richardson, and Williams (1996) used MUSS to simulate non-calibrated erosion 

in response to no-till and conventional tillage for six small watersheds located near Riesel, 

Texas, in the Blacklands Prairie region of central Texas. The replicated annual means and 

standard deviations of surface runoff and erosion agreed closely with the corresponding 

measured values, and significant correlation was also found for monthly values. Purveen et 

al. (1997) reported that the EPIC MUSS option satisfactorily replicated snowmelt-induced 

runoff and erosion measured on plots near La Grace, Alberta. Median erosion rates of 58.8 

and 3.6 t/ha were estimated with the EPIC USLE option by Chung et al. (1999) for two wa-

tersheds in southwest Iowa that were cropped in continuous corn during the years 1976-87 

and managed with conventional tillage and ridge tillage, respectively. The estimated ero-

sion rates clearly captured the effects of the two different tillage systems and also compared 

favorably with average sediment delivery ratio (SDR) estimates determined over the 1969-

84 period, for sediment delivery to gulley headcuts located at the watershed outlets. Reyes 

et al. (2004) found that EPIC and three other models did not satisfactorily simulate runoff 
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and erosion measured near Greensboro, North Carolina, during a 17-month period; how-

ever, no calibration of the models was performed prior to the simulations. Bhuyan et al. 

(2002) found that EPIC and two other models satisfactorily simulated the erosion effects of 

three different tillage systems for a site near Ottawa, Kansas. Schaub, Meier-Zielinski, and 

Goetz (1998) found that the EPIC USLE option was able to generate erosion rates compa-

rable to those observed in three regions of Switzerland, but only after calibration of the 

USLE rainfall erosivity factor (R) was performed. Favis-Mortlock (1998) evaluated EPIC 

and five other models with 73 site-years of runoff and erosion data from seven sites in three 

countries. He concluded that calibration can improve model results, that best results are 

generally obtained for long-term simulations, and that calibrated models are especially ca-

pable of predicting strongly correlated relative results. Average annual erosion rates 

predicted with EPIC by Poudel, Midmore, and West (2000) ranged from 28.1 to 98.3 t/ha 

for rotations of cabbage-tomato-cabbage and tomato-cabbage-tomato, respectively, for 

slopes that spanned 15% to 65% in the Manupali Watershed in northern Mindanao in the 

Philippines. The simulated erosion rates corresponded well with measured values and 

helped support farmer participatory research efforts in the region.  

Crop productivity was assessed by Benson et al. (1989) by simulating annual crop 

production in EPIC for 100 years, for four soils representing the eastern areas of Colo-

rado, Washington, or Iowa, or the Georgia Piedmont region. One key result of their 

analysis was that the potential productivity gain from using conservation tillage in tan-

dem with conservation practices was greater than twice that predicted for conventional 

tillage for three of the four soils. An EPIC assessment was performed by Wingard (1996) 

of typical agricultural cropping systems and practices that were used by the Mayan cul-

ture during the Late Classic Period (A.D. 700-900) in the Copán Valley of Honduras. A 

major finding of the study was that environmental degradation due to soil erosion played 

an important role in the development and collapse of the Mayan civilization in the Copán 

Valley. Hypothetical 100-year scenarios conducted with EPIC for a 1 ha field in the Bal-

degg Watershed in Switzerland indicated that greater crop productivity decline would 

take place if soil erosion were occurring (Schaub, Meier-Zielinski, and Goetz 1998). Jain 

and Dolezal (2000) evaluated water erosion impacts with multiple EPIC erosion options 

for 18 fields located in the 1.42 km2 Cernici Watershed, which lies in the foothills region 
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of Central Bohemia, Czech Republic. Variable results occurred depending on whether the 

USLE, MUSLE, or AOF methods were used. Lee, Phillips, and Liu (1993) assessed the 

impacts of four tillage/cover crop scenarios on soil water erosion in the U.S. Corn Belt by 

performing 100-year EPIC simulations with the MUSLE option for 100 statistically se-

lected NRI points that were cropped in corn or soybeans in 1987. They found that 

increases in conservation tillage would result in substantial decreases in water erosion. 

Lakshminarayan and Babcock (1996) evaluated the effects of soil erosion for the com-

plete set of cropland NRI points in the U.S. 12-state North Central region with 

metamodels that were created from a smaller set of EPIC simulations. They found that 

water erosion was a greater problem than wind erosion for most of the region, that the 

simulated erosion results agreed well with NRI erosion estimates, and that greater adop-

tion of conservation practices would be very cost effective.   

Climate change impacts on soil erosion have also been estimated with EPIC. Favis-

Mortlock et al. (1991) simulated climate change effects represented by 18 scenarios of 

increased temperature, increased or decreased precipitation, and two atmospheric CO2 

levels of 330 or 660 ppm, for a site located in the English South Downs region near 

Brighton, United Kingdom. Soil erosion was predicted to increase up to 64% over base-

line levels because of increased precipitation; this increase declined because of higher 

yields when atmospheric CO2 was simulated at 660 ppm. Slight erosion reductions were 

predicted for some of the scenarios driven by projected decreased rainfall. Further simu-

lations performed by Favis-Mortlock and Boardman (1995) with EPIC for the English 

South Downs indicated that erosion rates would increase at a faster rate in wet years ver-

sus dry years in a future “wetter climate” and that annual erosion would increase 150% in 

response to a 10% increase in precipitation. Soil erosion effects predicted with EPIC by 

Lee, Phillips, and Dodson (1996), using the same framework for the U.S. Corn Belt and 

36 hypothetical climate scenarios reported by Phillips, Lee, and Dodson (1996), included 

the following: (1) soil erosion increased at twice the rate of the precipitation increase; (2) 

water erosion decreased by 3%-5% and wind erosion increased by 15%-18% (and soil 

erosion increased overall) in response to a 2% temperature increase; and (3) water ero-

sion did not change while wind erosion decreased 4%-11% when an increase of 

atmospheric CO2 from 330 to 625 ppmv was factored into the temperature increase sce-
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nario. Díaz et al. (1997) found that there would be little increase in erosion for soils in the 

Rolling Pampas region of Argentina based on EPIC simulations driven by a GCM sce-

nario. Climate change impacts on agricultural production were also evaluated with EPIC 

as reported in Lee, Phillips, and Benson (1999). 

Wind Erosion Validation and Scenario Studies 
Very few validation studies of the EPIC wind erosion model have been performed. 

Potter et al. (1998) tested the EPIC wind erosion model with measured data collected dur-

ing April 1992 near Lethbridge, Alberta. Wind erosion was predicted on each day that 

wind erosion was actually measured and the magnitude of the simulated erosion was 

similar to the measured levels for six of the seven events. Van Pelt et al. (2004) found 

that the EPIC wind erosion equation underpredicted nine events, accurately predicted 

eight events, and overpredicted seven events for 24 wind erosion storms that occurred 

over a seven-year period at Big Springs, Texas. The model tended to underpredict large 

storm events (>10 t/ha) and overpredict small storms.  

Estimation of wind erosion was performed for conditions representative of southwest 

Niger using windspeed data collected at the ICRISAT Sahelian Center, creating crop pa-

rameters for millet, and modifying the EPIC code (with WEQ) and/or input data to 

account for crop wind abrasion and other pertinent local conditions (Michels, Potter, and 

Williams 1997). A 10-year simulation (1984-94) was performed that indicated wind ero-

sion events occurred in the 1980s but not in the first half of the 1990s and that wind 

abrasion damage decreased as plant size increased. Gaiser et al. (2003) have performed 

further research with an older version of EPIC (that used WEQ) that confirmed the need 

to have vegetative cover to prevent soil degradation occurring from wind erosion in Ni-

ger. Izaurralde et al. (1997) estimated wind and water erosion for the agricultural region 

of the Canadian Prairie Provinces (30 million ha) using metamodels developed by 

Lakshminarayan et al. (1996) that were constructed from 22,000 EPIC simulations. Wind 

and water erosion rates were found to be generally consistent with other erosion estimates 

for the region, with wind erosion being more dominant in Manitoba and Saskatchewan 

while water erosion was more important in Alberta. Wang et al. (2002) performed several 

60-year EPIC scenarios for Wuchuan County in Inner Mongolia, China, to determine the 

effects of different crop residue removal strategies on wind erosion. Wind erosion was 
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predicted to decline by up to 60% when crop residue was preserved until zone tillage (al-

ternating 0.5 m strips) was performed. Delays of crop residue removal resulted in 

predicted wind erosion declines of 35% to 46%. 

Soil Carbon Sequestration 
Interest is growing in evaluating and developing agricultural management practices 

that are effective at sequestering carbon in soil to help mitigate atmospheric CO2 levels. 

Several soil organic carbon (SOC) sequestration studies were performed with the original 

EPIC carbon cycling routine, which was simulated in a relatively simplistic fashion as a 

function of soil nitrogen levels. Soil carbon sequestration was estimated with EPIC for the 

previously described studies performed by Lee, Phillips, and Liu (1993) and Lee, Phillips, 

and Dodson (1996) for the U.S. Corn Belt region. Maintaining status quo cropping and 

management practices were predicted in both studies to result in significant declines in fu-

ture soil carbon levels; Lee, Phillips, and Dodson estimated that 50% of the SOC losses 

were due to soil erosion. Lee, Phillips, and Liu found that only increased no-till adoption 

with a winter wheat cover crop would lead to an annual increase in carbon (0.1x106 tons). 

Lee, Phillips, and Dodson further found that hypothetical increases in temperature and pre-

cipitation accelerated SOC losses while increased atmospheric CO2 slowed SOC loss rates. 

The effects of four scenarios (including baseline conditions) on SOC were evaluated by 

Mitchell et al. (1998) with EPIC metamodels for cropland NRI points in the 12-state North 

Central region. All four scenarios were projected to result in SOC declines; limiting soil 

losses to below soil-specific soil loss “T standards” was predicted to result in lower SOC 

loss rates than a 50% increase in conservation tillage adoption. Roloff, de Jong, and Nolin 

(1998b) found that the original EPIC methodology satisfactorily estimated total SOC con-

tent for a long-term spring wheat rotation at Swift Current, Saskatchewan. Campbell et al. 

(2000) used EPIC to estimate SOC reductions by water and wind erosion, as part of an 

overall carbon balance study at Swift Current, Saskatchewan.  

A major revision of the EPIC carbon cycling routine was performed by Izaurralde et 

al. (2001) and Izaurralde et al. (2004) based on concepts used in the Century model (Par-

ton et al. 1994; http://www.nrel.colostate.edu /projects/ century5/reference/index.htm). In 

the revised approach, simulated carbon and nitrogen compounds are stored in either bio-

mass, slow, or passive soil pools. Direct interaction is simulated between these pools and 
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the EPIC soil moisture, temperature, erosion, tillage, soil density, leaching, and transloca-

tion functions. Carbon leaching from surface litter to deeper soil layers and the effect of 

soil texture on organic matter stabilization are also both accounted for in the revised 

code. Initial tests of the improved carbon cycling routine have been performed by  

Izaurralde et al. (2001) and Izaurralde et al. (2004) for five Great Plains sites located in 

Nebraska, Kansas, and Texas, and for a 60-year rotation experiment located near Breton, 

Alberta. It was concluded from these studies that the model satisfactorily replicated the 

soil carbon dynamics over a range of environmental conditions and cropping/vegetation 

and management systems. It was further concluded by Apezteguía, Izaurralde, and 

Sereno (2002) that the revised EPIC carbon cycling routine performed robustly for simu-

lations of deforested conditions, cropping systems, and native vegetation in the Córdoba 

region of Argentina. Simulations performed for Iowa (~12,000 NRI points) by Zhao, 

Kurkalova, and Kling (2004) with the revised EPIC model resulted in an average annual 

SOC rate of 50.6 g/m2 in response to conservation tillage (mulch till and no-till), which 

compares favorably with SOC rates reported by Lal et al. (1998) and West and Post 

(2002) for similar tillage systems. EPIC carbon estimates obtained with the National Nu-

trient Loss Database (NNLD) modeling system (Potter et al. 2004) have also compared 

well with values reported in the literature.  

Economic and Environmental Studies 
As noted previously, Ellis et al. (1993) and Gray et al. (1997) coupled EPIC with the 

FLIPSIM whole-farm model to perform economic analyses of irrigated agriculture in 

Texas. Interfaces between EPIC and economic models have been performed for several 

other studies (Table 4), including a number of economic-environmental analyses. The 

focus of most of these studies was to compare net returns and/or other economic indica-

tors versus erosion, nutrient loss, or other environmental indicators predicted by EPIC, in 

response to alternative cropping systems, management practices, and other scenarios. For 

example, Kurkalova, Kling, and Zhao (2004) estimated the total sequestered carbon and 

nitrogen runoff, water erosion, and wind erosion reductions that would occur in Iowa in 

response to varying rates of conservation tillage adoption; the adoption rates were deter-

mined as a function of 40 different hypothetical budgets ranging from $2 to $80 million 

that could be potentially administered to Iowa farmers through the Conservation Security  
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TABLE 4. Example studies using a combined EPIC-economic analysis approach 

Region/Location 
Economic 
Approach Objective Source 

U.S. Central High Plains  
(125,000 km2 over-
lying the High Plains 
Aquifer)  

Five regional 
mathematical 
programming models  

Evaluate cost and envr. 
impact (on 
groundwater) for 
alternative scenarios 

Bernardo et al. 
(1993) 

Walnut Creek Watershed,  
IA (5,138 ha) 

Crop prices and 
production costs 
(enterprise budgets) 

Assess economic and 
envr. impacts of three 
alternative landscape 
scenarios 

Coiner et al. (2001) 

Argentine Pampa sub-
region (3 rep. farms) 

Three representative farm 
models (profit 
maximizing) 

Economic change effects 
at farm and regional 
levels 

Deybe and Flichman 
(1991) 

Western Lake Erie Basin 
(100 representative 
farms) 

Farm-level integer prog. 
(profit maximizing) 
model 

Assess factors affecting 
relative overall 
efficiency and return 
on assets  

Forster (2002) 

Willamette Valley, OR 
(five representative 
farms) 

Economic optimization 
model of farm-level 
behavior 

Assess responses to 
nutrient and soil 
erosion control policies 

Taylor, Adams, and 
Miller (1992) 

Eastern Corn Belt (two 
representative farms) 

Crop budget analysis plus 
yield estimates from 
EPIC 

Assess econ. and envr. 
multi-attribute rankings 
of different cropping 
systems 

Foltz et al. (1995) 

Hypothetical southwest 
OK irrig. district 
(18,000 ha) 

Linear programming 
model; maximize net 
revenue 

Optimize intra- and inter-
seasonal irrigation 
water allocations 

Evers, Elliott, and 
Stevens (1998) 

Portion of Southern High 
Plains in north TX (2.6 
million ha) 

North and south 
subregion 
mathematical 
programming models 

Evaluate policy 
alternatives designed  
to attain specific water 
quality goals  

Wu et al. (1995) 

Mafraq region of Jordan Whole farm economic 
model (FPPME linear 
programming model) 

Determine sustainable 
dry- land farming 
practices in a low 
rainfall region 

Hughes et al. (1995) 

State of Iowa (12,000 NRI 
database points) 

Discrete-choice adoption 
model 

Estimate multiple 
benefits of practice- 
and performance-based 
policies 

Kurkalova, Kling, 
and Zhao (2004) 

Northern Tunisia (486 ha 
farm) 

Multi-objective 
programming model 
(MOPM) 

Assess econ. and envr. 
effects of reducing N, 
sediment, and other 
pollution 

Mimouni, Zekri, and 
Flichman (2000) 

 
 



Historical Development and Applications of the EPIC and APEX Models / 21 

 

Program of the 2002 U.S. farm bill. Other examples of studies that incorporated both 

EPIC and an economic model are Shankar et al. 2000; Lakshminarayan et al. 1991; Bry-

ant et al. 1993; Bernardo et al. 1993; Foltz, Lee, and Martin 1993; Chang et al. 1994; 

Teague, Bernardo, and Mapp 1995; Kelly, Lu, and Teasdale 1996; Chowdhury and 

Lacewell 1996; Van Dyke et al. 1999; Savard 2000; Rejesus and Hornbaker 1999; 

Pautsch et al. 2001; Feng et al. 2004; and Zhao, Kurkalova, and Kling 2004). 

Comprehensive Regional Assessments 

The EPIC model has been used in a number of large regional applications to evaluate 

the impacts of cropping systems, management practices, and environmental conditions on 

multiple environmental indicators. Many of these studies have been focused on evaluat-

ing specific agricultural policy options, including several efforts performed by 

governmental agencies such as USDA’s Natural Resources Conservation Service 

(NRCS). The first application of EPIC by the NRCS (formerly the Soil Conservation 

Service or SCS) was to evaluate the potential loss in cropland productivity into the future 

for the second RCA. That evaluation initiated a shift in U.S. policy from focusing on the 

on-site productivity losses due to soil erosion to the off-site water quality impacts. EPIC 

has since been used in two ways at the NRCS: (1) stand alone modeling where the model 

is applied and results are used directly in reports; and (2) development of coefficients for 

use in economic models to reflect the differing environmental performance of alternative 

agricultural technologies. One key set of NRCS EPIC applications has been the evalua-

tion of the 1985, 1990, 1996, and 2002 farm bill proposals, which required nationwide 

EPIC per acre erosion, crop yield, and nutrient leaching and runoff estimates in response 

to projected changes in land use, effects of commodity or income subsidies, and the im-

pacts of erosion control practices. The majority of these and other EPIC-based studies 

have been conducted for internal NRCS agency use and many have yet to be published.   

Other comprehensive regional EPIC studies have been performed including those 

listed in Table 5. For example, Bernardos et al. (2001) analyzed agroecological change that 

occurred in the La Pampas region of the Argentine Pampas. Validation was performed by 

comparing EPIC output versus statistical crop yield data, historical soil erosion accounts, 

and experimental hydrologic and N flux data. The model was found to be useful for  
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TABLE 5. Examples of comprehensive regional EPIC studies  
Region/Location Description/Indicators assessed Source  

Portion of Argentine 
Pampas La Pampa 
province (~1 million 
ha) 

Hydrologic balance indicators, crop yields, wind and 
water erosion, N and P cycling and losses 

Bernardos et al. 
(2001) 

Trinity River Basin, Texas 
(~47,000 km2) 

Crop yields, runoff, water erosion, N and P losses in 
runoff and sediment; N leaching 

Chen et al. (2000) 

U.S. Cropland (12 main 
crop) east of the Rocky 
Mountains (~1.2x106 
km2)  

Crop yields, water erosion, N and P losses in runoff 
and on sediment, N leaching 

Potter, Atwood, and 
Goss (2001) 

U.S. Cropland for 16 main 
crops (~1.35x106 km2) 

Thirty indicators including crop yields; hydro. bal. 
indicators; N and P losses in runoff, on sediment, 
and via leaching; oxidized carbon; and soil carbon 

Potter et al. (2004) 

U.S. 12-state North 
Central Region 

Wind and water erosion; soil carbon; N leached and in 
runoff; atrazine leached, volatilized, and in runoff 

Babcock et al. 
(1997), Gassman 
et al. (1998) 

Illinois cropland area 
(represented by 100 
NRI points)  

Crop yields, water erosion, N and P losses in runoff 
and on sediment, N leaching 

Phillips et al. (1993) 

 
 

performing ecological interpretations and assessments. Various software tools have also 

been developed to support regional EPIC studies, such as the interactive EPIC (i_EPIC) 

software package (Gassman et al. 2003a; http://www.public.iastate.edu/~elvis) that has 

been used to support large EPIC simulation sets such as those performed by the NRCS with 

the NNLD system (Potter, Atwood, and Goss 2001; Potter et al. 2004), assessments for the 

Upper Mississippi River Basin (Figure 1) and the larger 12-state North Central region 

(Babcock et al. 1997; Gassman et al. 1998; Kling et al. 2004), and global representative 

farm studies (Figure 2) (Thomson, Izaurralde, and Rosenberg 2002) that will facilitate 

analysis of variations in management, cropping systems, and climate conditions for major 

agricultural production regions across the globe.  

Other Adaptations and Interface Applications 
The incorporation of pesticide fate components from the GLEAMS model into EPIC 

(Table 1) is described in Sabbagh et al. (1991). Applications of EPIC for pesticide 

movement and losses have been performed by Williams, Richardson, and Griggs (1992) 

and Sabbagh et al. (1992). Sabbagh, Bengston, and Fouss (1991); Sabbagh, Fouss, and  
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(a) Baseline aggregate erosion levels   (b) Erosion reductions due to the scenario 

Note: The simulations were performed for approximately 29,000 1997 NRI cropland points within the Up-
per Mississippi River Basin (UMRB), that are presented at an aggregated level for the 131 U.S. Geological 
Survey (USGS) 8-digit watersheds located in the UMRB: (a) quantiles of total soil erosion losses estimated 
for all cropland in each 8-digit watershed, and (b) estimated reduction in total soil erosion losses in re-
sponse to a hypothetical scenario in which roughly 9% of the total 1997 UMRB cropland area was assumed 
shifted to the USDA Conservation Reserve Program (CRP) in combination with increased adoption of con-
servation tillage practices that were assumed to occur on an additional 22% of the 1997 cropland area, that 
was managed with conventional tillage in the baseline (Kling et al. 2004). 

FIGURE 1. Results of EPIC USLE simulations 
 

Bengston (1993) also created EPIC-WT, which included a tile drainage component that 

was based on the approach used in the DRAINMOD model; this modification was never 

adopted in the standard EPIC model. Other adaptations of EPIC and/or interfaces of EPIC 

with other models include (1) a “spatial EPIC” system (Priya and Shibasaki 2001) that 

links geographical information systems (GIS) input for large regional studies (e.g., India) 

and includes an adaptation loop to temporally evaluate management practices; (2) the use 

of EPIC components (or interfaces with EPIC) in the ECOPHYS tree growth process 

model (Host et al. 1996), the Pat-GEM ecosystem model (Binder, Boumans, and  

Costanza 2003), the GPFARM modeling system (Andales, Ahuja, and Peterson 2003), 

and a large watershed N modeling system (Lunn et al. 1996); (3) improvements in cli-

mate inputs (Weiss et al. 2001; Cooter and Dhakhwa 1995); and (4) the use of EPIC in a 

GIS-based decision support system (Rao, Waits, and Neilsen 2000). 
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Source: Thomson, Izaurralde, and Rosenberg 2002. 

FIGURE 2.  Dryland wheat yields estimated with the JGCRI EPIC farm models for 
global baseline climate, soil, and management conditions  
 

Overview of APEX 

The APEX model operates on a daily time step and allows simultaneous simulation 

of multiple subareas for a wide range of soil, landscape, climate, crop rotation, and man-

agement practice combinations. A subarea can be defined as a livestock feeding area, 

crop field, field or buffer strip, or some other portion of a larger watershed or farm. It can 

be applied for whole-farm or small watershed (up to 2,500 km2) analyses and can be used 

for innovative applications, such as filter strip impacts on nutrient losses from manure 

application areas, that require the configuration of at least two subareas. Alternatively, it 

can be run for single fields in the same manner that is allowed in EPIC. The APEX struc-

ture is similar to EPIC and includes the same nine major components as previously 

described. Additional functions included in APEX include routing of flows and pollutant 
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loads between subareas to a watershed outlet and a manure management routine that sup-

ports simulation of liquid waste applications from concentrated animal feeding 

operations’ waste storage ponds or lagoons, and stockpiling of solid manure from feed-

lots or other animal feeding areas and subsequent land application. The latest version of 

APEX has also been updated with the improved carbon cycling routines developed by 

Izaurralde et al. (2001). Further description of the APEX components is given in  

Williams et al. (1995), Williams, Arnold, and Srinivasan (2000), and Williams (2002). 

APEX Applications Within the NPP 
The CEEOT-LP integrated modeling system was developed for the NPP to facilitate 

holistic watershed economic and environmental analyses through a farm-level economic 

model and an environmental component consisting of APEX and the Soil and Water As-

sessment Tool (SWAT) model (Arnold et al. 1998), especially for watersheds with 

intensive livestock production. The environmental component was designed to facilitate a 

wide range of field-scale manure application scenarios coupled with the ability to simu-

late nutrient and sediment movement through an entire watershed. The basic approach is 

to simulate land application of manure at a field scale in APEX, input the edge-of-field 

nutrient loadings in both the solution and sediment phases into SWAT, and then simulate 

the subsequent routing of the nutrient loadings through a stream system and ultimately to 

a watershed outlet. Simulation of fertilizer inputs to cropland or pasture land are also 

simulated in both APEX and SWAT as appropriate. Further description of the overall 

system is given in Osei, Gassman, and Saleh (2000) and Gassman et al. (2002).    

Initial testing and calibration of the APEX model was performed using monitoring 

data collected over periods ranging from 12 to 20 months for eight research plots that 

were located in or near the Upper North Bosque River Watershed (UNBRW) that in-

cluded a range of crop, soil, landscape, and manure management conditions 

representative of the watershed (Flowers, Williams, and Hauck 1996). It was concluded 

that APEX was an appropriate tool for simulating manure management practices associ-

ated with different policy scenarios, given that it replicated the measured runoff, 

sediment, and nutrient losses with reasonable accuracy and that it captured the proper 

relative response of different runoff parameters. Further evaluation and calibration of 

APEX was performed by Gassman (1997) for UNBRW baseline conditions by perform-
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ing separate 30-year simulations for individual manure waste application fields associated 

with all 94 dairies that were present in the watershed at the time of the study. Calibration 

and validation of APEX was also indirectly performed for the UNBRW by executing 

APEX in tandem with SWAT and subsequently comparing the SWAT output with in-

stream flow, sediment, and N and P measurements at the watershed outlet and other up-

stream locations (Saleh et al. 2000). The predicted SWAT flow, sediment, and nutrient 

losses compared favorably with corresponding measured values, indicating that APEX 

simulated losses from the complete set of UMBRW dairy waste application fields with 

adequate accuracy. 

Following calibration, APEX was applied within CEEOT-LP for a suite of manure 

management scenarios (Osei, Gassman, and Saleh 2000) for the UMBRW. Results for 

selected scenarios are reported in Osei et al. (2000), Gassman et al. (2002), and Osei et al. 

(2003b); results for the complete set of simulated scenarios are given in Pratt, Jones, and 

Jones (1997). Edge-of-field APEX results reported in Osei et al. (2000) indicate that 

shifting from N-based to P-based manure application rates or adopting solid manure 

composting would result in aggregate P loss reductions of 14% to 86% at the waste ap-

plication field level. However, aggregate net returns were predicted to decline by 7% to 

30%. Incorporation of manure with a tandem disk on fields double-cropped with sorghum 

and winter wheat was projected by APEX to result in an aggregate 37% reduction of total 

P loss as compared with simulated surface manure applications (Osei et al. 2003b).   

Further applications of APEX within CEEOT-LP have been performed for the Lake 

Fork Reservoir Watershed (LFRW) in northeast Texas, the Upper Maquoketa River Wa-

tershed (UMRW) in northeast Iowa, and the Mineral Creek Watershed (MCW) in eastern 

Iowa. Generic field configurations were developed for dairy farms in the LFRW and sev-

eral different types of livestock farms in the UMRW and MCW in order to perform the 

APEX simulations for each watershed (Osei, Gassman, and Saleh 2000; Gassman et al. 

2002; Gassman et al. 2003b). Only limited calibration of APEX was performed for the 

LFRW and UMRW because of a lack of field- and watershed-level monitoring data at the 

time of the studies (Gassman et al. 2002); calibration data was also lacking for the MCW. 

Stocking density and rotational grazing scenarios were predicted to reduce total P losses 

at the LFRW outlet by 23% to 64% and result in total N loss changes of +1% to -10%, 
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relative to baseline conditions (Gassman et al. 2002; Osei et al. 2003a). No-till, reduced 

fertilizer, and P-based manure application scenarios were predicted to reduce total P and 

N losses at the UMRW outlet by 7% to 32% and 9% to 33%, respectively. Terraces and 

grassed waterways were predicted to have the largest impacts on sediment and nutrient 

load reduction at the MCW outlet. McNitt et al. (1999), Keith et al. (2000), and Gassman 

et al. (2003b) present results for the complete set of the LFRW, UMRW, and MCW sce-

narios, respectively. 

Other APEX Applications 
An APEX validation study was performed by Ramanarayanan et al. (1997) who 

simulated the UNBRW North Fork and Goose Branch subwatersheds (each about 1,500 

ha in size) by subdividing them into 26 and 43 subareas, respectively, and determining 

the dominant land use and soil type in each subarea, including dairy waste application 

fields. The mean simulated runoff volumes, total suspended solids, and nutrient losses 

matched the corresponding measured values well. Monthly flow volumes were also gen-

erally well simulated but correlations between the predicted and observed monthly 

sediment and nutrient loads were relatively weak. In a companion study, Williams et al. 

(1997) performed five 30-year alternative management scenarios in APEX to evaluate 

their effectiveness in reducing sediment and nutrient losses for the Goose Branch sub-

watershed. It was concluded from the simulation results that adopting appropriate 

agronomic practices (e.g., overseeding summer crops with a winter crop) and manure ap-

plication strategies, across the entire watershed, could greatly reduce nutrient losses and 

mitigate the need for a more expensive manure haul-off solution.  

Gassman et al. (2001) compared the results of using a coupled APEX-SWAT approach 

versus SWAT by itself (SWAT-only) for simulating broiler litter applications associated 

with eight broiler operations located in the Duck Creek Watershed (DCW) that drains 

39,000 ha in east central Texas. Both approaches were found to be viable alternatives for 

simulating nutrient movement in the DCW; the most accurate results were obtained for the 

SWAT-only method, which was probably due in part to more extensive calibration efforts. 

Benson et al. (2000) performed an analysis of livestock manure recycling practices, and the 

resulting environmental and economic impacts of adopting such management strategies, by 

interfacing APEX and FLIPSIM for representative broiler farms in the Missouri counties of 
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Newton and McDonald. A scenario in which litter was applied triennially (80 pounds of N 

were applied in years when litter was not applied) to a 200 ac pasture that was grazed 150 

days per year by 300 stock cattle was predicted to provide the greatest farm income and the 

lowest P loss and top 6 inch soil P accumulation.  

APEX has also been applied for herbicide and forestry scenarios. An APEX watershed 

study was performed by Harman, Wang, and Williams (2004), who evaluated alternative 

runoff control practices for atrazine use in corn and sorghum production for the Aquilla 

Watershed that covers almost 66,000 ha in central Texas. The dominant land use and soil 

type were again configured in APEX for each of the 44 subareas delineated for the water-

shed. Constructing sediment ponds, establishing grass filter strips, banding a 25% rate of 

atrazine, and constructing wetlands were found to be the four most effective practices. 

Saleh et al. (2004) applied APEX for an assessment of silvicultural practices on stream-

flow, sediment loads, and nutrient losses for nine small watersheds (2.6 to 2.8 ha in size) 

located in southwest Cherokee County in eastern Texas. Several hydrologic modifications 

were made to the APEX canopy, litter, and soil storage routines to improve the model’s 

ability to replicate forest hydrologic conditions. The performance of APEX was judged to 

be reasonable based on comparisons between predicted and observed storm runoff, peak 

flow rates, and sediment and nutrient losses, especially considering the small magnitude of 

forest pollutant losses relative to agricultural nonpoint source pollution loadings. 

Emerging EPIC and APEX Applications 

The EPIC and APEX models will undoubtedly continue to be used for a wide range 

of studies similar to those described here. Two emerging application domains are (1) cli-

mate change impacts on crop yields, hydrologic balance erosion losses, and other 

pollutant losses; and (2) estimation of SOC levels in response to different cropping sys-

tems, management practices, and environmental conditions. To date, the majority of 

climate change studies have focused only on crop yield impacts with EPIC; future global 

change studies will need to incorporate more complete impact analyses that include a full 

set of environmental indicators as well as yield estimates at both the field and regional 

scale. Global climate change and SOC studies with APEX are also anticipated, especially 

for farm- and watershed-level systems that are dominated by livestock production. Large 

national- or regional-scale APEX applications are being developed, similar to some of the 
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EPIC studies described here. These include an adaptation of the NNLD to support APEX 

buffer strip assessments for U.S. cropland regions and the interface of APEX and FEM 

within the CEEOT macro-modeling system (CEEOT-MMS) by the Texas Institute for 

Applied Environmental Research at Tarleton State University. The CEEOT-MMS has 

already been used for an assessment of manure application practices for animal feeding 

operations for the entire state of Texas (Osei et al. 2004), and future applications of the 

system will be expanded to other U.S. regions and to a wider range of environmental in-

dicators. Other novel applications and adaptations can also be expected to unfold in 

future use of EPIC and APEX, such as the continued work on assessments of ancient 

Mayan agriculture by Hayes and Wingard (2002), who build on the work of Wingard 

(1996) by simulating the effects of “Milpa” (Atran 1993) and other cropping systems in 

EPIC that were likely used by the Mayan people in Belize.   

 

Conclusions 
Both the EPIC and APEX models have proven to be robust tools for simulating the ef-

fects of crop rotation, tillage, and other management practices, climate, soil, and 

topography on crop yields, water and wind erosion, nutrient and pesticide losses, and SOC 

content. The models have been used and adapted for agricultural regions throughout North 

America and in many other regions around the globe, including numerous studies focused 

on the environmental and/or economic impacts of alternative agricultural policies or man-

agement strategies. The results of many studies described here indicate that calibration of 

the models is often required to obtain optimum results, and in some cases revisions of input 

parameters or modifications to the code are required to achieve adequate results or to per-

form desired analyses. The applications reviewed also reveal that EPIC and APEX are most 

effective at simulating the long-term impacts of different cropping systems and manage-

ment practices, and that the models are less accurate at replicating the effects of single 

climatic events on erosion and other losses or interannual variability between crop yields 

and pollutant losses. Ongoing research is needed to improve the prediction capabilities of 

both models, including the ability to capture yield variability and other effects that are not 

well simulated by the current versions of the models.
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