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Water Resources Management Program:
Iowa Geological and Water Survey’s Role 

The Iowa Geological and Water Survey 
(IGWS) plans and implements programs that re-
sult in the acquisition of comprehensive informa-
tion on the mineral and water resources of Iowa, 
with emphasis on water supply developments and 
monitoring the effects of environmental impacts 
on water quality (www.igsb.uiowa.edu/about/
mission.htm).

Some of the most frequently asked questions 
of the IGWS are about groundwater, and since 
groundwater supplies 80 percent of Iowans their 
drinking water, an understanding of the geologic 
and hydrologic framework that contains Iowa’s 
groundwater is in the best interest of Iowans and 
is essential when planning for better and sustain-
able use, protection, and management of Iowa’s 
most valuable natural resource.

The last comprehensive state water plan for 
Iowa was completed in 1978 by the Iowa Natural 
Resources Council (www.iowadnr.com/water/
fi les/1978waterplan1.pdf). This plan was funded 
by the state legislature and took three years to 
complete. It addressed major water problems of 
the time and recommended policies and programs 
to solve and prevent current and future problems. 
While some portions of the plan were imple-
mented, the plan did not provide a mechanism 
for ongoing water planning. Additional plans 
and programs have been developed since 1978, 
however, these efforts were never integrated into 
a comprehensive plan for water management and 
have not created the public awareness needed to 
prevent degradation of groundwater and surface 
water resources in Iowa. The last update of the 
state water plan occurred in 1985.

The ability to protect and improve Iowa’s 
natural resources, while utilizing them to benefi t 
society, requires proactive long-range planning, 
based on accurate and current geologic and hy-
drologic information. In the past, most funding 
for water planning issues has come from the state 
general fund. Continuous reductions in general 
fund revenues and geologic and hydrologic staff-
ing over the last 20 years have made it diffi cult 

for the IGWS to conduct the preemptive investi-
gation and research necessary to create and main-
tain a forward looking, integrated, and compre-
hensive water plan.

Recently, concerns about the availability of 
groundwater in Iowa have come to light because 
of increasing demand for large quantities of water 
for various industries, as well as increases in de-
mand from agricultural, industrial, and domestic 
uses. While Iowa is probably not facing an im-
mediate water shortage, we currently do not have 
the information or resources available at the state 
level to answer basic questions regarding how 
much water can be withdrawn from Iowa’s aqui-
fers on a sustainable basis, without signifi cantly 
lowering water levels and depleting very long-
term groundwater storage.

Following a proposal in 2007 from the IGWS 
for $1.65 million for annual funding to character-
ize the availability, quality, use, and sustainability 
of Iowa’s surface and groundwater resources, state 
legislators approved a one-time appropriation of 
$480,000 to support water resource studies. Cur-
rently efforts are underway to secure sustainable 
funding for continued study and management of 
Iowa’s water resources through an improved wa-
ter resource permitting system.

This report is part of the new Water Resources 
Management program work in progress to delin-
eate the occurrence, movement, availability, use, 
and chemical quality of groundwater from Iowa’s 
major aquifers for better and sustainable manage-
ment of Iowa’s groundwater resources. As more 
wells are completed in these aquifers and more 
stratigraphic, construction, and water-quality 
data are interpreted and entered into our data-
bases, our knowledge of these valuable resources 
will improve and our evaluation of them will be 
refi ned.

Iowa’s Geologic Framework 
and the Dakota Aquifer Study Area

Iowa’s groundwater resources are stored in 
shallow unconsolidated aquifers and in fi ve deep-
er bedrock aquifers that are generally separated 
by widespread confi ning beds, or aquitards, that 
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slow the movement of water between the aquifers 
(Figure 1). The unconsolidated aquifers include 
alluvial sand and gravel deposits found along 
stream valleys and in ancient buried river valleys, 
and sand and gravel deposits found within glacial 
drift. The bedrock aquifers are usually sandstone, 
siltstone, limestone, or dolomite, and sometimes 
are a combination of all of these rock types. The 
major bedrock aquifers in Iowa were deposited 
between 75 to 550 million years ago (mya), and 
include, from shallow to deep: the Cretaceous 
(Dakota), Mississippian, Silurian-Devonian, 
Cambrian-Ordovician (Jordan), and Dresbach 
(Mt. Simon).

The fi rst aquifer to be studied for the new Wa-
ter Resources Management plan is the Dakota, 
which is used for rural and public water supplies 
in western Iowa (Figure 2). This aquifer is com-
posed of two members: thinly bedded and well 
sorted Woodbury Member shales and very fi ne- 
to fi ne-grained sandstones, and the underlying 
thickly bedded and poorly-sorted Nishnabotna 
Member fi ne- to very course-grained sandstones 
(Munter, et al., 1983). These deposits formed 
in riverine environments 100 mya. Woodbury 
rocks form a minor aquifer with low to moderate 

yields, which grades to a confi ning layer, while 
Nishnabotna rocks form a major aquifer capable 
of yielding greater than 1,500 gallons per minute 
(gpm) in some areas. Because of the greater con-
tinuous areal extent and higher yields, the initial 
study concentrates on the lower part of the Da-
kota Aquifer within the 16 counties in northwest 
Iowa (Gannon, et al., 2008).

In general, the lower part of the Dakota has 
greater yield potential, but probably poorer natu-
ral water quality (Rowden, 2008). For practical 
purposes, domestic supplies often use the upper 
portion of the aquifer because drilling costs are 
lower, and they do not need large yields. Public 
and industrial users that need greater yields must 
use the lower portion of the aquifer, even if the 
water quality is poorer.

The individual sandstone beds within the 
Dakota Aquifer range from less than 10 feet to 
more than 150 feet in thickness, and while the 
cumulative thickness of the sandstone also varies 
widely, it generally ranges from 200 to 300 feet in 
thickness throughout much of the study area. The 
sandstones are confi ned over most of the study 
area by 200 to 400 feet of clay-rich glacial till 
as well as by thick shale, siltstone, thin chalky 
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limestone, and lignite (low-grade coal). Most 
wells developed in the aquifer range from 100 
to 600 feet deep in the area. The confi ning beds 
underlying the aquifer include Dakota shales, un-
differentiated Paleozoic rocks, and Precambrian 
crystalline rock.

Water fl ows through the Dakota Aquifer from 
the north-central part of the study area to the east, 
south and southwest, with recharge coming from 
infi ltration through the land surface and confi n-
ing materials (Burkart, 1984). Discharge from 
the aquifer is to the underlying Paleozoic aqui-
fers and to the alluvium and glacial outwash de-
posits along the Missouri and Big Sioux rivers in 
the southwest part of the study area. Flow toward 
bedrock valleys may refl ect discharge to Quater-
nary sand and gravel deposits in the valleys.

In the late 1970s, comparison of water-level 
data from the Dakota Aquifer with historic re-
cords on a regional scale suggested that water 
levels in the aquifer were not rising or falling at a 
detectable rate at that time (Munter, et al., 1983). 
A few local areas appeared to have experienced 
long-term water-level declines due to pumping 
by high-capacity wells, but the extent and magni-
tude of the declines were not well known. In the 
study area, some pumping test data were thought 
to have been infl uenced by variations in aquifer 
characteristics. It was suggested that shale or 
mudstone lenses in the aquifer may slow the re-
sponse of observation wells located at relatively 
large distances from production wells, resulting 
in low estimates of how much water the aquifer 
can transmit, even where thickness and overall 
textural properties of the aquifer appear to be 
relatively uniform.

The water quality of the aquifer varies from 
a calcium-bicarbonate type to a calcium-sulfate 
type of water (Munter, et al., 1983). Generally, 
better water quality (less than 250 milligrams 
per liter [mg/L] of sulfate) occurs in areas that 
have relatively high recharge rates, mostly in the 
southwest part of the study area, while poorer wa-
ter quality (greater than 1,000 mg/L of sulfate) 
occurs in areas with thick confi ning units such 
as in the north, northeast and central parts of the 
study area.

Methods used for Evaluation, 
Data Sources, and Data Dissemination

During the fi rst year of the study, the IGWS 
has been designing procedures for collecting in-
formation, and developing compatible databases 
and geographic information system (GIS) cover-
ages that will be used for aquifer characteriza-
tions. The data will eventually be integrated into 
a “Water Resources Enterprise” database that will 
provide content for a web-based information out-
let and information for natural resource assess-
ments, water resource planning and permitting, 
well forecasting, and regional and local predic-
tive MODFLOW groundwater models that simu-
late three-dimensional groundwater fl ow through 
aquifers. The models will predict changes in 
aquifer characteristics, such as yields and areas of 
well interference, caused by changes in ground-
water recharge and discharge. Other activities 
that will begin in 2008 include reestablishing a 
groundwater level monitoring network, possibly 
in cooperation with the United States Geological 
Survey Water Resources Division (USGS WRD) 
and supporting two long-term USGS stream gag-
ing stations that would have been abandoned.

The types of data being collected for the Low-
er Dakota Aquifer study include:

•  Well water withdrawals and pumping    
       rates

•  Aquifer properties such as storage and    
   transmissivity

•  Geologic framework characteristics like   
   rock type, grain size, thickness, and depth   
   to the top and bottom of the aquifer

•  Groundwater quality parameters such as   
   dissolved solids, hardness, iron, and    
   sulfate concentrations

The data sources for the study include:

•  Iowa’s Geological Database (GEOSAM)   
   and IGWS and USGS publications

•  Records from DNR Water Supply and cit-  
   ies that use the Lower Dakota Aquifer

•  Pump tests from well contractors
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After reviewing all data sources for well in-
formation, 130 wells within the study area were 
selected as a basis for producing hydrogeologic 
maps. For wells with multiple static water levels, 
the water levels were averaged for use in con-
structing a potentiometric surface. An average 
hydraulic conductivity (K) value of 48 feet per 
day, and an average well function (W[u]) value of 
270 were assumed for the Nishnabotna Member 
sandstones, based on previously collected and cur-
rently reviewed pumping test data (Munter, et al., 
1983). The well point locations for the averaged 
constituents were then converted to a grid using 
a topo to raster tool, the grid was then clipped 
using the appropriate bedrock coverage and out-
line of the sixteen counties in northwest Iowa as 
a boundary condition, and then the grid was con-
toured using a raster surface contour tool.

The work in progress will delineate the occur-
rence, movement, availability, use, and chemical 
quality of groundwater from the Lower Dakota 
Aquifer for better and sustainable management 
of Iowa’s groundwater resources. To be useful, 
this information will be made available in an 
understandable and accessible format, similar 
to the IGWS hydrologic atlas (www.iowadnr.
gov/mapping/index.html) where the information 
can be integrated and presented on a variety of 
maps at appropriate scales. Web-based server ap-
plications will provide on-line access for those 
without desktop GIS software who want to view 
pre-selected GIS map layers of interest. For those 
who have desktop GIS software, the new series of 
map layers, known as coverages or themes, will 
also be accessible from the Iowa Geological and 
Water Survey’s Natural Resources GIS (NRGIS) 
Library at www.igsb.uiowa.edu/nrgislibx/.

Making Maps with GIS

GIS software stores geographically indexed 
information in layers and allows users to ana-
lyze spatial relationships and map them. The in-
formation can be represented in two dimensions 
as points, lines, polygons, and grid cells, or in 
three dimensions as triangular irregular network 
(TIN) data with x,y, and z values, and a series of 

edges connecting these points to form triangles. 
Like grids, TINs are used to represent continu-
ous surfaces such as a landscape, but unlike grids, 
TINS have a vertical component such as thick-
ness or elevation. GIS software tools allow the 
user to create three-dimensional layers and per-
form mathematical calculations on them. The 
following maps were constructed with desktop 
GIS software using data from wells completed in 
the Lower Dakota Aquifer. The map layers can 
be related to one another employing a few simple 
hydrologic equations using data from geologic 
fi eld observations and pumping tests. The map 
layers were made sequentially by using earlier 
constructed layers to calculate the succeeding 
layers.

Figure 3 is an isopach or thickness map that 
shows the areal distribution and thickness varia-
tion of the Lower Dakota Aquifer. This map was 
made by contouring the thickness of the thicker 
bedded and poorly-sorted, fi ne- to course-grained 
sandstone interval found in wells completed in 
the Lower Dakota Aquifer in northwest Iowa. 
The aquifer is thin or absent in the southeastern 
portion of the study area, and thicker toward the 
west.

Determining the depth to the top of an aquifer 
is one of the fi rst steps in planning a water supply. 
Well depth is a determining factor in calculating 
drilling and construction costs, as well as pump 
and well design. Figure 4 was made by subtract-
ing the elevation of the top of the Lower Dakota 
Aquifer from the elevation of the overlying land 
surface. The top of the aquifer is more deeply 
buried in the northwest portion of the study area, 
and closer to the land surface in the southwest, 
southeast and eastern portions of the area, and 
in areas where the current drainage network has 
eroded valleys into the land surface.

Determining the depth to the bottom of an 
aquifer is also important in planning a water sup-
ply. Aquifer thickness is a determining factor in 
fi guring drilling and construction costs, as well 
as pump and well design, and well yield. Figure 5 
was made by subtracting the ispoach thickness of 
the Lower Dakota Aquifer from the elevation of 
the top of the aquifer, then subtracting the result 
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from the elevation of the overlying land surface. 
The bottom of the aquifer is deeper in the north-
west part of the study area, and shallower toward 
the southeast, and in areas where streams have 
eroded the land surface.

The Lower Dakota Aquifer is underlain by 
Precambrian rocks deposited 2,910 to 542 mya 
and Paleozoic rocks deposited 542 to 142 mya. 
These rocks dip about 18 feet/mile to the south-
southwest and form a confi ning layer that slows 
but does not prevent the fl ow of water between 
adjacent aquifers. Figure 6 was made by subtract-
ing the elevation of the top of sub-Cretaceous 
rocks from the elevation of the overlying land 
surface. Sub-Cretaceous rocks are generally more 
deeply buried in northwest half of the study area, 
and shallower toward the southeast, and in areas 
underlying stream valleys.

By using elevation, rather than depth, the 
structure of the top of the aquifer is better rep-
resented, because it is shown relative to the fl at 
surface of mean sea level, rather than as a depth 
below the uneven surface of the landscape above 
it. In addition, the top of the aquifer can be com-
pared with the land surface, screened well inter-
vals, and groundwater levels in wells in a less 
biased framework. Figure 7 was made by sub-
tracting the depth to the top of the Lower Dakota 
Aquifer from the elevation of the overlying land 
surface. The highest elevations generally occur in 
the southeastern half of the study area, and the 
lowest elevations generally occur in the north-
western half of the area.

Structural trends are better represented using 
elevations rather than depth, since elevations are 
not biased by the overlying topography as depth 
is. The previously shown depth maps illustrate 
the bias introduced by the drainage network that 
has shaped the overlying land surface. Figure 8 
was made by subtracting the depth to the bottom 
of the Lower Dakota Aquifer from the elevation 
of the overlying land surface. The highest eleva-
tions occur in the southeastern half of the study 
area, while the lowest elevations occur in Sioux 
and Plymouth counties in the western part of the 
area.

By using elevations, rather than depth, the 
structures of the top of the sub-Cretaceous rocks 
and the bottom of the Lower Dakota Aquifer can 
be compared and related to screened intervals and 
groundwater levels in wells in a framework unbi-
ased by surface topography. Figure 9 was made 
by subtracting the depth to the top of sub-Creta-
ceous rocks from the elevation of the overlying 
land surface. The highest elevations occur in the 
southeastern part of the study area and in Lyon 
County, while the lowest elevations occur in 
Sioux, Plymouth, Lyon, and Woodbury counties.

A potentiometric surface is an imaginary 
surface formed by measuring the level to which 
water will rise in wells of a particular aquifer. In 
a confi ned aquifer, like the Lower Dakota, this 
surface is above the top of the aquifer, whereas in 
an unconfi ned aquifer, it is the same as the water 
table. Figure 10 was made by contouring mean 
static water levels collected from 1912 to 1996 
from wells completed in the Lower Dakota Aqui-
fer in northwest Iowa. Since the static water lev-
els span a large range of time, the potentiometric 
surface is representative of average water levels 
during the time of collection. For areas where 
water use has remained relatively constant, the 
map is probably representative of current water 
levels. For areas where water use has increased 
signifi cantly, current water levels may be lower 
than those represented by the map.

 Since water moves from higher to lower ele-
vations or pressure areas, lateral water movement 
in the aquifer is from the uplands in the north-
central part of the study area to the Missouri and 
Big Sioux river valleys in the southwest, and bed-
rock valleys toward the south and east.

Transmissivity (T) is a measure of how much 
water an aquifer can transmit horizontally to a 
pumping well. T = Kb, where K = hydraulic con-
ductivity and b = aquifer thickness.

K is a measure of the rate of fl ow of water 
through a cross-sectional area of the aquifer and 
is expressed in units of length/time. Units of T 
are length2/time, since units of b are length, and 
units of K are length/time. Figure 11 was made by 
multiplying the Lower Dakota Aquifer’s thick-
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Figure 8. Elevation of the bottom of the Lower Dakota Aquifer in feet above mean sea level.
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14

SACIDA

SIOUX
CLAY

LYON

PLYMOUTH

OBRIEN

WOODBURY
CALHOUN

EMMET

PALO ALTO

CHEROKEE BUENA VISTA POCAHONTAS

OSCEOLA DICKINSON

1140

1180

1120

1100

12
00

1160

1080

1140

1160
1120

11
60

1120

12
00

11
40

112
0

11401140

1080

1120

1180

1200

1120

1180

1180

1200

1180

1180

1180

1180

1120

114
0

11
60 1120

1160

1180

1160

±0 4 8 12 16 202
miles

Legend

Potentiometric surface of the Lower Dakota Aquifer in feet of altitude

Potentiometric contour lines in feet of altitude

Measured wells (n = 130)

1,060 - 1,080

1,080 - 1,100

1,100 - 1,120

1,120 - 1,140

1,140 - 1,160

1,160 - 1,180

1,180 - 1,200

1,200 - 1,220

Figure 10. Potentiometric surface of the Lower Dakota Aquifer in feet above mean sea level.
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Figure 11. Transmissivity of the Lower Dakota Aquifer in ft2/day.

SACIDA

SIOUX
CLAY

LYON

PLYMOUTH

OBRIEN

WOODBURY
CALHOUN

EMMET

PALO ALTO

CHEROKEE BUENA VISTA POCAHONTAS

OSCEOLA DICKINSON

7500

50
00

2500

10
00
0

12500

15000

500
0

50
00

2500

7500

10000

2500

12500

12500

2500

5000

75
00

250
0

50
00

75
00

25
00

50
00

25
00

10
00
0

5000

250
0

500
0

50
00

75
00 250

0

50
00

2500

2500

250
0

50
00

125
00

5000

7500

25
00

7500

2500

75
00

500
0

10
00
0

5000

25
00

25
00

50
00

2500

25
00

7500

2500

10
00
0

7500

5000

75
00

10000

125
00

7500

75
00

10000

10000

12500

50
00

10
00
0

50
00

12500

5000

5000

2500

5000

2500

2500

7500

7500

10
00
0

50
00

25
00

50
00

2500

2500
10000

5000

750
0

5000

125
00

25
00

2500

50
00

2500

2500

2500

10000

10
00
0

5000
1250012

50
0

25
00

75
00

50
00

5000

10000

5000

10
00
0

25
00

5000

25
00

5000

75
00

10000

2500

2500

250
0

5000

10000

25
00

5000

2500

2500

50
00

5000

50
00

25
00

5000

7500

7500

25
00

12500

250
0

7500

5000

10000

5000

7500

7500

5000

7500

75
00

7500

75
00

5000

50
00

2500

2500

10000

50
00

25
00

10
00
0

12500

±0 5 10 15 202.5
miles

Legend

Transmissivity of the Lower Dakota Aquifer in ft2/day

Lines of equal transmissivity of the Lower Dakota Aquifer in ft2/day

15,000 - 17,000

12,500 - 15,000

10,000 - 12,500

7,500 - 10,000

0 - 2,500

2,500 - 5,000

5,000 - 7,500



16

ness by the aquifer’s average hydraulic conduc-
tivity of 48 feet/day. Assuming that K is constant, 
the transmissivity is greatest where the aquifer is 
thickest.

Transmissivity can also be expressed as [vol-
ume/time]/length, or gallons/day/foot, since one 
cubic foot contains 7.481 gallons of water. For 
example, an aquifer with a K of 10 feet/day that 
has a saturated thickness of 25 feet would have a 
transmissivity as follows:

T = Kb, or T = 10 x 25, so T = 250 feet2/day, 
or 250 x 7.481 = 1,870 gpd/ft. 

Figure 12 was made by multiplying the previ-
ous transmissivity map layer by 7.481.

Specifi c capacity (C) is a measure of well 
performance, usually in gpm per foot. C = Q/Δh, 
where Q = well pumping rate or yield and Δh = 
well drawdown (the drop in water level in the 
well when it is pumped). Well function, W(u) = 
r2S/4Tt, where r is radial fl ow, S is storativity, T 
is transmissivity, and t is time. T = well function 
x Q/Δh, so C = T/well function. Since the aver-
age well function for the Lower Dakota Aquifer 
is 270, Figure 13 was made by dividing the trans-
missivity map layer (in ft2/day) by 270. Assum-
ing that W(u) is constant the specifi c capacity is 
greatest where T is greatest.

Drawdown (Δh) is the drop in the water level 
in a well when it is pumped, measured in feet or 
meters. Typically, drawdown increases with the 
length of pumping time, producing a cone of de-
pression. Well yield (Q) or the amount of water 
that can be pumped is limited by the amount of 
drawdown produced. Since specifi c capacity (C) 
= Q/Δh, Q = C x Δh, and well yields can be deter-
mined from specifi c capacity (C) and drawdown. 
Figure 14 was made by subtracting the elevation 
of the top of the Lower Dakota Aquifer from the 
elevation of the aquifer’s potentiometric surface.

The amount of drawdown (Δh) that occurs in 
a well is determined by an aquifer’s ability to re-
place water that is being pumped. If there is a lot 
of water in an aquifer that can move freely to the 

well, the drawdown will be low. If water cannot 
move through an aquifer quickly, the drawdown 
will be high and unsustainable. By using 50% of 
the potential drawdown to calculate potential well 
yields, a margin of safety is added that assures 
that withdrawals from the Lower Dakota Aquifer 
will be sustainable. Figure 15 was made by divid-
ing the previous potential drawdown map layer 
by 2.

Well yield (Q) is a measure, usually in gpm, 
of how quickly and how much water can be with-
drawn from an aquifer over a period of time. A 
sustainable well yield is that which can be main-
tained during periods of extended drought. Since 
specifi c capacity (C) = Q/Δh, Q = C x Δh, and 
well yields can be determined from specifi c ca-
pacity (C) and drawdown (Δh). Actual well yields 
may vary due to well loss, or the inability of the 
well to produce at 100% effi ciency. Figure 16 
was made by multiplying the specifi c capacity 
map layer by 50% of potential drawdown, then 
multiplying by a 50% well effi ciency.

Three-Dimensional Mapping

Figure 17 shows three-dimensional represen-
tations of the study area, with wells (in red) ex-
truded from the land surface down through the 
lower Dakota’s potentiometric surface (in blue) 
and into the Lower Dakota Aquifer (top brown, 
bottom confi ning layer gray).

The use of three dimensional mapping, rather 
than two, allows for enhanced visualization of 
spatial data by providing a more realistic per-
spective of the data. Patterns and trends appear 
in three dimensions that might not be discovered 
in a fl at, two-dimensional view. The relationship 
between wells and the underlying unconsolidat-
ed materials, rock layers, and the land surface is 
much more easily seen in a three-dimensional 
view. With desktop GIS software, these layers 
can be tilted and rotated for better analysis of the 
map layers at different angles. In the future, the 
use of three dimensional mapping and display for 
data from many applications will increase.
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Figure 16. Potential well yields from the Lower Dakota Aquifer in gpm.
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Figure 17. Three-dimensional views of the Lower Dakota Aquifer study area in northwest Iowa. Wells are 
shown in red, Lower Dakota Aquifer potentiometric surface in blue, top of the Lower Dakota Aquifer in brown, 
and top of the underlying confi ning layer in gray. The 16-county outline is shown above the land surface im-
ages for reference (top view is southwest to northeast, middle view is west to east, and bottom view is south 
to north).
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Final Comments

The Dakota Aquifer is the most extensive 
source of large quantities of groundwater in 
northwest Iowa. The lower part of the Dakota, 
the Nishnabotna Member, has greater yield po-
tential, but probably poorer natural water quality 
than the upper part of the aquifer, the Woodbury 
Member. Domestic supplies often use the upper 
portion of the aquifer because drilling costs are 
lower, and they do not need large yields. Public 
and industrial users that need greater yields must 
use the lower portion of the aquifer, even if the 
water quality is poorer.

Individual sandstone beds within the Lower 
Dakota Aquifer range from less than 10 feet to 
more than 150 feet in thickness, while the cumula-
tive thickness of the sandstone is greater than 200 
feet throughout much of the western and north-
central portions of the study area. The sandstones 
are confi ned over most of the study area by 200 
to 400 feet of clay-rich glacial till as well as by 
thick shale, siltstone, thin chalky limestone, and 
lignite. The confi ning beds underlying the aquifer 
include Dakota shales, undifferentiated Paleozoic 
rocks, and Precambrian crystalline rock. In gen-
eral, the aquifer is thin or absent in the extreme 
northwestern and southeastern portions of the 
study area, and thicker toward the west and north-
central parts of the area.

Lateral water movement through the aquifer is 
from the uplands in the north-central part of the 
study area to the Missouri and Big Sioux rivers 
in the southwest, and bedrock valleys toward the 
south and east. The aquifer is confi ned through-
out most of the study area, but is under water-ta-
ble conditions in the extreme southwest, near the 
Missouri and Big Sioux rivers. The aquifer is re-
charged throughout the study area by downward 
infi ltration through the land surface and confi ning 
materials, and by lateral fl ow from southern Min-
nesota. Discharge from the aquifer is to the un-
derlying Paleozoic aquifers and to the alluvium 
and glacial outwash deposits along the Missouri 
and Big Sioux rivers in the southwest part of the 
study area. Regional water level gradients sug-
gest that fl ow also occurs toward South Dakota 
beneath a segment of the Big Sioux River.

The map layers in this report were made se-
quentially by using earlier constructed layers to 
calculate the succeeding layers. Based on previ-
ously collected and currently reviewed pumping 
test data, an average hydraulic conductivity value 
of 48 feet per day, and an average well function 
value of 270 were assumed for the Nishnabotna 
Member sandstones. An aquifer thickness map 
was made by contouring the thickness of the 
thicker bedded and poorly-sorted, fi ne- to course-
grained sandstone interval found in wells com-
pleted in the Lower Dakota Aquifer. A potentio-
metric surface map was made by contouring the 
mean static water levels collected from 1912 to 
1996 from wells completed in the Lower Dakota 
Aquifer. The average hydraulic conductivity was 
multiplied by the cumulative thickness of the 
Lower Dakota Aquifer to produce a transmis-
sivity map layer. The transmissivity map layer 
was then divided by the average well function to 
produce a specifi c capacity map layer. A poten-
tial drawdown map was made by subtracting the 
elevation of the top of the Lower Dakota Aquifer 
from the elevation of the aquifer’s potentiometric 
surface. An additional drawdown map depicting 
50% of potential drawdown was made by divid-
ing the previous potential drawdown map layer 
by 2. The potential yield map was made by mul-
tiplying the specifi c capacity map layer by 50% 
of the potential drawdown, then multiplying by a 
50% well effi ciency.

Estimated potential yields to wells completed 
in the Lower Dakota Aquifer exceed 500 gpm 
throughout much of the study area, and yields of 
greater than 1,500 gpm are possible in much of 
the western and north-central portions of the study 
area. Greater yields may be possible if more than 
50% of potential drawdown is acceptable.

Previous work has shown that some pumping 
test data may be infl uenced by variations in aqui-
fer characteristics. It was suggested that shale or 
mudstone lenses in the aquifer may slow the re-
sponse of observation wells located at relatively 
large distances from production wells, resulting 
in low estimates of how much water the aquifer 
can transmit, even where thickness and overall 
textural properties of the aquifer appear to be 
relatively uniform. This heterogeneity of aqui-
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fer materials may limit the usefulness of existing 
pumping-test data, and suggests that the location 
of observation wells should be carefully consid-
ered when designing future pumping tests.

The water level records used to generate maps 
for this report are probably not adequate for 
evaluating long-term water level changes in the 
Lower Dakota Aquifer. Comparison of water-lev-
el data from the Lower Dakota Aquifer in this re-
port, with data from the Dakota Aquifer collected 
in the late 1970s suggests that generally, water 
levels are similar. Comparison of the 1970s data 
with historic records on a regional scale suggested 
that water levels in the aquifer were not rising or 
falling at a detectable rate at that time, although 
a few local areas appeared to have experienced 
long-term water-level declines due to pumping by 
high-capacity wells. The extent and magnitude of 
the declines were not well known. As discussed, 
the potentiometric map presented in this report is 
representative of average water levels collected 
from 1912 to 1996. For areas where water use has 
remained relatively constant, the map is probably 
representative of current water levels, but for ar-
eas where water use has increased signifi cantly, 
water levels may be lower than those shown on 
the map. The establishment of a comprehensive 
long-term monitoring network would be useful 
for identifying signifi cant long-term changes in 
water levels in the aquifer brought about by fu-
ture increases in water production.

The intensity and patterns of water demand in 
Iowa have changed over the last 20 years and will 
probably change much more in the next 20 years. 
Currently about 80 percent of Iowans depend on 
groundwater for their drinking water supplies. 
An updated comprehensive water resource evalu-
ation is needed to produce accurate forecasts 
of water availability, quantity and quality, and 
to avoid long-term water shortages and prevent 
confl icts between water users in the future. The 
revised evaluation will quantify what is currently 
available in Iowa’s aquifers, show water level 
trends over time, document current levels of use, 
and most importantly, make it possible to create 
reliable projections for sustainable water use into 
the future.

In recent years, watershed assessments have 
become the preferred approach to natural re-
source management and addressing water qual-
ity problems. It should be understood that water-
sheds extend below the land surface and include 
the movement of groundwater beneath them. To 
improve water quality within a watershed, one 
fi rst needs to understand how the water moves 
through the watershed over the land and through 
the underlying geologic framework of soil and 
rock. It is essential that watershed assessments 
extend below the land surface and include the 
movement of groundwater through time because 
contaminants can travel with groundwater be-
neath the land surface and eventually be deliv-
ered back into streams and lakes.

Everything we do on the land affects the qual-
ity and quantity of our water resources and the 
natural systems around us. As a result, our natu-
ral resources and the quality of our lives are di-
rectly affected by the way we plan for and man-
age our land and waters. A better understanding 
of groundwater within its geologic framework 
and its interaction with surface water will lead to 
better use, protection, and management of Iowa’s 
most valuable natural resource.

The geologic container that holds Iowa’s wa-
ters may seem static, yet it is rather dynamic. The 
quantity and quality of water that is continually 
added and removed from it are constantly chang-
ing, as are demographic and climatic trends. One 
of the few certainties in life is the continual need 
for clean water. The key to a comprehensive and 
integrated Water Resources Management program 
is to update the plan regularly to accommodate 
demographic and climatic trends, and account for 
changing patterns of land and water use as they 
emerge. An updated Water Resources Manage-
ment plan will help us make well informed, pro-
active decisions about how we our use our water 
resources as our knowledge of them improves.



25

ACKNOWLEDGEMENTS

This report utilizes geologic and hydrologic data collected by well drillers, staff of 
the United States Geological Survey, Water Resources Division, and staff of the Iowa 
Department of Natural Resources, Iowa Geological and Water Survey.

The geologic samples, water levels, and pumping tests that the maps in this report are 
based on were collected over many years by numerous individuals from private, public, 
and government sectors from public and private wells across northwest Iowa.  Most of 
the information is from public water supply wells, but data from a variety of projects, 
including aquifer and water studies are also included in the map layers.  Most geologic 
samples are collected by well drillers during well construction, and while fewer in 
number, outcrop observations provide important information that can not be derived 
from well cuttings.

The Iowa Geological and Water Survey Editorial Committee reviewed, and provided 
grammatical suggestions for this report, Mary Howes provided GIS assistance, and Pat 
Lohmann formatted the report.

This report is a component of the new Water Resources Management program, which is 
being funded by legislative approval of a one-time appropriation of funding to support 
water resource studies in Iowa.  Currently, efforts are underway to secure sustainable 
funding for continued study and management of Iowa’s water resources through an 
improved water resource permitting system.

Iowans are responsible for infl uencing their legislators to fund natural resource programs 
and associated studies.  They are often important cooperators involved in these studies, 
and hopefully they are the main benefactors of the research.  Many thanks to those who 
have granted us access over the years, and allowed us to study their natural resources.



26



27

REFERENCES

Burkart, M.R., 1984, Availability and quality of water from the Dakota aquifer, northwest Iowa: 
U.S. Geological Survey Water-Supply Paper 2215, 65 p.

Gannon, M.J., Witzke, B.J., Bunker, B.J., Howes, M.R., Rowden, R.D., and Anderson, R.R., 2008, 
Groundwater Availability Modeling of the Lower Dakota Aquifer in Northwest Iowa:  Iowa 
Dept. of Natural Resources, Iowa Geological and Water Survey, Water Resources Investigation 
October 2008, Report 1A, 130 pages.

Munter, J.A., Ludvigson, G.A., and Bunker, B.J., 1983, Hydrogeology and stratigraphy of the Da-
kota Formation in northwest Iowa:  Iowa Geological Survey, Water Supply Bulletin Number 13, 
55 p., 6 pl.

Prior, J.C., Boekoff, J.L,   Howes, M.R., Libra, R.D., and VanDorpe, P.E., 2003, Iowa’s Groundwa-
ter Basics:  Iowa Dept. of Natural Resources, Iowa Geological Survey Educational Series 6, 83 
pages.

Rowden, 2008, Groundwater Quality Evaluation of the Dakota Aquifer in Northwest Iowa:  Iowa 
Dept. of Natural Resources, Iowa Geological and Water Survey, Water Resources Investigation 
October 2008, Report 1C, ?? pages.



26



26



Iowa Department of Natural Resources
Geological and Water Survey

109 Trowbridge Hall
Iowa City, Iowa 52242-1319

(319) 335-1575
www.igsb.uiowa.edu


