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WATER VAPOR - SODIUM MONTMORILLONITE INTERACTION 

by 

G, L. Roderick and T. Demirel 

SYNOPSIS 

The investigatiOn of water vapor with sodium montmorillonite was in­

vestigated with X -ray diffractiOn and sorption isotherm (gravimetric method) 

experiments. Expansion of the montmorillonite occurs in three increments. 

The data suggest interlayer water builds up in a laminar fashion. The 

hysteresis of sorption isotherms is apparently due to the formation of a 

thixotropic structure and to attractive interlayer forces. BET parameters 

from adsorption isotherm data reflect adsorption only on external surfaces, 

Free energy data, computed from adsorption isotherm data, and X-ray 

data allow separation of the free energy change on adsorption into two 

components: one for a_dsorption on external surfaces, and one for adsorp­

tion on and separation of internal surfaces. The data also permits the 

estimation of swelling pressures exerted by sodium montmorillonite due to 

the uptake of interlayer water from the vapor phase. 
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WATER VAPOR - SODIUM MONTMORILLONITE INTERACTION 

by 

G. L. Roderick and T. Demirel
1 

INTRODUCTION 

Clay-water systems are of prime importance in the engineering 

usage of soils, as for example in the prediction of bearing capacity, 

skin friction on piles, or settlement. Past research on these matters 

has emphasized mechanical aspects of soil-water systems. It has been 

recognized, however, that some problems such as secondary consolida­

tion, swelling pressures and cohesion are not solvable by a mechanistic/ 

approach. Therefore, it appears that a more fundamental knowledge of 

the clay-water system is essential for understanding and predicting the 

soil mechanics behavior of clays. 

The objectives of this study were to obtain some fundamental 

knowledge of the sodium montmorillonite - water system from successive 

adsorption -desorption isotherms of water vapor on the montmorillonite, 

and from X -ray diffraction data obtained during adsorption and desorption. 

1 Assistant Professor of Civil Engineering, University of Rhode Island, and 
Associate Professor of Civil Engineering, Iowa State University, respectively 
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EXPERIMENTAL 

Material 

Sodium montmorillonite was chosen as the material for this investi­

gation since the expansive clays are the most troublesome in soil engineer­

ing practice. Also, this choice provided the opportunity to study the 

phenomenon of interlayer adsorption of water. 

The homoionic sodium montmorillonite sample was prepared from a 

commercially available Wyoming bentonite, Volclay-SPV produced by the 

American Colloid Company, by ion exchange as described in detail 

elsewhere (1 , 2). 

Methods of Investigation 

Sorption isotherm study 

Sorption isotherms of water vapor on sodium montmorillonite were 

determined by gravimetric method (3) . Fig. 1 is a schemactic repre senta­

tion of the adsorption apparatus. Bulb "A" was the permanent water 

reservoir vapor source. "B" was a simple mercury manostat-manometer 

combination for transferring vapor into the adsorption chamber "C" and 

for measuring vapor pressures. Mercury in "B" could be raised or 

lowered through air trap "D" into the mercury reservoir "E". All glass 

parts were pyrex; all stopcocks were mercury-sealed, and high vacuum 

silicone grease was used at all joints . A McBain-Bakr quartz spring 

balance "F" was suspended into the adsorption chamber from a mercury 

sealed ground glass stopper, and a thin walled glass tubing sample 
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holder "G" was suspended from the balance hangdown loop. The water 

reservoir, manostat-manometer and adsorption chamber were immersed 

in a water thermostat maintained at 24.4° C. The apparatus was con-

nected to a high vacuum system by means of a mercury-sealed stopcock. 

The sodium montmorillonite sample, in the sample holder, was 

dried for several weeks in an evacuated desiccator containing phosphorous 

pentoxide . The initial sample weight was found to be 1 58. 7 mg with a 

certified analytical balance. The sample was then placed in the adsorp-

tion chamber which, after a brief evacuation, was closed off by the 

manostat while the triple distilled water in the reservoir was degassed by 

a repeated freezing-pumping -thawing process. With the reservoir 

closed off from the system, the adsorption chamber and sample were 

-5 
degassed by pumping at 1 0 mm Hg for several days. The manostat 

was then closed, the vacuum system closed off and the water reservoir 

opened to allow water vapor into the right side of the system. 

After thermal equilibrium at 24.4°C was attained, an initial pres­

sure reading, p 
0

, was taken with a cathetorneter reading to 0 . 02 mm, 

and corrected for temperature, gravity and meniscus. An initial balance 

reading was made with an optical reader; one division on the reader 

corresponded to 0. 0239 mg of mass increase of the sample. A small 

increment of vapor was then transferred to the chamber through the 

manostat arrangement. Twenty-four hours were found to be sufficient 

time for the system to attain equilibrium. After this period the pres-

sure difference on the manometer and the spring balance extension were 
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measured. The equilibrium pressure, p, in the chamber was found by 

making the required corrections on the pressure difference observed and 

subtracting it from the saturation pressure , p
0

• The balance extension 

was converted to mass increase and divided by the initial sample weight 

to give the mass of vapor, q, adsorbed by one gram of montmorillonite. 

More and more vapor was transferr ed in the same manner until satura-

t ion pressure was attained. 

In the vicinity of saturation an additional technique was used. After 

the vapor transfer, a small amount of condensation was formed in the 

chamber side of the manometer by cooling with a few cc 's of cool water. 

Before saturation this condensation disappeared rapidly . At saturation 

the time for disappearance increased to several minutes. The mass of 

vapor adsorped just before and at saturation differ~d by less than 0.1%. 

The desorption isotherm was obtained by condensing more and more 

vapor back into the water reservoir by cooling it with water. The sample 

was pumped at relative pressures , p/p
0

, below 0.3. 

The adsorption apparatus, optical reader and cathetometer were all 

securely mounted on a r igid steel frame tie d to a heavy soapstone table 

top to prevent differential movements. The experimental error in deter-

mining p/p was cal culated to be + 0.003 for all pressure ranges. The 
0 -

-5 
experimental error in determining q was found to be ± 3x 1 0 gm/ gm at 

-4 
low pressures and± 3x1 0 gm/gm near saturation pressure. 

X -ray diffraction study 

The apparatus used in the X -ray study consisted of a Rigaku -Denki 
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controlled atmosphere high temperature X -ray diffractometer attachment 

converted to serve as an adsorption chamber. The furnace and its sup­

port base were removed and a stainless steel sample holder (Fig. 2) was 

constructed to take their place. This sample holder could be aligned by 

using the translation, rotation and inclination controls provided for 

alignment of the furnace. The arrangement of the water reservoir source 

for vapor, the manometer for pressure readings, the mercury-sealed 

stopcock connection between the reservoir and adsorption chamber and 

the X-ray windows are shown in Fig. 3. The stopcock was fastened 

securely to a small brass cylinder which was in turn attached to a larger 

cylinder which fit snugly over the top of the adsorption chamber. A 

glass tube was attached to the exhaust port coupling by a kovar metal 

tube and supplied the connection between the adsorption chamber and the 

portable vacuum system. 

The X -ray windows were made of 0. 02 mm aluminum foil backed 

by a 1 /2 mil "Mylar" polyester film. If the aluminum foil alone were 

used pinhole leaks developed in the windows during the experiment . 

The adsorption chamber temperature was controlled by circulating 

water at constant temperature through the cooling tubes provided in the 

top and bottom portions of the apparatus. The constant temperature 

water was also circulated through a cooling coil fastened in a water 

filled dewar flask such that, when in position, the coil surrounded the 

water reservoir. In Fig. 3 the flask is shown to the left of the ap­

paratus. The constant temperature water source was thermostatically 
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Fig. 2. Sample holder for the 
X-ray diffract ion study 

Fig. 3. Apparatus for the X-ray 
diffraction study 
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maintained at 22. 99°C . The measured temperature in the dewar flask 

enclosing the water reservoir was 23. 2°C during all readings. 

A suspension of the sodium montmorillonite was pulled, by a water 

aspirator, through .:~. 30 mm diameter medium porosity fritted glass 

disc so that a .dn layer of the clay was deposited on the disc. The 

sample war dried in an evacuated desiccator containing phosphorous 

pentoxV ~. It was then placed in the sample holder and the top cover of 

thE> ... pparatus was positioned. The triple distilled water in the reservoir 

..vas degassed by a repeated freezing-pumping-thawing process. The 

stopcock was kept closed while the sample was pumped for several days 

-4 
to 1 0 rpm Hg. The connection between the adsorption chamber and 

the vacuum train was cut and sealed; the apparatus was connected to the 

constant temperature water circulation system, placed on the General 

Electric XRD-5 Diffractometer and the sample aligned. When thermal 

equilibrium was attained the sample was X-rayed with copper Ka radia­
o 

tion and five traces of the initial 9 . 82 A 001 peak obtained. A mano-

meter reading was taken, with a mircometer slide cathetometer 

reading directly to 0.001 mm, and corrected for temperature, gravity 

and meniscus. 

After getting initial peak and pressure readings, the stopcock was 

partially opened to allow a small increment of water vapor into the 

chamber. After a period of 24 hours the pressure difference and the 

new peak position were observed. Each new peak position was re-

corded five times. In this manner more and more water vapor was 
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transferred to the chamber until the saturation pressure was reached. 

Desorption was accomplished by condensing vapor back into the water 

reservoir by cooling it with ice water until a p/p
0 

of 0. 3 was reached, 

and by freezing with a dry ice -acetone mixture to a p/p 
0 

of 0. 03. The 

vacuum system was used to pump out the last increment. 

The experimental error in determining p/p
0 

was calculated to 

range from+ 0.007 at low pressures to + 0.003 near saturation. 

PRESENTATION AND DISCUSSION OF RESULTS 

X -ray Diffraction Study 

The first order basal spacings and the widths of the observed 

diffraction peaks obtained for two cycles of adsorption-desorption of 

water vapor on sodium montmorillonite are plotted against the relative 

pressure at which they were observed in Fig. 4. The points plotted 

are the average of five observations for each determination . The ac-

curacy with which individual observations could be made depended on 

the size of the diffraction angle and on the sharpness of the peaks ob-

tained, which varied with the relative pressure . The average variation 

from the average value for five observations of the basal spacing were 
0 0 

less than ± 0.1 0 A, with a maximum variation of + 0. 25 A at small 

angles; for line widths the variations were from + 0.01 to + 0.10 de-

grees. The line widths of the diffraction peaks obtained were taken as 

the peak width at half-maximum intensity (4) .. 

A shift of the adsorption curve for the second cycle from the 
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position of that for the first may be noted on Fig. 4. The same be-

havior was observed with an earlier sample used in incompleted runs. 

The first adsorption curve followed the present one very closely up to 

a p/p of 0.70 when a leak developed in the X-ray window. Another 
0 

incomplete run with the same sample showed a shift to a position be-

tween those shown in Fig. 4, somewhat closer to the curve for the 

second run. After solving the leakage problem a new sample, from 

which the present data was obtained, was placed in the apparatus. 

Figure 4 shows the initia l average basal spacing was not at-

tained on desorption, indicating some water was left entrapped in the 

interlayer r egions . Perhaps this remaining water, with the accompanying 

greater average spacing, affected the pla tele t interactions such that 

separation of the layers could more readily occur, as shown by the 

second curve started after a brief period of degassing .. 

Since the initial adsorption curves for two samples were very 

nearly the same, and since the procedure for reaching the initial 

sample condition was the same as in the adsorption isotherm study, 

discussions in this report will be based primarily on the initial ad-

sorption curve for X -ray data. 

Hendricks and Jefferson (5) have shown that theoretically the X-ray 

diffraction from a powder should show basal spacing varying continuously 

with water content. Hendricks et al. (6) found this to be so in their 

study. The data of the present study, Fig. 4, shows that the change 

in average basal spacing takes place in a continuous but non -uniform 
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manner with changes in r elative pressure. The continuity is apparently 

due to the simultaneous existence of varying numbers of molecular layers 

of water betwee n clay pla telets 0 The line width versus relative pressure 

data substantiates this conclusion. The variations in widths of the ob­

served diffraction peaks are in part due to the lack of constancy of 

inte rlayer spacing (4, p o 51 7) and give an indication of the relative 

amount of layers at the various spacings (7) 0 Minimum line widths 

correspond to basal spacings on the flat portions of the curve of Fig. 

4, and indicate that most of the clay platelets are nearly at the ob­

served spacings 0 

Data for the desorption runs were not extensive enough to deter­

mine the shapes of the desorption curves of Fig. 4 as well as could be 

done with adsorption data 0 The data for basal spacings and line widths 

were fairly close for the two cycles and the desorption curves were 

sketched using the data for both cycles 0 

The quality of the intensity of diffraction peaks obtained did not 

permit more than a rough analysis 0 In general , the intensity increased 

as more water vapor was adsorbed and the basal spacing increased 0 

This is consistent with the observations of others (8 , 9) 0 

Comparison with data of other investigators 

Figure 5 presents the basal spacing versus relative pressure data 

of Hendricks et al. (6) , Mooney e t al. (1 0), Gillery (11 ), Demirel (1) 

and Messina (1 2) for various sodium mont~orillonites 0 Considerable 
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scatter of the reported data is apparent. The solid curves trace the 

first adsorption -desorption cycle of the present study. This loop en -

closes most of the data presented. 

Mooney et al. (1 0) used the data of Hendricks et al . (6) and their 

own to determine the stepwise curve presented in Fig. 5 . . Hendricks 

et al. used initially dry samples (dried over phosphorous pentoxide in 

vacuum), which were exposed at 30°C to water vapor, at various rela-

tive humidities ranging from 0. 05 to 0. 90 for a week or longer to at-

tain equilibrium. Mooney et al. used samples taken from their ad­

sorption apparatus during desorption at 20°C. In their fi rst paper 

Mooney et al. (13) found that the desorption isotherms were reproducible 

provided the adsorption curve was carried up as high as the final 

steeply-rising section. In their second paper (1 0, Fig. 4) the first 

point of their desorption curve for sodium montmorillonite is at a 

p/p of about 0. 95. Since this is in the range of the final steep portion 
0 

of the adsorption curve, perhaps they began desorption before satura-

tion pressure was attained. Figure 4 of the present study shows that an 

additional increment of layer separation occurs at relative pressures 
0 

above 0 . 95; at 0. 95 the basal spacing observed was 1 5. 6 A . If Mooney 

et al. b~gan their desorption at a relative pressure of 0. 95, their curve 

should begin at this spacing. Figure 5 shows that the initial flat portion 
0 

of their desorption curve is at 1 5. 5 A. The low position of their de-

sorption curve as compared to that of the present study may, therefore, 

be due to failure to attain saturation pressure and the final increment of 
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expansion on adsorption. This, as well as the shift in the adsorption 

cur ve due to insufficient desorption as discussed earlier, would seem 

to demonstrate the importance of the initial conditions of the samples. 

The methods of controlling and determining relative pressures 

and temperature varied considerably for the investigations cited (1 , 6, 

1 0, 11, 12). This may account, to some degree , for the scatter in 

the reported data. Demirel (1) equilibrated his samples, at room 

temperature, over appropriate saturated salt solutions in vacuum 

desiccators, and maintained the proper relative humidity by placing a 

plexiglass hood over the sample and appropriate solution during expo­

sure to X rays. Considering the differences in procedure, the data 

of Demirel is in good agreement with the adsorption data of the present 

study. Since the material used in the two studies was the same, this 

would seem to demonstrate the importance of the source of the material 

and the method of preparation. 

From comparison of the X -ray data presented in the literature it 

was concluded that the major factors responsible for the scatter ob­

served are: a) the initial conditions of the sample at the start of the 

test; b) the source and method of preparation of the material; and c) 

whether data is collected during adsorption or desorption. In cor­

relating X -ray results with other methods of investigation care should 

be taken to assure that the material and test conditions are as nearly 

the same as possible. 
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Arrangement of interlayer water 

As adsorption on the internal surfaces of montmorillonites pro-

ceeds the molecular layers of water build up either iri laminae or in 

another spatial geometric arrangement. Hypothetical configurations for 

the water adsorbed on the clay surface have been postulated by several 

investigators \14, p. 162). 

Winterkorn (15) emphasizes the dipole character of water and 

states, "The large adsorption forces exerted on water molecules by the 

surface of solid soil particles act similar to externally applied pres-

sures ..•..... ". He postulates on the basis of the high pressure side 

of the phase diagram of water that pressures from adsorption "may 

liquify solid water or solidify liquid water". Thus, according to 

Winterkorn the water held on the surfaces of solid soil particles is in 

a physical state corresponding to either liquid water if the moisture con-

tent is high, or to one of the five crystalline forms of ice if the mois-

ture content is low. 

Hendricks, and Jefferson (5) hypothesized that an extended hexa-

gonal net of water molecules is hydrogen-bonded to the clay mineral 

surface. Successive hexagonal nets build up on each other by being 
0 

hydrogen-bonded to the previous one. Taking 2.76 A as the thickness 

of a water molecule (16, p. 464), their hypothesis results in a lami­
o 

nated Stacking causing a, separation of 2. 76 A for each molecular layer 

of water. 

Macey (1 7) noted the lattice similarities between the basal planes 
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of ice and of clay minerals. He suggested the ice structure develops 

on clay mineral surfaces with the hexagonal molecular configuration 

of the basal plane of ice . This structure tends to build outward from 

the surface. Forslind (1 8) suggested the same ice structure postulated 

by Macey but based his argument on the Edelman- Fa ve jee structure 

rather than the Hofmann -Endell - Wil111 structure of montmorillonite. 

Demirel (1) presented two ways in which the ice structure may 

develop in the interlayer regions. Using data reported in the litera-

ture and his own for various species of homoionic montmorillonites, he 

found evidence to support the buildup of an ice structure in which the 

first hexagonal network is shared by two montmorillonite platelets 
0 

causing a separation of 2. 76 A; two hexagonal networks are stacked and 
0 

held by the two s ilica surfaces causing a separation of 5. 52 A; the 

third and fourth molecular layers of water fill in between the hexagonal 

networks forming tetrahedrons with the water molecules of the net-

work. A complete unit cell of ice is formed with the entrance of the 
0 

fourth molecular layer of water, causing a separation of 7. 36 A. The 

fifth and sixth layers of water enter between the unit cell of ice a nd 

the clay surfaces, forming hexagonal networks and causing separations 
0 

of 1 0. 1 2 and 1 2. 88 A, respectively. 

Barshad (19) suggested an arrangement which becomes progres-

sively dense r with addition of water . He postulated arrangements for 

water molecules that would give various increases in basal spacing for 

each additional molecular layer of water, depending on the position of 
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water molecules with respect to the basal oxygens of the clay surface 

and to water molecules of previously adsorbed layers. The first 
0 

layer would give spacing increases of 2. 76 or 1. 78 A; other layers 
0 

would give increases of 2. 7 6 or 2. 09 A. 

The continuity of the basal spacing versus relative pressure 

curve of the present study has been attributed to the simultaneous 

existence of clay platelets separated by various molecular layers of 

water. If all of the interlayer water has been removed at zero rela-

tive pressure, a sharp peak will be observed corresponding to the 
.. 0 

collapsed basal spacing of sodium montmorillonite, about 9. 60 A (20). 

As the relative pressure increases some water begins to penetrate 

between some of the clay layers. If it is assumed that at low rela-

tive pressures the system consists primarily of layer spacings cor-

responding to zero and one molecular layers of water between plate-

lets, i.e., that the contributions of layers separated by 2, 3 or more 

molecular layers of water to the observed diffraction peaks are 

negligible, then the system may be treated as a random interstratifi-

cation of two components. At somewhat higher relative pressures the 

observed peaks may be treated as composite peaks from another ran-

dom two component system, one component corresponding to one mole-

cular layer of interlayer water and the other to two such layers. This 

may be extended to higher increments of expansion. As the relative 

pressure increases, the relative proportions of the two components 

change and the observed diffraction peaks migrate from the position 
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of the first pure component, A, toward that of the other pure component, 

B. According to MacEwan, Amil and Brown (7), in a preliminary anal"'" 

ysis there will be no great error in assuming that the peaks move 

linearly between the two pure component positions. When the distances 

from the observed peak to the A and B positions are x and y, respec­

tively, the proportion of component A is deduced to be yj(.x + y). As 

the observed peak migrates from the A position it first becomes diffuse 

and then sharper again as it approaches the B position. Taking the 

line width to be a function of the nonconstancy of layer separations, 

we would suspect that a maximum width would correspond to the most 

random distribution of the two layer separations and that this would 

occur when the relative proportions of the two components are nearly 

equal. Although this conclusion may not be strictly true (7), it is felt 

that assuming the maximum line width corresponds to an A/B ratio of 

one will be in no greater error than that in assuming the peak migra­

tion to be linear. 

If it is assumed that : a) the system of the present study may be 

treated as a random interstratification of two components; b) peak mi­

gration between pure component positions is linear; and c) maximum 

line widths occur when the relative proportions of the two components 

are equal, the line width and basal spacings data of this study may be 

used to test possible arrangements for the inte rlayer water that 

have been postulated by others. The minimum line widths should 

correspond to a basal spacing near that calculated from the proposed 
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arrangement for an integral number of molecular layers of water be-

tween clay platelets. If assumptions b and c hold, the maximum line 

widths should occur at a basal spacing which is the average of those 

calculated for two successive layers of water between platelets. 

The observed basal spacing and line widths for the first adsorp­
o 

tion run are plotted against one another in Fig. 6. Using 9 . 60 A as 

the collapsed basal spacing of sodium montmorillonite, the basal 

spacings for integral numbers of molecular layers of water between 

platelets and the averages of each two successive spacings were 

calculated for the various postulated interlayer water arrangements. 

At low pressures the values obtained for the laminated structures 

and the ice-like structure of Demirel (1) showed the best agreement 

with experimental data; the values calculated for these arrangements 

are presented in Table I. 
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Table I. Calculated first order basal spacings of sodium montmorillonite 

Laminated, stacking Ice -like arrangements 
arrangement of water of wate r molecules 

Number of Calculated Average, two Calculated Average, two 
molecular basal succ~ssive R. basal succ~ssive R. 
layers of spacings, R spacmgs, spacing, ~ spacmgs, 
water 

0 9 . 60 9.60 
10. 98 10.98 

12.39 12.36 
13 .74 13.74 

2 15.12 15.12 
16.50 13.74 

3 17.88 15 . 12 
19 .26 16.04 

4 20 . 64 16.96 
22.02 18.34 

5 23.40 19. 72 

The first maximum line width occurs at a basal spacing of about 
0 0 

11 . 0 A, very near the 1 0 . 98 A average calculated for zero and one 

molecular layers of water . The first minimum line width occurs at 
0 0 

about 1 2. 5 A, which is close to the calculated value of 12 .36 A for 

one molecular layer of water. Although the observed data is scarce, 
0 

the second maximum line width appears to be at about 14 A which is 
0 

reasonably near the 13 .74 A average for one and two layers of 
0 

water. The second minimum line width is at about 15.5 A, somewhat 
0 

higher than the 15 . 12 A calculated for two layers of water . The 

higher than expected basal spacings corresponding to the observed 

line width minima may be due to failure of the assumption of a 



24 

two- component s ystem in the region near the peak position for a pure 

component (a ll pla te le ts at o ne spacing ) . As the peak position ap-

proaches t hat for a pu re component t he number of platelets at the 

next i nc rement of expans ion increase and most probably their contri -

bu tio n s to the observed peak are no longer negligibl e . Therefore , the 

system in t hi s reg ion is li kely to be one of three rather than two com-

ponent s a nd t he observed minimum line w idth may we ll occur at a 

s l ightly highe r averag~ ba sal spacing. 

The rest o f t he data pl otted in Fig . 6 are not very conclusive . 

The X-ra y data in th is reg ion are a ll in t he p/p0 range of 0 . 97 t o 

1. 00 a nd a re quite c rowded . However , Fig . 6 does show that a 

probable maximum l ine width does occur a t a basa l spacing greate r 
0 0 

than a bout 16 .7 A. This is c loser to the 16 . 5 A averag e calc ula t e d 
0 

for lami nated s tructures tha n it i s to t he 16 . 04 A average for the ice 

s t ruc tu re . The l ast g roup o f points in Fig. 6 suggest a minimum line 

widt h may occur at an average basal spac ing of slightly less than 
0 0 

.18 A. Again, t hi s i s neare r t he 17 . 88 A c alcu l ated for t hree 

molecula r l a ye rs of water in a la mina ted st ructu re t han it i s to t he 
0 

16 .96 A ca lc ulated for four molecul a r l ayers of water in an ice 

s tru c ture. Mo re e xt ens ive d ata at hig h relative pressures are 

needed for a definite conclus ion to be drawn . Smaller increments of 

vapor t ra n s fer a t high re la tive pressures may enhance t he line width -

basal spacing re lations hip in thi s region. 

The data o f th is s tudy gives evidence of the formation of a 
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laminated arrangement of the interlayer water rather than an ice 

structure for sodium montmorillonite with up to three layers of water. 

The arrangement in individual layers of water can not be ascertained 

from this data. More detailed studies with sodium montmorillonite, 

and with other materials such as calcium montmorillonite, may give 

more complete evidence . Also, better data on the intensity of dif-

fraction peaks may be helpful. Other methods of investigation, e . g . , 

nuclear magnetic resonance studies, heat capacity studies, etc. may 

also enable more definite conclusions to be drawn. 

Sorption Isotherm Study 

Figure 7 is a plot of the sorption isotherms for three succes-

sive adsorption -desorption cycles. The adsorption and desorption 

branches fall in different regions of the plot, illustrating the hysteresis 

expected with porous absorbents (3). 

The data of the present study show that the adsorption branch 

is more closely reproduced on successive runs than is the desorp-

tion branch. After a p/p value of about 0. 28, the adsorption curves 
0 

for the first and third cycles follow one another very closely, within 

the expe rimental error given previously. The desorption curves for 

these two cycles are not in as good agreement until relative pres-

sures below 0. 30 are reached. Neither the adsorption nor desorption 

branches for the second run, which began at a higher va lue of q, 

agree very well with those for the other cycles. If the isotherm for 
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Fig. 7. Adsorption and desorption isotherms of sodium montmori llonite 
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the second cycle is started a t the origin the agreement is much better for 

adsorption than for desorption. The data suggest that the adsorption branch 

may be the true equilibrium c urve. This would ~e in agreement with the 

"ink bottle " theory of McBain (21) ar,d the ."opel'. pore" theory of Foster (22) 1 

both of which explain the hysteresis on the basis of the shape and arrange­

ment of the pores in whic h capillary condensation takes pl ace. 

Barrer and MacLeod (23) studied the adsorption of various non-polar 

and polar gases and vapors I including water vapor I by a sodium-rich 

montmorillonite, and gave an explanation for the hysteresis observed when 

polar vapors are adsorbed in the interlayer regions . When nucleation of 

an adsorbate ric h phase occurs around the periphery of crystallites it 

must be associated with strain and interfacial free energ ies I which s l ow 

down the free deve lopment of the adsorbate-rich phase until the pressure 

has exceeded the va lue for true the rmodynamic equilibrium between the 

vapor and separated montmorillonite layers with and without interlayer 

adsorbate. On desorption the development of the adsorbate-poor phase .in 

the interlayer regi on is delayed by strain and interfacial free energy until 

the pressure ha s fallen below that for true equ ilibrium I and a hysteresis 

l oop is observed. 

Hirst (24) a l so developed a similar expl anation for hysteresis 

associated with interlayer adsorption . Attractive forc es between layers 

prevent penetration of the adsorbate until a threshold pressure is 

reached . These forces a re then overcome by forces leading to penetration 

and the layers separate to admit a laye r of adsorbate. On desorption 
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the layers are initially separated and their attractive interaction 

weakened while the forces tending to separate them are high. The 

layers can not come together until the amount of interlayer adsorbate, 

and thus swelling pressure, are substantially reduced. Therefore, a 

hysteresis loop is observed. 

According to Brunauer-(3, p. 409) the adsorption process most 

probably causes a change in the pore volume which may be either 

reversible or irreversible. This may result in different pore ar-
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rangements in the external surfaces of the montmorillonite and may 

account for the difference in the adsorption curves prior to a rela-

tive pressure of about 0 . 28 for the first and third cycles . X -ray 

diffraction data show that at a p/p of about 0. 28 the basal spacing 
0 

begins to increase rapidly with increasing p/ p
0

• It is in this region 

that the adsorption curves begin their agreement, suggesting that the 

effect of the interlayer surfaces far outweighs that of the external 

surfaces . 

The general shape of the adsorpt ion and desorption isotherms in 

Fig. 7 is very similar to those presented elsewhere (1 , 1 3, 23, 25). 

Figure 4 shows that the steeper portion between p/p of 0 . 25 and 
0 

0.45 on Fig. 7 corresponds to the first increment of layer separation. 

The steeper portion of the isothe rm beginning at a p/p
0 

of 0 . 65 cor-

responds to the second increment of layer separation . The argument 

proposed by Barr er and MacLeod explains the form oL the adsorption 

isotherm of this study. The initial water adsorbed is mainly con-

fined to the external surfaces of the clay. After a n approximate 

threshold pressure is reached the water molecules penetrate more 

freely between clay sheets and cause separation . With water vapor, 

a second stage of interlayer adsorption occurs and is reflected by 

the second steeper portion of the isotherm . As p/p
0 

approaches 1 . 0 , 

capillary condensation occurs. The X - ray data show that a third 

increment of layer separation also occurs at high relative pressures. 

The desorption isotherms show a pronounced dip in the r elative 
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pressure range of 0.65 to 0.30. This is also shown in data of others 

(13, 23, 25). Barrer and MacLeod attribute the steep portion of this 

dip to the removal of interlayer adsorbate; the process occurring at 

an approximate threshold pressure below that for the adsorption curve. 

The X -ray data of the present study show that the basal spacing re-
0 

mains nearly constant at 16 A in the relative pressure range 0. 65 

to 0.50 corresponding to the steep portion of the dip. This would 

indicate that the greater portion of the water being desorbed is from 

the external surfaces. 

Barrer and MacLeod (23) observed hysteresis loops for the 

adsorption -desorption of non -polar gases and vapors on their 

montmorillonite. Since these adsorbates were adsorbed only on ex -

ternal surfaces, the reasons given for hysteresis with polar adsorbates 

are not applicable. They suggest that when the clay is lubricated by 

a film of capillary condensate some of the clay particles are 

drawn by surface tension forces into a thixotropic structure . This 

more regular array then retains capillary condensed adsorbate more 

firmly than would a purely random array. When the film of conden-

sate becomes sufficiently dilute it ceases to lubricate and hold the 

thixotropic structure together. The array then becomes more random 

again and must give up the r emaining condensate. The desorption 

isotherm becomes steeper and, with non-polar adsorbates, closes the 

hysteresis loop. 

In view of the X -ray data of the present study, it is proposed 
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that the above argument may be applied to the desorption of water 

vapor in the relative pressure range of 0. 65 to 0'. 50.. The steep 

portion of the isotherm in this range is, therefore, due to the 

destruct ion of a thixotropic structure with its accompanying release 

of capillary condensed water. The X -ray data show that removal 

of the last layer of interlayer water corresponds to a steep portion 

of the desorption isotherm beginning at a p/p 
0 

of about 0 . 30. The 

hysteresis explanations of Hirst (24) and of Barrer and MacLeod (23) 

are applicable in this region. 

Figure 7 shows that the desorption branches for the first and 

third cycles do not come back to the initial q value, but that the 

desorption branch of the second cycle does reach this value. A 

possible explanation for the more complete desorption for the second 

cycle is proposed . Figure 7 shows a break in the second desorption 

curve at a relative pressure of about 0. 25. At this point no vapor 

transfers were made for a period of 18 days, after which it was 

observed that the sample had desorbed more water and the relative 

pressure had increased as shown by the shift (dashed line) to a posi­

tion lower andi: to the right. Two more days disclosed no additional 

change. The next vapor transfer caused a shift down and to the 

left (second dashed line) in one day . Before the 18 days with no 

vapor transfers it appeared that the second desorption curve was ap­

proaching the path followed in the first run and later followed in the 

third cycle . However, after the idle period the desorption curve 
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became steeper and the zero value of q was attained with relative 

ease. On the third run, with no prolonged non-vapor-transfer 

period, a special effort was made to reach the initial value of q. 

Even with a final p\lmping period extending over a period of three 

weeks the value of q could not be brought substantially lower than 

that attained on the first run. This suggests that the remaining water 

was trapped in external pores (such as McBain's "ink bottle" pores) 

and/or the interlayer regions. X -ray diffraction data, Fig. 4, indf­

cate that at a relative pressure of 0~25 the last layer of interlaye r 

water had started to be withdrawn. This is also shown by the data 

of Mooney et al. (1 O) and of Gi11ery (11 ) repr0duced in Fig. 5. The 

prolonged period of no vapor tran$fer may allow for particle rear­

rangement and for escape of water from pores and interlayer regions 

which would be blocked oft by contraction of the mass on further 

desorption. 

The behavior discussed above for a prolonged non ~vapor­

transfe;r period would indicate that equilibrium was not attained in 

the 24 hour period between vapor transfers, at least in that region 

of the desorption isotherm. There was a similar non-vapor-transfer 

period of 20 days, at a relative pressure of 0. 70 on the desorption 

curve, with no significant change in the location of the position ob­

served 24 hour::; after the vapor transfer, indicating equilibrium was 

attained in 24 hours . 

No relaxation of the type described here was observed for ad-
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sorption runs; 24 hours were enough for attainment of equilibrium. 

Application of BET Theory 

In the low pressure region the Brunauer, Emmett and Teller 

theory of multimolecular adsorption (26) predicts the adsorption equa-

p 1 C-1p 
tion will be ( = -- + -- - where q is the mass of q p - p) q C cq C p ' m o m m o 
vapor adsorbed when the solid surface is covered by a monolayer and 

C is a constant approximately equal to e (E1 - EIJ/RT, where E1 is 

the heat of adsorption of the first layer and EL is the heat of 

liquefaction of the vapor. 

The values of the BET function, ( p ) calculated from the 
q p - p 

0 

sorption isotherm data, are plotted against p/p 
0 

in Fig. 8 for the 

three sorption cycles. Generally, BET plots will have a straight 

line region only between p/p of 0.05 to about 0.3 (27, p. 481). 
0 

The cllrves of Fig. 8 show that a fairly straight line is obtained for 

the adsorption data between p/p of 0. 05 and 0.18. Comparison 
0 

with the initial adsorption curve for basal spacings, Fig. 4, reveals 

that at p/p
0 

of 0.18 the first increment of interlayer separation is 

just beginning. Therefore, it was concluded the linear portion of 

the BET plot represents adsorption taking place predominantly on the 

external surfaces of the montmorillonite, and the BET parameters qm 

and C represent the external surfaces. The values of these para-

meters are given on Fig. 8. 

The present BET plots show a hump at a p/p
0 

of about 0. 2 and 

another deflection point at a p/p
0 

of about 0.6 to 0.7. The X-ray 



33 

sorption runs; 24 hours were enough for attainment of equilibrium. 

Application of BET Theory 

In the low pressure region the Brunauer, Emmett and Teller 

theory of multimolecular adsorption (26) predicts the adsorption equa­

tion will be q(p P_ p) = q 
1 

C + ~ -C
1 

: , where qm is the mass of 
o m m o 

vapor adsorbed when the solid surface is covered by a monolayer and 

C is a constant approximately equal to e (E1 - EL)IRT, where E1 is 

the heat of adsorption of the first layer and EL is the heat of 

liquefaction of the vapor. 

The values of the BET function, ( p ) calculated from the q p - p 
0 

sorption isotherm data, are plotted against p/p
0 

in Fig. 8 for the 

three sorption cycles. Generally, BET plots will have a straight 

line region only between p/p of 0.05 to about 0.3 (27, p. 481). 
0 

The CJ.!rves of Fig. 8 show that a fairly straight line is obtained for 

the adsorption data between p/p 
0 

of 0. 05 and 0. 18. Comparison 

with the initial adsorption curve for basal spacings, Fig. 4, reveals 

that at p/p
0 

of 0,18 the first increment of interlayer separation is 

just beginning. Therefore, it was concluded the linear portion of 

the BET plot represents adsorption taking place predominantly on the 

external surfaces of the montmorillonite, and the BET parameters qm 

and C represent the external surfaces. The values of these para-

meters are given on Fig. 8. 

The present BET plots show a hump at a p/p
0 

of about 0.2 and 

another deflection point at a p/p 
0 

of about 0. 6 to 0.7. The X -ray 



. { 

( 

~ 

a. 
(l.l 

0 
a. 
0: 

15 

14 

13 

12 

II 

10 

9 

8 

7 

6 

0 

qm = 0.023 

I c = 15.7 

I 
I 

lsi CYCLE 
Adsorption -o--o-

Desorption ~ 

OL-~0~. 1--~Q72~0~.3~~Q~4~0~.5~0~.6~~Q~7~0L.8 __ 0~.9~~1.0 

P/Po 

14 

13 

12 

I I 

10 

/, 
9 of 

I 
8 ~ 

2>7 

I 

I 
I 

p 
I 

Om= 0.027 
1 c = 5.o 
I 

X 

I 
I 

/X 
x/ 

I 

/

X/ 

a. 0 

=: /;· 
./ 3rd CYCLE 

23 /x-x~ o ABSORPTION 

x DESORPTION 

0~~~~~-=~~~~~~~L_~. 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

P/P0 

34 

a. 

15 

14 I 
Om=0.027 I X 

r c = 5.0 

/ 
13 

f 
12 I 

II 
of 
I 

I 
10 I I x'x 

/ /X 
8 X 

X/ ~ 7 

~ 
6 .,. £(18 doy '"''' with oo X vapor transfere l 

X 

x-1 
2nd CYCLE 

0 ABSORPTION 

X DESORPTION 

0 
0 0.1 0.2 0.3 0.4 0.5 ').6 0.7 0.8 0.9 

P/P0 

Fig. 8. BET plots of sorption 
data for water vapor 
on sodium montmorillonite 

I 
1.0 



{ 

35 

data show that these correspond with the initial portions of the first 

and second increments of expansion. Appa rently the behavior is due 

to expansi.on ma king accessible surface areas not initially available 

for adsorption. 

The pronounced hump at a p/p of 0. 20 appears to be a charac-
0 

teristic which occurs only with sodium Wyoming montmorillonite 

(Volclay). The adsorption data of Hendricks ~~ .§:l· (6) for sodium 

Wyoming montmorillonite (Volcla y) yields a very similar hump, 

while their data for sodium Mississippi and California montmoril-

lonites do not. The data of Johansen and Dunning for sodium Wy­

oming montmorillonite (Volclay) would seem to be an exception; how­

ever, their data (25, Fig. 2) show no experimenta l observations in 

the p/p
0 

range in which the hump occurs. Also, the q value of m 

0. 056 obtained from their data is in very good agreement with 

values of 0. 054, 0. 058 and 0 . 055 obtained if the present BET plots 

in the p/p
0 

range of 0 .4 to 0.6 are extra polated back to low pres­

sures. Orchiston's data for sodium Arizona montmorillonite (28) 

show a high point on the BET plot at a p/p
0 

of 0.05 . This may 

represent a behavior similar to that obse rved much mo~re clearly 

with the present data, i.e., adsorption on external surfaces before 

penetration of wate r between clay layers, a.nd may indicate that 

expansion begins at an appreciably lower relative pressure than for 

the Wyoming material. 
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External surface area 

If the area, s , of the adsorbent surface occupied by each 

water molecule of the monolayer was known, the parameter qm 

could be used to determine the external surface area, A , per gram e 
Nq s 

of montmorillonite by the expression: Ae = : , where N is 

Avagradros constant, M is the molecular weight of the adsorbate, 

and qm is expressed pe,r gram of adsorbent. If the water molecules 
02 

are in a closest packing arrangement s is equal to 1 0 . 8 A . How-

ever, other investigators have suggested other spatial geometric 

arrangements which result in other than closest packing for the 

monolayer coverage. The arrangement of Hendricks and Jefferson 
02 

(5) gives an area of about 11. . 5 A ; the basal plane of ice 

structures of Macey (1 7), Forslind (1 8) and Demirel (1) give an 
02 

area of about 1 7 . 5 A . External surface areas pe r gram of sodium 

montmorillonite, Ae, were computed using each of the above areas 

for the water molecule and the q values obtained from the adsorp­m 

tion data . The results are presented in Table 2. The external 

area increased somewhat during the first adsorption -desorption cycle; 

the sorption process may result in different pore shapes and volumes 

in the external surfaces and in different arrangements of the sur-

faces, thus making more area available for a dsorption . The ex-

ternal areas obtained are larger than those reported by others as 

dete rmined from nitrogen adsorption, i.e., 41 to 71 m
2
/gm by 

Emmett et al. (29) 33 m
2 /gm by Mooney et al. (13), 38 m2/gm by 
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Johansen and Dunning (25) and 24.5 m2/gm by Zettlemoyer et al. (30), 

This indicates some portions of the external su rfaces are accessible 

to water vapor but not to nitrogen. Also , the line width data of 

Fig . 4 show that there may be a small a mount of wate r penetration 

into inte rla ye r r egions 0 

Table 2 . External surface area s per gra m of sodium montmor illonite 
calculated from wate r vapor adsorption data 

External surface a r ea, Ae' m /gm 

Cr oss-sectional 
area pe r wg.~r 
molecule, X 

1 0 . 8 

11.5 

17.5 

Heat of adsorption 

First cycle 
q = 0 . 023 m 

83 . 0 

88 . 3 

134 . 4 

Second cycle 
q = 0 . 027 m 

97.4 

1 03 .7 

157. 8 

Third cycle 
q = 0 . 028 m 

1 0'1 0 1 

107.5 

163 . 7 

The C parameters obtained in this s tudy were used to calcu -

late E1 - EL values for the first monolayer of wate r adsorbed on 

ext.:erMJ surfaces. The values, corrected according to Clampitt and 

Germ an (31), were 3.3, 2.7 a nd 2 .7 Kcal/mole a nd were in good 

agreement with values reported elsewhere {1, 28). Calculations 

from the calorimetric heat of immersion data of Zettlemoyer et al. 

(30)yielded E1 - EL values of 3 . 0 to 3.7 Kcal/mole for the first 

m onolayer on external s ur faces. 
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The heat of adsorption curve presented by Zettlemoyer et ~· 

(30, Fig. 4) from their heat of immersion and adsorption isotherm data does 

not show good agreement with isosteric heat of desorption isotherm data 

curve of Mooney et al. (13, Fig. 5) from desorption isotherm data. It 

does, however, show good agreement with the isosteric heat of adsorption 

data of Takizawa (32) from adsorption isotherms with Niigata bentonite. 

This may indicate that the adsorption isotherm is nearer the true equilibrium 

curve than is the desorption isotherm. 

Free Energy Changes 

Free energy of wetting 

The free energy of wetting of sodium montmorillonite may be given 

as (1): ll F = (y 
1 

- y ) + 0! ll V, where y 
1 

is the solid-liquid interfacial 
s so s 

tension, y the surface tension of the solid in vacuum, 0! the interlayer so 
2 surface area per em of total surface and ll V the free energy change per 

em 2 of interlayer surface due to separation of layers against the force of 

interaction. ll F was calculated from the adsorption isotherms by using 

Bangham's free energy equation (33), which may be expressed as: 

1 
RT ( q 

- MA ) p/p 
0 0 

d (p/p
0

), where R is the gas constant, T the absolute 

temperature, M the molecular weight of water and A the specific surface 

of sodium montmorillonite. Figure 9 presents plots of -
1
q versus 

p Po 

p/p
0 

for graphical integration of the above equation. From crystallographic 
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data, A was determined to be 748 m2/gm for the sodium montmoril-

lonite . The error in values of b. F obtained was estimated to be 

about + 6%. The free energies of wetting thus determined were 

2 -40.55 ± 2.43, -36 . 15 ± 2.17 and -37.50 ± 2.24 ergs/em for the 

first, second and third adsorption runs. These values are in good 

agreement with that of -34 .76 ± 1. 91 ergs/cm
2 

determined earlier 

for sodium montmorillonite (1 ) • 

Free energy changes on adsorption 

Fu and Bartell (34), in their paper on the surface areas of 

·· RT(/po 
porous adsorbents, evaluated the integral - MJ Pho d(p/p

0
) 

0 

at various values of p/p for the adsorption of vapors on porous 
0 

solids. When q is the mass of vapor adsorbed per gram of 

solid, the value obtained is the free energy change, AIJ. F in 

ergs/ gm of solid, for adsorption from a relative pressure of zero 

to p/ p
0

• When log (A!J.F) was plotted against log (pjp
0

), two 

straight line portions were obtained . 

In discussing their method, Fu and Bartell state : 

"It is also conceivable that, with suitable interpreta­
tions, this method can be utilized to study the expansion or 
deformation of porous materials caused by the adsorption 
of various vapors". 

Sodium montmorillonite is a porous material which undergoes ex-

pansion with adsorption of water vapor; therefore, it was felt that 

an analysis similar to that of Fu and Bartell may be instructive. 
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The values of the integral 

f
p/po 

- ~ 0 vlro d(p/po) for increasing increments of p/p
0

, up 

to and including the saturation point, for the adsorption data of the 

present study were determined by graphical integration. This was 

also done with the adsorption data obtained earlier for sodium mont­

morillonite (1). Values of the integrals, A6F, were thus obtained 

for four complete adsorption runs involving two separate samples of 

the material. 

Plots of log (At. F) versus log (p/p ) are presented in Fig. 
0 

1 0 for each run. Each of the plots display three straight line 

portions (implying equations of the type A6F = a(p/p
0

)
13 for 

various portions) rather than the two obtained by Fu and Bartell. 

The portions of the plots below p /p 
0 

of about 0. 05 are not strictly 

linear but breaks in the slopes can be observed in the p/p
0 

range 

of 0. 045 to 0. 055. This is in agreement with the observations of 

Fu and Bartell. They reported nonlinearity below p/p
0 

of 0. .\.05 and 

attributed it to the decreased accuracy in determining q values at 

very low pressures. 

Comparison of Fig. 1 0 with the X -ray data for the initial 

adsorption run reveals that the break in the log (At. F) plot at a 

p/p
0 

of 0.16 to 0.18 corresponds closely with the beginning of an 
0 

increase in the basal spacing from 9. 8 A. The break at a 

p/p
0 

of about 0. 65 corresponds quite closely with the beginning of a 
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0 

second. increment of expansion from a basal spacing of 12.5 A; the break at a 

p/p
0 

of 0. 95 corresponds closely with the beginning of the third increment 
0 

of expansion from a basal spacing of about 15. 5 A. The last two breaks 

also correspond very well with observed minima in the line width plot of 

Fig. 4; these minimum line widths indicate the majority of the clay 

platelets have the basal spacing noted. On the basis of these correlations 

it was concluded that the portion of the log (AllF) vs log (p/p
0

) plot below 

p/p
0 

of 0.16 to 0.18 reflects the energy changes due to adsorption on 

external surfaces only; at higher pressures energy changes due to ad-

sorption on the internal surfaces are included and reflect the energy of 

interaction between clay platelets. The slope changes apparently reflect 

the differences in platelet interaction energies at increasing increments 

of expansion. 

ln their study Fu and Bartell (34) attributed the change of slope in 

their plots to capillary condesnation in the pores of the adsorbent. ln 

the present system capillary condesnation probably occurs in external 

pores in the higher relative pressure range, but its effect on the energy 

changes is apparently masked by those caused by adsorption on the in­

ternal surfaces. According to Harrer and MacLeod (23) capillary condensa-

tion of water between montmorillonite particles does not occur until 

the relative pressure approaches 1 . 0. 

The relation between the free energy change and separation of clay 

platelets is shown quite well in Fig. 11. The values of AllF for the first 

adsorption run are plotted against platelet separation h, at the same p/p
0

, 
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obtained from the X-ray diffraction data. AI:::. F data for the other ad-

sorption runs produce very similar plots. Figure 11 shows sharp 

breaks which correspond closely with the slope changes noted in Fig. 

10. Also, the breaks occur when h values are very nearly integral 
0 

multiples of 2. 8 A, the thickness of a water molecule. This gives 

additional evidence that the interlayer water builds up in a laminar 

fashion. 

Expansion energies 

If the free energy changes could be divided into two components, one 

for adsorption on external surfaces and another for adsorption on in-

ternal surfaces, it would be possible to evaluate the expansion energies, 

i.e . , the free energy change due to adsorption on and separation of 

the internal surfaces. 

The free energy change brought about by the adsorption, on a 

solid surface, of a film at equilibrium with a vapor at some pressure p 

may be expressed as (27, p. 264): 

I:::.F = y 
sv Y ergs/em so 

2 

where ·Y is the surface free energy of the solid surface in vacuum so 

and .y is that of the solid -vapor interface in equilibrium at pressure sv 

p. When the solid-vapor interface is in equilibrium with the saturated 

vapor the free energy change is: 

I:::.F 2 = y svo - y so erg/em 
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where Y 0 is the surface free energy of the solid-vapor interface at the sv 

saturation pressure. According to Jura and Harkins (35), wheiJ. the solid 

is wetted by the liquid, Y 0 is equal to ( Y 
1 

+ Y
1 

) ; Y 
1 

is the, solid-
sv s v s . 

liquid interfacial free energy an1 Ylv is the surfac.e free energy of the 

' liquid in equilibrium with its own vapor. We have, therefore, at 

saturation: 

ll F = Y 
1 

- Y + Y
1 

ergs/cm
2 

(3) s so v 

If capillary condensation occurs the Y lv term drops out of Eq. (3) . For 

the present system adsorption occurs only on the external surfaces of 

the clay at low relative pressures. Since only external areas, Ae, are 

involved, the free energy change is given by: 

(4) ' 

If only the external areas were available for adsorption over the entire 

relative pressure range it is proposed that the relationship A 1:::. F = Q{pjp ) 13 
e o 

would continue to be obeyed. Under these circiumstances, the linear por-

tion of the log (At:. F) vs log (p jp ) plot between p/p of 0. 05 to 0. 18 would 
0 0 

be extended to a p/p of 1 as shown by the dashed lines on Fig. 1 0 . 
0 

The free energy change at saturation would be: 

A 1:::. F = A ( Y 1 - Y + Y1 ) ergs/ grn e e s so v 

If capillary condensation were to occur (still only external surfaces 

available) a behavior such as that observed by Fu and Bartell (84) 

(5) 
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would be expected and the free energy change at saturation would be re-

duced by A Y1 . With the present system this probably occurs very near e v 

the saturat ion pressure . 

On the basis of the above discussion, the free energy changes due 

to adsorption on external and on internal surfaces were divided, at least 

to very near saturation, on Fig. 1 0 by extending the linear portions of 

the plots corresponding to adsorption only on external surfaces to the 

saturation pressure. The difference between AI::.F and Ae 1::. F gives the 

free energy change A. I::. F = A.c/J where A. is the internal surface area per 
1 1 1 

gram and cJ> will be designated as the expansion energy per cm2 of in-

ternal surface and given by : 

cJ> = y 
sv 

- y + I::.V 
so 

(6) 

where 1::. V is the free energy change per cm2 of internal surface due to 

separation of layers against the force of interaction. 

Figure 12 presents a plot of Ai ¢ for the firs t adsorption run versus 

platelet separation h. Values of A .. ¢ obtained from data of other runs 
- ~ 

produce very similar plots. Figure 1 2 shows that the free energy change 

due to adsorption of the second molecular layer of interlayer water is 

as great as or slightly greater than that for adsorption of the first 

layer. The free energy change for formation of the third layer of 

interlayer water is substantially less than for the other two. cJ> for ad-

sorpt ion of the first layer of interlayer water is the free energy change 

due to disappearance of a solid surface and the formation of a solid -film 
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interface plus that due to separation against the force of interaction be­

tween platelets. The latter term will decrease the magnitude of the 

free energy change. The second layer of water must penetrate be­

tween the first and the clay surface . No new surfaces are formed nor 

do any disappear. The free energy change is due to extension of the 

film thickness and to expansion against the interaction forces . The free 

energy change due to extension of the film thickness is probably less 

than that for disappearance of solid surfaces and formation of solid -film 

inte r face; however, since the platelet separation is greate r, the force 

of interaction is less and so the free energy change for formation of 

the second layer may be nearly the same as that for the first. The third 

layer of water may penetrate between the clay surface and existing inter ­

layer water, but most probably enters between the first and second 

layer. Again no new surfaces appear or disappear . The free energy 

change is due to extension of the film thickness and to expansion 

against force s of interaction further r educed by increased platelet 

separat ion. Since the free energy change on adsorption of the third 

layer is considerably less than that for the second, the change due to 

penetration between the first and second layers of water must be less 

than that for penetration between the clay surface and a water layer. 

Swe lling pressures 

Roder ick and Demirel (2), in an earlier study, suggested that 

there was a correlation between free energy data and swelling pressures 
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exerted by montmorillonites. An estimate of the pressure required to 

prevent separation of clay platelets due to penetration of water between 

layers (or the swelling pressure exerted by the clay on uptake of inter-

layer water) was attempted using the basal spacing and free energy data 

of the present study. 

At constant temperature and assuming all work to be pressure-

volume work, we have for free energy: 

dF = Vdp (7) 

where V is the molar volume and p is the external pressure. For the 

present system Eq. (7) becomes: 

A.dc/> = Vdp 
1 

Assuming water is incompressible the latter equation can be put into the 

the following form: 

d~ =_v_ 
Ai 

dp = h dp 
0 

(8) 

Where~ is the expansion energy (change in free energy due to adsorption 

on and separation of interlayer surfaces) per cm 2, Vis the total volume of 

interlayer water at saturation pressure per gram of sodium montmoril~onite, 

h is the maximum platelet separation and p is the applied pressure. From 
0 

Eq. (8) we obtain 
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p= 
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t~ d~ =A~ 
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-A.¢ = A.h p 
1 s 1 0 

A.4> -A.4> 
1 1 s 
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p 

) h dp 
0 

p=O 

where ¢ is the expansion energy when the clay is in equilibrium with s 

(9) 

(10) 

(11) 

saturated water vapor, p is the pressure required to prevent any platelet 

separation and p = 0 is the pressure when the maximum separation is 

reached . The platelet separation is a function of ¢ as shown in Fig. 12. 

The pressure required to prevent expansion beyond a certain separation h, 

when the sodium montmorillonite is in contact with saturated water vapor, 

may be obtained by determining the difference between A.~ and A. ~ 
1 1 s 

corresponding to separations hand h , respectively and dividing the dif­o 

ference by maximum separation h . The results determined have the dim-
0 

ensions c~g;m and must be divided by the internal surface area, Ai, to 

give the pres~ure in dynes/ em 
2

• Column 2 of Table 2 presents the external 

areas, A , determined for the first adsorption run by using various cross­
e 

sectional areas for the water molecule and the BET parameter qm. Sub-

tracting A from the total surface area of 748 m 2/gm (from crystallographic 
e 

data) gives the internal surface area A. per gram. The values of A. for the 
1 1 

various water molecular areas were determined and used to calculate the 

swelling pressures at various interlayer spacings. The results are 
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presented in Table 3 . Also presented are values for the expansion 

energy, ~. obtained from Fig. 12. The difference in the values 

obtained with various internal surface areas are probably less 

than the error due to the approximations of the methods for 

evaluation of the expansion energies and swelling pressures . 

The expansion energy values at saturation may be due in part to 
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capillary condensation in external pores. This would tend to make the 

values given when three molecular layers of water are present somewhat 

larger than the actual case, The expansion energies given for the adsorp­

tion of the first two layers of water are not affected by capillary con den sa-

tion since it occurs near the saturation pressure. 

Since the swelling pressures were obtained from the saturation point, 

any capillary condensation effects would tend to make the listed values 

somewhat larger than those due only to adsorption on internal surfaces. 

This may affect the values of swelling pressure when two layers of inter­

layer water are present to some degree, but would probably be negligible 

when compared with the large swelling pressures at lower interlayer water 

contents. Mielenz and King (36) reported swelling pressures from 2 to 11 

tons/ft
2 

for sodium montmorillonite in consolidometer tests. The present 

data suggest the pressures they obtained were due to hydration above two 

layers of interlayer water. 

It should be emphasized that the swelling pressures reported in 

Table 3 are those exerted when the sodium montmorillonite is in contact 

with saturated water vapor; the maximum observed interlayer separation 

is in equilibrium with the saturated vapor. If the sodium montmorillonite 

were in contact with liquid water further expansion would occur and 

comparatively smaller swelling pressures may develop. In this region, for 

separation beyond that for three or four molecular layers of water, the 

surface hydration energies are no longer important and the smaller 



Table 3. Expansion energies and swelling pressures due to adsorption of water vapor on the interlayer 
surfaces of sodium montmorillonite (from the separation indicated from the maximum separation.) 

No interlayer 
water present 

1 molecular 
layer of inter­
layer water 

2 molecular 
layers of inter­
layer water 

3 molecular 
layers of inter­
layer water 

Area assigned 
to a water 

2 molecule, l\ 

lO .8 

ll. 5 

l7. 5 

10.8 

ll. 5 

l7. 5 

10.8 

ll. 5 

l7. 5 

10.8 

ll. 5 

l7. 5 

Internal 
surface area 

A., m2/gm 
~ 

665 

660 

614 

665 

660 

614 

665 

660 

614 

665 

660 

614 

Expansion 
energy 

ergs/cm2 

- 9.8 

- 9.8 

-10.6 

-2l.l 

-21.2 

-22.8 

-24.8 

-25.0 

-26.9 

Swelling 
pressure, ~, 

dynes, em 

300 X 10
6 

302 X 106 

325 X 10
6 

181 X 106 

184 X 106 

197 X 106 

45 X 106 

46 X lQ 
6 

50 X 106 

Su·e ll ing 
pressure, p, 

tons/ft 2 

313 

315 

339 

190 

192 

206 

47 

48 

52 

c­
.'>-
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electrical double -layer forces become the major repulsive force between 

platelets (37). The further expansion exerting comparatively low ad-

ditional pressure may be explained by at tributing it to a low energy 

barrier (1 ). 

CONCLUSIONS 

The sorption isotherm data and X -ray diffraction data for water 

vapor adsorption and desorption by sodium montmorillonite, and data 

from the literature, . indicate that: 

1 . The change in average basal spacings of sodium montmorillonite 

takes place in a continuous but non -uniform manner with changes in 

relative pressure. . Continuity is due to the simultaneous existence of 
I• 

varying numbers of molecular layers of interlayer water. Expansion 

occurs in three increments. Basal spacing and line width data show 

average spacings correspond with an integral number of molecular layers 

of water just prior to each increment of expansion. 

2. The relationship between relative humidity and the basal 

spacing of sodium montmorillonite is dependent on: a) the source 

and method of preparation of the sample; ;b) the initial conditions of 

the sample at the start l:>f tests; and c) whether data is collected during 

adsorption or desorption. 

3 . Basal spacing, line width and free energy change data give 

evidence that the interlayer water builds up in · a laminar manner. 

4 . Adsorption isotherms are more closely reproduced on succes-

sive adsorption-des01rption runs than are desorption isotherms. 
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5 . The hysteresis displayed by the sorption isotherms is due in 

part to the formation of a thixotropic structure at high relative pressures, 

and in part to attractive interaction forces between sodium montmorillonite 

platelets. 

6. X-ray diffraction data and BET plots indicate that the BET 

parameter q obtained reflects adsorption only on the external surfaces m 

of the sodium montmorillonite. Apparently sodium montmorillonite pre -

pared from Wyoming bentonite is unique in this respect. 

7. The relationship between free energy changes and relative pres-

sure and the X -ray diffraction data for the adsorption of water vapor by 

sodium montmorillonite allows separation of the free energy change 

into two components; one due to adsorption on the external surfaces, and 

one due to adsorption on and separation of the internal surfaces. 

8. Free energy data and X-ray data show that the expansion 

energy (free energy change due to adsorption on and separation of internal 

surfaces) during formation of the second layer of interlayer water is 

approximately the same as that for formation of the first layer. The 

change during formation of the third layer is substantially less than 

those for the other two. 

9. Free energy data and X-ray data permit the estimation of 

swelling pressures exerted by sodium montmorillonite due to the uptake 

of interlayer water when the material is in contact with saturated vapor. 

The swelling pressure exerted when the platelet separation is zero is 

2 
about 325 tons/ft . The pressure exerted when one molecular layer of 
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water separates clay platelets is about 200 tons/ft
2

. The pressure 

exerted when two molecular layers of water separate platelets is 

about 50 tons/ft
2

. 
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INTRODUGriON 

Soil stabilization may be broadly defined as any regulated process 

that alters or controls soil properties for the purpose of improving 

their engineering performance. ~Processes by which soils may be stabi­

lized include the use of other soil, chemical additives, cement, com­

paction, moisture control, or combinations of these. 

The major applications of soil stabilization are as follows: 

1. Stabilized soil provides bases or surfaces for secondary and 

farm-to-market roads where good primary roads are already in existence. 

2. Stabilized soil provides for high type pavements where high­

type rock and crushed gravel normally employed for such bases are not 

economically available. 

3. For military and other emergencies where an area must be made 

trafficable within a short period of time. 

4. For economic development, stabilized soil roads can lift under­

developed areas out of the mud. 

5. For city and suburban streets where the noise absorbing and 

elastic properties of certain stabilized soil systems process definite 

advantages over other construction materials. 

Up to now, there has been no entirely successful method for 

stabilization of soils by the use of chemical admixtures. Although 

several materials are suitable under specific conditions or with 

particular soils, none have proved to be universally acceptable. 

Portland cement is the most generally effective soil-stabilizing 

material. However, under certain conditions, especially where wide 
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temperature variation prevails, the cement treated soils have not always 

proven to be a durable admixture. 

Many kinds of synthetic re.sins have been used for soil stabiliza­

tion. Some of them have shown promising results. One of these 

synthetic resins, epoxy resin has never been tried as a stabilizing 

agent. Cured epoxy resin is an inert, tough solid. It can resist 

the penetration of water and the attacks of de-icing chemicals, 

oil gasoline and other materials commonly encountered on highways. 

The objective of this research is to determine the effect of 

epoxy resin on soils which were treated by epoxy resin alone or epoxy 

resin with other additives. The other purpose is to give a tentative 

explanation of the mechanism of stabilization. 
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REVIEW OF LITERATURE 

Epoxy Resin, Manufacturing Process and the Properties of its Polymers 

The epoxy resin is one of the newest of the major industrial plas-

tics. The resin cures into a thermosetting material which will retain 

its dimensional stability throughout its design range, i.e., they will 

not soften with heat or flow with pressure. 

The epoxy-resin molecule is characterized by the reactive epoxy or 

ethoxyline groups (5) 

An unusually tough, extremely adhesive and highly inert solid 

results when crosslinking or cure is accomplished through these groups. 

The epoxy molecule is represented by the diglycidyl ether of bisphenol 

A (15). 

,.,.,-a, 
-- CH -CH-CH -0 r-\ 2 2 -<..__r 

The epoxy resins which have viscosities in the 8,000 to 20,000-

centipoise range are predominately of this structure (15) . The usual 

raw materials for the synthesis of the diglycidyl ether of bisphenol A 

are epichlorohydrin and bisphenol A. 

Epichlorohydrin is a colorless, mobil liquid having an irritating 

chloroform-like odor. It is represented by the formula: 
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It is usually produced by the reaction of chlorine with propylene. The 

yielding allyl chloride is reacted with hypochlorous acid to produce 

dichlorohydrin which is exposed to sodium hydroxide at elevated tempera-

ture to strip off one hydrogen and one chlorine atom. 

The three steps to yield epichlorohydrin from propylene can be 

expressed as follows: 

Propylene Chlorine Allyl Chloride Hydrogen 
Chloric 

Acid 

Allyl chloride water/chlorine Dichlorohydrin 

OH 

(3) Cl-CH 2-CH-CH2-Cl + 

Dichlorohydrin Sodium Epichlorohydrin 
hydroxide 

Bisphenol A or bis dimethyllnethane: 

It requires two basic intermediates for synthesis: acetone and 

phenol (15): 



r .. 

r 1 

l 

r 

( 

I 

5 

OH 

() 2 -1-

Phenol 

0 CH 
il I 3 

CH -C-CH -- HO ~""\__ C ~\ -OH + H 0 
3 3 ~ 1 "----../ 2 

Acetone CH3 Water 

Bi sphenol A 

Diglyc i dyl ether of bisphenol A i s produced by reacting epichloro-

hydrin with bisphenol A in the presence of a cau stic (5): 

CH3 
Cl ·l · HO_()- ~ -c>- OH NaOH~ 

'--- I 
CH3 

O CH
3 

OH CH
3 

/ '\. [ ~I _/--..'- I J ~I _/----,. 
- - - CH~CH-CH 2- _-·0"----.ry \_/ 0- CH2- n- 0'--/ -? -~>-

CH3 CH3 

ltJhere n i s the number of rep ea ted unit s i n the resin chain; when n = 0 

the mo l ecul ar weight is 340; when n = 10 , it is about 3,000 . 

Epoxy resins i n the pure or uncont aminated state possess indefinite 

shel[ l ife . They are chemica lly stable a t tempera ture s up t o 200°C . 

The t·e s ins cure into thermoset compound s by three reactions (15): 

(l)direct linkage between epoxy group s ;(2) linkage of epoxy groups with 

ar omatic or alipha tic hydroxyls, and ( 3) cros s -l inkage with the curing 

agent through various radicals. Cured epoxy resins are very inert 

chemi cally. When the e ther groups , the be nzene rings and the aliphatic 

hydroxyls a r e present in the cured epoxy system, they are virtually 

invu l nerable t o caustic a tt ack and extremely resi s tant to ac ids. 
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The epoxy resins which were used for this research were products 

of the Shell Chemical Company. They are furnished under the commercial 

names of Guardkote 120A and 120B. Guardkote 120A is composed of a 

diglycidyl ether of bisphenol A. l20B is a modified straight chain 

aliphatic amine containing both primary and secondary amine groups 

(18). The physical properties of the cured system are as follows (20): 

Tensile strength 
Tensile elongation 
Shore D hardness 
Impact strength 
Flexural strength 
Flexural modulus 

4,900 psi 
5% 
77 
0.6 ft - 16/in of notch 
8,600 psi 
226,000 psi 

The curing reactions possible with primary amines are (15): 

1. Reaction with an epoxy group to form a secondary amine 

0 H 
/ '\ I 

RNH 2 + CH 2-CH- RN - CH 2 - CH-

OH 

2. Another epoxy group is reacted to form tertiary amine 

H 

' RN - CH
2 

- CH-" 1 CH 
I 2 
OH 

OH 
I 

- cH~ 

- cH~....._ 

I 
OH 

3. Reaction of hydroxyls so formed with epoxy 

OH 

0 
/ \ CH 2-CH-+ -CH~-· 

I 
0 

I 
CH 2 - CH, ~~-

1 
OH 
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Review of Previous Work 

Natural or synthetic resins which have been used for the purpose 

of soil stabilization may be divided into two groups: resinous water­

proofing materials, and resinous waterproofing and bonding materials 

(16) . 

The chief function of resinous waterproofing materials is to main­

tain the moisture content of a soil at or below optimum moisture by 

preventing entry of water into the treated and compacted mixture. Very 

slight or no cementing action is obtained from the materials. Water­

proofing agents usually attain maximum effectiveness when used in small 

quantities. Although imparting desirable characteristics to the soil, 

and providing considerable waterproofing effect under mild exposure, 

none of the water-repellent resins appears to be a suitable soil 

stabilizing agent at the present time. The most popular resinous 

waterproofing materials are Stabinol, Resin 321, Vinsol and NVX. 

Both Stabinol and Resin 321 were tested and reported by Mainfort (16) 

as soil stabilizing materials. Resin 321 in particular is the best 

waterproofing agent studied and its water-repellent characteristics 

can be utilized for improving the effectiveness of other stabilizing 

materials. In further studies by Mainfort (16), with more severe 

laboratory exposure and the use of a wide-range of soils, both stabinol 

and resin 321 were found to be ineffective under the more severe tests. 

Mainfort also indicated in his tests that Vinsol was superior to NVX 

but far inferior to both Stabinol and Resin 321. 

Resin bonding materials, as used in soil stabilization, are con-
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sidered to cement or bond the particles of soils with which they are 

mixed. The effectiveness of the resin treatment increases with the 

quantity used (16). This kind of treatment is still in experiment al 

stages . 

Mainfort (16) found aniline-furfural an effective bonding and 

wate rproofing agent with the wide range of soils he u sed . Winterkorn 

(25) u sed aniline furfural as a soil stabilizer in his study f or the 

Civil Ae:r:onautic s Administrat i on . He found t hat t he eombinat i on of either 

70 : 30 or 35 : 65 parts by weight of aniline and f uri:ural was a good resin 

bi nder . The 70 : 30 resin was the most effective of t ho se tested for 

medium plastic soils with the small amounts of the chemicals used . The 

resin ac ted as both a binding agent and a waterproofing agent. But 

both combinations were f ound to be ineffective when used in alkaline 

mixes. Acid mixe s resu lted in maxinum strengths. 

Sheeler (19) u sed aniline furfural to stabilize Wi sconsin l oess 

wit h success . He found a ratio o f 2 mol. aniline t o 1 mol. of furfural 

pr oduced the highe s t stability among the l oess mixtures. The soil 

t r e ated wit h aniline f urfural was nearly dry after five days of air ­

curing and reached equilibrium after eight days r egardless of t he 

percentages of chemical content. 

Hydrated lime has been tried as a cat alyst t 'j improve t he strength 

of the l oess soil. I t was found that both immersed strength and dry 

s t rength wer e reduced by adding hydrated lime t o the r esin l oess mixture . 

Either sodium hydroxide or aluminum chloride when added t o t he aniline­

furfural - soil mixture resu lted in increased strength . 'rhe i mmersed 

s t rength had a 28 percent increase by adding 0 . 3 percent aluminum 
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chloride to the mixture containing 5 percent aniline-furfural. He also 

found that the maximum strength occ:urred at 22 percent of 2 micron clay 

c.ontent. A maximum waterproofing at 3 percent resin content was obtained 

for loess soil; the moisture absorption increased with the increase of 

resin c.ontent. Aniline-furfural treated specimens were very resis-

tant to freezing and thawing. 

Mainfort (16) also found reresoreinol-formaldehyde to be the best 

synthetic resin for hardening soil under moist-cure conditions at 

room temperature. The treated soil showed considerable promise under 

severe laboratory exposure. Mainfort showed this synthetic resin is 

suitable for improving other more economical admixtures; particularly 

the bituminous materials. Synthetic resins such as phenol-formaldehyde 

resin, urea-formaldehyde resin polystyrene and furfural aleohol have 

also shown promise for use as soil stabilizers (16,18). 

Epoxy resins have never been tried in the field of soil stabiliza-

tion; it has been used for surfacing and repairing Portland cement con-

crete (20). Burns (6) used epoxy resin as an. 'additive in asphaltic 

concrete. The epoxy-asphalt concrete paving mixtures were tested in 

a .field test section under jet blast and fuel spillage to compare the 

effectiveness of an epoxy-asphalt binder tack c.oat with that of a 

conventional asphalt tack coat. It showed that epe>xy-asphalt eon-

crete, properly designed and ,,onst:ructed wc,uld satisfactorily with-

0 stand jet blast temperatures in the order of 500 F and is impervious to 

jet fuel. The epoxy asphalt binder tack coat resulted in a h'nger 

bond that the conventional asphalt tack coat. 
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MATERIALS USED 

Soils 

Four kinds of soils were used in this investigation; the choice 

of these soils depended on the amount of clay present. The soils 

were a frinble Wisconsin age loess (Lab. No. 20-2), a plastic Wisconsin 

age loess (Lab. No. 528-4), a Kansan Gumbotil (Lab. No. 512-ll) and 

a dune sand (Lab. No. S-6-2). All soils except the Kansan Gumbotil 

were grounded to pass a No. 10 sieve; while the Gumbotil soil passed 

the No. 4 sieve. The descriptions and properties of these soils are 

presented in Table l. 

Lime 

The lime used in this study was a product of the U. S. Gypsum Co. 

It is a calcitic hydrated lime. 

Epoxy Resin System 

The epoxy system used in this research was a commercial product of 

the Shell Chemical Company. It is supplied under the name of Guardkote 

120, in two components, Guardkote 120A and Guardkote l20B, which are 

individually stable. Guardkote l20A is an epoxy resin and Guardkote 

120B is an amine hardener. The liquid Guardkote l20A can be cured at 

80°F to become an unusually tough solid by adding Guardkote 120B to 

it at a weight ratio of 5 parts l20A to l part 120B as suggested by 
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the producer (18). Hand mixing for three minutes is usually required 

and an exothermic chemical reaction starts after 25 minutes . There­

fore, the pure epoxy system should be used within about 15 minutes . 
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Table 1. Description and properties of soi ls used 

Sample 

Textural composition , % 

Gravel (>2 .0 nnn) 

Sand (2.0-0.074 nnn) 

Silt (0.074-0.005 mm) 

Clay (<0.005 mm) 

Clay (<0.002 nnn) 

Predominant clay mineral 

Physical properties 

Li quid limit, % 

Plastic limit, % 

Plasticity index 

Shrinkage limit, % 

Chemical properties 

Cat . ex. cap ., m. e./lOOg 

Car bonates, % 

pH 

Organic matter , % 

Cl assification 

Tex t ural 

Engineering (AASHO) 

Friable Loess 
(Lab. No. 20- 2) 

0 

0.4 

80.0 

19.6 

16.0 

Montmorillonite 

30.8 

24. 6 

6.2 

22 . 3 

13. 4 

10.2 

8 . 7 

0.2 

Silty Loam 

A-4 (8) 

Plastic Loes s 
(Lab. No . 528-4) 

0 

0.2 

60.8 

39.0 

33.0 

" 

52.1 

20 .o 
32 . 1 

23.5 

1.5 

5.6 

0.2 

Silty Cl ay 

A-7-6 (18) 

Kan san 
Gumbo til 

(Lab. 512-11) 

0 

0.9 

56.7 

42.4 

" 

49.4 

25.9 

23 . 5 

Silty Clay 

A- 7 (15) 

Dune Sand 
(Lab . No . S-6-2) 

0 

94 

4 

2 

Non-plastic 

Non-calcereous 

Fine Sand 

A-3 (0) 

--
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METHOD OF PROCEDURE 

Preparation of Specimen - Phase 1 

The first phase of the investigation includes the molding of miniature 

soil specimens 1 inch high by 1/2 inch diameter. These specimens re­

quired much less preparation time, soil and epoxy than would be required 

if larger specimens were used. The results obtained for the different 

epoxy resin contents should show the relative effectiveness of epoxy-

soil combinations. 

Since significant amounts of water would probably tend to interfere 

with amine-epoxy reaction, it was decided that only dry soils should be 

used. However, the mixture was too dry to make a uniform mixture with­

o·ut adding extra water. Two ways of preparing the epoxy resin solution 

were tried. In the first method Guardkote 120A and 120B were dispersed 

in water individually by adding a dispersing agent with each. Sodium­

montmorillonite was found to be. the best dispersing agent for the epoxy­

water suspension. The required epoxy and hardener were obtained from 

their respective suspensions. It was necessary to add additional 

distilled water to the soil-epoxy-mixture to insure uniform mixing. 

In the second method, the epoxy and hardener were prepared by 

m:i.xing without preemulsification. The mixture was hand-mixed three 

minutes before using. 

Mixing 

Soils passing the !FlO sieve were used in this investigation. 
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About 40 grams of soil were pl aced in a porcelain dish and the r equired 

amount of resin mixture was added to give the desired percentages of 

resin. The soil and the resin mixture were then mixed with a spatul a. 

Wat er was added during mixing to increase the volatile content to the 

estimated optimum. Different mixing orders, Table 2, sho\ved that the 

immersed s trength s were affec ted by the order of mixing. 

Molding 

Three 1 inch by 1 /2 inch specimens ~ere molded from each mixture. 

The required amount of the mixture to produce a 1 inch by 1 /2 inch 

sp ec imen having a specified dry density was pl aced in a cylindrical 

mold and compacted with s tatic pressure. The molding apparatus was the 

same used and described by Roderick (18). Specimens with 9, 11 , 13, 

15 and 17 percent epoxy resin were moldeq for each mixture with the 

friable loess. Specimens with 5 percent resin but different volatile 

contents were molded for each mixture with dune sand. 

Curing 

All specimens of 1 inch by 1 /2 inch were cured at room t empera­

ture for seven days. Each was completely immersed in distilled water 

for a 24 hour period before testing. The unconfined compressive s trength 

of a certain mixture was obtained from the average of three specimens. 
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Testing 

The miniature specimens were tested by a proving ring type hand­

operated testing machine. Its maximum capacity for l inch by l/2 inch 

specimens was 600 ps i . Any specimens for which the unconfined com­

pressive strength was higher than 600 psi were tested by another higher 

capacity proving ring machine. The load at which the specimen failed 

was divided by the cross-sectional area of the specimen to give the 

unconfined compressive strength of the specimen. 

Preparation of Specimen - Phase 2 

The epoxy resin mixture which was used in this phase was one part 

Guardkote 120A and 0.4 part 120B by weight. The epoxy mixture was 

prepared by the second method explained in the description of methods 

for the first phase of thi s study. 

Mixing 

The amount of the prepared epoxy solution required to give the 

desired amount of epoxy content was added to the soil. The following 

mixing procedure which was used for it was found to be the best in getting 

higher immersed strengths in pha se 1 investigation (Table 2): 

A. The soil and the required amount of lime were mixed with a 

spatula for one minute (in case the second additive was used). 

B. The required amount of distilled water was added to the soil 

or soil time mixture. It was then mechanically-mixed with a 
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Hobart Model C- 100 mixer at l ow speed for one minute . 

II c. I t was then hand-mixed for one-half minute t o a s sure proper 

dis t ribution and pulverization of t he soil. 

D. The epoxy-hardener mixture, which had been prepared by mixing 

thoroughly, was added to the soil, and the mixture was mixed 

by a Hobart mixer one and one-half minutes. 

E. The mixture was then hand -mixed f or one minute . 

The above procedure of mixing was u se d t o prepare all specimen s f or 

II the rest of t his investigation. 

Molding 

I mmediately after mixing, three specimens 2 inches in diameter by 

( 

f. _ 
2 inches high were molded with a drop- hammer apparatus devel oped by 

Davidson and Chu (8) . The apparatus is shown in Figure 1 . A predeter -

mined quant i t y of soil - chemical -water mixture was placed in the 

cyl indr ical mold and the mixture was compacted by dropping a five pound 

hammer through a distance of one f oot. After compacting the first 

blow , the t emporary support was removed and f our addit i onal blows were 

given to t he specimen . Th e reverse sid e o f t he spec i men was given f:i.ve 

{ blows in the same way . Specimens were removed from the mold by means 

o f a hydraulic jack. They were t h en we i ghed to t he nearest 0 . 1 gram 

and t heir hei ghts mea sured to the nearest 0 . 001 inch . The hei.ght: o f 

L 
all spec i mens were maintained at 2.000+ 0 .050 inches. Representative 

moisture samples were taken from the mixing bowl j ust prior t o molding 

t h e firs t specimen and immediately afte·r molding t h e third . 
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Figure l. Apparatus for molding 2-inch diameter 
by 2-inch high test specimens. Drop 
hammer and molding cylinder shown in 
place. 
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The moisture samples were weighed to the nearest 0 . 01 gram, placed in 

an oven at 110°C for at l east 16 hours and then weighed again. The 

moisture content for each mixture was determined to the nearest 0 .1 

percent on the basis of oven-dry weight of soil. 

Curing 

The specimens, prepared as above, were cured by air drying for 

various lengths of time at various temperatures . After curing, heights 

and weights were measured again. 'rhe specimens were then complet ely 

immersed in distilled water for a period of 24 hours . They were then 

weighed and measured again, and tested for unconfined compressive 

strength. 

Testing 

bnconfined Compressive Strength 

The unconfined compressive strength was determined by t he ap­

paratus shown in Figure 2. Load was applied t o the specimen at a 

deformation rate of 0 .1 inch per minute until complete failure was 

at t ained . The maximum load in pound s divided by the cr oss-sectional 

area o f the specimen was recorded as the unconfined compressive 

strength. The unconfined compressive strength obtained from spec imens 

which were al l immersed in distilled water for 24 hours after dry 

curing will be referred to as "immersed strength". 



Figure 2. Two-inch diameter by 2-inch high specimen being tested for unconfined 
compressive strength. 

,_. 

"" 
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Calculation of Dry Density 

Dry density was calculated from the weight, height and volatile 

content determined at the time of molding. 

D d . t ( f) _ Wt. of specimen (gram) X 1. 213 
ry ens~ Y pc · - ht of specimen (inch) 1 + volatile content (%) 

100 

Calculation of Linear Shrinkage 

Linear shrinkage was obtained after curing. It was calculated by 

comparison of the initial height and the height after curing 

Linear shrinkage (%) ht. after molding - ht. after drying 
~ - - X 100 

ht. after drying 

Calculation of Volatile Retention 

After curing, the percentage of.volatile which was retained in the 

specimen was calculated by the following formula 

Wt. after molding 
Wt. after curing-----~~l~~.~l~~~~l~d77.~~(~~)' 

1 + ~v~o~a~t~~~e~at~m~o~~~~n~g~~·~· 
Volatile retention % ~ 100 

----------~~~~--~~--~~-------Wt. after molding 

1 + 

Calculation of Linear Expansion 

volatile at molding (%) 
100 

Linear expansion was obtained by comparison of the height after 

immersion and the height after dry curing 

ht. after immersion - ht. after dry curing Linear expansion % ~ - X 100 ht. after dry during 

Calculation of Water Absorption 

The amount of water absorption was calculated by the weight after 
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immersion, \veight a fter molding , and the vol atile content a fter molding . 

Wt . a fter imme r s i on -

Ab sorption (%) 

Freeze-thaw Test 

Wt. after molding 

1 + Vol atile a t molding (%) 
100 

Wt. after molding 

1 
+ Vol atile a t molding (%) 

100 

The following soil-epoxy resin admixtures were used in the I owa 

Free ze-thaw Test: 

Soil 

Soil 

Soil 

Soil S-6- 2; 

percent Guardkote 120A + 2 . 8 percent 120B + 
percent ca l citic hydrated lime 

3 percent Guardkote 120A + 1 . 2 percent 120B + 
2 percent calcitic hydrated lime. 

Four specimens of 2 inch high by 2 inch diameter were molded a t the 

optimum volatile con t ent for maximum immer sed s trength for each of the 

above soil-additive mixes . The spec imens were cured by drying 24 hour s 

in a 
0 0 

104 F (40 C) oven. After curing they were te sted by the Freez~-

thaw test developed at the Iowa Eng ineering Experiment St a tion (12) . 

Two spec imens prepar ed from the same ba tch were completely immersed in 

distilled water for a period of 11 days . The remainder were gi ven one 

day immers ion and then followed by ten cycles of freezing and t hawing. 

One freeze -thaw cycl e con s i s t ed of 16 hours fr eezing a t 20 ± 2°F and 

8 hour s thawing at room t empe r ature . Sufficient water a t a temperature 

of 35°F was ma intai ned in the vacuum flask so that the specimen wou l d 

contact wa t e r . At the completion of freeze thmv cycl es and immer sion, 

X 100 
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all specimens were weighed, and their heights measured; the specimens 

were then tested for unconfined compressive strength. 

Two specimens were molded from each of the raw soils at their 

optimum moistures. They were cured by drying at room temperature for 

seven days and were then subjected to several cycles of the freeze­

thaw test. The specimens were not immersed in water because they 

would have slaked. The amount of expansion of those untreated speci­

mens were compared with that of the resin treated specimens. Figure 

14 shows the relative heaves of the treated and untreated specimens. 
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PRESENTATION AND DISCUSSION OF RESULTS - PHASE 1 

The screening test is used to find what chemicals can be used to 

stabilize soil and what kinds of catalysts are feasible for the chemicals 

used in the laboratory test. Since the screening test specimens utilized 

less material and time than 2 inch by 2 inch specimens would require, 

the screening test is preferable when the effects of chemicals used as 

a stabilizing agent is not known. However, the immersed strength ob­

tained from the screening tests were not always reproducible. There­

lationship of strength to percent chemicals added was not clearly de­

fined by this kind of test. For this reason only friable loess (20-2) 

and dune sand (S-6-2) soils were investigated in phase l of the experi­

ment. 

Specimens containing 9, 11, 13, 15 and 17 percent epoxy were 

molded with friable loess (20-2). Epoxies pre-emulsified by using sodium 

montmorillonite as a dispersing agent were used. The results ob-

tained from different combinations are presented in Table 2. 

Since the specimens with pre-emulsified epoxy and hardener did· 

not show higher immersed strengths than those with only mixed epoxies 

it was concluded that premulsification of epoxy and hardener was not 

necessary. The results showed that higher immersed strength would be 

obtained if the. ratio for epoxy and hardener was 1 to 0.4 rather than 

1 to 0.2. It was found that the extra water did not impede the ad­

hesion between resin and clayey soil. On the contrary, a certain a­

mount of water improved the interaction between the resin and soil. 

An optimum molding volatile content for immersed. strength could be 



Table 2. Effect of various epoxy resin contents on immersed strengths for friable loess and dune 
sand miniature specimensa 

Molding Average 
Soil Epoxy 120A 120B Volatile Na Method of . Method of immersed strength 

% % Content Mont. curing Mixing psi 
% % A B 

20-2 9 3.6 17.0 1.0 A = 7 days of I 34 40 
room temperature 

11 4.4 20.5 1.0 and 24 hours in I 77 98 
inrrnersed water 

13 5.2 17.7 1.5 I 295 885 

15 6.0 18.3 2.0 B = 14 days at I 394 545 
room temperature 

17 6.8 18.0 2.0 and 24 hours in I 1325 1780 
immersed water. 

17 6.8 16.5 2.0 I 2243 2243 
-----------------------------------------------------------------------------------------------------

11 2.2 18.0 0 168 

11 4.4 18.0 0 I 320 

13 5.2 18.0 0 A " 746 

15 6.0 18.0 0 " 1140 

17 6.8 18.0 0 " 1200 
-----------------------------------------------------------------------------------------------------

11 4.4 13.4 0 I 219 

11 " 15.4 " " 877 

11 " 17.4 " A " 780 

11 " 19.4 " " 37 3 

11 " 21.4 " " 176 



Table 2 
Cont. 

Soil Epoxy 120A 120B Molding Na Method Method Average immersed 
% % Volatile Mont. of of Strength, psi 

Content % Curing Mixing 
% 

20-2 17 6.8 18 . 0 0 A II 746 

17 6 . 8 18.0 0 II III 1711 

17 6 . 8 18 . 0 0 II IV 1667 

S- 6-2 5 2. 0 10 0 A I 346 

5 2. 0 0 0 II I 266 

5 2.0 10 0 II II 63 

5 2.0 10 0 II III 346 

Methods of Mixing 

I. Extra wa t er was added to soil at the same time with the prepared epoxy. 

II. Extra water was added after the soil and the prepared epoxy had been mixed. 

III. Extra water was added and mixed with soil; the prepared epoxy was then added and mixed. 

IV. Extra water was added to the prepared epoxy; the mixture was then mixed with the soil. 
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found in the combinations of the same epoxy content with different per-

centages of volatiles at molding. Four different. mixing orders were 

tried for 20-2 soil and the one in which extra ·water was added before 

the soil and the prepared epoxy had been mixed (mixing order III) proved 

the best in getting higher immersed strength. 

Specimens containing only 5 percent epoxy with different mixing 

orders were prepared with soil S-6-2. Different mixing orders f·Yr the 

sandy soil also made the specimens fail at different immersed strengths. 

If the water and epoxy were added to the sandy soil at the same time. or 

water was added to the sandy soil at the same time before adding of 

epoxy mixture, the immersed strengths would be higher than that of the 

specimens made by the mixing order II, (see Table 2). The conclusion 
l 

is that the mixing water should never be added into the mixture after 

the epoxy and sand had been mixed. If water and epoxy were added to 

the sandy soil at the same time or sand was mixed with water first then 

the mixture was mixed with epoxy, the water might enable t:he epoxy to 

be more uniformly distributed. If the water were added after mixing 

the soil with epoxy only, the epoxy was urteoJenly distributed in the 

soil mass and it resulted in poor immersed strength. 

The erratic results of this phase of the stu.dy were probably due. 

to the dimensional effect of the miniature specimens. It was however, 

concluded that: (1) pre-emulsification of epoxy system was nJt neces-

sary to incorporate the resin with wet soils; (2) wate.:r did not impede 

the adhesion between resin and soil, on the eontrary a certain amount 

of water improved the resin-soil interaction and (3) the third mixing 

order (see Table 2) was best in getting higher immersed strength. 'I'hus, 

this phase of the study laid the course for phase 2 study. 
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PRESENTATION AND DISC"'[SSION OF RESULTS - PHASE 2 

Effect of Epoxies on Optimum Volatiles on 

Immersed Strength and Dry Density 

The percentages of epoxy added to the friable loess, based on dry 

weight of the soil were 7, 9, 11, and 13 percent in this investigation, 

Ehrther tests were conducted by adding two percent lime to t:he friable. 

loess-epoxy specimen containing 5, 7, a'ld 9 percent epoxy, Tests were 

run for plastic loess and gumbotil soils. The mixtures of both soils 

contained 5, 7, and 9 percent epoxy and 2 percent lime. Two perccent 

lime was also added to epoxy-sand mixtures which contained 2, 3, and 

4 percent epoxy. 

For each combination of those percentages, five or six sets of 

three _specimens were prepared with different volatile contents. Each 

specimen of the same set was maintained within+ 1.0 percerct in volatile 

content and + 3 pcf in dry density according to AS'.['M Designaticn B 560-57 

(1). Figure 3 shows the relationships of immersed strength versus days 

cf dry curing for soil 20-2. 0 / With seven days dry c;Jring at 80 F lruom 

tElmperaturEl) the maximum immersed strength for 7 percent res:i.n content 

is 580 psi from Table 3. 'rests shO'wed that the immersed strength de-

creased with decreasing curing temperata.re. 

It was found that the specimens of 20-2 soil with 7 pe.rcent epoxy 

eonte.nt at optimum volatile content yielded the same irranersed st:rengLh 

0 0 
i.f they were cured in an oven at 104 F (40 C) for one day instead of 

seven days dry curing at room temperature. The oven curing not only 
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Figure 3. Effect of curing time on immersed strengths 
of epoxy resin-friable loess specimens. 



29 

shortens the curing time but also standardizes the curing temperature. 

All specimens with lime or other additives were cured under this condi­

tion~ 

All specimens were immersed in distilled water for 24 hours prior 

to testing for unconfined compressive strength. The strength of the 

individual specimens was maintained within 10 percent of the average 

value as required by ASTM Designation Cl09-.54 (2). 

The dry densities and immersed strengths obtained for different 

<;ompositions are presented in Tables 3, 4, 5, and 6. 'rhe relationships 

between immersed strengths and molding volatile contents are shown in 

Figure 4, 5, 6, and 7. The dry densities versus molding volatile 

contents are shown in Figures 11, 12, and 13. From these density­

volatile and innnersed strength-volatile relationships the optimum 

molding volatile content for d8nsity and for strength werE, obtained and 

are tabulated in Tables 3, 4, 5, and 6. 

Both Figures 4 and 5 show that the immersed strength vf the friable 

loess increases with increasing epc·~xy content.. The immersed stre:n.gt:h 

gain from 7 percent: to 9 percent epoxy content: is 400 psi. However, 

:Lf 2 percent of lime were added to the mixtures, the maxi.mum strength 

gair. wudd be approximately 850 psi. The epoxy-soil mixture yielded 

m~:ch g~ceater innnersed strength if 2 perce:ctt lime were added.. The 

opti.mum molding volatile content for maxinmm immersed strength of 

epoxy-friable loess mixtures decreased 1.5 percent with every in-

crease of 2 percent epoxy content from 7 percent: epoxy conte.nt: v.p to 

1:3 percent epoxy content. For epoxy-lime- fria:ble loess mixtures, 

the optinrum volatile content for strength is seen to be nearly the 
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Table 3. Effect of Guardkote 120A and 120B on the properties of the friable loess (Lab. No. 20-2). 

Molding Average Optimum Maximum Individual Average Optimum Maximum Average Average Average 
Guardkote Volatile Dry Volatiles Dry Immersed Immersed Volatile Immersed Average Volatile Linear Moistures 

120 A 120 B Content Density for Density Density Strength Strength Content for Strength Linear Retention Expansion on Absorption on 
% % % % % pcf psi psi Strength % psi Shrinkage % Immersion, % Inunersion, % 

7 2.8 9.29 100.10 481 550 494 508 -0 .. 13 2.1 -0.05 14.20 
7 2.8 11.24 99.43 517 475 468 487 -0.12 3.0 -0.03 16.40 
7 2.8 13.23 100.66 517 461 491 496 -0.17 3.3 0.00 15.15 
7 2.8 14.17 101.54 554 593 563 570 -0.10 1. 24 +0.25 10.48 
7 2.8 14.21 100. 18 485 524 718 576 -0.28 4.4 +0.39 14.12 
7 2.8 14.96 100. 55 606 633 517 586 -0.05 3.4 -0.06 11.66 
7 2.8 19.9 3 97.91 15.00 100.10 356 366 361 14.00 580 +0.42 4.3 +0 .15 17.84 

9 3.6 7.85 98.77 639 633 596 623 +0.1 2.9 +0. 31 18.00 
9 3.6 9.52 100.77 833 850 814 832 +0 .15 3.0 +0. 30 15.22 
9 3.6 l2o2l 102.00 993 896 945 +0 0 25 3.5 -0.05 9.23 
9 3.6 14.90 102.15 590 656 1,011 752 -0.22 4.4 -0.07 l0o89 
9 3.6 15.82 102.40 465 478 774 572 +0.45 4.0 +0.03 13.28 
9 3.6 18.15 99o66 l4o50 102.50 567 567 685 606 12.50 1,000 +0. 37 3o9 +0.07 11.52 

11 4o4 5o05 99.58. 814 929 902 882 -0.05 2.9 +0.48 13.53 
11 4.4 6.93 100. 30 994 863 797 885 +0.24 3.6 +0.39 16.36 
11 4.4 8.70 102o40 922 1,126 1' 116 1,055 +0. 20 3.7 +0026 10.40 
11 4o4 12.10 101.70 1,153 1,093 1,086 1,110 -0.20 5.8 +0.19 11.10 
11 4.4 14.45 103.87 823 837 892 851 +0o06 7.7 +0.25 13.39 
11 4.4 15.18 103.32 748 837 1,017 867 +Oo53 6o6 +0.05 12.32 
11 4.4 18.00 98.71 13.50 104.0 445 475 649 523 lOo 50 1,135 +Oo 70 7.9 -0.20 15.04 

13 5.2 5o66 103 0 87 1' 120 1,289 955 1,121 +0.05 4.4 o.oo 12.32 
13 5.2 9.20 104.66 1,619 1,027 1,751 1,466 +0.40 6.7 +0.32 12.05 
13 5.2 11.51 105 oOO 1,040 1,208 1,090 1' 113 +0.89 8.7 +0 .18 10.37 
13 5.2 13.39 104.17 1,106 1,093 1,225 1 '141 +0 .47 9.2 0.00 12.42 
13 5.2 l3o 72 103.34 10.50 105.2 781 856 948 862 9.00 1' 490 +1.08 7.3 +0.02 11.96 
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Table 4. Effect of Guardkote 120A, 120B and lime on the properties of the friable loess (Lab. No. 20-2). 

Molding Average Optimum Maximum Individual Average Optimum Maximum Average Average Average Average 
Volatile Dry Volatile Dry Immersed Immersed Volatile Immersed Linear Volatile Linear Moisture 

Lime 120 A 120 B Content Density for Density Density Strength Strength Content Strength Shrinkage Retention Expansion on Absorption on 
% % % % pcf % pcf psi psi for Strength psi % % Immersion, % Immersion, % 

2 5 2.0 11.88 100. 46 294 277 286 -0.60 1.8 +0.40 18.3 
2 5 2.0 13.63 100.40 323 287 305 +0.40 2.2 +0.27 15. 3 
2 5 2.0 14.85 100.71 373 343 358 +0.10 2.8 +0.15 16.4 
2 5 2.0 16.74 104.03 16.80 104.0 452 471 462 16.80 470 +0.40 4.4 +0.27 17.6 

2 7 2.8 8.24 98.82 857 817 837 +0.45 1.8 +0.47 11.5 
2 7 2.8 10.35 99.83 768 801 785 +0.43 2.6 +0.55 11.9 
2 7 2.8 11.76 101. 39 798 768 783 +0.35 2.7 +0. 30 11.6 
2 7 2.8 13.31 102.20 745 732 739 +0.17 s.o +0.12 8.6 
2 7 2.8 15.30 102.74 517 508 513 +0 .12 7.5 -0.15 9.9 
2 7 2.8 16.90 101.10 14.40 103.9 629 636 633 9.50 840 +1. 30 4.8 +0.05 9.9 

2 9 3.6 8.64 99.22 1,623 1' 442 1,533 +0.50 2.7 +0.50 11.0 
2 9 3.6 10.36 102.80 1 '718 1,646 1,682 +0.33 3. 7 +0.28 10.6 
2 9 3.6 12.18 104.60 1,179 1,176 1,178 +0.15 6.0 +0.15 9.6 
2 9 3.6 13.29 105.05 1,001 978 989 +0.13 7.3 -0.13 9.8 
2 9 3.6 15.08 102.87 13.00 lOS. 2 613 616 615 10.00 1,700 +0. 90 8.7 0 13.0 
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Table 5. Effect of Guardkote l20A, 120B, and lime on the properties of the plastic loe ( ab. No. 528-4). 

Average Individual Optimum Maximum Average Average 
Molding Dry Optimum Maximum Immersed Ave lg< Volatile Immersed Average Average Linear Moisture 

120 A 120 B Lime v. c. Density Volatile Dry Density Strength Immersed Constant Strength Linear Volatile Expansion Absorption on 
% % % % pcf for Density pcf psi Str~·<gt" for Strength psi Shrinkage Retention on Inunersion,% Inrrnersion, % 

5 2.0 2.0 11.00 102.90 399 389 394 0.58 2.7 0.45 15.2 
5 2.0 2.0 13.42 105.18 458 458 \5E 0.70 4.4 0.25 14.9 
5 2.0 2.0 15.63 106.07 442 458 .so 0. 75 4.9 0.20 17.4 
5 2.0 2.0 16.90 105.59 501 498 499 1.10 5.4 0. 30 18.5 
5 2.0 2.0 19.22 102.06 15.50 106.10 442 435 \28 16.70 500 1. 50 6.0 0. 35 19.1 

7 2.8 2.0 11.43 103.43 596 616 506 0 .so 3.8 0.35 12.7 
7 2.8 2.0 13.02 106.58 735 824 779 0.80 4.4 0. 30 12.8 
7 2.8 2.0 15.15 106.14 791 826 lOE 1.05 6.6 0.33 13.2 
7 2.8 2.0 16.23 103.79 686 672 075 1.40 6.0 0.40 17.0 
7 2.8 2.0 18:44 101.08 14.00 107.40 504 609 537 14.50 810 1.55 7.9 0.25 17.7 

9 3.6 2.0 10.61 102.83 1,040 929 185 0. 50 4.2 0.50 16.6 
9 3.6 2.0 11.81 105.55 965 1,008 987 o. 90 5.0 0.40 14.1 
9 3.6 2.0 13.88 106.98 1,021 998 1 '150 0.95 7.5 0. 35 13.8 
9 3.6 2.0 15.40 104.04 13.50 107.85 972 952 162 13.00 1,020 1. 24 7.7 0.40 14.4 
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Table 6. Effect of Guardkote l20A, l20B and lime on the properties of the Kansan Gumb< :il Lab. No. 512-11) 

Molding Optinrum Maxirrrum Individual Av· oag< Optinrum Maximum Average Average 
Volatile Average Volatile Dry Immersed Imm ~S8( Volatile Immersed Average Average Linear Moisture 

l20A 120B Lime Content Dry Density For Density Density Strength Strength Content For Strength Linear Volatile Expansion Assumption 
% % % % pcf % pcf psi :;i Strength psi Shrinkage Retention On Irrrrner sian On Inunersion,% 

5 2.0 2.0 12.81 97.55 241 248 ?45 20.0 429 0. 60 2.6 0.70 20.7 

5 2.0 2.0 14.51 100. 22 264 251 ~s8 0.65 3.6 0.65 20.0 

5 2.0 2.0 16.90 100.90 277 300 19 0.70 3.7 o. 55 20.4 

5 2.0 2.0 18.20 99.82 356 290 323 1. 20 3.7 0. 50 19.4 

5 2.0 2.0 20.06 98.09 16.40 101.00 471 386 ~9 1.45 4.2 0.50 20.0 

7 2.8 2.0 14.18 95.60 501 458 .'9 18.0 600 0.75 4.3 0. 55 18.5 

7 2.8 2.0 15.76 98.26 471 524 "18 0. 60 4.6 0.25 20.0 

7 2.8 2.0 17.90 99.36 642 554 598 0.85 5.9 0.40 19.1 

7 2.8 2.0 19.11 98.00 461 465 )3 1.15 6.5 0. 35 19.8 

7 2.8 2.0 22.90 94.33 17.40 99.60 491 501 496 2.05 7.3 0.25 21.4 

9 3.6 2.0 14.67 98.44 16.5 101.85 846 7 32 17.0 850 1.10 3.9 0.80 19.3 

9 3.6 2.0 16.35 101.74 853 791 ~22 1.40 4.4 o. 75 17.2 

9 3.6 2.0 17.93 99.05 846 824 35 1.15 4.9 0.65 17.7 

9 3.6 2.0 19.32 97.28 682 577 630 1.50 6.6 0.55 18.9 
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same for 7 and 9 percent of epoxy content. 

Figures 6 and 7 for pla~tic loess and gumbotil show the same pat­

tern as that for friable loess, but when the epoxy content was in-

creased to 9 percent the rate of strength change with increasing volatile 

content was less. At volatile contents higher than 20 .percent the speci­

men would have many slickensides after compaction, so no more satis­

fa ct ory specimens could be obtained. The plastic loess cont ained 39 

percent clay and the gumbotil had 42.4 percent clay; both had higher 

clay contents than the friable loess, which had 19.6 percent. With 

9 percent epoxy and 2 percent lime, the maximum immersed strength of 

the plastic loess and gumbotil specimens were 60 percent and 50 percent, 

respectively, of the maximum immersed strength of the friable l oess 

sp ecimens. Apparently, soils wi.th heavy clay content are less effect ive ly 

stabilized with epoxy- lime than other soils wit h less clay content. 

Other addit~ves, therefore, were tried t o improv e the stability 

of the epoxy-lime-gumbotil mixture. Table 7 and Figure 8 shows the 

strengths obtained with various chemicals, lime and cement. Lime still 

proved to be the best additive among all chemicals u sed i n the epoxy­

gumbot i l mixture. Specimens with 2 percent lime and 5 percent epoxy 

had higher immersed strength than the specimens with 6 percent lime 

and 5 percent epoxy. With 4 percent lime, spec imens showed highe1· im­

mersed strength than the specimens with 2 percent lime after curing at 

40° C oven for seven days; however the strength difference of the two 

mixtures was not significant after curing for one day. The increase 

i.n strength after seven days is probably due t o the increase of lime 

content. Therefore, 2 percent lime, based on dry soil weight, was 
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Table 7. Effect of guardkote 120 A, 120 B and different additives on t he im-
mer sed strengths of the Kansan gumbotil (Lab . No , 512-11) 

120 A 120 B v. c. Additives Curing Ave. Strength 
% % % % Time psi 

5 2.0 16.40 2% lime one day 356 

5 2.0 16.40 2% lime three days 363 

5 2 . 0 16.40 2% lime seven days 373 

5 2. 0 17.36 4% lime one day 376 

5 2.0 17. 36 4% lime t hree days 452 

5 2. 0 17.36 4% lime seven days 521 

4% 1.6 17 .84 6% lime one day 297 

4% 1.6 17.84 6% lime three days 320 

4% 1.6 17.84 6% lime seven days 330 

5% 2.0 16.00 1. 2% NaCl one day 80 

{ 5% 2.0 16.00 1. 2% NaCl thr ee days 83 

5% 2.0 16.00 1.2% NaCl seven days 90 

5% 2.0 16.00 1.2% CaC1 2 one day 80 

5% 2.0 16 .00 1.2% CaC1 2 t hr ee days 83 

5% 2.0 16 .00 1. 2% CaC12 seven days 96 

5% 2.0 16.00 1% NaOH one day 113 

5% 2.0 16.00 1% NaOH three days 123 

5% 2.0 16 . 00 1% NaOH seven days 133 

5% 2.0 16.00 1% Ca (OH) 2 one day 106 

5% 2.0 16 . 00 0.5% Na(OH) three days 116 

5% 2.0 16.00 0. 5% Na ( OH) seven days 133 

5% 2. 0 16 .00 2% cement one day 146 

5% 2.0 16.00 2% cement three days 1.56 

5% 2. 0 1.6 . 00 2% cement seven days 1.62 

5% 2.0 16 . 00 4% c ement one day 264 

5% 2.0 16.00 4% cement three days 271 

5% 2.0 16 .00 4% cement: seven days 290 
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r 
Table 7 (continued) 

r 
120 A 120 B v. c. Additive Curing Ave . Strength 

% % % % Time psi 

If 
5% 2.0 18 . 00 0.9% lime one day 159 

5% 2 .0 18.00 0 . 9% lime three days 17 2 

r 
5% 2.0 18.00 0.9% l ime seven days 17 5 

5% 2 .0 one day 106 

I 2% lime 
5% 2.0 16.00 and three days 129 

0 .5% NaOH 

5% 2.0 seven days 185 

5% 2.0 18.00 1.8% lime one day 231 

5% 2.0 18.00 1.8% lime three days 212 

5% 2.0 18 .00 1.8% lime seven days 231 

5% 2.0 18.00 3% l ime one day 251 

5% 2.0 18.00 3% l ime three days 244 

5% 2.0 18.00 3% lime seven days 254 

5% 2.0 18.00 4% lime one day 261 

5% 2.0 18 . 00 4% lime three days 238 

5'ro 2. 0 18.00 4% lime seven days 238 

I 5% ~ 18.00 5% lime one day 281 

5% 2 18 . 00 5% lime three days 304 

{ 5% 2 18.00 5% lime seven days 297 
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used as the secondary additive f or the engineering evaluat i on of al l 

epoxy-soil mixtures in the phase 2 investigation . 

Figure 9 and Table 8 show that the maximum i mmersed strength ob­

tained for dune sand is at the lowest volatile content . Tho se points 

were erratic rather than ordered and a smooth curve could no t be drawn 

through the points. The maximum strengths obt ained are appro ximately 

the same for 3, 4, and 5 percent epoxy contents . When the vola t i le 

content was increased by adding more water t o the mixtu r e s, the imme r sed 

s trengths obtained would decrease. The rate of strength decre ase with 

the increas ing volatile content was greater f or h igher percentages 

of epoxy. The minimum immersed s trength f or 4 and 5 percent epoxy was 

at a volatile content of approximately 6 percent; while for 3 percent 

epoxy, the volatile content is 8 percent for minimum strength. 

Both lime and cement were t ried a s add itives f or the sand-epoxy 

mixture in order to make higher immersed strengths. Figure 10 and 

Table 9 show the immersed s trengths obtained 'vith different combina­

tions . The maximum immersed strengths of epoxy-sand speci mens in Figu~ e 

9 and Table 8 were obtained from mixtures in which no extra water was 

added during mixing. However, the same r ul e could not apply t o the epoxy­

lime sand mixtures; if no extra water wa s added to the epoxy-l ime-sand 

mixtures, t he specimens wou ld sl ake after immersing i n wa t er . The 

experiment showed that 1 or 2 percent water was necessar y f or the epoxy­

lime-sand mix. Further tests indic ated that the wa t er should be added 

and mi xed wi th lime-sand mixture before the prepar ed epoxy was used. 

This is the same procedure of molding spec i mens suggested at the end 

of presentation and discu ssion of result s in pha se 1 . Th e spec imen s 



43 

Table 8. Effect of guardkote 120 A, 120 Band lime on the properties of the dune sand (Lab. No. S-6-2). 

120A 
% 

3 

3 

3 

3 

3 

4 

4 

4 

4 

5 

5 

5 

5 

3 

4 

5 

120B 
% 

1.2 

1.2 

1.2 

1.2 

1.2 

1.6 

1.6 

1.6 

1.6 

2.0 

2.0 

2.0 

2.0 

1.2 

1.6 

2.0 

Ave. Dried 
V. C. Density 

% pcf 

2.88 110.5 

5.14 110.9 

6.74 111.5 

8.20 112.3 

11.53 112.3 

3.61 110.9 

5.92 112.4 

8.62 112.1 

10.68 114.0 

2.13 112.5 

3.58 112.6 

5.49 111.2 

9.43 113.6 

1.16 108.7 

1.49 109.4 

1.80 110.3 

Method of Individual 
Curing Strength 

Seven days 337 
in room temp. 

and one day in 330 
distilled water. 

" 

" 

" 

" 

" 

" 

" 

Seven days 
in room temp. 

and one day in 
distilled water. 

" 

" 

" 

353 

198 

238 

287 

225 

376 

310 

320 

146 

93 

179 

379 

337 

346 

Immersed 
psi 

264 337 

386 

356 

205 159 

238 

271 294 

238 

264 330 

205 271 

327 320 

182 195 

80 100 

133 159 

353 337 

386 346 

379 379 

Ave. Optimum 
Immersed V. c. for 

Strength psi Strength % 

313 1. 2 (no extra 

358 

354 

184 

238 

384 

232 

323 

262 

323 

141 

91 

157 

353 

356 

368 

water was added) 

1.6 (no extra 
water was added) 

2.12 (no extra 
water was added) 

1.2 (no extra 
water was added) 

Maximum 
Immersed 
Strength 

psi 

353 

356 

353 

353 

356 

368 

Ave. Linear 
Shrinkage 

% 

-1.15 

-0.70 

-0.80 

-0.77 

-0.60 

-0.70 

-0.43 

+0.40 

-0.45 

-1.00 

-1.00 

+0.40 

-0.20 

-0.44 

-0.25 

-0. 57 

Ave. V. C. 
Retention 

% 

1.2 

0.6 

1.0 

0.9 

1.6 

1.3 

1.4 

1.3 

1.7 

2.0 

2.5 

1.7 

1.7 

0.7 

1.3 

1.4 

Ave~ Linear Ave. Moisture 
Expansion Absorption 

on Immersion on Immersion 
% % 

+0. 20 16.7 

0.00 12.5 

-0.15 10.3 

-0.65 9.4 

-0.10 7.8 

-0.13 14.6 

-0.13 9.5 

-0.23 7.2 

-0.18 3.3 

+0.10 15.8 

+0.05 14.2 

o.oo 12.9 

-0.20 7.2 

+0.02 17.2 

+0.33 17.8 

+0.35 17.6 
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wi th 3 perc~nr epoxy would have their strength increa sed by 92 percent 

if 2 percent lime was added as a second additive. The r esults a re 

g iven in TRblP 10 and Figure 10. 

A tent ati~e expl anation is giv en for the n~chanism of the epoxy 

and epoxy lime s tabilization based on the test results of the loes s , 

gumbotil and sand specimens. Uncured epoxies are either honey-col ored 

li qu ids or brittle-amber solids which become liquid when heated. En-

larged 10 million times, the molecules of resin might re semble short 

piece s that vary in lAngth from one half inch in some of the liquid t o 

several inches in the solius (21) . These threads a r e joined together at 

the ends and along the sid~s to form l arge cross-linked st ructures after 

I 
I. 

curing. Each molecule is tied to several others like the ropes of a 

fish net or the fil amert s of a spider's web, but in an irregular r ather 

than uniform pattern. Since the epoxy resins are cured only by a 

roma tic or aliphatic hydroxyls and various other organic radicals, it 

i s believed that no chemical reaction h as taken pl ace between epoxy 

r esins and various kinds cf soil particles. But the epoxy resins sue-

cessfully stabilize soils which have either ion exchange capacity or 

no ion exchange capacity; therefore there is evidence of att r action be-

tween the soil and the polymer. This attraction (14) could be caused 

by the electrically unsaturated ions on the surface of the soil particle 

attracting the ionic polymer (amine groups), aided by a ~econdary valPnce 

f orce between the soil And the pol ar groups of the polymer (epoxy and 

llydrcxy l g r oup s ) . 

When the epoxy re s in mixture a lone is mixed with the dune sand, 

u coating of individual particles with resin solution is attainsd. The 

l 



r 

' 

{ 

l 
l 
l 

700-

-

600r-

I-

5oo f- I 
Immersed 
Stre~gth 

PSI 
400r-

300~ 

r- · 

200r-

100 r-

-

A 

46 

A: 
B: 
C: 

D: -
E: 
F: 
G: 
H: 

I: 

J: 

8 c 0 E 

3% epoxy + 2% hydrated lime 
3% epoxy + 2% portland cement 
3% epoxy + 3% portland cement 
(cured in room temperature 
3% epoxy+ 3% portland cement 
(cured in 100% humidity room) 
2% epoxy + 2% hydrated lime 
2% epoxy + 3% hydrated lime 
2% epoxy + 4% hydrated lime 
3% epoxy (maximum immersed 
strength in Figure 9) 
4% epoxy (maximum immersed 
strength in Figure 9) 
5% epoxy (maximum immersed 
strength in Figure 9) 
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Figure 10. Effect of different additives on immersed strength of 
epoxy-sand mixture. 



47 

Table 10. Effect of Guardkote 120B and lime on the curing time and relative hard -
ness of the cured epoxy resin. 

120A 120B Curing Relative hardness 
T = 80°F parts by parts by Lime time (by Shore 

weight weight parts by weight minutes Cleroscope) 

10 1 0 100 6 

10 2 0 25 550 

10 3 0 23 510 

10 4 0 20 350 

10 1 0.5 26 270 

10 1 1 22 510 

10 1 2 22 550 

10 1 3 22 170 

10 4 0.5 10 210 

10 4 1 10 250 

10 4 2 9 220 

10 4 3 7 330 

10 2 0 . 5 13 600 

10 2 1 13 620 

10 2 2 15 650 

10 2 3 15 610 



epoxy is i n contac t with a r!d adher es t o the sand grain s . When the cured 

epoxy hardens , i t becomes a soli.d and bin:is t he sand grains together. 

'lhe san.d spec :lmen.s y i e ld a dec:·.reasing s t r ength when water is added 

during mixing. Wa 'tc::r is a non-solve:c:t f u:r f:lpoxy mixtur es. 'l'e sts showed 

that the addition o f water t o a prepare d ept"JXY makes the epoxy gel 

-
fl o at on t he water surface. 'l'he i ndi v idu al sand grains wil l be sur-· 

r o<.tnded by a film o f water du e t o ~he hydrophilic <~haracte:r o f grains, 

so t he epoxy globul es are prevented by the water film from coming in 

contac t wi.th and adh~ri.ng t o t he sand gra:tns. By the t ime the mixing 

water evapo:catas, t he epoxy globu:.l es w:i.ll. alre ady have se't-'-lp and the 

vis<:oo;ity is so great :i. t will s t ay Slil1U8'ii'he:r:e betweE:n the sand grains 

which a:re l ess ef:Ee.c t i vely bound than f or the epuxy-·sand spec imens wit h-

O'-i t t he addition of water . J.f mo :r:e wate r is u:sed, thicke t: wa ter films 

•• an,und the sand g;~ ains will be f ormed. This f;.n·ther rt:duces the 

probability cf epoxy coming in cont ac t with and adheri ng t o t h e sand 

grains and i t resl: lts in f m:ther s tr.engt h decr eases . 

The maximum inm1ersed st:rengths o f du:.:r.e ::;and spec imens did not 

inc rease with i ncr easing epoxy c.-.:mte~tt s . The spe~imens containin g 4 

and 5 percent epoxy had appr c•xi.mately the same imme r sed strengths as 

t:he sp e<:.: im.;ms with 3 pe r cen t epoxy c:ontent. Probably, 3 percent epoxy ... 
is e:o.o:.tgh t: <J cc"lat {:he indiv idual sand grains with epoxy film. Ho:>:'t': 

epcxy makes the t~lickness o f fi lm irw r e ase , but i t ".VO'I.tl.d not help the 

i ncrease o f str ength . 

When the epoxy is mixo2!d ~iti1 the f:r. i.able l oe ss, the vo l at ile-

strength relationship f olluws the usual pat::ern o f i ncr easing strength 

with increasing vo l atile cont ent v.ntil a maximum is attai.ned. Tests 
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in phase 1 have i ndic.at t:! d that pre:-~nUJ.l.si. f:i.c:a t i.•)n o f t:pOK)" an.d ha:rdentr 

was n.:.'t absc-l tl:.:el y nt::eessary; p:to'bably the .._:lay fra ct i un o f soil ac ts 

as an enn l s i. fyin g agent and thus aids t h e di stribution o f the :re sin 

i n t he wat:e:r: ; t~ms the extra ·w-at er m:i.xe d w:i.th sulls prior t o the addi ­

tion o f t he pr epal'E)d t·esl.n, enabl&s a nDre thOJ:t:.u.gh dist :r:ibll.t "i.on u £ t he 

dispersing epoxy r es:i.,:-c part:i.c:l e s trn:·,~ugh the rn:t.xn.:rt.·,;;,. After the ep u xy 

r. E:sin. part icl.es set up, the su J.:i.d ep o:Ky a dhe:cs to sv i.l grain o r ag­

glomerates o f g:r.a:i.ns a nd bi.:ad them t vgetrun ·. With h igr'.er volat ile ~.:on­

tent tlw st".t.·ength val :::~. E:s wil l dec:L·ease due t u t!:u:.! l ess ef:f.::cti ve com-

p a et:ior .• 

Hyd:t:ate d ~::a·l (·.:f.t: :i.l! 1 ime h as bet:n f,_·,u.nd to b e a v ery benefi c i al 

additive t .') i mprv<.rE. the e poxy- s oil mixt:u.:r:e wit h highet· immerse d str·engths. 

'r he friabl e l.oess s p e:cime1:s wi.th 5 pe:r:,~en·:: 8P(-':li:Y C:t.mtent v;uu ld s l ake 

in 'A'ate:c ; they ·~vcrGl d givE: 4'10 p s i ma:x:Lmum imtnersed s·:=.:t:e.ngth w·ben 2 

p ~~:rt! Em.t hydl·at: E>;d 1 :i:mf..: was a dde d . Sp ~:·.::: imens w:i.th '? p;,~:rcen.t e pvxy c-.: >n~· 

tent had a 4.'5 pe:r:c:E-:~1.-: h rune·rsed st:r:E:::tgt:h l.ucz:ease af':::c:r adding 2 p erce:nt 

l i me t o ~he mixi':u:r.c ar!d tto se with 9 p e r:ce:nt epoxy cu:tten.t s had a 70 

p e r cen t st.rengfh it~.cl'ea se. 

~·.'he vo l atile:- st:re>:~gt'h rela.t. i.,.:;~1ship s oi: l:i.m.~ ~ ep -:~xy-· clayey s,)il 

mixtu res !:.::;ll c:~'iv thtJ s ame p atterns a.s the spt:•c:Lmens ') £ e p c·xy··(:layey 

so i l nd.xtv.res. 'i:he op tirrr11m vol a t il -e (:or•t ent f (n· st:cer:>.g!:h decrease: with 

the incr~asi~.g epoxy c:oc,.t e:at. So :i.l s ··.vld..~h ha·~t·e hi.ghe:c e l ay c:ontent s 

r e qu i.r a a h:lghc.1· .-,p t imum volatil e: eu:\tt:er•.'~: t:.,·r. stJ.'€:!l.gtll.. Ea ch s o :i.1 h as 

a maximum vol a.t.il 8 tXnt,;:nr:= bey r .• rcd wll :L·.h ::. a tlsfa~;tt.:•ry sp E: r.~irnens c arm,.:. t 

b e mo l ded . 'l'he l im:i. !::at:i.ons i.nt.·:·c8asf:: ·;vi::h t:1.e p:r:u pol'tion 0 £ ~lay C-'JU-

t:en'i:o 
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When. lime alone was used as a stab:i.l:i.z:i.ng age-nt with the fri abl e 

l o E:ss .• 2 p e r c E:nt hyd:cated c al. e :i..t:i.c·. l i me gave l S ps :i. maximum immersed 

strength afte r seven days m::vistu:r:e cu:r:i.ng. HmvE:ver, the s peeimea.s with 

'J pE:rcent e poxy woa ld hav;;;; a 250 p si st:t:ength gai.n i f 2 p e r c.e n t Hme 

was added t o tl1.e mi.xt-c:re an d the spE:c:imens ·with 9 p e,rc ent epc,xy t:ontent 

would have a 700 p si. st1:ength inc: r eas€,. The effect o f l ime is th~Jr e-

f ore be lieved t:u b e due t o its effect s on b oth s oil minerals an d t he 

epoxy-hardene r syste m. Lime may b e expected t o attack soil minera l 

su rfaces and r ender them elec.~tTi.cally more unsaturated and more po lar; 

the pr op e rties o f C'-1red e poxy might also be c:hanged by the aet:L:;n o f 

lime; all r e sultin g in bette1: b onding and in an incre ase in strength. 

'I'he effect: o f lime on pu r e ep oxy systems was investigat ed brie fly 

by determining set·~~:i.ng t ime , r e lative ha"I:dness and X- :tay d :I.f:fraction. 

patt ern o f various ep oxy, harde n e r and lime mixes . Res·.~1l t:s obtained 

( 'l'ahl e 10) indic ated that setting time decrease s in proportion t o t h e 

p e:ccent:age o f lime. Re lati.ve hardness on t 'he o the1· hand increased 

ma·.ekedly •ATith lime f or 10 : 1 ep oxy hardene r system, me a n i n g savings 

fr0 m hardener c an be r e alize d by using a few parts o f limE;. Fo r 

1.0 : 2 epoxy hardener system, however, inc r e ase in hard:nE:ss ·with l ime was 

n.ot so p:r.·onoun,::ed; whe:r.· eas hardne ss o f t:he 10 : 4 epoxy hard ener system 

showed a signific an t dec:rease with l i.m.e p:roduci n.g se t epoxy systems 

with mod erate ha:rdness . In the sc reening t t=; sts 10:4 epoxy hardene r 

syst em was f~-,·v.nd mo &t su :ll:abl.e f or so il stabilization (Table 2) . This 

combinatio n when use d f or sc il s tabi.li.zati.on in eonj vn c tion wi.tb. lime 

was found t o prvd~ce h:i ghe r stab:i.li.ty. It may therefore be c.on c l u d(od 

that a ntod e:rate hardness :resu.lt: s .ln bette:r b onding. A pu ~sl.blt explana -
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tion for thi s follow s: 

The majority of resins and polymers show l i ttle or no crystalline 

nature i n X-ray di ffraction analysis (13) . These sub stances formed 

with le ss degree of crysta l lization are called amorphou s solids. In 

Figure 11, curve (a) shows the cured epoxy-hardener specimen has fair 
I 

crystallinity, while curve(b)shows the same specimen with lime h as 

less crysta llinity. As t h e peak appearing in curve b was identified as 

Ca (OH)
2 

according to the ASTM index (3) , we can anticipate t hat l i me 

affect s the polymerization reaction and makes the epoxy resin less 

crys t alline, and low hardnes s po ints out t hat the polymer has h igh 

ductility . A more ductile material is thus formed wh ich can deform 

plastically to a greater extent than t he epoxy re sin specimen withou t 

lime . The higher ductility of resin could partia l ly be responsibl e 

for increases in immersed strength of soil s pecimens. The lime left 

which shows in X-ray diffraction, becomes available for soil- l ime reac-

tion which gives rise to added strength. 

Figure 12 shows vo l at ile-dry density relationships for the friab le 

loess-epoxy combinations. The optimum volatile contents for maximqm 

dry densities are, on the average, 1 to 1 .5 percent more than the 

optimum vol at ile cont ent for strength . The maximum dry densities are 

seen to increase with increas ing epoxy content. Figure 13 shows t he 

rel a tionsh ips for vol a t ile content - dry density for the friab le l oess-

epoxy-lime combination. The optimum volatile contents fo r density and 

for strength are approxima t ely the same for 5 percent epoxy cont ent. 

For higher epoxy contents, t h e value of optimum volatile content i s 

higher than tha t for immersed strength . An increase of 2 pcf in dry 
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density is obtained if 2 percent l ime is added t o t he epoxy-so:i.l mixture . 

'I.'be volatil e content-dry density r8lati onships f O'f: the plastic l oess 

and gumbo t il stabilized by epoxy and lime are presented in Figur.e 14 . It 

was f ound that the maximum dry densities for different epoxy contents were 

approximately the same for plastic l oess soil; whi le the relationshi ps for 

gumbot il shows that the maximum dry densi t y for the spec i men with 5 per­

cent epoxy content: is greater by 2 pcf than t hat of the specimen containing 

7 perc ent epoxy. 

Effect on Shrinkage, Swelling and Moisture Absorption 

'J~he inuner:sed s trength, the shrinkage upon drying, and t he expansion 

upon wetting are all important crite·.ria of the engineering stability of 

a soil. Excessive deformations f r om drying, wett ing and a l ternati ve 

freezing and thawing are symptoms of instability of soils. If t hese 

happen t o a base o r a subbase ma teria l, the excessive deformat i on can 

c ause the r oad surface mat er·ial t o be damaged or cracked. 

According t o Roderick ( 18), allowable maximum l i near expansion of t he 

stabilized soil, used as a flexib l e highway base course, is 1. 64 percent . 

'J."he data presented in Tables 3, 4, 5 , 6, and 8 show that t he f our 

soils gave average l i near expansion val ues wh ich are far less than the 1 . 64 

perc ent maxi mum all owed after i mme:r:si.o:n f o-r one day. On the viewp(•int o :E 

t he allowable linear expansion upon inunersion in water, t hey would be suitable 

as base course material when stabi l ized with th e amount of epoxy used. 

'.l'he absorption of water by cohesive soils c au ses swell ing and con­

versely drying c auses shrinkage . These vol ume changes have been stu di ed 

for cohesive soil s ( 11) . It shows that the maximum changes in vol ume due 
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to drying occurred when the specimens were made up in a saturated condi-

tion. But the minimum changes in volume due to swelling occurred when the 

specimens were made up in saturated condition. It i s therefore considered 

advi sable to compact cohesive subgrades below their optimum moi s ture con-

tent in cases \11here they are likely to be subject to evaporation of moisture 

during the life of the road and above their optimum moisture content in 

case the ingres s of moi s ture is likely to occur during the life of road. 

The results presented in Table s 3, 4, 5 and 6 show that the average 

linear shrinkages of the three soils are less when their volatile contents 

are a t or be low optimum for strengths; the average linear expansions on im-

mersion are less when their optimum volatile contents are at or above opti-

mums for strength. It is concluded that the same rules which \llere sug-

ges ted above should be applied to the epoxy-lime stabilized soils during 

construction. 

For cement stabilized soil s used as a paving material, a r e com-

mended requirement with re spect to absorption is th a t the maximum moisture 

content at any time during wet-dry or freeze-thaw tests shall not ex-

ceed the quantity which will completely fill the void s of the specimens 

at time of. molding. The max imum dry density of the friable loess speci-

men containing 9 percent epoxy, from Figure 10, is about 106 pcf . The 

specimens would weigh A.h x 106 x 454 gram. Where A is the cross-
123 

sectional a r ea of th e specimens in square inches , h is the height of the 

s pecimen in inches. Therefore, the 2 by 2 inch specimen would weigh 

n ( 2) 2 x 2 
x 106 x 454 = 175 gm. · If the specific gravity of the soil is 

4x(l2) 3 

assumed to be 2.65, the sol id s pace of the soil in 2 by 2 inch speci-

175 3 
men would be equal 2 . 65 em . In case the void space is filled with water, 

37 the maximum \\later content should be equal to 
17 5 

= 21 percent . 
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The average moistu re ab sorpt i on s are all l ess t han 21 percent after 

i mmersion. They are su it abl e a s p avi ng materials on t h e b asi s of ab ­

sorptio n o f wate r . 

Fr o st Su s ce ptibil ity 

The d e f o rma t :i on and th e reduc ed s t r eng t h caused by alternative 

f reezing and thawi ~g tests are t he mai n me a surements i n t h e eval u ati 0 n 

o f fro s t su s cep t ibil ity . Th e I owa F'reeze -Thaw Test (12) was u sed with 

spec i.me:ns pr epared f r om the raw soi l and the selected mixtur e s. All r a\-7 

s oils excep t sand bu l g ed and were complete l y dest·r oyed at the end o f 

the l Ot h c yc l e . Figu r e 15 shows the trea t:ed and un tre ated sp ecimen s 

a t ter t h r ee (;.yc l e s .:, f a l ternat i ve I'reeze -·Thaw Tes t. 'l'h e t reated soil s 

c:0n ta ined 7 pe r c ent e poxy and 2 p ercen t hydrated l i me excep t d·une. sand 

which was s t abilized by 3 percent epoxy and 2 p ercent l ime . The re sults 

0 f the t e st are tabu l a t ed in 'I' ab l e 11 . 'I'h.e r e was almo s t no detectab l e 

h eaving o f epox y - l i me dc ne sand spec in~ns after 10 free ze-thaw cyc l e s . 

Both l ine ar exp ansi on and t he strer:gth s ob tained f r om freeze-th aw 

spec i mens were a f f ected b y t he p erc ent age o f c l ay c~ntent . The spe~ imens 

wi t h m::n·e c l ay y i e lded mor e 1 inear expansio n and lower s tre:ng t h than 

t h0 se wi t h l es s c l ay con t ent . The l inear expansi~n f or the f r eeze- t h aw 

speci mens wer e 0 , 0 .25, and 3. 17 p er c ent f o r t h e friabl e l o e ss, plastic 

l o e ss and t h e gnmbotil, r e spec t ive l y. When sub j ec t ed t o t:h e f reeze-thaw 

tes t , spe .;; i rnen s f e r fr:iabl e l oess, plas tic l oe s s, gu mbo t i l and du n .:; sand 

h ad aver age s t rengt hs o f 820, 677 , 366, and 672 p si, r e spective ly . 

Th ese an:: 97 . 5, 8 3 . 5 , 61 and 98.5 percE-mt o f max imum l mme1:se d strengt hs 



Table ll. Effect of freezing and thawing on untreated and treated soils . 

Friable Loess Plast i c Gumbo til Dune Sand 
2% Lime + Loes s 

Epoxy Resin Epoxy Resin Epoxy Resin Epoxy Resin 
Content, % Content % + 2% Lime Content %.+ 2% Lime Content % + 2% Lime 

0 7 0 7 0 7 0 7 

Molding volati le 18.85 9 . 66 15 . 09 15 . 03 20 . 35 18.44 3.64 2. 96 
content, % 

Dry density, pc f 106.06 100.65 106. 45 105. 75 104. 87 99.48 105.27 111.70 

Linear expansion 0 0.25 3.17 0 · 
after 10 cycles 
of freeze-thaw, % 

Linear expansi on -- 0.40 -- 0.73 -- 0.80 -- o. 30 
after 11 days 
i nnnersion, % V1 

1.0 

Volatile after 31 . 25 2. 25 29 . 54 4. 07 32 . 03 3.48 20 . 85 1.82 
10 cycles of 
freeze-thaw , % 

Volatiles after -- 16 . 80 -- 18 . 17 -- 21.05 -- 17 . 67 
11 days innnersion 

uncon fined compressive -- 820 -- 677 -- 366 -- 672 
strength after (840) (810) (600) (684) 
10 cycles of 
freeze-thaw 
(Pf) psi 

Unconfined -- 708 -- 730 -- 463 -- 598 
compressive 
strength after 
ll days innnersion 
(Pc) psi 

Index of -- 115.8 -- 92.7 -- 79.1 -- 112.4 
resistance to 

Pf freezing R = - X 100'% f Pc o 
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obtained by these soils (Tables 4, 5, 6, and 8) at identical epoxy con­

tents. Gumbotil was affected most severely both in expansion and uncon­

fined compressive strength when subjected to alternate freezing and 

thawing. 

California Bearing Ratio 

The California Bearing Ratio test, usually shortened to CBR, is 

another way to determine the stability of the base course for flexible 

pavements. The main purpose of a base course in flexible pavement de­

sign is to provide a stress-distributing medium which will spread the 

load applied to the surface, so that shear and consolidation deforma­

tions will not take place in the subgrade. Table 12 shows the results 

of CBR tests performed on untreated 20-2 soil and on soil 20-2 treated 

with epoxy. The CBR value of the untreated specimen was 10. The 

CBR value of the specimen treated with 7 percent epoxy and 2 percent 

lime is approximately 40 times that of the untreated specimen. 

The linear expansion for the treated specimen was constant after 

soaking 25 hours in water. Linear expansion of the untreated specimen 

was approximately 27 times that of the treated specimens after soaking 

96 hours in water; the small linear expansion shows that waterproofness 

was obtained by the treatment. 

California Bearing Ratio values for lower epoxy contents were esti­

mated by assuming proportionality between CBR values and epoxy con­

tents. The assumption was based on observed proportionality between 

unconfined compressive strengths and epoxy contents. 
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Table 12. Effect of epoxy resin on California Bearing Ratio and related properties of the f riable l oess. 

Expansion of 
specimens during 

Dry density Volatile Moisture Moisture 4 days soaking CBR at 0.1 
of molded content retention absorpt ion elapsed expansion penetration 

Epoxy 120 A 120 B lime specimen during after curing after 4 days time , % after 4 days 
% % % pcf molding, % % soaking % hours soaking 

0 0 2 10664 17.88 *16.02 18. 19 0 0.000 

1 0 . 007 

25 0.038 

48 0.047 
0"\ 

72 0.053 I-' 

96 0.055 10 

7 28 2 106.75 9.80 **7.94 13.78 0 0.000 

1 0.001 

25 0.002 

48 0.002 

72 0.002 

96 0.002 410 

* The specimen was cured at room temperature for one day period. 

~-k The specimen was cured at 104°F oven for one day period. 
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The estimated CBR values for 1 and 2 percent epoxy content are given 

below. 

Soil 

20-2 

20-2 

Ep0xy content % 

1 

2 

Lime eontent % 

2 

2 

CBR 

50 

100 
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THE APPLICATION OF EPOXY STABILIZATION TO PAVEMENT CONSTRUCTION 

Pavements may be classified as flexible or rigid. The main dif-

ference between the two types of pavements is the manner in which they 

distribute the load over the subgrade . Due to the rigidity and high 

modulus of elasticity the rigid pavement tends t o distribute the l oad 

over a relatively wide area of soil . A major portion of the structural 

capacity is supp lied by the slab itself. The flexible pavement, on the 

contrary, distributes the load over a relatively small area and consists 

of l ayers which will resist the load distributed through them; there-

fore the highest quality materials are near the surface. 

If soil (20-2) stabilized by epoxy and lime is considered to be 

the material for a flexible pavement ( subbase, base and surface course 

material), the pavement may be designed by the following criteria: 

I. Unconfined Compression Te st Design 

The thickness of flexible pavements are built to such a depth 

that stress on any given layer \llill not cause undue rutting, shoving 

and other differential deformations resulting in an uneven surface. 

In other words, the thickness i s determined by the total lqad applied 

at the surface and in part by the strength characteristics of the sub­

grade . A formula derivable from Boussinesq's equation for thickness 

de sign is given below (10) 

T = [< q ) 2/3 -ll nz2 
q - p ~ 

where T = the steel load 

q = load intensity on loaded area 

P = the vertica l pres sure transmitted to the surface at depth z. 
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Assuming q = t = 70 psi where t is inflation pressure , t he above 

equat ion then becomes~'<' : 

The maximum immersed strength for the spec imen of 20-2 soil con-

taining 5 percent epoxy and 2 pe1·cent lime is 470 psi. Taking the 

immersed strength pr oportional t o the spoxy content the spec imen of 

20-2 soil with 1 percent epoxy and 2 percent lime would have 94 psi 

immersed strength. According t o Terzaghi (23), the ultimate bear;i.ng 
'· 

capacity for cohesive soil in f ooting design i s approximately 3.5 

ti.mes that of pressures which cau se the spec imen t o fail. Therefore, 

the beari ng capacity f or 1 percent epoxy and 2 per cent l ime combina-

tion for 20-2 is 320 p s i. If the highway is constructed within Iowa, 

the bearing capacity should be r educed t o 329 x 97.5 = 320 psi accvrding 

to the reduction from I owa Freeze-·Thaw Test r esults. Further, if the 

factor of safety for beari ng capac ity i s 5 the maximum bearing capac ity 

of 20-2 after stabilizing wi th 1 percent epoxy and 2 percent li.me is 

64 ps i. 'I'hen from the formula given abov e (10) sett ing p = 64 the 

protective l ayer f or 16,000 wheel l oad (T) is 4 inehes. 

II. CBR Design 

Base materials for fl exible pavement s are r equired t o have des ign 

CBR values not l ess than 80 (26) . If a 16,000 lb wheel l oad is selected 

·k The formu la i s not applicable b eyond t = 70 and z - 0 . 
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as a maximum wheel l o ad f or ccmunerd.al vehi.t..·. les on highways and i.f the 

natural subgrade a t constrt:.ction si.te has a CBR va l ue o f 6, the thickness 

of the required prot ective laye·r l ying above the natv.:t'al subg·.eade :i.s 

19 inches. The thickness was obtained from Figure 15 which was developed 

by the Corps of Engineers f 01: t h e desi.gn of flex ible highways. The 

CBR value of the natural su.bg:eade wo:..1.ld rise up t o 10 after compact ion 

(Table 12) . Then the protective laye1· above t he eompacted subgrade 

would require 14 inches. 'rhe relati:\re thi.dmess is shown Jn Figure 1.'1. 

The thickness design may be l.ater e d if di.ffe:r.en.t mate:rials are available 

at the construct i o n sites. They are diseussed i.n the f ollowing different 

cases. 

a. If subbase material w:i.th a UP.R v alue o f 40 is available near the 

construction site, o r i.£ t he subgrada soil c an be stabi.l. i.zed ~-P t o a 

C:BR of 40 by adding 1 pe1:cen t epoxy and 2 pe1~cent lime, the necessary 

protective layer would be 7 :i.nches over the subbase as shown in Figure 

18a. 

b . According t o the predictions of: the CBR. test, 2 pen:ent epoxy 

and 2 percent lime c an bri::tg 20 - 2 so i.l up t o a C:BR value o f 100. If 

this stabilized sc il we:ee used a s a base material, the necessary sur­

face thickness i s lj. inches. Whem compared with un(:on.fined compression 

test design this 1:e sult corresponds t o a safety :f:ac t o r of 5. 'rhe c t ·os s ­

section is shown i n J!':i.gu r e 18b . 



66 

(a) Friable loess -- the two speci­
mens on the right were untreated; 
the other 2 specimens contained 7 
percent epoxy and 2 percent lime. 

(c) Kansas gumbotil -- the 2 speci­
mens on the right were untreated; 
the other 2 specimens contained 7 
percent epoxy and 2 percent lime. 

(b) Plastic loess -- the 2 speci­
mens on the right were untreated; 
the other specimens contained 7 
percent epoxy and 2 percent lime. 

(d) Four pairs of the treated 
specimens from four kinds of 
soils remained intact in the 
water after immersing 11 days. 

Figure 15. Effect of three cycles of alternal freezing and thawing 
on untreated and treated soil specimens. 
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Figure 16. Desi gn cur ves f or flexible 
highways by Corps of Engineers 
( f r om Yoders, Princ i ple s of 
Pavement De sign) (21) . 

f Surface 
I 

Base CBR>80 

m 
Subbase CBR > 10 

Compacted Subgrade 
CBR = 10 :!{_ ______________ ....;._ 

Natural . Subgrade 
CBR = 6 

Fi gure 17. Pavement thickness for 16 , 000 
wheel l oad , based on CBR value . 
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Figure 18a. 
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Pavement thickness for 
16,000 lb. wheel load on 
friable loess based on 
CBR value of epoxy -­
lime stabilized subbase. 
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'"" I 
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-
~ 

c BR > 80 or, 
ubgrode + 2% lime s 

-l c 
Subbase "" s 

-

Compacted l() c , ~ '------------------ - · 

+2%epoxy 
BR >40or 
ubgrode + 2% lime 

+ 1% epoxy 

BR = 10 

Natural Subgrade CBR = 6 

Figure ·18b. Pavement thickness for 
16,000 lb. wheel load on 
friable loess based on 
CBR value of various 
epoxy-lime contents. 
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Wearing Surface Material 

The data obtained with epoxy-lime-soil specimens in unconfined com·~ 

pression and CBR tests suggested the evaluation of the mixtures' 

suitability as wearing surface materials. The chief function of a 

surface course is to provide a smooth surface resistant to traffic and 

to impart some shearing resistance to the pavement with added resistance 

to deformation. 

The Hveem Test, developed by the California Division of High,.ays, 

utilizes a stabilometer and a cohesiometer to test the friction and coN· 

hesion of flexible-pavement materials. The deformation in the stabilometer 

test is expressed as a function of the ratio of the transmitted lateral 

pressure to that of the applied vertical pressure. With seleeted 

epoxy~lime contents, mixtures were molded and tested according to the 

specification of test method No. Calif. 301-A (22). The compaetion 

of the test specimen was accomplished by means of the mechanical com­

pactor which imparts a kneading action consisting of a series of 

individual impressions made with a ram having a face shaped as a sector 

of a 4 inch diameter. circle. A 350 psi pressure was applied with a 

kneading action cn1e hundred times to each. 2 1/2 by 4 inch specimen. 

The specimens were cured by the method described in phase 2 and im-

mersed in 140°F water for half an hour prior to testing~ 

Cohesion was measu:red by means of the Cohe.siometer test. The 

test was run according to the specifications of No. Calif. 306-A (22). 

The results of the two tests are presented in Table 13. The 

suitability of the plant·~mixed surfacing by the Hveem method is deter-
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Table 13. Effe~t of epoxy and lime on Hveem Test and r elated properties of friable loess 

Epoxy 120A 
% 

9 

120B 
% 

3.6 

Calcitic 
hydrated 

lime% 

2 

Volatile content 
during ;nolding 

% 

10 

Dry 
Density 

pcf 

115 

115 

117 

116 

* from formula R = 100 _ _ ~~~ 1 for soil only 
D (Ph - ) + l 

Pv = 160 psi vertical pressure 

D = turns displacement reading 

Stabilometer value 
R 

%}* 
95 

66] 
** 
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Ph = horizontal pressure during 160 psi vertical pressure 

** from formula R = 22 • 2 

PhD- + 0.222 

Pv = 400 psi vertical pressure 

Ph = horizontal pressure during 400 psi vertical pressure 

Cohesiometer 
c 

grams per inch width with corrected 
to a 3 inch height 

1172 
1085 

950 
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mined on the basis of whether or not t he asphalt content and aggregate 

grading will satisfy the f ollowing requirements (4) . 

Stabilome t er Value R 

Cohesimeter Value C 

Light 
Traffic 

30+ 

50+ 

Medium 
Traffic 

35+ 

50+ 

Heavy 
Traffic 

37+ 

50+ 

No specification has been established for epoxy-s t abilized mix-

tures. However, both Rand C values obtained from epoxy stabilized 

soil mixtures are far greater than the values presented above for 

heavy traff ic conditions for asphalt surfacing courses. 

Traffic Simulator for Checking Behavior of Epoxy-Lime-Soil Mixtures 

The Tra ffic Simulator t est wa s devised primarily as a check on 

the behavior of paving mixes under a moving load . The e quipment was 

developed by the Bituminous Research Laboratory, I . S .U. (7) . The six 

specimens used in t hi s t est were ident ica l with those used in Hveem 

stability tests. An oscillating carriage provi ded loading on the test 

specimens with a moving wheel. Only one way traffie over the test 

spec imens was simulated . Fort y pourds load was used i n the t ests con -

duct e d because this l oad provides an e qu i valent of 80 ps i tire loading 

on the specimens. Genera lly, evaluations and comparisons of the be-

havior o f mixes have been based on the spec imens after 5, 000 passes. 

Mixe s that show a displacement of more than 1/8 inch at or befor e 

5,000 passes are arbitrarily deemed suspect to di stress under traffic. 

The test was conducted at r:oom temperatur e. Distilled wa t e r. was 

sprayed, by hand, on the t op s of No. 1 and No . 2 spec imens shown in 
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Figure 15 dl,tring operation in order to investigate whether or not the 

specimens would be affected by a moving l oad during ,.;retting. 

Since the inside diamete rs of the specimen holding rings were 

s lightly over 4 inches, the specimens fitted loosely in the rings. The 

No. 2 and No. 6 specimens were tightened by inserting metal shims around 

their s ides. The oth er fo~r sampl es were tightened by nails, as shown 

in Figu.re 19. When the carraige rebounded due to the thrush springs in 

the endo, the specimens tightened by nails gradually loosened and hit 

the cover. After 8,550 passes the surfaces of the loose test specimens 

deteriorated to the point of failure. Tight specimens (No. 2 and No. 

6), however, remained intact with no evidence of fa ilure. The average 

deformations of No. 1 and No. 2 specimens, measured by Ames dial s , ,.;rere 

0 . 03 and 0 .025 inches after 8,550 and 5,000 passes (corresponding t o 1. 2 

and 1.0 percent . deformations), respectively. In comparison with the 

result s obtained by Csanyi (7), the specimen with 9 percent epoxy had 

l ess deformation than those aspha l t Ocheydan aggregate mixes containing 

4 to 8 percent aspha l t. 

Flexural Strength 

If epoxy·-soil mixes are treated as rigid pavement materials, the 

f l exura l strength, or the modulus of rupture, for each specimen might 

be determined by the beam breaking test. The molding and te s ting 

procedure was based on the method of t est for fl exural st r ength of 

soil cement, using a simple beam of 3 by 3 by 11 1/4 inch size with 

third point loading, suggested by ¥elt and Abrams in ASTM (1). The 

beam was molded with a dry density of 106 pcf which is the maximum 
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dry density of the 20-2 specimen containing 9 pe rcent ~poxy obta ined in 

the pha se 2 investigation. The beam was cured one day in a 104°F oven 

and soak ed in water for 24 hour s prior to testing. The modulus of rup­

ture for the specimen of 20 -2 soil wi th 9 percent epoxy content was 

calculated t o be 225 psi after testing . A specimen of t he same soil 

with 15 percent Portland cement, molded and test ed as a dry soi l beam 

by Tinoco (24) yielded a modulus of rupture of 140 p si. The value of 

modulus of rupture from the epoxy-lime-soil beam was inferior when com­

pared with that of concr ete pavement mater i al ·which ranges from 600 to 

750 psi (17). 

The results of Hveem, tra ffic si mulation, and flexural strength 

tests suggest tha t epoxy stabilized soi l may be used as a semi-rigid 

surface coarse material . 

•• 
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Figure 19. Effect of 8 1 500 passes of the 
Traffi c S. T. on s i x spec i men s 1 

which were number ed from the 
right specimen to the left . 
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FURTHER INVESTIGATION OF MIXING ORDER 

When lime was mixe d directly with a prepared epoxy- hardener so l u­

tion prior to adding the mixture to the soil, the specimen wuuld yield 

greater immersed strength than the specimen molded with the mixing order 

pre sented in t he phase 2 investigation. In other words, the follow ing 

mixing order for soil- epoxy- lime mixes was the best one so far investi­

gated fo r getting good immersed strength. 

1 . Air dry soil with the r equired amount of di s t i ll ed water was 

mixed with a Hobart model C-100 mixer at l ow speed for one minute and 

was t hen h and-mixed. 

2. Two percent calcitic hydrated lime ba sed on the oven dry soil 

weight was added to the prepared epoxy-hardener mixture. The mixture 

was t hen stirred with a spatula to insure a uniformity before using. 

3. The soil-epoxy- lime mixture was then mechanically mixed for 

two mi nutes, fo l lowed b y hand-mixing for a minute. 

A preliminary investiga tion showed that the specimens of friable 

l oess containing 7 percent epoxy and 2 percent lime h ad 22 percent 

strength gain i.f the above mixing order was used rather than the 

mixing order presented i n phase 2 investigation. Thi s procedure of 

mixing is suggested for further study on epoxy-lime stabilization . 
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CONCLUSIONS 

f 
The following conclusions were reached on the basis of this investi-

gation on four different soils: 

1. After the soil s were stabilized with various percentages of 

epoxies, al l were found suit able as base course materi a ls . Traffic 

Simulator Tests have shown that the resi stance of epoxy.- treat ed soils 

against the abrasive action i s excellent, therefore epoxy or epoxy-

r lime stabilized soils may be tried as a road surface material. 

2 . The effectiveness of epoxy treatment depends on the clay con-

tent. High clay content s give the least sati sfactory results . The 

epoxy stabilization is most effective for the friable loess. 

3. All soils u sed in this invest igation were improved in im-

mersed strengths by the addition of lime to the soils to be stabi lized 

by epoxy. 

4. Epoxy affects soil s in two ways: (1) it reduces the moisture 

affinity of clays by surface chemical action, and (2) it imp art s cementa-

tion, thereby produ cing a semirigid soil framework. The lime is be-

lieved to be an agent \<lhich causes the cured epoxy to be a more ductile 

materia l. Thi s may be r espon s ible for increa sed immers ed strengths of 

soil specimen s . 

5 . The higher the curing temperature, the fa ster the se t t ing of 

epoxy stabilized soil . 0 0 Curing temperatures between 30 F and 104 F \<lere 

found most practical for curing epoxy stabilized soil specimens . The 

short curing time for epoxy makes it an ideal stabi li zing agent for 

emergenc i es . The epoxy dune sand mixtures with lime could be hardened 
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at 80°F in half an hour. 

6 . Because of the high-cost epoxy ($0.60 per pound) compares un­

favorably with other methods of soil stabilization. However the cost 

of epoxies has shown a very rapid decl ine. If this trend continues 

epoxy may be an economic stabilization agent for future . 
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AMENDMENT TO THE FINAL REPORT 

Results of Screening Studies 

Preliminary screening of urea-formaldehyde, urea-formaldehyde-spent 

sulfite liquor, polystyrene-spent liquor, reclaimed rubber, and reclaimed 

rubber-spent sulfite liquor were done by using the screening test developed 

lill\l'Uiilr Rt fuwa Stntl',l 

Sample: 

The test utilizes 1 inch high by 1/2 inch diameter test specimens. 

This small size results in considerable savings of time and materials, and 

is snfficiently large for clays, silts, and fine sands. Only the portion of 

the soil which passes the No. 40 sieve is used, since large particles and 

conglomerates would unduly influence the characteristics of the specimens. 

The minus No. 40 portion, with its higher percentages of clay-size material 

and increased surface area, provides a more rigorous test of effectiveness. 

Apparatus: 

The molding apparatus consists of a lever arrangement by which the 

soil mixture is compressed by hand into a cylindrical mold. 

The unconfined compression testing machine automatically plots 

stress versus strain by means of a lever system which is controlled by the 

relative motion of parts of the machine during loading. This machine was 

modified after the British Building Research station apparatus. 

Procedures: 

The soil, additives, and enough water to bring the'sample approximately 

to optimum liqnid content, are thoroughly mixed by hand with a spatula. The 

required amount of the mixture to give a 111 by 1/211 specimen of the desired 

1Roderick, G. L. Demirel, T. and Davidson, D. T., Use of phosphoric 
acid and furfuryl alcohol for soil stabilization. Proc. Iowa Academy of 
Science, V. 69, pp. 370-379, 1962. 
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density is placed in the mold and compressed by static pressure on the 

lever. The sample is then extruded and cured. After curing, one-half 

of the samples are tested for unconfined compressive strength; the other 

half are immersed in water for 24 hours and tested. 

Results: 

The results obtained primarily reflect the cohesive strength of the 

soil-additive system. The test after immersion reflects waterproofing 

ability of the stabilizer. 

Soil: The soil subjected to the screening tests was a silty clay 

loess. It contained 80 percent silt and 20 percent clay. 

Urea formaldehyde: The liquid urea-formaldehyde resin used in this 

study was Foramine 21-019 produced by Reichhold Chemicals, Inc. 

Catalysts used were ammonium chloride and phosphoric acid. Statisfactocy 

and consistent strengths were obtained with 9 percent urea formaldehyde 

and 1 percent phosphoric acid (average dry strength 300 psi, average 

immersed strength 200 psi) and 9 percent urea formaldehyde and 2 

percent ammonium chloride (average dry strength 500 psi, average 

immersed strength 200 psi). Samples made with lower percentages of 

these additives showed sudden drops in strength. Addition of spent 

sulfite liquor (from 2 to 8 percent) lowered both the dry and the immersed 

strengths as much as 50 percent. Further investigation of urea-

formaldehyde, soil systems is suggested. 

Polystyrene-spent sulfite liquor: Earlier investigations at Iowa State 

had shown that a benzene solution of polystyrene to be an effective soil 

stabilization agentl. The purpose of the present screening investigation 

1Roderick, G. L. and Demirel, T. Soil stabilization with polystyrene. 
Proc. Iowa Academy of Science, v. 71, pp. 369-376. 1964. 
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was to find out if spent sulfite liquor could replace part of the polystyrene. 

The polystrene used was plaspan 8 produced by The Dow Chemical Company. 

Plaspan 8 was desolved in benzene before adding it to the soil. Addition of 

spent sulfite liquor increased the dry strength slightly but reduced the 

immersed strength. Addition of 4 percent spent sulfite liquor increased 

the dry strength of the soil stabilized with 9 percent polystyrene from 

1400 psi to 1700 psi but reduced its immersed strength from 500 psi to 

300 psi. On the basis of results obtained detailed investigation of spent 

sulfite liquor as a seondary additive with polystyrene stabilization is not 

recommended. 

Reclaimed Rubber: The reclaimed rubber used in this study was 

obtained from Midwest Rubber Reclaiming Company. It was desolved in 

Creosote oil prior to addition to the soil. The solution consisted of 1 

part reclaimed rubber and 3 parts Creosote oil. The percentages of 

reclaimed rubber and creosote oil added to the soil were 2, 4, 6 percent 

rubber and 6, 12, 18 percent creosote oil. A third combination tried 

consisted of 4. 5 percent reclaimed rubber 13. 5 percent Creosote oil and 

4. 5 percent spent sulfite liquor. None of the strengths obtained with 

these formulations gave satisfactory strengths; all dry strengths were 

about 100 psi and all immersed strengths were about 20 psi. On the basis 

of these results a detailed investigation of these additives is not recom­

mended. 


