Groundwater Availability Modeling Des Moines River Aquifer Palo Alto and Emmet Counties, Iowa

Iowa Geological and Water Survey Water Resources Investigation Report No. 4

Iowa Department of Natural Resources Roger L. Lande, Director

COVER

Central pivot irrigation sprinkler. Photo from http://water.usgs.gov/ogw/gwrp/images/photos/cent_pivot_corn1.jpg

Printed in-house on recycled paper.

Groundwater Availability Modeling Des Moines River Aquifer Palo Alto and Emmet Counties, Iowa

Iowa Geological and Water Survey Water Resources Investigation Report No. 4

Prepared by

J. Michael Gannon, Hydrogeologist

May 2011

Iowa Department of Natural Resources Roger L. Lande, Director

TABLE OF CONTENTS

EXECUTIVE SUMMARY	v
INTRODUCTION	1
CLIMATE	1
SURFACE WATER	2
GEOLOGY	3
HYDROGEOLOGY . Public Wells . Irrigation Wells . Aquifer Test Results .	4 5 5 5
GROUNDWATER MODELING	9 11 12
RESULTS	13
CONCLUSIONS	19
ACKNOWLEDGEMENTS	22
REFERENCES	23
APPENDIX A. AQUIFER PUMP TEST DATA	25

LIST OF FIGURES

Figure 1. Extent of Des Moines River aquifer study area in Palo Alto and Emmet counties	1
Figure 2. Iowa Lakes Regional Water (ILRW) Osgood Wellfield in Palo Alto and Emmet counties.	2
Figure 3. Average daily streamflow at USGS gaging station at Humboldt (1965 through 2010) in Humboldt County.	3
Figure 4. Isopach (thickness) map of the West Des Moines River aquifer and its tributaries.	4
Figure 5. Locations of irrigation wells in study area.	7
Figure 6. Distribution of specific capacity and pump tests in study area.	8
Figure 7. Horizontal hydraulic conductivity distribution within active model area based on data found in tables 5 and 6.	10
Figure 8. Simulated water table elevation map for non-pumping conditions.	11
Figure 9. Graettinger Well 7 pump test simulation results.	12
Figure 10. Emmetsburg Well 7 pump test simulation results.	13
Figure 11. ILRW Test Well P-2B pump test simulation results.	14
Figure 12. ILRW Test Well P-13A pump test simulation results.	15
Figure 13. Simulated drawdown map for ILRW north wellfield (Well 6) for normal rainfall conditions (8.5 inches of recharge).	16
Figure 14. Simulated drawdown map for ILRW south wellfield (wells 1 through 5) for normal rainfall conditions (8.5 inches of recharge).	17
Figure 15. Simulated drawdown map for ILRW north wellfield (Well 6) for a moderate drought (6 inches of recharge).	18
Figure 16. Simulated drawdown map for ILRW south wellfield (wells 1 through 5) for a moderate drought (6 inches of recharge).	19
Figure 17. Simulated drawdown map for ILRW north wellfield (Well 6) for a severe drought (4 inches of recharge).	20
Figure 18. Simulated drawdown map for ILRW south wellfield (wells 1 through 5) for a severe drought (4 inches of recharge).	21

LIST OF TABLES

Table 1. Historical minimum and maximum monthly precipitation (inches) in select locations in northwest Iowa (IDALS, 2010).	2
Table 2. Average static water levels for irrigation wells located in study area and corresponding model simulated results.	6
Table 3. Total annual water use permitted in study area.	6
Table 4. Annual water use by permit from 2000 through 2009.	7
Table 5. Aquifer pump test results for wells open in the Des Moines River aquifer (methods based on Freeze and Cherry, 1979).	8
Table 6. Specific capacity test results for wells open in the West Des Moines aquifer based on IDNR Source Water Database.	9
Table 7. Observed drawdown versus model simulated drawdown for aquifer pump tests.	15
Table 8. Simulated drawdown for various drought scenarios near ILRW wellfields.	17

EXECUTIVE SUMMARY

Increased demands for groundwater by agriculture, industries, and municipalities have raised concerns about the future availability of groundwater in Iowa. In 2007, the Iowa Legislature began funding a comprehensive Water Resources Management program to be implemented by the Iowa Department of Natural Resources. A key aspect of the program is to evaluate and quantify the groundwater resources across the state using computer simulation models. These models help answer questions such as: "How much water can be pumped from an aquifer over 10, 20, or 100 years?" or "Will my well go dry?"

A hydrogeologic study was initiated to more fully understand the shallow groundwater resources in the West Fork of the Des Moines River alluvial aquifer (Des Moines River aquifer). The primary objective of this study was to evaluate the potential impact of the new Iowa Lakes Regional Water wellfield near Osgood (Osgood wellfield, Palo Alto County) on the nearby irrigation wells. A computer simulation model of the Des Moines River aquifer was created using Visual MODFLOW version 2010.1. The model predicts future well interference, drawdown, and maximum sustainable pumping rates.

The groundwater flow model for the proposed Osgood wellfield involved six new public wells with an annual permitted water use of 539 million gallons per year (mgy). The Osgood wellfield is divided into a north wellfield (proposed Well 6) and south wellfield (proposed wells 1 through 5). A total of 14 irrigation water use permits (24 known irrigation wells) and two existing public water use permits (City of Emmetsburg and City of Graettinger) are located in the model area with permitted water use totaling 1.15 billion gallons per year. Worst-case historical drought conditions based on the 1958 drought were simulated, and the impact of the new Osgood wellfield on the nearby irrigation wells was evaluated. Maximum additional drawdowns in the nearby irrigation wells caused by the pumping of the Osgood wellfield ranged from 4.2 feet to 5.8 feet in the south wellfield, and 0.4 to 0.7 feet in the north wellfield.

Based on the mass balance calculations in Visual MODFLOW, the percentage of water production supplied by the Des Moines River and Jack Creek (induced recharge) increased from 10.9 percent during normal rainfall conditions to 58.4 percent during a severe drought. The increase in induced recharge prevents much higher drawdowns in both the irrigation wells and the Osgood wellfield wells. Without the recharge from the Des Moines River and Jack Creek, a severe drought would significantly reduce the water production in the area wells.

Based on the model results, adequate water resources are available to meet the current and future water withdrawals in the Des Moines River aquifer. Adjustments in pumping cycles and rotating active and inactive wells may be necessary during a severe drought. The irrigation wells may need to pump during the night when water demand is lower for the Osgood wellfield, or Iowa Lakes Regional Water may want to pump additional water from the north wellfield (Well 6) to reduce the pumping stress on the south wellfield (wells 1 through 5). Cooperation would be necessary for both Iowa Lakes Regional Water and the irrigators. This proactive approach can be a useful planning tool during a severe drought. The model can also be used to evaluate the maximum sustainable withdrawal from the area, and to potentially limit new water use permits and prevent over-allocation of the groundwater resources.

INTRODUCTION

This report evaluates the groundwater resources in the alluvial aquifer located along the West Fork of the Des Moines River, Palo Alto County, Iowa, from just north of Graettinger to south of Emmetsburg (Figure 1). For the purposes of this summary report, the alluvial aquifer will be referred to as the Des Moines River aquifer. Current water users include the City of Graettinger, City of Emmetsburg, Hillcrest Golf and County Club in Graettinger, and approximately 24 irrigation wells.

The primary objective of this study was to evaluate the potential impact of the proposed Iowa Lakes Regional Water (ILRW) wellfield (figures 1 and 2) near Osgood (Osgood wellfield, Palo Alto County) on the nearby irrigation wells. Iowa Lakes Regional Water has proposed adding six production wells in two general wellfield areas in the Des Moines River aquifer. Proposed ILRW wells 1 through 5 will be installed in the south wellfield, and proposed ILRW Well 6 will be installed in the north wellfield.

CLIMATE

The climate of northwest Iowa is classified as sub-humid. The average annual precipitation in Palo Alto and Emmet counties ranges from 30 to 32 inches per year (IDALS, 2010). Approximately 18 to 20 inches of precipitation occur from April through October.

Northwest Iowa has historically experi-

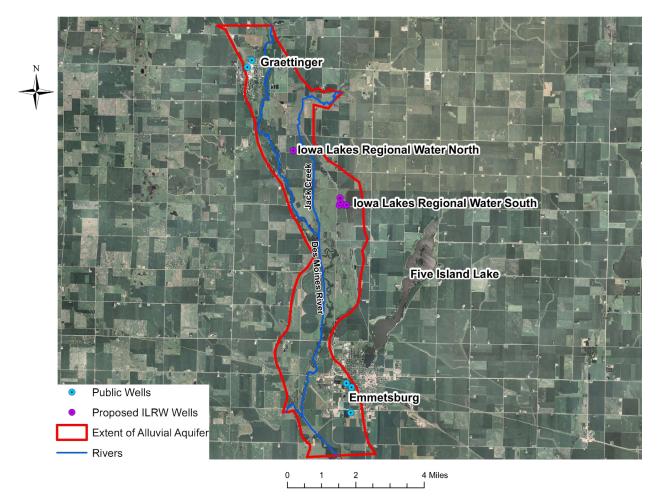


Figure 1. Extent of Des Moines River aquifer study area in Palo Alto and Emmet counties.

enced moderate to severe droughts. Table 1 shows the minimum annual precipitation amounts for a select number of cities in northwest Iowa (IDALS, 2010). These minimum annual precipitation amounts range from 13.90 inches in Storm Lake (Buena Vista County) to 15.41 inches in Sheldon (O'Brien County). The minimum annual precipitation for Emmetsburg was 15.20 inches in 1958, which is approximately 50 percent of the normal precipitation.

SURFACE WATER

Drainage in the study area is toward the West Fork of the Des Moines River (Figure

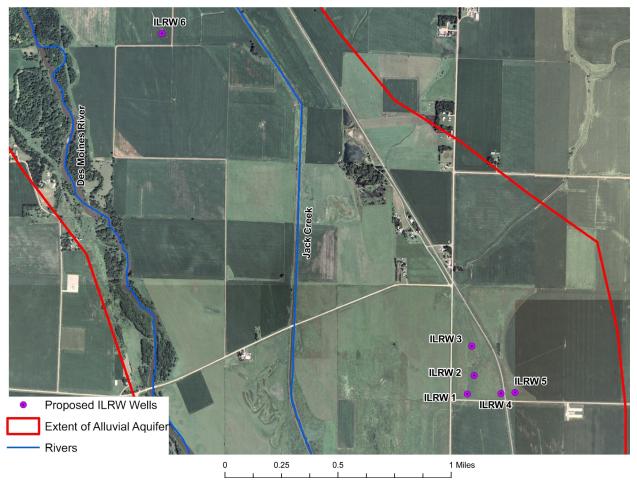


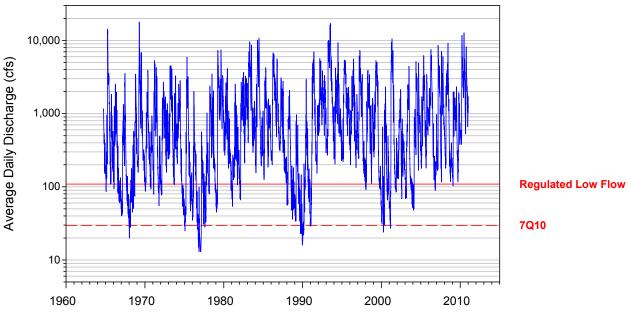
Figure 2. Iowa Lakes Regional Water (ILRW) Osgood Wellfield in Palo Alto and Emmet counties.

Table 1. Historical minimum and maximum monthly precipitation (inches) in select locations in northwest

 Iowa (IDALS, 2010).

Location	County	Minimum Inches (year)	Maximum Inches (year)
Emmetsburg	Palo Alto	15.20 (1958)	45.15 (1993)
Estherville	Emmet	15.10 (1897)	45.04 (1993)
Spencer	Clay	14.41 (1958)	42.51 (1951)
Sheldon	O'Brien	15.41 (1958)	46.02 (1951)
Storm Lake	Buena Vista	13.90 (1976)	45.94 (1951)

1). Jack Creek is a major tributary that flows between the ILRW north and south wellfields, and discharges into the Des Moines River southwest of the south wellfield. Jack Creek may be a major source of recharge to the alluvial aquifer when its stage is high or during periods of high water use.


Figure 3 shows the average daily streamflow in the West Fork of the Des Moines River at the United States Geological Survey (USGS) gaging station near Humboldt, Iowa. The Humboldt gaging station is the closest gaging station that records streamflow data and is approximately 35 miles downstream of Emmetsburg. The lowest average daily flow was 13 cubic feet per second (cfs) from January 12 through February 2, 1977. In general, the lowest average daily streamflows occur during the winter months. The lowest nonwinter average daily flow was 30 cfs on May 17, 2000. This was followed by an average daily flow of 1,110 cfs three days later.

A USGS gaging station exists south of Emmetsburg, but only has stage data from 2009 and 2010. Because of the lack of streamflow and historic data, the hydrologic information from this gage has little value to this study.

GEOLOGY

The thickness of alluvial deposits along the West Fork of the Des Moines River varies from 6 to over 50 feet, but averages approximately 20 feet (Thompson, 1984). The alluvial deposits are not uniform or homogeneous, but vary from coarse sand and gravel to cobbles and boulders. The yields that can be expected in wells screened in these sediments depend on the thickness of alluvium, the grain size or texture, and interconnectedness of the various sand and gravel units.

The Des Moines River aquifer consists of sand and gravel deposited by the modern river system and is highly variable in both thickness and grain size. Cobble and boulder zones are found near Graettinger and in isolated areas throughout the aquifer. Tremendous well yields are produced in these cobble zones (Thompson, 1984). The sand and gravel thickness of the Des Moines River

Figure 3. Average daily streamflow at USGS gaging station at Humboldt (1965 through 2010) in Humboldt County.

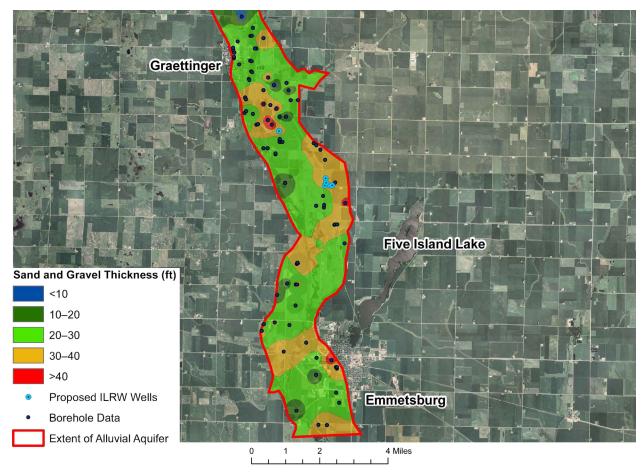


Figure 4. Isopach (thickness) map of the West Des Moines River aquifer and its tributaries.

aquifer (Figure 4) is based on existing data from 82 striplogs and drillers' logs. The sand and gravel is overlain by fine-grained sediments consisting of silt and silty sand that range in thickness from 2 to 6 feet. The Des Moines River aquifer is underlain by glacial till throughout the study area.

HYDROGEOLOGY

Regional groundwater flow is directed toward the Des Moines River and Jack Creek in a general southerly direction. The hydraulic gradient is similar to the land surface topography in most locations. During most of the year the Des Moines River is a gaining stream. Exceptions to this occur during high river stage when temporary bank storage may cause a transient reversal in flow direction, and near high capacity wells where pumping stress may reverse the groundwater flow direction, which creates induced recharge from the river into the aquifer. Groundwater recharge sources are precipitation, induced recharge from surface water, and seepage from glacial drift and terraces along the valley wall.

Groundwater levels from many of the irrigation wells are found in the IDNR water use database. Table 2 displays the average groundwater elevation from 2001 to 2009 measured in 10 irrigation wells. An average groundwater elevation was used because of the uncertainty as to when these water level measurements were taken.

Measuring the groundwater recharge

based on annual precipitation data is difficult. In northwest Iowa, much of the groundwater recharge occurs in the spring and fall. The actual amount of groundwater recharge depends on the intensity and distribution of the precipitation events and when they occur seasonally. Based on previous modeling conducted by the Iowa Geological and Water Survey in Garfield Township in Sioux County, Iowa, 4 inches of annual groundwater recharge would represent a severe drought (Gannon, 2006). This was approximately one-half the calibrated normal recharge (8.5 inches).

Based on a surface area of approximately 22.9 square miles, an average saturated aquifer thickness of 20 feet, and an effective porosity of 25%, approximately 23.9 billion gallons of groundwater is stored in the Des Moines River aquifer. Based on an average recharge of 8.5 inches per year, approximately 3.4 billion gallons of water recharges the aquifer directly as precipitation. Based on a severe drought recharge of 4 inches per year, approximately 1.6 billion gallons of water recharges the aquifer. The actual amount of induced recharge from the Des Moines River and Jack Creek was calculated using Visual MODFLOW version 2010.1 (Schlumberger Water Services, 2010) and will be discussed later in the report. Total current permitted water use for the study area not including the ILRW permit is 1.19 billion gallons per year (bgy), which is less than the drought recharge of 1.6 bgy. Adding the ILRW permit brings the total to 1.7 bgy, which exceeds the recharge amount. The volume of recharge provided by the Des Moines River and Jack Creek is unknown, but would significantly add to the recharge total in the aquifer. The other important water balance consideration is the impact caused by local pumping stress, which is much different than the aquifer average water balance. The application of a calibrated groundwater flow model will help evaluate the local water balance concerns and will be discussed later in the groundwater modeling section of this report.

Public Wells

Two public water supplies are found within the model area. They include the City of Graettinger, which has two active alluvial wells (wells 4 and 7), and the City of Emmetsburg, which has 4 active alluvial wells (wells 1, 4, 5, and 7). Emmetsburg also has two wells screened in the Dakota sandstone aquifer (wells 6 and 8). The location of the public wells within the aquifer is shown in Figure 1. Total permitted annual water use is shown in Table 3.

Figures 1 and 2 show the location of the proposed north and south ILRW wellfields. Based on the information found in several on-site drillers' logs, these wells may vary in depth from 38 to 40 feet. The stratigraphy consists of several feet of topsoil overlying sand and gravel. The logs also indicate several cobble or boulder zones, which are probably the zones of highest production.

Irrigation Wells

A large percentage of the land use in the study area is in row crop agriculture. Much of the corn acreage is irrigated due to the sandy soil in the valley. Twenty-four (24) known irrigation wells were identified in the model area (Figure 5). Annual irrigation rates were obtained from the IDNR water use database from 2000 through 2009 and are listed in Table 4. The actual pumping rate per well is unknown, and the withdrawal per well is the average based on the total usage divided by the number of known irrigation wells.

Aquifer Test Results

Hydraulic properties are used to define

 Table 2. Average static water levels for irrigation wells located in study area and corresponding model simulated results.

	Total Well	UTM X	UTM Y	Observed	Range in Observed	Simulated
Irrigation Well Owner	Depth (ft)	Coord.	Coord.	Head Elev. (ft)	Head (ft)	Head Elev. (ft)
William W. Frevert	45	361356	4775069	1,195.89	1,193.89 to 1,196.89	1,196.61
Hajas Farm 2	41	360648	4777090	1,201.96	1,201.96	1,200.87
Soper Farms (south)	40	362892	4780806	1,210.39	1,209.39 to 1,211.39	1,207.89
Herke Farms	50	362171	4782399	1,211.04	1,211.04	1,209.14
Dale Opheim	45	362778	4783008	1,211.21	1,211.21	1,209.89
Soper Farms (north)	40	359998	4784747	1,210.62	1,209.62 to 1,211.62	1,212.03
Doug Herke	55	359596	4785524	1,211.83	1,211.83 to 1,212.83	1,213.60
Richard Herke	58	360195	4785356	1,215.34	1,214.84 to 1,218.34	1,213.57
John and Dale Hoffman	60	359198	4786562	1,216.65	1,214.65 to 1,218.65	1,215.54
Hillcrest Golf and Country Club	33	358005	4787953	1,229.21	1,229.21	1,228.85

Table 3. Total annual water use permitted in study area.

Water Use Permit	Permited Water Use (mgy) ₁
William W. Frevert	54.4
Richard Nelson	106.9
Soper Farms (south)	32.6
Herke Farms	104.3
Dale Opheim (south)	68.4
Don Peterson (may be outside model area)	50.5
Soper Farms (north)	52.1
Richard Herke	34.2
Doug Herke	65.2
Douglas Herke	13
John and Dale Hoffman	208.5
Hillcrest Golf and Country Club	21.2
Dale Opheim (north)	22.8
Alice Torreson Trust	19.6
City of Graettinger	50
City of Emmetsburg	250 (1/2 of total from alluvial aquifer)
Iowa Lakes Regional Water	539
Total	1,693
₁ mgy = million gallons per year	

and characterize aquifers and include specific yield or storage, transmissivity, and hydraulic conductivity. The most reliable aquifer properties are those obtained from controlled aquifer tests with known pumping rates, pumping duration, accurate well locations, and accurate water level measurements. Three existing and two new aquifer pump tests were conducted in the Des Moines River aquifer. The existing data were obtained from DeWild Grant Reckert and Associates from both the proposed north (Well P-2B) and south (Well P-13A) ILRW wellfields, and from a pump test conducted by the Iowa Geological Survey near Osgood (Thompson, 1984). The new aquifer tests were conducted by the IDNR in October of 2010 at Graettinger Well 7 and Emmetsburg Well 7 (Figure 6).

In addition to the aquifer pump tests, a total of 19 specific capacity tests were made available by various consultants, well drillers, and communities. The distribution of these tests is shown in Figure 6. Tables 5 and 6 list the pump test results and the specific capacity

Figure 5. Locations of irrigation wells in study area.

	2000 Water	2001 Water	2002 Water	2003 Water	2004 Water	2005 Water	2006 Water	2007 Water	2008 Water	2009 Water
Water Use Permit	Use (mgy) ₁	Use (mgy)₁								
William W. Frevert	9.3	15.9	18.5	19.3	9.9	7.5	11.9	11.7	7.9	9.7
Hajas Farm ₂	0.0	8.3	31.9	41.0	20.0	33.3	NA	NA	NA	NA
Richard Nelson	48.9	54.1	63.0	63.0	38.1	43.4	59.8	38.0	48.9	48.9
Soper Farms (south)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.4	1.0
Herke Farms	15.1	12.8	28.9	29.8	11.9	12.8	12.6	11.9	8.2	7.0
Dale Opheim (south)	10.4	9.3	8.2	9.1	9.9	7.5	1.0	5.0	5.5	4.0
Don Peterson	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Soper Farms (north)	7.8	3.1	7.1	3.0	2.6	2.0	7.3	7.3	6.9	6.7
Richard Herke	27.6	5.2	12.5	22.0	9.7	10.3	11.3	14.4	13.5	16.5
Doug Herke	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.2	5.8
Douglas Herke	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.9	2.9	1.3
John and Dale Hoffman	24.8	29.7	0.0	0.0	23.1	29.0	42.7	29.2	31.0	27.9
Hillcrest Golf and Country Club	15.4	0.0	13.5	14.0	9.6	23.1	12.6	17.5	17.4	7.6
Dale Opheim (north)	6.9	2.1	2.4	3.3	6.0	7.2	20.6	5.0	5.5	1.8
Alice Torreson Trust	52.5	7.4	10.5	10.5	14.9	8.3	9.4	11.7	13.1	14.5
City of Graettinger	30.0	31.1	28.8	28.1	29.8	30.2	34.1	37.4	31.9	26.9
City of Emmetsburg ₃	125.0	123.0	118.0	118.0	118.2	112.0	119.0	107.0	108.0	107.0
Total	374	302	343	361	304	327	342	298	305	287
₁ mgy=million gallions per year										
2 Hajas Farm Permit is no longer active										
3 Approximately 1/2 of Emmetsburg usa	ge is from the all	ıvial aquifer								

Table 4. Annual water use by permit from 2000 through 2009.

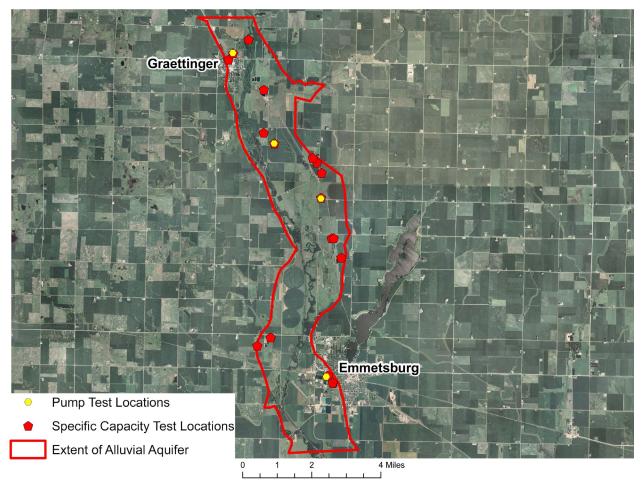


Figure 6. Distribution of specific capacity and pump tests in study area.

Table 5. Aquifer pump test results for wells open in the Des Moines River aquifer (methods based on Freeze and Cherry, 1979).

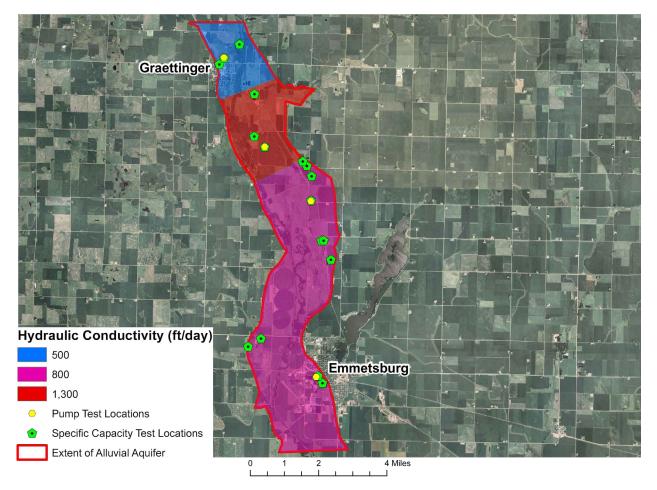
Location	Aquifer Thickness (ft)	Transmissivity (ft²/day)	Hydraulic Conductivity (ft/day)	Storage Coefficient	Method	
Graettinger Well 7	17	10,010	593	0.017	Neuman	
Emmetsburg Well 7 (north)	50	49,500	990	0.5	Neuman	
Emmetsburg Well 7 (west)	50	54,600	1090	0.5	Neuman	
ILRW P-2B (OW47) _a	29	36,600	1260	0.5	Neuman	
ILRW P-13A (OW32W) _a	27	15,100	561	0.5	Neuman	
ILRW P-13A (OW200S) _a	27	18,800	698	0.2	Boulton	
WD6 _b	27	40,100 to 73,500	1,490 to 2,720	0.0005 to 0.2	Theis	
aData provided by Layne Christensen bResults obtained from Thompson (1984)						

results for each test, the method of analyses, transmissivity values, aquifer thickness, hydraulic conductivity values, storativity values (aquifer pump test results only), and who collected the data. Original data and graphs of the test results are shown in Appendix A.

Based on aquifer test results, the tranmissivity of the Des Moines River aquifer was found to range from 10,100 feet²/day at Graettinger Well 7 to 54,600 feet²/day at Emmetsburg Well 7 (west observation well). The arithmetic mean transmissivity value is 30,770 feet²/day. The relatively high transmissivity values are the result of cobble and boulder zones found near the base of the alluvial aquifer. These zones were encountered at all four pump test locations.

Hydraulic conductivity can be calculated by dividing the transmissivity by the overall aquifer thickness. Hydraulic conductivity was found to range from 593 to 1,260 feet/ day, with an arithmetic mean of 865 feet/day. The regional horizontal hydraulic conductivity distribution, which is based on data found in tables 5 and 6, is shown in Figure 7.

GROUNDWATER MODELING


Visual MODFLOW version 2010.1 was used to simulate the groundwater flow in the alluvial aquifer in the study area. A three-layered model was used for the simulation. The bottom of the sand and gravel unit at each irrigation well was assumed to be the bottom of each well. The borehole logs were obtained from the GEOSAM database, and the elevation data was obtained from LiDAR (2foot contour interval). The model boundary conditions and inputs include the following:

• Layer 1 varies in thickness from 1 foot to 5 feet and is primarily silty sand. The horizontal hydraulic conductivity was assigned a value of 10 feet/day. The vertical hydraulic conductivity value was assigned

Table 6. Specific capacity test results for wells open in the West Des Moines aquifer based on IDNR Source

 Water Database.

				Discharge	Drawdown	Specific	Transmissivity	Aquifer	Hydraulic
W-Number	UTM X	UTM Y	Well Owner	(gpm)₁	(ft)	Capacity	(ft²/day)	Thickness (ft)	Conductivity (ft/day)
33749	362624	4774076	City of Emmetsburg	1,007	49	21	4,200	30	142
39710	362608	4774096	City of Emmetsburg	600	10	60	12,000	39	308
62018	362392	4774431	City of Emmetsburg	600	8	78	15,600	56	279
62024	362392	4774431	City of Emmetsburg	600	27	22	4,400	36	123
53270	359100	4775815	Ray Hoffert	25	18	1	280	33	9
53264	359713	4776201	Darrin Adams	40	21	2	400	33	12
53269	363004	4779921	Richard Nelson	20	12	2	333	23	15
42710	362559	4780814	Soper Farms	300	2	150	30,000	33	915
42711	362660	4780816	Soper Farms	300	2	150	30,000	33	915
63041	362066	4782707	Iowa Lakes Rural Water	880	9	98	19,600	33	594
44078	362095	4783861	Donald E Peterson	950	10	95	19,000	30	644
45098	361872	4784341	Dale Wilcoxin	15	1	15	3,000	36	83
47167	361679	4784552	Steve & Jill Aldous	25	4	6	1,250	23	54
63042	359887	4785233	Iowa Lakes Rural Water	629	6	101	20,200	39	505
42038	359392	4785733	Richard Herke	1,000	30	34	680	46	147
44191	359404	4787736	John Studer	550	4	138	27,500	33	833
39988	357750	4789137	City of Graettinger	288	4	82	16,500	30	557
60838	357973	4789433	City of Graettinger	250	4	623	12,500	23	543
10759	358694	4790080	Clarence Wickert	9	6	2	300	26	11
₁ gpm=gallor	ns per minu	ıte							

Figure 7. Horizontal hydraulic conductivity distribution within active model area based on data found in tables 5 and 6.

a value 1/10 of the horizontal hydraulic conductivity.

- Layer 2 is the sand and gravel of the Des Moines River aquifer. The horizontal hydraulic conductivity was calibrated within the model and is shown in Figure 7. The vertical hydraulic conductivity value was assigned a value 1/10 of the horizontal hydraulic conductivity.
- Layer 3 is primarily silty clay (glacial till). The horizontal hydraulic conductivity was assigned a value of 0.03 feet/day. The vertical hydraulic conductivity value was assigned a value 1/10 of the horizontal hydraulic conductivity.
- The uplands to the west and east were considered no-flow boundaries. This was

represented by de-activating the grids outside the alluvial aquifer boundary. This was estimated using NRCS soils data and LiDAR elevation data.

- The West Fork of the Des Moines River and Jack Creek were represented as river boundaries. The surface water elevations were estimated using LiDAR data. A water level depth of 3 feet was used. The vertical conductivity of the streambed was estimated at 1/10 the average horizontal conductivity of the alluvial aquifer (87 ft/day). The model represented baseflow (summer) conditions, and the stage was kept the same throughout the simulated time period.
- A general head boundary was used to the

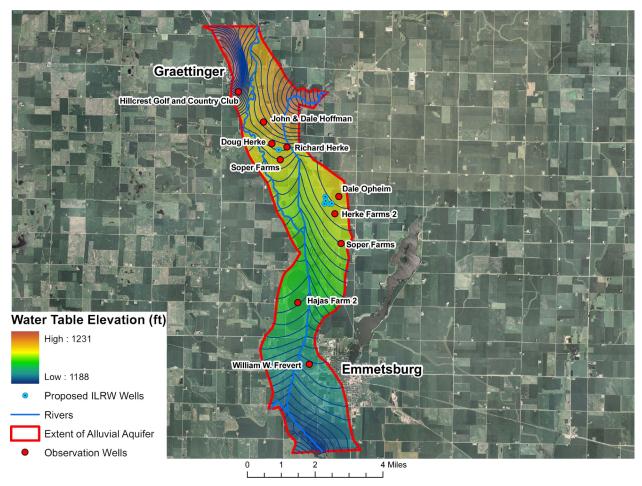


Figure 8. Simulated water table elevation map for non-pumping conditions.

north of Graettinger and to the south of Emmetsburg to represent flow-through conditions. These general head values were estimated from nearby observation well data.

- The City of Graettinger and City of Emmetsburg's wells were included. Annual usage was obtained from the IDNR water use database for years 2000 through 2009 (Table 4).
- A total of 24 irrigation wells were used in the model. The pumping rates were obtained from the IDNR water use database and are shown in Table 4.
- An average specific yield value of 0.4 was used.
- Average annual recharge was calibrated to

be 8.5 inches per year. Drought conditions were simulated using recharge values of 6 and 4 inches, respectively.

• The total number of rows and columns were 500 by 360. The grid size varied from 5 feet to 100 feet.

Calibration Results

The model was initially run to simulate non-pumping conditions. The model was calibrated using the irrigation well groundwater elevations as reported to the IDNR in the water use database. Table 2 compares simulated values to observed water levels. Figure 8 shows the simulated water table map. The overall error was +0.61 feet for the ten obser-

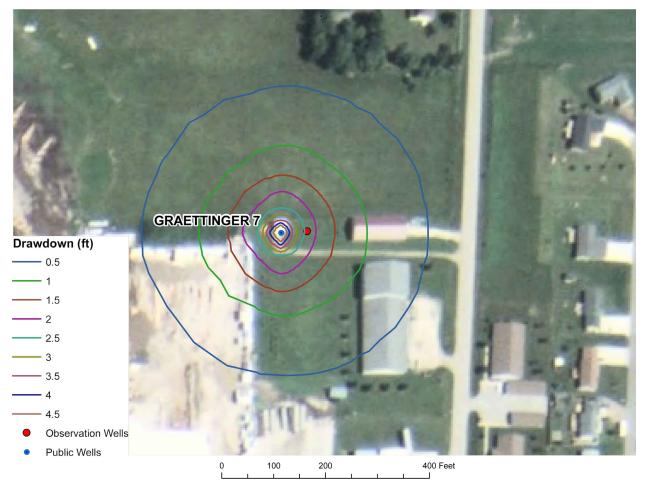


Figure 9. Graettinger Well 7 pump test simulation results.

vation wells.

Local scale calibration was performed using pump test results from Graettinger Well 7, Emmetsburg Well 7, ILRW north wellfield (Test Well P-2B), and ILRW south wellfield (Test Well P-13A). Hydraulic conductivity and specific yield values were adjusted to match the simulated water levels to the observed values. Figures 9, 10, 11, and 12 show the simulated drawdown values. The simulated versus observed groundwater elevations are shown in Table 7.

MODFLOW Simulations

Following the calibration of the model, several simulations were conducted using the

proposed ILRW wells, City of Graettinger wells, City of Emmetsburg wells, and the 24 irrigation wells. The pumping rates for the irrigation wells were the maximum historical seasonal withdrawals listed in Table 4. Figure 5 shows the approximate locations of each well. The following simulations were conducted:

Simulation 1 Normal Precipitation

- Recharge: 8.5 inches per year (normal recharge)
- Emmetsburg wellfield usage based on Table 4
- Graettinger wellfield usage based on Table 4
- Proposed ILRW wellfield summer

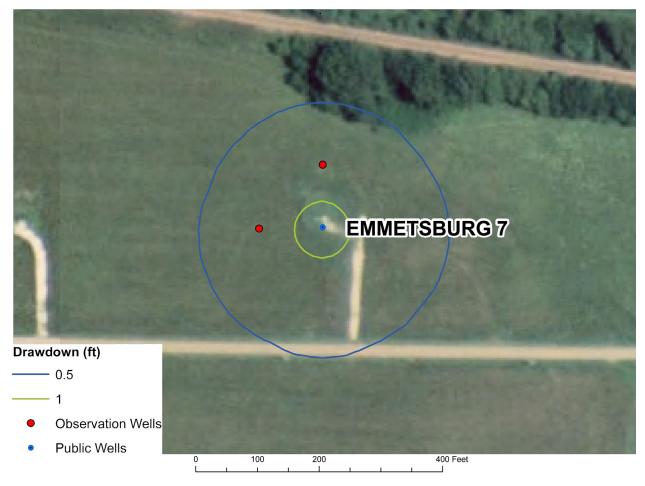


Figure 10. Emmetsburg Well 7 pump test simulation results.

usage 2,100 gpm

• 60-day transient irrigation season, maximum pumping rates based on Table 4

Simulation 2 Moderate Drought Conditions

- Recharge: 6 inches per year
- Emmetsburg wellfield usage based on Table 4
- Graettinger wellfield usage based on Table 4
- Proposed ILRW wellfield summer usage 2,100 gpm
- 60-day transient irrigation season, maximum pumping rates based on Table 4

Simulation 3 Severe Drought Conditions

• Recharge: 4 inches per year

- Emmetsburg wellfield usage based on Table 4
- Graettinger wellfield usage based on Table 4
- Proposed ILRW wellfield summer usage 2,100 gpm
- 60-day transient irrigation season, maximum pumping rates based on Table 4

RESULTS

Simulation 1 Normal Precipitation

The first simulation was conducted using an average rainfall of 30 to 32 inches per year and a calibrated average recharge of 8.5 inches per year. The maximum total simulated summer drawdown near the proposed ILRW north and south wellfields ranged from 8 to

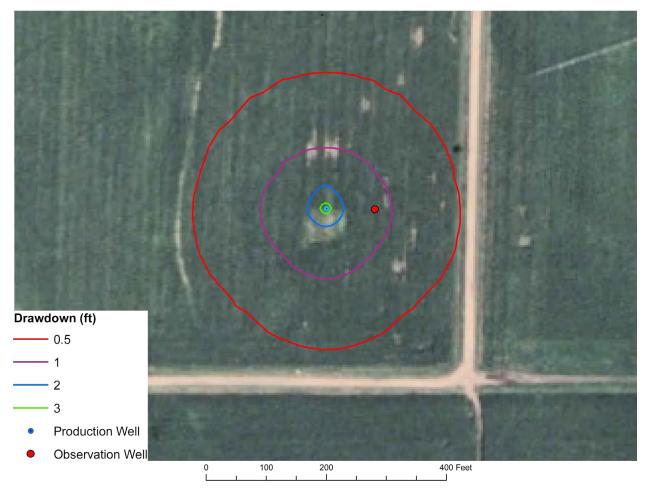


Figure 11. ILRW Test Well P-2B pump test simulation results.

10 feet, and the additional drawdown caused by the pumping of the proposed ILRW north and south wellfields is shown in figures 13 and 14.

Table 8 shows the simulated additional drawdown at each irrigation well caused by the ILRW wells. The additional drawdown caused by the pumping of the proposed south ILRW wells ranges from 2.7 feet in Herke Farm's Well 1, to 4.1 feet in the Dale Orpheim well and Herke Farms Well 3. This additional drawdown may slightly reduce the daily pumping time for the irrigation wells and the total daily production, but both the irrigators and ILRW should meet their water needs.

The additional drawdown caused by the

pumping of the proposed north ILRW Well 6 ranges from 0.2 feet in the Soper Farms well, to 0.6 feet in the Doug Herke well. This additional drawdown would not significantly alter the daily pumping of the irrigation wells or the total daily production.

Based on the mass balance calculations from Visual MODFLOW, the percentage of water production supplied by the Des Moines River and Jack Creek (induced recharge) was 10.1 percent. The remaining 89.9 percent of the water production is supplied by precipitation recharge.

Simulation 2 Moderate Drought Conditions

The second simulation was conducted using an average rainfall of 20 to 22 inches per

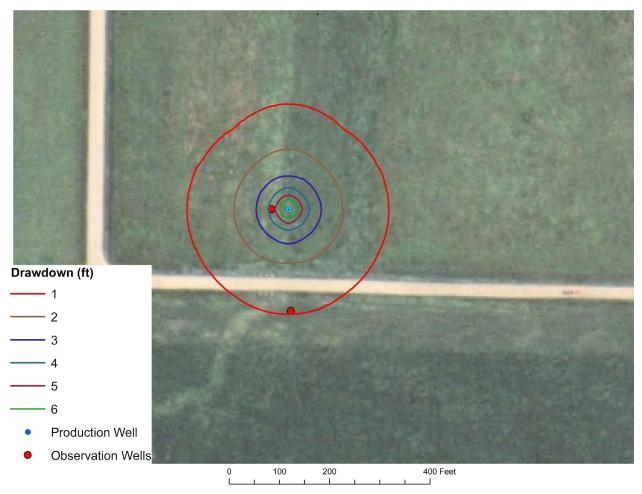
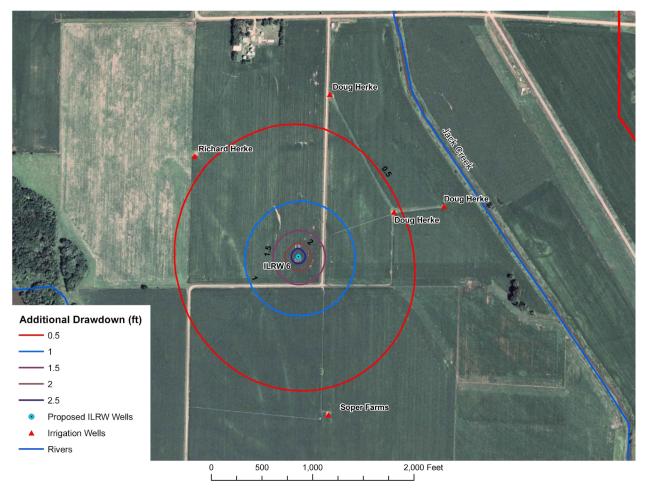



Figure 12. ILRW Test Well P-13A pump test simulation results.

	Observed	Simulated	Difference	Difference
Pump Test Location	Drawdown (ft)	Drawdown (ft)	(ft)	(percentage)
ILRW P-2B (OW47)	1.40	1.30	0.10	7%
ILRW P-13A (OW32)	4.10	4.30	-0.20	-5%
ILRW P-13A (OW200S)	1.40	1.10	0.30	21%
Graettinger Well 7	2.40	2.35	0.05	2%
Emmetsburg Well 7 (north)	0.70	0.76	-0.06	-9%
Emmetsburg Well 7 (west)	0.79	0.77	0.02	3%

 Table 7. Observed drawdown versus model simulated drawdown for aquifer pump tests.

Figure 13. Simulated drawdown map for ILRW north wellfield (Well 6) for normal rainfall conditions (8.5 inches of recharge).

year and an average recharge of 6 inches per year. The maximum total simulated summer drawdown near the proposed ILRW north and south wellfields ranged from 9 to 11 feet, and the additional drawdown caused by the pumping of the proposed ILRW north and south wellfields is shown in figures 15 and 16.

Table 8 shows the simulated additional drawdown at each irrigation well caused by the ILRW wells. The additional drawdown caused by the pumping of the proposed south ILRW wells ranges from 3.6 feet in Herke Farms Well 1, to 5.1 feet in the Dale Orpheim well. This additional drawdown may further reduce the daily pumping time for the irriga-

tion wells and the total daily production, but both the irrigators and ILRW should meet most of their water needs.

The additional drawdown caused by the pumping of the proposed north ILRW Well 6 ranges from 0.4 feet in the Soper Farms well, to 0.7 feet in the Doug Herke well. This additional drawdown would not significantly alter the daily pumping of the irrigation wells or the total daily production.

Based on the mass balance calculations from Visual MODFLOW, the percentage of water production supplied by the Des Moines River and Jack Creek (induced recharge) was approximately 32 percent. The remaining 68 percent of the water production is supplied

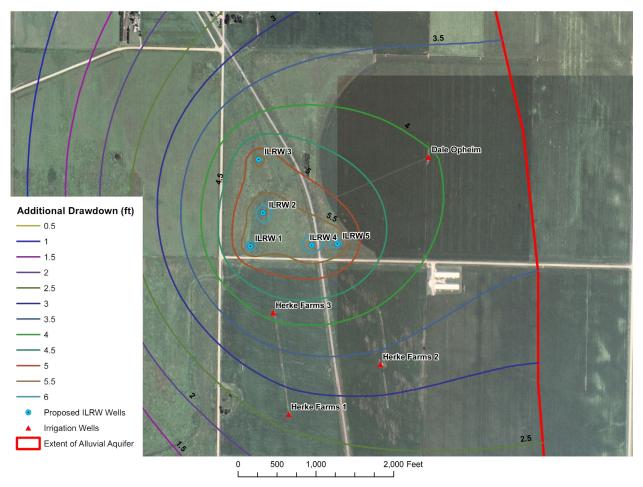
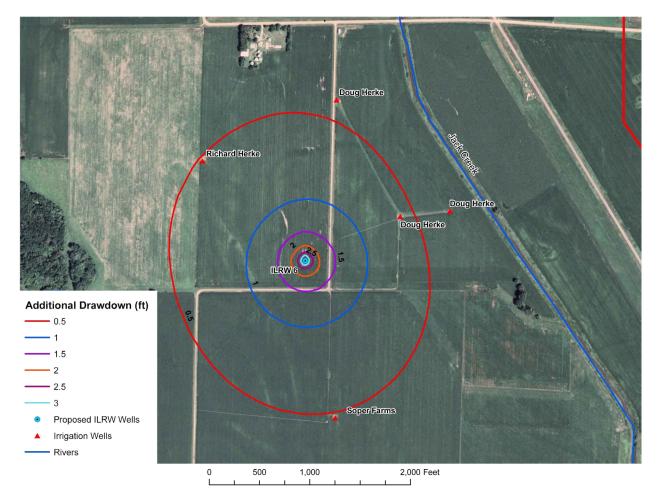
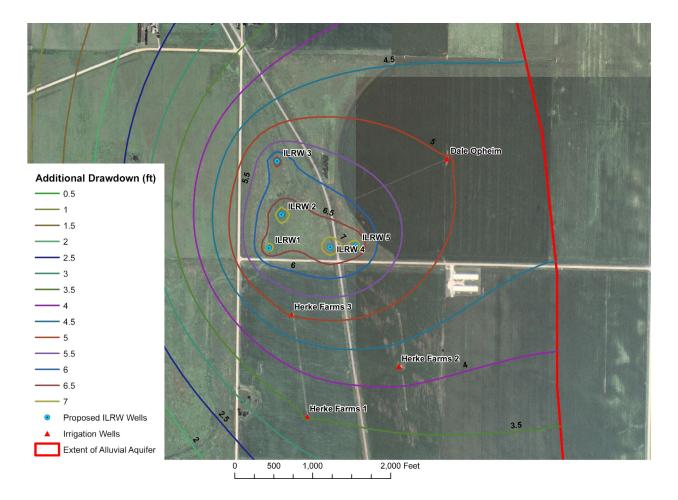


Figure 14. Simulated drawdown map for ILRW south wellfield (wells 1 through 5) for normal rainfall conditions (8.5 inches of recharge).

Table 8. Simulated drawdown for various drought scenarios near ILRW wellfields	s.
--	----

South Wellfield			
	Normal Rainfall	6 Inches of Recharge	4 Inches of Recharge
Well Owner	Drawdown (ft)	Drawdown (ft)	Drawdown (ft)
Dale Opheim	4.1	5.1	5.8
Herke Farms Well 3	4.1	5	5.6
Herke Farms Well 2	3.3	4.3	5
Herke Farms Well 1	2.7	3.6	4.2
North Wellfield			
	Normal Rainfall	6 Inches of Recharge	4 Inches of Recharge
Well Owner	Drawdown (ft)	Drawdown (ft)	Drawdown (ft)
Doug Herke 3	0.2 to 0.6	0.4 to 0.7	0.4 to 0.7
Soper Farms	0.2	0.4	0.7




Figure 15. Simulated drawdown map for ILRW north wellfield (Well 6) for a moderate drought (6 inches of recharge).

by precipitation recharge. The increase in induced recharge prevents much higher drawdowns in both the irrigation wells and the ILRW wells. Without the recharge from the Des Moines River and Jack Creek, a moderate drought would significantly reduce the water production in the area wells.

Simulation 3 Severe Drought Conditions

The third simulation was conducted using an average rainfall of 15 to 16 inches per year and an average recharge of 4 inches per year. The maximum total simulated summer drawdown near the proposed ILRW north and south wellfields ranged from 10 to12 feet, and the additional drawdown caused by the pumping of the proposed ILRW north and south wellfields is shown on figures 17 and 18.

Table 8 shows the simulated additional drawdown at each irrigation well caused by the ILRW wells. The additional drawdown caused by the pumping of the proposed south ILRW wells ranges from 4.2 feet in Herke Farms Well 1, to 5.8 feet in the Dale Orpheim well. This additional drawdown may reduce the daily pumping time for the irrigation wells and the total daily production. Management of both the irrigation wells and the ILRW wells may be necessary so that both water users can meet their water needs. The irrigation wells may need to pump during the

Figure 16. Simulated drawdown map for ILRW south wellfield (wells 1 through 5) for a moderate drought (6 inches of recharge).

night when water demand is lower for ILRW, or ILRW may want to pump additional water from Well 6 to reduce the pumping stress on the south wellfield. Cooperation would be necessary for both ILRW and the irrigators.

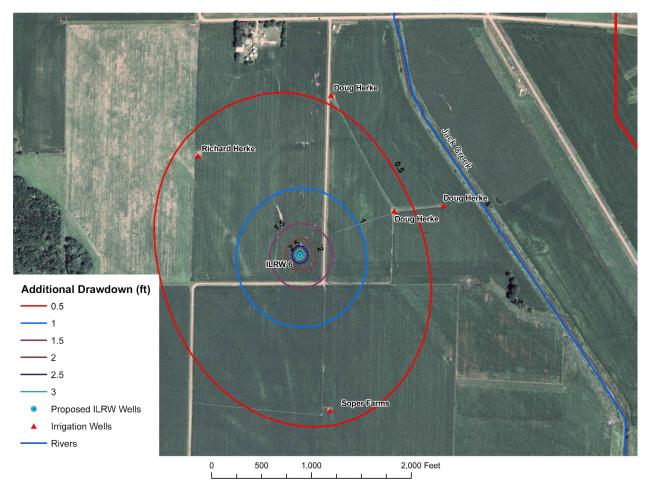
The additional drawdown caused by the pumping of the proposed north ILRW Well 6 ranges from 0.4 feet in the Soper Farms well, to 0.7 feet in the Doug Herke well, which is approximately the same as the moderate drought. This additional drawdown would not significantly alter the daily pumping of the irrigation wells or the total daily production.

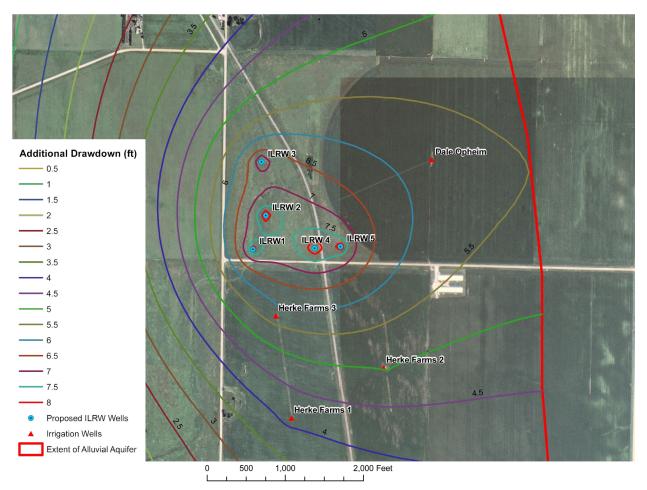
Based on the mass balance calculations from Visual MODFLOW, the percentage of

water production supplied by the Des Moines River and Jack Creek (induced recharge) increased to 58.4 percent. The remaining 41.6 percent of the water production is supplied by precipitation recharge. The increase in induced recharge prevents much higher drawdowns in both the irrigation wells and the ILRW wells. Without the recharge from the Des Moines River and Jack Creek, a severe drought would significantly reduce the water production in the area wells.

CONCLUSIONS

Based on the geologic and hydrogeologic data available in this study area, the follow-




Figure 17. Simulated drawdown map for ILRW north wellfield (Well 6) for a severe drought (4 inches of recharge).

ing conclusions can be made:

- The sand and gravel alluvium located along the West Fork of the Des Moines River varies from 6 to 50 feet in thickness, with an average thickness of 20 feet.
- Transmissivity values range from 10,000 ft²/day in Graettinger to approximately

54,000 ft²/day in Emmetsburg.

• Based on several drought simulations using the groundwater flow model Visual MODFLOW, a severe drought would cause maximum drawdowns near ILRW of 10 to 12 feet, and additional drawdowns of 4.2 to 5.8 feet in the closest irrigation wells near the ILRW south wellfield.

Figure 18. Simulated drawdown map for ILRW south wellfield (wells 1 through 5) for a severe drought (4 inches of recharge).

- Based on the model results, proper management and cooperation between the local irrigators and ILRW would be necessary during a severe drought to assure uninterrupted water supply. This may require nighttime irrigation by the farmers, or different pumping rotations of production wells by ILRW.
- The increase in induced recharge

during a severe drought prevents much higher drawdowns in both the irrigation wells and the ILRW wells. Without the recharge from the Des Moines River and Jack Creek, a severe drought would significantly reduce the water production in the area wells.

ACKNOWLEDGEMENTS

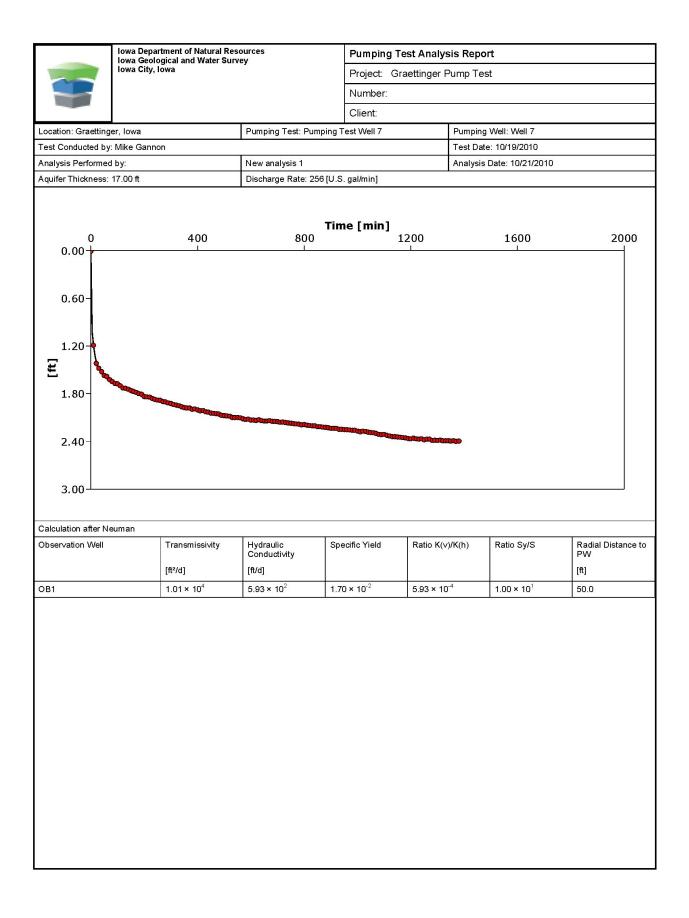
The author would like to acknowledge the contributions of the many individuals who assisted in the production of this report. First, much of our understanding of the Des Moines River aquifer in Iowa is built on the work of previous and current Iowa Geological and Water Survey and United States Geological Survey geologists. Layne Christiansen, Inc. supplied pump test and recovery test data. Paul Kroenke (City of Graettinger) and Jeff Morey (City of Emmetsburg) assisted in aquifer pump tests in their communities. Lynette Seigley, Chad Fields, Paul VanDorpe, Deanna Thomann, and Richard Langel provided technical and editorial reviews.

REFERENCES

- Freeze, R.A, and Cherry, J.A., 1979, Groundwater, Prentice-Hall, Inc. Englewood Cliffs, NJ, 604 p.
- Gannon, J.M., 2006, Hydrogeologic Summary Report, Hudson Wellfield, Garfield Township, Sioux County, Iowa, Iowa Geological and Water Survey, unpublished.
- IDALs (Iowa Department of Agriculture and Land Stewardship), 2010, available at http://www. iowaagriculture.gov/climatology/historicWeatherReports.asp , accessed December 2010.

Schlumberger Water Services, 2010, Visual MODFLOW Professional, Version 2010.1.

Thompson, C.A., 1984, Hydrogeology and water quality of the Upper Des Moines River alluvial aquifer, Iowa Geological Survey, Open File Report 84-5, 170 p.


APPENDIX A.

AQUIFER PUMP TEST DATA

	lowa Department of Natural Resources Iowa Geological and Water Survey			Pumping Test - Water Level Data Page 1 of 3			
lowa City, Iowa		-2	Project: Graett	inger Pump Test			
			Number:				
				Client:			
ocation.	Graettinger, Io	Na	Pumping Test: Pumping	Test Well 7 Pumping Well: Well 7			
	5 <u>.</u>		5 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5				
	ducted by: Mike	Gannon	Test Date: 10/19/2010	24 - ND-14	Discharge Rate: 256 [U.S	2 - 2019C	
Observati	on Well: OB1		Static Water Level [ft]: 16.33		Radial Distance to PW [ft	Radial Distance to PW [ft]: 50	
	Time [min]	Water Level [ft]	Drawdown [ft]				
1	0	16.336	0.006				
2	10	17.523	1.193				
3	20 30	17.751 17.808	1.421	_			
5	40	17.853	1.523				
6	50	17.902	1.572				
7	60	17.915	1.585				
8	70 80	17.954 17.977	1.624	—			
10	90	18.00	1.67				
11	100	18.005	1.675				
12	110	18.031	1.701				
13 14	120 130	18.057	1.727				
15	140	18.073	1.743	_			
16	150	18.09	1.76				
17	160	18.102	1.772				
18 19	170 180	18.112 18.129	1.782				
20	180	18.138	1.808				
21	200	18.165	1.835				
22	210	18.168	1.838				
23 24	220 230	18.174	1.844	_			
24	230	18.189 18.201	1.859				
26	250	18.208	1.878				
27	260	18.213	1.883				
28 29	270	18.23	1.90				
29 30	280 290	18.234 18.246	1.904	_			
31	300	18.254	1.924				
32	310	18.266	1.936				
33	320	18.274	1.944	_			
34 35	330 340	18.281 18.292	1.951 1.962	—			
36	350	18.304	1.974				
37	360	18.308	1.978				
38	370	18.31	1.98	_			
39 40	380 390	18.324 18.321	1.994				
41	400	18.335	2.005				
42	410	18.346	2.016				
43	420	18.343	2.013				
44 45	430 440	18.359 18.361	2.029				
46	450	18.375	2.045	—			
47	460	18.376	2.046				
48	470	18.382	2.052	_			
49 50	480 490	18.387 18.40	2.057	_			
50	490 500	18.40	2.07	—			

	Iowa Department of Natural Resources Iowa Geological and Water Survey			Pumping Test - Water Level Data	Page 2 of 3
	Iowa City, Iowa			Project: Graettinger Pump Test	
				Number:	
				Client:	
	Time	Water Level	Drawdown		
52	[min] 510	[ft] 18.41	[ft] 2.08		
53	520	18.413	2.083	-	
54	530	18.429	2.099	_	
55	540	18.429	2.099		
56	550	18.428	2.098		
57	560	18.435	2.105		
58	570	18.444	2.114	_	
59	580	18.453	2.123	_	
60 61	590 600	18.449 18.463	2.119 2.133	_	
62	610	18.46	2.133	_	
63	620	18.467	2.13		
64	630	18.459	2.129	-	
65	640	18.468	2.138		
66	650	18.473	2.143		
67	660	18.474	2.144		
68	670	18.471	2.141		
69	680	18.476	2.146	_	
70	690	18.479	2.149	_	
71 72	700 710	18.482	2.152	_	
72	710	18.49 18.485	2.16 2.155		
74	730	18.493	2.163		
75	740	18.497	2.167	-	
76	750	18.501	2.171		
77	760	18.507	2.177		
78	770	18.508	2.178		
79	780	18.514	2.184		
80	790	18.52	2.19	_	
81	800	18.519	2.189	_	
82 83	810 820	18.527 18.528	2.197 2.198	_	
84	830	18.532	2.198		
85	840	18.534	2.204	-	
86	850	18.544	2.214	-	
87	860	18.546	2.216		
88	870	18.548	2.218		
89	880	18.555	2.225		
90	890	18.557	2.227	_	
91	900	18.564	2.234	_	
92	910	18.565	2.235		
93 94	920 930	18.566 18.576	2.236 2.246		
94	930	18.576	2.240		
96	950	18.582	2.247		
97	960	18.581	2.251		
98	970	18.587	2.257		
99	980	18.59	2.26		
100	990	18.591	2.261		
101	1000	18.603	2.273	_	
102	1010	18.608	2.278		
103	1020	18.603	2.273		
104	1030	18.607	2.277		
105 106	1040 1050	18.613 18.619	2.283 2.289		
106	1050	18.619	2.289		
	1000	10.023	2.205		

[n 108 1070 109 1080 110 1090 111 1100 112 1110 113 1120 114 1130 115 1140 116 1150	18.64 18.646 18.643 18.653 18.666	Drawdown [ft] 2.30 2.31 2.316 2.313 2.323 2.323 2.33	Project: Graettinger Pump Test Number: Client:	
[n 108 1070 109 1080 110 1090 111 1100 112 1110 113 1120 114 1130 115 1140 116 1150	ft] [ft] D 18.63 D 18.64 D 18.646 D 18.643 D 18.653 D 18.653	[ft] 2.30 2.31 2.316 2.313 2.313 2.323		
[n 108 1070 109 1080 110 1090 111 1100 112 1110 113 1120 114 1130 115 1140 116 1150	ft] [ft] D 18.63 D 18.64 D 18.646 D 18.643 D 18.653 D 18.653	[ft] 2.30 2.31 2.316 2.313 2.313 2.323	Client:	
[n 108 1070 109 1080 110 1090 111 1100 112 1110 113 1120 114 1130 115 1140 116 1150	ft] [ft] D 18.63 D 18.64 D 18.646 D 18.643 D 18.653 D 18.653	[ft] 2.30 2.31 2.316 2.313 2.313 2.323		
[n 108 1070 109 1080 110 1090 111 1100 112 1110 113 1120 114 1130 115 1140 116 1150	ft] [ft] D 18.63 D 18.64 D 18.646 D 18.643 D 18.653 D 18.653	[ft] 2.30 2.31 2.316 2.313 2.313 2.323		
109 108 110 1099 111 1100 112 1110 113 1120 114 1130 115 1140 116 1150	18.64 18.646 18.643 18.653 18.666	2.31 2.316 2.313 2.323		
110 1090 111 1100 112 1110 113 1120 114 1130 115 1140 116 1150	D 18.646 D 18.643 D 18.653 D 18.66	2.316 2.313 2.323		
111 1100 112 1110 113 1120 114 1130 115 1140 116 1150	D 18.643 D 18.653 D 18.66	2.313 2.323	_	
112 1110 113 1120 114 1130 115 1140 116 1150	D 18.653 D 18.66	2.323	-	
113 1120 114 1130 115 1140 116 1150	0 18.66	2.33		
115 1140 116 1150	0 18.67			
116 1150		2.34		
		2.34		
		2.345		
117 1160 118 1170		2.349		
119 1180		2.356		
120 1190	0 18.693	2.363		
121 1200		2.366	_	
122 1210		2.358		
123 1220 124 1230		2.367 2.37		
125 1250		2.369		
126 1250		2.38		
127 1260		2.372		
128 1270		2.371		
129 1280		2.386		
130 1290 131 1300		2.385 2.386	_	
132 1310		2.384		
133 1320		2.392		
134 1330		2.391		
135 1340		2.39		
136 1350		2.395		
			-	
137 1360 138 1370 139 1380	D 18.721 D 18.731	2.391 2.401 2.394		

_	Iowa Department of Natural Resources Iowa Geological and Water Survey				Pumping Test - Wat	er Level Data	Page 1 of 2
	lowa City, Iowa			-y	Project: Emmetsburg	g Pump Test	
9					Number:		
					Client:		
Location: Emmetsburg, Iowa Pumpin				Pumping Test: Well 7		Pumping Well: well 7	
Test Conducted by:				Test Date: 10/20/2010		Discharge Rate: 672 [U.S. gal/min]	
Observati	ion Well: V	Vest well		Static Water Level [ft]: 9	.08	Radial Distance to PW [ft]: 100	
		me	Water Level	Drawdown			
1	[m (ווח] ו	[ft] 9.087	[ft] 0.007			
2	10		9.246	0.166			
3	20)	9.337	0.257			
4	30)	9.39	0.31			
5	40	נ	9.435	0.355			
6	50	0	9.463	0.383			
7	60)	9.497	0.417			
8	70		9.524	0.444			
9	80		9.549	0.469			
10	90		9.571	0.491			
11	100		9.589	0.509	_		
12	110	0	9.603	0.523	_		
13	120		9.62	0.54			
14	130		9.638	0.558	_		
15 16	140		9.649	0.569			
17	160	1	9.663 9.676	0.583	_		
18	170		9.69	0.596	_		
19	180		9.701	0.621	_		
20	190		9.711	0.631			
20	200		9.723	0.643			
22	210		9.732	0.652			
23	220		9.744	0.664			
24	230		9.745	0.665			
25	240)	9.75	0.67			
26	250	נ	9.758	0.678			
27	260		9.764	0.684			
28	270)	9.778	0.698			
29	280		9.784	0.704			
30	290		9.782	0.702	_		
31	300		9.794	0.714	_		
32	310	53	9.798	0.718			
33	320	63	9.797	0.717			
34	0505.3	5	9.799	0.719			
35 36	340		9.806 9.808	0.726			
30	360		9.808	0.728			
38	370		9.819	0.739			
39	380		9.819	0.736			
40	390		9.83	0.75			
41	400		9.83	0.75	-		
42	410		9.826	0.746			
43	420)	9.844	0.764			
44	430	0	9.839	0.759			
45	44()	9.843	0.763			
46	450)	9.842	0.762			
47	460		9.847	0.767			
48	470) <u> </u>	9.851	0.771			
49	480		9.849	0.769			
50	490		9.853	0.773	_		
51	500)	9.856	0.776			

Iowa Department of Natural Resources Iowa Geological and Water Survey Iowa City, Iowa

Pumping Test - Water Level Data Page 2 of 2 Project: Emmetsburg Pump Test

Number:

		1	vurnue
		(Client:
Water Level [ft]	Drawdown [ft]		
9.861	0.781		

	Client:
wn	
81	
81	
87	

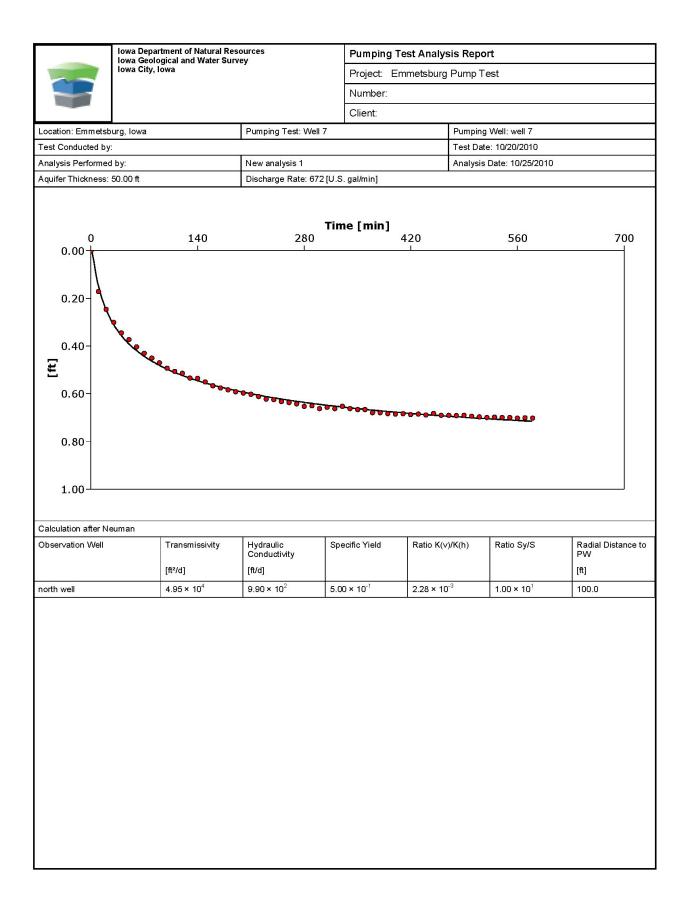
			3
	Time [min]	Water Le∨el [ft]	Drawdown [ft]
52	510	9.861	0.781
53	520	9.861	0.781
54	530	9.867	0.787
55	540	9.865	0.785
56	550	9.866	0.786
57	560	9.871	0.791
58	570	9.87	0.79
59	580	9.874	0.794

	lowa Department o lowa Geological ar	of Natural Res	ources	Pumping	Test Analysi	s Report		
Iowa City, Iowa			cy	Project: E	Project: Emmetsburg Pump Test			
				Number:				
				Client:				
Location: Emmetsb	urg.lowa		Pumping Test: Well 7	500-0305-080000-1		Pumping Well: well 7		
Test Conducted by						Test Date: 10/20/2010		
Analysis Performed	i by:		New analysis 1			Analysis Date: 10/25/2010		
Aquifer Thickness:	50.00 ft		Discharge Rate: 672	[U.S. gal/min]				
0.00 0.20- 0.40- 0.40- 0.60- 0.80-	A Marked and a	140	280	Time [min]	420	560	700	
1.00								
Calculation after Ne Observation Well	Trans	missi∨ity	Hydraulic Conductivity [ff/d]	Specific Yield	Ratio K(∨)/	K(h) Ratio Sy/S	Radial Distance to PW	
				Specific Yield 5.00 × 10 ⁻¹	1.70 × 10 ⁻⁴		Radial Distance to PW [ft] 100.0	

Iowa Department of Natural Resources Iowa Geological and Water Survey			Pumping Test - Water Level Data Page 1 of 2				
Iowa City, Iowa			-y	Project: Emmetsburg	g Pump Test		
					Number:		
					Client:		
Location: Emmetsburg, Iowa Pur				Pumping Test: Well 7		Pumping Well: well 7	
Test Con	ducted by:			Test Date: 10/20/2010		Discharge Rate: 672 [U.S. gal/min]	
Observation Well: north well			Static Water Level [ft]: 9	.28	Radial Distance to PW [ft]: 100		
		me	Water Level	Drawdown			
1	יח <u>ן</u> ס	iin])	[ft] 9.283	[ft] 0.003	_		
2	10		9.452	0.172			
3	20)	9.526	0.246			
4	30)	9.581	0.301			
5	40		9.625	0.345			
6	50		9.653	0.373			
7	60 70		9.684	0.404	_		
8	80		9.71 9.731	0.43			
10	90		9.75	0.431			
11	100	0	9.773	0.493			
12	110		9.787	0.507			
13	120)	9.795	0.515			
14	130		9.815	0.535			
15	140		9.816	0.536			
16	150		9.831	0.551			
17	160		9.847	0.567			
18 19	170		9.856 9.864	0.576			
20	190		9.804	0.592			
20	200		9.872	0.597			
22	210		9.883	0.603	-		
23	220		9.892	0.612			
24	230)	9.903	0.623			
25	240		9.905	0.625			
26	250		9.913	0.633			
27	260		9.918	0.638			
28	270		9.922	0.642			
29 30	280		9.933 9.931	0.653			
31	300		9.931	0.663			
32	310		9.937	0.657			
33	320		9.943	0.663	-		
34	330		9.934	0.654			
35	340		9.942	0.662			
36	350		9.947	0.667			
37	360		9.946	0.666			
38	370		9.96	0.68			
39 40	380		9.96 9.964	0.68			
40	400		9.964	0.685			
42	410		9.964	0.684			
43	420		9.968	0.688			
44	430)	9.966	0.686			
45	440		9.969	0.689			
46	450		9.963	0.683			
47	460		9.97	0.69	_		
48	470		9.97	0.69	_		
49 50	480		9.972 9.971	0.692			
50	490 500		9.971	0.695			
			L 0.070	0.000			

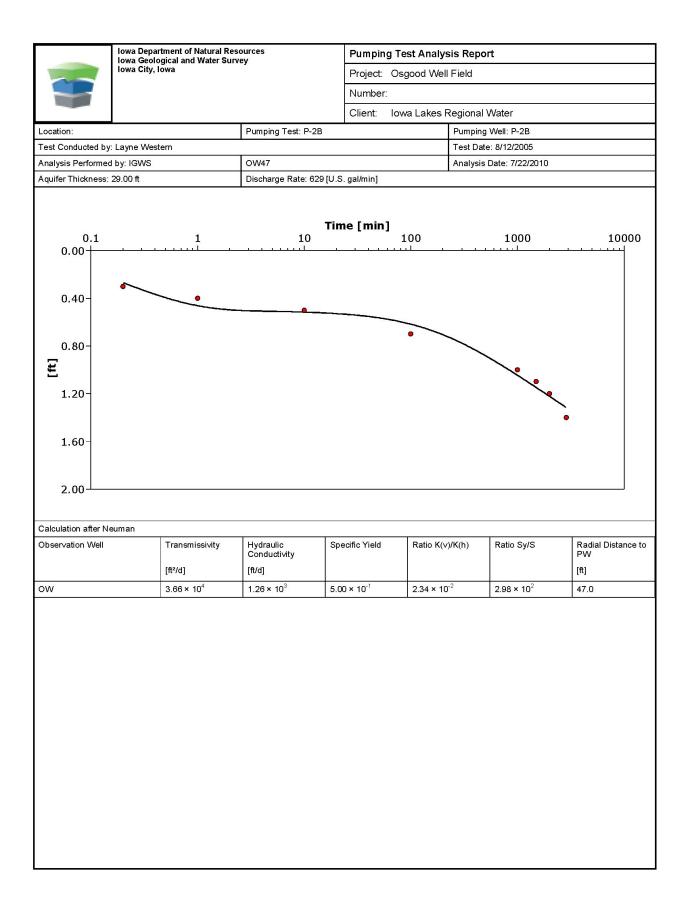
lowa Department of Natural Resources lowa Geological and Water Survey lowa City, lowa

 Pumping Test - Water Level Data
 Page 2 of 2

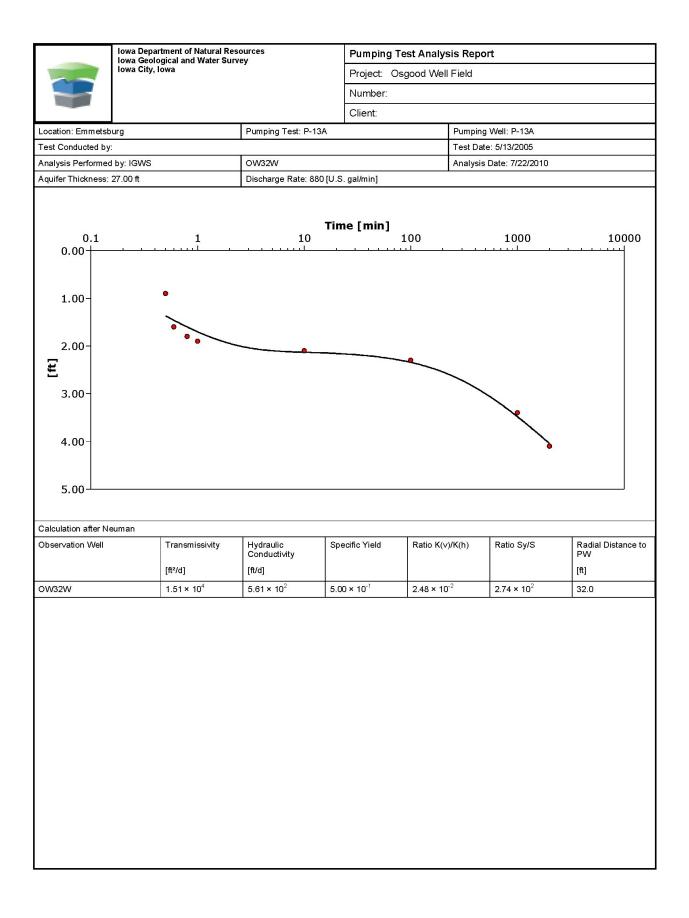

 Project:
 Emmetsburg Pump Test

roject. Eninetabarg r amp

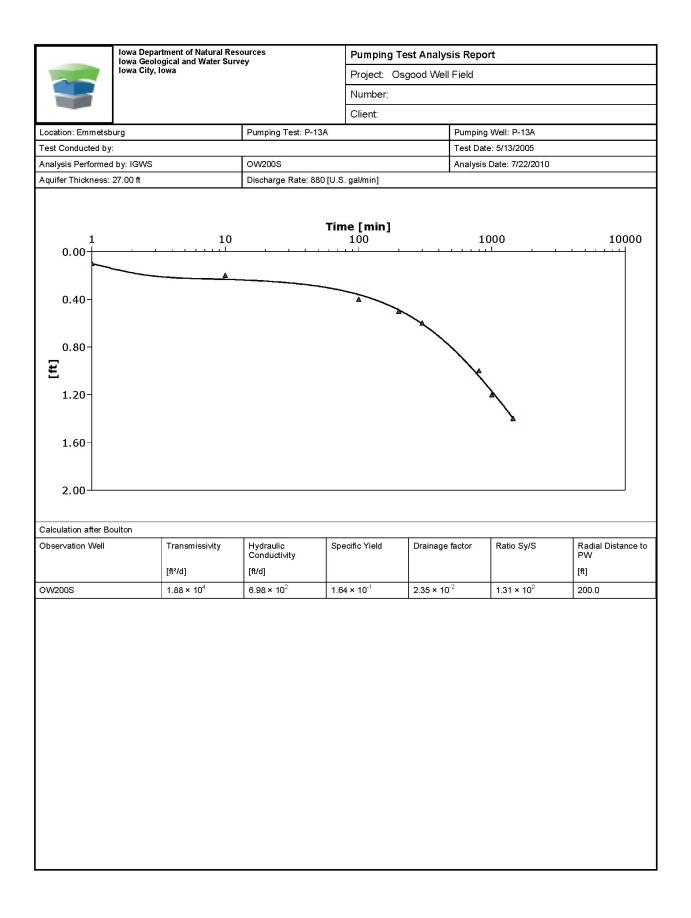
Number:


Client:

	Time [min]	Water Level [tt]	Drawdown [ft]
52	510	9.977	0.697
53	520	9.98	0.70
54	530	9.979	0.699
55	540	9.98	0.70
56	550	9.98	0.70
57	560	9.983	0.703
58	570	9.981	0.701
59	580	9.983	0.703



1			
i			7
		2	-


			lowa Department of Natural Resources lowa Geological and Water Survey			ng Test - Wate	r Level Data	Page 1 of 1
	lowa City, Iowa			,	Projec	Project: Osgood Well Field		
				Ň		er:		
				Client:	Client: Iowa Lakes Regional Water			
Locatio	n:			Pumping Test: P-2B			Pumping Well: P-2B	
Test Co	Test Conducted by: Layne Western Test Date: 8/12/2005		Test Date: 8/12/2005			Discharge Rate: 629 [U.S. gal/min]		
Observation Well: OW			Static Water Level [ft]: 10.00		Radial Distance to PW [ft]: 47			
		me nin]	Water Le∨el [ft]	Drawdown [ft]				
1	1	0.2	10.30	0.30				
2		1	10.40	0.40				
3	10	כ	10.50	0.50				
4	100	C	10.70	0.70				
5	1000	<u>כ</u>	11.05	1.05				
6	2000	נ	11.15	1.15				
7	2880	נ	11.40	1.40				

		epartment of Natural Reso eological and Water Surve		Pumping Test - Wat	er Level Data	Page 1 of 1		
	lowa C	ity, Iowa	- ,	Project: Osgood Well Field				
				Number:				
				Client:				
Locatio	n: Emmetsburg		Pumping Test: P-13A		Pumping Well: P-13A			
Test Conducted by: Test Date: 5/13/2			Test Date: 5/13/2005		Discharge Rate: 880 [U.S. gal/min]			
Observation Well: OW32W			Static Water Level [ft]: 11.00		Radial Distance to PW [ft]: 32			
	Time [min]	Water Level [ft]	Drawdown [ft]					
1	0.5	11.90	0.90					
2	0.6	12.60	1.60					
3	0.8	12.80	1.80					
4	1	12.90	1.90					
5	10	13.10	2.10					
6	100	13.30	2.30					
7	1000	14.40	3.40					
8	2000	15.10	4.10					

	lowa Department of Natural Res lowa Geological and Water Surv			Pumping Test - Water Level Data		Page 1 of 1
Iowa City, Iowa			.,	Project: Osgood Well Field		
				Number:		
				Client:		
Locatio	n: Emmetsburg		Pumping Test: P-13A		Pumping Well: P-13A	
Test Conducted by: Test Date: 5/13/200					Discharge Rate: 880 [U.S. gal/min]	
Observation Well: OW200S Static			Static Water Level [ft]: 11.00		Radial Distance to PW [ft]: 200	
	Time [min]	Water Level [ft]	Drawdown [ft]			
1	1	11.10	0.10			
2	10	11.20	0.20			
3	100	11.40	0.40			
4	200	11.50	0.50			
5	300	11.60	0.60			
6	800	12.00	1.00			
7	1000	12.20	1.20			
8	1440	12.40	1.40			

Iowa Department of Natural Resources Geological and Water Survey 109 Trowbridge Hall Iowa City, Iowa 52242-1319 319-335-1575 www.igsb.uiowa.edu

Iowa Department of Natural Resources Geological and Water Survey 109 Trowbridge Hall Iowa City, Iowa 52242-1319 319-335-1575 www.igsb.uiowa.edu