THE PROJECT OFFICE IN IOWA

THIS BOOK IS THE PROPERTY
OF
DEPARTMENT OF PUBLIC INSTRUCTION

DES MOINES, IOWA

The Great Plains Schoo1 District Organization Project
Ralph D. Purdy, Director
411 South 13th Street
Lincoln, Nebraska
68508

1. The Classroom Teacher's Concept of an Optimum Education Situation David A. Grosland
Chairman, Great Plains Project Conmittee, Iowa Association of Classroom Teachers, Des Moines, Iowa
2. Selected Comparisons of Teacher and Curriculum Characteristics Related to Educational Innovation For the Great Plains
E. James Maxey and Donald R. Thomas

Lowa Educational Information Center, University of Towa Iowa City, Iowa
3. School Food Service and School District Organization

Vern Carpenter
School Lunch Consultant-Auditor, Department of Public Instruction Des Moines, Iowa
4. Iowa School District Organization

Ellis G. Hanson
Iowa Director, Great Plains School District Organization Project

Published Under Separate Cover:
5. People, Places, Perspectives: The Great Plains States Ellis G. Hanson
Project Director for Lowa, State Department of Education Des Moines, Iowa

THE CLASSROOM TEACHER'S CONCEPT OF
AN OPTIMUM EDUCATION SITUATION

by

David A. Grosland

Chairman

Great Plains Project Committee
Iowa Association of Classroom Teachers
A department of Iowa State Education Association
4025 Tonawanda Drive Des Moines, Iowa

50312

March 8, 1968

The Great Plains School District Organization Project
Iowa, Missouri, Nebraska, South Dakota
Ralph D. Purdy, Project Director
411 South 13th Street Lincoln, Nebraska

68508

FORWARD

The impact of scientific, technological, social and economic change on the American way of life necessitates a re-examination of the educational system. These changes modify established needs and create new needs to be mat by the public school system. Instructional programs and supporting services must be developed to meet thes.e needs.

The primary purposes of school district organization are to make possible: (1) the desired quality or excellence of the programs and services; (2) the efficiency of the organization for providing the programs and services; and, (3) the economy of operation, or the returns received for the tax dollar invested in education.

When viewing the total educational process, no group appears capable of truly identifying the educational needs of youth as well as those who experience daily contact with students. For this reason, the Executive Committee of the Iowa Association of Classroom Teachers was requested to develop a position paper describing the classroom teachers concepts regarding organizational patterns required to provide optimum educational opportunities in Iowa. Mr. David A. Grosland, a senior high school teacher in the Des Moines Community Schools, was commissioned to head the committee that have developed this paper.

In addition to the time and efforts expended by Mr. Grosland and members of his committee, recognition should be given here for the great contributions made by the Des Moines Community School District.. At the request of Mr. Grosland and the Iowa Project Director, the Des Moines System granted Mr. Grosland three weeks released time from all classroom duties to pursue development of this paper. The Iowa Project Director is indeed grateful for this major contribution.

The value of this paper rests upon its utilization by those with advisory and/or decision making responsibilities about the educational structure in each state. It represents a beginning point for further study and evaluation, and for establishing criteria upon which guidelines can be developed for effective and constructive school district organization.

Respectfully submitted,
Ellis G. Hanson, Iowa Director
Great Plains School District
Organization Project
March 8, 1968

I wish to express my appreciation for the enormous amount of time and talent donated by the IACT Great Plains Project Committee, the time and talent given by the group of classroom teachers who served as a sounding board and review committee for this position paper, and the suggestions of many individual teachers who informed me about the needs of their special areas. Without the services of each group, this paper would have been impossible. I would also like to thank Dr. Ellis Hanson, lowa co-ordinator of the Great Plains School Organization Project, for his valuable guidance in the paper's creation.

IACT Great Plains Project Committee

Gene DeBoef	High School	Chemistry	Indianola
Gerald E. Dunn	Junior High	Science	Ames
David A. Grosland	High School	English	Des Moines
Mrs. Shirley Rasmussen	Elementary	Science/Math	Spencer
Dan W. Roberts	High School	Industrial Arts	Centerville
ex-officio:			
ISEA-IACT Consultant - Don Briggs			
IACT President - Dick	der Woude		

IACT Reaction Committee

Anne Anderson
Donna Coffman
Mike Fleming
Ruth L. Foster
Frances Henley
Frances Morgensen
Dwayne 01son

Elementarý, First Grade Junior High History
High School History
Elementary, Fourth Grade Guidance
Personalized Reading
High School History

Des Moines
Chariton
Des Moines
Des Moines
Indianola
Royal
Ankeny

TABLE OF CONTENTS

CHAPTER
I. INTRODUCTION. 1

Statement of the problem. 1
Importance of the study. 2
Definition of terms. 3
Organizational procedure
e
IT. NEEDS AND CURRICULUM 8
Elementary school. 9
Junior high school. 13
Senior high school. 16
III. THE EDUCATION SITUATION

Teachers. 23
classes. 24
Services 25
Guidance. : 25
Physiological and health. 27
Psychological. 28
Special education 28
Auxiliary staff. 29
Clerical 29
Secretarial 29
Supervịsory. 30
Paraprofessiona1. 30
Administration 31
Area 31
Board 31
Administrator 31
Consultant (research) 32
Community complex 32
Administrator 33
Advisor 33
Department chairman 33
Physical environment 33
Media center 34
Services 35
Personne1 35
Physical environment 37
Materials 37
Equipment 38
Innovation 39
IV. CONCLUSION 41
APPENDIX A 45
SUMMARY 46
"I TAUGHT THEM ALL..."

I have taught in the high school for ten years. During that time, I have given assigments to a murderer, an evangelist, a pugilist, a thief and an imbecile.

The murderer was a quiet little boy that sat in the front row and regarded me with pale blue eyes; the evangelist, easily the most popular boy in school, had the lead in the class play; the pugilist lounged by the window and let loose at intervals a raucous laugh that startled even the geraniums; the thief was a gay-hearted lothario with a song on his lips; and the imbecile, a soft-eyed boy sulking in the shadows.

The murderer awaits death in the state penitentiary for murder, the evangelist has lain a year in the village church yard; the pugilist lost an eye in a brawl in Hong Kong; the thief, by standing on his tiptoes can see into my window from the county jail; and the once gentle moron beats his head against a padded cell in a state asylum.

All of these people once sat in my class. They sat and looked at me gravely across the worn desk. I must have been a great help to them-I taught the rhyming of the Elizabethan sonnet and how to diagram a complex sentence.
--Author Unknown

The Cuyahoga County Bulletin
January, 1968

CHAPTER I

introduction

Recently, I asked, my senior class in English literature why poetry was important.
"It isn't," a willowy brunctte answered from the back of the room.
"Why not?" I asked as soon as the ripple of giggles had quieted.
"Because we learn all about it in school," was the simple reply. This incident reflects the most serious problem facing public education today -- the problem of relevancy. Gone is the day when ar. student in our classes reacted blindly when we teachers assigned a passage, or a formula, or a project. Today, the student demands to know why and how education relates to him as an individual and as a member of society. And the key to our educational system's worth is more and more the amount of relevancy it can demonstrate to the students. We need to show that it is not the unimportant but the vital that is presented in school. $1:$

Statement of the problem. The purpose of this paper is to present the Iowa Association of Classroom Teachers' viewpoint regarding the educational situation that best allows the student to be
approached as an individual and as a member of society: By approaching him in this way -- as an individual and as a member of society -- we can show the student. that education is indeed something immediate and vital.

Importance of the study. The American concept. of the comprehensive school is unique. It charges us with the responsibility to prepare each student for whatever place he will take in his society. And we must do this according to his needs and abilities. The society he must live in is a changing one; it is in a constant state of flux. Therefore, we must prepare the student to adapt to it and with it. In fact, we must prepare the student to participate actively in its change. In the words of Adlai Stevenson:

There is a New America every morning when we wake up. It is upon us whether we will it or not. The New America is the sum of many small changes -a new subdivision here, a new school there, a new industry where there had been swampland -- changes that add up to a broad transformation of our lives. Our task is to guide these changes. For, though change is inevitable, change for the better is a full-time job.

We teachers feel deeply about the responsibility with which we are charged. We are trained to assume this charge, and we are experienced in carrying it out. Because of our expertise, this project paper is vital. 'It reflects the experts' opinions about the educational situation best for our young people, a subject teachers are not only well trained in, but also one they feel most deeply about.

Definition of terms. We believe that the following definition of terms might help to clarify portions of the paper so that long explanations will not be necessary at the point where they are used.

Bi-area curriculum. This refers to two possible courses of study (selections of courses). One, the academic, usually leads to a college program. The other, the vocational, usually leads to a craft, trade, or vocation, or to a (post-high school) trade or business school. A student in one area should concentrate on courses within that area, but not be entirely limited to that area.

Elementary level. The elementary level is the grades from kindergarten through six.

Foundation core (courses). Foundation courses are basic courses, some of which are needed by almost everyone, regardless of interest or vocational plans.

Principles; basic, internal. Basic principles are those ideas, concepts, and procedures that should be learned because they are so elementary that almost everything.else stems from them, or from variations of them. For example, in arithmatic a basic principle might be the concept that numbers react and can be dealt with in an orderly, logical manner; or that when 'two numbers (or things) are added together, the whole is equal to the parts.' A general principle might be that when two different things are brought together, the clash results in a compromise: (This' is derived from Hegel's 'thesis-antithesis--synthesis' theory.) As can be imagined, general principles exist for life in general, and specific principles exist for specific areas and/ or
subjects. Some of both must be discovered and used by all people.
Progran co-ordination. This is the plamning and designing of course offerings and activities and services to allow fulfillment of educational objectives.

Secondary 1eve1. Secondary level is the grades from seven through twelve, including junior high, from seven through nine, and senior high, from ten through twelve.

Situation; education. The education situation is the entire school environment, including administration, classes, curriculum media, physical environment, services, and teachers.

Situation; externa1. The external situation is the set of circumstances and problems facing us at any given time, always slightly different from yesterday's and tomorrow's situations. We must react to this external situation in some way, relating it to past situations and to the internal principies we have learned.

For example: if Johnny has $\$ 15$ and is offered $\$ 20$ more, he wonders what he should do. He is aware that the 'result is equal to the sum of the two parts' (a basic principle) and thus he knows that should he accept he would have $\$ 35$. If he wants to have $\$ 35$, he might accept the \$20. If not, he would probably refuse. In either case, he has applied an internal principle (a basic concept he knows) to an external situation (a set of circumstances) and arrived at a decision (reacted accordingly).

Another example: if an artist mixes yellow and blue paint, he applies Hegel's 'thesis-antithesis-synthesis' principle. He has brought two different things together and he knows he can expect something that is
a 'compromise' of the two to result. He gets green. Whether he knew what would happen or even planned it would depend on his previous experience, but again an internal principle has been applied successfully to an external situation.

Structural organization. (See Appendix A.) This is the pattern of administration, services and attendance centers designed to provide effective operation of the education situation.

Community attendance complex. This is the functional part of the total structural organization consisting of a high school (of approximately 1,000 students, 50 teaching faculty, and appropriate administrators (principals, advisors; counselors, and department chairmen), and its feeder schools -- those attendance centers that contribute their graduates to the high school student body. The feeder school will probably consist of two or three junior high schools and four to nine elementary schools. The entire comunity complex will probably have a student population of about 3,000.)

Area unit. This is a geographically and economically functional unit comprised of five or more local units in order to provide all educational services efficiently to the students within its geographic and economic area. The 'central' or 'area' administrative: functions will be provided at this level.

State unit. This is a statewide unit supporting and coordinating the area and the local units with such services that they themselves cannot efficiently perform.

Teaching faculty. This is the body of certified, qualified teachers actively teaching fulltime in the classroom,

Organizational procedure. We have divided the body of this paper into two chapters. The first includes the general needs of the education situation and a general outline of a possible curriculum. The second includes a discussion of the teachers, classes, services, administration, physical environment, and media center.

We feel that there should be a state-wide assessment of structural organization within education. This, we feel, will probably result in a structural readjustment that delegates responsibility and co-ordination of the education situation to levels appropriate for fulfilling the needs of all of Iowa's youth. Appendix A is a flow chart showing the structural organization we suggest. Where appropriate within the body of the paper, we include references to the specific level of organization best suited to fulfill the particular educational needs discussed.

We arranged the paper in this manner because we see the total educational picture as one process. Various levels perform various functions within the process, of course. But all levels have as their chief function, preparing the student for life both as an individual and as a member of his society.

Limitations. Since, as teachers, our expertise is the educational situation itself and not the achievement of the situation, we have limited this paper accordingly. We deal, then, with the optimum educational situation's characteristics and not with how to arrive at the optimum, except in a very general way.

Even within the concept of educational needs, we are limited by time and space to such an extent that we can only scratch the surface in this paper. We strongly urge interested parties to investigate these areas much more deeply. Perhaps this could be done by special committees of experts. If so, we again caution that the true educational experts aré actively practicing classroom teachers, and that they need release time and opportunity to fully investigate even their own speciality.

CHAPTER II

NEEDS AND CURRICULUM

Successful education prepares students for life --- as individuals and as members of society. The society that they will become a part of will present many new and varied situations for them to deal with. It will require that they be able to think -to think rationally, logically, and analytically. If, as a part of our educational system, we must prepare our students for life, we must then teach them in a way that promotes the development of their thought process. But they will only accept our teaching if we show them that our instruction is relevant and practical. It must be vital. And we not only must make the educational situation reievant, vital, and practical to ourselves, but also -- more importantly -we must make the educational situation relevant, vital, and practical to our students.

However, this brings certain problems, for society is in a state of constant flux. To be aligned with a fluctuating society requires variety and flexibility -- and these cause problems. Variety and flexibility require that we present a varied curriculum, both academic and non-academic, that we hire a variety of teachers, both well-trained and effective, that we provide a variety of educational services, for teachers and students, and that we provide a variety of facilities,
for teachers and students.

To solve these problems, the entire educational system, as a whole, should be concerned with the teaching of certain fundamental, internal principles and with the application of these principles to specific, external situations. The aims of education are the same for all levels. Education levels vary only in the stage of development that our student has reached. We must, of course, realize that our students stage of development in learning and applying these principles is determined by a complex set of influences. Among these influences are mental age, chronological age, physical co-ordination, emotional development, home environment, social environment, and educational situation, both past and present. After about five years of informal development, the child has his first formal experiences with primary basic skills -- the learning of the most basic principles and their application to the most basic of external situations -- at the elementary level ($\mathrm{K}-6$).

Elementary. The child beginning the educational experience is, by nature, a curious individual and an avid learner. He has a natural talent for association and comparison. We must be very careful to encourage him to explore, compare, and learn. To do this, we must provide him with experiences that foster a sense of satisfaction and achievement -- a feeling that education is worthvhile. (Of course he won't think of it in just those terms.) Since each child is an individual and since he is at an unique stage of development, we must
be prepared to take each individual at his stage of development and nurture his potential to the fullest possible extent.

To develop every student fully in his ability to learn and to apply the fundamental principles he needs, we must prepare programs for the elementary school that place adequate stress on the basic skills and comunications areas. The structure must allow us to expose the individual to a wide range of theories, ideas, and facts. Thus, from the start, we can aid him in relating, comparing, and associating situations -- arriving at relationships and conclusions. We must help our student to develop concepts in a logical sequence and we must eliminate boring repetition. And through this procedure we can introduce new material on a level equal to the skills of our individual student. As we encourage him to relate to his own experiences, his own store of information, and his own creatativity, he learns to solve new problems.

Organization of the elementary curriculum must be structured in a way that allows us to develop each child as an individual. We must plan soundly, in a way that incorporates knowledge of and information about the learner. We must consider what specific objectives we wish to reach; we must choose subject matter for each child and gear it to his abilities.

This planing must be done by consultation of teachers, advisors and counselors so that we can choose the sequence of course content most logical for each individual student.

As stated earlier, people must be able to think if they are to be meaningful members of society. If this is so, one of the most important things for us to do on the elementary level -- or on any other level -is to help our students learn to think. Furthermore, we want this thought process to be rational, logical, and analytical, but allow for intellectual intuitiveness as well. We then need to establish classroom procedures and course content that encourage and extend learning. We can best encourage and extend learning by presenting situations through inductive procedures that prompt discovery; for discovery produces most of an individual's potential creative thought. We can develop insights and understandings through the conceptual framework of this approach. And these insights and understandings allow us to present many things previously thought too difficult for elementary students. The fact that very young children can learn relatively difficult aspects of science, mathematics, and other subjects in this way should show us why we must use the discovery approach as one of our various procedures.

We should not consider this approach as a panacea for elementary education, however. Our decisions must be made as to content and course procedure only after we carefully consider the individual's. ability to understand and the relative importance of the ways in which he learns most effectively.

Elementary education must be based on a close correlation between broad areas of content and our student's general knowledge. Because
our individual students vary greatly at the entry level, their fields of interest are varied and diversified. We need close correlation, therefore, to draw these varied interests and understandings into the learning situation. Generally, however, the elementary program should include subject matter from these areas: language arts -- including foreign language, social studies, science, mathematics, fine arts, health and physical education, practical arts, and vocational investigation. These areas provide the basic principles that we must give each individual so that he may become valuable both to himself and to his society.

Secondary. Up to this point we have been dealing primarily with the elementary situation. But the same propositions that are true for the elementary situation are also true for the other levels of a comprehensive educational process. We must meet each individual at his stage of development, according to his individual interests and aptitudes. We must provide a learning sequence that is logical and meaningful to his individual situation. We must teach him in a way that promotes the development of his thought processes in a rational, logical, and analytic, but also intuitive, manner so that he can apply the basic, internal principles that we have given him to any new or different situation that confronts him. We only start the process at the elementary level, but a well-executed beginning is often half the battle. In the upper levels, i.e. the advanced stages', we refine the principles established in the earlier stages. We add principles that accompany more specialized areas, and we help the student to learn to
apply these principles, both old and new, to more and more complex, external. situations. It becomes increasingly important, as we proceed to higher and higher levels, that we show more and more relevance ... i.e. application of this education to the life experience. For as the individual becomes more competent or at least thinks that he is he tends to lose his interest in learning for learning's sake. He becomes concerned with the life soon to confront him in his society and demands to know how his education will apply. This we must show him if we are to continue to be effective!

Junior high school. There are other factors to be considered besides this demand for relevancy; for example, we must consider the nature of the junior high student. He is a restless animal. His physical growth demands that he move his muscles often for these growing .limbs need testing and training. Because of this, he likes to work with his hands as much as with his brain. But his attention span is quite short. He knows few bounds as far as social graces are concerned and likes to test the patience of all adults, even though deep down he means to please and wants his just rewards. He thrives on variety and detests repetition. He is easily motivated but also is easily bored. He is highly impressionable. And because of his characteristics, his needs demand techniques that are not like the ones we might use in either lower levels or higher ones. Regardless of these common qualities, however, we can not lose sight of the fact that each junior high student still has great individual differences.

The junior high school curriculum should continue the basic skills and communcations skills areas of the elementary school curriculum. But it should also offer the opportunity for the individual student to explore much greater refinements of these areas; so that he can define his talents and interests more completely. We believe, for example, that English should include a wide program of reading, creative expression, speech, and literature, as well as spelling, composition, and grammar. We should place emphasis on remedial and enrichment courses. And, using flexible scheduling, teach language arts in conjunction with other courses, such as science and social studies. By the time each student leaves junior high school, he should have somewhat refined experience in spoken and written communication, propaganda analysis, appreciation of literature, and a resulting feel for language habits. Since the study of a foreign language is also both a progressive experience and. a progressive acquisition of a skill, every student should be exposed to a language other than his own. We must also insure that the student who wishes can pursue his choice of language on the high school level. Language skills may be perfected and then forgotten, but the cultural experience endures throughout life.

We should also provide opportunities for all students to
investigate the sciences, such as life science, physical science, earth science, and biology. The learning of science should follow a self-discovery pattern and should take place in a classroom-laboratory. with accompanying field activities to provide a chance for students to
apply the methods and principles of science to the problems of their environment.

The junior high social studies progran should prepare our students for effective American citizenship and for understanding the organization and institutions of society and man's behavior in it. We should create a workshop within the social studies classroom, where our students may study social, economic, and political questions in perspective of history, both past and future. Our course offerings should stress the study of a few major problems rather than all problems; they should aid the student in understanding interrelationships among social, economic, and political problems and issues; and they should develop a wholesome allegiance to the ideals of American democracy through inductive procedures.

The junior high school mathematics program should develop an understanding of and facility for computation, ability in the use of problem-solving method, and some understanding of the basic nature and structure of mathematics as it relates to our modern and everchanging world. In order to provide for the future educational, vocational, and cultural needs of our students, we need to offer such courses as modern mathematics, general mathematics, commercial mathematics, voca-
. tional mathematics, algebra, and geometry.
The industrial arts and homemaking arts programs at the junior high school level should be offered to both boys and girls. The industrial arts program should be composed of exploratory courses
offering orientation to industrial enviroment, occupational information, consumer knowledge, and a variety of leisure and hobby pursuits. At this level, we should offer nine weeks courses in such things as wood working, leather, plastic arts, and home repairs. And in correlation with the industrial arts program, the homemaking program that we offer should be courses that develop the ability to carry on home responsibilities in respect to food, shelter, clothing, child care, health, and family relationships. In addition to the homemaking skills, we should stress the development of the desirable understandings, habits, attitudes, and ideals that our students will need in the home and family Iife of our democratic society. By offering the industrial arts and homemaking arts programs to both sexes, we would allow them a better understanding of the skills and knowledge involved in other family roles than their own and enable them to aid in each other's function when necessary.

We also need to offer a fine arts program of courses, most of which would be elective in nature. These courses should be designed to develop appreciation, knowledge, and skills in the areas of art and music according to the individual student's interests and abilities.

Senior kigh school. The senior high student is somewhat more settled than the junior high student, but has acquired a set of intense distractions that vie, minute by minute, for his attention. He is very interested in pleasing the opposite sex. But at the same time he is engrossed in the outside world that he will soon be part of. This
outside world may be a college or an occupation, and while he is fascinated by it, he is also a little afraid of it. He is extremely concerned with peer attitudes, and yet he is definitely an individual. He has pretty well mastered the basic skills. So now he must be convinced of education's value -- i.e. relevancy -- for at the moment he's not too sure that it is really all that it claims to be. He wonders if education has anything else of a practical nature to offer. And these are the individuals we must work with on the secondary level. We must influence their attitudes, which produce drop-outs, by presenting a meaningful curriculum and educational environment.

Like the elementary enviroment, the secondary situation must accomodate individual differences of interest and aptitude. Secondary curriculum demands even more flexibility than the elementary curriculum for we assume that the basic skills and communications areas have been mastered. We must now offer content that applies directly to each individual's frame of reference. If we are to do this, it is evident that we must offer a large number of courses in order to cover the various areas that students are likely to be interested in, many of which may be nine week courses instead of the traditional eighteen or thirty-six week offerings. Realizing that students at this senior high level may be interested in and planning for either an academic or a vocational follow-up to their senior high education, we must offer a bi-area curriculum -- one that is slanted in both directions. We can thus allow a student to follow his individual interests and abilities
more closely.
We should start both areas with a general foundation that continues to expand and develop the fundamental principles and applications of principles that are introduced at the elementary level. In English language and 1iterature, we should offer courses that not only develop the communicative ski11s but also further the student's creativity. We suggest these as possible courses in this area: basic writing, basic speaking, literature of the world, library science, remedial reading, remedial writing, remedial speaking, and practical English.

In foundation mathematics courses, we might find courses in basic math, geometry, algebra, and trigonometry. In science, the foundation might include general chemistry, basic life science, physical science and basic earth science. For the social sciences, we perhaps might use the following as our foundation: United States history, United States government, twentieth century world history, practical economy, and geography:

With these, the student might also take a variety of art, music, and physical education programs -- such as golf, bowling, tennis, and swimming -- that interested him.

From this base, then, we should guide the student into the bi-area curriculum, part of which should, logically, be offered in response to student requests. For example; if our student chooses the academic path, he might take a selection of these courses, helping to create his own concentration of study according to his individual interests,
tastes, and aptitudes. In English, he might choose one or several of these: advanced writing, of expository -- including journalism -or creative nature, advanced literature, of American, English, or genres -- such as poetry, short stories, or novels --, research techniques, drama and stage production. And in foreign languages, he could learn not only the language, including writing skills and speaking skills, but also the cultural background of the native country - such as Germany, France, or Russia.

In mathematics, he might pursue advanced algebra and calculus. And in science he could select from the areas of advanced chemistry, biochemistry, physiology, geology, astronomy, amd physics.

In the social sciences, he might investigate political science, European culture and governments, Asian culture and governments, sociology, anthropology, psychology, philosophy, and economics .both theoretical and applied.

On the other hand, our student may choose to follow the vocational line of study. As in the academic Inne of study, he should start with the fundamental core courses, adding other subjects from those that might help him in his interest areas or future vocation. In English, he might select a course in business English; and in mathematics, a course in business mathematics or computer programming; and in science, a course in photography.

If he plans to start working in an office, the might investigate business education. Here he could specialize in a clerical area, taking a selection of typing, bookkeeping, filìmg, and card-punch.

He could further specialize in stenography, with office practice and shorthand adding to his selection of clerical courses. Or he might pursue a distributive education program, working part-time and attending school part-time. He might also be guided into a correlative program of business English, practical economics, salesmanship, and business management.

The vocational student's interests might also run to the trades or crafts. In this case, we should offer him a selection of industrial education courses to add to his foundation core. These might be added to his program in approximately this order; hand wood and crafts, basic electricity, advanced wood, drafting, general metals, power mechanics, advanced drafting, advanced metals, advanced electronics -- requiring algebra, auto mechanics, graphic arts, and courses involving such things as plastics and hydrolics.

For the girl whose career ideal is to be a homemaker, we should offer a variety of homemaking arts. These should include all facets of homemaking, such as food preparation and service, clothing selection and construction, home planning and furnishing, relations of home and family, and consumer budgeting and managing.

These suggestions are not intended to be an idealistic and complete :
\therefore secondary curriculum, for we know that they are not. We offer them simply as an indication of the path that further investigation should take. We feel that they have merit because they allow us to consider the student and his interests and abilities as we set up his course of study. If we approach him at his stage of development and plan a
course content and sequence involving his interests and abilities, he often begins to see that education can be relevant and practical. Hopefully with this insight, his attitude changes. The change in attitude allows him to make more progress in preparation for life. Therefore, he is more likely to succeed $-\boldsymbol{r}$ as an individual and as a member of society.

CHAPTER III

THE EDUCATION SITUATION

We have noted that education's primary aim is to prepare the student for life. If we are going to be successful, we must make the entire educational experience relevant. That is, we must constantly relate to each student's interests and abilities so that from $\mathrm{K}-12$ the entire education situation is meaningful and practical to him. The question now facing us is: What kind of education situation will allow us to do this?

We know the characteristics of such a situation and we have already discussed one of them. In addition to curriculum, there are six other areas involved in the quality situation: teachers, classes, services, environment (physical), administration, and media. We must remember that each of these seven areas closely relates to and, in fact, depends upon the structural organization of the school system. Some areas most closely relate to and depend upon the local attendance center; some most closely relate to and depend upon the community attendance complex; and some most closely relate to and depend upon the state structure. But, most of these areas in some way relate to and depend upon two or more levels of the structure because certain functions relating to most areas are most practically and efficiently handled by different structural levels.

Teachers. The most important of all these seven areas is the teachers. We teachers must, of course, be well-trained. Our knowledge of subject matter must be excellent and we must be trained in the raft of teaching. And we must have frequent in-service sessions to help to keep the finie edge on current knowledge and techniques. But to really be proficient, we need practical as well as theoretical experience. We do not get enough practical experience through present "student-teaching" programs. Perhaps an answer to this deficiency is an internship of at least one year at partial. salacy, as a part of an extended college experience. Young teachers would perform this internship under the guidance of a "master teacher," an experienced teacher of proved outstanding ability -- both ability to teach and ability to guide and counsel:

We also need teachers of diverse backgrounds, with many sets of experiences allowing a pupil-teacher and a teacher-pupil "sympatico." Regardless of how unusual a student's frame of reference, he should be able to find a teacher who could relate to him, and he to the teacher. Teachers with diverse backgrounds, both as staff and as an individual, give more relevancy to a student. These teachers are not likely to stay in their ivory towers but themselves are relevant -- i.e.involved with the world. A teacher can only teach well what he is himself enthused about; if he is involved with and enthused about the world he can teach about it. This also means that a teacher should (be allowed to) specialize in his particular field of interest and ability
so that he can be even more vital. We not only urge that an English major should teach English, for example, but that a grammarian by interest and/or ability should teach grammar, and that a writer by interest and/or ability should teach writing. Also, it must be recognized that well-triained and effective teachers will only be attracted and retained if teacher welfare -- not only salaries, but planning time and facilities -- is ample.

Classes. Furthermore, we, as teachers, must have classes that allow us to function effectively as teacher, giving recognition and guidance to each individual student as an individual. What, then, is the ideal class size? There is no static answer. We should determine class size by the size of the group in which we can give student individual guidance. And we should create a class situation that allows us to know each student individually, to be familiar with his home and to know his problems, his aspirations, and his possibilities. We should be able to counsel him according to his individual needs. Optimum class size may vary with the subject we teach, the characteristics of our students, and the number of professional personnel available to supplement our efforts. In general, however, we find our effectiveness decreasing rapidly as our class size increases. It is usually in the smaller classes that we can devote meaningful time to individual interests and abilities and help each of our students to fully develop his peculiar needs and aptitudes. Because of this, we recommend MAXIMUM enrollments for each teacher, with adjustment for
special situations. Special classes for exceptional children should be limited to fifteen students. Kindergarten and first grade classes should be limited to twenty; other classes in elementary and secondary schools should be limited to twenty-five. Furthermore, we urge that total enrollment for a teacher in a departmentalized secondary situation be limited to one hundred. Particulars of class size and number should be determined within the local structural unit and depend on the needs of that student body, but we stress that class size does have an important impact on teaching effectiveness. Small class size allows us to have individual contact with each student in meaningful quantity. A great quantity of individual contact becomes especially important and effective in classes such as special education and composition, since these require a uniquely personal touch.

Educational Services. We also need ample educational services in order to give quality, individualistic instruction. And the service in closest contact with the average student is guidance. The guidance counselor must, first of all, be an excellent classroom teacher with enough classroom experience to have proven himself. If he can counsel in the same building that he taught in, he will have the imnediate advantage of having already established rapport and of having already - become familiar with the background of the school and the student body. He also. should have excellent training in counseling. This training should have been theoretical -- in the areas of psychology of learning and of the learner; and it should have been practical -- in the area of applied social work. Social work would allow him to understand why
people do the things they do, to understand ethnic backgrounds, and to be able to delve more easily into the core of the problems confronting his counselee.

The guidance counselor's function should be partially administrative. That is, he should work closely with administrators, advising them on necessary course offerings -- both type and quantity, advising them on the background of student actions, and recommending educational situations to accomodate the needs and actions of his counselees. . His function should also be definitely non-administrative. His actual student contact should be partially diagnostic -- determining student interests, tastes, goals, and abilities, and partially guidance -advising his counselee on getting along with himself, i.e. knowing himself and adjusting to his interests and abilities, and getting along in society. The counselor should talk with all his counselees at least once a year in a general meeting to tell them, "I'm here. This is what I'm here for ... I want to help." Then he should devote most of his counseling time to individuals who request his aid or are referred to him. As he becomes known \therefore this comes with exposure and time -- more and more students will seek him out.

Testing of individual students to determine their individual interests and abilities may be the counselors function or it may be delegated to a special department. In either case, we must supply current tests and evaluative devices in good supply.

We must supply the counselor with adequate physical facilities
to allow him to perform his specialty efficiently. These facilities should include private, comfortable counseling rooms, quiet, comfortable testing centers, varied, proven means of evalustion, and a load compatable with the amount of his clerical assistance and' the inclusiveness of his duties. For example, if a normal counselor-student ratio is $1 / 300$, lack of cierical assistance should lower the rattio -- perhaps to $1 / 250$ or to $1 / 200$. If he must test as well as ت̈nterpret test results, the ratio should be further lowered, so that thre counselor's load is in proportion with his functional duties at all times.

Physiological and health services are also necessary within the framework of the education situation. We silhould provide the services of a nurse in every large attendance center and of, at least, a nurse's aide in every center. In addition to this, a doctor should be available in case of emergency -- probable serving a community complex. (a complex is roughly defined as a high school of approximately 1,000 students, 50 teaching faculty, with its corresponding junior highs and elementary schools.)

This staff's functions would probably involve the preliminary 'diagnoses' of illnesses, the possible 'treatment' of minor ailments, the execution of 'minor medicals' -- such as scalp, height, weight, and dental examination, and the keeping of records. In addition to these relatively routine services, the staff would aid in the selection of health, physiological, psychological, and physical education curriculum. They would also deliver lectures for general health information assemblies and conduct discussions with health, physical education.
and appropriate science classes. Their availability and knowledge of individual medical histories would be invaluable in analyzing student interests, abilities, and needs .- both mental and physical.

A psychological staff. should also operate in conjunction with the physiological staff. This staff would be fewer in number but equally important. They would also be well-trained and relatively as available -- considering frequency of need. Within this staff, we should have both psychiatrists and social workers, co-operating in the diagnoses and treatment of mental uniqueness beyond the realm of teacher counselor capacities.

We also need many types of educational services in the field of special education, although some of these might be structured over a relatively large number of attendance centers. Of course, the students involved in any special education curriculum would be exceptionally unique -- and might be exceptional in all areas or in only one. Because of their exceptional nature, we must be prepared to give these students a great deal more individual attention than usual.

We need to structure the special education program to accomodate both the exceptionally gifted and the exceptionally inadequate student. We must also provide an effective program for the physically and mentally handicapped, whatever the cause for their disability. At. the same time, however, we need to be aware that the cause for their disability might present a need for additional individual attention or
a unique approach; and we need to provide staff and facilities that are adequate and flexible enough to take care of even the most unlikely possibilities. The program for the handicapped would probably be a function of the area structural unit.

An area of local center services, composed of a large number of staff, is that of auxiliary personne1. These persons would perform a variety of services freeing teachers for increased preparation and increased teaching time. The auxiliary staff member's training would be compatable to his function. One large and presently existing subdivision of auxiliary staff is that of clerical aides, with general business training of a non-professional nature. Their function is to keep attendance, keep records, and file miscellaneous materials. Generally, they are only used in the main office and sometimes in the media center; but they should also be available in the counseling offices, to assist counselors, and in subject department wings, to assist teachers.

A second division of the auxiliary staff is secretarial. Although this staff segment's training is, and should be, more specialized than the clerical division's training; it also is non-professional. The functions of the personnel in this division are in the nature of letter transcribing, letter writing, and appointment making. Usually this staff segment works only in the main office and occassionally in the media center; but secretarial staff should also work for counselors -with such duties as reference typing and letter writing -- and for
teachers -- with such duties as test typing and reference typing. We also need to provide an auxiliary staff division of nonprofessional, supervisory personnel; whose training would vary with responsibility. These aides would have non-teaching duties such as supervising study halls, lunch rooms, student centers, playgrounds, halls, and media centers, and could supervise test \dot{s} and study periods in order to free teachers for preparation or other professional responsibilities -- such as correcting papers.

One other important division of auxiliary personnel is that of the paraprofessional. These would need to be the most highly trained of the auxiliary personnel; we must insist that they have at least two years of college preparation, preferably in a semiprofessional, education-oriented area. The specifics of their preparation, however, might vary according to theirparticular duties. Sometimes this role could best be filled by'a retired teacher or a fully qualified teacher who did not want to hold a fulltime position -perhaps because of homemaking responsibilities. In any case, the paraprofessional's functions would be determined by his qualifications. The paraprofessional might serve as a lay reader, correcting the spelling, mechanics, and grammar of a paper. If trained in the subject area, he might also check on factual material and react to content and style. Another paraprofessional might check routine papers or objective tests; or he might assist with make-up work. If qualified, he might assist the teacher with small group or individual guidance. Again,
however, this would be done under the teacher's supervision and according to his direction. Always, the ectual evaluation would have to be done by the teacher, but the paraprofessional could assume many of the routine, objective procedures and thus allow the teacher to concentrate on the creative, subjective process of instruction.

Administration. Another major area we see affecting instruction is that of administration. We see two general catagories of administrative function. One is concerned with general policy and efficiency, including financing; this administration should exist on an area unit level, and the other is concerned more directly with individualized and co-ordinated instruction; this administration should exist
partially on the community complex level and partially within the local attendance center itself. While the school board and superintendent are certainly concerned with individualized and co-ordinated instruction, we feel that their most direct and immediate concerns are in connection with matters of general policy and efficiency. We believe that the area school board, especially, needs to give increasing weight to the empirical judgement (particularly when statistically supported) of experts -- i.e. teachers, consultants, and administrators -- in matters of the educational situation -- i.e. such things as curriculum, -texts, and environment. We believe that the area administrator increasingly is and should be a third party member of board-teacher relationships.-- serving as an expert in the implementation and implication of proposals. He can and should be assisted by a (committee
of) consultant(s) whenever he desires. With these functions, the area board, the area administration, and the teachers can function (each in his own special area) more effectively and be guided and supported by the specialized judgements of the others.

We also feel that there should be a category of consultants and researcher specialists within the administrative body on the area and state unit levels. We believe this is not only beneficial but also necessary in this age of fantastically rapid change, for one person cannot possibly keep abreast of the changes in even one specialized field, much less a field so extensive as education. These specialists would have the function of keeping abreast, each in his area, and writing summaries of noteworthy information. The area administrator board, and teachers then could refer to these summaries for more efficient information. And the specialists could also be called upon for advice when knowledge of the most recent trends was requested, either for use by the board or administrator for policy decisions or by the teachers for use in the classroom.

We believe that the administrators functioning within the community comples and/or local attendance center are and should be more directly concerned with individualized and co-ordinated instruction than with policy decisions, although they most certainly have the responsibility to develop and execute policy and efficiency within their community complex and/or local attendance center. The policy and efficiency of the local attendance center is and should be designed to
insure individualized and co-ordinated instruction. We believe that the commity complex and/or local attendance cemter administrator should be a public relations representative from the school as well as a co-ordinator of program, department heads, and activities. The boys' and girls' advisors function as disciplinarians as well as coordinators of program in conjunction with the principal and counselors. They should also work with the counselors and teachers in evaluation of individuals for program selection and for otker aspects of school life.

We believe, also, that there should be teachers designated as department chairmen of subject areas, who might be considered as quasi-administrators. We feel that these deparkment chairmen should be master teachers, selected and proven on a bassis of performance. These chairmen would be responsible for non-evaluative supervision of and guidance of the teachers and auxiliary pensonnel within their departments. They would also work with chairmen (of other departments), counselors, and administrators in co-ordination and design of curriculum and procedures. They should be assigned to teach a minimum number of classes to allow time for their research and guxidance responsibilities.

Physical Environment. Another important factor in the education situation is the physical environment. In general, the attendance center should be arranged with the media center (to be discussed later) centrally located. We believe that there should be physical subject areas as well as curricular subject areas -- i.e. subject wings; (or, in elementary, lower and upper level). We believe, further, that each
wing should contain office space for the department chairman and teachers, with desks and ample file space for each, with space for a professional library pertaining to the area, and with a duplicate listing of all relevant materials in the media center.

The classrooms themselves are of prime importance. They must be large, light, and air-conditioned to insure maximum response from both teacher and student. Every classroom should also furnish storage space appropriate to the subject taught. A classroom for subjects requiring a laboratory situation, such as science or vocational arts, should be equipped with a laboratory.

The classrooms should be flexible in size and possibly also in shape, so that they might be used for small groups (sometimes needing to be isolated from one another), normal classes, and combined classes (sometimes convenient for films, tapes, or lectures). The classrooms also need to be flexible in terms of equipment, so that a variety of audio-visual aids may be used effectively. Rather than devote a great deal of space to lists of class-aid ratios for various types of audio-visual equipment for all levels, we recommend North Central Association and American Library Association guidelines as references -- although these are minimal and not optimum recommendations.

Media Center. We believe that the final major area of the total education situation might be considered as a type of educational service. But we felt that it is far too important; it demands respect
as an area in itself; the media center. Perhaps the media center motto should be: What was best yesterday is only second rate today. (But we don't feel that this motto could be limited to the media center; it applies to all of education.)

The services of our media center should always be directed toward the total objectives of the total educational program. We feel that its primary concern should be to provide service to the students and faculty. Since we believe that education and educators must be relevant, the media center also must strive for relevant and progressive development. Therefore, media center personnel must be allowed to research continually in order to provide better service and materials in the areas of reference, reader guidance, reading guidance, media guidance, media selection, in-service education, material and equipment training (for both students and faculty), and consultant service. And flexibility must be majntained to allow proper guidance for the individual. Because of these necessities purchasing should be of a nature that provides for continual purchasing of materials and equipment as needed rather than of the present nature that allows only yearly or twice-yearly ordering, which delays shipments from manufacturers for many months because of seasonal loads.

We must also recognize that personnel for such a media center will be an important factor. We will need specialists in all phases of media use, service, development, production; and processing. We can allow more efficient operation of the specialist by providing
trained aides, but rarely should we even consider the use of student aid. Librarians should be made responsible for all printed media with assistance to audio-visual tectinicians in the areas of cataloging and processing. Audio-visual technicians should be responsible for all audio-visual media: Data processing technicians should be responsible for all data processing equipment and applications. We should provide directors for both the community comples and area media centers, but we need to overtly recognize that the media center and its personnel are a vital part of the school service program and give each of the personnel a sense of school service and dedication.

Realizing that the media center is an educational service of a most specialized nature, we must avoid identifying the media center as a study hall or a part of the local attendance center's study hall environment. And media personne1, as specialized faculty members, should be a part of curriculum planning and objective formation. We advise that a media specialist be present at all departmental meetings in order to keep the center's services in direct contact with all areas of the school's academic planning and curriculum, and that media center personnel be a part of the curriculum development committee of the school. and the system. In turn, we advise that the departmental chairmen be a part of the media guidance committee to insure the proper development 1 and planning of the media center in relation to the total school and its program. We believe that a successful media center needs the full co-operation of all school personnel if it is to function as it
is meant to function: as a meaningful and relevant part of the school program. Of course, it also needs the student who is to partake of its offerings, for without the inquiring student and his ever-growing demands for relevancy and immediacy, the media center would soon grow stale and uninviting.

The physical quarters of the local attendance center's media center should be large and expansive enough for both present and future needs, and relevant to the type of curriculum the school intends to provide -- i.e. the type of services the media center must provide. We should design the quarters to provide general reading areas and independent study facilities -- such as study carrels, typing facilities, and audio-visual quarters -- for use of audio-visuals by students and faculty. We also should provide rooms for group study, of various sizes and situated off of the media center but easily accessible to it for convenient access of needed materials. In addition, we need to provide facilities for the development of media, dark rooms, planning rooms, viewing rooms, material storagerooms, equipment repair rooms, TV and radio rooms, and a data processing area, if data processing of tests, profiles, etc. is to be centered in the media center, as it might well be.

If we are to have an efficient media center, we must naturally provide materials (i.e. media) and equipment for using these materials. We should supply books, pamphlets, documents, periodicals, newspapers, and other types of printed media. We need microfilms, micro cards, micro
viewers, and micro-duplicating equipment. We, of course, need films, filmstrips, slides, tape recordings, records, sheet music, videotapes, and radio transcriptions. We need to supply good quality reproductions of works of art and photographs, models transparencies, illustrations, maps, charts, diagrams, and other vertical file materials. We should supply the media center with supplemental texts and materials not considered part of the media collection because of a transitory nature. And we might also use the media center as a distribution area for scientific equipment too large for inclusion within the classroom -such as telescopes, planetarium, greenhouse, fossils, rocks and indian relics.

Obviously, with all these media, we will need equipment with which to use and service them. We will need dark room equipment, photocopying equipment, duplicating equipment, cameras, equipment for the production of transparencies, slides, charts, diagrams, and for the recording of music, speeches, and videotapes. We will need tape recorders, phonographs, TV sets, radios, and equipment for editing and/or making films, filmstrips, micro cards, microfilm, and micro-duplicating equipment. We will need screens, projectors -- for $8 \mathrm{~mm}, 16 \mathrm{~mm}$, filmstrips, slides and transparencies, as well as opaque projectors. We will need drafting equipment, lettering tools, stencils, stenciling equipment, paints, inks, lamination materials, and a lamination machine -- which will be greatly needed for preservation of relatively perishable items. Of course, we will need study tables, desks, book stands, book cases, pro-
jector stands, and display facilities.
We felt it necessary to be more specific in relation to the needs of media centers because the concept of a media center is probably the newest concept discussed. It is also one of the most rapidly expanding areas in education today, along with curriculum and procedure. Since the media center is the best source of current and vital materials, we must have operative centers on all levels of the educational structure. There are obviously some functions, equipment, and media that would be impractical and inefficient on a local attendance center level that would be very practical and efficient on a community complex level. At the same time there are many services that would be impractical and inefficient on a community complex level that would be most practical and efficient on an area unit.level. The particulars of a media operation, then, must depend upon the needs of the structural unit containing the media center, but it is essential that we supply the media operation that fully meets the needs of its unit. The effective functioning of the media center and the six other areas discussed is essential to high quality, individualized, and relevant education situations throughout each student's $\mathrm{K}-12$ experience.

We strongly recommend that the entire educational environment be involved in constant experimentation. If we want to successfully relate to a changing society, we must constantly be testing new tools and techniques for doing so effectively. Some recent discoveries,
such as language laboratories, team teaching, data processing, work study programs, college credit courses, cultural enrichment programs, and non-professional aides, have already been proved and lack only for wide-spread adoption; others have yet to be proved although many seem very promising. In any case, if education is to progress with the rest of society and the age, it must experiment and adapt to society and the age. And it can best experiment and adapt under the guidance of teachers, the expert educational field men.

In conclusion, we must recognize that education's primary need is relevancy. This is true because education's primary goal is to prepare each student for the society in which he must function and this society is in a constant state of flux. Therefore, we must teach the student to be as flexible as possible, so that he can not only adapt with society, but can, in fact, direct its change for the better. To do this, education must be relevant to the student and to his society.

If we are to prepare out student for a flexible existence, we must begin early, teaching him in a way that leads him to discover basic, internal principles that he can adapt to fit any given, external situation. And we must convince him to apply these principles to whatever external situations confront him. We must, furthermore, show him how to relate, compare, and associate these external situations, proceeding from the known to the unknown, so that the new and different does not frustrate him. Instead, we must have lead him to realize that, although some situations seem strange to him, his core of principles will allow him to solve any situation if he applies them wisely and competently.

In order to prepare him for a successful life, we must have the means to do so. By means, we really refer to a quality educational situation consisting of seven major areas: administration, classes, curriculum, media, physical environment, services, and teachers. And these seven areas operate from and depend upon the structural organization of the school system; some are dependent upon commity complex structure, some upon area structure, some upon state structure, and many upon a conbination of two or more structures.

We feel that administration, for example, has several levels of function. The function involving formation of general policy, efficiency, and some program co-ordination might be carried on at an area, or in some respects even state level. The function more directly connected with individualization of instruction, on the other hand, should be carried out at a community complex or attendance center level. Particulars of class size and number should also be dealt with on a community complex or attendance center level.

Certain aspects of curriculum, such as.levels, offerings, and research, might be carried on most efficiently at an area or state level, but other aspects, such as the particular number of classes in a subject, or method of presentation, would need to be a cormunity complex or attendance center decision.

Media centers should probably be operative on all levels. We feel that there are certain functions of media centers that are needed on the attendance center level and some that are neither
research and consultation on a state-widebasis. Again, the structural level of involvement should be determined by function.

In short, we feel, that there should be a state-wide assesment of structural organization within education. This, we feel, will probably result in a structural readjustment that delegates responsibility and co-ordination of the education situation to levels appropriate for fulfilling the needs of all of Iowa's youth.
efficient or necessary on this level but are both efficient and necessary on the area and state levels.

On the other hand, we recognize that the nature of physical environment must be a local decision, based on the needs of the local curriculum, teachers, and students. A1though very broad matters, such as location of attendance centers for academic or vocational instruction, may only be practical on a more remote analysis, the area within the attendance center that is required for classrooms, offices, media centers and such can only be determined by the attendance center's requirements.

We are certain that educational services such as guidance counseling, physiological services, auxiliary personnel, and (perhaps) psychological services should be conducted on a local level, although we recognize that others, such as some types of special education, are only practical on a more inclusive level, i.e. area or state.

We feel that the local attendance center should be most directly involved with the majority of teacher relationships, such as the hiring and assigning of well qualified personnel to their area of specialty, and inservice education, and guidance to insure innovation and relevancy of procedure as well as content. However, we also realize that certain specialists within the teaching staff would be most valuably implemented on an intermediate level. And we can even conceptualize a body of specialist teachers concerned with

APPENDIX A

368A-583AF

Local Attendence Centers:

Comprehensive High School		(Principal)
Junior High School	∇	(Principai)
Elementary .	0	(Principal)

The purpose of this position paper, comaissioned by the Great Plains School District Organization Project, is to describe the Iowa classroom teacher's concept of the optimum education situation and to suggest means of attaining it. In writing the paper, I have relied largely upon the empirical judgement of the IACT Great Plains Comittee and an additional group of classroom teachers who were kind enough to contribute their time, knowledge, and judgement.

Education's main purpose, we feel, is to prepare youth for the society in which it will live. We feel, further, that the fundamental necessity for a successful life in a changing society is the ability to be flexible. And we feel that this ability comes as a part of the ability to think -- i.e. to compare, relate, and associate confronting situations in a rational, logical, and analytical manner. We believe that there are a limited number of fundamentals, in general and in each subject area, and that the learning of and applying of these fundamentals is the basis of the thought process.

We recognize that interest plays an important part in the effectiveness of the educative process. Therefore, if we teachers are to be fully effective in developing each individual's talents, we must demonstrate that education is relevant -- i.e. inmediate, vital, and practical. When the student sees the relevancy of an area, he will usually become interested in it and he will become more efficient in what we are helping him to learn. But we must at all times be careful to relate what we are teaching to each individual's interests, experiences, and abilities so that he. will remain aware of education's relevance to him.

How, then, can we demonstrate individual relevance? The answer lies in seven major areas of the education situation: administration, classes, curriculum, media, physical environment, services, and - teachers. But we must also remember that these seven areas are all dependent upon the structural organization of the school system; some are dependent upon community complex structure, some on area structure, some on state structure, and several on a combination of two or more structures.

We feel. that administration, for example, has several levels of function. The function involving formation of general policy, efficiency, and some program co-ordination might be carried on at an area, or in some respects even state, level. The function more directly connected with individualization of instruction, on the other hand, should be carried out at a conmunity complex or attendance center level. Particulars of class size and number should also be dealt with on a commity complex or attendance center level.

Certain aspects of curriculum, such as levels, offerings, and research, might be carried on most efficiently at an area or state level, but other aspects, such as the particular number of classes in a subject, or method of presentation, would need to be a comamity complex or attendance center decision.

Media centers should probably be operative on all levels. We feel that there are certain functions of media centers that are needed on the local attendance center level and some that are neither efficient or necessary on this level, but are both efficient and necessary on the area and state levels.

On the other hand, we recognize that the nature of physical encironment must be a local decision, based on the needs of the local curriculum, teachers, and students. Although very broad matters, such as location of attendance centers for academic or vocational instruction, may only be practical on a more remote analysis, the area within the attendance center that is required for classrooms, offices, media centers and such can only be determined by the attendance center's require-ments.

We are certain that educational services such as guidance counseling, physiological services, auxiliary personnel; and (perhaps) psychological services should be conducted on a 'local level, although we recognize that others, such. as some types of special education, are only practical on a more inclusive level, i.e. area or state.

We feel that the local attendance center should be most directly involved with the majority of teacher relationships, such as the hiring and assigning of well qualified personnel to their area of specialty, and inservice education, and guidance to insure innovation and relevancy of procedure as well as content. However, we also realize that certain specialists within the teaching staff would be most valuably implemented on an intermediate level. And we can even conceptualize a body of specialist teachers concerned with research and consultation
on a state-wide basis. Again, the structural level of involvement should be determined by function.

In short, we feel that there should be a state-wide assessment of structural organization within education. This, we feel, will probably result in a structural readjustment that delegates responsibility and co-ordination of the education situation to levels appropriate for fulfilling the needs of all of Iowa's youth.
by

Dr. E. James Maxey and
Donald R. Thomas
Iowa Educational Information Center
University of Iowa
Iowa City, Iowa

June 12, 1968

The Great Plains School District Organization Project
Iowa, Missouri, Nebraska, South Dakota
Ralph D. Purdy, Project Director
411 South 13 th Street
Lincoln, Nebraska
68508

The impact of scientific, technological, social, and economic change on the American way of life necessitate a re-examination of the educational system. These changes modify established needs and create new needs to be met by the public school system. Instructional programs and supporting services must be developed to meet these needs.

The primary purposes of school district organization are to make possible: (1) the desired quality or excellence of the programs and services; (2) the efficiency of the organization for providing the programs and services; and (3) the economy of operation, or the maximum returns received for the tax dollar invested in education.

The program offering and the personnel responsible for directing the instructional program are vital parts of the educational effort in all school districts. The quality of the programs and of the personnel has a direct relationship to the achievement of educational purposes. Dr. Thomas and Dr. Maxey, Iowa State University, were invited to investigate the relationship between program offerings and staff personnel and the size of school districts in lowa. They were fortunate in having available computerized data upon which to secure information for this report. This paper is their report to the Project Staff and to interested representatives of the Great Plains States.

The value of this paper rests upon its utilization by those with advisory and/or decision making responsibilities about the educational structure in each state. It represents a beginning point for further study and evaluation, and for establishing criteria upon which guidelines can be developed for effective and constructive school district organization.

Respectfully submitted,
Ralph D. Purdy, Director
Great Plains School District Organization Project

June 12, 1968

TABLE 4
Number of Undergraduate Majors for Teachers by District Enrollment Category

	$\begin{aligned} & 0- \\ & 499 \end{aligned}$	$\begin{aligned} & 500- \\ & 749 \end{aligned}$	$\begin{aligned} & 750- \\ & 999 \\ & \hline \end{aligned}$	$\begin{aligned} & 1000- \\ & 1499 \end{aligned}$	$\begin{aligned} & 1500- \\ & 1999 \end{aligned}$	$\begin{aligned} & 2000^{-} \\ & 2999 \end{aligned}$	$3000 \&$ Above
Range	1-4	1-4	1-4	1-4	1-4	1-4	1-4
Mean	1.16	1.15	1.17	1.16	1.15	1.13	1. 15
N - Count	1189	1623	1139	1266	1046	1173	2703
Standard							
Deviation	. 39	. 41	. 40	. 37	. 39	. 35	. 41

TABLE 5
Number of Graduate Majors for Teachers by District Enrollment Category

	$0-$	500^{-}	750^{-}	1000^{-}	1500^{-}	2000^{-}	$3000 \&$
	499	749	999	1499	1999	2999	Above
Range	$1-3$	$1-4$	$1-4$	$1-4$	$1-4$	$1-3$	$1-4$
Mean	1.12	1.11	1.12	1.08	1.09	1.09	1.13
N-Count	427	699	550	584	735	748	2576
Standard Deviation	.37	.36	.41	.30	.30	.27	.37

TABLE 6
Total Years of Teaching Experience for Teachers by District Enrollment Category

	$0-$	$500-$	$750-$	$1000-$	$1500-$	$2000-$	$3000 \&$
	499	749	999	1499	1999	2999	Above
Range	$0-45$	$0-45$	$0-44$	$0-45$	$0-44$	$0-45$	$0-45$
Mean	9.69	9.64	9.64	9.94	11.16	11.00	13.36
N-Count	1478	2061	1554	1698	1644	1796	4957
Std. Dev.	9.73	9.60	9.23	9.70	10.13	9.90	11.47

TABLE 7

Highest Degree Held for Elementary and Secondary Teachers by District Enrollment Category

	$\begin{aligned} & 0- \\ & 499 \end{aligned}$		$\begin{aligned} & 500- \\ & 749 \end{aligned}$		$\begin{aligned} & \text { 750- } \\ & 999 \end{aligned}$		$\begin{aligned} & 1000 \\ & 1499 \end{aligned}$			$\begin{aligned} & 1500 \\ & 1999 \end{aligned}$			$\begin{aligned} & 2000 \\ & 2999 \end{aligned}$			
	N	PC	N		N		N		N			N			N	PC
None	33	2	51		36		23		26						60	1
Bachelors	1287	59	1830	58	1287	59	1418	55		1187	50		1328	53	3119	
Masters	286	1.3	423	13	350	16	386		5	547	23	56	563	22	2052	
Specialists	13	1	5	0	15		113		4			- 8			24	0
Doctors	0	0	2	0	4		2		8			1			46	1
Other	554	25	854		502	23	704		610	610	26		608	24	1600	
Totals	2173		3165		2194		2558			2382			2529		6901	
*Percents are recorded to the nearest whole percent.																

TABLE 8 Administrator* Salaries by District Enrollment Category

	$0-$	$500-$	$750-$	$1000-$	$1500-$	$2000-$	$3000 \&$
	499	749	999	1499	1999	2999	Above
Range	$5470-$	$3600-$	$5300-$	$5150-$	$3600-$	$3000-$	$3610-$
	13000	15000	1.5500	15500	21500	16650	23000
Mean	9153.4	9506.9	9896.4	10390.1	10847.5	10940.4	10939.2
N-Count	193	248	164	151	107	127	282
Std. Dev.	1504.2	1895.4	1809.5	2004.5	2862.6	2557.0	2919.2
*Administrator is defined as either Superintendent or Principal.							

TABLE 9
Salaries - Other than Administrators or Teachers by Enrollment Categories

	$\begin{aligned} & 0- \\ & 499 \end{aligned}$	$\begin{aligned} & 500- \\ & 749 \end{aligned}$	$\begin{aligned} & 750- \\ & 999 \\ & \hline \end{aligned}$	$\begin{aligned} & 1000- \\ & 1499 \\ & \hline \end{aligned}$	$\begin{aligned} & 1500- \\ & 1999 \\ & \hline \end{aligned}$	$\begin{aligned} & 2000- \\ & 2999 \\ & \hline \end{aligned}$	$\begin{aligned} & 3000 \text { \& } \\ & \text { Above } \end{aligned}$
Range	3200-	4200-	3850-	2850-	3743-	3924-	2875-
	8825	10450	10380	11200	16140	12700	17150
Mean	6452.64	6548.80	6895.16	6914.75	8030.23	7642.11	8717.70
N - Count	92	159	124	146	179	218	707
Standard							
Deviation	1038.42	1040.78	1178.06	1323.90	1969.45	1499.41	2185.99

TABLE 10
Teacher Salaries Within District Enrollment Categories

	$0-$	500^{-}	750^{-}	1000^{-}	1500^{-}	2000^{-}	$3000 \&$
	499	749	999	1499	1.999	2999	Above

TABLE 11
Number of Pupils Met Per Day Per Teacher Within District Enrollment Categories

	$\begin{aligned} & 0^{-} \\ & 499 \end{aligned}$	$\begin{aligned} & 500- \\ & 749 \end{aligned}$	$\begin{aligned} & 750- \\ & 999 \end{aligned}$	$\begin{aligned} & 1000- \\ & 1499 \end{aligned}$	$\begin{aligned} & 1500- \\ & 1999 \end{aligned}$	$\begin{aligned} & 2000- \\ & 2999 \end{aligned}$	3000 \& Above
Range	3-999	2-938	5-999	7-999	1-757	1-860	1-999
Mean.	79.51	93.48	98.30	110.11	112.51	123.92	134.92
N - Count	982	1456	1137	1165	1049	1078	1948
Standard							
Deviation	55.21	66.37	65.85	70.91	59.58	69.95	82.24

TABLE 12
Number of Different Teacher Preparations in Special Education by District Enrollment Category

	$0-$ 500^{-} $750-$ $1000-$ 1500^{-} $2000-$ $3000 \&$ 499 749 .999 1499 1999 2999	Above					
Range	.00	.00	.00	$1-1$	$1-1$	$1-1$.	$1-2$
Mean	.00	.00	.00	1.00	1.00	1.00	1.14
$\mathrm{~N}^{-}$Count	0	0	0	1	2	1	7
Standard							
Deviation	.00	.00	.00	.00	.00	.00	.36

TABLE 13
Frequency Distribution of Professional Personnel by District Enrollment Categories

	$\begin{array}{r} 0- \\ 499 \end{array}$	$\begin{aligned} & 500 \\ & 749 \\ & \hline \end{aligned}$	$\begin{aligned} & 750- \\ & 999^{\circ} \end{aligned}$	$\begin{aligned} & 1000- \\ & 1499 \end{aligned}$	$\begin{aligned} & 1500- \\ & 1999 \end{aligned}$	$\begin{aligned} & 2000- \\ & 2999 \end{aligned}$	$3000 \&$ Above
Elem. Supervisors	27	59	62	75	67	77	288
Jr. High Supervisors	1	19	21	34	38	43	116
Sr. High Supervisors	60	91	54	69	66	76	231
Jr.-Sr. High Supervisors	54	57	27	13	0	8	0
Elem. Guidance Personnel	0	1	0	1	2	2	3
Jr. High Guidance Persomel	0	0	0	0	17	24	115
Sr. High Guidance Persomnel	12	28	37	40	55	45	134
Jr. -Sr. High. Guidance Personnel	14	16	- 13	6	0	4	0
Elem. Librarians	0	0	5	5	13	5	15
Jr. High Librarians	0	1	0	7	8	18	51
Sr. High Librarians	12	32	26	36	29	30	48
Jr. -Sr. High Librarians	10	15	8	6	0	2	0
Specialized Persomnel	51	72	56	74	65	72	330
School Superintendents	109	115	74	57	29	42	35
Number of Secondary School Buildings in Category	120	142	99	97	53	65	113

TABLE 14
Number of Different Teacher Preparations in Communication Skills by District Enrollment Category*

	$0-$	$500-$	$750-$	$1000-$	$1500-$	$2000-$	$3000 \&$
	499	749	999	1499	1.999	2999	Above
Range	$1-8$	$1-6$	$1-5$	$1-6$	$1-5$	$1-6$	$1-8$
Mean	2.56	2.29	1.98	1.81	1.55	1.76	1.76
N-Count	224	331	265	256	269	257	519
Std. Dev.	1.41	1.06	.91	.85	.73	.93	.99

*Communication Skills courses have CardPac ID numbers 1030-1940.

TABLE 15
Number of Different Teacher Preparations in Fine Arts by District Enrollment Category*

	$0-$	$500-$	$750-$	$1000-$	$1500-$	$2000-$	$3000 \&$
	499	749	999	1499	1999	2999	Above
Range	$1-5$	1.5	$1-4$	$1-4$	$1-4$	$1-4$	$1-4$
Mean	1.92	1.84	1.61	1.55	1.60	1.69	1.72
N-Count	172	194	134	132	102	93	145
Std. Dev.	1.00	.92	.73	.70	.69	.74	.82

*Fine Arts courses have CardPac. ID numbers 2130-2247.

TABLE 16

Number of Different Teacher Preparations in Foreign Language by District Enrollment Category*

	$0-$	$500-$	$750-$	$1000-1500-$	$2000-$	$3000 \&$	
	499	749	999	1499	1999	2999	Above
Range	$1-5$	$1-6$	$1-5$	$1-5$	$1-5$	$1-5$	$1-5$
Mean	2.01	2.26	2.20	2.25	2.37	2.25	1.75
N-Count	86	229	64	63	52	52	142
Std. Dev.	.90	.99	.88	.90	.97	1.05	.99

*Foreign Language courses have CardPac ID numbers 31.30-39ł0.

TABLE 17
Number of Different Teacher Preparations in Mathematics by District Enrollment Category*

	$\begin{array}{r} 0- \\ 499 \\ \hline \end{array}$	$\begin{aligned} & 500- \\ & 749 \end{aligned}$	$\begin{aligned} & 750- \\ & 999 \end{aligned}$	$\begin{aligned} & 1000 \\ & 1499 \end{aligned}$	$\begin{aligned} & 1500- \\ & 1999 \end{aligned}$	$\begin{aligned} & 2000- \\ & 2999 \end{aligned}$	 Above
Range	1-6	1-6	1-6	1-6	1-4	1-5	1-5
Mean	2.98	2. 64	2. 43	2. 18	1. 83	1.75	1.77
N -Count	166	229	4	191	156	179	357
Standard							
Deviation	1. 53	1. 40	1. 15	1. 11	. 79	. 83	. 81

*Mathematics courses have CardPac ID numbers 4130-4940.
TABLE 18
Number of Different Teacher Preparations in Health by District Enrollment Category*

	$\begin{array}{r} 0 \\ 499 \end{array}$	$\begin{aligned} & 500- \\ & 749 \end{aligned}$	$\begin{aligned} & 750- \\ & 999 \end{aligned}$	$\begin{aligned} & 1000- \\ & 1499 \end{aligned}$	$\begin{aligned} & 1500- \\ & 1999 \end{aligned}$	$\begin{aligned} & 2000 \\ & 2999 \end{aligned}$	 Above
Range	1-1	1-2.	1.1	1-1	1-1	1-1.	1-3
Mean	1.00	1. 13	1.00	1.00	1.00	1.00	1.14
N -Count	4	8	4	8	6	5	14
Standard Deviation	. 00	. 32	. 00	. 00	. 00	. 00	. 52

*Health Courses have CardPac ID numbers 5130-5140.
TABLE 19
Number of Different Teacher Preparations in Physical Education by District Enrollment Category*

	$0-$ $500-$ $750-$ $1000-$ $1500-$ $2000-$ 499 749 999 1499 1999	2999	Above				
	$1-6$	$1-6$	$1-4$	$1-6$	$1-6$	$1-3$	$1-4$
Range	1.88	1.85	1.48	1.52	1.31	1.33	1.56
Mean	91	117	93	86	65	60	68
N-Count							
Standard	.92	1.03	.68	.98	.78	.55	.88

*Physical Education Courses have CardPac ID numbers 5230-5940.

TABLE 20
Number of Different Teacher Preparations in Science by District Enrollment Category*

	$\begin{array}{r} 0- \\ 499 \end{array}$	$\begin{aligned} & 500 \\ & 749 \end{aligned}$	$\begin{aligned} & 750- \\ & 999 \end{aligned}$	$\begin{aligned} & 1000- \\ & 1499 \end{aligned}$	$\begin{aligned} & 1500- \\ & 1999 \end{aligned}$	$\begin{aligned} & 2000- \\ & 2999 \end{aligned}$	3000 \& Above
Range	1-6	1-5	1-4	1-6	1-3	1-3	1-4
Mean	2. 28	2.08	1. 93	1. 80	1. 46	1.38	1. 42
N -Count	167	238	179	172	139	165	256
Standard					.		
Deviation	1.17	1.05	. 84	. 85	. 62	. 58	. 60

*Science courses have CardPac ID numbers 6140-6949.
「TABLE 21
Number of Different Teacher Preparations in Social Studies by District Enrollment Category*

| | $0-$ | $500-$ | $750-$ | $1000-$ | $1500-$ | $2000-$ | $30 C 0 \&$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 499 | 749 | 999 | 1499 | 1.999 | 2999 | Above |
| | $1-7$ | $1-6$ | $1-4$ | $1-5$ | $1-3$ | $1-3$ | $1-4$ |
| Range | 2.14 | 1.94 | 1.80 | 1.61 | 1.42 | 1.34 | 1.33 |
| Mean | 184 | 254 | 214 | 216 | 192 | 216 | 387 |
| N-Count | | | | | | | |
| Standard
 Deviation | 1.28 | .98 | .83 | .75 | .59 | .53 | .54 |

*Soc. Studies courses have CardPac ID numbers 7140-7840 and 79427950.

TABLE 22
Number of Different Teacher Preparations
in Driver's Education by District Enrollment Category*

| | $0-$ | $500-$ | $750-$ | 1000 | $1500-$ | 2000 | $-3000 \&$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 499 | 749 | 999 | 1499 | 1999 | 2999 | Above |
| Range | $1-1$ | $1-1$ | $1-1$ | $1-1$ | $1-1$ | $1-1$ | $1-1$ |
| Mean | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| N-Count | 33. | 40 | 23 | 19 | 20 | 16 | 23 |
| Standard | 0 | .00 | .00 | .00 | .00 | .00 | .00 |
| Deviation | .00 | .00 | | | | | |

*Driver's Education has CardPac ID number 7941.

TABLE 23
Number of Different Teacher Preparations in Agriculture by District Enrollment Category*

	$\begin{aligned} & \hline 0- \\ & 499 \\ & \hline \end{aligned}$	$\begin{aligned} & 500^{-} \\ & 749 \\ & \hline \end{aligned}$	$\begin{aligned} & 750- \\ & 999 \\ & \hline \end{aligned}$	$\begin{aligned} & 1000- \\ & 1499 \\ & \hline \end{aligned}$	$\begin{aligned} & 1500^{-} \\ & 1999 \\ & \hline \end{aligned}$	$\begin{aligned} & 2000- \\ & 2999 \\ & \hline \end{aligned}$	3000 \& Above
Range	1-5	1-5	1-4	1-4	2-6	1-4	1-3
Mean	2.69	3.04	2.90	3.08	3.07	2.56	2.00
N -Count	26	47	42	38	15	18	6.
Standard							
Deviation	1.07	1.06	. 99	. 87	1.18	. 82	. 57

*Agriculture courses have CardPac ID numbers 8130-8157.
TABLE 24
Number of Different Teacher Preparations in Homemaking by District Enrollment Category*

	0^{-}	500^{-}	750^{-}	1000^{-}	1500^{-}	2000^{-}	$3000 \&$
	499	749	999	1499	1999	2999	Above
Range	$1-6$	$1-6$	$1-5$	$1-4$	$1-4$	$1-4$	$1-4$
Mean	2.73	3.00	2.47	2.36	2.12	2.00	1.85
N-Count	95	116	87	72	50	55	103
Standard Deviation	1.10	1.27	1.18	.95	.82	.83	.78

*Homemaking courses have CardPac ID numbers 8230-8263.
TABLE 25
Number of Different Teacher Preparations in Industrial Education by District Enrollment Category*

	$0-$	500^{-}	$750-$	1000^{-}	1500^{-}	2000^{-}	$3000 \&$
	499	749	999	1499	1999	2999	Above
Range	$1-5$	$1-6$	$1-6$	$1-5$	$1-4$	$1-6$	$1-6$
Mean	2.37	2.54	2.45	2.29	2.07	2.12	1.68
N-Count	46	65	49	51	57	59	157
Standard	.						
Deviation	1.24	1.41	1.41	1.17	.98	1.17	.87

*Industrial Education courses have CardPac ID numbers 8301-8397.

TABLE 26

Number of Different Teachér Preparations in Business Education by District Enrollment Category*

	0^{-}	500^{-}	750^{-}	1000^{-}	1500^{-}	2000^{-}	$3000 \&$
	499	749	999	1499	1999	2999	Above
Range	$1-4$	$1-4$	$1-4$	$1-3$	$1-3$	$1-3$	$1-3$
Mean	2.19	1.93	1.80	1.55	1.39	1.49	1.42
N -Count	95	124	93	85	62	57	92
Standard					\cdots		
Deviation	.79	.83	.80	.69	.55	.62	.58

*Business Education courses have CardPac ID numbers 8401-8443.
TABLE 27
Number of Different Teacher Preparations in Vocational Training by District Enrollment Category*

	0^{-}	500^{-}	750^{-}	1000^{-}	1500^{-}	2000^{-}	$3000 \&$
	499	749	999	1499	1999	2999	Above
Range	$1-5$	$1-4$	$1-4$	$1-4$	$1-3$	$1-4$	$1-5$
Mean	1.84	2.13	2.06	1.89	1.79	1.83	1.36
N-Count	129	147	113	95	62	69	101
Standard				.			
Deviation	.76	.80	.83	.74	.81	.99	.65

*Vocational Training courses have CardPac ID numbers 8450-8552.
TABLE 28
Number of Different Teacher Preparations in Technical Education by District Enrollment Category*

	0^{-}	500^{-}	750^{-}	1000^{-}	1500^{-}	2000^{-}	$3000 \&$
	499	749	999	1499	1999	299.	Above
Range	0	0	0	0	0	0	0
Mean	.00	.00	.00	.00	.00	.00	.00
N-Count	0	0	0	0	0	0	0
Standard Deviation	.00	.00	.00	.00	.00	.00	.00

*Technical Education Courses have CardPac ID numbers 8650-8653.

TABLE 29
Number of Different Teacher Preparations in Distributive Education by District Enrollment Category*

	$0-$ $500-$ $750-$ $1000-$ $1500-$ $2000-$ $3000 \&$ 499 759 999 1499 1999 2999	Above					
Range.	0	0	0	$2-2$	0	$1-1$	$1-2$
Mean	.00	.00	.00	2.00	.00	1.00	1.40
N-Count	0	0	0	1	0	4	5
Standard							
Deviation	.00	.00	.00	.00	.00	.00	.49

*Distributive Education Courses have CardPac ID numbers 8750-8761.

SECTION II

SECONDARY CURRICULUM DISTRIBUTION IN IOWA

- The Iowa Educational Information Center collects curriculum information from 700 secondary school buildings, including junior high systems, as part of the CardPac System of Educational accounting. This system was introduced by the Iowa Educational Information Center on behalf of the State Department of Public Instruction and may be briefly described as an automated system of collecting and processing data for the practical use of the schools and the State Department of Public Instruction.

In Appendix A, a record of the CardPac course identification numbers is given. In describing the comparisons of Tables $30-45$, courses are combined within subject areas to give 17 broad subject areas. A description of which courses were combined and how the subject area is named in the tables follows:

Subject Area	Table Description	CardPac ID Course Numbers
Communications	Comm.	1030-1940
Fine Arts	Arts	2130-2247
Foreign Language	Lang.	3130-3980
Mathematics	Math	4130-4980
Health	H1th.	5130-5140
Physical Education	PE	5230-5940
Science	Sci.	6140-6980
Social Studies	Soc.	$\left\{\begin{array}{l}7140-7880 \\ 7942-7950\end{array}\right.$
		< 7942-7950

Agriculture Agr. .8130-8157

Homemaking
Industrial Education
Business Education
Vocational
Technical Education
Distribution \& Marketing
Special Education
Driver's Training

Agr.	$8130-8157$
Home	$8230-8263$
Indus.	$8301-8397$
Bus.	$8401-8443$
Voc.	$8450-8552$
Tech.	$8650-8653$
Mrkt.	$8750-8761$
Spec.	$9830-9849$
Driv.	7941

Administrators of Great Plains schools in Missouri, Nebraska and South Dakota might find it of some value to compare curriculum summaries of Iowa schools on the CardPac Information File with those from their own states.

Tables 30 and 31 display curriculum frequency distributions by junior high and senior high buildings within a district-size category ranging from below 499 to above 3000 district enrollment. In these two tables the list of the number of buildings with course offerings from 1 up to 200 is given.

Table 31 shows that there are only two junior high schools which have buildings in the district enrollment category "below 499." Administrators should not be confused or misinterpret this result. Iowa has gone through reorganization and because of reorganization, where two or more districts have combined the junior high enrollment, the combined enrollment exceeds this district enrollment category. On the other hand, districts of this size are not large enough to support a junior high structure in their district. The school district of this size operates under a K-8-4 structure.

It is apparent that the larger the school district the more course offerings are available to school pupils. Tables 30 and 31 clarify this.statement.

Charts starting with 32 through 45 picture the curriculum in the seventeen subject categories as described earlier. Within these seventeen categories is shown a frequency distribution of course offerings within subject areas by buildings. For example, in Table 32 two buildings offer thirteen courses in communication skills and 28 buildings offer five courses in communication skills. The buildings represented are from districts of a certain size ranging from below 499 to above 3000 district enrollment.

The main feature of Tables $32-45$ is that the number of course offerings within the seventeen categories tend to increase or decrease according to district size. In some schools of a certain size category, some curricular areas do not appear. This occurs in both the junior high and senior high tables. A probable explanation for this is: some schools teach units of this course combined with another course such as Health and Physical Education.

From an examination of the tables, it is clear that as enrollment increases, more different course offerings are available in areas of foreign language, business education, vocational education, and technical education. A limitation of these comparisons is that vocational reimbursable and non-reimbursable courses were combined. On the other hand, as district enroliment increases, courses in homemaking appear less frequently.

Courses in distributive education and special education are not found at the small-district enrollment levels.

These tables enable administrators in Iowa to compare their school with all schools in the state that fall into the same enrollment category. Comparisons can also be made with schools in different categories. In some cases, while checking these tables, one will see a greater mean number of courses offered than for a school of the next higher enrollment category.

Example: High schools contained in the category "below 499" district enrollment have a mean for mathematics course offerings of 6.27. If a school building administrator would like to check to see how his school ranks with the mean of other schools in mathematics, the administrator can compare his school with the following table:

$500-749$	6.50
$750-999$	6.17
$1000-1499$	6.03
$1500-1999$	5.71
$2000-2999$	5.73
$3000-$ above	6.62

The school buildings in "below 499" enrollment category have a higher mean than four other averages of school buildings in higher enrollment categories. By analyzing the comparison of mathematics offerings by district size, one would think that schools showing a mean of 6.27 offer a greater number of courses in mathematics. Some reasons for these differences might be: (1) in large schools the subject areas in mathematics have been combined into a more modern unified mathematics curriculum; (2) the course offerings may not be structured as algebra, geometry, trigonometry, etc. Rather, the courses might be structured as mathematics 9, mathematics 10, etc. Of course, other possibilities exist: These are given as illustrations.

At the local level, school personnel could find their high school mean for mathematics and compare it with the overall mean of 6.27 and use a simple chart like this to show their school mean in relation to all the other school means in the State of lowa. Administrators could also compute the mean of all the enrollment categories in each subject area and come up with a statewide mean in mathematics.

Example: The statewide mean for mathematics is 6.6. For all schools which have a mean of 6.6 a conclusion can be made that their school meets the average of the state in any school size in mathematics offerings.

This is an example of how administrators and other local school personnel. can extract statistics from masses of raw data to compare their school or district with others on a statewide basis.

It is important to note that in the category "Health" very few schools, small or large, offer more than two offerings. This means that very few schools regardless of size offer many courses titled "Health." In checking "Physical. Education" every enrollment category shows a larger mean. Perhaps the discrepancy is due to Health being taught as a part or section of Physical Education and not as a separate offering.

Analyzing the course offering "Marketing" would lead one to infer the same relationship between Business and Marketing Education. Marketing may not be offered as a separate course but as a unit in Business or Technical Training. The only category where Marketing is shown on the table is in the district enrollment category of 2000-2999 and above 3000 category.

In the frequency distributions for the funior high curriculum offerings, many of the same inferences can be made as for senior high curriculum offerings.

SUMMARY

This section describes how school officials in lowa can make use of the data in Tables $30-45$ to compare the number of course offerings in their building with schools of similar size in the State of Iowa. Officials from the other Great Plains States can make similar comparisons with the lowa data.

It appears that as the district enrollment increases, more courses are available in such areas as foreign language, business, technical and vocational education.

TABLE 30

Total Senior High School Curriculum Offerings

by Size of District

No. of	Total District Enrollment						
Offerings	Below	$500-$	$750-$	1000-	$1500-$	$2000-$	3000 -
by Bldg.	499	749	999	1499	1999	2999	Above
181-200		,					
161-180							
141-160							2
121-140						1	3
101-120				2			16
81-100	14	25	18	12	16	17	12
61-80	50	66	35	40	$1]$	11	3
41-60	54	24	15	4		3	1
21-40		3	1		1	1	
1-20			1		1		1
Total	118	11.8	70	58	29	33	38
Mean	63.4	69.8	69.9	74. 4	77.7	80.7	100.7
Stcl. Dév.	11.9	12. 8	13. 8	10.7	17.9	15.2	25.1

TABLEE 31

Total Junior High School Curriculum Offerings by Size of District

No. of Offerings by Bldg.	Total District Enrollment						
	Below	$500-$	$750-$	1000-	1500-	2000-	$3000-$
	499	749	999	1499	1999	2999	Above
181-200							
161-180					-		
141-160							
121-140							
101-120							
81-1.00							
61-80						5	32
41-60	1	4	3	9	9	18	38
21-40		20	25	29	15	9	5
1-20	1		1	1			
Total	2	24	29	39	24	32	. 75
Mean	31.5	34.0	30.2	$35.7{ }^{\prime}$	38.0	48.7	56.8
Std. Dev.	20.5	9.1	6.8	8.6	11. 2	11.8	10.3

$$
\begin{gathered}
-20- \\
\text { TABLE } 32
\end{gathered}
$$

Senior High Curriculum Offerings by Subject Area

 for Districts with Total Enrollment Below 499No. of
Offer. Com. Arts Lang. Math Hith. PE Sci. Soc. Agr. Home Indus.Bus. Voc. Tech. Mrkt. Spec. Driv.

17																
16																
15						*										
14																
13	2															
12	3															
11	5	1														
10	4			1												
9	10	2		3				6				1				
8	9	7		17			2	6						1		
7	17	11		29		1	6	21				4		1		
6	18	12		34		11	39	28			3	4	1	5		
5	28	16	1	27		2	14	20		2	9	8	1	17		
4	21	21	14	5		34	52	35		8	24	12	13	28		
3	1	29	10	1		7	5	2		12	46	17	54.	23		
2		12	68	1	2	61				6	32	18	49	35		
1		4	19		7	2			10	7	3	13		7	1	81
Tot.	118	115	112	. 118	9	118	118	118	10	35	117	77	118	117	1	81
Mn.	6.6	4.5	2.2	6.3	1.2	3.1	5.0	5.6	1.0	2. 8	3.1	3.2	2.7	3.3	1.0	1.0
SD	2.3	2.0	0.9	1.3	0.6	1.4	1.1	1.5		1. 2	1.1	1.8	0.8	1. 4		

-21-
TABLE 33
Junior High Curriculum Offerings by Subject Area for Districts with Total Enrollment Below 499

No. of
Offer. Com. Arts Lang. Math Hith. PE Sci. Soc. Agr. Home Indus. Bus. Voc. Tech. Mrkt. Spec. Driv.

17										
16										
15										
14										
13										
12										
11										
10										
9										
8										
7										
6					1		-			
5	1								:	
4				1		1				
3		2		1		1	1	1	1	1
2	1						1			
1			1					1		
Tot.	2	2	1	2	1	2	2	2	1	1
Mn.	3.5	3.0	1.0	3.5	6.0	3.5	2.5	2.0	3.0	3.0
SD	2.3			1. 2		1. 2	1. 2	1. 4		

$$
\begin{aligned}
& \text { TABLE } 34 \\
& \text { Senior High Curriculum Offerings by Subject Area } \\
& \text { for Districts with Total Enrollment } 500-749
\end{aligned}
$$

No. of
Offer. Com. Arts Lang. Math Hlth. PE Sci. Soc. Agr. Home Indus. Bus. Voc. Tech. Mrkt. Spec. Driv.

17															
16															
. 15															
14	2														
13	2														
12	3														
11	7	1													
10	7	3		4											
9	12	5		8				4							
8	15	4.		19			1	5				2		3	
7	11	10		27		4	12	22			3	1.		3	
6	22	14	3	27		23	39	. 40			5	6		14	
5	20	23	3	21		3	18	20		6	14	: 15	2	22	
4	17	26	9	11	-	18	42	25		19	38	16	12	19	
3		23	14	1		7	6	1		24	39	17	58	20	
2		7	77		2	61				12	16	9	42	34	
1		2	9		9	1			7	5	2	21	4	3	79
Tot.	118	118	115	118	11	117	118	117	7	66	117	87	118	118	79
Mn .	7.1	4.9	2. 4	6.5	1.9	3.4	5.1	5.8	1.0	3.1	3.6	3.3	2.7	3.8	1.0
SD	2.5	2. 1	1.0	1.6	0.5	1.7	1. 2	1.3		1. 1	1. 2	1.8	0.8	1.7	

Junior High Curriculum Offerings by Subject Area for Districts with Total Enrollment 500-749

No. of
Offer. Com. Arts. Lang. Math Hith. PE Sci. Soc. Agr. Home Indus. Bus. Voc. Tech. Mrkt. Spec. Driv.

17															
16	15														
15															
14															
13															
12															
11															
10	1														
9	1														
8		1													
7	1	1				1									
6	6	4				2		1							
5	6	3				2		1							
4	4	7		5		6		8							
3		2		4		2	8	3			4	1	1		
2	5	4	2	15	2	10	16	11			9	5	3		
1		2	7		1				1	6	7	14	9	3	1
Tot.	24	24	9	24	3	23	24	24	1	6	20	20	13	3	1
Mn .	4.9	4.1	1.2	2.6	1.7	3.4	2.3	3.1	1.0	1.0	1.9	1.4	1.4	1.0	1.0
SD	2.1	1.9	0.6	0.8	0.8	1.6	0.5	1. 2			0.8	0.6	0.8		

-24-
 TABLE 36

Senior High Curriculum Offerings by Subject Area for Districts with Total Enrollment 750-999

No. of
Offer. Com. Arts. Lang. Math Hith. PE Sci. Soc. Agr Home Indus. Bus. Voc. Tech. Mrkt. Spec. Driv.

$\begin{aligned} & 17 \\ & 3.6 \end{aligned}$															
15															
1.4															
13	1														
12	2														
11	4														
10	4			1											
9	6	1		3								2			
8	3	3		6			1	5				1		5	
7	6	4		14.			5	11				2		5	
6	10	5		22		8	10	15			2	3		4	
5	22	18	4	19		3	19	24		2	3	3		14	
4	10	12	6	4		4	30	13		15	26	11	10	14	
3	1	14	16			6	4	1		17	26	12	35	14	
2		8	35			46				8	10	10	22	10	
1		2	7		7	2	1		12	1	2	11	2	3	44
Tot.	69	67	68	69	7	69	70	69	12	43	69	55	69	69	44
Mn .	6.6	4.3	2.5	6.2	1.0	2. 8	4.7	5.5	1.0	3.2	3.4	3.4	2.8	4.2	1.0
SD	2.4	1.8	1.0	1.3		1.4	1.2	1. 2		0.9	1.0	2.1	0.7	1.9	

-25-
TABLE 37
Junior High Curriculum Offerings by Subject Area for Districts with Total Enrollment 750-999

No. of
Offer. Com. Arts. Lang. Math Hlth. PE Sci. Soc. Agr. Home Indus. Bus. Voc. Tech. Mrkt. Spec. Driv.

17														
16														
1.5														
14														
13														
12														
11														
10														
9	.													
8														
7	3													
6	9	2				2								
5	4	6				3								
4	7	7		5		15	1	3						
3	3	4	1	1		3	5	5			1			
2	3	7	2	23	1	6	23	21			7	6		1
1		2	3		4				1	2	12	8	6	3
Tot.	29	28	6	29	5	29	29	29	1	2	20	14	6	4
Mn .	4.8	3.5	1.7	2.4	1. 2	3.7	2. 2	2.4	1.0	1.0	1.5	1. 4	1.0	1.3
SD	1.5	1. 5	1.0	0.8	0.5	1.1	0.6	0.7			0.6	0.6		0.6

TABLE 38
Senior High Curriculum Offerings by Subject Area for Districts with Total Enrollment 1000-1499

No. of
Offer. Com. Arts. Lang. Math Hlth. PE Sci. Soc. Agr. Home Indus. Bus. Voc. Tech. Mrkt. Spec. Driv.

17								.								
16																
15	1															
14																
13.	\cdot															
12																
11	$\cdots 2$	1														
10	- 2			1				1								
9	2			1			1	1								
8	4			9			1	2				1		3		
7	6	5		9			4	6				1		2		
6	20	8		15		5	13	22				2		7		
5	12	16	6	16		1	11	17		1	3	7	1	- 9		
4	7	14	7.	5	:	6	22	7		23	15	15°	10	18		
3	2	6	24	2		5	6	1	-	15	28	11	31	9		
2		5	20			38		1		6	10.	5	16.	6	1	1
1		2	1		6	3			11	1	1	6		4		37
Tot.	58	57	58	58	6	58	58	58	11	46	57	48	58	58	1	38
Mn.	6.3	4.6	3.0	6.0	1.0	2.6	4.9	5.6	1.0	3.4	3.2	3.6	2.9	4.1	2.0	1.0
SD	2.1	1.7	1.0	1.5		1.3	1.3	1.3		0.8	0.8	1. 6	0.7	1.7		0.2

TABLE 39

Junior High Curriculum Offerings by Subject Area for Districts with Total Enrollment 1000-1499

No. of
Offer. Com. Arts. Lang. Math Hlth. PE Sci. Soc. Agr. Home Indus. Bus. Voc. Tech. Mrkt. Spec. Driv.

17															
16															
15.															
14															
13															
12	-							-							
11.															
10				*			.								
9	1								.						
8	2								.						
7	4	1				2									
6	11	3		1		8	1	.							
5	4	6		2		3						. 1			
4	10	12		14		19	5	4							
3	4	8	4	4		2	10	12			4	2			
2	2	7	4	17	4	4	21	21			16	15	4	1	
1.	1	1	12	1	3		2	2	2	11	11	11	15	7	1
Tot.	39	38	20	39	7	38	39	39	2	11	31	29	19	8	1
Mn.	5.0	3.7	1.6	3.1	1.6	4.4	2.6	2.5	1.0	. 1.0	1.8	1.8	1. 2	1.1	1.0
SI)	1.8	1.4	0.8	1. 2	0.6	1.3	1.0	0.8			0.7	0.9.	0.5	0.4	

$$
\stackrel{-28-}{\text { TABLE } 40}
$$

Senior High Curriculum Offerings by Subject Area for Districts with Total Enrollment 1500-1999

No. of
Offer. Com. Arts. Lang. Math Hith. PE Sci. Soc. Agr. Home Indus. Bus. Voc. Tech. Mrkts. Spec. Driv.

17																
16																
15																
14																
13																
12																
11																
10	1															
9	4			1										1		
8	3		1	1			".							4		
7	4	2	1.	4				2				1		3		
6	9	5	1	10			2	10		2		2		5		
5	5	10	5	7			8	13				4		6		
4	2	4	4	5			17	3		7	5	9	8	2		
3		3	6			4	1		-	8	18	6	12	5		
2		3	10			24				6	4	1	8	2	3	
1		1			5				5	1	1	4			1	21
Tot.	28	28	28	28	5	28	28	28	. 5	24	28	27	28	28	4	21
Mn.	6.6	4.5	3.6	5.7	1.0	2.1	4.4	5. 4	1.0	3.2	3.0	3.7	3.0	5.3	1.8	1.0
SD	1.6	1.6	1.7	1.3		0.4	0.7	0.8		1. 2	0.7	1.6	0.8	2.0	0.6	

-29-
 TABLE 41

Junior High Curriculum Offerings by Subject Area for Districts with Total Enrollment 1500-1999

No. of
Offer. Com. Arts. Lang. Math Hith. PE Sci. Soc. Agr. Home. Indus. Bus. Voc. Tech. Mrkt. Spec. Driv.

17														
16						*								
15	.													
14														
13														
12														
11														
10	1													
9														
8	1													
7.	2	2												
6	2	3				3								
5	6	3				3								
4:	6	7		8		9	3	5				1		
3	1	3	3	5		1	6	9			2	3		-
2	5	4	2	11	1	7	12	9			7	4		
1.			6		1.	1	2	1	5	6	8	9	4	3
Tor.	24	22	11	24	2	24	23.	24	5	6	17	17	4	3
Mn.	4.6	4. 2	1.7	2.9	1.5	3.6	2. 4	2.8	1.0	1.0	1.7	1. 8	1.0	1.0
SD	2.0	1.6	1.0	0.9	1. 2	1.5	0.9	0.9			0.7	1.0		

Senior High Curriculum Offerings by Subject Area for Districts with Total Enrollment 2000-2999

No. of
Offer. Com. Arts. Lang. Math Hlth. PE Sci. Soc. Agr. Home. Indus. Bus. Voc. Tech. Mrkt. Spec. Driv.

17								-									
1.6																	
15																	
14																	
13				1													
12	1	1	1														
11												1		1			
10	3					.						1		2			
9	2							1				2		1			
8	2		1	1				1				4		4			
7	3	2	2	6			1	1				1.		6			
6	13	8	3	11			5	11			1	2		- 5			
5	6	12	9	6			8	4		1	1	3	4	4			
4	2	4	7	6		1	15	12		5	7	5	4.	6			1
3	1	2	6	2		1	4	2	\cdots	9	15	7	20	4			
2		3	4			29		1		6	9		5			7	
1		1			4	1			9	2		5			1	6	23
Tot.	33	33	33	33	4	32	33	33	-9	23.	33	31	33	33	1	13	24
Mn.	6.6	4.9	4.6	5.7	1.0	2. 1	4.5	5.0	1.0	2.9	3.1	4.9	3.2	6.1	1.0	1.5	1.1
SI)	2.0	1.9	2.0	1.8		0.4	1.0	1.5		. 1.0	1.0	2.9	0.9	2. 2		0.6	0.6

> TABLE 43 Junior High Curriculum Offerings by Subject Area for Districts with Total Enrollment 2000-2999

No. of
Offer. Com. Arts. Lang. Math Hlth. PE Sci. Soc. Agr. Home. Indus. Bus. Voc. Tech. Mrkt. Spec. Driv.

1.7								-							+
16												.			
15															
14.															
13															
12														.	
11															
10															
9	3	1					-								
8	3	1	1	2			.								
7	2	3		. 1		1									
6	10	5		3		9									
5	- 8	9		3		7									
4	5	9	2	11	;	9	. 6	4							
3	1	3	2	4		1	15	16	-		7	6		1	
2		1	11	8		3	11	12			12	13	3	1	
1			6		2	2			7	16	8	10	6	10	2
Tot.	32	32	22	32	2	32	32	32	..7	16	27	29	9	12	2
Mn.	5.9	5.0	2.3	4.0	1.0	4.5	2.8	2.8	1.0	1.0	2.0	1.9	1.3	1.3	1.0
SD	1.6	1.5	1.6	1.7		1.6	0.8	0.7			0.8	0.8	0.5	0.7	

TABLE 44
Senior High Curriculum Offerings by Subject Area for Districts with Total Enrollment 3000 and Above

No. of
Offer. Com. Arts. Lang. Math Hlth. PE Sci. Soc. Agr. Home. Indus. Bus. Voc. Tech. Mrkt. Spec. Driv.

18								-				1					*
17	1		1														
16			1									1		1			
15			2														
14			1														
13	3		3									1					
12	$\cdots 2$	1				.						3		1			
11	- 3	3	3									2		1			
10	3		3									3		2			
9	6	4	4	4				2				6.	1	6			
S	4	9	3	8			2	2						4			
7	3.	8	5	8		1	3	2			1	6	,	7			
6	- 5	3	3	10		1	5	4			3	3	1	1			
5	4	8	1	2	;		. 8	15			1	3	11	4			
4	3	1	3	4		2	. 13	7	\sim	2	11	4	12	5			
3				1		8	6	4		2	13	1	10.	3	*		1
2			4			22			4	1	7		1	2		14	1
- 1	1		1.		11	1		1	14	1		2	1		3	12	25
Tot.	- 38	37	38	37	11	35	37	37	18	6	36	36	37	37	3	26	27
Mn.	8.2	7.3	8.4	6.6	1.0	2.6	4.8	5.1	1.2	2.8	3.5	7.9	4. 1	6.8	1.0	1.5	1.1
SD	3.2	2.0	4.2	1.6		1. 2	1.4	1.7	0.5	1. 2	1.3	3.8	1.3	3.0		0.5	0.5

-33-
TABLE 45
Junior High Curriculum Offerings by Subject Area for Districts with Total Enrollment 3000 and Above

No. of
Offer. Com. Arts. Lang.Math Hith. PE Sci. Soc. Agr. Home Indus. Bus. Voc. Tech. Mrkt. Spec. Driv.

SECTION III

EDUCATIONAL INNOVATIONS IN SECONDARY CURRICULUM FOR THE NORTH CENTRAL ASSOCIATION SCHOOLS
 OF THE GREAT PLAINS

In addition to examining the detailed information available about the curriculum and teacher characteristics of Iowa schools, the administrators of Great Plains schools will find it helpful to compare their local program with that of the accredited North Central Association schools. The accredited school data in this section comes from a questionnaire (See Appendix C) sent to schools in Iowa, Missouri, Nebraska and South Dakota.

A review of the questionnaire will indicate that school officials were asked to report the degree of innovations in curriculum and technology by levels of cost per pupil and district location. The data in the tables for this section are presented by state, by enrollment size, and by cost per pupil.

The tables show both the number of schools making full use of an innovation (upper number in a cell) and the number of schools which have made limited use of an innovation (lower number in a cell). For example, in Table 46, 11 schools make full use of PSSC Physics. These schools have a per-pupil cost of $\$ 350$ $\$ 499$. In the same cell, it is noted that seven schools make limited use of PSSC Physics. In addition to the frequencies recorded in each cell, the percent of the total number of schools in that category is also recorded in the cell. By looking at the cell percents, an observer can determine what portion of accredited public schools in the state involved are making use of each innovation. The number of different North Central accredited public schools in each state with usable information is recorded by per-pupil cost and enrollment category below:

School				
Enrollment	Iowa	Missouri	Nebraska	South Dakota
Under 200	6	3	20	14
200-499	67	24	54	34
500-1499	34	43	18	11
1500-2499	15	30	6	0
Over 2500	0	5	1	1
Totals.	122	105	99	60
Per-Pupil				
Cost	Iowa	Missouri	Nebraska	South Dakota
Under \$350	4	3	3	1
\$350-\$499	37	52	40	45
\$500-\$649	54	36	45	14
Over \$650	27	14	11	0
Totals	122	105	99	60

School administrators can find those parts of the tables that pertain to their local school situation for comparison purposes.

Tables 46-49 display innovation information for the accredited Iowa schools. It appears from Table 46 that PSSC Physics and Chemistry Study Group Chemistry are by far the most popular recently developed curricular programs that are being used. The most popular per-pupil cost category for finding curriculum innovations in Iowa is $\$ 500-\$ 649$.

Language Laboratories tend to be the most popular technological innovation in Iowa. The other technical innovations are not really used in any largescale way. This conclusion follows from the data in Table 47. The second most popular innovation is data processing equipment. Schools are beginning to use computerized grade reporting, attendance reporting, scheduling and business accounting. The most popular per-pupil cost range for technical innovation is $\$ 500-\$ 649$.

Table 48 indicates that accredited high schools using the "modern" curriculum innovations have an enrollment greater than 200. However, the number of high schools in Iowa with a population exceeding 1,500 is only about 20 . Apparently, mathematics and physical science innovations are not nearly as popular as the physics and chemistry innovations. By comparing both Tables 46 and 48 it seems safe to conclude that the larger systems are not using the "modern" curriculum materials any more than the middle-sized systems. Apparently middle-sized systems are also typical with respect to per-pupil cost as well. In other words, more money spent per pupil does not necessarily mean more innovative change in the curriculum.

A reading of Table 49 suggests that although language labs and data processing are the most popular innovations, high schools tend to have an enrollment of about 500 before data processing equipment is found. A1so data processing equipment seems to be used more in high schools in the enrollment range of $500-1500$ than in the larger high schools. However, many large high schools may have a centralized data processing center at the board of education office. In addition Iowa has several area community colleges that provide processing services for the high schools. This may help account for the small number of large schools with their own equipment.

On the other hand, language laboratories tend to be proportionately more popular in smaller high schools than larger high schools. Schools with a moderate cost per pupil tend to have language laboratories more frequently than schools with high or low cost per pupil.

Tables 50-53 display, respectively, the same data for the accredited secondary schools in Missouri. It is interesting to note that the same pattern that characterizes Iowa schools characterizes Missouri. However, in lowa there are no accredited schools over 2,500 in size whereas in Missouri there are a few. Of course St. Louis and Kansas City have much larger schools than any city in Iowa. Even with this population difference, however, Iowa seems to have more data processing schools than Missouri. It appears from comparing Tables 47 and 51 that the per-pupil cost for innovative schools in Missouri tends to be lower than in Iowa. A greater proportion of the technical innovations in Missouri have a per-pupil cost of $\$ 350-\$ 499$ whereas in lowa a smaller proportion of the technical innovations are found in this cost range.

The summaries for the accredited school sample from Nebraska are listed in Tables 54-57. Although there appears to be a proportionately greater incidence of "modern" math in the schools, PSSC Physics and Chemistry Study Group Chemistry are again the more popular "modern". subjects in the curriculum. Language laboratories are the most popular technical innovation but unlike Missouri or Iowa,
television instruction is popular. In fact, from inspecting Table 55, it is clear that television instruction is more popular than data processing. Due to the large proportion of small schools in the state the need for data processing is probably not as great.

As is true with Missouri and Iowa, the schools with innovative curriculums tend to have an enrollment of at least 200 pupils. The higher innovation schools in both Nebraska and Iowa tend to have a per-pupil cost range of \500\$ 649$.

By studying Table 57, it becones clear that most of the schools using television have enrollments less than 500. Neither Iowa nor Missouri seem to use television as extensively as Nebraska.

Although the number of accredited secondary schools in the sample from South Dakota is much less than the other three states, Tables 58-61 display similar trends. The majority of innovative schools have a per-pupil cost comparable to Missouri. PSSC Physics and Chemistry Study Group Chemistry are the most popular "modern" subjects in the curriculum. Television is not as popular as in Nebraska, but conpares favorably with Iowa and Missouri. As with the other states, the South Dakota schools' most popular innovation is the Language Laboratory. Unlike Iowa or Missouri, the second most popular technical innovation is programmed instruction. Data processing is not used significantly. The most innovative schools have enrollments exceeding 500. However, the greatest per-cent of the curricular innovations came from schools with enrollments in the range of $200-1500$. Again, the trend seems to be that larger schools have more innovations.

In addition to the curriculum and technical innovations for the fourstate North Central school samples, organizational innovations were also tallied for each state. These data are presented by cost per pupil and by school enrollment category. By inspecting Tables 62 and 63 the reader can see that in Iowa the student exchange program and work-study program appear to be the most popular organizational innovations. Limited use is being made of team teaching and non-professional teacher aides. Again these innovations tend to occur largely in schools with a per pupil cost of $\$ 500-\$ 649$ and enrollments of $500-$ 1499 pupils.

The same data for Missouri presented in Tables 64 and 65 indicate that organizational innovation in Missouri is as popular as in Iowa. Student exchange programs are not the most popular but rather work-study programs. Student exchange programs are the second most popular with college credit courses and team teaching not nearly as popular. In fact non-professional teacher aides are used more frequently than team teaching. The greatest number of innovations occur in schools with a per-pupil cost of $\$ 350-\$ 499$ and enrollments between 500-2500.

An inspection of Tables 66-67 indicates that little full-time use is being made of team teaching in Nebraska. Student exchange and work-study programs are popular. Like Iowa, the most innovative schools have a per-pupil cost of $\$ 500-\$ 649$. Enrollments of highly innovative schools seem to be from $200-500$ pupils. Organizational innovations are being used more on a limited basis rather than a full-time basis.

South Dakota schools are not typically making use of organizational innovations. Tables 68 and 69 show that student exchange programs are the most popular. Limited use is being made of teacher aides and team teaching.

The innovation tables at the end of this section (Tables 70-116) display further comparison information for the interested reader. The tables display the twenty-seven innovations by school size, per-pupil cost and district location.

SUMMARY

This section describes the technical, curricular, and organizational innovations being used in North Central accredited schools by state. It appears that the larger the school, the greater the chance for technological innovation. - On the other hand, curricular innovations seem popular at all levels of enrollment. The most popular curriculum innovations are in physics and chemistry. The "modern" math and social studies programs apparently have not had as great an impact upon education as many educators might have anticipated. Language laboratories are popular in all states. Schools must make good use of this type of equipment for listening and recitation.

Schools in the Great Plains do not seem to be making much use of full-time organizational innovations. Most organizational innovations apart from the Student Exchange program have been adopted sparingly. Schools apparently are slow to adopt such changes as flexible scheduling and team teaching. Of course these changes are closely related to the adoption of data processing methods in the school. Perhaps in the near future more schools will join with local banks or industry to share computer time.

As more schools adopt data processing methods, undoubtedly the popularity of scheduling, team teaching, cultural enrichment, and special study hall arrangements will become more popular. These organizational changes are simply difficult to plan without machine availability.

TABLE 46

Number of Curriculum Innovations Reported in Iowa
Accredited Public Secondary Schools by Pupil Expenditure

	Total Schools	PSSC Physics	Chem. Study	CBA. Chem.	SMSG Math	UICSM Math	$\begin{aligned} & \text { ECSP } \\ & \text { P. Sci. } \end{aligned}$	$\begin{aligned} & \text { SSSP } \\ & \text { P. Sci. } \end{aligned}$	Human- ities	Total
		N PC								
Under \$350	4									$\begin{aligned} & 0 \\ & 0 \end{aligned}$
\$350-499	37	$\begin{array}{r} 1130 \\ 7 \quad 19 \end{array}$	$\begin{array}{rr} 11 & 30 \\ 4 & 11 \end{array}$	$\begin{array}{ll} 1 & 3 \\ 1 & 3 \end{array}$	$\begin{array}{rr} 2 & 5 \\ 4 & 11 \end{array}$	13	$\begin{array}{ll} 2 & 5 \\ 2 & 5 \end{array}$		$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{array}{r} 29 \\ 20 \end{array}$
. $5.500-649$	54	$\begin{array}{r} 15 \quad 28 \\ 4 \quad 7 \end{array}$	$\begin{array}{r} 1120 \\ 611 \end{array}$	24	$\begin{array}{lr} 6 & 11 \\ 3 & 6 \end{array}$		$\begin{array}{ll} 2 & 4 \\ 3 & 6 \end{array}$		$\begin{array}{ll} 1 & 2 \\ 1 & 2 \end{array}$	$\begin{aligned} & 37 \\ & 17 \end{aligned}$
Over $\$ 650$	27	$\begin{array}{ll} 7 & 26 \\ 4 & 15 \end{array}$	$\begin{array}{r} 933 \\ 2 \quad 7 \end{array}$	14	$\begin{array}{rr} 2 & 7 \\ 3 & 11 \end{array}$	14	$\begin{array}{ll} 1 & 4 \\ 1 & 4 \end{array}$		$\begin{array}{ll} 2 & 7 \\ 1 & 4 \end{array}$	$\begin{aligned} & 21 \\ & 13 \end{aligned}$
$\begin{aligned} & \frac{\text { Totals }}{\text { Rull Use }} \\ & \text { l.im. Use } \end{aligned}$	122	$35 \quad 29$ $16 \quad 13$	$\begin{array}{ll} 33 & 27 \\ 14 & 11 \end{array}$	$\begin{array}{ll} 3 & 2 \\ 2 & 2 \end{array}$	$\begin{array}{rr}12 & 10 \\ 10 & 8\end{array}$	$\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}$	$\begin{array}{ll}5 & 4 \\ 6 & 5\end{array}$		$\begin{array}{ll}4 & 3 \\ 6 & 5\end{array}$	93 55

TABLE 47
Number of Technological Innovations Reported in Iowa Accredited Public Secondary Schools by Pupil Expenditure

-40-										
TABLE 48										
		Number of Curriculum Innovations Reported in Iowa Accredited Public Secondary Schools by Pupil Enrollment								Total
\therefore	Total Schools	PSSC Physics	Chem. Study	CBA Chem.	SMSG Math	UICSM Math	$\begin{aligned} & \text { ECSP } \\ & \text { P.Sci. } \end{aligned}$	$\begin{aligned} & \text { SSSP } \\ & \text { P.Sci. } \end{aligned}$	Human ittes	
Less than 200	6	N PC	$\mathrm{N} \quad \mathrm{PC}$	N PC	$\begin{aligned} & 0 \\ & 0 \end{aligned}$					
200-499	67	$\begin{array}{r} 17 \quad 25 \\ 9 \quad 13 \end{array}$	$\begin{array}{rr} 13 & 19 \\ 9 & 13 \end{array}$	34	$\begin{array}{ll} 5 & 7 \\ 2 & 3 \end{array}$	$\begin{array}{ll} 1 & 1 \\ 1 & 1 \end{array}$	$\begin{array}{r} 2 \\ 3 \\ 3 \end{array}$		1-1	$\begin{aligned} & 41 . \\ & 25 \end{aligned}$
500-1499	34	$\begin{array}{r} 1235 \\ 26 \end{array}$	$\begin{array}{r} 1132 \\ 3 \quad 9 \end{array}$		$\begin{array}{r} 412 \\ 412 \end{array}$		$\begin{array}{ll} 3 & 9 \\ 2 & 6 \end{array}$		$\begin{array}{lr} 2 & 6 \\ 3 & 9 \end{array}$	$\begin{aligned} & 32 \\ & 14 \end{aligned}$
.1500-2499	15	$\begin{array}{ll} 6 & 40 \\ 5 & 33 \end{array}$	$\begin{array}{ll} 9 & 60 \\ 2 & 13 \end{array}$	213	$\begin{array}{ll} 3 & 20 \\ 4 & 27 \end{array}$		17	\because	$\begin{array}{ll} 2 & 13 \\ 2 & 13 \end{array}$	$\begin{aligned} & 20 \\ & 16 \end{aligned}$
Over 2500		:					-			$\begin{aligned} & 0 \\ & 0 \end{aligned}$
Totals	122									
Tull Use		3529	3327	32	1210	11	54		43	93
- Lim. Use		1613	1411	22	108	11	65		65	55

-41-
TABLE 49
Number of Technological Jnnovations Reported in Iowa Accredited Public Secondary Schools by Pupil Enrollment

	Total Schools	T. V。 Instr.	Prog. Instr.	reach. Mach.	Lang. Lab	Data Proc.	Tel. Amp.	Gaming	Total
.		N PC	$N \mathrm{PC}$						
Less than 200	6			350					3
		233	117	1.17					4
200-499	67		11	23	4567	46	11		53
		34	1929	1015	913	69	23	812	57
500-1499	34				2368	1029	39	412	40
			1338	515	412	515			30
1500-2499	15	213	17	. 17	1493	640		17	25
		213	320	320		427 :	17	17	14
Over 2500									0
	122								
Totals									
Full Use		22	$2 \quad 2$	$3 \quad 2$	8570	2016	43	54	121
Lim. Use		$5 \cdot 4$	3730	1916	1411	1512	65	97	105

-42-										
	TABLE 50									
		Number of Curriculum Innovations Reported in Missouri Accredited Public Secondary Schools by Pupil Expenditure								
	Total Schools	PSSC Physics	Chem. Study	CBA Chem.	SMSG Math	UICSM Math	$\begin{aligned} & \text { ECSP } \\ & \text { PoSci. } \end{aligned}$	$\begin{aligned} & \text { SSSP } \\ & \text { PoSci. } \end{aligned}$	Humanities	Total
		N PC	N PC	N PC						
Under \$350	3	133								1
				133	133		133	133		4
\$350-499	52	1835	1121	36	510	24	24		612	47
		713	612	24	713	12	3. 6	12	24	29
\$500-649	36	1131	1233	13	719	13		13	514	38
		411	13	26	514	1. 3	13		38	17
Over \$650	14	750	321	17	321		214		214	18
		429	214	17					214	9
Totals	105	-								
Full Use		4038	2726	55	1716	33	55	1.1	1514	113
Lim. Use		1615	1211	66	1413	2.2	66	22	77	. 65

-43-

TABLE 51
Number of Technological Innovations Reported in Missouri Accredited Public Secondary Schools by Pupil Expenditure

	Total Schools	T. V. Instr.	Prog. Instr.	Teach. Mach.	Lang. Lab	$\begin{aligned} & \text { Data } \\ & \text { Proc. } \end{aligned}$	Tel. Amp.	Gaming	Total
		N PC							
Under \$350	3				3100				3
							133	*	1
\$350-499	52	12	36	24	3465	4.8	24	510	51
		12	1631	11.21	917	36	36	48	47
\$500-649	36	719	$3 \cdot 8$	13	2775	925		13	48
		411	617	38	38	617		26	24
Over \$650	14	17			1071	429			15
		214	536		17	429	.	214	14
Totals	105								
Full Use		99	66	33	8177	1918	22	66	. 126
Lim. Use		99	2726	1514	1413	1413	4.4	88	91

TABLE 52

Number of Curriculum Innovations Reported in Missouri Accredited Public Secondary Schools by Pupil Enrollment

	Total Schools	PSSC Physics	Chem. Study	CBA Chem.	SMSG Math	UICSM Math	$\begin{aligned} & \text { ECSP } \\ & \text { P.Sci. } \end{aligned}$	$\begin{aligned} & \text { SSSP } \\ & \text { P. Sci. } \end{aligned}$	Humanities		Total
		N PC									
Less than 200	3										0
		133	267								3
200-499	24	521	417		28		1.4			17	16
		417	3.13		313	1.4	417	14			18
500-1499	43	2047	1228		921			1.2		12	55
		37	37.		716		12				17
1.500-2499	30	1240	930		620					17	36
		620	27	413	413	13		13		10	22
Over 2500	5	360	240							20	6
		240	240	120							5
Totals	105							\therefore			
Full Use		4038	2726		1716						113
- Lim. Use		1615	1211	66	1413			$2 \cdot 2$			65

-45-
TABLE 53

Number of Technological Innovations Reported in Missouri Accredited Public Secondary Schools by Pupil Enrollment

Total T. V. Prog. Teach. Lang. Data Tel.
Schools Instr. Instr. Mach. Lab Proc. Amp. Gaming Total

Totals : 105

9	9	6	6	3	3	81	77	19	18	2	2	6	6
9	9	27	26	15	14	14	13	14	13	4	4	8	8

-47-
TABLE 55
Number of Technological Innovations Reported in Nebraska Accredited Public Secondary Schools by Per Pupil Expenditure

	Total Schools	T. V. Instr.	Prog. Instr.	Teach. Mach.	Lang. Lab	Data Proc.	Tel. Amp.	Gaming	Total
		N PC	N PC .	N PC					
Under \$350	3		133						1
		133	133.	267	133	133		133	7
\$350-499	40	25	13	-13	1128	13		25	18
		1025	1128	513	615	38	2.5	615	43
\$500-649	45	1227	12	12	1942	37		25	38
		511	12, 27	716	614	25^{\prime}	25	37	37
Over \$650	11	19			327		\because		4
		327	218	218	19				8
Totals	99								
Full		1818	44	22	3838	44		55	71
Lim. Use		2020	2727	1818	1616	7. 7	44	1010	102

-49-

TABLE 57

Number of Technological Innovations Reported in Nebraska Accredited Public Secondary. Schools by Pupil Enrollment

	Total Schools	T. V. Instr.	Prog. Instr.	Teach. Mach.	Lang. Lab	Data Proc.	'Tel. Amp.	Gaming	Total
		N PC							
Less thani 200	20	525	15		315			*	9
		525	840	840	735		15	315	32
200-499	54	815	24		1935			36	32
		59	1222	1019	713	2.4		59	41
500-1499	18	211	16	16	950	16		16	15
		633	422		211	211	16	211	17
1500-2499	6	3.50		117	6100	350		117	14
		350	350			233	233		10
Over 2500	1^{-}				1100		-		1
		1100				1. 100			2
Totals	99								
Full Use		1818	4.4	22.	3838			55	71
Lim. Use		2020	$27 \cdot 27$	1818	1616	7. 7	44	1010	102

TABLE 58

Number of Curriculum Innovations Reported in South Dakota Accredited Public Secondary Schools by Pupil Expenditure

	Total Schools	PSSC Physics	Chem. Study	CBA Chem.	SMSG Math	UICSM Math	ECSP P. Sci.	$\begin{aligned} & \text { SSSP } \\ & \text { P. Sci. } \end{aligned}$	Human- ities	Total
		N PC	N P.C							
Under \$350	1	-								$\begin{aligned} & 0 \\ & 0 \end{aligned}$
\$350-499	45	613	716	12	3.7		1. 2		2	18
		49	12	24	$2 \cdot 4$				24	11
\$500-649	14	$\begin{array}{lr} 1 & 7 \\ 3 & 21 \end{array}$	214	17	17					4 4
Over \$650		-								$\begin{aligned} & 0 \\ & 0 \end{aligned}$
Totals	60			${ }^{-}$.	
Full Use		712	915	1. 2	47		1.2			22
Lim. Use		712	12	35	23				23	15

-51-
TABLE 59
Number of Technological Innovations Reported in South Dakota Accredited Public Secondary Schools by Pupil Expenditure

Total Schools	T. V. Instr.	Progr. Instr.	Teach. Mach.	Lang. Lab	Data Proc.	Tel. Amp.	Gaming	Total
	N PC							

-52-
TABLE 60
Number of Curriculum Imnovations Reported in South Dakota Accredited Public Secondary Schools by Pupil Enrollment

TABLE 61

Number of Technological Innovations Reported in South Dakota Accredited Public Secondary Schools by Pupil Enrollment

	Total Schools	$\begin{aligned} & \text { T. V. } \\ & \text { Instr. } \end{aligned}$	Prog. Instr.	Teach. Mach.	Lang. Lab	Data Proc.	Tel. Amp.	Gaming	Total
		N PC							
Less than 200	14			17				1. 7	2
		214	4.29	214	429				12
200-499	34	2. 6	412		721			26	15
			515	618	618	26	1.3	26	22
500-1499	11	19	218		327	327			. 9
			545	19	327	327			12
1500-2499	- .						,		0
Over 2500	2	150		,	2100		150		4
						2100		150	3
$\frac{\text { Totals }}{\text { Full Use }}$ Lim. Use $\quad 60$									
		47	610	1.2	1220	35	1.2	35	30
		23	1423	915	1322	712	12	35	49

TABLE 62

Number of Organizational Innovations Reported in Iowa Accredited Public Secondary S chools by Pupil Expenditure

TABLE 63

	$\begin{aligned} & \text { Less } \\ & \text { Than } \\ & 200 \end{aligned}$	$\begin{gathered} 200- \\ 499 \end{gathered}$	$\begin{aligned} & 500- \\ & 1499 \\ & \hline \end{aligned}$	$\begin{aligned} & 1500- \\ & 2499 \end{aligned}$	$\begin{aligned} & \text { Over } \\ & 2500 \\ & \hline \end{aligned}$
No. of Schools	6	66	34	15	
Flexible Scheduling		$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\frac{1}{1}$		
Team Teaching	1	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{array}{r} 4 \\ 11 \end{array}$	$\begin{aligned} & 7 \\ & 4 \end{aligned}$	
College Credit Courses		$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 6 \\ & 4 \end{aligned}$	$\begin{aligned} & 2 \\ & 4 \end{aligned}$	
Non-graded School			$\begin{aligned} & 2 \\ & 1 \end{aligned}$,	
Teacher Aides	1	$\begin{array}{r} 7 \\ 11 \end{array}$	$\begin{array}{r} 4 \\ 10 \end{array}$	$\begin{aligned} & 9 \\ & 1 \end{aligned}$	
Honor Study Halls	$\frac{1}{2}$	$\begin{aligned} & 3 \\ & 8 \end{aligned}$	$\begin{aligned} & 4 \\ & 6 \end{aligned}$	$\begin{aligned} & 1 \\ & 4 \end{aligned}$	
Work-Study Program	1	$\begin{aligned} & 17 \\ & 11 \end{aligned}$	$\begin{array}{r} 16 \\ 8 \end{array}$	$\begin{array}{r} 13 \\ 1 \end{array}$	
School-within-a-School					
Cultural Enrichment		$\begin{aligned} & 3 \\ & 5 \end{aligned}$	$\begin{aligned} & 3 \\ & 6 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	
Student Exchange	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{array}{r} 15 \\ 7 \end{array}$	$\begin{array}{r} 27 . \\ 1 . \end{array}$	$\begin{array}{r} 11 \\ 4 \end{array}$	
Optional Class Attendance				1	
Extended School Year		$\begin{aligned} & 1 \\ & 1 \end{aligned}$			
Totals Full Time Limited Time	$\begin{aligned} & 2 \\ & 6 \end{aligned}$	$\begin{aligned} & 52 \\ & 50 \end{aligned}$	$\begin{aligned} & 67 \\ & 48 \end{aligned}$	$\begin{aligned} & 45 \\ & 22 \end{aligned}$	

TABLE 64
Number of Organizational Imnovations Reported in Missouri Accredited Public Seconclary Schools by Pupil Expenditure

TABLEE 65
Number of Organizational Innovations Reported in Missouri Accredited Public Secondary Schools by Pupil Enrollment

	Less Than 200	$\begin{aligned} & 200- \\ & 499 \end{aligned}$	$\begin{aligned} & 500- \\ & 1499 \end{aligned}$	$\begin{aligned} & 1500- \\ & 2499 \end{aligned}$	$\begin{aligned} & \text { Over } \\ & 2500 \end{aligned}$
No. of Schools	3	24	40	22	5
Flexible Scheduling				1	
			2		1
Team Teaching			$\begin{array}{r} 4 \\ 14 \end{array}$	$\begin{array}{r} 8 \\ 16 \end{array}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$
College Credit Courses		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 6 \\ & 3 \end{aligned}$	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	2
Non-graded School			2	2	1.
Teacher Aides	1	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{array}{r} 5 \\ 10 \end{array}$	4	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
Honor Study Falls		$\begin{aligned} & 2 \\ & 2 \end{aligned}$	5	$\begin{aligned} & 1 \\ & 4 \end{aligned}$	$\frac{1}{1}$
Work-Study Program		$\begin{aligned} & 6 \\ & 8 \end{aligned}$	$\begin{array}{r} 26 \\ 8 \end{array}$	$\begin{array}{r} 23 \\ 5 \end{array}$	$\begin{aligned} & 5 \\ & 1 \end{aligned}$
School-within-a-School		.		1	1.
Cultural Enrichment		$\begin{aligned} & 2 \\ & 4 \end{aligned}$	$\begin{aligned} & 4 \\ & 3 \end{aligned}$	$\begin{aligned} & 1 \\ & 8 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 . \end{aligned}$
Student Exchange		3	$\begin{array}{r} 11 \\ 6 \end{array}$	$\begin{array}{r} 17 \\ 2 \end{array}$	$\begin{aligned} & 3 \\ & 1 \end{aligned}$
Optional Class Attendance			1		$\begin{aligned} & 1 \\ & 1 \end{aligned}$
Extended School Year		1	4	1	1.
Totals Full Time Limited Time	1	$\begin{aligned} & 19 \\ & 21 \end{aligned}$	$\begin{aligned} & 60 \\ & 54 \end{aligned}$	$\begin{aligned} & 61 \\ & 44 \end{aligned}$	$\begin{aligned} & 17 \\ & 11 \end{aligned}$

TABLE 66

Number of Organizational Innovations Reported in Nebraska Accredited Public Secondary Schools by Pupil Expenditure

TABLE 67

Number of Organizational Innovations Reported in Nebraska Accredited Public Secondary Schools by Pupil Enrollment

	Less Than 200	$\begin{aligned} & 200- \\ & 499 \end{aligned}$	$\begin{aligned} & 500 \\ & 1.499 \end{aligned}$	$\begin{aligned} & 1500- \\ & 2499 \end{aligned}$	$\begin{aligned} & \text { Over } \\ & 2500 \end{aligned}$
No. of Schools	20	54	18	12	1
Flexible Scheduling		1			
	2	1		1	
Team Teaching	1		2	1.	
	4	11	10	2	1
College Credit Courses	1	4	2 3	3	
Non-graded School					
Teacher Aicles	2	3		3	
	2	9	5		
Honor Study Fralls	1	2	4		
	1	11	6	2	
Work-Study Program	2	12	5	6	1
	6	21.	6		
School-within-a-School					
Cultural Enrichment		3	1	1	
	6	11		1	
Student Exchange		14	9	5	
	2	4	2		
Optional Class Attendance		1		2	
Extended School Year		3	1		
	3	2	1		
Totals Full Time	7	38	24	21.	1
Limited Time	29	76	33	6	1.

TABLE 68
Number of Organizational Innovations Reported in South Dakota Accreclited Public Secondary Schools by Pupil Expenditure

	Under $\$ 350$	\$350-499	\$500-649	Under $\$ 650$
No. of Schools	1	45	14	
Flexible Scheduling				
		2	1	
Team Teaching		$\begin{aligned} & 1 \\ & 7 \end{aligned}$	3	
College Credit Courses		$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\frac{1}{2}$	
Non-graded School			1	
		1		
Teacher Aides		$\begin{aligned} & 3 \\ & 8 \end{aligned}$	5	
Honor Study Halls 7				
Work-Study Program		$\begin{aligned} & 3 \\ & 6 \end{aligned}$	$\begin{aligned} & 3 \\ & 1 \end{aligned}$	
School-within-a-School				
Cultural Enrichment		$\begin{aligned} & 1 \\ & 8 \end{aligned}$		
Student Exchange	1	$\begin{array}{r} 10 \\ 4 \end{array}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	
Optional Class Attendance		1	1	
Extended School Year				
		4		
Totals Full Time		19	7	
Limited Time	1	50	16	

TABLE 69

Number of Organizational Innovations Reported in South Dakota Accredited Public. Secondary Schools by Pupil Enrollment

- .	Less Than 200	$\begin{aligned} & 200- \\ & 499 \end{aligned}$	$\begin{aligned} & 500- \\ & 1499 \end{aligned}$	$\begin{aligned} & 1.500- \\ & 2.499 \end{aligned}$	$\begin{aligned} & \text { Over } \\ & 2500 \\ & \hline \end{aligned}$
No. of Schools	1.4	34	11.		1
Flexible Scheduling					
		2	1		1
Team Teaching			1		1
		6	2		
College Credit Courses		1.			
		2	2		
Non-graded School		1			
		1			
Teacher Aides	1.	2			
	3	9	1		
Honor Study Halls					
	1	5	2		1
Work - Study Program		2	2		1
		5	2		
School-within-a-School					
Cultural Enrichment			1		
		5	2		1
Student Exchange		6	5	-	1
	3	2			
Optional Class Attendance		.			
	1	1			
Extended School Year					
		3			1
Totals Full Time	1	12	9		3
Limited Time	8	41	12		4

TABLE 70
Comparison of Innovations in Public Accredited Secondary Schools in Rural Areas with 500-1499 Pupils with Under $\$ 350$

Pupil Expenditure for 1.966-67 School Year

State	Iowa	Nebraska	Missouri	S. Dakota
No. of Schools			1	
Innovation	Full Lim. Use Use			

PSSC Physics
Chem. Study
CBA Chem.
SMSG Math
UICSM Math
ECSP Phys. Sci.
SSSP Phys. Sci.
Humanities
T. V. Instr.

Program. Instr.
Teach. Mach.
Lang. Lab 1.
Data Proc.
Telephone Amp.
Gaming
Flex. Sched.
Team Teach.
College Crs.
Non-graded
Teach. Aides
Hon. St. Hall
Work-Study
Sch. -in-Sch.
Cult. Enrich.
Stu. Exchange
Opt. Attend.
Ext. Sch. Yr.
Totals 1
Mean
1.0

TABLEE 71

Comparison of Imovations in Public Accredited Secondary Schools in Rural Areas with Under 200 Pupils with $\$ 350-499$

Pupil Expenditure for 1966-67 School Year

| State | Iowa | Nebraska | Missouri | S. Dakota | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| No. of Schools | | | 2 | | 5 |
| | Full Lim. | Full Lim. | Full Lim. | Full Lim. | |
| Innovation | Use Use | Use Use Use Use | Use Use | | |

PSSC Physics
Chem. Study
CBA Chem.
SMSG Math
UICSM Math
ECSP Phys Sci.
1
SSSP Phys. Sci.
Humanities
T. V. Instr.

Program. Instr. $\quad 1$
Teach. Mach. 2
Lang. Lab
1.

Data Proc.
Telephone Amp.
Gaming
Flex. Sched.
Team Teach.
College Crs.
Non-graded
Teach. Aides
1
1
Hon. St. Hall
Work-Study 1.

Sch. -in-Sch.
Cult. Enrich.
Stu. Exchange

$$
1
$$

Opt. Attend.
Ext. Sch. Yi.

Totals		2	7	1	6
Mean	\therefore	1.0	3.5	.2	1.2

-64-
TABLE 72
Comparison of Imnovations in Public Accredited Secondary Schools in Rural Areas with 200-499 Pupils with $\$ 350-499$

Pupil Expenditure for 1966-67 School Year

State	Iowa		Nebraska		Missouri		S. Dakota	
No. of Schools		5		3.		5		7
Innovation	Full Use	Lim. Use						
PSSC Physics	2				\cdot	1		3
Chem. Study	1	1					2	
CBA Chem.	1							
SMSG Math				2				
UICSM Math								
ECSP Phys. Sci.				1	-	1.		
SSSP Phys. Sci.				.		1		
Humanities						1		1
T. V. Instr.					1.			
Program. Instr.	1.			1	1	1	3	1
Teach. Mach				1	1	1		2
Lang. Lab	2	1	1.	1.	1	3		3
Data Proc.								
Telephone Amp.					1			
Gaming		2	1		1.			
Flex. Sched.								
Team Teach.				1				2
Non-graded								
Teacher Aides		1	1	1.	1	3		3
Hon. St. Hall		1				1		
Work-Study	1				1	1		1
Sch. -in-Sch.								
Cult. Emrich.				1				2
Stu. Exchange		1.			1.			
Opt. Attend.								
Ext. Sch. Yr.				1				2
Totals	8	7	3	10	. 9	14	5	20
Mean	1,6	1.4	1.0	3.3	1.8	2.8	. 7	2.9

TABLE 73
Comparison of Innovations in Public Accredited Secondary Schools in Rural Areas with $500-1499$ Pupils with $\$ 350-499$

Pupil Expenditure for 1966-67 School Year

State	Iowa	Nebraska	Missouri	S. Dakota		
No. of Schools	$\frac{2}{2}$					
	Full	Lim.	Full	Lim.	Full Lim.	Full
Innovation	Use	Use	Use	Use	Use Use	Use

PSSC Physics - 1
Chem. Study
CBA Chem.
SMSG Math . 1
UICSM Math
ECSP Phys. Sci. 1
SSSP Phys. Sci.
Humanities
T. V. Instr.

Program. Instr. 2
Teach. Mach.
Lang. Lab 2
Data Proc.
Telephone Amp. 1
Gaming
1
Flex. Sched. 1
Team Teach. 1
College Crs. 1
Non-graded
Teach. Aides 1. 1
Hon. St. Hall
Work-Study 1
Sch. -in-Sch.
Cult. Enrich. 11
Stu. Exchange 1
Opt. Attend.
Ext. Sch. Yr.
Totals
$9 \quad 10$
2
Mean
$4.5 \quad 5.0$
2.0

TABLE 74
Comparison of Innovations in Public Accredited Secondary Schools in Rural Areas with under 200 Pupils with $\$ 500-649$ Pupil Expenditure in 1966-67 School Year

State	Iowa		Nebraska	Missouri	S. Dakota			
No. of Schools		2		4				1
	Full Lim.	Full	Lim.	Full Lim.	Full	Lim.		
Innovation	Use							

PSSC Physics . 1
Chem. Study . 1 1
CBA Chem.
SMSG Math
UICSM Math
1.

ECSP Phys. Sci.
SSSP Phys. Sci.
Humanities
1.
T. V. Instr. 1
$\begin{array}{lllll}\text { Program. Instr. } & 1 & 1 & 1 & 1\end{array}$
Teach. Mach.
Lang. Lab
Data Proc.
Telephone Amp.
Gaming
Flex. Sched.
Team Teach.
College Crs.
Non-graded
Teach. Aides
$1 \quad 1$
Hon. St. Hall
Work-Study
Sch. -in-Sch.
Cult. Enrich. 1
Stu. Exchange 1
Opt. Attend.
Ext. Sch. Yr. 1

Totals	2	4	7	13	1	1
Mean	1.0	2.0	1.8	3.3	1.0	1.0

TABLE 75

Comparison of Innovations in Public Accredited Secondary Schools in Rural Areas with 200-499 Pupils with \$500-649

Pupil Expenditure for 1966-67 School Year

State	Iowa		Nebraska		Missouri		S. Dakota	
No. of Schools		6		6				3
Imnovation	Full Use	Lim. Use	Full Use	Lim. Use	Full Use	Lim. Use	Full Use	Lim. Use
PSSC Physics	2	1		1.				1
Chem. Study	2				,			
CBA Chem.								
SMSG Math	3		1					
UICSM Math								
ECSP Phys. Sci.	1							
SSSP Phys. Sci.								
Humanities								
T. V. Instr.			2					
Program. Instr.				1				
Teach: Mach,	1.	1		1.				1.
Lang. Lab	4		2	1				
Data Proc.								
Telephone Amp.								
Gaming		1			.			
Flex. Sched	1		1					
Team Teach.								
College Crs.				3				.
Non-graded								
Teach. Aides		1	1					1
Hon. St. Hall	1.	1		1	\sim			
Work-Study	2		1	2				
Sch. -in-Sch.								
Cult. Enrich.	1							
Stu. Exchange	1.			1				
Opt. Attend.								
Ext. Sch. Yr.								
Totals	19	5	8	11				3
Mean	3.2	. 8	1.31	1.8				1.0

TABLE 76
Comparison of Innovations in Public Accredited Secondary Schools in Rural Areas with 500-1499 Pupils with $\$ 500-649$

Pupil Expenditure for 1966-67 School Year

State	Iowa		Nebraska	Missouri		S. Dakota	
No. of Schools	1		\cdots	-			Lim. Use
Innovation	$\begin{aligned} & \text { Full } \\ & \text { Use } \end{aligned}$	$\begin{aligned} & \text { Lim. } \\ & \text { Use } \end{aligned}$	Full Lim. Use Use	Full Use	$\begin{aligned} & \text { Lim. } \\ & \text { Use } \end{aligned}$		
Chem. Study							
CBA Chem.							
SMSG Math							
UICSM Math							
ECSP Phys. Sci.							
SSSP Phys. Sci.							
Humanities							
T. V. Instr.							
Program. Instr.		1					
Teach. Mach. $\quad 1$							
Lang. Lab							
Data Proc.							
Telephone Amp.							
Gaming							
Flex. Sched.							
Team Teach.							
College Crs.							
Non-graded							
Teach. Aides		1					
Hon. St. Hall							
Work-Study		1					
Sch. -in-Scll.							
Cult. Enrich.							
Stu. Exchange							
Opt. Attend.							
Ext. Sch. Yr.							
Totals		,					
Mean		. 0					

TABLE 77

Comparison of Innovations in Public Accredited Secondary Schools in Rural Area with Under 200 Pupils with Over $\$ 650$ Pupil Expenditure for 1966-67 School Year

State					
No. of Schools		1	Nebraska	Missouri	S. Dakota
		3			
Imnovation	Full	Lim.	Full	Lim.	Full Lim.

PSSC Physics
Chem. Study
CBA Chem.
SMSG Math
UICSM Math
ECSP Phys. Sci.
SSSP Phys. Sci.
Humanities
T. V. Instr. 2

Program. Instr. 1
Teach. Mach. 1
Lang. Lab 1
Data Prcc.
Telephone Amp.
Gaming
Flex. Sched. .1.
Team Teach.
College Crs.
Non-graded
Teach. Aides
Hon. St. Hall
Work-Study
Sch. -in-Sch.
Cult. Enrich.
1
Stu. Exchange
Opt. Attend.
Ext. Sch. Yr. 1
Totals $\quad 1 \quad 8$
Mean . : . . . $3 \quad 2.7$

TABLE 78

Comparison of Imovations in Public Accredited Secondary Schools in Rural Areas with 200-499 Pupils with Over $\$ 650$ Pupil Expenditure for 1966-67 School Year

| State | Iowa | Nebraska | Missouri | S. Dakota | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| No. of Schools | | 2 | | | | | |
| | Full Lim. | Full Lim. | | Full Lim. | Full Lim. | | |
| Innovation | Use Use |

PSSC Physics
Chem. Study
CBA Chem.
SMSG Math
UICSM Math
1
ECSP Phys. Sci.
SSSP Phys. Sci.
Humanities
T. V. Instr.

Program. Instr.
Teach. Mach.
$1 \quad 1$
Lang. Lab
Data Proc.
Telephone Amp.
Gaming
Flex. Sched.
Team Teach.
College Crs.
Non-graded
Teach. Aides
Hon. St. Hall
Work-Study
Sch. -in-Sch.
Cult. Enrich.
Stu. Exchange 1
Opt. Attend.
Ext. Sch. Yr.
Totals 2

Mean
$1.0 \quad 1.0$

TABLE 79
Comparison of Innovations in Public Accredited Secondary Schools in Rural Areas with 500-1499 Pupils with Over $\$ 650$ Pupil Expenditure for 1966-67 School Year

| State | Iowa | Nebraska | Missouri | S. Dakota | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| No. of Schools | 1 | | | | | |
| | Full Lim. | Full Lim. | Full Lim. | Full Lim. | | |
| Innovation | Use Use | Use Use | Use | Use | Use Use | |

PSSC Physics
Chern. Study
CBA Chem.
SMSG Math 1
UICSM Math
ECSP Phys. Sci.
SSSP Phys. Sci.
Humanities
T. V. Instr.

Program. Instr.
Teach. Mach.
Lang. Lab
Data Proc. 1
Telephone Amp.
Gaming
Flex. Sched.
Team Teach 1
College Crs.
Non-graded
Teach. Aides
Hon. St. Hall
Work-Study
Sch. -in-Sch.
Cult. Enrich 1
Stu. Exchange 1
Opt. Attend.
Ext. Sch. Yr.
Totals $\quad 2 \quad 3$

TABLE 80
Comparison of Innovations in Public Accredited Secondary Schools in Towns of 5,000 or under with 200-499 Pupils with Under $\$ 350$ Pupil Expenditure for 1966-67 School Year

State	Iowa		Nebraska		Missouri		S. Dakota	
No. of Schools		2		3				1
Innovation	Full Use	Lim Use	Full Use	Lim. Use	Full Use	Lim. Use	Full Use	Lim. Use
PSSC Physics			1					
Chem. Study			1					
CBA Chem.								
SMSG Math			1					
UICSM Math								
ECSP Phys. Sci.			1					
SSSP Phys. Sci.								
Humanities								
T. V. Instr.				1				
Program. Instr.		1	1	1				
Teach. Mach.				2				
Lang. Lab	2			1			1	
Data Proc.				1				
Telephone Amp.								
Gaming				1				
Flex. Sched.								
Team Teach.								
College Crs.								
Non-graded								
Teach. Aides							*	
Hon. St. Hall				2				
Work-Study								
Sch. -in-Sch.								
Cult. Enrich,		1		1.				
Stu. Exchange	1						1	
Opt. Attend.								
Ext. Sch. Yr.		-						
Totals	3	2	5	10			2	
Mean	1.5	1.0	1.7	3.3			2.0	

TABLE 81

Comparison of Innovations in Public Accredited Secondary Schools in Towns of 5,000 or Under with Under 200 Pupils with $\$ 350-499$

Pupil Expenditure for 1966-67 School Year

State	Iowa		Nebraska		Missouri		S. Dakota	
No. of Schools		1		2		1.		5
Innovation	Full Use	$\begin{aligned} & \text { Lim. } \\ & \text { Use. } \end{aligned}$	Full Use	Lim. Use	Full Use	Lim. Use	Full Use	Lim. Use
-PSSC Physics	1	2		1			1	
Chem. Study						1	1	
CBA Chem.				1				1
SMSG Math								
UICSM Math								
ECSP Phys. Sci.								
SSSP Phys. Sci.								
Humanities				1				
T. V. Instr.				1				1
Program. Instr.				1.				1
Teach. Mach.				,				1
Lang. Lab			1	1		1		3
Data Proc.		1						
Telephone Amp.								
Gaming				1				
Flex. Sched.				1				
Team Teach.			1	1				
College Crs.				1				
Non-graded				1				
Teach. Aides							1	
Hon. St. Hall								
Work-Study				1				
Sch. -in-Sch.								
Cult. Enrich.				1				
Stu. Exchange								1
Opt. Attend.								
Ext. Sch. Yr.								
Totals		3	2	14		2	3	8
- Mean	1.0	3.0	1.0	7.0		2.0	6	1.6

$$
-74-
$$

TABLE 82

Comparison of Imnovations in Public Accredited Secondary Schools in Towns of 5, 000 or Under with 200-499 Pupils with $\$ 350-499$

Pupil Expenditure for 1966-67 School Year

State	Iowa		Nebraska		Missouri		S. Dakota	
No. of Schools	14		13		10		17	
Innovation	Full Use	Lim. Use	Full Use	Lim. Use	$\begin{aligned} & \text { Full } \\ & \text { Use } \end{aligned}$	$\begin{aligned} & \text { Lim. } \\ & \text { Use } \end{aligned}$	$\begin{aligned} & \text { Full } \\ & \text { Use } \end{aligned}$	Lim. Use
- PSSC Physics	4	3	2	4	2	3		
Chem. Study	4	2	1	1	2	2	1	
CBA Chem.								
SMSG Math			1	3	2	1	1	
UICSM Math	1							
ECSP Phys. Sci.	1.	1		1	1	1	1.	
SSSP Phys. Sci.								
Humanities				1	2			1.
T. V. Instr.		2		1			2	
Program. Instr.		3		3		2	1.	3
Teach. Mach.		3		1		4		3
Lang. Lab	7	2	1	1	5	1	3	3
Data Proc.								1
Telephone Amp.	1	1						1
Gaming		1		2	1		2	2
Flex. Sched.		1						2
Team Teach.		2		2				3
College Crs.					1			1
Non-graded				1				1
Teacher Aides	2	2		2	2		2	4
Hon. St. Hall				3	1			3
Work-Study	2	4	2	4.	3	3	1	3
Sch. -in-Sch.								
Cult. Enrich.		1	1	2	,	2		2
Stu. Exchange			3	1.	1		5	2
Opt. Attend.			1					
Ext. Sch. Yx.								1
Totals	22	28	12	33	24	19	19	36
Mean	1.6	2.0	. 9	2.5	2. 4	1.9	1.1	2. 1.

TABLE 83
Comparison of Innovations in Public Accredited Secondary Schools in Towns of 5,000 or Under with 500-1499 Pupils with \$350-499 Pupil Expenditure for 1966-67 School Year

State	Iowa		Nebraska		Missouri		S. Dakota	
No. of Schools		1		1.		4		1
Innovation	Full Use	Lim. Use	Full Use	Lim. Use	Full Use.	Lim. Use	Full Use	Lim. Use
PSSC Physics			1		1			
Chem. Study								
CBA Chem.								
SMSG Math						.		
UICSM Math								
ECSP Phys. Sci.								
SSSP Phys. Sci.								
Humanities					1			
Television								
Program. Instr.		1	-		1	1		
Teach. Mach.		1			1			
Lang. Lab		.			2	1		
Data Proc.								
Telephone Amp.						1		
Gaming			\cdots		1.			
Flex. Sched.								
Team Teach.					1			
College Crs.								
Non-graded								
- Teach. Aides		1				2		
Hon. St. Hall								
Work-Study		.			2	1		
Sch. -in-Sch,								
Cult. Enrich.								
Stu. Exchange					1			
Opt. Attend.						,		
Ext. Sch. Yr.								
Totals		3	1		11	6		
- Mean		3.0	1.0		2. 8	1. 5		

TABLE 84

Comparison of Innovations in Public Accredited Secondary Schools in Towns of 5,000 or Uncler with Under 200 Pupils with $\$ 500-649$ Pupil Expenditure for 1966-67 School Year

State	Iowa		Nebraska		Missouri		S. Dakota	
No. of Schools		1		4		1		2
Innovation	Full Use	Lim. Use	Full Use	Lim. Use	Full Use	Lim. Use	Full Use	Lim. Use
PSSC Physics			2		-			
Chem. Study				1.				
CBA Chem.				1				
SMSG Math								
UICSM Math			1					
ECSP Phys. Sci.								
SSSP Phys. Sci.			1	-				
Humanities								
T. V. Instr.			1					
Program. Instr.				2				1
Teach. Mach.				1				
Lang. Lab	1					1		1
Data Proc.								
Telephone Amp.		,						
Gaming				1				
Flex. Sc hed.								
Team Teach.				1				
College Crs.								
Non-graded								
Teach. Aides				1				2
Hon. St. Hall	1			1				
Work-Study		1	1	1.				
Sch, -in-Sch.						.		
Cult. Enrich.				1				
Stu. Exchange								1
Opt. Attend.						,		
Ext. Sch. Yr.				1				
Totals	2	1	6	12		1		5
Mean	2.0	1.0	1.3	3.0		1.0		2.5

TABLE 85

Comparison of Imnovations in Public Accredited Secondary Schools in Towns of 5,000 or Under with 200-499 Pupils with $\$ 500-649$

Pupil Expenditure for 1966-67 School Year

State		Iowa	Nebraska	Missouri	S. Dakota		
No. of Schools	15		19		4	3	
	Full	Lim.	Full	Lim.	Full	Lim.	Full Lim.
Innovation	Use						

PSSC Physics	3	$:$
Chem. Study	1	1
CBA Chem	1	
SMSG Math	2	
UICSM Math		
ECSP Phys. Sci.		1

SSSP Phys. Sci.
Humanities
T. V. Instr.

Program. Instr. Teach. Mach.
Lang. Lab
$8 \quad 2$
1

Data Proc.
2
Telephone Amp.
Gaming
Flex. Sched.
Team Teach.
College Crs. 1
Non-graded
Teach. Aides
Hon. St. Hall
Work-Study
Sch. -in-Sch.
Cult. Enrich.
Stu. Exchange
23
Opt. Attend.
Ext. Sch. Yr.
1

Totals
27
Mean
$\begin{array}{llll}1.8 & 1.9 & 1.8 & 2.5\end{array}$
$10-$
$9 \quad 4 \quad 2$
1.8

12
-2 1
2
1
1
3
-78-
TABLE 86
Comparison of Innovations in Public Accredited Secondary Schools
in Towns of 5,000 or Under with 500-1499 Pupils with \$500-649
Pupil Expenditure for 1966-67 School Year

State	Iowa	Nebraska	Missouri	S. Dakota		
No. of Schools	1	1	1	2		
	Full	Lim.	Full	Lim.	Full Lim.	Full Lim.
Innovation	Use	Use	Use	Use	Use Use	Use

PSSC Physics $\quad 1$
Chem Study
CBA Chem.
SMSG Math
UICSM Math
ECSP Phys. Sci.
SSSP Phys. Sci.
Humanities 1
T. V. Instr. . . 1

Program. Instr. . 1
Teach. Mach. 1
Lang. Lab 1 1
Data Proc.
Telephone Amp.
Gaming
Flex. Sched.
Team Teach.
1
College Crs.
Non-graded
Teach. Aides 1
Hon. St. Hall
Work-Study
Sch. -in-Sch.
Cult. Enrich
Stu. Exchange 1
Opt. Attend.
Ext. Sch. Yr.

Totals	1	2	1	9
Mean	1.0	2.0	0.5	4.5

TABLE 87

Comparison of Innovations in Public Accredited Secondary Schools in Towns of 5,000 or Under with Under 200 Pupils with Over $\$ 650$ Pupil Expenditure for 1966-67 School Year

State	Iowa	Nebraska	Missouri	S. Dakota
No. of Schools	1	5		

PSSC Physics
Chem. Study
CBA Chem.
SMSG Math
UICSM Math
ECSP Phys. Sci.
SSSP Phys. Sci.
Humanities
T. V. Instr. 1.1

Program. Instr.
Teach. Mach.
Lang. Lab
1
1
Data Proc.
Telephone Amp.
Gaming
Flex. Sched.
Team Teach. 1 : 2
College Crs.
Non-graded
Teach. Aides
Hon. St. Hall 1
Work-Study
Sch. -in-Sch.
Cult. Enrich.
Stu. Exchange
2
Opt. Attend.
Ext. Sch. Yr.

Totals	$\quad 1$	2	2	9
Mean	1.0	2.0	.4	1.8

TABLE 88
Comparison of Innovation in Public Accredited Secondary Schools in Towns of 5,000 or Under with 200-499 Pupils with Over $\$ 650$ Pupil Expenditures for 1966-67 School Year

State	Iowa		Nebra	aska	Missouri	S. Dakota
No. of Schools		9	3			
Innovation	Full Use	Lim. Use	Full Use	Lim. Use	Full Lim. Use Use	Full Lim. Use Use
PSSC Physics	2			1.		
Chem. Study	2			1		
CBA Chem.						
SMSG Math						
UICSM Math						
ECSP Phys. Sci.						
SSSP Phys. Sci.						
Humanities						
T. V. Instr.						
Program. Instr.		3				
Teach. Mach.		3				
Lang. Lab	5	2	2			
Data Proc.	1	2				
Telephone Amp.						
Gaming		1				
Flex. Sched.						
Team Teach.				1		
College Crs.	1					
Non-graded						
Teach. Aides	1	1		1		
Hon. St. Hall						
Work-Study		2	1	1		
Sch. -in-Sch.						
Cult. Enrich.	1					
Stu. Exchange	1	2	1		. .	
Opt. Attend.						
Ext. Sch. Yr.		1				
Totals	14	17	4	5		
Mean	1.6	1. 9	1.3. 1	1.7		

Comparison of Imnovations in Public Accredited Secondary Schools in Cities of 5, 000-399, 999 with 500-1499 Pupils with Under $\$ 350$ Pupil Expenditure for 1966-67 School Year

State	Iowa	Nebraska	Missouri	S. Dakota
No. of Schools	2	-	1	
Innovation	Full Lim. Use Use			

PSSC Physics
Chem. Study
CBA Chem.
SMSG Math
UICSM Math
ECSP Phys. Sci.
SSSP Phys. Sci.
Humanities
T. V. Instr.

Program Instr.
Teach. Mach.
Lang. Lab 1
Data Proc. 1
Telephone Amp. 1
Gaming
1

Flex. Sched.
Team Teach. 1
College Crs.
Non-graded 1
Teach. Aides
Hon. St. Hall

Work-Study 1
1.

Sch. -in-Sch.
Cult. Enrich.
Stu. Exchange
2
Opt. Attend.
Ext. Sch. Yr.
Totals
9
2
Mean
4.5
2.0

Comparison of Innovations in Public Accredited Secondary Schools in Cities of 5, 000-399, 999 with 1500-2499 Pupils with Under $\$ 350$ Pupil Expenditure for 1966-67 School Year

State	Iowa		Nebraska	Misso	ouri	S. Da	kota
No. of Schools			1				
Innovation	$\begin{array}{ll} \text { Full } \\ \text { Use } \end{array}$	Lim.	Full Lim. Use Use	Full Use	Lim. Use	Full Use	Lim. Use
PSSC Physics 1							
Chem. Study							
CBA Chem.					1		
SMSG Math					1		
UICSM Math							
ECSP Phys. Sci.					1		
SSSP Phys. Sci.			\cdot		1		
Humanities							
T. V. Instr.							
Program. Instr.							
Teach. Mach.							
Lang. Lab				1			
Data Proc.							
Telephone Amp.					1		
Gaming							
Flex. Sched.							
Team Teach.				1			
College Crs.							
Non-graded							
- Teach. Aides			.	1 .			
Hon. St. Hall							
Work-Study			\cdot	1			
Sch. -in-Sch.							
Cult. Enrich.					1		
Stu. Exchange				1.			
Opt. Attend.					-		
Ext. Sch. Yr.							
Totals				6	6		
- Mean		-		6.06	6.0	,	

TABLE 91
Comparison of Innovations in Public Accredited Secondary Schools in Cities of $5000-399,595$ with 200-499 Pupils with $\$ 350-499$ Pupil Expenditure for 1966-67 School Year

State	Iowa		Nebraska		Missouri		S. Dakota	
No. of Schools		1		4		2		1
Innovation	Full Use	Lim. Use	Full Use	Lim. Use	Full Use	Lim. Use	Full Use	$\begin{aligned} & \text { Lim. } \\ & \text { Use } \end{aligned}$
PSSC Physics		1		1	1			1.
CBA Chem.				1				
SMSG Math				2				
UICSM Math								
ECSP Phys. Sci.								
SSSP Phys. Sci.								
Humanities								
T. V.Instr.			1	1				
Program. Instr.				1		1.		
Teach. Mach.								
Lang. Lab	1		1	1	1	1		
Data Proc.								
Telephone Amp.						1		
Gaming			*	2				
Flex. Sched.								
Team Teach.				1				
College Crs.				1				
Non-graded								
Teacher Aides				1	1			
Hon. St. Hall				1		1		1
Work-Study		1	1	2		1		1
Sch. -in-Sch.								
Cult. Enrich.		1						1
Stu, Exchange	1		2		1			
Opt. Attend.								
Ext. Sch: Yr.								
Totals	2	3	5	15	5	5		4
Mean	2.0	3.0	1.3	3. 8	2.5	2.5		4.0

TABLE 92
Comparison of Imovations in Public Accredited Secordary Schools in Cities of 5, 000-399, 999 with $500-1499$ Pupils with $\$ 350-499$ Pupil Expenditure for 1966-67 School Year

State	Iowa		Nebraska		Missouri		S. Dakota	
No. of Schools		7		9		12		6
Innovation	$\begin{aligned} & \text { Full } \\ & \text { Use } \end{aligned}$	Lim. Use	$\begin{aligned} & \text { Full } \\ & \text { Use } \end{aligned}$	$\begin{aligned} & 11 \text { Lim. } \\ & \text { e Use } \end{aligned}$	$\begin{aligned} & \text { Full } \\ & \text { Use } \end{aligned}$	$\begin{aligned} & \text { Lim. } \\ & \text { Use } \end{aligned}$	Full Use	$\begin{aligned} & \text { Lim. } \\ & \text { Use } \end{aligned}$
PSSC Physics	4		2	3	5		3	
Chem. Study	3		3	2	5	1.	3	1
CBA Chem.					1.		1	1
SMSG Math				3		2	2	1.
UICSM Math								
ECSP Phys. Sci.		1						
SSSP Phys. Sci.								
Humanities		1			1.			
T. V. Instr.				4				
Program. Instr.				2		4	1.	3
Teach. Mach.						1		
Lang. Lab	5		4	1	10	1	1	2
Data Proc.	2	1		1		1	1	2
Telephone Amp.					1	1		
Gaming	1		1	1		1		
Flex. Sched. Team Teach		1		6				
College Crs.	1	1	1	2	2	3 1	1.	1
Non-graded								
Teach. Aides	1	1		3	4	2		
Hon. St. Hall		2	2	3				1
Work-Study	2	2	3	3	8	3	1	,
Sch. -in-Sch.								
Cult. Enrich.					1	2	1	2
Stu. Exchange	6		5		2	2	4	
Opt. Attend.						,		
Ext. Sch. Yr.			1					
Totals	25	10	22	34	40	25	19	16
Mean	3.6	1.4	2.4	3.8	3.1	2.0	3.2	2.7

TABLE 93
Comparison of Innovations in Public Accredited Secondary Schools in Cities of 5, 000-399, 999 with 1500-2499 Pupils and $\$ 350-499$

Pupil Expenditure for 1966-67 School Year

| State | Iowa | Nebraska | Missouri | S.Dakota | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| No. of Schools | 5 | 1 | 2 | | |
| | Full | Lim. | Full Lim. | Full Lim. | Full Lim. |
| Innovation | Use Use | Use Use | Use Use | Use Use | |

PSSC Physics	1	3		
Chem. Study	3			
CBA Chem.		1		1

SMSG Math 2
UICSM Math
ECSP Phys. Sci.
SSSP Phys. Sci.
Humanities 1 1.
T. V. Instr.

Program. Instr.
Teach. Mach.
Lang. Lab
Data Proc.
Telephone Amp.
1

Gaming

| | | 1 | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | | 1 | | 1 |
| 1 | | | \ddots | 1 |
| 1 | 1 | 1 | | |
| 1 | | 1 | | |
| 1 | | | 2 | |

Flex. Sched.
Team Teach. 22
College Crs. 1
Non-graded
Teach. Aides 3
Hon. St. Hall
Work-Study
3
2
1

Sch. -in-Sch. Cult. Enrich.
Stu. Exchange Opt. Attend.

4
11
41
1

Ext. Sch. Yr.

Totals	26	21	2	5	8	2
Mean	5.2	4.2	2.0	5.0	4.0	1.0

TABLE 94
Comparison of Imnovations in Public Accredited Secondary Schools in Cities of 5, 000-399, 999 with Over 2500 Pupils with $\$ 350-499$

Pupil Expenditure for 1966-67 School Year

State	Iowa	Nebraska		Missouri		S. Dakota	
No. of Schools	11					1	
Innovation	Full Lim. Use Use	Full Use	$\begin{aligned} & \text { Lim. } \\ & \text { Use } \end{aligned}$	$\begin{aligned} & \text { Full } \\ & \text { Use } \end{aligned}$	$\begin{aligned} & \text { Lim. } \\ & \text { Use } \end{aligned}$	$\begin{aligned} & \text { Full } \\ & \text { Use } \end{aligned}$	$\begin{aligned} & \text { Lim. } \\ & \text { Use } \end{aligned}$
PSSC Physics1							
Chem. Study							
CBA Chem.							
SMSG Math							1
UICSM Math							
ECSP Phys. Sci.							
SSSP Phys. Sci.							
Humanities							
T. V. Instr.			1				
Program. Instr.							
Teach, Mach.							
Lang. Lab		1				1.	
Data Proc.			1				1.
Telephone Amp.						1	
Gaming							1
Flex. Sched.							
Team Teach.			1				1
College Crs.						1	
Non-graded							
Teach. Aides							
Hon. St. Hall							1
Work-Study		1				1	
Sch. -in-Sch.							
Cult. Enrich.							
Stu. Exchange					\cdots	1	
Opt. Attend.							
Ext. Sch. Yr.							1
Totals		3	3			6	7
Mean		3.0	3.0	.			7.0

TABLE 95
Comparison of Innovations in Public. Accredited Secondary Schools in Cities of 5, 000-399, 999 with 200-499 Pupil.s with $\$ 500-649$

Pupil Expenditure for 1966-67 School Year

State	Iowa		Nebraska		Missouri		S. Dakota	
No. of Schools		9		3				2
Innovation	Full Use	Lim. Use						
PSSC Physics	2			1.				1
Chem. Study		3		2				
CBA Chem.	1							
SMSG Math		1	1.					
UICSM Math								
ECSP Phys. Sci.		1						
SSSP Phys. Sci.								
Humanities								
T. V. Instr.			1	$\checkmark 1$				
Program. Instr.		2		1				1
Teach. Mach.		1		1				
Lang. Lab	7		3				2	
Data Proc.	1	1		1				1
Telephone Amp.								
Gaming			\square					
Flex. Sched.	1							
Team Teach.		1		1				1
College Crs.								1
Non-graded							1	
'Teach. Aides	1	1		1				
Hon. St. Hall	1	1						1
Work-Study	5			1			1	
Sch. -in-Sch.								
Cult. Enrich.		1		1				
Stu. Exchange	5		3					
Opt. Attend								1
Ext. Sch, Yr.	*		2					
Totals	24	13	10	11				7
Mean	2.7	1. 4	- 3.3	3.7			2.0	

$\therefore-88-$
TABLE 96
Comparison of Innovations in Public Accredited Secondary Schools in Cities of 5, 000-399, 999 with 500-1499 Pupils with $\$ 500-649$

Pupil Expenditures for 1966-67 School Year

State	Iowa		Nebraska		Missouri		S. Dakota	
No. of Schools	14		3		5		3	
Innovation	Full Use	Lim. Use	Full Use	Lim. Use	$\begin{aligned} & \text { Full } \\ & \text { Use } \end{aligned}$	Lim. Use	Full Use	Lim. Use
PSSC Physics	6		1	2	1	1.	1	
Chem. Study	5	2	1	1	1	1		
CBA Chem.				2			1	
SMSG Math	1	2			1.	1		
UICSM Math					1			
ECSP Phys. Sci.	1	1				1		
SSSP Phys. Sci.								
Humanities		1			1	1		
T. V. Instr.			2	2	1	1		2
Program. Instr.		4			1	1		1
Teach. Mach.		1				1		1
Lang. Lab	10	2	3		3			1
Data Proc.	3	1	1	1				
Telephone Amp.		1		1				
Gaming	1		-	1	1			
Flex. Sched.	1							1
Team Teach.	1	4	1	1.		3		1
College Crs.	3	2	1	1	1			1
Non-graded	1							
Teach. Aides		2			1	1		1
Hon. St. Hall	2	2	1	1		1		1
Work-Study	6	2	1		3	1	1	1
Sch. -in-Sch.								
Cult. Enrich.	1	2	1					
Stu. Exchange	8		2		2	1		
Opt. Attend. Ext. Sch. Yr.								
Totals	50	29		13	18	15	3	11
- Mean	3.6	2.1	5	4.3	3.0	3.0	1.0	3.7

TABLE 97
Comparison of Innovations in Public Accredited Secondary Schools in Cities of 5, 000-399, 999 with 1500-2499 Pupils with $\$ 500-649$

Pupil Expenditure for 1966-67 School Year

	Iowa		Nebra	aska	Misso	ouri	S. Dakota
State No. of Schools	4		3		4		
Innovation	Full Use	Lim. Use	Full Use	Lim. Use	Full Use	Lim. Use	Full Lim. Use Use
PSSC Physics	2		3		-	1.	
Chem. Study	3		1.		2		
CBA Chem.				1		1	
SMSG Math						1.	
UICSM Math							
ECSP Phys. Sci.							
SSSP Phys. Sci.				-			
Humanities	1		2		3		
T. V. Instr.			2	1			
Program, Instr.				1.		1	
Teach. Mach.			1.				
Lang. Lab	4		3		3		
Data Proc.		1	2		2	1	
Telephone Amp.							
Gaming			1		.		
Flex. Sched.				1			
Team Teach.			1		1	2	
College Crs.		1	2			2	
Non-graded							
Teach. Aides		1	2				
Hon. St. Hall		1		1			
Work-Study	4		3		2	2	
Sch. -in-Sch.						1	
Cult. Enrich.	1		1			2	
Stu. Exchange	2	2	3		2		
Opt. Attend.			2			\cdots	

Ext. Sch. Yr.

Totals	17	6	29	5	1.5	14
Mean	4.3	1.5	9.7	1.7	3.6	3.5

TABLE 98
Comparison of Innovations in Public Accredited Secondary Schools in Cities of $5,000-399,999$ with Under 200 Pupils with Over $\$ 650$

Pupil Expenditure for 1966-67 School Year

| State | Iowa | Nebraska | | Missouri | S. Dakota |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| No. of Schools | | | | 1 | |
| | Full Lim. | Full Lim. | Full Lim. | Full Lim. | |
| Innovation | Use Use | Use Use | Use Use | Use Use | |

PSSC Physics
1
Chem. Study
CBA Chem.
SMSG Math
UICSM Math
ECSP Phys. Sci.
SSSP Phys. Sci.
Humanities
T. V. Instr.

Program. Instr.
Teach. Mach.
Lang. Lab
Data Proc.
Telephone Amp.
Gaming
Flex. Sched.
Team Teach.
College Crs.
Non-graded
Teach. Aides
1
Hon. St. Hall
Work-Study
Sch. -in-Sch.
Cult. Enrich.
Stu. Exchange
Opt. Attend.
Ext: Sch. Yr.
Totals
1.2

Mean
$1.0 \quad 2.0$

TABLE 99
Comparison of Innovations in Public Accredited Secondary Schools in Cities of 5, 000-399, 999 with 200-499 Pupils with Over $\$ 650$ Pupil Expenditure for 1966-67 School Year

| State | | Iova | Nebraska | Missouri | S. Dakota |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of Schools | | 2 | | | |

TABLE 100
Comparison of Innovations in Public Accredited Secondary Schools in Cities of 5, 000-399, 999 with 500-1499 Pupils with Over $\$ 650$

Pupil Expenditure for 1966-67 School Year.

State		Iowa	Nebraska	Missouri	S. Dakota		
No. of Schools		4					
	Full Lim.	Full Lim.	Full Lim.	Full Lim.			
Innovation	Use Use						

PSSC Physics 1 . 1
Chem. Stucly 2
CBA Chem.
SMSG Math 1
UICSM Math
ECSP Phys. Sci. 1
SSSP Phys. Sci.
Humanities 1
T.V.Instr. 2

Program. Instr.
Teach. Mach.
Lang. Lab 21
Data Proc. 31
Telephone Amp. 1
Gaming
Flex. Sched.
Team Teach. 21
College Crs. 2
Noin-graded
Teach, Aides 1. 1
Hon. St. Hall 2
Work-Study 4
Sch. -in-Sch.
Cult. Enrich. 1
Stu. Exchange 4
Opt. Attend.
Ext. Sch. Yr.

Totals	28	8
Mean	7.0	2.0

TABLE 101
Comparison of Innovations in Public Accredited Secondary Schools in Cities of 5, 000-399, 999 with 1500-2499 Pupils with Over $\$ 650$ Pupil Expenditure for 1966-67 School Year

State		wa	Nebraska	Missouri	S. Dakota
No. of Schools		6			
Innovation	Full Use	Lim. Use	Full Lim. Use Use	Full Lim. Use Use	Full Lim. Use Use
PSSC Physics	3	2			
Chem. Study	3	2			
CBA Chem.		1			
SMSG Math		2			
UICSM Math					
ECSP Phys. Sci.		1			
SSSP Phys. Sci.					
Humanities		1			
T. V. Instr.	2	2			
Program. Instr.		1			
Teach. Mach.		2			
Lang. Lab	5				
Data Proc.	4	2			
Telephone Amp.					
Gaming	1				
Flex. Sched.					
Team Teach.	4	2			
College Crs.	2	2			
Non-graded					
Teach. Aides	5				
Hon. St. Hall					
Work-Study					
Sch. -in-Sch.					
Cult. Enrich		2			
Stu. Exchange	4	1			
Opt. Attend.					
Ext. Sch. Yr.					
Totals	33	23			
Mean	5.5	3.8	.		

-94-

TABLE 102

Comparison of Innovations In Public Accredited Secondary Schools In Cities of $400,000+$ With 500-1499 Pupils With $\$ 500-649$ Pupil Expenditure for 1966-67 School Year

| State | Lowa | | Nebraska | Missouri | S. Dakota |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| No. of School | | | | 4 | |
| | Full Lim. | Full Lim. | Full Lim. | Full Lim. | |
| Innovation | Use Use | Use Use | Use Use | Use Use | |

PSSC. Physics . . 2
Chem. Study
CBA Chemistry
SMSG Math
UICSM Math
ECSP Phys. Sci.
SSSP Phys. Sci.
Humanities
T. V. Instr.

Program. Instr.
Teach. Mach.
Lang. Lab . . . 4
Data Proc.
1 . 2
Telephone Amp.
Gaming
1
Flex. Sched.
Team. Teach. . . 1
College Crs.
Non-graded
Teach. Aides
Hon. St. Hall $\quad \therefore \quad 1$
Work-Study $\quad \therefore 1$
Sch. - in-Sch.
Cult. Enrich. . . 1
Stu. Exchange . . . 1
Opt. Atten.
Ext.Sch. Yr. \quad. 1

Totals		23	5
Mean	5.8	1.3	

$5.8 \quad 1.3$

TABLE 103
Comparison of Innovations In Public Accredited Secondary Schools
In Cities of $400,000+$ With $1500-2499$ Pupils With $\$ 500-649$
Pupil Expenditure for 1966-67 School Year

State	Iowa		Nebraska	Missouri		S. Dakota	
No. of School			5				
Innovation	Full Use	$\begin{aligned} & \text { Lim. } \\ & \text { Use } \end{aligned}$	Full Lim. Use Use	$\begin{aligned} & \text { Full } \\ & \text { Use } \end{aligned}$	$\begin{aligned} & \text { Lim } \\ & \text { Use } \end{aligned}$	$\begin{aligned} & \text { Full } \\ & \text { Use } \end{aligned}$	Lim. Use
PSSC Physics				2			
Chem. Study				3			
CBA Chemistry					1		
SMSG Math				3	1		
UICSM Math					1		
ECSP Phys. Sci.							
SSSP Phys. Sci.							
Humanities							
T.V. Instr.				2	1		
Program. Instr.			.	1			
Teach. Mach.							
Lang. Lab				. 5			
Data Proc.				3	1.		
Telephone Amp.							
Gaming .							
Flex. Sched.							
Team. Teach.				2	2		
College Crs.				1	1		
Non-graded							
Teach. Aides							
Hon. St. Hall							
Work-Stucly				2	1		
Sch.-in-Sch.							
Cult. Enrich.				1			
Stu. Exchange				4			
Opt. Atten.							
Ext. Sch.Yr.					,		
Total					9		
Mean				5. 8	. 8		

TABLE 104

Comparison of Innovations In Public Accredited Secondary Schools In Cities of $400,000+$ With Over 2500 Pupils With $\$ 500-649$ Pupil Expenditure for 1966-67 School Year

State	Iowa		Nebraska		Missouri		S. Dakota	
No. of School			1					
	Full	Lim.	Full	Lim.	Full	Lim.	Full	Lim.
Innovation	Use							
PSSC Physics								
Chem, Stucly								
CBA Chemistry								
S MSG Math								
UICSM Math								
ECSP Phys. Sci.								
SSSP Phys. Sci.								
Humanities								
T. V. Instr.								
Program. Instr.								
Teach. Mach.								
Lang. Lab								
Data Proc. 1								
Telephone Amp.								
Gaming								
Flex. Sched.						1		
Team. Teach.								
College Crs.						1		
Non-graded						1		
Teach. Aides						1		
Hon. St. Hall					1			-
Work-Study								
Sch. -in-Sch.						'1		
Cult. Enrich.								
Stu. Exchange								
Opt. Atten.								
Ext. Sch.Yr.								
Totals					2	6		
Mean					2	6		

TABLEE 105

Comparison of Innovations In Public Accredited Secóndary Schools In Cities of 400, $000+$ With 1500-2499 Pupils With Over $\$ 650$ Pupil Expenditure for $1966-67$ School Year

State	Iowa	Nebraska	Miss	ouri	S. D	kota
No. of School			6			
Innovation	Full Lim. Use Use	$\begin{aligned} & \text { Full Lim. } \\ & \text { Use Use } \end{aligned}$	Full Use	$\begin{aligned} & \text { Lim. } \\ & \text { Use } \end{aligned}$	Full Use	Lim. Use
PSSC. Physics			1.	3		
Chem. Study				1		
CBA Chemistry				1		
SMSG Math						
UICSM Math						
ECSP Pinys. Sci.			1			
SSSP Phys. Sci.						
Humanities				1		
T. V. Instr.				1		
Program. Instr.				1		
Teach. Mach.						
Lang. Lab			5			
Data Proc.			2	3		
Telephone Amp.						
Gaming						
Flex. Sched.						
Team. Teach.						
College Crs.				5		
Non-graded			1	1		
Teach. Aides						
Hon. St. Hall						
Work-Study			6			
Sch. - in-Sch.						
Cult. Enrich.				1		
Stu. Exchange				1		
Opt. Atten.						
Ext. Sch. Yr.						
Totals			16	19		
Mean			2.7	3.2		

TABLE 106
Comparison of Innovations in Public Accredited Secondary Schools In Suburban Areas Fith Under 200 Pupils With $\$ 350-499$ Pupil
Expenditure for 1966-67 School Year

State	Iowa	Nebraska	Missouri	S. D	akota
No. of Schools				1	
	Full Lim. Use Use	Full Lim. Use Use	Full Lim. Use Use	$\begin{aligned} & \text { Full } \\ & \text { Use } \end{aligned}$	Lim. Use
PSSC Physics					
Chem.Study					
CBA Chemistry					
SMSG Math					
UICSM Math					
ECSP Phys. Sci.					
SSSP Phys. Sci.					
Humanities					
T.V. Instr.					
Program. Instr.					
Teach. Mach.					
Lang. Lab					
Data Proc.					
Telephone Amp.					
Gaming					
Flex.Sched.					
Team Teach.					
College Crs.					
Non-graded					
Teach. Aides					
Hon. St. Hall					1
Work-Study					
Sch.-in-Sch.					
Cult. Enrich.					
Stu. Exchange					
Opt. Atten.					
Ext.Sch.Yr.					
Totals					1
Mean					1

TABLE 107
Comparison of Innovations in Public Accredited Secondary Schools In Suburban Areas With 200-499 Pupils With \$350-499 Pupil Expenditure for 1966-67 School Year

TABLE 108

Comparison of Innovations in Public Accredited Secondary Schools
In Suburban Areas With 500-1499 Pupils With \$350-499
Pupil Expenditure for 1966-67 School Year

State	Iowa	Nebraska	Missouri		S. Dakota	
No. of School		3	6		$\begin{aligned} & \text { Full } \\ & \text { Use } \end{aligned}$	$\begin{aligned} & \text { Lim. } \\ & \text { Use } \end{aligned}$
	Full Lim.	Full Lim.	Full	Lim.		
Innovation	Use Use	Use Use	Use	Use		
PSSC Physics		1	3	1		
Chem. Study		1	1			
CBA Chemistry			1	1 .		
SMSG Math		1.1	1	2		
UICSM Math						
ECSP Phys. Sci.			1			
SSSP Phys. Sci.		1				,
Humanities		1				
T. V. Instr.		1				
Program. Instr.		1		1		
Teach. Mach.		1.				
Lang. Lab			4			
Data Proc.				1		
Telephone Amp.						
Gaming				1		
Flex. Sched.				1		
Team Teach.		$1-1$		4		
College Crs.						
Non-graded				1		
Teach. Aides		1		2		
Hon. St.Hall		2		1		
Work-Study		$1 \cdot 1$	4	1		
Sch.-in-Sch.						
Cult. Enrich.			1			
Stu. Exchange	.	1	.	3		
Opt. Atten.				1	.	
Ext.Sch.Yr.			1	1.		
Totals		107	17	21		.
Mean		3.32 .3	3.8	3.5		.

$$
-101-
$$

TABLE 109
Comparison of Innovations In Public Accredited Secondary Schools In Suburban Areas With 1500-2499 Pupils With \$350-499 Pupil

Expenditure for 1966-67 School Year

State	Iowa		Nebraska		Missouri		S. Dakota	
No. of School			1		5		Full Lim	
Innovation	Full Use	$\begin{aligned} & \text { Lim. } \\ & \text { Use } \end{aligned}$	$\begin{aligned} & \text { Full } \\ & \text { Use } \end{aligned}$	$\begin{aligned} & \text { Lim. } \\ & \text { Use } \end{aligned}$	$\begin{aligned} & \text { Full } \\ & \text { Use } \end{aligned}$	$\begin{aligned} & \text { Lim } \\ & \text { Use } \end{aligned}$	$\begin{aligned} & \text { Full } \\ & \text { Use } \end{aligned}$	$\begin{aligned} & \text { Lim. } \\ & \text { Use } \end{aligned}$
PSSC Physics			1		4	1		
Chem. Study			1		1			
CBA Chemistry				1				
SMSG Math					2			
UICSM Math					2			
ECSP Phys. Sci.								
SSSP Phys. Sci.				.				
Humanities						1		
T.V. Instr.			-	1				
Program. Instr.				1		1		
Teach. Mach.						1		
Lang. Lab			. 1		: 5			
Data Proc.			1	-	2			
Telephone Amp.				1				
Gaming						1		
Flex. Sched.								
Team Teach.				1	1	3		
College Crs.			1		1			
Non-graded								
Teach. Aides			1					
Hon. St. Hall				1		1		
Work-Study			1		3	1		
Sch. -in-Sch.								
Cult. Enrich.						1		
Stu. Exchange			1		4	1		
Opt. Atten.								
Ext. Sch.Yr.					1			
Totals			8	6	26	12		
Mean			8	6	5.2	2.4		

TABLE 110

Comparison of Innovations In Public Accredited Secondary Schools
In Suburban Areas With Over 2500 Pupils With $\$ 350-499$ Pupil
Expenditure for 1966-67 School Year

State		owa	Nebraska	Miss	Ouri	S. Da	kota
No. of School				3			
Innovation	Full Use	Lim. Use	$\begin{aligned} & \text { Full Limi. } \\ & \text { Use Use } \end{aligned}$	Full Use	$\begin{aligned} & \text { Lim. } \\ & \text { Use } \end{aligned}$	Full Use	Lim Use
PSSC Physics				2.	1		
Chem. Study				1	2		
CBA Chemistry					1		
SMSG Math							
UICSM Math							
ECSP Phys. Sci.							
SSSP Phys. Sci.							
Humanities				1			
T.V. Instr.					1		
Program. Instr.				1	2		
Teach. Mach.					3		
Lang. Lab				3			
Data Proc.				2	1		
Telephone Amp.							
Gaming							
Flex. Sched.					1		
Team Teach.				2	1		
College Crs.				1			
Non-graded							
Teach. Aides				1			
Hon. St. Hall				1			
Work-Study				3			
Sch. -in-Sch.					1		
Cult. Enrich.				1			
Stu.Exchange				2			
Opt. Atten.				1	1		
Ext. Sch.Yr.							
Totals				22	15		
Mean				7.3	5		

-103-
TABLE 111

Comparison of Innovations In Public Accredited Secondary Schools
In Suburban Areas With 200-499 Pupils With \$500-649 Pupil
Expenditure for 1966-67 School Year

| State | Iowa | Nebraska | Missouri | S. Dakota |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- |
| No. of School | l. | | | |
| | Full Lim. Full Lim. Full Lim. Full Lim. | | | |
| Innovation | Use Use Use Use Use Use Use Use | | | |

PSSC Physics
Chem. Study
CBA Chemistry
SMSG Math
UICSM Math
ECSP Phys. Sci.
SSSP Phys. Sci.
Humanities
T. V. Instr.

Program. Instr.
Teach. Mach.
Lang.Lab 1
Data Proc.
Telephone Amp.
Gaming
Flex. Sched.
Team Teach.
College Crs.
Non-graded
Teach. Aides
Hon. St. Hall 1
Work-Study
Sch.-in-Sch.
Cult.Enrich.
Stu. Exchange
Opt. Atten.
Ext.Sch.Yr.
Totals 2
Mean 2

TABLE 112

Comparison of Innovations In Public Accredited Secondary Schools
In Suburban Areas With 500-1499 Pupils With \$500-649 Pupil
Expenditure for 1966-67 School Year

| State | Iowa | Nebraska | Missoini | S. Dakota |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| No. of School | | 1 | 2 | |
| | Full Lim. | Full Lim. Full Lim. Full Lim. | | |
| Innovation | Use Use | Use Use | Use Use | Use Use |

PSSC Physics
Chem. Study
CBA Chemistry

SMSG Math
UICSM Math
ECSP Phys. Sci.
SSSP Phys. Sci.
Humanities
T. V. Instr.

Program. Instr.
Teach. Mach.
Lang. Lab
Data Proc.
Telephone Amp.
Gaming
Flex. Sched.
Team Teach.
College Crs.
Non-graded
Teach. Aides
Hon. St. Hall
Work-Study
1

1
1
1 1 1

1
1
Sch. -in-Sch.
Cult. Enrich.
Stu. Exchange
Opt. Atten.
Ext. Sch.Yr.
Totals
34
34

21
1.5

TABLE 113
Comparison of Innovations In Public Accredited Secondary Schools In. Suburban Areas With 1500-2499 Pupils With \$500-649

Pupil Expenditure for 1966-67 School Year

State		Wa	Nebr	aska	Missouri		S. Dakota	
No. of School								
	Full	Lim.	Full	Lim.	Full	Lim.		Lim.
Innovation	Use							
PSSC Physics					4	1		
Chem. Study					3			
CBA Chemistry			.					
SMSG Math					1.	-		
UICSM Math								
ECSP Phys. Sci.								
SSSP Phys. Sci.								
Humanities					1	1		
T. V. Instr.					1.			
Program. Instr.						1.		
Teach. Mach.								
Lang. Lab					7			
Data Proc.					2	1		
Telephone Amp.								
Gaming						1		
Flex. Sched.					1			
Team Teach.					3	2		
College Crs.					2	2		
Non-graded						1		
Teach. Aides					1.			
Hon. St. Hall					1	2		
Work-Study		-			6	1		
Sch. -in-Sch.								
Cult. Enrich.		.				2		
Stu. Exchange					5			
Opt. Atten.			.					
Ext. Sch.Yr.								
Totals					38	15		
Mean		.			5.4	2.1		

TABLE 114

Comparison of Innovations In Public Accredited Secondary Schools In Suburban Areas With Over 2500 Pupils With $5000-649$ Pupil Expenditure for 1966-67 School Year

$\begin{aligned} & \text { State } \\ & \text { No. of School } \end{aligned}$	Iowa		Nebraska		Missouri		S. Dakota	
Innovation	Full	Lim.	Full	Lim.	Full	Lim.		Lim.
PSSC Physics					1			
Chem. Study					1			
CBA Chemistry								
SMSG Math								
UICSM Math								
ECSP Phys. Sci.								
SSSP Phys. Sci.								
Humanities								
T.V. Instr.								
Program. Instri.								
Teach. Mach.								
Lang, Lab								
Data Proc.					1			
Telephone A mp.					1			
Gaming								
Flex. Sched.								
Team Teach.								
College Crs.					1			
Non-graded								
Teach. Aides								
Hon: St. Hall								
Work-Study					1			
Sch. -in-Sch.								
Cult. Enrich.								
Stu. Exchange					1			
Opt. Atten.								
Ext. Sch. Yr.					1			
Totals					8			
Mean					8			

TABLE 115

Comparison of Inno In Suburban Area Expe	vatio as W nditu		blic A 99 Pl 966-6	ccred pils W Schoo	ed Sec Ove Year	ondar r $\$ 650$	Schoo Pupil	
State	Io	va	Nebr	aska	Miss	Ouri	S. Da	kota
No. of School					2			
Innovation	Full Use	Lim. Use	$\begin{aligned} & \text { Full } \\ & \text { Use } \end{aligned}$	$\begin{aligned} & \text { Lim. } \\ & \text { Use } \end{aligned}$	$\begin{aligned} & \text { Full } \\ & \text { Use } \end{aligned}$	$\begin{aligned} & \text { Lim. } \\ & \text { Use } \end{aligned}$	Full Use	$\begin{aligned} & \text { Lim. } \\ & \text { Use } \end{aligned}$
PSSC Physics					1			
Chem. Study								
CBA Chemistry								
SMSG Math								
UICSM Math								
ECSP Phys. Sci.								
SSSP Phys. Sci.								
Humanities					1	1		
T. V. Instr.								
Program. Instr.						1		
Teach. Mach.								
Lang. Lab						1		
Data Proc.								
Telephone Amp.								
Gaming								
Flex. Sched.								
Team Teach.								
College Crs.					.			
Non-graded								
Teach. Aides								
Hon. St. Hall								
Work-Study					1			
Sch.-in-Sch.								
Cult. Enrich.								
Stu. Exchange								
Opt. Atten.								
Ext. Sch. Yr.								
Totals					3	3		
Mean					1.5	1.5		

TABLE 116
Comparison of Innovations In Public Accredited Secondary Schools
In Suburban Areas With 500-1499 Pupils With Over $\$ 650$
Pupil Expenditure for 1966-67 School Year

SCHOOL FOOD SERVICE
 AND

SCHOOL DISTRICT ORGANIZATION
by

Vern Carpenter

School Lunch Consultant-Auditor Department of Public Instruction Des Moines, Iowa 50309

Reviewed by E. E. Cowan, Chief School Lunch Section Department of Public Instruction Des Moines, Iowa 50309

March 11, 1968

The Great Plains School District Organization Project
Iowa, Missouri, Nebraska, South Dakota
411 South 13th Street
Lincoln, Nebraska
68508

TABLE OF CONTENTS

Foreword 1
Problem. 2
Needy Boys and Girls 4
How Needy Children Live 4
Federal Government Legislation 7
Food Is Basic. 7
Special-Assistance Food Programs 8
Free and Reduced-Price Lunches 10
Breakfast Programs 11
Equality 13
Tender Loving Care 13
Nutrition. 13
Government-Donated Commodities 14
Suggested Organization 15
Recommendations 15
Summary 16

Hungry children at school should receive increased attention from educators. Much has been written about the fact that a hungry child cannot do his best in school. One assistant superintendent in a large city in Iowa said, "There is nothing to be gained from having a hungry child sit down at an expensive teaching machine because he will not learn. He is hungry."

The primary purposes of school district organization are to make possible: (1) the desired quality or excellence of the programs and services; (2) the efficiency of the organization for providing the programs and services; and (3) the economy of operation, or the returns recelved for the tax dollar invested in education. ${ }^{1}$

In Iowa, we consider school district reorganization to have been successful. Improvements in education have been made, and further improvements will be made. Leadership is needed. Food service programs should be expanded to all schools. The word "expansion" is not identical in meaning with the word "leadership"; hopefully, the two will be synergistic, i. e., their cooperative efforts will result in more benefits than will their individual contributions.

The value of this paper in future years, if any, would result in direct benefits to our nation's school boys and giris, both needy and non-needy. Shouldn't we feed the hungry child before we try to educate him?

Respectfully submitted,
Vern Carpenter
School Lunch ConsultantwAudjtor
Department of Public Instruction State of Iowa
March 11, 1968

1
${ }^{1}$ This paragraph was written by Ralph D, Purdy, Director, Great Plains School District Organization Project, Lincoln, Nebraska.

POSITTON PAPER

SCHOOL FOOD SERVICES--A Pupil-Oriented Service. (School Lunch Program, School Breakfast Program, midmorning and midafternoon snacks.).

PROBLEM

In Iowa's public schools, as is true in most states, so far as the school lunch program is concerned, the HAVES have it and the HAVE-NOTS have not it.

In Iowa an estimated 95,460 pupils attend public schools that have no food service. This is about 15 percent of the total enrollment of 638,000 . Most of these schools are located in Iowa's largest cities. Probably 99% are elementary pupils.

Within some of the areas where these schools are located, one would fine large numbers of families receiving public assistance and large concentrations of economically needy pupils. Many of these are Title I, ESE Act target schools, and a number of them have or have had Head Start Programs. Unfortunately, many of these are needy schools that have no food service program--some do not even have a milk program. This is the problem.

This pattern is similar throughout our nation. Nationwide, it is estimated that 9.5 million children attend 39,000 public and private schools that have no lunch program and that from $1,000,000$ to $2,000,000$ needy children attend these schools.

We believe that a school food service program is an integral part of the educational program and that every child, rich and poor alike, should have the opportunity to eat lunch at school.

A magazine article ${ }^{1}$ dated June 10,1966 , shows that in one of Iowa's

[^0]cities 18.2 percent of households had incomes under $\$ 2,500$ per year. Another city, 15.7 percent. In the city having 18.2 percent, there are 37 school buildings--10 have lunch programs (27 do not), 22 have milk programs (15 do not), five have breakfast programs for the first time this year. School administrators in this city realize the gravity of this situation and are taking initial steps to expand the lunch program to all buildings. Money is their chief concern.

In the city having 15.7 percent, there are 18 school buildings. Only eight have a lunch program. A few other Iowa cities in similar circumstances are expanding their lunch facilities. Money is also their chief concern.

We know of no city in Iowa that erpanded its food service to all school buildings during one year. Those cities that expanded their food service did so by starting one program at a time--at best, a few new programs in one school year.

In Iowa, the consideration of the ethnic groups of Negroes, American Indians, Spanish Americans, and poor whites in this situation is incidental because the basic element is one of economics. Money is needed to help these school districts start food service programs. These people living in areas without lunch programs haven't yelled long and loud enough about their needs.

As one mother said, after she asked that she not be identified, "Why can a new school in another part of our city have a new swimming pool yet we can't even have a lunch program?" If there is a satisfactory answer to her ques" tion, it would be lengthy and complicated.

Most city school districts nowadays include lunch facilities when building new schools, but do not put lunch programs in the older buildings so often located in poorer sections of their city. In many instances food could be transported to these older schools--it would not be necessary to equip more kitchens.

Head Start Programs have been one of the best convincers for needed school lunch or breakfast programs, especially when they have been operated during summer months in school buildings that had no food service during the regular school year. There is something about watching a hungry child eat that is far more convincing than a thousand assurances from others.

NEEDY BOYS AND GIRLS

Recent findings of a committee of businessmen called together by New York Governor Nelson A. Rockefeller to study problems of public welfare indicated that about 8,000,000 Americans are on public assistance. Of that number $2,000,000$ are 65 and over-few of them are capable of full-time work. About 500,000 are permanently and totally disabled. About 3,500,000 are needy children, and another $1,000,000$ are adults caring for these needy children. As reported in the Saturday Review", "These facts pointed to an obvious conclusion: Only a small minority of welfare recipients are in a position to work their way off relief rolls."

This committee also found that the number of needy children continues to increase despite the Pill, and that the increase is primarily in urban areas.

HOW NEEDY CHTLDREN LIVE

Often a needy mother and her children crowd into one frame house with other similar families. The rent is high. A fairly recent study by the County Welfare Office in Cedar Rapids, Iowa, of 500 welfare recipients, revealed that, although a family of four was allowed $\$ 38.40$ per month for house rent, they paid an average of $\$ 68.39$. The difference of $\$ 29.99$ came from their total grant--no doubt sometimes from their food budget. Iowa no longer computes separate budget items, all grants are lump sum for all needs.

[^1]Many of these families (mother and children) move often. Many move when their rent runs out.

River of Needy Children. An unceasing river of needy children flows from one elementary building to another through our nation's needy schools within our cities. Needy children move from one poverty-stricken neighborhood of a city to another, then back again. On the borders of Iowa they move from one river city to another, then return.

We are presently wondering if welfare recipients with school-age children will not, within one city, migrate to areas where schools are located that have special-assistance lunch programs (at reduced prices) and provide free lunches for needy children. The child would at least get one square meal a day.

In Iowa's city elementary schools, some of these needy children are enrolled and reenrolled three or four times during one school year. A few are enrolled and reenrolled three times in the same school building. Many are children from large families.

This movement of needy children accounts for the reported high turnover rates in Iowa's elementary schools. Building principals have orally reported their turnover rates to be as high as 90% within one building in one school year. And Iowans must accept the fact that we are not writing about another state that might top these percentages.

Present pupil-accounting procedures in Iowa do not provide a method for determining the rate of pupil turnover. We haven't studied how many times needy elementary pupils were enrolled and reenrolled during one year, nor how long they were out of school between moves even if their movements were within the same city or state. Sometimes these pupils move out of state and later return.

This writer asked the building principal of a needy school what his enrollment was, within a few pupils. Half apologetically he replied, "I have no idea. This morning we lost two or three families. One family of eight. We have them coming and going almost every day, you know." After hesitating a few moments, he added, "But many of them will be back in a month or two after their rent runs out."

This principal should not be misjudged because of his statement. He has the welfare of his pupils at heart and is very sincere in his work. His statement is based on years of experience working in needy schools.

Live for Today. Needy children live for today's benefits, for benefits they can see immediately available. Their past experiences have taught them to do so.

Children within one family bank together to fight all others. They have learned to protect each other.

- Some children develop a frustrated feeling during kindergarten and are lost in our school system for the remainder of their school years. This is a sad commentary because education is their best hope for breaking the chain of circumstances that engulfs them.

One city superintendent asks, "Where have we failed in education? We have families in our city who have been on relief for three generations and are still on relief, yet they attended our public schools."

Recent legislation has been enacted because the number of needy children continues to increase in urban areas. New programs are to be designed to vocationally train AFDC mothers. Under this law, states are to provide day care for children of $A F D C$ mothers who are required to take this training.

Several studies show that a large number of mothers work away from home during the daytime. Studies also show that a large number of working mothers have children of school age.

One result of this recent legislation, however, will be that more mothers will be away from home at noon. Many of their children will be unable to eat lunch at school for two reasons. First, in many instances, these children will attend schools that do not have lunch programs because they are located in poor sections of our cities. Second, many of these children will not have money to pay for their lunch if lunches are available. More needy children will be without one well-balanced meal a day.

FOOD IS BASIC
A basic reason why economically needy children do not succeed in school is the lack of proper food. A basic reason why Head Start Programs are succeeding, in this writer's opinion, is that food is a basic part of the program, plus the fact that the teachers give much personal attention.

Many schools furnish items of clothing to their most needy pupils.
Interested citizens anonymously contribute money to schools for clothing, a pair of shoes, a hairdo, a pair of glasses, or whatever the principal believes is needed to fit the circumstances.

The furnishing of clothing to needy pupils in Iowa is not limited to city schools only. Several county-seat towns do so. The superintendent in one county-seat town advertises in the local paper for donations of used clothing.

A child's personality changes when he is hungry. It also changes when he is cold.

SPECIAL ASSISTANCE FOOD PROGRAMS

Several building principals in needy schools without food service would like to have a lunch program or a breakfast program or a milk program, whichever they can get, but either their local administrative or school board will not approve. These principals are eager to start food programs, and are of the opinion that they will not experience any difficulty in securing the cooperation of their teachers, because the need is evident.

One daily typical occurence in needy schools is for a number of pupils to come to the principal's or to the nurse's office complaining of being sick at their stomach or of having headaches. Principals report that most of these children are hungry.

Occasionally, in some of these schools, teachers will buy a hungry pupil some food at noon.

Principals of these schools have experienced noon-hour difficulties for a long time. In their words, "the pupil goes home at noon and finds no one at home so he forages for himself, finds very little to eat, then goes downtown into business places, pool halls, gets in trouble, and my phone starts ringing. If I could only have a lunch program, have a closed noon hour and reschedule our classes, then I would have the children here during the noon hour so I could supervise them. It would be far less work for me and of much greater benefit to our students. We would have fewer downtown thefts, fewer problems."

In one Iowa school district, efforts were made for several years to establish a lunch program to no avail. The incident that finally convinced local school officials to change their minds was this: During the noon hour,
teachers stood by the windows on the second floor of the school building and watched a hungry child rummaging through garbage cans searching for something to eat. This school now has a lunch program.

After a lunch program is started in a needy school, a pattern develops. Pupils leave very little food on their plates, if any. They seldom complain about any food served them. These pupils feel that now they have a lunch program just like any other school.

Why aren't more special-assistance lunch or breakfast programs started in needy schools?

People living in needy areas haven't asked for programs often enough. They aren't in contact with school boarc' members and with school administrators often enough. Seldom are they asked to serve as members of a committee appointed to solve their problems.

The following special assistance programs are available for needy schools:

* Variable rates of school lunch reimbursement.
* Variable rates of school breakfast reimbursement.
* Variable rates of school milk reimbursement.
* Extra amounts of government-donated commodities.
* Non-food assistance (money to buy equipment).
* Reduction of lunch prices (to children).
* Reduction of breakfast prices (to children).
* Reduction of milk prices (to children).
* Free lunches for children.
* Reduced-price lunches for children.

An outstanding feature of these special assistance programs is that they may be adapted to existing circumstances rather than having to change existing circumstances to fit a stereotyped program. These programs are flexible and
can be adjusted to fit needs. We learn what the circumstances are and they design the program to fit the circumstances.

Still, many city school districts have not expanded their lunch program. Those districts in Iowa that are expanding are doing so largely by transporting food from existing kitchens rather than waiting until funds are available to build new kitchens. Some people think that transporting food is less than ideal; nevertheless, this practice is widespread, has been in use for many years, is successful, and gets the job done. As a result, many hungry children eat.

One large city in another state reports that during riots transporting food was less advantageous than having individual kitchens in each school.

FREE AND REDUCED-PRICE LUNCHES

School officials experience difficulties in authorizing free lunches or lunches at reduced prices. Admittedly, this is difficult to administer. Why should the burden of deciding which children are economically needy and entitled to free or reduced-price lunches fall upon school officials?

In needy schools there appear to be coorelations between the price charged for lunches, the number who eat, and the number who eat free. If the price is higher, fewer eat, more ask for free lunches, and more free lunches are served. If the price is substantially lower, more eat, fewer ask for free lunches, and fewer free lunches are served. So far, this has been our experience with both special assistance lunch and breakfast programs.

In special assistance programs, some parents refuse free lunches for their children; some apparently feel that they can dig up the money if the price is low enough. Some will not ask for free lunches while others seem not the least. bit hesitant to do so. Apparently, other parents aren't interested whether their child is fed or not.

Children differ scholastically, socially, and from the standpoint of physical maturity, but in the lunch line they are equals.

Is there equality in education when many schools do not have a food service program?

TENDER LOVING CARE

Newspapers and professional magazines print much about teacher strikes, teachers' requests for higher wages, and teachers' requests for one free period a day. Other requests have been made for convenience for teachers. Some of these requests are long overdue.

During the past few years teachers have complained about noon duty and about supervising during the noon lunch hour.

Publicity should be given to the outstanding work that some teachers and administrators are doing in connection with school feeding. There are many such stories available in every state.

Many teachers supervise lunchrooms during the noon hour. In some elementary schools teachers serve food. Others are literally spoon-feeding some of the handicapped children and as any mother will attest, this requires boundless patience. Teachers who are spoon-feeding children tell us that this noon feeding takes up to an hour and a half. This is part of their individualized educational program.

Two notable examples in Iowa where much individual attention is given are the Slinker School in Des Moines, and the Blackhawk County Board of Education Developmental Center in Cedar Falls.

NUTRITI ON

Nutrition is the foundation of all school feeding. If we in food service cannot justify food service from a nutritional standpoint, then we cannot justify a food program for any reason.

This is why the National School Lunch Program and the School Breakfast Program is each based on a sound nutritional pattern. After 20 years in exis tence, the Type A pattern for school lunches has had only one significant change. This recent change was to put more emphasis on iron content in lunches.

We, in food service, have not reached the optimum in food appeal to children. We may never. The price we can set for breakfasts and lunches affects participation which affects incomer-the price must be kept as low as possible. Yet a low price limits the type and amount of food that can be purchased and served. We CAN NOT serve steaks for 30 cents. But we CAN and DO serve wholesome, nutritionally well-balanced lunches for 30 cents.

GOVERNMENT-DONATED COMMODITIES

Government-donated commodities benefit lunch and breakfast programs, but in the most bounteous year provide only about 20 percent of food used.

At present, the federal government purchases food and distributes it to each state. State agencies distribute it to participating public, private, and parochial schools based on average daily student participation in the lunch program.

An alternative frequently voiced is that the government should not do the purchasing but instead should apportion the money to state agencies and let them apportion it to school districts. Districts would use these funds to purchase food. Some people contend that they could do a better job of buying than the government does. Others think not.

Another argument is that one of the original purposes of the commodity program was to use farm surpluses, but that these surpluses have dwindled. Another contention is that as our population increases our food surpluses will. decrease.

In any case, government-donated commodities are essential to school food
service programs. Without them, lunch prices would have to be raised at least 10 cents, which would reduce participation, lower the cash income, and most seriously affect the child who was least able to pay for his lunch.

SUGGESTED ORGANIZATION

The following suggested organization is based on findings of several hundred administrative reviews (visits) of lunch programs in Iowa:

* State School Lunch Section Staff.
* One food service supervisor assigned to each Area Community College staff.
* One school food supervisor employed in each school district.
* One head cook-manager assigned to each kitchen.
\therefore One cook for each 90 to 100 lunches served, or one cook-hour for each 14 lunches served.

REGOMMENDATIONS

* That each school building in each state have a food service program, either by having a kitchen or by having food transported to it.
* That all children have the opportunity to eat lunch at school at no cost. The food program would be tax-supported. At present, many school districts in Iowa budget money from their general fund for their lunch programs. This recommendation is not original with this writer.
* That breakfast programs be started in all needy schools and in any other school that requests this program. Many schools transport large numbers of pupils.
* That recipients of public assistance be required to file a report of income similar to an income tax report (recommended by Governor Rockefeller's committee of businessmen, 1967). The committee felt that these persons would be as honest in reporting their income as others are in filing their state and federal income tax returns.
* That training and educational requirements be established for food service workers.
* That each state legislature appropriate funds:

1. for kitchens, lunchrooms, and storerooms, or for equipment to transport food in.
2. at the rate of at least $\$ 2,000,000$ a year (in Iowa) until every school had a food service program. In Iowa this would take an estimated six to eight years.
3. that would be reimbursed to school districts through state department of education school lunch sections.

The political party that would adopt this program as part of their platform would win many votes because the public believes in school feeding. When you watch a hungry child eat you realize that you have attained your goal, and that public money has been well spent.

SUMMARY

* The number of needy children increases each year.
* Reliable surveys show that many children eat either an inadequate breakfast or no breakfast. This includes rich and poor alike.
* We know that for many children the lunch they eat at school is their best balanced meal of the day.
* For some of these children the lunch they eat at school is their only meal of the day.
* We believe that for some children the breakfast they eat at school is their'best and only meal of the day.
* We know that many needy schools in our nation's cities are without food service.
* We believe that to give additional money to parents of needy children would not guarantee that their children would be better fed.
* We believe that one method of making certain that a hungry child receives one well-balanced meal a day is to serve him that meal at schoo1. We further believe that public funds spent for food to feed him are well spent.
* We believe that a hungry child cannot do his best in school.
* We believe that there are many hungry children in Iowa and in the nation.

A EOOTTON PATR
preperced by

T0め Ditrector
Gent Sating Onqomeanion Stury
Stade Depacment of Roblus jomopocion Dea botnem. Toma

א\%?
Eroject staft
Gent matas orgatentow Bory

JuTy 22: 1955

 mooremperton mope:

3. estuctor athont atatiote.

 or the otate. :

3

 chitrow of the area.
2. To do an at tha least pobabob coot.
 groups of powhe.

 moch daud as ontinas to:
A. A her shan oncesom.
i. Wentremon cowhers.

D. Got enmeramad enapmanc.
 arsicues.
7. Wema w wand ono bato buma.

2. Femoperachor, ts too wat womk.

4. Gumed on cazara bome vocton.
2. Gock foheore bow an:
A. Faze buwgh bo:
(1) Provid one teahen pen goad in etomenty whon.

 Tha, 1058.

 Sbetus:

20\%tata	
Mntacencoon	bexe a humontrite
Wyatand Rutemes	(temestonat
Sockt Gosobeo	3uathens on Somestetal
tuons and Pum lass	
fectot	

D. Atancotag serchen,

द, Aromateri amemem.
B. Besy 6 rewot.

 thach magnon remusconata,

 remonomontr mag ame: ${ }^{6}$

i. Gnouese aro
2. Socon. bantea
3. रotheronos
(4. Selence
3. Thath me hymont Rumetan

 56.

色，Matherates ．．．．．．．．．．．．－－－．．．．．．．．．．－ 5 Smadeses

7．Tomatatug ．．．．．．．．．．．．．．．．．．．．．．－．．－－ 3 Sonerces

me getrabg－．．．．．．．．．．．．．．．．．．．．．．．．．．亿 yomen

E0．taste ．．．．．．－．．．．－．．．．．－．．．．．．．．．．．．．．．． 2 geces

A．Dउ，onastent entroce．
Q．bpertas 6tacest

3．Wraneyy

弓aty

 tanoth rumeng the pect tom years.
gobe

2935-56	3,334	800	6, 272
2956-57	2,903	708	3.603
395750	2,938	765	3,333
2958.83	2,066	694	2,779
2060-63	2,033	562	3.59
2963-62	80.	520	3.393
396-65	762	460	3,232
1903-8	70.	463	3. 364
1965-35	6.39	459	1,000
2065-66	508	658	3.056
360-67 amendy	67	69	502

 06 Solomas

Whar

261974

$\begin{gathered} \text { B. } B_{\sim} \\ \text { 4otent } \end{gathered}$	$\begin{aligned} & \text { No ot } \\ & \text { netates } \end{aligned}$	6	6-9-3	F-6	S-\%-6	Ss\%.
50. 90	29	9		20		
100.4. 6	35	36		42	$\cdots 7$	
450.89	9	37	9	60	3.3	\therefore
20-20	36	1%	3	2%	36	6
$280-893$	48	73	9	36	32	
96959	8	\because	\because	6	W	
59mon,	2	4	3	4	$\%$	
S0-60	23	3	\because	4	\%	
50.80	3	\therefore	\because	3	\%	1
6, $3-79$	\cdots		3:	4	0	
\%0.989	$\dot{*}$		2			2
Wera	2	.	3			3

 aten of dswemas:

Roble me

Yeas	Whase	Eexta	Ygrese
1054.05	126.0	20.0	. 3
205:36	255.	22.6	. 3
2056-59	186.9	26.5	3
20570.06	297.5	31.0	. 6
1959	402. 5	37.6	4
1959-66	402.5	58.2	. 4
1060-6\%	90.0	3.0	\therefore
106\%-6\%	542.0	88.0	3.5
1960.63	539.0	03.4	1.4
1963-6\%	520.6	97.0	2.9
1964 6	50.0	200.0	3.3

 yense emater

 datentecs.

 क-men mane whomb.

Seate peosemene Mullopoth:

 area the prachang yan.

 7

 sump remans 300 smanta.

 ducemobse whect.

7 Op. cta, 92.5
6 275.1, Gode or Toma, 294s.

 trome poparations.

 fremotatel moth Foxec.

 conetceratione.

 sixte gumpots,

 of axteria.
 cutacia.
 districte.

 created gabericis.
\square

,

[^0]: Sales Management, The Magazine of Marketing, "Survey of Buying Power," Volume 96 , No. 12, June 10, 1966, 304 North Crystal Street, East Stroudsburg, Pennsylvania 18301.

[^1]: ${ }^{1}$ Saturday Review, December 9, 1967, Saturday Review, Inc., 380 Madison Ave., New York, N. Y., page 20.

