Commercial and Industrial Network Improvement and Programming Policy

SUMMARY

(1)
Iowa Department of Iransportation

Iowa Department of Transportation

800 Lincoln Way, Ames, IA 50010
515-239-1661

January 3, 1992
Ref. No. 763

Dear Report Recipient:

A copy of the Iowa Transportation Commission's recently approved Commercial and Industrial Network Improvement and Programming Policy report is enclosed.

The report provides a technical assessment of improvement needs on this network for the next 20-year period. The policy will be used as a guide in programming construction projects, it provides direction for the department, and also informs the public where and when major improvements to the network are needed from a technical analysis standpoint. Please note this is not a program of projects or schedule for construction.

I have also enclosed a 15 -page brochure entitled "Who to Contact." This brochure is organized by topic and lists phone numbers, as well as the appropriate office to contact to answer your questions or help with your concerns.

I trust these documents will be helpful to you. If you have comments or wish to discuss this material, please contact Don Ward at (515)239-1137 or myself.

Thank you for your interest in Iowa's transportation system.

CIM:DGW:SDP: rel
Enclosure

NOVEMBER 1991
 COMMERCIAL AND INDUSTRIAL NETWORK IMPROVEMENT AND PROGRAMIMING POLICY SUMMARY

Prepared by:
IOWA DEPARTMENT OF TRANSPORTATION

Planning and Research Division
Office of Advance Planning
Telephone: (515) 239-1669

TABLE OF CONTENTS

FOREWARD 1
INTRODUCTION 3
IMPROVEMENT PROGRAMMING PROCESS 9
IMPROVEMENT NEEDS 15
SUMMARY OF BYPASS NEEDS 17
IMPROVEMENT PRIORITIZATION SUMMARY 23

LIST OF FIGURES

FIGURE1 Commercial and Industrial Network 2
FIGURE 2 Major Primary Highway Improvements In Adjacent States 4
FIGURE 31988 Traffic 5
FIGURE 41988 Truck Traffic 6
FIGURE 5 Corridors and Segments 8
FIGURE 6 Future Traffic 10
FIGURE 7 Current Level of Service 12
FIGURE 8 Future Level of Service 13
FIGURE 9 Summary of Bypass Needs 16
FIGURE 10 20-Year Improvements 21

LIST OF CHARTS

Chart A
Improvement Programming Process 9
Chart B
Four-lane Mileage 15
Chart C
Improvement Needs 20
Chart D
Improvement Costs andFunding Comparison22

The Commercial and Industrial Network improvement and programming policy reflected in this summary report was adopted for use in future highway programming by the Transportation Commission on November 5, 1991. The lowa Department of Transportation, as directed by the Legislature, has established a 2,331-mile network of commercial and industrial highways and is directing a significant amount of primary construction funding resources toward improvements to this network.

This summary outlines the technical needs assessment for improvements on the Commercial and Industrial Network for the next 20 -year period. The portions of the network which require four-lane capacity, as well as major improvements to the twolane sections, are graphically displayed. Detailed improvement needs and costs are listed in tabular form for the first two fiveyear periods (1992-1996 and 1997-2001). It is essential to note that these improvement needs are the result of a technical assessment and do not imply any funding commitment.

The Commercial and Industrial Network improvement and programming policy will be used as a guide in programming construction projects and developing the lowa Transportation Improvement Program, which determines where federal and state highway funds will be spent across the state. This policy provides direction for the department and also informs the public where and when major improvements to the network are needed from a technical analysis standpoint.

Continuity has been incorporated into the 20-year improvement needs through the specific types of improvements and the timing of corridor improvements. The Commercial and Industrial Network improvement programming policy reflects an emphasis on the development of long corridors (60 to 80 miles) rather than shorter spot improvements, thereby maximizing the benefits of investment dollars.

This report identifies the expected schedule for improvements on the Commercial and Industrial Network based on a technical assessment. Naturally, as specific design work develops and a more detailed project assessment is made, adjustments to this system level planning study could occur.

When looking at the total network improvement costs and funding levels, it is important to note two items. First, the available funds for the 20-year period do not include any special federal funds (such as demonstration funds). Second, project costs could increase due to a variety of reasons: costs will increase as projects are delayed and moved back in the construction program due to time required to design major highway projects; environmental concerns can increase overall project costs and delay projects; and as projects are built, unforeseen circumstances, such as adverse weather or oil embargoes, could increase total costs.

Commercial and Industrial Network

Introduction

lowa is served by 112,771 miles of highways and streets under the jurisdiction of the state, municipalities, and counties. The state primary highway system comprises 9,746 miles (excludes ramps) of this total and is classified into five levels:

- Interstate Highway System
- Commercial and Industrial Network
- Area Development routes
- Access routes
- Local Service routes

This plan deals only with the second level--the Commercial and Industrial Network. In 1988 the State Legislature directed the Transportation Commission to "identify within the primary road system a network of commercial and industrial highways." In the same legislation, the department was instructed to allocate a minimum of $\$ 30$ million annually of primary road funds to the network beginning with fiscal year 1991.

During its 1989 session the lowa Legislature established a need for the department to give the Commercial and Industrial Network a high priority in programming future improvements. This legislation clearly states the purpose for developing the Commercial and Industrial Network is "to enhance opportunities for the development and diversification of the state's economy." The 1989 legislation further states, "The purpose of this highway network shall be to improve the flow of commerce; to make travel more convenient, safe, and efficient; and to better connect lowa
with regional, national, and international markets. The Commission shall concentrate a major portion of its annual construction budget on this network of commercial and industrial highways."

The State Transportation Commission initially designated the Commercial and Industrial Network in June 1988 and made additions to the network in October 1989 and November 1990. The map on page 2 (Figure 1) reflects the currently designated Commercial and Industrial Network. The criteria used to designate the network are:

- Service to regional growth centers

- Continuity with major primary highways in adjacent states (see Figure 2)
- Current annual average daily traffic (ADT) and changes in ADT since 1980
- Current annual average daily large truck traffic and changes since 1980
- Area coverage

An average rural segment of the Commercial and Industrial Network carries 3,400 vehicles per day, of which 350 are large trucks. Twenty-six percent of vehicle miles of travel on the entire rural state highway system occur on the rural portion of the Commercial and Industrial Network. This system, in conjunction with the Interstate Highway System, comprises 32 percent of lowa's total state primary system but carries 60 percent of total rural primary travel.

Major Primary Highway Improvements in Adjacent States

Figure 2

1988 Traffic

Figure 3

1988 Truck Traffic

Figure 4

The Commercial and Industrial Network includes 2,331 miles: 2,082 rural miles and 249 urban miles. Legislative action in 1989 restricted the size of the Commercial and Industrial Network to 2,500 miles. The 2,331 miles comprising the Commercial and Industrial Network represent the most important non-Interstate system primary highway routes in lowa. This network complements lowa's 782 miles of Interstate Highway System and provides high quality highway access to all areas of the state to serve lowa's economy. Over 72 percent of the land area of lowa, over 80 percent of lowa's population, and over 85 percent of all 150 lowa cities with more than 2,000 residents are on or within 10 highway miles of the Commercial and Industrial Network.

The 1988 annual average daily traffic and annual average daily large truck traffic for all sections of the Commercial and Industrial Network are shown on the maps on pages 5 and 6 (Figures 3 and $4)$.

Corridors and Segments

Figure 5

Improvement Programming Process

For purposes of analyzing the Commercial and Industrial Network, the 2,331-mile system was subdivided into three levels:

- Route--connects major population and economic activity centers
- Corridor--portion of route between logical terminal points, such as major highway junctions
- Segment--portion of corridor used as basis for improvement needs analysis and program management

The map on page 8 (Figure 5) shows the Commercial and Industrial Network routes, corridors, and segments.

The flow chart (Chart A) outlines the process which was used in developing the improvement needs assessment on the Commercial and Industrial Network.

FutureTraffic

Figure 6

Economic development was brought into the process through traffic forecasts which were based on demographic (population, density, and labor force), economic (employment trends in manufacturing, wholesale, retail, service, and personal income), and geographic (distance to the nearest metropolitan area and market accessibility) factors. Also considered were efforts being undertaken by cities and counties to assist the growth and diversification of local economies. The forecasted daily traffic by the year 2011 is shown on the map on page 10 (Figure 6).

Improvement needs were identified on the basis of a level of service analysis using future traffic to assess current highways. The Transportation Commission's objective was to have all rural segments of the Commercial and Industrial Network operating under conditions represented by a level of service "B." Level of service "B" represents stable traffic flow. The current level of service (current road conditions and existing traffic) and the year 2011 level of service (current road conditions and future traffic) are shown on the following maps (Figures 7 and 8).

Reconstruction/construction and resurface improvement needs were calculated using highway sufficiency rating, pavement condition rating, and accident experience criteria. These improvement needs are listed for each of the 63 corridors representing the Commercial and Industrial Network in the following tables and are also graphically displayed on the following maps. Needs are subdivided into four types:

- Capacity-improvements to the roadway which result in an increase in the number of vehicles which can pass over a given section of highway. Generally, this reflects constructing additional traffic lanes.
- Reconstruction/Construction--improvements which result in strengthening the structural integrity of the roadway. This may involve replacing the subbase or pavement, doing pavement inlay projects, or overlays of sufficient thickness to account for an equivalent pavement/roadbed condition improvement.
- Resurface-improvements consisting of an overlay of existing pavement.
- Bypass--new alignment of route around communities to alleviate capacity or congestion problems.

Detailed cost estimates were developed for each individual improvement identified during this 20 -year time period. In concert with costs, revenue forecasts were developed for both state and federal highway funding. The process evaluated needs, costs, and revenues to develop a needs assessment for improvements on the Commercial and Industrial Network.

In developing the improvement needs assessment on the Commercial and Industrial Network, action was taken to facilitate and encourage increased local involvement. Extensive demographic and economic forecasts were sent to the 16 regional planning agencies for review and revision. Interaction with the regional planning agencies provided the basis for incorporating economic development considerations into the development of the improvement and programming policy for the Commercial and Industrial Network.

Current Level of Service

Figure 7

Future Level of Service

Figure 8

ImprovementNeeds

The existing 2,331-mile Commercial and Industrial Network consists of the following:

Existing four-lane sections	380	miles
Five-Year Program four-lane sections	180	miles
Existing two-lane sections	1,771	miles

Twenty-four percent of the network is existing four-lane sections or programmed as four-lane sections in the 1991-1995 lowa Transportation Improvement Program.

The capacity analyses identified an additional 502 miles of existing two-lane highways with unacceptable levels of service for forecasted future traffic conditions. These 502 miles will need to be improved to four-lane standards within the next 20 years (Chart B). These capacity improvements would result in the following Commercial and Industrial Network configuration by the year 2011:

Four-lane sections	1,062 miles
Two-lane sections	1,269 miles

Forty-six percent of the network would become four-lane sections by the year 2011 .

Commercial and Industrial Network

Four - lane Mileage

Total in Year 2011--1062 Miles*
*Based upon projected needs, does not imply a funding comitment.

Summary of Bypass Needs

Figure 9

Summary of Bypass Needs

City	Route	Existing	Programmed	Proposed	Future	City	Route	Existing	Programmed	Proposed	Future
						Denison	US 30			X	
Afton	US 34	X				Denver	US 63		X		
Agency	US 34			X		Des Moines	US 65		X		
Ainsworth	US 218		X			Des Moines	IA 5			X	
Albia	US 34				X	De Witt	US 30	X			
Albion	IA 330			X		Dike	US 20		X		
Alden	US 20	X				Donnellson	US 218			x	
Algona	US 18				X	Dubuque	US 61		X		
Alton	IA 60				X	Dunlap	US 30				X
Ames	US 30	X				Dyersville	US 20	X			
Atlantic	US 71				X X	Early	US 20				X
Auburn	US 71				X	Eddyville	IA 23/137		x		
Audubon	US 71				X	Eldridge	US 61	x			
Batavia	US 34			X		Emmetsburg	US 18				x
Blairsburg	US 20	X				Epworth	US 20	X			
Bloomfield	US 63				x	Fairfield	US 34			X	
Blue Grass	US 61		X			Farley	US 20	x			
Bondurant	US 65	x				Floyd	US 218	x			
Boone	US 30	X				Fort Dodge	US 169	X			
Burlington	US 34	X				Fort Madison	US 61			X	
Carroll	US 30			X		Fredericksburg	US 18				x
Cascade	US 151			X		Garner	US 18				X
Cedar Falls	US 218		X			Glenwood	US 34	X			
Cedar Rapids	US 30	x x				Glidden	US 30				X
Chariton	US 34	X				Grand Junction	US 30				X
Charles City	US 218		X			Granger	IA141	X			
Chester	US 63				X	Grant	US 71	X			
Clarence	US 30				X	Grundy Center	IA 14			X	
Clarinda	US 71	X				Guttenberg	US 52	X			
Clear Lake	US 18				X	Hartley	US 18				X
Colo	US 30	X				Hinton	US 75				X
Corning	US 34	X			X	Hospers	IA 60				X
Correctionville	US 20		X		X	Independerice	US 20	X			
Crawfordsville	US 218		X			lowa City	US 218	X			
Creston	US 34				X	lowa Falls	US 20			X	
Cylinder	US 18				X	Janesville	US 218		X		
Danville	US 34			X		Jefferson	US 30				X
Davenport	US 61	x				Jesup	US 20	X			
Decorah	US 52	x				Keokuk	US 61	X			
Delaware	US 20	X				Le Grand	US 30			X	

Clty	Route	Existing	Progr'ammed	Proposed	Future	City	Route	Existing	Programmed	Proposed	Future
Le Mars	IA 60			x		Red Oak	US 34	x			
Lisbon	US 30			x		Rockwell City	US 20				x
Logan	US 30				x	Rudd	US 18		x		
Manchester	US 20	$\frac{x}{x}$				Sac City	US 20				x
Maquoketa	US 61	x				Sanborn	US 18				X
Marion	US 151	x				Sheldon	IA 60				X
Marshalltown	US 30		x			Sibley	1460				x
Mason City	US 18		x			Sioux City	US 75		x		
McGregor	US 18	x				Sioux City	US 20	x			
Mediapolis	US 61				x \times	Spencer	US 18		x		
Merrill	US 75				X	Springville	US 151		x		
Middletown	US 34			X		State Center	US 30	x			
Missouri Valley	US 30		X			Storm Lake	US 71		x		
Monona	US 18	x				Swedesburg	US 218		x		
Monroe	IA 163		X			Tama	US 30		x		
Monticello	US 151			X		Toledo	US 30		X		
Mount Pleasant	US 218		x			Vail	US 30				x
Mount Pleasant	US 34		X			Ventura	US 18				x
Mount Vernon	US 30			x		Wapelio	US 61				x
Muscatine	US 61	x				Waterloo	US 218	x			
Nashua	US 218			x		Waterloo	US 20	x			
Nevada	US 30	X				Waverly	US 218		x		
New Hampton	US 63			$\underset{x}{x}$		Wever	US 61		x		
New London	US 34			X		Webster City	US 20	x			
New Vienna	IA 136				x	Welton	US 61		x		
Nora Springs	US 18		X			West Burlington	US 34	x			
Ogden	US 30	X				West Union	US 18				X
Okoboji	US 71			X		Westside	US 30				x
Olds	US 218		x			Williams	US 20	x			
Osceola	US 34				X	Winthrop	US 20	x			
Oskaloosa	IA 163		x			Zwingle	US 61	X			
Otley	IA 163		X								
Ottumwa	US 34				X						
Pella	IA 163		X								
Plainfield	US 218			X							
Postville	US 18				X						
Prairie City	IA 163		x								
Raymond	US 20	X									

Commercial and Industrial Network routes through communities were evaluated for alternatives to make travel more efficient by decreasing travel time, congestion, and delay. A summary of community bypass needs during the 20-year period is shown on the map on page 16 (Figure 9). A list of each community currently bypassed and those with an identified need for a future bypass during the 20-year period is detailed on pages 17 and 18.

In addition to capacity improvements, significant amounts of reconstruction/ construction and resurfacing work will need to be completed. For the 20 -year period, this work includes:

Reconstruction/construction	570 miles
Resurfacing	1,480 miles

The proposed schedule for improvements involved a thorough evaluation of traffic volume-to-capacity relationships using level of service criteria, as well as an assessment of pavement history/ condition and accident experience. For analyzing reconstruction projects, a roadbed life of 60 years was used. Resurfacing projects were forecasted as needed every 15 years for highways with a low pavement condition rating. Capacity improvement projects were listed whenever an unacceptable level of service was forecasted in concert with appropriate traffic volumes for that time period. These projects were coordinated so that improvements would not be duplicative or inefficient. For example, if a resurfacing improvement was needed more than five years prior to a capacity improvement, the resurface and capacity improvements were scheduled independently. However, if a resurface and capacity improvement were needed within five years of one another, the improvements were coordinated to occur simultaneously.

Commercial and Industrial Network
Improvement Needs 1992-2001
Costs of these improvements to the year 2011 would be $\$ 2,580$ million or approximately $\$ 129$ million per year. These costs (represented in 1992 constant dollars) are summarized in the following table.

Commercial \& Industrial Network
Cost Summary

				20-Year
	1992-1996	1997-2001	2002-2011	Total
Capacity/				
	\$ 880	\$ 440		
Reconstruction/			,	
Construction	409	131	\$580	\$2,580
Resurface	102	38		
Total	\$1,391	\$ 609	\$580	\$ 2,580 million

The Commercial and Industrial Network technical assessment improvement needs for the first 10-year period (1992-1996 and 1997-2001) are listed by work type for each of the 63 corridors in the following pages. Costs are totaled for each corridor. Costs by improvement type are shown in Chart C for the first two fiveyear periods (1992-1996 and 1997-2001). Improvement needs for the entire 20 -year period are graphically shown on the map on page 21 (Figure 10). State and federal revenue projections (in constant 1992 dollars) resulted in $\$ 2,752$ million being available for improvement projects on the Commercial and Industrial Network for the 20 -year period.

Legend
Capacity/Bypass
Reconst/Const
Resurfacing
Total Needs
Chart C

20-Year Improvements

				20-Year
Available Funds	1992-1996	1997-2001	2002-2011	Total
	$\$ 688$	$\$ 688$	$\$ 1,376$	$\$ 2,752$ million

Approximately $\$ 688$ million in federal and state funding would be available over each five-year period. The total $\$ 2,752$ million or $\$ 138$ million per year that would be available for Commercial and Industrial Network improvements assumes state highway construction purchasing power continues at the current level (Chart D).

Implementation of these Commercial and Industrial Network improvements over the next 20-year period is realistic and reasonable. By incorporating these improvement priorities in the department's highway programming efforts, financially responsible decisions can be made. This schedule of 20 -year improvements is achievable based on this comparison of total costs and programming funds available.

	1992-1996	1997-2001	2002-2011	20-Year Total
Total Improvement Costs	$\$ 1,391$	$\$ 609$	$\$ 580$	$\$ 2,580$ million

Commercial and Industrial Network Improvement Costs and Funding Comparison

Chart D

1125191

ImprovementPrioritizationSummary

	$1992 \$($ in 1000's)
Work Type Code:	Programming Status Code:
1-Capacity	1-In 1991-1995 Program
2-Construction/Reconstruction	2-In Planning Section of 1991-1995 Program
3-Resurface	3-In Recommended 1992-1996 Program
4-Bypass	4-In Planning Section of Recommended 1992-1996 Program
	5-Not Programmed


```
Technical need assessment.
Does not imply funding commitment.
```

	1992 \$ (in 1000's)
Work Type Code:	Programming Status Code:
1-Capacity	1-In 1991-1995 Program
2-Construction/Reconstruction	2-In Planning Section of 1991-1995 Program
3-Resurface	3-In Recommended 1992-1996 Program
4-Bypass	4-In Planning Section of Recommended 1992-1996 Program
	5-Not Programmed

Technical need assessment. Does not imply funding commitment.		1992 \$ (in 1000's) Programming Status Code: Type Code: 1-In 1991-1995 Program apacity 2-In Planning Section of 1991-1995 Program onstruction/Reconstruction esurface 3-In Recommended 1992-1996 Program ypass 4-In Planning Section of Recommended 1992-1996 Program 5-Not Programmed									
Roadway Segment $\quad \begin{aligned} & \text { Corridor } \\ & \text { Number }\end{aligned}$		Route	Mileage	$\begin{gathered} 1992-96 \\ \text { Cost } \\ \hline \end{gathered}$	$\begin{gathered} \text { 1992-96 } \\ \text { Total } \end{gathered}$	Work Type	$\begin{gathered} 1997-2001 \\ \text { Cost } \end{gathered}$	$\begin{gathered} \text { 1997-2001 } \\ \text { Total } \end{gathered}$	Work Type	Program 10-Year Status Total	
US 30 to E Jct IA 175	11	US 169	16.10							1	
E Jct IA 175 to W Jct IA 175	11	US 169	3.82	\$2,800		2				1	
W Jct IA 175 to US 20	11	US 169	11.02	\$10,600		2				1	
US 20 to Ft. Dodge	11	US 169	3.71							5	
					\$13,400						\$13,400
Ft. Dodge to US 18	12	US 169	42.77							1	
MO State Line to E Jct IA 2	13	US 63	15.18							5	
E Jct IA 2 to US 34	13	US 63	18.58				\$13,500		1	2	
								\$13,500			\$13,500
Relocated US 65 to IA 316	14	IA 163	6.18							5	
IA 316 to Prairie City Bypass	14	IA 163	4.41	\$6,700		1				1	
IA 316 to Prairie City Bypass	14	IA 163	4.41	\$3,300		2				1	
Prairie City Bypass	14	IA 163	3.48	\$9,000		4				1	
Prairie City to Monroe Bypass	14	IA 163	4.70	\$3,600		1				1	
Prairie City to Monroe Bypass	14	IA163	4.70	\$3,500		2				1	
Monroe Bypass	14	IA 163	3.96	\$9,200		4				3	
Monroe Bypass to Otley Bypass	14	IA 163	2.62	\$3,100		1				1	
Monroe Bypass to Otley Bypass	14	IA 163	2.62	\$1,900		2				1	
Otley Bypass	14	IA 163	2.14	\$3,700		4				3	
Otley Bypass to Pella Bypass	14	IA 163	4.81	\$5,600		1				1	
Otley Bypass to Pella Bypass	14	IA 163	4.81	\$3,400		2				1	
Pella Bypass	14	1A163	3.84	\$9,300		4				1	
\$62,300											\$62,300

```
Technical need assessment.
Does not imply funding commitment.
```

	1992 $\$$ (in 1000's)
Work Type Code:	Programming Status Code:
1-Capacity	1-In 1991-1995 Program
2-Construction/Reconstruction	2-In Planning Section of 1991-1995 Program 3-Resurface
3-In Recommended 1992-1996 Program 4-Bypass	4-ln Planning Section of Recommended 1992-1996 Program
	5-Not Programmed

Roadway Segment $\quad \begin{aligned} & \text { Corridor } \\ & \text { Number }\end{aligned}$		Route	Mileage	$\begin{gathered} \text { 1992-96 } \\ \text { Cost } \end{gathered}$	$\begin{gathered} \text { 1992-96 } \\ \text { Total } \end{gathered}$	Work Type	$\begin{aligned} & 1997-2001 \\ & \text { Cost } \end{aligned}$	$\begin{gathered} \text { 1997-2001 } \\ \text { Total } \end{gathered}$	Work Type	Program Status	10-Year Total
Pella Bypass to Oskaloosa Bypass	15	IA 163	14.05	\$20,100		1				1	
Pella Bypass to Oskaloosa BypassOskaloosa Bypass	15	IA 163	14.05	\$10,500		2				1	
	15	IA 163	6.50	\$7,900		4				1	
Oskaloosa Bypass to Eddyville	15	IA 137	5.60	\$6,500		1				1	
Oskaloosa Bypass to Eddyville	15	IA 137	5.60	\$4,200		2				1	
Eddyville Bypass	15	IA 137	3.20	\$5,300		4				1	
Eddyville Bypass to Relocated IA 23	15	IA 23	5.20	\$5,900		1				1	
Eddyville Bypass to Relocated IA 23	15	IA 23	5.20	\$3,900		2				1	
Relocated IA 23 to IA 389/US 63	15	IA 23	5.70	\$7,500		1				1	
Relocated IA 23 to IA 389/US 63	15	IA 23	1.25	\$4,200		2				1	
IA 389/US 63 to Ottumwa (US 34)	15	US 63	5.91							5	
				\$76,000							\$76,000
1-80 to End Existing 4 -lane	16	US 65	4.41	\$3,400		2				5	
Begin 2-lane - IA 931	16	US 65	2.11	\$3,600		1				5	
IA 931 to IA 117/330	16	US 65	7.28	\$6,400		1				5	
IA 931 to IA 117/330	16	US 65	7.28	\$4,200		2				5	
IA 330 to US 30	16	IA 330	20.31							5	
				\$17,600							\$17,600
US 30 to Albion Bypass	17	14330	6.89				\$5,800		2	2	
Albion Bypass	17	IA330	1.80				\$2,100		4	2	
Albion Bypass to IA 14	17	IA330	4.44				\$3,600		2	2	
IA 330 to Grundy Center Bypass	17	IA14	22.12				\$6,500		2	5	
Grundy Center Bypass	17	IA14	1.75				\$2,500		4	5	
Grundy Center Bypass to US 20	17	IA 14	6.63							5	
							\$20,500				\$20,500

Technical need assessment. Does not imply funding commitment.		1992 \$ (in 1000's) Programming Status Code: rk Type Code: 1-In 1991-1995 Program Capacity 2-In Planning Section of 1991-1995 Program 3-In Recommended 1992-1996 Program lesurface 3-In Planning Section of Recommended 1992-1996 Program 3pass 5-Not Programmed									
Roadway Segment	Corridor Number	Route	Mileage	$\begin{gathered} 1992-96 \\ \text { Cost } \\ \hline \end{gathered}$	$\begin{gathered} \text { 1992-96 } \\ \text { Total } \end{gathered}$	Work Type	$\begin{gathered} 1997-2001 \\ \text { Cost } \end{gathered}$	$\begin{gathered} \text { 1997-2001 } \\ \text { Total } \end{gathered}$	Work Type	Program 10-Year Status Total	
SCL Creston to W Jct US 169	32	US34	10.25	\$1,900		3				5	
W Jct US 169 to E Jct US 169	32	US34	6.20							5	
E Jct US 169 to 1-35	32	US34	15.12	\$2,000		3				1	
					\$3,900						\$3,900
1-35 to Jct IA 14	33	US34	26.21							1	
IA 14 to IA 97	34	US34	6.05							1	
IA 97 to IA 68	34	US34	7.18	\$5,700		2				1	
IA 68 to IA 5	34	US34	13.23	\$1,800		3				5	
IA 5 to Wapello County	34	US34	8.87				\$1,200		3	1	
Wapello County to W Jct US 63	34	US34	11.58							5	
					\$7,500			\$1,200			\$8,700
W Jct US 63 to ECL Ottumwa	35	US34	3.50							1	
ECL Ottumwa to WCL Agency	35	US34	3.24	\$1,000		3				1	
Agency Bypass	35	US34	2.00				\$3,000		4	5	
ECL Agency to Jct IA 16	35	US34	3.30	\$2,300		1				2	
ECL Agency to Jct IA 16	35	US34	3.30	\$2,500		2				2	
Jct IA 16 to WCL Batavia	35	US34	3.33	\$2,400		1				2	
Jct IA 16 to WCL Batavia	35	US34	3.33	\$2,500		2				2	
WCL Batavia to NCL Batavia	35	US34	0.53	\$800		1				2	
WCL Batavia to NCL Batavia	35	US34	0.53	\$100		3				2	
NCL Batavia to Co Rd V64	35	US34	6.54	\$4,700		1	\$1,400		3	2	
Co Rd V64 to WCL Fairfield	35	US34	2.24	\$1,600		1	\$500		3	2	
Fairfield Bypass	35	US34	10.30				\$12,600		4	2	
ECL Fairfield to 6.85 miles east	35	US34	6.85	\$1,400		3				1	
ECL Fairfield to 6.85 miles east	35	US34	6.85				\$4,900		1	2	
10.45 miles west to Co Rd W55	35	US34	10.45	\$2,000		3				5	

