# ULTRA THIN PCC OVERTAYS 

Construction Report Iowa Department of Transportation Project HR-559

In Cooperation With The Federal Highway Administration
as
Work Order *DTFH71-94-TBO-IA-37

## April 1995

Construction Report
for
Iowa Department of Transportation
Project HR-559

## ULTRA THIN PCC OVERLAYS

By
Melinda Heyer
and
Vernon J. Marks
Research Engineer
515-239-1447
Office of Materials Project Development Division Iowa Department of Transportation

Ames, Iowa 50010

1. REPORT NO. 2. REPORT DATE

HR-559
3. TITLE AND SUBTITLE

Iowa. 21 Whitetopping
5. AUTHOR(S)

Melinda Heyer
Vernon J. Marks
Research Engineer

April 1995
4. TYPE OF REPORT \& PERIOD COVERED

Report, 5-94 to 4-95
6. PERFORMING ORGANIZATION ADDRESS

Iowa Department of Transportation Materials Department 800 Lincoln Way Ames, Iowa 50010
7. ACKNOWLEDGEMENT OF COOPERATING ORGANIZATIONS

Federal Highway Administration

## 8. ABSTRACT

A 11.6 km ( 7.2 mi. ) portion of $1 A 21$ in Iowa County from the junction of US 6, north to the junction of IA 212, was selected for the research project.

The project was divided into 65 different test sections of a PCC overlay of an existing asphalt concrete (AC) surface with thicknesses of 50 mm ( 2 in. ), 100 mm ( 4 in ) , 150 mm ( 6 in. ), and 200 mm ( $8 \mathrm{in).}$. . The joint spacings for these sections were 0.6 m ( 2 ft.$), 1.2 \mathrm{~m}$ ( 4 ft.$), 1.8 \mathrm{~m}$ ( 6 ft. ), 3.7 m ( 12 ft. ), and 4.6 m ( 15 ft.$)$. Joints were sealed if the thickness of the pavement was over 100 mm ( 4 in .), unless specified. Two types of polypropylene fibers, monofilament and fibrillated, were added to the conventional PCC mix for designated sections. Three additional sections consisted of an asphalt overlay for comparison with the concrete overlay. Three different base preparations were used on the project, consisting of: patching and scarifying, patching only, and cold-in-place recycling.

Sensors were placed in various test sections to measure the temperature and strain during and after construction of the overlay. Pullout tests were also conducted at various locations. Beams cylinders were made for each of the PCC mixes and tested for flexural and compressive strengths. Evaluation of the performance will be conducted through December 31, 1999.

| 9. KEY WORDS | 10. NO. OF PAGES |
| :--- | :--- | :--- |
| PCC overlay, contraction joints | 85 |
| thin PCC, fibrous concrete |  |
| Pavement Management, |  |
| life cycle cost, PCC sawing |  |

## TABLE OF CONTENTS

Page
Introduction ..... 1
Objective ..... 1
Project Location and Contractor ..... 1
Project Concept ..... 2
Preconstruction ..... 3
Surface Preparation ..... 3
Materials and Mix Proportions ..... 4
Portland Cement Concrete ..... 4
Asphalt Concrete ..... 4
Construction ..... 4
Evaluation ..... 10
Post Construction Evaluation ..... 11
Performance Evaluation ..... 11
Requirements ..... 12
Project Costs ..... 12
Acknowledgements ..... 12
Appendices
Appendix A ..... 13
Project Location ..... 14
Test Section Layout ..... 15
Summary of Variables ..... 22
Appendix B ..... 24
Proposal ..... 25
Special Provisions ..... 31
Appendix $C$. ..... 44
Daily Inspection Reports of PCC ..... 45
Daily Plant Reports for AC ..... 48
Appendix D. ..... 52
Summary of Mixes ..... 53
Summary of Joint Spacings ..... 54
Summary of Joint Sawing ..... 55
Summary of Test Beams ..... 56
Summary of Slump and Air Content ..... 57
Summary of Beam Strengths ..... 58

## TABLE OF CONTENTS (Con't)

## Page

Profilograph Summary ..... 59
Slab Thickness Summary ..... 60
Vibrator Frequency Summary ..... 62
Air and Concrete Temperature Summary ..... 63
Appendix E ..... 65
Distress Survey ..... 66
Pullout Testing ..... 70
Road Rater Structural Ratings ..... 71
Appendix $F$ ..... 73
ISU Evaluation Project Proposal ..... 74

## DISCLAIMER

The contents of this report reflect the views of the authors and do not necessarily reflect the official views of the Iowa Department of Transportation. This report does not constitute any standard, specification or regulation.

## INTRODUCTION

In 1991 a thin Portland Cement Concrete (PCC) overlay using 50 mm (2 in.) and 87.5 mm (3.5 in.) thicknesses and unconventional $0.6 \mathrm{~m}(2 \mathrm{ft})$ and $1.8 \mathrm{~m}(6 \mathrm{ft})$ joint spacing was placed over a landfill access road in Louisville, Kentucky. It was used to evaluate the feasibility of concrete overlays (less than 100 mm (4 in.) thick) of asphalt concrete for residential streets, parking, and other low volume applications. The HR-559 UltraThin Whitetopping is a follow up evaluation of the Kentucky project. The type and size of fiber along with the joint patterns for the different thicknesses of this project were based on the Kentucky project.

The evaluation of this research project is the Iowa DOT participation in Section 6005 of the Intermodal Surface Transportation Efficiency Act (ISTEA).

## OBJECTIVE

The objective of the project is to evaluate the life and performance of various thicknesses of PCC overlay with and without the use of polypropylene fibers and with the use of various joint spacings.

## PROJECT LOCATION AND CONTRACTOR

The research project is located in Iowa County on Iowa 21 from the junction of US 6 , north $11.6 \mathrm{~km}(7.2 \mathrm{mi})$ to the junction of

Iowa 212. The location is shown in Figure 1 of Appendix A. The existing pavement was constructed in 1961 of a 88 mm ( 3.5 in. ) asphalt surface, 7.3 m (25 ft.) wide, placed on a 175 mm (7.0 in.) cement treated base with a 150 mm (6.0 in.) granular subbase. The estimated ADT is 1,350 vehicles with $13 \%$ trucks and 300,000 ESAL's.

The contract for this project was awarded to Manatt's, Inc. of Brooklyn, Iowa. A copy of the contract is found in Appendix B.

## PROJECT CONCEPT

The project was divided into 65 different test sections. One section was entirely reconstructed. Sixty-one sections, including transition sections, consisted of 50 mm (2 in.), 100 mm (4 in.), 150 mm ( $6 \mathrm{in),} .\mathrm{and} 200 \mathrm{~mm}(8 \mathrm{in)}$. thick PCC overlay of an asphalt concrete (AC) surface with joint spacings of 0.6 m (2 ft.), $1.2 \mathrm{~m}(4 \mathrm{ft}),. 1.8 \mathrm{~m}(6 \mathrm{ft}),. 3.7 \mathrm{~m}(12 \mathrm{ft}),. 4.6 \mathrm{~m}$ (15 ft.). Joints were not sealed if the thickness of the pavement was 100 mm (4 in.) or less unless specified. Two types of polypropylene fibers, monofilament and fibrillated, were added to the conventional PCC mix for designated sections. Three other sections consisted of an asphalt overlay for comparison with the concrete overlay.

Three different base preparations were utilized on the project, which consist of: patching and scarifying, patching only, and
cold in-place recycling. A table of summarizing this information can be found in Appendix A.

## PRECONSTRUCTION

Prior to construction, Road Rater structural ratings were obtained which can be found in Appendix E. A photolog and a detailed crack survey were also made.

## SURFACE PREPARATION

There were three different types of base preparations used on the overlay. The first type of base preparation was patching and scarifying, which was from STA $2340+00$ to STA 2460+00. The next type of preparation was patching only, which was from STA $2460+00$ to STA $2585+00$. The final type of preparation was 94 mm ( 3.75 in. ) of cold in-place recycled AC, from STA 2585+00 to STA 2704+00.

The full depth patches were placed on April 21 through April 25. From June 3 through June 6, the cold in-place recycle was laid. Milling was from June 6 to June 7 and also on June 20. Surface patching was on June 21.

At first, the AC subgrade was broomed and sprayed with water prior to placement of the concrete. After 4 days of paving, it was decided to stop wetting the AC prior to placing the concrete, believing that it would create a better bond between the asphalt and the concrete.

## MATERIAIS RND MIX PROPORTIONS

## Portland Cement Concrete

A Class C PCC was required for the project. The mixes used were $C-3 W R-C$ and $C-3 W R$. Maintenance mixes were used at the intersections. The materials used in these mixes were:

Fly Ash: American Fly Ash, Louisa and Muscatine Cement: Lafarge Type I/II Fine Aggregate: Marengo Ready Mix T-203 No. A48508 Coarse Aggregate: Vulcan, Montour T-203 No. A86002 Water: City of Belle Plaine Water Reducer: Protex, PDA 25 DP Fibers: Industrial Systems, Ltd. (Durafiber), Lakemoor, IL

The mix was produced in a central mixer. When fibers were used, three pounds of fibers per cubic yard of concrete were added and evenly distributed throughout the mix. Copies of plant reports can be found in Appendix $C$.

## Asphalt Concrete

Type B AC was used on the binder and Type $A$ was used on the surface of the three AC sections. The materials used in the mixes were:

Crushed Aggregate Source: Malcom, No. A79002 Sand Source: Mannatt Flint Pit, No. A86502 Asphalt Source and Grade: Bituminous Supply AC-10 Copies of the plant reports can be found in Appendix $C$.

## CONSTRUCTION

The plant was at the north end of the project. Here, the materials were mixed in the central mixer and then transported in agitators and dump trucks to the paving location.

A Gomaco Paver was used on the project. Sof-Cut saws were used to cut all joints.

On June 24, 1994, reconstruction of Section 1 began at the south end of the project at STA $2335+64$ and proceeded northward. A conventional mix was used. The overlay started with Section 2 at STA 2340+00. The fibrillated fibers were added to the mix during the paving of Section 2 at STA 2341+02. The tining pulled the fibers up, forming clumps on the surface of the pavement. There were problems trying to get the slab to be only 150 mm ( 6 in .) thick. The thickness was closer to 175 mm ( 7 in .) or 200 mm (8 in.). The first work joint was at STA 2345+27.

On June 25, the depth of the slab was still running deep. In order to get 150 mm ( 6 in .) in certain places, the depth was up to 300 mm (12 in.) in others. As the header was being placed, it started to rain lightly. On the second day, paving proceeded from STiA $2345+27$ to STA $2369+34$.

On June 27, paving started at STA $2369+34$. Twenty minutes after starting, work was delayed for ten minutes because of a problem with the paver. There were still problems with the pavement being thicker than designed. The survey crew lowered the grade to try and get it closer to 50 mm ( 2 in .). A header was placed at STA $2386+75$.

On June 28, monofilament fibers were added to the mix, beginning at STA 2386+75, just at the end of Section 10. The texture of the fiber made it difficult to finish the slab, more difficult than for the fibrillated. The contractor raised the pan on the paver to go over the slab a second time to try and improve it. The paver was originally set the same as paving with the fibrillated fibers the day before. The tining didn't pull the monofilament fibers up as much as it did the fibrillated fibers. However, there was still some clumping. The air had to be lowered at the plant several times. At STA 2412+75, Section 14, the use of the monofilament fibers was discontinued and fibrillated fibers were used throughout the remainder of the day. Also in Section 14, the contractor ran out of American Louisa fly ash, so American Muscatine was used in place of it. A header was placed at STA 2415+00.

On June 30 , the AC subgrade was not sprayed with water before the placement of the concrete. This was believed to provide a better bond between the asphalt and the concrete. This began at STA $2425+00$, Section 17. In Section 21 , the frequency of the paver vibrators were recorded. This information can be found in Appendix D. The conventional mix was being used.

On July 1 ; an early morning rain made the $A C$ wet when paving began at STA $2448+35$, the start of Section 22. The pavement was running thicker than the design.

On July 5, paving began at STA $2459+88$. STA 2460+00, section 26, was the beginning of the patch only surface. A header was placed at STA 2488+82.

On July 6, paving began at STA $2488+82$. Light rain occurred when placing the header at STA 2505+00.

On July 7, paving started at STA 2515+00, Section 35, with conventional mix. A header was placed at STA $2531+10$ due to a heavy rain shower. The contractor had to refinish the concrete a second time due to the damage from the rain.

On July 11, twenty minutes after starting in Section 36 , paving was stopped. While the tie bars were being placed, one jammed in the paver and the contractor had to stop the paver so no bars would be omitted. While trying to remove the tie bar, one of the hydraulic lines was disconnected. This happened twice. They also couldn't get the paver to start again. Work started again twenty minutes later. The depth of the pavement was inconsistent. Where the slab was suppose to be 150 mm ( 6 in ) in thickness, it was measuring 89 mm ( 3.5 in .) to 114 mm ( 4 in .) in places, and 178 mm ( 7 in. ) to 216 mm ( 8.5 in.$)$ in other places. A header was put in at STA 2536+10, Section 36 , and a 75.5 m (18 ft.) gap was left for an intersection. The start of fibrillated fibers was in Section 37 at STA 2539+09. The frequencies of the vibrators were recorded in Section 41.

Information can be found in Appendix D. The source of fly ash was changed back to American Louisa which was used throughout the remainder of the project. At the end of the day, a header was put in at STA 2561+18.

On July 12, paving began at STA 2561+18, Section 40. Section 46, STA 2585+00, was the beginning of the cold in-place recycle base preparation. The mix was also changed to $C-3 W R$ in this section. The slab depth was approximately what was specified for the sections. The end-of-day working joint was at STA 2597+65.

On July 13, the survey crew rechecked the grade. This delayed paving. At STA $2598+50$, section 48 , the mix was changed from C-3WR-C to C-3WR. The contractor ran out of cement, therefore, paving was stopped at STA 2612+07.

On July 14, paving began at STA $2612+07$ using the $C-3 W R-C$ mix. While paving section 52 , the paver was forced up by the concrete resulting in a thickened area on the west side of the slab. The contractor went back over that part of the slab. At STA 2625+50, Section 53, the mix was changed to $C-3 W R$, which was used throughout the remainder of the day. The use of fibrillated fibers was discontinued at STA 2632+25, Section 54. A header was put in at STA 2641+97.

On July 15, paving began at STA 2642+21, leaving a 24-foot gap at an intersection. The mix used on this day was $C-3 W R-C$. During the paving of Section 58, the stringline came loose and had to be re-strung. As the day progressed, the amount of cure and grade stakes became short; therefore, a header was put in at STA $2672+30$.

On July 18, the AC had to be thoroughly cleaned before the concrete could be laid due to the mud from the trucks as they left the plant. The contractor washed the asphalt concrete surface and then broomed it well. There was another problem with the stringline in Section 61. It came loose as it had on July 15 and it had to be re-strung again. At STA $2693+00$ to $2393+50$, Section 62, the pan on the paver was forced up by the concrete and the stringline broke. A lot of handwork was required to finish the slab and this resulted in a rough surface. The surface was rough. A header was put in at STA $2703+95$ which was the end of the last section of PCC.

On July 25, construction of the asphalt sections began. Each section was laid in three lifts. A 75 mm ( 3 in .) binder, consisting of two 37.5 mm ( 1.5 in ) lifts, was laid for Section 16 and 34 from STA $2415+04$ to $2425+00$ and from STA 2505+00 to $2515+00$.

A 37.5 mm (1.5 in.) AC surface was laid for Section 16 and 34 on July 26. A 75 mm ( 3 in. ) binder, laid in two 37.5 mm (1.5 in.) lifts, was also placed from STA $2703+95$ to $2713+03$ in Section 65.

On July 27, a 37.5 mm ( 1.5 in .) AC surface for Section 65 was laid. From July 28 to August 2, grinding was done on the pavement.

## EVALUATION

In addition to standard inspection, testing and documentation, nine 6"x6"x20" beams and nine 4 1/2"x9" cylinders were made for each of the PCC mixes. The flexural and compressive strengths were determined at 7,14 , and 28 days with an exception of a set of 3 beams and 3 cylinders taken from the monofilament sections which were tested at a 9 day strength. The flexural and compressive strengths along with field testing and general information about the project can be found in Appendix D.

Jim Cable of Iowa State University and his assistants placed sensors in various test sections to measure and document the temperature and strain during and after construction of the overlay. A copy of the proposal can be found in Appendix F.

The Federal Highway Administration conducted pullout tests at: STA $2385+50,2428+25,2455+00,2545+50,2620+00$, and $2694+50$ (Appendix D).

Three 4"x4"x18" beams were made for each of the PCC mixtures and tested for flexural strengths.

## POST CONSTRUCTION EVALUATION

Several problems occurred during and after completion of the project. A mid-panel crack between two baskets was found at STA 2499+37. Spalling and other random cracking was also found in various sections. Seven mud balls were found at STA 2504+95. Locations can be found in the distress survey in Appendix E.

## PERFORMANCE EVALUATION

A visual review of the general conditions and a crack survey will be conducted annually. Delamination testing will also be conducted annually in the outside wheelpath of both lanes of each 50 mm (2 in.) section for selected portions of 35 m (115 ft). At least four annual Road Rater structural tests will be conducted in 41 test sections. Evaluation of the performance will be conducted through December 31, 1999.

A distress survey was completed on August 6, 1994 by Iowa State University personnel. Road Rater structural testing was conducted on October 13, 1994. This information can be found in Appendix E .

## REQUIREMENTS

This project was conducted and met the requirements of the 1992 Iowa Department of Transportation Standard Specifications and the applicable special provisions. The special provisions can be found in Appendix B.

## PROJECT COSTS

The contract in Appendix $B$ shows a project cost of $\$ 1,880,229$.

## ACKNOWLEDGEMENTS

Research project $H R-559$ was sponsored by the Iowa Department of Transportation and the Federal Highway Administration. Funding was received from the Federal Highway Administration.

We want to extend our appreciation to Gordon Smith of Iowa Concrete Paving Association, Jim Cable and his assistants of Iowa State University, Brian McWaters of the Iowa DOT, Manatt's Inc. and all employees for their participation in construction and inspection of the project.

Appendix A

1. Project Location
2. Test Section Layout 3.Summary of Variables

## E.O.P, STA 2714+08

B.O.P, STA $2335+64$
test section layout

SECTION STATION PREP.


$$
5 \stackrel{{ }^{4}}{=} 2356 \cdot{ }^{235}+00
$$

6


PAVEMENT THCCKIESS FIBERS SPACING


```
WHITETOPPING RESEARCH
STP-21-3(10)--2C-48
IOWA COUNTY
TEST SECTION LAYOUT
```



WHITETOPPING RESEARCH<br>STP-21-3(10)-2C-48<br>IOWA COUNTY<br>TEST SECTION LAYOUT

| SECTION STATION | PREP: | PAVEMENT THICKNESS | IBER | $\begin{aligned} & \text { JOINT } \\ & \text { SPACING } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \overline{24} \\ & \hline-2456+00 \\ & \hline 25 \\ & \hline \end{aligned} 2460+00$ |  | N |  | (1) |
| 26 |  |  |  | $6^{\prime}$ |
| 27 |  |  |  | $12^{\prime}$ |
| $28 \Longrightarrow \begin{aligned} & 2479+90 \\ & 2480+00 \end{aligned}$ |  | सान |  | N17n |
| 29 | PATCH | $4 "$ | NF | $4^{\prime}$ |
| $\begin{array}{r} 2487+\emptyset 0 \\ \hline \\ \hline \end{array}$ |  | - |  | N |
| 31 |  |  |  | $15^{\prime} \mathrm{ND}$ |
| 32 |  |  |  | $15^{\prime} 0$ |
| $\begin{array}{r} 2503+00 \\ \hline 2505+00 \end{array}$ |  | N |  | $\cdots$ |
| 34 |  | 4.5 " | ACC | N/A |

TEST SECTION LAYOUT



STP-21-3(10)--2C-48<br>IOWA COUNTY<br>TEST SECTION LAYOUT



| SECTION NUMBER | BEGIN STATION | ENDING STATION | THICKNESS (mm) | THICKNESS (in) | $\begin{aligned} & \text { FIBER } \\ & \text { F\&NF } \end{aligned}$ | JOINT SPACING (m) | JOINT SPACING <br> (tt) | SURFACE PREP |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2335+64 | $2340+\infty$ | 200 | 8 | RECONSTR | 6.1 | 20 | *** |
| 2 | $2340+00$ | $2342+\infty$ | 200-150 | 8-6 | NF-F | 3.7 | 12 | P\&S |
| 3 | $2342+00$ | $2349+\infty$ | 150 | 6 | F | 3.7 | 12 | P\&S |
| 4 | $2349+00$ | $2356+00$ | 150 | 6 | F | 1.8 | 6 | P\&S |
| 5 | 2356+00 | $2357+00$ | 150-100 | 6-4 | F | 1.8 | 6 | P\&S |
| 6 | 2357+00 | $2364+00$ | 100 | 4 | F | 1.8 | 6 | P\&S |
| 7 | 2364+00 | $2371+\infty$ | 100 | 4 | F | 0.6 | 2 | P\&S |
| 8 | 2371+00 | $2378+00$ | 100 | 4 | F | 1.2 | 4 | P\&S |
| 9 | 2378+00 | $2380+00$ | 100-50 | 4-2 | F | 0.6 | 2 | P\&S |
| 10 | 2380+00 | $2387+00$ | 50 | 2 | F | 0.6 | 2 | P\&S |
| 11 | $2387+00$ | $2394+00$ | 50 | 2 | F | 1.2 | 4 | P\&S |
| 12 | 2394+00 | $2396+00$ | 50-150 | 2-6 | F | 1.2-1.8 | 4-6 | P\&S |
| 13 | 2396+00 | $2403+\infty$ | 150 | 6 | F | 1.8 | 6 | P\&S |
| 14 | $2403+\infty$ | $2414+00$ | 150 | 6 | F | 3.7 | 12 | P\&S |
| 15 | $2414+00$ | $2415+00$ | 150-110 | 6-4.5 | F | 3.7-1.8 | 12-6 | P\&S |
| 16 | $2415+00$ | $2425+00$ | 110 | 4.5 | ACC | ACC | ACC | P\&S |
| 17 | $2425+00$ | $2426+00$ | 110-150 | 4.5-6 | NF | 1.8-3.7 | 6-12 | P\&S |
| 18 | $2426+00$ | $2433+00$ | 150 | 6 | NF | 3.7 | 12 | P\&S |
| 19 | $2433+00$ | $2440+00$ | 150 | 6 | NF | 1.8 | 6 | P\&S |
| 20 | $2440+00$ | $2441+00$ | 150-200 | 6-4 | NF | 1.8-0.6 | 6-2 | P\&S |
| 21 | $2441+00$ | $2448+00$ | 100 | 4 | NF | 0.6 | 2 | P\&S |
| 22 | $2448+00$ | $2449+00$ | 100-50 | 4-2 | NF | 0.6 | 2 | P\&S |
| 23 | $2449+00$ | $2456+00$ | 50 | 2 | NF | 0.6 | 2 | P\&S |
| 24 | $2456+00$ | $2458+00$ | 50-150 | 2-6 | NF | 0.6-1.8 | 2-6 | P\&S |
| 25 | $2458+00$ | $2460+00$ | 150 | 6 | NF | 1.8 | 6 | P\&S |
| 26 | $2460+00$ | $2468+00$ | 150 | 6 | NF | 1.8 | 6 | P ONLY |
| 27 | $2468+00$ | 2479+00 | 150 | 6 | NF | 3.7 | 12 | P ONLY |
| 28 | $2479+00$ | $2480+\infty$ | 150-100 | 6-4 | NF | 3.7-1.2 | 12-4 | P ONLY |
| 29 | $2480+00$ | 2487+00 | 100 | 4 | NF | 1.2 | 4 | P ONLY |
| 30 | $2487+00$ | $2489+00$ | 100-200 | 4-8 | NF | 1.2-4.6 | 4-15 | P ONLY |
| 31 | $2489+00$ | $2496+00$ | 200 | 8 | NF | 4.6 ND | 15 ND | P ONLY |
| 32 | 2496+00 | 2503+00 | 200 | 8 | NF | 4.6 D | 15 D | P ONLY |
| 33 | 2503+00 | $2505+00$ | 200-110 | 8-4.5 | NF | 4.6-1.8 | 15-6 | P ONLY |
| 34 | $2505+00$ | $2515+00$ | 110 | 4.5 | ACC | ACC | ACC | P ONLY |
| 35 | $2515+00$ | $2516+00$ | 110-150 | 4.5-6 | NF | 1.2-1.8 | 4-6 | P ONLY |
| 36 | $2516+00$ | $2538+\infty$ | 150 | 6 | NF | 1.8 | 6 | P ONLY |
| 37 | $2438+00$ | $2540+00$ | 150-50 | 6-2 | NF-F | 1.8-0.6 | 6-2 | P ONLY |
| 38 | $2540+00$ | $2547+\infty$ | 50 | 2 | F | 0.6 | 2 | P ONLY |
| 39 | 2547+00 | $2554+\infty$ | 50 | 2 | F | 1.2 | 4 | P ONLY |
| 40 | 2554+00 | $2555+00$ | 50-100 | 2-4 | F | 1.2 | 4 | P ONLY |
| 41 | 2555+00 | $2562+00$ | 100 | 4 | F | 1.2 | 4 | P ONLY |
| 42 | $2562+00$ | $2569+00$ | 100 | 4 | F | 0.6 | 2 | P ONLY |
| 43 | $2569+00$ | $2576+00$ | 100 | 4 | F | 1.8 | 6 | P ONLY |
| 44 | $2576+00$ | 2577+00 | 100-150 | 4-6 | F | 1.8-3.7 | 6-12 | P ONLY |
| 45 | $2577+\infty$ | $2585+00$ | 150 | 6 | F | 3.7 | 12 | P ONLY |
| 46 | $2585+00$ | 2593+00 | 150 | 6 | F | 1.8 | 6 | CIP |
| 47 | $2593+00$ | 2594+00 | 150-100 | 6-4 | F | 1.8 | 6 | CIP |
| 48 | 2594+00 | $2601+00$ | 100 | 4 | F | 1.8 | 6 | CIP |
| 49 | 2601+00 | 2608+00 | 100 | 4 | F | 0.6 | 2 | CIP |
| 50 | $2608+00$ | $2615+00$ | 100 | 4 | F | 1.2 | 4 | CIP |
| 51 | $2615+00$ | $2616+00$ | 100-50 | 4-2 | F | 1.2-0.6 | 4-2 | CIP |
| 52 | $2616+00$ | $2624+00$ | 50 | 2 | F | 0.6 | 2 | CIP |
| 53 | 2624+00 | $2631+\infty$ | 50 | 2 | F | 1.2 | 4 | CIP |


| SECTION <br> NUMBER | BEGIN STATION | ENDING STATION | THICKNESS (mm) | THICKNESS (in) | FIBER F\&NF | $\begin{gathered} \hline \text { JOINT } \\ \text { SPACING } \\ (\mathrm{m}) \\ \hline \hline \end{gathered}$ | JOINT SPACING <br> ( t ) | SURFACE PREP |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 54 | $2631+00$ | $2633+\infty$ | 50-150 | 2-6 | F-NF | 1.2-1.8 | 4-6 | CIP |
| 55 | $2633+00$ | $2640+\infty$ | 150 | 6 | NF | 1.8 | 6 | CIP |
| 56 | $2640+00$ | $2653+\infty$ | - 150 | 6 | NF | 3.7 | 12 | CIP |
| 57 | $2653+00$ | 2654+00 | 150-100 | 6-4 | NF | 3.7-1.8 | 12-6 | CIP |
| 58 | 2654+00 | 2661+0 | 100 | 4 | NF | 1.8 | 6 | CIP |
| 59 | $2661+00$ | 2662+00 | 100-150 | 4-6 | NF | 1.8-3.7 | 6-12 | CIP |
| 60 | 2662+00 | $2689+00$ | 150 | 6 | NF | 3.7 | 12 | CIP |
| 61 | $2689+00$ | $2691+\infty$ | 150-50 | 6-2 | NF | 3.7-1.2 | 12-4 | CIP |
| 62 | $2691+00$ | $2698+00$ | 50 | 2 | NF | 1.2 | 4 | CIP |
| 63 | $2698+00$ | $2700+\infty$ | 50-150 | 2-6 | NF | 1.2-3.7 | 4-12 | CIP |
| 64 | $2700+00$ | $2704+00$ | 150-110 | 6-4.5 | NF | 3.7-1.2 | 12-4 | CIP |
| 65 | $2704+00$ | $2714+08$ | 110 | 4.5 | ACC | ACC | ACC | CIP |

NOTE: ALL INFORMATION WAS TAKEN FROM PLANS
***: SPECIAL BACKFILL
P\&S: PATCH AND SCARIFY
P ONLY: PATCH ONLY
CIP: COLD-IN-PLACE RECYCLE

[^0]Proposal 10 No.: 48-0213-010 Date of Letting: January 07, 1994

Type of Work: PCC OVERLAY - UNBONDED
Primary County: IOWA
Cost Center: 611000
Object Code: 894
Pre-Qual Group: PC (CALL GROUP)

Contracting Authority: IOWA DEPT OF TRANSPORTATION, HIGHWAY DIV
Proposal Guaranty: $\$ 60,000.00$
Optional Tied Proposal Allowed: NO
Plans: YES
Bidding Proposal Attachments: FEDERAL AID FORMS 650166, 102115

This Proposal Includes the following Project(s):

Project: $\quad$ STP-21-3(10)--2C-48
Work Type: PCC OVERLAY - UNBONDED
Route: IOWA 21 Length (miles):
Location: FROM THE EAST JUNCTION OF U.S. 6, NORTH TO THE JUNCTION OF 1OWA 212.
Federal Aid - Predetermined Wages Are In Effect
Milepost: 45.55 To 52.72

| ```Proposal iD No.: 48-0213-010 TYpe of Work: PCC OVERLAY - UNBONDED DBE Goal: 12.50%``` | Letting Date: <br> Bid Order No.: | $\begin{aligned} & \text { January } 07,1994 \\ & 9: 00 \text { A.M. } \\ & 101 \end{aligned}$ |
| :---: | :---: | :---: |
| Site Number Work Start Date | Working Days | Liquidated Damages |
| PROJECT COMPLETION <br> CONTRACT LATE START DATE: 05/02/94 | 75 | \$ 1,000.00 |


*\%\% PRE-BID MEETING ****

A PRE-BID MEETING WILL BE HELD TO DISCUSS THE CONSTRUCTION OF THIS PROJECT AND TO ANSWER CONSTRUCTION QUESTIONS. THE MEETING WILL BE HELD DECEMBER 20, 1993 AT 1:00 P.M. IN THE COMMISSION ROOM OF THE IOWA DEPARTMENT OF TRANSPORTATION COMPLEX IN AMES, IOWA.
*ix: WORK RESTRICTION ***ic

THE CONTRACTOR SHALL NOT CLOSE THE ROAD TO THROUGH TRAFFIC PRIOR TO JUNE 13,1994 UNLESS WRITTEN PERMISSION IS GIVEN BY THE ENGINEER.


Section 0001 ROADWAY ITEMS

| 0010 | $\left\lvert\, \begin{aligned} & 2102-0425072 \text { BACKFILL, } \\ & \text { SPECIAL }\end{aligned}\right.$ | SY $\quad 1,950.000$ |  | - |
| :---: | :---: | :---: | :---: | :---: |
| 0020 | $\left\lvert\, \begin{aligned} & \text { 2102-2625000 } \\ & \text { EMBANKMENT-IN-PLACE }\end{aligned}\right.$ | $\begin{array}{lr}\text { CY } & 662.000\end{array}$ |  | . |
| 0030 | $\left\{\begin{array}{l} 2102-2713070 \text { EXCAVATION, } \\ \text { CLASS 13, ROADWAY } \varepsilon \\ \text { BORROW } \end{array}\right.$ | CY 325.000 |  | . |
| 0040 | $\text { , } 2121-7425010 \text { SHOULDERS, }$ | TON 439.000 |  | . |
| 0050 | $2121-7425020$ SHOULDERS, GRANULAR, TYPE B. | TON 13,447.000 |  | . |
| 0060 | $\left.\right\|^{2121-8450810} \text { ERESHAPING TRENCHING }$ | STA 239.570 |  | - |
| 0070 | $\begin{aligned} & 2123-7450020 \text { SHOULDER } \\ & \text { FINISHING, EARTH } \end{aligned}$ | STA 11.220 |  | - |
| 0080 | $\left\lvert\, \begin{aligned} & 2212-0475095 \text { BASE, } \\ & \text { CLEANING \& PREPARATION OF } \end{aligned}\right.$ | MILE 7.085 |  | . |
| 0090 | \|2212-5070310 PATCHES, FULL-DEPTH REPAIR | SY 5,508.000 |  | - |
| 0100 | $\left\{\begin{array}{l} 2212-5070330 \text { PATCHES BY } \\ \text { COUNT (REPAIR) } \end{array}\right.$ | EACH 49.000 |  | - |
| 0110 | 2212-5075000 PATCHES, SURFACE | TON 10.000 |  | - |
| 0120 | $\left\lvert\, \begin{aligned} & \text { 2301-4875006 MEDIAN, } 6 \\ & \text { IN. P.C. CONCRETE } \end{aligned}\right.$ | SY $\quad 21.000$ |  |  |



| Proposal 10 No.: | 48-0213-010 | Letting Date: January 07, 1994 |
| ---: | :--- | :--- | :--- |
| Primary Work Type: PCC OVERLAY - UNBONDED |  |  |
| Primary County: | IOWA | Bid Order No.: 101 |

UNIT BIDS MUST BE TYPED OR SHOWN IN INK OR THE BID WILL BE REJECTED.

| Line No | I tem Number Item Description | I tem Quantity and Unit | Unit Price <br> Dollars | Dollars |
| :---: | :---: | :---: | :---: | :---: |
| 0240 | $\begin{aligned} & 2399-0400020 \text { ASPHALT } \\ & \text { REJUVENATING AGENT } \end{aligned}$ | $\mid$ GAL $38,724.000 \mid$ | ' . . |  |
| 0250 | $\begin{aligned} & 2399-0408000 \text { ASPHALT } \\ & \text { PAVEMENT, IN-PLACE COLD } \\ & \text { RECYCLED } \end{aligned}$ | $\left\lvert\, \begin{array}{ll}\text { SY } & 34,422.000\end{array}\right.$ | - |  |
| 0260 | $\left\lvert\, \begin{aligned} & 2416-0100024 \\ & \text { CONCRETE, } 24 \text { INR }\end{aligned}\right.$ | $\|E 2.000\|$ | - |  |
| 0270 | $\begin{aligned} & 2417-0225018 \text { APRONS, } \\ & \text { METAL, } 18 \text { IN. DIA. } \end{aligned}$ | $\mid E A C H$ |  |  |
| 0280 | ```2417-1040018 CULVERT, CORRUGATED METAL ENTRANCE PIPE, 18 IN. DIA.``` | LF $\quad 30.000$ |  |  |
| 0290 | $\begin{aligned} & 2502-8212034 \\ & \text { LONGITUDINAL, SUBDRAIN, } \\ & 4 \text { IN. DIA. } \end{aligned}$ | $\left\lvert\, \begin{array}{ll}\text { LF } & 42,159.000\end{array}\right.$ | - |  |
| 0300 | $\begin{aligned} & \text { 2502-8220206 SUBDRAIN } \\ & \text { OUTLET, CORRUGATED METAL } \\ & \text { PIPE, } 6 \text { IN. DIA. } \end{aligned}$ | EEACH $\quad 172.000 \mid$ | - |  |
| 0310 | 2510-6745850 REMOVAL OF PAVEMENT | \|SY $\quad 2,384.000 \mid$ |  |  |
| 0320 | $\left\lvert\, \begin{aligned} & 2520-3350010 \text { FIELD } \\ & \text { LABORATORY } \end{aligned}\right.$ | EACH $1.000 \mid$ | . |  |
| 0330 | 2525-2638030 SILT FENCE | $\mid$ LF $100.000 \mid$ |  |  |
| 0340 | 2526-8285000 SURVEY, CONSTRUCTION | LUMP | UMP |  |
| 0350 | 2527-9263110 PAINTED PAVEMENT MARKING | $\mid$ STA $1.346 .310 \mid$ | . | - |

PROPOS.4L SCHEDULE OF PRICES
Page: 4



```
            Run Date: 12/01/93
    Proposal ID No.: 48-0213-010 Letting Date: January 07, 1994
Primary Work Type: PCC OVERLAY - UNBONDED
    Primary County: IOWA
    Bid Order No.: 101
    Note Description
```

```
DBE-940107
```

DBE-940107
DIRECTORY OF CERTIFIED DBE'S
DIRECTORY OF CERTIFIED DBE'S
FHWA-1273
REQUIRED CONTRACT PROVISIONS - FEDERAL-AID CONSTRUCTION CONTRACTS
(EXCLUSIVE OF APPALACHIAN CONTRACTS)
NOTE: APPENDIX 'A' (ATTACHED TO THE FHWA-1273) SHALL NOT APPLY WHEN A
'PREDETERMINED WAGE RATES' SPECIFICATION HAS NOT BEEN DESIGNATED IN THE
CONTRACT DOCUEMENTS.
1A93-1.0
PREDETERMINED WAGE RATES -.GENERAL DECISION NUMBER IA930001
FOR HEAVY AND HIGHWAY CONSTRUCTION - STATEWIDE (EXCEPT SCOTT COUNTY)
*\% $\%$ ADDITIONAL REQUIREMENT ****
THE PRIME CONTRACTOR SHALL SUBMIT CERTIFIED PAYROLLS FOR ITSELF AND EACH APPROVED SUBCONTRACTOR WEEKLY TO THE PROJECT ENGINEER. THE CONTRACTOR MAY USE THE IOWA D.O.T. CERTIFIED PAYROLL FORM OR OTHER APPROVED FORM. THE CONTRACTOR SHALL LIST THE CRAFT FOR EACH EMPLOYEE COVERED BY THE PREDETERMINED WAGE RATES. THE PRIME CONTRACTOR SHALL SIGN EACH OF THE SUBCONTRACTOR'S PAYROLLS TO ACKNOWLEDGE THE SUBMITTAL OF THE CERTIFIED PAYROLL.
SP-1125
SPECIAL PROVISIONS FOR RESURFACING WITH PCC OVER ACC AND COLD IN-PLACE RECYCLED ASPHALT PAVEMENTS
drir INTENDED FOR IOWA COUNTY PCC OVERLAY - UNBONDED PROJECT SiP-21-3(10)-2C-48 xis
SS-5042
SUPPLEMENTAL SPECIFICATIONS FOR SPECIFIC AFFIRMATIVE ACTION RESPONSIBILITIES (DISADVANTAGED BUISINESS ENTERPRISE) FEDERAL AID PROJECTS
SS-5050
SUPPLEMENTAL SPECIFICATIONS FOR PORTLAND CEMENT CONCRETE PROPORTIONS

```
```

SS-5055

```
SS-5055
SUPPLEMENTAL SPECIFICATIONS FOR TRAFFIC CONTROLS FOR STREET AND HIGHWAY CONSTRUCTION, MAINTENANCE, UTILITY AND EMERGENCY OPERATIONS
SS-5056
SUPPLEMENTAL SPECIFICATIONS FOR SPECIFIC EQUAL EMPLOYMENT OPPORTUNITIES - FEDERAL AID PROJECTS
```

            Run Date: 12/01/93
    Proposa! 10 No.: 48-0213-010 Letting Date: January 07, 1994
    Primary Work Type: PCC OVERLAY - UNBONDED
Primary County: IOWA
9:00 A.M.
Bid.Order No.: . 101

```
```

Note Description

```

SS-5057 (continued)
(EQUAL EMPLOYMENT OPPORTUNITY RESPONSIBLITIES)
SS-5075
SUPPLEMENTAL SPECIFICATIONS FOR RESURFACING WITH PORTLAND CEMENT concrete over asphalt cement concrete pavement

SS-5105
GENERAL SUPPLEMENTAL SPECIFICATION FOR CONSTRUCTION PROJECTS

SS-5 107
SUPPLEMENTAL SPECIFICATIONS FOR COLD IN-PLACE ACC RECYCLING

SS-5115
SUPPLEMENTAL SPECIFICATIONS FOR PAVEMENT SMOOTHNESS
005.02
*\%\% BIDDING PROPOSAL PREPARATION INFORMATION ***
A PROPOSAL MAY CONTAIN MORE THAN ONE PROJECT. SEVERAL FORMS TO BE SUBMITTED WITH THE BIDDING PROPOSAL REQUEST THE BIDDER TO ENTER A "PRROJECT NUMBER". THE BIDDER SHOULD ENTER THE "PROPOSAL ID" WHEREVER THE PROJECT NUMBER IS REQUESTED IN THE BIDDING DOCUMENTS.
005.03
ricis REVISION TO FHWA-1273 **:\%
DELETE PARAGRAPH IV.4.C.(1) FROM FORM FHWA-1273.
005.07
\%ric REVISIONS TO SS-5042 *i\%
MAKE THE FOLLOWING REVISION TO SS-5042, 'SUPPLEMENTAL SPECiFICATIONS FOR SPECIFIC AFFIRMATIVE ACTION RESPONSIBILITIES (DISADVANTAGED BUISINESS ENTERPRISE) FEDERAL AID PROJECTS';

DELETE THE LAST PARAGRAPH UNDER SUBSECTION B.3.E) OF SECTION 5042.06
'COUNTING DBE PARTICIPATION TOWARD MEETING GOALS', WHICH READS;
'FOR THE DBE COMMITMENTS WHERE DAVIS/BACON WAGE REQUIREMENTS APPLY, ALL :DRIVERS SHALL BE EMPLOYEES OF THE DBE TRUCKING COMPANY SHOWN ON THE 102115 FORM OR AN OWNER/OPERATOR OF THE DBE TRUCK.'
005.19
*कx‘s REVISIONS TO THE STANDARD SPECIFICATIONS
CONCERNING THE 'ALKALI LEVEL' OF P.C.C. PAVEMENT iricis
THE FOLLOWING REVISIONS TO THE STANDARD SAPECIFICATIONS - SERIES OF 1992' WILL APPLY'TO P.C.C. PAVING ITEMS ONLY.: (I.E.: MAINLINE PAVING, RAMPS, SIDEROADS, INTERSECTIONS ETC. IT IS NOT INTENDED TO APPLY TO DRIVEWAYS, SIDEWALKS, INTAKES, PIPES AND CULVERTS, PATCHING OR BRIDGE
\begin{tabular}{rlrl} 
Run Date: & \(12 / 01 / 93\) \\
Proposal ID No: & \(48-0213-010\) \\
Primary Work Type: & PCC OVERLAY-UNBONDED & & \\
Primary County: & LOWA & & \\
\end{tabular}

Note Description
005.19 (continued)

RETROFITS.)
1. ADD THE FOLLOWING NEW PARAGRAPH TO ARTICLE 2301.04, PARAGRAPH E, 'USE OF FLY ASH':
the limitation of the total alkali level for cement and fly ash combination in article 4108.01 Shall apply.
2. ADD THE FOLLOWING NEW PARAGRAPH TO ARTICLE 4101.01, 'GENERAL REQUIREMENTS':

WHEN FLY ASH IS USED IN PORTLAND CEMENT CONCRETE MIXES, the limitation of the total alkali level for cement and FLY ASH COMBINATION IN ARTICLE 4108.01 SHALL APPLY.
3. REPLACE THE FIRST PARAGRAPH OF ARTICLE 4101.01, 'GENERAL REQUIREMENTS' WITH THE FOLLOWING NEW PARAGRAPH:

PORTLAND CEMENT SHALL MEET REQUIREMENTS OF THE ASTM SPECIFICATIONS FOR THE TYPE OF CEMENT REQUIRED FOR THE WORK. UNLESS OTHERWISE SPECIFIED, CEMENT SHALL MEET REQUIREMENTS OF ASTM C 150, TYPE II. WHEN HIGH early strengit concrete is specified or permitted and cement is used in normal proportions, the cement shall meet requirements of astm c 150, type 111. the percent equivalent alkali for the cement shall not be more than 0.90. If the percent alkali equivalent of the cement is between 0.75 and 0.90 , the cement may be tested, using project materials IN ACCORDANCE WITH ASTM P 214 WITH EXPANSION NOT TO EXCEED 0.15 PERCENT. THE P 214 TEST WILL BE WAIVED If CLASS f fLY ASH iS USED IN THE MIX.
4. ADD THE FOLLOWING NEW PARAGRAPHS TO ARTICLE 4108.01, 'DESCRIPTION': THE TOTAL CEMENTITIOUS MATERIALS FOR THE VARIOUS MIXES WITH fLY ash shall be in accordance with the SUPPLEMENTAL SPECIFICATIONS FOR PORTLAND CEMENT CONCRETE PROPORTIONS, WITH THE ADDITIONAL PROVISION that the total alkali level based on the combined percent alkali equivalent for cement and percent available alkali for fly ash shall not exceed 0.75. any adjustments in mix.proportions in the supplemental SPECIfICATIONS FOR PORTLAND CEMENT CONCRETE PROPORTIONS SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR, AND SHALL BE APPROVED BY THE ENGINEER. THE MAXIMUM FLY ASH substitution rate shall be 15 percent by weight. the PERCENT ALKALI LEVELS FOR APPROVED SOURCES FOR CEMENT AND FLY. ASH ARE LISTED IN MATERIALS IM 401 AND IM \(491: 17\) REṠPECTIVELY, AND SHALL. BE USED IN determining the percentages of cement and fly ash of the total cementitious materials used in mixes.
\begin{tabular}{ll} 
Run Date: \(12 / 01 / 93\) \\
Proposal ID No: \(48-0213-010\) \\
Primary Work Type: PCC OVERLAY - UNBONDED & \\
Primary County: lOWA & \\
\\
Note Description
\end{tabular}
005.19 (continued)
if the total alkali level of the cememtitious materials exceeds 0.75 Percent, the project materials (Cement, FLY ASH, AND SAND) SHALL BE TESTED IN ACCORDANCE WITH ASTM P 214. IF THE EXPANSION IN THIS TEST DOES NOT exceed 0.15 percent, the materials may be used for the PROJECT. THE IOWA DEPARTMENT OF TRANSPORTATION WILL PERFORM THE ASTM P 214 TESTING FOR THE FIRST COMBINATION OF MATERIALS PROPOSED BY THE CONTRACTOR. ANY SUBSEQUENT TESTS FOR OTHER COMBINATION OF MATERIALS SHALL BE CONDUCTED BY THE CONTRACTOR IN A LABORATORY APPROVED BY THE ENGINEER.

If CLASS f fly ash is used in the mix, the total alkali LEVEL LIMITATION OF 0.75 PERCENT IN THE CEMENTITIOUS MATERIALS SHALL NOT APPLY, AND THE P 214 TEST WILL BE WAIVED. CLASS F FLY ASH MAY. BE SUBSTITUTED AT A 1:I CEMENT REPLACEMENT RATE BY WEIGHT. THE PROPORTIONS SHALL BE ADJUSTED BY THE CONTRACTOR TO REFLECT CLASS F FLY ASH USAGE, AND SHALL BE APPROVED BY THE ENGINEER.
080.00
***: DBE GOAL INFORMATION ***

THE ESTABLISHED DBE GOAL FOR THIS CONTRACT CONCERNING PARTICIPATION BY DISADVANTAGED BUSINESS ENTERPRISES (E.G., SUPPLIERS, AND SUBCONTACTORS)
IS SHOWN ON PAGE 1 OF THE PROPOSAL DETAILS (SECOND SHEET OF THE PROPOSAL) AND APPLIES TO ALL FEDERAL AID PROJECTS INCLUDED IN THIS PROPOSAL.

REFER TO THE CURRENT "DIRECTORY OF CERTIFIED DBE'S" AND TO THE CURRENT "SUPPLEMENTAL SPECIFICATION FOR SPECIFIC AFFIRMATIVE ACTION RESPONSIBILITES (DISADVANTAGED BUSINESS ENTERPRISES) FEDERAL AID PROJECTS" FOR ADDITIONAL INFORMATION AND INSTRUCTIONS.

IN ADDITION, IF THE WINNING BIDDER ELECTS TO USE DBE SUBCONTRACTORS AND/OR SUPPLIERS, FORM 830231 (SUBCONTRACT REQUEST AND APPROVAL) SHALL BE SUBMITTED TO THE PROJECT ENGINEER PRIOR TO THE PRECONSTRUCTION CONFERENCE TO DOCUMENT DBE SUBCONTRACTORS AND/OR SUPPLIERS TO BE USED. THE CONTRACTOR SHALL ATTACH A COMPLETED FORM 102117 FOR EACH DBE SUBCONTRACTOR AND/OR SUPPLIER LISTED ON THE CONTACTOR'S FORM 102115 THAT WAS SUBMITTED AT THE LETTING.
120.01

THE FIELD LABORATORY OR LABORATORIES IF APPLICABLE SHALL BE ON THE PROJECT AT ALI TIMES TESTING IS REQUIRED.
181.14
the surface course shall be \(1 / 2\) in. mix with no special aggregate FRICTIONAL REQUIREMENTS.
```

        Run Date: 12/01/93
    Proposal ID No.: 48-0213-010 Letting Date: January 07, 1994
    Primary Work Type: PCC OVERLAY - UNBONDED
Primary County: IOWA
Note Description
181.14 (continued)
182.604500
THE PERCENTAGE OF CRUSHED PARTICLES IN THE A.C.C. SHALL BE:
SURFACE 60%
BINDER 45%
500.05
THE FREE TIME ALLOWED BETWEEN NOVEMBER 15 AND APRIL I WILL NOT BE
PERMITTED ON THIS PROJECT OURING THE WINTER OF 1994-1995. THE
CONTRACTOR SHALL WORK DURING THE WINTER OF 1994-1995 ON ALL WORKING DAYS
AS DEFINED IN 1101.03 'WORKING DAYS'.
700.00
ALL SECTIONS ON THIS PROPOSAL FORM ARE TIED, AND ALL ITEMS MUST BE BID
(WITH THE EXCEPTION OF ALTERNATE ITEMS OR ALTERNATE SETS OF ITEMS).
NO OTHER TIES BETWEEN GROUPS OR PROJECTS WILL BE ALLOWED.
720.00
SEE ADDTIIONAL ATTACHED REQUIREMENTS.

```

\author{
1 of 2 \\ (Additional Attached Requirements)
}

Iowa County
PCC Overlay - Unbonded
STP-21-3(10)--2C-48

STATISTICAL MEASUREMENT AND PAYMENT FOR PCC PAVEMENT
THE PROVISIONS IN THIS ATTACHMENT SHALL REPLACE THE REQUIREMENTS OF ARTICLE 2301.34, PARAGRAPH A, AND ARTICLE 2301.35, PARAGRAPH A, OF THE STANDARD SPECIFICATIONS, SERIES OF 1992.

REPLACE Paragraph A of Article 2301.34, Method of Measurement, with the following new Paragraph A.

\section*{A. Portland Cement Concrete Pavement.}

The method of measurement described herein for Standard or Slip-Form Portland Cement Concrete Pavement applies to pavement, concrete base, concrete base widening, concrete pavement widening and concrete paved shoulders. The area of pavement constructed of the class specified will be computed in square yards from surface measure longitudinally and nominal plan width. Areas of street connections on urban projects will be determined from plan dimensions. Areas of ramps, including acceleration and deceleration lanes, will be determined in square yards from plan dimensions, using the edges of the main line pavement as terminals of the ramp pavement. The thickness of pavement constructed will be determined from core depths as follows:

For pavement or base with a design width of 20 feet or more, the area will be divided into lots of not more than 14,000 square yards. For pavement or base with a design width less than 20 feet and for pavement widening and paved shoulders, the area will be divided into lots of not more than 7000 square yards. The number of lots, lot size, and core location shall be in accordance with Materials IM 346.

At locations determined by the Engineer, the Contractor shall cut samples from the finished pavement, base, widening, or shoulders by drilling with a core drill of a size that will provide samples with a 4 -inch outside diameter. The Contractor shall restore the surface by tamping low-slump concrete into the hole, finishing and texturing. The Contractor shall identify and deliver the cores to the field laboratory or plant inspector. The Engineer will measure the cores and report the results and quality index information.

Pavement and other work described above shall not be cored for thickness determination in the following situations:
1. Lots less than 5000 square yards 20 feet wide or wider.
2. Lots less than 2500 square yards and less than 20 feet wide.
3. Irregular areas which total less than 2500 square yards.
4. Detour pavements, median crossovers, paved drives; runarounds, paved medians and other temporary pavements.
```

        2 Of 2
    (Additional Attached Requirements)

```

Iowa County
PCC Overlay - Unbonded
STP-21-3(10)--2C-48

REPLACE Paragraph A of Article 2301.35, Basis of Payment, with the following new Paragraph A.

\section*{A. Portland Cement Concrete Pavement.}

The basis of payment described herein for Standard or Slip-Form Portland Cement Concrete Pavement applies to pavement, concrete base, concrete base widening, concrete pavement widening and concrete paved shoulders. Payment for the quantities of pavement in square yards in each lot will be at a percentage of the contract unit price in accordance with the following schedule:

Payneat Schedule
\begin{tabular}{|c|c|c|c|}
\hline Percent Paynent & \multicolumn{3}{|r|}{Qoality Inder Range} \\
\hline 103 & 1.25 & 05 & Horb \\
\hline 101 & 0.86 & to & 1.24 \\
\hline 100 & 0.41 & to & 0.85 \\
\hline 98 & 0.20 & to & 0.40 \\
\hline 9 & 0.00 & to & 0.19 \\
\hline 90 & -0.25 & to & -0.01 \\
\hline 80 & -0.40 & to & -0.26 \\
\hline \(10^{\circ}\) & -0.41 & 05 & LBSS \\
\hline
\end{tabular}
- If a \(\ell I\) of -0.41 or less is obtaiaed, additional cores shall be taken to deterniae the extent and severity of the deficiencies. Depeadiog on the resalts of this stady the Bagiaecr vill require one of the folloviag procedores:
(a) The deficient lot shall be renoved and replaced vith parenent at the Contractor's expense, reeting the contract requireneats. Pagreat for the replaced pareneat pill be as provided abore.
(b) The pavereat represeated by cores deficient fros design thickness by lore than one iach shall be replaced. These areas vill be defined \(b\) linits one-balf the distance to the deat core which is not deficient fron design thickness by sore than ode loch. The reatioder of the deficieat lot ay be left in place aod paid for at 70 perceat of the contract price.

If all lots on a project bave a quality iodes of 1.25 or nore, the percent of payneat pill be 105 perceat for the project.

If all cores teasured io a lot are at or above design thickness, the payment for that lot vill oot be less than 100 perceat of the coatract anit price.

Payneot for areas of Class a sobbase, or PCC paved shoolders vill not be zore than 100 percent of the contract anit price.

Unless otherwise provided in the contract documents, or mutually agreed upon by the Contractor and the Engineer, areas which are paved with \(M\), \(F\), or \(\operatorname{FF}\) mixes at the request of the Engineer, will be paid for as provided above except that the unit price will be doubled.

\section*{SPECIAL PROVISIONS for}

\title{
RESURFACING WITH PORTLAND CEMENT CONCRETE OVER ASPHALT CEMENT CONCRETE AND COLD IN-PLACE RECYCLED ASPHALT PAVEMENTS
}

\author{
STP-21-3(10)--2C-48, Iowa County
}

January 7, 1994

THE STANDARD SPECIFICATIONS, SERIES OF 1992, ARE AMENDED BY THE FOLLOWING MODIFICATIONS. THESE ARE SUPPLEMENTAL SPECIFICATIONS, AND THEY SHALL PREVAIL OVER THOSE PUBLISHED IN THE STANDARD SPECIFICATIONS.

This work involves resurfacing portland cement concrete (PCC) pavement over asphalt-cement concrete (ACC) and cold in-place recycled pavements.

The contract documents will specify locations of different PCC pavement thicknesses, the areas of polypropylene fiber reinforced PCC, and the locations of different transverse and longitudinal joint patterns.

Testing and monitoring instruments will be installed in the area of PCC resurfacing for research purposes. These instruments will be installed and operated by others. The contractor's schedule shall accommodate the installation and operation of the testing and monitoring instruments.

A one day open house is planned for this work. Detailed informacion concerning the open house will be submitted to the Contractor after the award of the contract. The Contractor's schedule shall accommodate this open house.

Section 2301 of the Standard Specifications shall apply for resurfacing PCC pavement over ACC and Cold In-place Recycling pavements with the following modifications.

REPLACE the first paragraph of Article 2301.02, Type of Pavement, with the following new paragraph:

The Contractor shall construct the PCC pavement resurfacing with slipform paving equipment.

REPLACE the second sentence of Article 2301.03, Materials, with the following two new sentences:

Coarse aggregate used in the PCC mix shall meet requirements of gradation number 5 and be of the durability class required by Article 4115.04. Collated or Graded fibrillated polypropylene fibers shall be used where

SP-1125 Page 2
the contract documents specify PCC with fibers. The minimum length of individual fiber strands shall be \(3 / 4\) inch.

REPLACE the first paragraph of Article 2301.04, Portland Cement concrete pavement, with the following new paragraph:

The Contractor shall use a Class \(C\) concrete for PCC resurfacing. The Contractor shall use the same concrete mix design for all PCC resurfacing on this project.

ADD Paragraph F, Polypropylene Fibers, to Article 2301.04, Portland Cement Concrete Pavement.

\section*{F. Polypropylene Fibers.}

Where specified in the contract documents, the Contractor shall incorporate Polypropylene Fibers into the PCC mix in accordance with the fiber supplier's instructions with the Engineer's approval. The
Contractor shall add 3 pounds of fibers per cubic yard of concrete. The Contractor shall mix the fibers into fresh concrete so they are uniformly distributed throughout each batch of concrete and there is no clumping of the fibers.

REPLACE all of Article 2301.10, Subgrade Construction with the following:
2301.10 Preparation of Existing ACC and New Cold In-Place Recycled Asphalt Base Pavements.

The contract documents will specify the locations of the existing ACC pavement and the locations of the new cold in-place asphalt pavement.

The contract documents specify the locations of pavement scarification and ACC full depth repair patches on the existing ACC pavemerit prior to PCC resurfacing. The Contractor shall perform the pavement scarification and ACC full depth repair patch work in accordance with the contract documents and the Iowa DOT Standard Specifications. The Contractor shall perform the pavement scarification work so the surface is left with a smooth profile. It is intended that the depth of pavement scarificition will average a nominal \(1 / 4\) inch.

The Contractor shall construct the areas of cold in-place recycled asphalt pavement in accordance with the current Supplemental Specifications for Cold In-Place ACC Recycling.
:The Contractor shall prepare a pad line for the equipment used for PCC resurfacing. The cost of preparation of the pad area shall be included in the price of placing the PCC pavement resurfacing.

The Contractor shall clean the existing surfaces of all loose or adhering foreign material prior to placement of the PCC over the existing ACC and new cold in-place recycled asphalt pavements.

At the time of PCC placement, the existing ACC and new cold in-place asphalt recycled pavements shall conform to the specified typical cross section. The pavements shall be checked, and any high spots shall be trimmed at the direction of the Engineer.

At the time of PCC placement, adequate provisions shall have been made for drainage away from the area to be paved.

ADD the following paragraph prior to the first paragraph of Article 2301.14, Placing Concrete.

The contract documents specify the PCC resurfacing to be placed at depths of \(2,4,6\), and 8 inches. The contract documents identify the locations of each depth of pavement. The contract documents also identify transition areas between each depth of pavement.

REPLACE the fourth from the last Paragraph of Article 2301.14; Placing Concrete, with the following new paragraph:

The Contractor shall install deformed tie bars for all longitudinal joints in accordance with Road Standard RH-51 in areas of PCC resurfacing without fibers and thickness greater than 4 inches. Areas of PCC resurfacing with fibers or 4 inches in thickness or less will not require tie bars in the longitudinal joints.

REPLACE Paragraph D of Article 2301.16, Finishing, with the following new Paragraph D:
D. The current Supplemental Specifications for Pavement Smoothnéss shall apply for this work. All bumps exceeding 0.5 inch within a 25 foot span, as indicated on the profilogram, shall be corrected, except when otherwise directed by the Engineer. Grinding of pavement less than 4 inches thick for smoothness correction shall be only when approved by the Engineer.

REPLACE the third sentence of the first paragraph cí Article 2301.19: Paragraph A, Curing with White Pigmented Liquid Curing Compound.

The rate of application of curing compound on the PCC resurfacing shall be a minimum of 0.10 gallons per square yard of pavement. (Co jering 10 square. yards per gallon.)

REPLACE all of Articles 2301.22, Transverse Contraction Joints; and 2301.24, Longitudinal Joints, with the following new Article 2301.22.
2301.22 Transverse Contraction and Longitudinal Joints.

The Contractor shall saw transverse contraction and longitudinal joints in the PCC resurfacing in accordance with the joint patterns specified in the contract documents. Each joint shall be constructed substantially true to line with no offsets along the joint. The Contractor has the option of using a "Soff Cut" type of sawing system or approved equivalent to saw the joints in the PCC resurfacing.

Sawing the joints shall commence as soon as the concrete has hardened sufficiently to permit sawing without excessive raveling, and to support the weight of the sawing equipment and operator. All joints shall be sawed before uncontrolled shrinkage cracking takes place. If necessary, the sawing operations shall be carried on both during the day and night, regardless of weather conditions. Sawing shall be discontinued when a crack develops ahead of the saw. In general, all joints should be sawed in sequence. The Contractor shall not use a span saw which is supported on the new pavement, for sawing the PCC resurfacing.

The Contractor shall saw the joints in accordance with the following width and depth requirements for the specified PCC resurfacing thicknesses.
\begin{tabular}{|c|c|c|}
\hline PCC Resurfacing flickness & Joint Midth & Joiat Depth \\
\hline \(2 \cdot\) & \(1 / 8^{\circ}\) & \(1 / 2^{\circ}\) \\
\hline Greater thad \(2^{\circ}\) to \(4^{\circ}\) & \(1 / 8^{\circ}\) & \(1{ }^{\circ}\) \\
\hline Greater than \(4^{\circ}\) & - \(114{ }^{\circ}\) & * \(1118^{\circ}\) \\
\hline \multicolumn{3}{|l|}{\multirow[t]{3}{*}{- The coatractor bas the option to construct joints in pareacots greater than \(4^{\prime}\) thick in accordance vith Road Standards bh-50 for transperse joints and Road Standard RB-51 for longitodinal joints.}} \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}

Should uncontrolled cracking occur, a joint shall be formed with a crack saw along the line of the crack, and the joint shall be cleaned and sealed, as provided in Article 2301.25.

If the length of box out exceeds 15 feet, a contraction joint shall be constructed at both ends.

When random transverse cracks occur from a CD joint, the Engineer may require the pavement to be patched and an additional CD joint installed.

ADD the following new paragraph prior to the first paragraph of Article 2301.25, Sealing Joints.

The Contractor shall not seal transverse and longitudinal joints in PCC resurfacing 4 inches or less in thickness unless otherwise specified in the contract documents. The Contractor shall seal all joints in PCC resurfacing greaier than 4 inches in thickiess. The Contractor is not required to install backer rope in the joints, unless the joints are constructed in accordance with Road Standards RH-50 or RH-51.

REPLACE all of Paragraph A of Article 2301.34, Method of Measurement, with the following new Paragraph A:

\section*{A. Portland Cement Concrete Pavement.}

The quantity of the various items of work involved in the resurfacing with portland cement concrete over ACC and cold in-place recycled asphalt pavements will be measured for payment by the Engineer in accordance with the following provisions:
1. Slip-Form PCC Pavement, Furnish Only. The Engineer will compute the cubic yards of PCC concrete furnished and incorporated in the work by count of batches and the nominal batch volume.
2. Slip-Form PCC Pavement, Place Only. The Engineer will compute the total square yards of PCC resurfacing placed from plan dimensions.
3. Scarification for PCC Overlay. When Scarification for PCC Overlay is an item in the contract, the Engineer will compute the area scarified in square yards from measurement. When the work is done according to plan dimensions, the area may not be specifically measured and payment will be based on plan quantities.

REPLACE all of Paragraph A of Article 2301.35, Basis of Payment, with the following new. Paragraph \(A\) :

\section*{A. Portland Cement Concrete Pavement.}

Resurfacing with portland cement concrete over asphalt cement concrete pavement will be paid the contract price in accordance with the following provisions:
1. Slip-Form PCC Pavement, Furnish Only. For the number of cubic yards of PCC concrete incorporated in the work, the Contractor will be paid the contract price per cubic yard. This payment shall be full compensation for mixing the concrete and all materials, including polypropylene fibers, delivered to the grade.
:2. Slip-Form PCC Pavement, Place Only.
For the number of square yards of PCC resurfacing placed, the Contractor will be paid the contract price per square yard. This payment shall be full compensation for placing, finishing, protecting and curing the pavement, sawing and sealing joints, for furnishing and installing reinforcement, for preparation of the pad line and pavements, and for meeting all other requirements of Section 2301.
3. Scarification for PCC Overlay.

When Scarification for PCC Overlay is an item in the contract, the Contractor will be paid the contract price per square yard for scarification completed. This payment shall be full compensation for furnishing all material, equipment, and labor for the scarification and disposal of scarified material, as designated in the contract documents.

The current Supplemental Specifications for Pavement Smoothness apply for this work. Payment may be modified as provided therein. The modifications shall be made to payments described in both Paragraphs 1 and 2 above.

\title{
Appendix \(C\) \\ 1. Daily Inspection Reports of PCC \\ 2. Daily Plant Reports for AC
}

Contract No 40321 \(\qquad\) Contr Manat: Trec. \(\qquad\) Res/Co. Engr. KEN YANNA Project STP-21-3(10) \(\cdots 2 C-48\) County Ioma

Report No. _h. Date \(7 / 14 / 94\) Date of Last Report \(\% / 13 / 91 /\) Plant Owner and Location MANATTS PCRTABLE, Hu/y 2/ \(\qquad\) Sq. Yards (Cont. Qty.) \(91, \geq 34\) Weather oveRCast Shisc. Days Temp. Max. 74 Min._ \(=9\) Min. Temp. Foll. Night Gh_Plant Insp. JOAN LINDER \(\qquad\) Cert. No. 1602

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline TOTAL & \(29^{90}\) & \(19.73 \cdot 3^{3}\) & 780 & 1080 & 1078.5 & 138.3 \\
\hline PREVIOUS TOTAL & \[
\begin{gathered}
c^{3} \\
20 \\
\end{gathered}
\] & \(4^{18^{2}} \cdot 3\) & \({ }_{2} 0^{88} 8\) & \(10^{48} 0\) & \(10^{0^{3}} \mathrm{r}^{6}\) & 121.2 \\
\hline TOTAL TO DATE &  &  & \(98^{6} 8^{\circ}\) & \(\sqrt{22^{18}} 0\) & \(1208{ }^{81}\) & 122.5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ CEMENT } \\
\hline Brand & Type & Ticket No. & Amount Tons \\
\hline LAEASGE & I/TI & \(244055-\) & 283.27 \\
\hline & LA. & 244100 & \\
\hline
\end{tabular}

FLYASH
\begin{tabular}{|l|c|c|c|}
\hline AnIERICAN & \(C\) & 14532 & 25.02 \\
\hline
\end{tabular}

 Total Water \(154560<3\)

QYes No Brand PDA 25 DP N
Source: Lot 140514 T403
 Sp. Gr. -2.72


Sp. Gr. 2.63 Plant Test 2.62
Coarse Aggr. Volean. Monitove
T-203 No. A86002
 Coarse Aggr. Durability _3i
(768.95 tons

Coarse Aggregate 303889-303955/908. 61_ton:
Time Lost And Cause
Type of Subgrade ASPHALT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|c|}{BEAMS TESTED} \\
\hline \[
\begin{aligned}
& \text { Beam } \\
& \text { No. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Mix } \\
& \text { No. }
\end{aligned}
\] & Age Days & Depth Inches & Width Inches & Slump & Alr & Lb. Water \& Pail or Ind. Lasd & Act. Load & End Reaction (Pounds) & Computation Factor & Mod. of Rupture & Location of Break \\
\hline 11 & C-3uRC & 7 & 6.00 & 6.04 & 3/4 & 7.5 & 5600 & 5560 & - & 124172 & 690 & \(1 / 8\) \\
\hline 7 A & 3,64P.6. & 14. & 6.62 & 6.127 & \(1 \%\) & 7.2 & 6600 & 1.560 & - & -123758 & 8312 & E \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}


\(\qquad\) INC \(\qquad\) Res/Co. Engr. ḰEN YaNNA Project STP. 21-3(10) •2C-48 County Iown

Report No. 7 \(7 \quad\) Date \(\because / S / 7!\) \(\therefore 1.1\).1"r: ILI/a4 Plant Owner and Location MANATSS Postalile, 75 __ Min. Temp. Foll. Night 70 Plant Insp. Joan Linask Sq. Yards (Cont. Qty.) _-91,734


\begin{tabular}{|c|c|c|c|c|c|c|}
\hline TOTAL & a \({ }^{0}\) & \(\cdots{ }^{10} 4\) & \(\because 9^{\frac{1}{4}}\) & 1416 & 1415.5 & 129.8 \\
\hline PREVIOUS TOTAL & \(1.0{ }^{97^{2 .}}\) & \({ }_{2} 0^{30^{30}}\) & \(3{ }^{12} \times 20\) & \(45^{88^{\circ}}\) & \(4_{4}^{66^{\circ}}\) & ,20.3 \\
\hline TOTAL TO DATE & \[
\therefore 366.0
\] &  & 49.95 .04 & \(60^{1.0}\) & \(5^{9^{n^{\prime .}}}\) & 10.8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{CEMENT \(2^{1 / 3}\)} \\
\hline Brand & Type & Ticket \(\mathrm{No}_{3} \mathrm{~V}\) & Amount Tons \\
\hline LeFAV.g. & I/R & \(242877^{3}-\) & 368.74 \\
\hline & C.A &  & \\
\hline \multicolumn{4}{|c|}{FLY ASH} \\
\hline \(A N=D_{1, A A}\) & C & 0267- & 75.18 \\
\hline (r.tuschtirs) & & 0275 & \\
\hline
\end{tabular}

Method of Curing
WH, TE WHITE PIG. CURE CONP.
Texture Method
TINE
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ BEAMS MADE } \\
\hline Time & \begin{tabular}{c} 
Beam \\
No.
\end{tabular} & Slump & Air \\
\hline \(8: 30\) & 9 & \(13 / 4\) & 9.0 \\
\hline \(3: 35\) & r.9A & \(15 / 8\) & 8.0 \\
\hline \(9: 45\) & \(9 M\) & \(2 \frac{1}{2}\) & \(\% .1\) \\
\hline
\end{tabular}

 Calcium Chloride \(\square\) Yes 区No

LOH 4403975405
Water Reducer \(\triangle\) Yes \(\square\) No Brand \(\frac{\text { PDA. 25-DP }}{\text { Lort } 140514 \text { T403 }}\)
Fly Ash AlnevicinN, Meiscotine \(\qquad\) T-203 No. AH\$508

Sp. Gr. \(-2: 80\) Fine Aggr. 1 Arapan \(\sim\) Reliy. Mix \(\qquad\) T-203 No. A8600 2 Sp. Gr. - 2.63 Plant Test 2.63 Coarse Aggr. Volcan, AlaNTOIIR. Sp. Gr. \(\quad 2.63\) Plant Test _ 2.62 Certified Aggregate Verification Coarse Aggr. Durability _- 30
Fine aggregate 65457-65529/1002.20_1ons
Coarse Aggregate \(303382-303524 / 1198.21\) tons Time Lost And Cause
Type of Subgrade ASPHACT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|c|}{BEAMS TESTED} \\
\hline Beam No. & \[
\begin{aligned}
& \text { Mix } \\
& \text { No. }
\end{aligned}
\] & Age Days & Depth Inches & Width Inches & Slump & Air & Lb. Water a Pail or Ind. Load & Act. Load & End Reaction (Pounds) & Computation Factor & Mod. of Rupture & Location ol Break \\
\hline 3 & \[
636 \times 2
\] & \[
10
\] & 6.02 & 12.00 & \(23 / 8\) & 8.6 & 6200 & 6170 & - & . 124170 & 766 & 4 \\
\hline 4 & \[
C-3 \omega R \cdot C
\] & 8 & 6.02 & 6.02 & \(3 / 4\) & 8.0 & 5000 & 4950 & - & . 123758 & 6,13 & 1/4' \\
\hline 5 & \((-30.0) \mathrm{C} \cdot \mathrm{C}\) & 7 & 6.00 & 6.00 & \(2 \frac{1}{2}\) & 8.0 & 5200 & 5150 & - & .125000 & 6.44 & \(1 / 2{ }^{\prime \prime}\) \\
\hline
\end{tabular}

Additional Slump. Air Tests, Remarks Appirionat slump 4 air teists; 3/4 7.6
S. 3 Ver.ind le.vel, \(1 \frac{1}{2}+8.0,7 / 8+7.1 \square\)


A Split tkker with Rpt. 1:3:
\[
L<b_{n+1} \text { isर mitr }
\]



\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Item／ Lane} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{STATION}} & \multirow[b]{3}{*}{Length Feet} & \multirow[b]{3}{*}{Sq． Yards} & \multicolumn{3}{|c|}{\multirow[b]{2}{*}{CU．YDS．}} & \multirow[b]{3}{*}{\％of Est． Used} & & \multirow[b]{3}{*}{Mix No．} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{DRY BATCH WEIGHTS}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{MOISTURE CONTENT}} & \multicolumn{8}{|c|}{\multirow[t]{2}{*}{ACTUAL QUANTITIES USED PER CU．YD．（IN POUUNDS）}} & \multirow[b]{3}{*}{Slump} & \multirow[b]{3}{*}{Air} \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & From & To & & & Est． & Batched & Used & & Start & & F．A． & C．A． & F．A． & C．A． & Coment & \[
\begin{aligned}
& \text { Fly } \\
& \text { Ash }
\end{aligned}
\] & Fins Aggr． & Coarso Aggr． & Water in Mat＇ts． & \begin{tabular}{l}
Water \\
Added \\
al Plant
\end{tabular} & \[
\begin{gathered}
\text { Water } \\
\text { Added } \\
\text { al Grado }
\end{gathered}
\] & Total Watar & & \\
\hline \multirow[t]{2}{*}{E6i4} & \[
\begin{aligned}
& 2376 \\
& +15 \\
& \hline
\end{aligned}
\] & － & & & & Br： &  & － & \[
\frac{6.47}{120}
\] & \[
\begin{aligned}
& \hline c \cdot 3 \\
& c \cdot x^{\prime} \cdot C
\end{aligned}
\] & ：3607 & 1662 & 3.2 & 1.10 & 487 & 87 & 1410 & 1689 & 12 & 1916 & 1 & 349 & \(1 \frac{1}{4}\) & \[
\begin{aligned}
& 9.6 \times 4 \\
& \text { Reres }
\end{aligned}
\] \\
\hline & － & \[
\begin{array}{r}
2413 \\
+15 \\
\hline
\end{array}
\] & \％\％¢ & 6.13 .35 & 915．16 & ごごか & \[
5 \cdot 10
\] & \[
\begin{array}{r}
23.3 \\
+600 \\
\hline
\end{array}
\] & \[
\frac{12: 13}{3: d}
\] &  & \(1: 10\) & ：．．．l．d & 3，\％ & \(1 \cdot 6\) & 487 & 90 & 1412 & 1689 & 74 & 178 & 0 & 152 & 2立 & 8．0＊ \\
\hline 13，\({ }^{\text {coid }}\) & \[
\begin{aligned}
& 2.412 \\
& +75
\end{aligned}
\] & \[
\begin{array}{r}
415 \\
+04 \\
\hline
\end{array}
\] & \(\therefore 2 \mathrm{O} 1.0\) & 1.10 .10 & 93.0 & 1ヵ！ & \(\because 3\) & 180 &  & \[
\begin{aligned}
& A \cdot 3 \\
& 6 \cdot 16 \cdot \Gamma
\end{aligned}
\] & 12．1．t． & 11r62 & 3.3 & 1．6 & 487 & 90 & 1412 & 1689 & 174 & 183 & へ & 257 & \(\cdots\) & － \\
\hline & & & & & & & & & \(\sim\) & \(\therefore 02\) & C，T & EMP． & \(75^{*}\) & & R T & up & \(70^{\circ}\) & & & & & & & \\
\hline & & & & & & & & &  & & & & \[
\begin{aligned}
& 77^{\circ} \\
& 78^{\circ} \\
& \hline
\end{aligned}
\] & & & & \(7{ }^{7} 6^{\circ}\) & & & & & & & \\
\hline & & & & & & & & &  & & & & \(79^{\circ}\) & & & & 80＇ & & & & & & 4 & \\
\hline \multicolumn{3}{|l|}{TOTAL} & 2829．．＇ & 75：14， 1 & 1008．15 & \(1.248 \%\) & 1221.0 & 121.8 & \multicolumn{16}{|r|}{\(\qquad\)} \\
\hline \multicolumn{3}{|l|}{PREVIOUS TOTAL} & 116\％ & 1近参 & 1599．34 & M17．0 & 19360 & 122．5 & \multicolumn{6}{|r|}{Maximum Allowable Water \(\frac{283}{}\)} & \multicolumn{5}{|l|}{Brand ol Air Admixture AES Lot \(\$ 1403975405\)} & \multicolumn{5}{|l|}{－Ave．Water／Cement \(\frac{0.435-}{489}\)} \\
\hline \multicolumn{3}{|l|}{TOTAL TO DATE} & \(\cdots 304\). & \[
20010
\] & \multicolumn{2}{|l|}{\[
2588.20
\]} & 3157．0 & 122.0 & \multicolumn{3}{|r|}{Calcium Chloride Water Reducer} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \square Y e s \text { Xo } \\
& \boxtimes Y \text { Yes } \square N o
\end{aligned}
\]} & \multicolumn{6}{|l|}{\[
\begin{aligned}
& \text { Brand } \frac{\text { PDA-25.DP }}{\text { Lof }} 1404385403
\end{aligned}
\]} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Max．Waler／Cement \(\qquad\) \\
Normal Batch Size \(\qquad\) 1 cy
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{CEMENT} \\
\hline Brand & \multicolumn{2}{|c|}{Type} & Ticket No． \\
\hline LAFARCS & \multicolumn{2}{|r|}{II} & 242484－ \\
\hline & \multicolumn{2}{|c|}{L．A．} & 512＞04 \\
\hline \multicolumn{4}{|c|}{FLY ASH} \\
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|r|}{\(C\)} & 0256． \\
\hline & \multicolumn{3}{|r|}{0258} \\
\hline \multicolumn{4}{|c|}{BEAMS MADE} \\
\hline Time & Beam No． & Slump & Air \\
\hline 7：52 & 5 & \(2 \frac{1}{2}\) & 8.0 \\
\hline 1：35 & 5A & \(1^{\prime \prime}\) & 7.1 \\
\hline & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Mathod of Covering Subgrade
\(\square\) Plastic \\
Moistened
\end{tabular}} \\
\hline © Slip Form & \(\square\) Fixed Form \\
\hline \begin{tabular}{l}
Method of Mix \\
Central Mix
\end{tabular} & \(\square\) Transit Mix \\
\hline Cold Weather Protection & TYes XNo \\
\hline
\end{tabular}

Fly Ash AmERICAN－LOVISA AMERICAN－MUSCATINE＿Sp．Gr．2．72－2．80 Fine Aggr．MARAMEO Rel \(\qquad\) －Sp．Gr． 2.72 ＿

Coarse Aggr．UoLCAN，MonTOUR．
－ T－203 No．A8GnO2 Sp．Gr．-2.63 ant Test 2,64 Sp．Gr． 2.63 Plant Test 2． 62 Certified Aggregate Verlfication rified Aggregate Verlfication \(\quad\) Coarse Aggr．Durability \(\quad\) 3；
Fine aggregate \(65315-65378 / 713.25 \quad\) Coarse Aggregate \(303197-303293 / 1054.62\) tor Time Lost And Cause
Type of Subgrade PSPHALT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|c|}{BEAMS TESTED} \\
\hline \[
\begin{aligned}
& \text { Beam } \\
& \text { No. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Mix } \\
& \text { No. }
\end{aligned}
\] & Age Days & Depth Inches & Width Inches & Slump & Air & Lb．Water \＆Pail or Ind． Load & \begin{tabular}{l}
Act． \\
Load
\end{tabular} & End Reaction （Pounds） & Computation Factor & Mod．of Rupture & Locatior of Break \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Sample I．D．} & \multirow[t]{2}{*}{Grad． No．} & \multicolumn{9}{|l|}{AGGR SIEVE ANALYSIS} & \multicolumn{3}{|l|}{PERCENT PASSING} & \multirow[b]{2}{*}{COMP．} \\
\hline & & 1／2N & 1 IN & H．IN & \％IN & ＊ \(\mathrm{N}^{\text {N }}\) & No． 4 & No． 8 & No． 16 & No． 30 & No． 50 & No． 100 & No． 200 & \\
\hline CA－12－28 & 5 & & 100 & 100 & 70 & 4／5 & 6.7 & 1.4 & & & & & 1.2 & YES \\
\hline \(F_{A} \cdot 10.28\) & 1 & & & & & 100 & 97 & 89 & 73 & 41 & 8.1 & 0.7 & 0.3 & HES \\
\hline & & & & & & & & & & & & & & \\
\hline
\end{tabular}



6 Iowa Department of Transportation
DAILY PLANT REPORT
BITUMINOUS TREATED BASE, ASPHALT CONCRETE

\(\qquad\) BATCH
class Binder Make \(\qquad\) Plant Location \(\qquad\) MACecm Pollution Equipment \(\mathrm{CH} 41 \mathrm{~A} \times 1 \mathrm{~S}^{5}\) \(\qquad\) Resident Engineer \(\qquad\) Report No.
County (ORA
Project \(51 P-21-3(10)-2 c-48\)
Contract No. \(\qquad\) 40321
Date \(7-26-94\)
\(\qquad\) 3
KENNETH KANA
Pant Type B

Size \(\qquad\) 3-" \(\qquad\) Mix Type SIEVE ANALYSIS OF COMBINED AGGREGATES



LAB. DEN. 2,3460 DENSITY RECORD
SOLID DEN. \(\mathbb{Z}, 4 \nmid\) TEMPERATURE RECORD

\[
96.992-95.000: \frac{1.992}{0.882}=2.26
\]

88 Iowa Department of Transportation
DAILY PLANT REPORT
BITUMINOUS TREATED BASE, ASPHALT CONCRETE

\(\qquad\) Make \(\qquad\) Steel
\(\qquad\) Pollution Equipment BAG HOUSE
county Iowa
Project STP-21-3(10)-2C-48
Contract No. 40321
Date \(7-26-44\)
Report No. \(\qquad\) 2 \(\frac{2}{\text { VANDA }}\)
\(\qquad\) KenNeTh Resident Engineer \(\qquad\) Recycle Source \(\qquad\) 8:00p

PM. M× No. ABD \(4-1015\) sames suamirie

\begin{tabular}{|c|c|}
\hline Materials & Senders No. \\
\hline COCDFEA & CF 7-26A \\
\hline\(\downarrow\) & \(C F 7-26 B\) \\
\hline\(A C-10\) & \(A C 7-26 A-B\) \\
\hline & \\
\hline
\end{tabular}
\begin{tabular}{l|r} 
& Materials \\
& Hor \\
\hline & \\
\hline & \\
\hline
\end{tabular}

Intended Added \(\qquad\) \% A.C. Tank Meas. \(\qquad\)
 Intended Total (0. 30 \% A.C. Total
\(\qquad\) tumemunneneome sounome 2.435



PRODUCTION AND PLACEMENT RECORD


LOW OUTLIER WILL NaT WARK.
(Show Calculation)

GK
ONLY 2 SAMPLES, COLLECTED TODAY FOR GRADATION, PLANT SWITCHED OVER TO BM" BINDER MIX

COMMENTS: Delays, Breakdowns, Corrective Action, etc.
*Thickness: (1 )Actual, (2) Intended
Bituminous Treated Base: Enter \% Moisture in \% Voids Column
some Sher Bovid)

DAILY PLANT REPORT
BITUMINOUS TREATED BASE, ASPHALT CONCRETE

Accopance Finesellumen Ratio \(=0.91\) 929
```

    Appendix D
    1. Summary of Mixes
    2. Summary of Joint Spacings
    3. Summary of Joint Sawing
    4. Summary of Test Beams
    5. Summary of Slump and Air Content
    6. Summary of Beam and Cylinder Strengths
    7. Profilograph Summary
    8. Slab Thickness Summary
    9. Vibrator Frequency Summary
    10. Air and Concrete Temperature Summary
```

\section*{HR559 MIXTURES}
\[
\begin{aligned}
& 2335+64-2341+02 \\
& 2341+02-2386+75 \\
& 2386+75-2412+75 \\
& 2412+75-2415+00 \\
& 2415+00-2425+00 \\
& 2425+00-2505+00 \\
& 2505+00-2515+00 \\
& 2515+00-2539+09 \\
& 2539+09-2632+25 \\
& 2632+25-2.703+95 \\
& 2703+95-2714+00
\end{aligned}
\]

CONVENTIONAL FIBRILLATED MONOFILAMENT
FIBRILLATED
ACC
CONVENTIONAL ACC
CONVENTIONAL FIBRILLATED CONVENTIONAL ACC

SECTION 1-2
SECTION 2-10
SECTION 10-14
SECTION 14-15
SECTION 16
SECTION 17-33
SECTION 34
SECTION 35-37
SECTION 37-54
SECTION 54-64
SECTION 65
\(2335+64-2340+00\)
\(2340+00-2340+90\)
\(2340+90-2349+00\)
\(2349+00-2364+00\)
\(2364+00-2371+00\)
\(2371+00-2379+00\)
\(2379+00-2387+00\)
\(2387+00-2395+00\)
\(2395+00-2403+00\)
\(2403+00-2414+00\)
\(2414+00-2415+00\)
\(2415+00-2425+00\)
\(2425+00-2426+00\)
\(2426+00-2433+00\)
\(2433+00-2440+50\)
\(2440+50-2457+00\)
\(2457+00-2468+00\)
\(2468+00-2479+50\)
\(2479+50-2488+00\)
\(2488+00-2496+00\)
\(2496+00-2504+00\)
\(2504+00-2505+00\)
\(2505+00-2515+00\)
\(2515+00-2539+00\)
\(2539+00-2547+00\)
\(2547+00-2562+00\)
\(2562+00-2569+00\)
\(2569+00-2576+50\)
\(2576+50-2585+00\)
\(2585+00-2601+00\)
\(2601+00-2608+00\)
\(2608+00-2616+00\)
\(2616+00-2624+00\)
\(2624+00-2632+00\)
\(2632+00-2640+00\)
\(2640+00-2653+50\)
\(2653+50-2661+50\)
\(2661+50-2690+00\)
\(2690+00-2699+00\)
\(2699+00-2702+00\)
\(2702+00-2703+95\)
\(2703+95-2714+00\)

20 FT
15 FT
12 FT
6 FT
2 FT
4 FT
2 FT
4 FT
6 FT
12 FT
6 FT
N/A ACC
6 FT
12 FT
6 FT
2 FT
6 FT
12 FT
4 FT
15 FT ND
15 FT D
6 FT
N/A ACC
6 FT
2 FT
4 FT
2 FT
6 FT
12 FT
6 FT
2 FT
4 FT
2 FT
4 FT
6 FT
12 FT
6 FT
12 FT
4 FT
12 FT
4 FT
N/A ACC

Note: These are the actual joint spacings on the project \(1 \mathrm{FT}=0.3048 \mathrm{~m}\)


BEAM STRENGTHS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { BEAM } \\
\text { NUMBER }
\end{gathered}
\] & SECTION NUMBER & DATE MADE & \[
\begin{aligned}
& \hline \text { AGE } \\
& \text { DAYS }
\end{aligned}
\] & MIX NUMBER & FIBER & \[
\begin{aligned}
& \hline \hline \text { ACT } \\
& \text { LOAD } \\
& (\mathrm{kg}) \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\hline \text { MODULUS } \\
\text { OF RUPTURE } \\
\text { (kPa) } \\
\hline
\end{gathered}
\] \\
\hline 1 & 1 & 6/24/94 & 7 & C-3WR-C & NONE & 2060 & 3910 \\
\hline 2 & 2 & 6/24/94 & 7 & C-3WR-C & FIB & 2590 & 4920 \\
\hline 3 & 3 & 6/25/94 & 10 & C-3WR-C & FIB & 2800 & 5280 \\
\hline 3A & 4 & 6/25/94 & 16 & C-3WR-C & FIB & 2520 & 4780 \\
\hline 4 & 7 & 6/27/94 & 8 & C-3WR-C & FIB & 2250 & 4230 \\
\hline 4A & 9. & 6/27/94 & 14 & C-3WR-C & FIB & 2750 & 5180 \\
\hline 5 & 11 & 6/28/94 & 7 & C-3WR-C & MONO & 2340 & 4440 \\
\hline 5A & 14 & 6/28/94 & 14 & C-3WR-C & MONO & 3060 & 5820 \\
\hline 6 & - & 6/29/94 & 7 & C-3WR-C & NONE & 2250 & 4270 \\
\hline 6A & - & 6/29/94 & 14 & C-3WR-C & NONE & 2620 & 4970 \\
\hline 7 & 18 & 6/30/94 & 7 & C-3WR-C & NONE & 2290 & 4340 \\
\hline 7A & 21 & 6/30/94 & 14 & C-3WR-C & NONE & 2980 & 5600 \\
\hline 8 & 23 & 7/01/94 & 7 & C-3WR-C & NONE & 2480 & 4690 \\
\hline 8A & 23 & 7/01/94 & 14 & C-3WR-C & NONE & 2880 & 5520 \\
\hline 9 & 26 & 7/05/94 & 7 & C-3WR-C & NONE & 2570 & 4860 \\
\hline 9M & 27 & 7/05/94 & 2 & M-3-C & NONE & 2710 & 5100 \\
\hline 9A & 30 & 7/05/94 & 14 & C-3WR-C & NONE & 2480 & 4690 \\
\hline 10 & 31 & 7/06/94 & 7 & C-3WR-C & NONE & 2980 & 5610 \\
\hline 10A & 33 & 7/06/94 & 14 & C-3WR-C & NONE & 2430 & 4650 \\
\hline 11 & 36 & 7/07/94 & 7 & C-3WR-C & NONE & 2520 & 4760 \\
\hline 11A & 36 & 7/07/94 & 14 & C-3WR-C & NONE & 3150 & 5970 \\
\hline 12 & 36 & 7/11/94 & 7 & C-3WR-C & NONE & 2430 & 4570 \\
\hline 12A & 36 & 7/11/94 & 14 & C-3WR-C & NONE & 2620 & 4920 \\
\hline 12B & 38 & 7/11/94 & 7 & C-3WR-C & FIB & 2660 & 5040 \\
\hline 12M & 39 & 7/11/94 & 2 & M-3-C & FIB & 1930 & 3660 \\
\hline 13 & 42 & 7/12/94 & 7 & C-3WR-C & FIB & 2750 & 5210 \\
\hline 13A & 48 & 7/12/94 & 22 & C-3WR & NONE & 2880 & 5410 \\
\hline 14 & 48 & 7/13/94 & 7 & C-3WR & FIB & 2520 & 4740 \\
\hline 14M & N/A & N/A & 2 & M-3 & NONE & 2340 & 4430 \\
\hline 15 & 50 & 7/14/94 & 7 & C-3WR-C & FIB & 2660 & 5040 \\
\hline 15A & 55 & 7/14/94 & 14 & C-3WR & NONE & 2620 & 4920 \\
\hline 15B & 56 & 7/14/94 & 7 & C-3WR & NONE & 2340 & 4450 \\
\hline 15M & 56 & 7/14/94 & 4 & M-3 & NONE & 2390 & 4490 \\
\hline 16 & 56 & 7/15/94 & 7 & C-3WR-C & NONE & 2800 & 5280 \\
\hline 16A & 60 & 7/15/94 & 17 & C-3WR-C & NONE & 3420 & 6410 \\
\hline 16M & 60 & 7/15/94 & 3 & M-3-C & NONE & 3200 & 6010 \\
\hline 17 & 60 & 7/18/94 & 7 & C-3WR-C & NONE & 2800 & 5530 \\
\hline 17A & 62 & 7/18/94 & 16 & C-3WR-C & NONE & 2800 & 5210 \\
\hline 18 & - & 7/19/94 & 2 & M-3-C & NONE & 2390 & 4490 \\
\hline 19 & - & 7/20/94 & 7 & C-3WR-C & NONE & 2885 & 5370 \\
\hline 19A & - & 7/20/94 & 13 & C-3WR-C & NONE & 2980 & 5600 \\
\hline 20 & - & 7/21/94 & 7 & C-3WR-C & NONE & 2780 & 5190 \\
\hline 20M & - & 7/21/94 & 4 & M-3-C & NONE & 2710 & 5070 \\
\hline
\end{tabular}

\section*{*ALL DATA TAKEN FROM DAILY PLANT REPORTS}
\begin{tabular}{|c|c|c|c|}
\hline DATE & SLUMP & AIR BEFORE & \[
\begin{gathered}
\text { AIR } \\
\text { AFTER }
\end{gathered}
\] \\
\hline 6/24/94 & 3/4" & 6.2\% & \\
\hline 6/24/94 & 3 1/2" & 9.5\% & 6.4\% \\
\hline 6/24/94 & \(13 / 4^{\prime \prime}\) & 8.8\% & 5.8\% \\
\hline 6/24/94 & \(13 / 8^{\prime \prime}\) & 8.0\% & 5.9\% \\
\hline 6/24/94 & 21/4" & 6.4\% & \\
\hline 6/24/94 & 3/4" & 6.7\% & \\
\hline 6/24/94 & 0 & 8.0\% & \\
\hline 6/24/94 & 1 ' & 8.0\% & \\
\hline 6/24/94 & 1 " & 8.0\% & \\
\hline 6/24/94 & \(11 / 4^{\prime \prime}\) & 8.0\% & \\
\hline 6/25/94 & 1 " & 8.0\% & \\
\hline 6/25/94 & \(13 / 8^{\prime \prime}\) & 8.8\% & 7.1\% \\
\hline 6/25/94 & 3/4 \({ }^{\text {a }}\) & 7.8\% & \\
\hline 6/25/94 & \(11 / 2^{\prime \prime}\) & 8.2\% & 6.0\% \\
\hline 6/25/94 & \(2^{\prime \prime}\) & 9.0\% & 6.8\% \\
\hline 6/25/94 & \(13 / 8^{\prime \prime}\) & 7.1\% & \\
\hline 6/25/94 & 21/8" & 8.6\% & 6.5\% \\
\hline 6/25/94 & 7/8* & 8.4\% & 6.0\% \\
\hline 6/25/94 & 11/2" & 7.6\% & \\
\hline 6/25/94 & \(23 / 8^{\prime \prime}\) & 8.6\% & \\
\hline 6/25/94 & 23/8" & 8.6\% & \\
\hline 6/27/94 & \(11 / 8^{\prime \prime}\) & 8.6\% & 6.6\% \\
\hline 6/27/94 & 3/4" & 8.0\% & \\
\hline 6/27/94 & 11/2 \({ }^{\text {II }}\) & 8.1\% & \\
\hline 6/27/94 & \(11 / 4^{\prime \prime}\) & 8.6\% & 6.6\% \\
\hline 6/27/94 & \(11 / 4^{\prime \prime}\) & 7.4\% & \\
\hline 6/27/94 & \(23 / 8^{\prime \prime}\) & 8.6\% & 6.6\% \\
\hline 6/27/94 & 3/4" & 8.0\% & \\
\hline 6/27/94 & \(23 / 8^{\prime \prime}\) & 6.6\% & \\
\hline 6/28/94 & 11/4" & 9.6\% & \\
\hline 6/28/94 & 21/2" & 8.0\% & \\
\hline 6/28/94 & & 8.5\% & 5.6\% \\
\hline 6/28/94 & & 9.5\% & 7.5\% \\
\hline 6/28/94 & & 8.2\% & 6.3\% \\
\hline 6/28/94 & \(11 / 8^{\prime \prime}\) & 7.6\% & \\
\hline 6/28/94 & 11/4" & 6.8\% & \\
\hline 6/28/94 & \(2^{\text {" }}\) & 7.9\% & \\
\hline 6/28/94 & 1 1'1 & 8.0\% & \\
\hline 6/28/94 & 1 " & 7.8\% & \\
\hline 6/28/94 & 1 1' & 7.1\% & \\
\hline 6/28/94 & 21/2" & 8.0\% & \\
\hline 6/30/94 & 1 " & 6.5\% & \\
\hline 6/30/94 & 11/2" & 7.0\% & \\
\hline 6/30/94 & 11/2" & 6.7\% & 4.4\% \\
\hline 6/30/94 & \(11 /{ }^{\prime \prime}\) & 7.5\% & \\
\hline
\end{tabular}

NOTE: AL DATA TAKEN FROM DALY PLANT REPORTS
\begin{tabular}{|c|c|c|c|}
\hline DATE & SLUMP & AlP & AlR \\
& & BEFORE \\
AFTER
\end{tabular} (1)

BEAM AND CYLINDER STRENGTHS

CONVENTIONAL
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { BEAMM } \\
\text { NUMBER }
\end{gathered}
\] & \[
\begin{aligned}
& \hline \mathrm{AGE} \\
& \text { (DAYS) } \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\hline \hline \text { LOAD } \\
(\mathrm{kg})
\end{gathered}
\] & STRENGTH ( kPa ) & CYLINDER NUMBER & \[
\begin{aligned}
& \hline \text { AGE } \\
& \text { (DAYS) }
\end{aligned}
\] & \[
\begin{gathered}
\hline \hline \text { LOAD } \\
(\mathrm{kg})
\end{gathered}
\] & STRENGTH (MPa) \\
\hline 18-C-1 & 7 & 2630 & 4900 & L18 & 7 & 30400 & 29.0 \\
\hline 18-C-2 & 7 & 2590 & 4800 & \(\underline{20}\) & 7 & 29000 & 27.7 \\
\hline 18-C-3 & 7 & 2430 & 4600 & L7 & 7 & 28200 & 27.0 \\
\hline 19-C-4 & 14 & 2540 & 4900 & L35 & 14 & 28500 & 27.2 \\
\hline 21-C-5 & 14 & 2590 & 4900 & L10 & 14 & 31600 & 30.2 \\
\hline 21-C-6 & 14 & 2540 & 4800 & L8 & 14 & 36200 & 35.3 \\
\hline 27-C-7 & 28 & 2400 & 4400 & \(\underline{L 20}\) & 28 & 36100 & 34.5 \\
\hline 27-C-8 & 28 & 2740 & 5000 & L18 & 28 & 33600 & 32.1 \\
\hline 28-C-9 & 28 & 2680 & 5000 & L35 & 28 & 36700 & 35.1 \\
\hline
\end{tabular}

\section*{FIBRILLATED}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { BEAM } \\
& \text { NUMBER }
\end{aligned}
\] & \[
\begin{gathered}
\text { AGE } \\
\text { (DAYS) }
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { LOAD } \\
(\mathrm{kg}) \\
\hline \hline
\end{gathered}
\] & \[
\begin{gathered}
\text { STRENGTH } \\
(\mathrm{kPa})
\end{gathered}
\] & CYLINDER NUMBER & \[
\begin{gathered}
\hline \text { AGE } \\
\text { (DAYS) }
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { LOAD } \\
(\mathrm{kg}) \\
\hline
\end{gathered}
\] & STRENGTH (MPa) \\
\hline 3-F-1 & 7 & 2340 & 4300 & L8 & 7 & 25400 & 24.1 \\
\hline 4-F-2 & 7 & 2020 & 3900 & L10 & 7 & 22600 & 21.7 \\
\hline 4-F-3 & 7 & 2270 & 4200 & L33 & 7 & 21100 & 20.2 \\
\hline 40-F-9 & 14 & 2270 & 4100 & L33 & 14 & 29800 & 28.5 \\
\hline 39-F-7 & 14 & 2470 & 4600 & L10 & 14 & 31800 & 30.4 \\
\hline 38-F-6 & 14 & 2680 & 4800 & L40 & 14 & 34900 & 33.4 \\
\hline 39-F-4 & 28 & 2450 & 4600 & L7 & 28 & 35700 & 34.1 \\
\hline 39-F-8 & 28 & 2540 & 4600 & L8 & 28 & 34800 & 33.3 \\
\hline 39-F-5 & 28 & 2520 & 4700 & L3 & 28 & 41900 & 40.1 \\
\hline
\end{tabular}

\section*{MONOFILAMENT}
\begin{tabular}{|c|c|c|c||c|c|c|c|}
\hline \begin{tabular}{c} 
BEAM \\
NUMBER
\end{tabular} & \begin{tabular}{c} 
AGE \\
(DAYS)
\end{tabular} & \begin{tabular}{c} 
LOAD \\
\((\mathrm{kg})\)
\end{tabular} & \begin{tabular}{c} 
STRENGTH \\
\((\mathrm{kPa})\)
\end{tabular} & \begin{tabular}{c} 
CYLINDER \\
NUMBER
\end{tabular} & \begin{tabular}{c} 
AGE \\
(DAYS)
\end{tabular} & \begin{tabular}{c} 
LOAD \\
\((\mathrm{kg})\)
\end{tabular} & \begin{tabular}{c} 
STRENGTH \\
\((\mathrm{MPa})\)
\end{tabular} \\
\hline \hline \(11-M-1\) & 9 & 1880 & 3500 & L35 & 9 & 29400 & 28.1 \\
\hline \(11-M-2\) & 9 & 2200 & 4100 & L33 & 9 & 27200 & 26.0 \\
\hline \(11-M-3\) & 9 & 2060 & 3900 & \(L 40\) & 9 & 24100 & 23.0 \\
\hline \(11-M-4\) & 14 & 2150 & 4100 & \(L 18\) & 14 & 31000 & 29.6 \\
\hline \(11-M-5\) & 14 & 2630 & 4800 & \(L 20\) & 14 & 26500 & 25.3 \\
\hline \(11-M-6\) & 14 & 2590 & 4800 & \(L 10\) & 14 & 26600 & 25.4 \\
\hline \(13-M-7\) & 28 & 2810 & 5200 & \(L 8\) & 28 & 37500 & 35.8 \\
\hline \(14-M-8\) & 28 & 2540 & 4800 & \(L 7\) & 28 & 32800 & 37.5 \\
\hline \(14-M-9\) & 28 & 2590 & 4800 & \(L 3\) & 28 & 36000 & 34.3 \\
\hline
\end{tabular}

HR-559 IA 21
PROFILOGRAPH

SOUTHBOUND LANE
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
BEGIN. \\
STATION
\end{tabular} & \begin{tabular}{c} 
ENDING \\
STATION
\end{tabular} & \begin{tabular}{c} 
MEASURED \\
ROUGH. \\
\((\mathrm{mm})\)
\end{tabular} & \begin{tabular}{c} 
PROFILE \\
INDEX \\
\((\mathrm{mm} / \mathrm{km})\)
\end{tabular} \\
\hline \(2344+97\) & \(2369+16\) & 112 & 152 \\
\hline \(2369+16\) & \(2386+54\) & \(64: 8\) & 122 \\
\hline \(2386+54\) & \(2414+81\) & 82.6 & 95.8 \\
\hline \(2414+81\) & \(2425+16\) & 31.8 & 102 \\
\hline
\end{tabular}

NORTHBOUND LANE
\begin{tabular}{||c|c|c|c||}
\hline \begin{tabular}{c} 
BEGIN. \\
STATION
\end{tabular} & \begin{tabular}{c} 
ENDING \\
STATION
\end{tabular} & \begin{tabular}{c} 
MEASURED \\
ROUGH. \\
\((\mathrm{mm})\)
\end{tabular} & \begin{tabular}{c} 
PROFILE \\
INDEX \\
\((\mathrm{mm} / \mathrm{km})\)
\end{tabular} \\
\hline \(2344+97\) & \(2369+16\) & 177 & 239 \\
\hline \(2369+16\) & \(2386+54\) & 66.0 & 125 \\
\hline \(2386+54\) & \(2414+81\) & 122 & 142 \\
\hline \(2414+81\) & \(2425+16\) & 40.6 & 131 \\
\hline \(225+16\) & \(2448+13\) & 97.8 & 140 \\
\hline \(2448+18\) & \(2460+05\) & 54.6 & 155 \\
\hline \(2460+05\) & \(2488+67\) & 64.8 & 73.2 \\
\hline \(2488+67\) & \(2504+84\) & 61.0 & 123 \\
\hline
\end{tabular}

NOTE: CONDUCTED ON 7/20/94-7/21/94, 7/28/94, 8/19/94, 8/22/94

DEPTH OF SLAB
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline SECTION & \multicolumn{3}{|c|}{MINIMUM} & \multicolumn{3}{|c|}{MAXIMUM} & \multicolumn{3}{|c|}{AVERAGE} & \multirow[t]{2}{*}{SAMPLE SIZE} \\
\hline NUMBER & LT & CL & RT & LT & CL & RT & LT & CL & RT & \\
\hline 1 & NA & - \\
\hline 2 & TRANS & - \\
\hline 3 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 1 \\
\hline 4 & 150 & 160 & 130 & 220 & 220 & 180 & 180 & 190 & 150 & 5 \\
\hline 5 & TRANS & - \\
\hline 6 & 100 & 100 & 100 & 130 & 160 & 160 & 120 & 130 & 130 & 3 \\
\hline 7 & 110 & 110 & 80 & 110 & 120 & 130 & 110 & 110 & 100 & 2 \\
\hline 8 & 110 & 100 & 150 & 170 & 140 & 180 & 140 & 120 & 170 & 5 \\
\hline 9 & TRANS & - \\
\hline 10 & 100 & 80 & 40 & 100 & 90 & 60 & 100 & 80 & 50 & 2 \\
\hline 11 & NA & - \\
\hline 12 & TRANS & - \\
\hline 13 & NA & - \\
\hline 14 & 130 & 140 & 150 & 190 & 190 & 190 & 160 & 170 & 170 & 6 \\
\hline 15 & TRANS & - \\
\hline 16 & ACC \\
\hline 17 & TRANS & - \\
\hline 18 & 140 & 150 & 160 & 170 & 180 & 160 & 150 & 170 & 190 & 4 \\
\hline 19 & NA & - \\
\hline 20 & TRANS & - \\
\hline 21 & 50 & 80 & 80 & 100 & 140 & 140 & 80 & 110 & 110 & 3 \\
\hline 22 & TRANS & - \\
\hline 23 & 60 & 80 & 60 & 130 & 140 & 130 & 100 & 100 & 100 & 3 \\
\hline 24 & TRANS & - \\
\hline 25 & 180 & 180 & 200 & 180 & 180 & 200 & 180 & 180 & 200 & 2 \\
\hline 26 & 150 & 170 & 170 & 200 & 200 & 200 & 170 & 190 & 190 & 4 \\
\hline 27 & 150 & 170 & 170 & 190 & 200 & 190 & 170 & 190 & 180 & 4 \\
\hline 28 & TRANS & - \\
\hline 29 & 150 & 150 & 140 & 150 & 150 & 140 & 150 & 150 & 140 & 1 \\
\hline 30 & TRANS & - \\
\hline 31 & 200 & 210 & 180 & 270 & 270 & 280 & 220 & 240 & 240 & 4 \\
\hline 32 & 200 & 240 & 210 & 230 & 280 & 270 & 210 & 260 & 230 & 4 \\
\hline 33 & TRANS & - \\
\hline 34 & ACC \\
\hline 35 & TRANS & - \\
\hline 36 & 100. & 150 & 170 & 190 & 220 & 180 & 150 & 190 & 170 & 8 \\
\hline 37 & TRANS & - \\
\hline 38 & 40 & 80 & 80 & 80 & 100 & 100 & 60 & 90 & 90 & 3 \\
\hline 39 & 50 & 80 & 70 & 100 & 90 & 110 & 70 & 80 & 80 & 3 \\
\hline 40 & TRANS & - \\
\hline 41 & 90 & 110 & 110 & 130 & 130 & 130 & 110 & 120 & 110 & 4 \\
\hline 42 & 110 & 130 & 110 & 140 & 140 & 130 & 120 & 140 & 120 & 3 \\
\hline 43 & 70 & 100 & 100 & 120 & 150 & 110 & 100 & 120 & 100 & 3 \\
\hline 44 & TRANS & - \\
\hline 45 & 150 & 150 & 150 & 170 & 200 & 170 & 160 & 170 & 160 & 3 \\
\hline 46 & 160 & 150 & 130 & 170 & 160 & 160 & 160 & 150 & 140 & 3 \\
\hline 47 & TRANS & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c||}
\hline \multirow{2}{*}{\begin{tabular}{l} 
SECTION \\
NUMBER
\end{tabular}} & \multicolumn{3}{|c|}{ MINIMUM } & \multicolumn{3}{c|}{ MAXIMUM } & \multicolumn{3}{c|}{ AVERAGE } & SAMPLE \\
\cline { 2 - 14 } & LT & CL & RT & LT & CL & RT & LT & CL & RT & SIZE \\
\hline \hline 48 & 110 & 100 & 100 & 140 & 220 & 130 & 130 & 160 & 110 & 3 \\
\hline 49 & 130 & 150 & 140 & 150 & 220 & 150 & 140 & 180 & 140 & 4 \\
\hline 50 & 80 & 120 & 120 & 180 & 200 & 120 & 130 & 160 & 120 & 2 \\
\hline 51 & TRANS & - \\
\hline 52 & 50 & 80 & 50 & 50 & 80 & 50 & 50 & 80 & 50 & 1 \\
\hline 53 & 60 & 60 & 40 & 60 & 60 & 40 & 60 & 60 & 40 & 1 \\
\hline 54 & TRANS & - \\
\hline 55 & 130 & 150 & 110 & 210 & 220 & 170 & 160 & 180 & 140 & 4 \\
\hline 56 & 150 & 130 & 130 & 210 & 220 & 200 & 190 & 190 & 170 & 5 \\
\hline 57 & TRANS & - \\
\hline 58 & 110 & 110 & 110 & 150 & 150 & 130 & 130 & 130 & 120 & 2 \\
\hline 59 & TRANS & - \\
\hline 60 & 120 & 140 & 140 & 200 & 180 & 170 & 150 & 160 & 150 & 9 \\
\hline 61 & TRANS & - \\
\hline 62 & 40 & 80 & 80 & 60 & 110 & 120 & 50 & 90 & 100 & 2 \\
\hline 63 & TRANS & - \\
\hline 64 & TRANS & - \\
\hline 65 & TRCC & ACC \\
\hline \hline
\end{tabular}

NOTE: TRANS: TRANSITION SECTION
NA: NO INFORAMITON AVAILABLE FOR SECTION
ALL MEASUREMENTS IN mm
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{17}{|c|}{VIBRATOR NUMBER} \\
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\hline \multirow[t]{4}{*}{\[
\begin{gathered}
\text { RPM'S } \\
X \\
1000
\end{gathered}
\]} & 7.0 & 6.5 & 6.0 & 5.5 & 6.5 & 6.5 & 5.9 & 5.9 & 6.0 & 9.0 & 6.8 & 7.0 & 7.2 & 8.5 & 8.4 & 7.4 \\
\hline & 7.0 & 7.0 & 6.0 & 5.5 & 6.5 & 6.5 & 6.0 & 6.0 & 6.0 & 9.0 & 7.0 & 7.0 & 7.5 & 8.1 & 8.5 & 7.6 \\
\hline & 7.0 & 6.7 & 8.6 & 5.5 & & & & & & & & & & & & \\
\hline & & & & 7.5 & & & & & & 7.5 & & & & & & \\
\hline
\end{tabular}

NOTE: CONDUCTED BY ROBERT STEFFES, 6/30/94, APPROXIMATELY STATION 2443+25 - > ,
SECTION 21, 12:00 PM
HIGH AND LOW CHANGED AT STATION 2445+75

VIBRȦTOR NUMBER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\hline \multirow[t]{3}{*}{\[
\begin{array}{|c}
\hline \text { RPM'S } \\
X \\
1000
\end{array}
\]} & 7.7 & 9.0 & 8.5 & 7.7 & 9.5 & 8.0 & 7.7 & 7.5 & 8.0 & 8.8 & 7.0 & 6.5 & 7.3 & 6.6 & 8.3 & 7.0 \\
\hline & 7.4 & 9.0 & 8.1 & 7.5 & 8.4 & 7.7 & 7.7 & 7.3 & 7.4 & 9.0 & 7.0 & 6.4 & 6.8 & 7.3 & 9.0 & 7.6 \\
\hline & & & & & 8.0 & & & & & & & & & & 8.8 & \\
\hline
\end{tabular}

NOTE: CONDUCTED BY ROBERT STEFFES, 7/11/94, APPROXIMATELY STATION 2555+25, 2558+25 -> , SECTION 41, 2:00 PM

CONCRETE AND AIR TEMPERATURES
\begin{tabular}{|c|c|c|c|c|c|}
\hline DATE & SECTION & CONCRETE TEMP & \[
\begin{gathered}
\text { AIR } \\
\text { TEMP }
\end{gathered}
\] & HIGH & \[
\begin{aligned}
& \text { LOW } \\
& \text { TEMP* }
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{6/24/94} & 1 & 24 & - & 27 & 16 \\
\hline & 2 & 29 & 25 & & \\
\hline \multirow[t]{3}{*}{6/25/94} & 3 & 24 & 24 & 28 & 15 \\
\hline & 6 & 26 & 29 & & \\
\hline & 7 & 27 & 29 & & \\
\hline \multirow[t]{2}{*}{6/27/94} & 7 & 24 & 18 & 27 & 15 \\
\hline & 8 & 25 & 20 & & \\
\hline \multirow[t]{5}{*}{6/28/94} & 10 & 24 & 27 & 27 & 17 \\
\hline & 11 & 24 & 20 & & \\
\hline & 12 & 24 & 25 & & \\
\hline & 13 & 26 & 28 & , & \\
\hline & 14 & 26 & 28 & & \\
\hline \multirow[t]{3}{*}{6/30/94} & 17 & 23 & 18 & 29 & 14 \\
\hline & 19 & 24 & 24 & & \\
\hline & 21 & 27 & 29 & & \\
\hline \multirow[t]{3}{*}{7/01/94} & 22 & 24 & 20 & 30 & 17 \\
\hline & 23 & 26 & 22 & & \\
\hline & 25 & 26 & 26 & & \\
\hline \multirow[t]{3}{*}{7/05/94} & 26 & 26 & 24 & 32 & 23 \\
\hline & 27 & 28 & 28 & & \\
\hline & 29 & 29 & 32 & & \\
\hline \multirow[t]{2}{*}{7/06/94} & 31 & 27 & 29 & 31 & 19 \\
\hline & 32 & 29 & 29 & & \\
\hline \multirow[t]{2}{*}{7/07/94} & 35 & 26 & 21 & 30 & 18 \\
\hline & 36 & 26 & 26 & & \\
\hline \multirow[t]{4}{*}{7/11/94} & 36 & 24 & 19 & 30 & 17 \\
\hline & 38 & 26 & 27 & & \\
\hline & 39 & 27 & 29 & & \\
\hline & 41 & 27 & 31 & & \\
\hline \multirow[t]{5}{*}{7/12/94} & 41 & 25 & 23 & 30 & 19 \\
\hline & 42 & 26 & 24 & & \\
\hline & 43 & 27 & 26 & & \\
\hline & 45 & 28 & 28 & & \\
\hline & 48 & 29 & 31 & & \\
\hline \multirow[t]{3}{*}{7/13/94} & 48 & 26 & 23 & 27 & 19 \\
\hline & 49 & 24 & 25 & & \\
\hline & 50 & 24 & 26 & & \\
\hline \multirow[t]{5}{*}{7/14/94} & 50 & 24 & 17 & 22 & 15 \\
\hline & 52 & 24. & 18 & & \\
\hline & 53 & 22 & 18 & & \\
\hline & 54 & 24 & - & & \\
\hline & 55 & 24 & 18 & & \\
\hline \multirow[t]{4}{*}{7/15/94} & 56 & 22 & 18 & 28 & 13 \\
\hline & 58 & 22 & 23 & & \\
\hline & 59 & - & 27 & & \\
\hline & 60 & 24 & 25 & & \\
\hline \multirow[t]{4}{*}{7/18/94} & 60 & 22 & 18 & 29 & 15 \\
\hline & 61 & 24 & 27 & & \\
\hline & 62 & 25 & 29 & & \\
\hline & 64 & 24 & 28 & & \\
\hline
\end{tabular}

NOTE: ALL TEMPERATURES ARE IN DEGREES CELSIUS
* HIGH AND LOW TEMPERATURES FROM CEDAR RAPIDS AIRPORT

HR-559 IA-21 10/23/94
CONCRETE AND AIR TEMPERATURES
\begin{tabular}{||c|c|c|}
\hline DATE & \begin{tabular}{c} 
CONCRETE \\
TEMP
\end{tabular} & \begin{tabular}{c} 
AIR \\
TEMP
\end{tabular} \\
\hline \hline \(6 / 25 / 94\) & 24 & 27 \\
& 24 & 28 \\
& 27 & 28 \\
\hline \(6 / 27 / 94\) & 25 & 27 \\
& 23 & 27 \\
\hline \(6 / 28 / 94\) & 24 & 21 \\
& 25 & 24 \\
& 26 & 26 \\
& 26 & 27 \\
\hline \(6 / 30 / 94\) & 23 & 19 \\
\hline \(7 / 07 / 94\) & 26 & 24 \\
& 26 & 26 \\
& 28 & 30 \\
\hline \(7 / 12 / 94\) & 25 & 23 \\
& 26 & 24 \\
& 27 & 26 \\
\hline \(7 / 15 / 94\) & 23 & 22 \\
& 23 & 23 \\
& 24 & 24 \\
\hline \(7 / 18 / 94\) & 22 & 19 \\
& 24 & 26 \\
& 24 & 27 \\
& 23 & 28 \\
& 24 & 28 \\
\hline
\end{tabular}

NOTE: ALL TEMPERATURE IN DEGREES CELSIUS
ALL DATA TAKEN FROM DAILY PLANT REPORTS

Appendix E
1. Distress Survey
2. Pullout Testing
3. Road Rater Structural Ratings
\begin{tabular}{|c|c|c|}
\hline & & \[
\text { DISTRESS } \begin{gathered}
\text { SURVEY, IOWA } 21 \\
\\
8 / 6 / 9 \dot{4}
\end{gathered}
\] \\
\hline \multirow[t]{4}{*}{Section 1} & Station & Distress(type, severity, extent) \\
\hline & 2338+50 & \begin{tabular}{l}
Corner cracks at two adjacent joints on right edge \\
(sides 2 inches in length)
\end{tabular} \\
\hline & 2338+88 & Corner cracks at left and right edge ( 1 inch in longitudinally and 2 inches transversely) \\
\hline & 2339+06 & Hairline cracks in longitudinal direction near centerline joint, 2-4 inches in length and extending 2 foot left and right of the longitudinal joint \\
\hline \multirow[t]{2}{*}{7} & 2364+ & Exposed aggregate along the joints resulting from the shoe on the saws. \\
\hline & 2369+36 & Double joint cut and one one sealed \\
\hline 9 & 2379+20 & Surface loss of individual aggregates for \(20+\) feet longitudinally and in the transversely at each of the joints \\
\hline 10 & 2380+24 & Surface loss of individual aggregates for along the centerline in areas rectangular in shape and 6 inches in length/width. \\
\hline 19 & \[
\begin{gathered}
2433+50 \\
\text { to } \\
2435+42
\end{gathered}
\] & Surface spall, 3 inches in width and \(1 / 2\) inch deep, at the right edge of pavement at joint \\
\hline 21 & 2443+24 & Spall at the joint on the left edge of pavement, 3 in. by 3 in . by \(1 / 2 \mathrm{in}\). \\
\hline 24 & \(2457+48\) & Surface aggregate loss due to mud ball, 18 inches left of centerline ( 3 in. by 5 in. by 2 inches deep) \\
\hline \multirow[t]{2}{*}{29} & 2481+76 & Corner crack at left edge of joint, 1 inch longitudinally by 4 inche transverse (tight at this time) \\
\hline & 2481+80 & Spall at the joint, left edge, 2 in. by 9 in. by \(3 / 4 \mathrm{in}\). \\
\hline 31 & 2492+10 & Spall in the NW corner of centerline joint, 1 inch longitudinally be 3 inches transversely, by \(1 / 2\) inch in depth \\
\hline 32 & 2499+37 & Midpanel crack (has been sawed, but not sealed) \\
\hline 33 & 2504+95 & Seven poputs due to mudballs ( 2 inches in diameter and 1 inch in depth) accross the slab \\
\hline
\end{tabular}



2555+08 Transverse crack 3.5 inches north of joint at right edge and extending to joint 14.0 feet from edge
\(2555+42\) Transverse crack 3.5 inches north of joint at right edge and extending to joint 14.0 feet from edge
\(2555+72\) Transverse crack 8.0 inches north of joint at right edge and extending to joint 14.0 feet from edge
2556+36 Transverse crack 4.5 inches north of joint at right edge and extending to joint 3.0 feet from edge
\(2561+20\) Transverse crack 3.0 inches south of joint at right edge and extending to joint 2.0 feet from edge

43
2574+03 Transverse crack 1.0 inches south of joint at left edge and extending to joint 1.0 feet from edge
\(2574+40\) Transverse crack 1.0 inches south of joint at right edge and extending to joint 15.0 feet from edge
\(452578+70\) Transverse crack 2.0 inches north of joint at right edge and extending to joint 2.0 feet from edge

No defects noted in concrete or asphalt sections.

Note: mismatched saw joints or extra saw joints were not recorded

Survey conducted by Jim Cable and Tom Powers
Weather - hot (70 degrees) and sunny
Direction of survey south to north
Direct access to surface of the pavement for examination
Time of survey - 8:30 am to 1:00 pm

HR-559 IA-21
PULLOUT TESTING
10/26/94
\begin{tabular}{||c|c|c|c|c|c|c|c|c||}
\hline STATION & \begin{tabular}{c} 
SURFACE \\
PREPARATION
\end{tabular} & \begin{tabular}{c} 
THICK \\
NESS \\
\((\mathrm{mm})\)
\end{tabular} & \begin{tabular}{c} 
JOINT \\
SPACING \\
\((\mathrm{m})\)
\end{tabular} & FIBERS & LANE & \begin{tabular}{c} 
3' FROM \\
SHOULDER \\
\((\mathrm{kPa})\)
\end{tabular} & \begin{tabular}{c} 
5' FROM \\
SHOULDER \\
\((\mathrm{kPa})\)
\end{tabular} & \begin{tabular}{c} 
9' FROM \\
SHOULLDER \\
\((\mathrm{kPa})\)
\end{tabular} \\
\hline \hline \(2385+50\) & PATCH \& SCARIFY & 50 & 0.6 & FIB & NORTHBOUND & BROKEN & \(* * 265\) & \({ }^{* 284}\) \\
\(2428+25\) & PATCH \& SCARIFY & 150 & 3.7 & NONE & NORTHBOUND & BROKEN & BROKEN & BROKEN \\
\(2455+00\) & PATCH \& SCARIFY & 50 & 0.6 & NONE & NORTHBOUND & BROKEN & BROKEN & \(* 148\) \\
\(2545+50\) & PATCH ONLY & 50 & 0.6 & FIB & SOUTHBOUND & \(* * 469\) & \(* * 247\) & \(* * 92.4\) \\
\(2620+00\) & COLD-IN-PLACE & 50 & 0.6 & FIB & NORTHBOUND & \(* * 111\) & BROKEN & BROKEN \\
\(2695+00\) & COLD-IN-PLACE & 50 & 1.2 & NONE & NORTHBOUND & \(* * 136\) & BROKEN & BROKEEN \\
\hline
\end{tabular}

NOTE: ALL BOND TESTS WERE CONDUCTED AFTER CONCRETE HAD A MINIMUM OF 7 DAY CURE * CORES BROKE AT CONCRETE-SUBBASE INTERFACE
** CORES BROKE AT DEPTH OF THE CORING INTO THE SUBBASE
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SECTION NUMBER & \[
\begin{aligned}
& \hline \text { NORTH } \\
& \text { BOUND } \\
& (4 / 28 / 94) \\
& \hline
\end{aligned}
\] & NORTH
BOUND
\((10 / 13 / 94)\) & \[
\begin{aligned}
& \hline \text { SOUTH } \\
& \text { BOUND } \\
& (4 / 28 / 94) \\
& \hline
\end{aligned}
\] & SOUTH
BOUND
\((10 / 13 / 94)\) & \begin{tabular}{l}
COMBINED \\
(4/28/94)
\end{tabular} & \begin{tabular}{l}
COMBINED \\
(10/13/94)
\end{tabular} \\
\hline 1 & 2.76 & 4.82 & 2.73 & 5.53 & 2.75 & 5.18 \\
\hline 2 & 2.14 & 5.14 & 2.24 & 4.99 & 2.19 & 5.07 \\
\hline 3 & 1.78 & 5.04 & 1.99 & 5.31 & 1.89 & 5.18 \\
\hline 4 & 1.93 & 3.98 & 1.97 & 5.60 & 1.95 & 4.79 \\
\hline 5 & 2.20 & 4.73 & 1.76 & 3.89 & 1.98 & 4.31 \\
\hline 6 & 1.82 & 3.95 & 1.75 & 3.17 & 1.78 & 3.56 \\
\hline 7 & 1.83 & 2.50 & 1.81 & 3.00 & 1.82 & 2.75 \\
\hline 8 & 2.07 & 4.83 & 2.23 & 3.60 & 2.15 & 4.22 \\
\hline 9 & 1.89 & 3.35 & 2.61 & 3.04 & 2.25 & 3.20 \\
\hline 10 & 2.15 & 2.23 & 2.18 & 2.86 & 2.17 & 2.55 \\
\hline 11 & - & 2.30 & 2.14 & 2.23 & - & 2.27 \\
\hline 12 & 2.20 & 3.61 & 1.89 & 4.37 & 2.05 & 3.99 \\
\hline 13 & 1.50 & 7.02 & 2.35 & 5.12 & 1.93 & 6.07 \\
\hline 14 & 2.14 & 4.66 & 2.02 & 4.65 & 2.08 & 4.66 \\
\hline 15 & 2.33 & 4.51 & 2.07 & 3.74 & 2.20 & 4.13 \\
\hline 16 & 1.60 & 2.59 & 2.13 & 2.45 & 1.87 & 2.52 \\
\hline 17 & 1.43 & 4.56 & 2.19 & 4.56 & 1.81 & 4.56 \\
\hline 18 & 1.83 & 5.63 & 3.61 & 4.79 & 2.72 & 5.21 \\
\hline 19 & 2.59 & 5.86 & 2.94 & 5.02 & 2.77 & 5.44 \\
\hline 20 & 2.85 & 4.70 & 2.04 & 3.81 & 2.45 & 4.26 \\
\hline 21 & 1.62 & 4.43 & 2.08 & 4.16 & 1.85 & 4.30 \\
\hline 22 & 2.60 & 3.16 & 2.23 & 2.62 & 2.42 & 2.89 \\
\hline 23 & 2.64 & 3.02 & 2.23 & 2.40 & 2.44 & 2.71 \\
\hline 24 & 2.83 & 4.42 & 2.47 & 4.47 & 2.65 & 4.45 \\
\hline 25 & 2.47 & 5.98 & 1.91 & 5.69 & 2.19 & 5.84 \\
\hline 26 & 1.47 & 6.21 & 2.12 & 4.80 & 1.79 & 5.51 \\
\hline 27 & 1.89 & 5.51 & 2.38 & 5.24 & 2.14 & 5.38 \\
\hline 28 & 2.08 & 4.45 & 2.35 & 4.26 & 2.21 & 4.36 \\
\hline 29 & 2.77 & 6.17 & 2.29 & 4.53 & 2.53 & 5.35 \\
\hline 30 & 2.07 & 6.64 & 2.18 & 5.07 & 2.13 & 5.86 \\
\hline 31 & 1.78 & 7.74 & 2.34 & 6.74 & 2.06 & 7.24 \\
\hline 32 & 2.27 & 7.31 & 2.28 & 7.58 & 2.28 & 7.45 \\
\hline 33 & 2.37 & 6.13 & 2.91 & 6.35 & 2.64 & 6.24 \\
\hline 34 & 2.37 & 3.93 & 2.30 & 2.44 & 2.34 & 3.18 \\
\hline 35 & 2.44 & 5.79 & 2.57 & 5.02 & 2.51 & 5.41 \\
\hline 36 & 2.18 & 6.47 & 2.87 & 6.40 & 2.53 & 6.44 \\
\hline 37 & 2.21 & 5.25 & 2.47 & 4.61 & 2.34 & 4.93 \\
\hline 38 & 3.23 & 4.45 & 3.35 & 3.79 & 3.29 & 4.12 \\
\hline 39 & 1.97 & 2.41 & 2.39 & 2.63 & 2.18 & 2.52 \\
\hline 40 & 2.52 & 3.99 & 2.42 & 3.45 & 2.47 & 3.72 \\
\hline 41 & 2.63 & 4.26 & 2.21 & 4.71 & 2.42 & 4.49 \\
\hline 42 & 1.98 & 3.42 & 1.75 & 3.57 & 1.86 & 3.50 \\
\hline 43 & 1.65 & 3.52 & 2.86 & 4.10 & 2.26 & 3.81 \\
\hline 44 & 2.16 & 3.72 & 2.26 & 3.96 & 2.21 & 3.84 \\
\hline 45 & 2.42 & 4.35 & 2.51 & 5.28 & 2.47 & 4.82 \\
\hline 46 & 2.87 & 4.33 & 2.49 & 4.56 & 2.68 & 4.45 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SECTION NUMBER & NORTH BOUND (4/28/94) & NORTH
BOUND
\((10 / 13 / 94)\) & SOUTH BOUND (4/28/94) & SOUTH
BOUND
\((10 / 13 / 94)\) & \[
\begin{gathered}
\text { COMBINED } \\
(4 / 28 / 94)
\end{gathered}
\] & \[
\begin{aligned}
& \text { COMBINED } \\
& (10 / 13 / 94)
\end{aligned}
\] \\
\hline 47 & 2.61 & 4.33 & 2.09 & 4.36 & 2.35 & 4.35 \\
\hline 48 & 2.42 & 4.38 & 2.52 & 4.56 & 2.47 & 4.47 \\
\hline 49 & 2.63 & 4.94 & 2.38 & 4.35 & 2.51 & 4.65 \\
\hline 50 & 2.57 & 3.83 & 2.66 & 4.47 & 2.62 & 4.15 \\
\hline 51 & 1.84 & 2.58 & 1.98 & 2.77 & 1.91 & 2.68 \\
\hline 52 & 2.63 & 3.16 & 2.07 & 2.76 & 2.35 & 2.96 \\
\hline 53 & 1.95 & 3.60 & 2.50 & 2.50 & 2.22 & 3.05 \\
\hline 54 & 2.35 & 3.54 & 2.69 & 3.45 & 2.52 & 3.50 \\
\hline 55 & 1.77 & 4.45 & 1.81 & 5.37 & 1.79 & 4.91 \\
\hline 56 & 2.72 & 4.94 & 2.35 & 5.71 & 2.53 & 5.33 \\
\hline 57 & 2.58 & 3.44 & 1.98 & 4.36 & 2.28 & 3.90 \\
\hline 58 & 2.11 & 4.94 & 2.15 & 4.63 & 2.13 & 4.79 \\
\hline 59 & 1.62 & 3.11 & 1.73 & 3.68 & 1.68 & 3.40 \\
\hline 60 & 2.18 & 5.25 & 1.76 & 4.79 & 1.97 & 5.02 \\
\hline 61 & 1.71 & 3.26 & 1.82 & 2.44 & 1.77 & 2.85 \\
\hline 62 & 2.01 & 2.94 & 2.35 & 2.19 & 2.18 & 2.57 \\
\hline 63 & 2.80 & 4.65 & 1.84 & 4.44 & 2.32 & 4.55 \\
\hline 64 & 1.83 & 4.67 & 2.51 & 4.21 & 2.17 & 4.44 \\
\hline 65 & 3.78 & 3.44 & 3.16 & 3.21 & 3.47 & 3.33 \\
\hline
\end{tabular}

Appendix \(F\)
1. ISU Evaluation Project Proposal

PROPOSAL
submitted to the
IOWA DEPARTMENT OF TRANSPORTATION
HIGHWAY DIVISION


\section*{Table of Contents}
Page
1. Introduction: The Problem ..... 1
2. Objectives: ..... 2
3. Proposed Research ..... 2
Task I - Laboratory Pilot Study
Task II - Field Instrument Installation
Task III - Data Analysis
Task IV - Report Development
4. Evaluation ..... 5
5. Estimated Budget ..... 7
6. Program Schedule and Reports ..... 9
7. Personnel ..... 11
8. Appendix A: Resumes ..... 12

INTRODUCTION: In this day of the mature highway systems, a new set of problems is facing the highway engineer. The existing system has aged to or past the design life of the original pavement design. In many cases, the increased commercial traffic is creating the need for additional load carrying capacity at this time. This situation has caused the State Highway Engineers to consider new alternatives for rehabilitation of the existing surfaces. Alternative surface materials, thicknesses, and methods of installation must be identified to meet the needs of individual pavements and budgets. With overlays being one of the most frequently used rehabilitation alternatives, it is important to learn more about the limitations and potential performance of thin bonded portland cement concrete overlays. In addition it is important to learn more about matching the overlay thickness to the proper jointing patterns to achieve maximum performance in the finished product.

PROBLEM STATEMENT: Currently sufficient information regarding thin bonded portland cement concrete pavement overlay bonding characteristics, minimum thicknesses and jointing patterns does not exist in Iowa or the nation. This information serve to join the several variables, required in the development of a thin portland cement concrete overlay design procedure.

The Iowa 21 project, located near Belle Plaine, Iowa will provide an opportunity to measure the bonding characteristics associated with overlay of an existing asphalt pavement.

Different surface preparations will be used to identify the best combination of surface preparation, overlay thickness and jointing pattern to achieve adequate bond and long term performance.

OBJECTIVES: Most of the current overlays of asphalt roads are constructed of asphaltic concrete. Are concrete overlays (whitetopping) an acceptable alternative to this process and what can be learned about the amount of original bonding between material layers and the bond retention between the overlay and original surface over time?

The objective of this project is the study of the retention of bond between various overlay thicknesses and jointing patterns of portland cement concrete, to asphaltic concrete pavement with different surface preparations. It will be accomplished through the completion of the following series of tasks:

Task 1: Laboratory instrumentation verification.
Task 2: Field installation of instrumentation.
Task 3: Data collection and analysis.
Task 4: Report development.
PROPOSED RESEARCH: The research effort expended to accomplish each task is described as:

Task 1: Laboratory pilot study of research instrument installation methods and bond development in simulated field conditions. Some 64 composite test specimens will be constructed in the laboratory to represent the use or absence of the fibers
in the portland cement concrete and the response to static and dynamic loading. Dynamic test specimens will be subjected to repeated loadings while instrumented to determine the best ways of attaching the instruments, the expected magnitude the specimen behavior as it is subjected to loading. Repeated loading will be of a short term nature and would be carried out until the asphalt or concrete cracks and/or allows debonding to occur at the layer interface or a maximum number of cycles is reached. This portion of the study will concentrate on three areas of interest.

First, static testing, will provide information on the which sensors can provide the best measurements of relative movement between the asphaltic concrete and the portland cement concrete overlay depths.

Secondly it will provide information on the best way to connect sensors to the two material surfaces through static testing.

Thirdly it will provide information on the expected levels of strain associated with bond in the static condition and under repeated dynamic load. Static testing will also provide a measure of the global stiffness of the composite section layers.

Laboratory work will simulate the action of the materials during construction and under repeated loading conditions. Where possible information from the Minnesota Test Road project will be employed in experimental design in terms of sensor selection and attachment methods.

Task 2: Field installation of pavement instrumentation
during and after construction of the overlay. Some 32 sites will be selected for instrumentation in the field. This allows for two replicates of each of 16 test cases. The plan calls for the purchase of approximately 130 longitudinal strain devices, 32 temperature/humidity devices and 15 LVDTs. The exact brand and type of gage for each of these applications will be known after the laboratory study.

This work will involve the installation of the longitudinal strain and temperature gages at specified locations along the route to measure the change in temperature of the various pavement layers during and after placement of the overlay. Where possible, the gages will be moved from site to site to reduce the number of gages required and retain security. Gages will be installed near the edge of the pavement to provide the least problems for the paving operation and gage maintenance.

Task 3: Data collection of strain measurements and condition surveys at the field construction site and over a five year period after the installation. Measurements will begin when the concrete has reached a strength that allows installation of the strain gage reference points. Initial strain and temperature/humidity measurements, and deflections will be made on an hourly, daily and weekly basis during and after construction until the pavement is opened to traffic and one measurement to represent the 28 day curing time. Measurements will then be conducted at quarterly intervals for the remainder of the five year period or until the instruments fail to provide
measurable data.
Visual condition surveys of the pavement surface will also be conducted weekly for the first month after construction and at each of the time periods where strain information is gathered thereafter. Distress data will be identified in number of slabs per test section that exhibit individual types of cracking or loss of bond and recorded.

Falling Weight Deflectometer (FWD) information will be collected prior to the overlay, immediately after the overlay and at one year periods after the overlay placement. Test sites will coincide with the strain measurements to measure pavement reaction to changes in bond, pavement structure (layer moduli), and load transfer capability at joints. Additional points will be surveyed near the centerline and in the interior of selected slabs. This information will be coordinated with pavement sensors to identify bond conditions at interior points in the pavement section.

Task 4: Report Development. Three reports will be prepared to document the research results. The first report will document the results of the laboratory pilot testing. The second will be completed after the installation to document the construction and installation process. The third, at the end of the five year study period, will document the performance of the overlay in terms of distress development and bond retention.

EVALUATION: This report is designed to give guidance to the
6.

Iowa DOT staff on bond retention between thin portland cement concrete overlays and asphaltic concrete pavements. It will assist engineers in understanding the potential bond, and retention under repeated load for various pavement thicknesses and joint configurations.

ESTIMATED COST:
A detailed budget for the project is shown on page 7 .
            7.
                    PROJECT BUDGET
Task 1 Laboratory Pilot Tests
SALARIES AND WAGES Proposed
PRINCIPAL INVESTIGATOR
James K. Cable (0.25 months) ..... \$ 1,560
Assistant Scientist (2 month) ..... 5,680
OTHER PERSONNEL
Technician (2 months) ..... 7,000
Research Assistant
Partial M.S.(2 months) ..... 2,000
Secretary (0.5 month) ..... 850
Hourly (Total Hours \(=600\) ) ..... 3,600
FRINGE BENEFITS
\(24.55 \%\) of faculty salaries ..... 383
30.80\% of professional and scientific salaries ..... 3,905
24.92\% of research assistant salaries ..... 498
39.45\% of clerical salaries ..... 335
MISCELLANEOUS: MATERIALS, SUPPLIES, TRAVEL ..... 6,000
REPORT/PUBLICATION COSTS
Project report (50 copies of final) ..... 800
TOTAL DIRECT COSTS ..... \$32,611
INDIRECT COSTS
\(44 \%\) of modified total direct costs ..... 14,349
TOTAL DIRECT AND INDIRECT COSTS ..... \(\$ 46,960\)
8.

\section*{PROJECT BUDGET}

Tasks 2-4, Field Verification-Final Report

\section*{SALARIES AND. WAGES}

Proposed
PRINCIPAL INVESTIGATOR
James K. Cable (2.0 months)
Assistant Scientist (4 months)
OTHER PERSONNEL
Technician (5 months) 17,500
Research Assistant
Partial M.S. (9 months) 9,000
Secretary (1 month) 1,700
Hourly (Total Hours \(=900\) ) 5,400
FRINGE BENEFITS
\(24.55 \%\) of faculty salaries ..... 3,061
\(24.92 \%\) of research assistant salaries ..... 2,243
\(39.45 \%\) of clerical salaries ..... 671
\(30.80 \%\) of professional and scientific salaries ..... 8,892
EQUIPMENT RENTAL SERVICES ..... 15,000
MISCELLANEOUS: MATERIALS, SUPPLIES,TRAVEL ..... 45,700
REPORT/PUBLICATION COSTS
Interim and final project report (100 copies) ..... 5,000
TOTAL DIRECT COSTS ..... \(\$ 138,007\)
INDIRECT COSTS
\(44 \%\) of modified total direct costs ..... \(\$ 60,723\)
TOTAL DIRECT AND INDIRECT COSTS ..... \(\$ 198,730\)
TOTAL TASKS ONE THROUGH FOUR ..... \(\$ 245,690\)

PROJECT SCHEDULE AND REPORTS: The laboratory pilot project would begin on or before September 1, 1993 and would be completed on or before December 31, 1993. Draft reports will be developed and reviewed in January, 1994 and the final report on this phase of the work would be completed in February, 1994.

The field verification portion of the work will begin in January, 1994 with purchase and preparation of the instrumentation. It will begin on the site when the construction project begins. The second report will be developed for review two months after the completion of field installation and completed the following month. The final report will be scheduled for draft review in November, 1999 and completion in December 1999.

SCHEDULE:
TASK I: September 1, 1993 - December 31, 1993
TASK II: January 1; 1994 - August 31, 1994
TASK III: June 1, 1994 - October 31, 1999
TASK IV: December, 1993 - December 31, 1999

\section*{REPORTS:}

Each of the three reports specified will be provided with 50 copies to the Iowa Department of Transportation for distribution. PERSONNEL:

James K. Cable P.E., Associate Professor, CCE will be in charge of the overall organization and management of the project including advisory committee meetings. He will be assisted by
11.
a research assistants from the ISU Civil and Construction Engineering Department. FWD work site investigation and data analysis will be provided by outside consultants hired by the University. The research staff will be responsible for the field data collection, analysis and assist in the report development. A copy of the resume for the Principal Investigator is attached.```


[^0]:    Appendix B

    1. Proposal
    2. Special Provision
