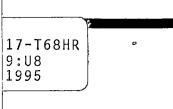
ULTRA THIN PCC OVERLAYS


Construction Report Iowa Department of Transportation Project HR-559

In Cooperation With The Federal Highway Administration as Work Order #DTFH71-94-TBO-IA-37

April 1995

Project Development Division

Iowa Department of Transportation

ΤE

220.3 .H39 1995

Construction Report for Iowa Department of Transportation Project HR-559

ULTRA THIN PCC OVERLAYS

By Melinda Heyer and Vernon J. Marks Research Engineer 515-239-1447 Office of Materials Project Development Division Iowa Department of Transportation Ames, Iowa 50010

April 1995

TECHNICAL REPORT TITLE PAGE

1.	REPORT NO.	2.	REPORT DATE
	HR-559		April 1995
3.	TITLE AND SUBTITLE	4.	TYPE OF REPORT & PERIOD COVERED
	Iowa 21 Whitetopping		Report, 5-94 to 4-95
	;		· · ·
5.	AUTHOR(S)	6.	PERFORMING ORGANIZATION ADDRESS
	Melinda Heyer		Iowa Department of Transportation Materials Department
	Vernon J. Marks Research Engineer		800 Lincoln Way Ames, Iowa 50010
		,	

7. ACKNOWLEDGEMENT OF COOPERATING ORGANIZATIONS

Federal Highway Administration

8. ABSTRACT

A 11.6 km (7.2 mi.) portion of IA 21 in Iowa County from the junction of US 6, north to the junction of IA 212, was selected for the research project.

The project was divided into 65 different test sections of a PCC overlay of an existing asphalt concrete (AC) surface with thicknesses of 50 mm (2 in.), 100 mm (4 in.), 150 mm (6 in.), and 200 mm (8 in.). The joint spacings for these sections were 0.6 m (2 ft.), 1.2 m (4 ft.), 1.8 m (6 ft.), 3.7 m (12 ft.), and 4.6 m (15 ft.). Joints were sealed if the thickness of the pavement was over 100 mm (4 in.), unless specified. Two types of polypropylene fibers, monofilament and fibrillated, were added to the conventional PCC mix for designated sections. Three additional sections consisted of an asphalt overlay for comparison with the concrete overlay. Three different base preparations were used on the project, consisting of: patching and scarifying, patching only, and cold-in-place recycling.

Sensors were placed in various test sections to measure the temperature and strain during and after construction of the overlay. Pullout tests were also conducted at various locations. Beams cylinders were made for each of the PCC mixes and tested for flexural and compressive strengths. Evaluation of the performance will be conducted through December 31, 1999.

9.	KEY WORDS PCC overlay, contraction joints thin PCC, fibrous concrete Pavement Management,	10.	NO. 85	OF	PAGES	<u> </u>	
	life cycle cost, PCĆ sawing	• .					

TABLE OF CONTENTS

	Page
Introduction	. 1
Objective	1
Project Location and Contractor	1
Project Concept	2
Preconstruction	3
Surface Preparation	3
Materials and Mix Proportions Portland Cement Concrete Asphalt Concrete	4 4 4
Construction	4
Evaluation	10
Post Construction Evaluation	11
Performance Evaluation	11
Requirements	12
Project Costs	12
Acknowledgements	12
Appendices	
Appendix A. Project Location. Test Section Layout. Summary of Variables. Appendix B. Proposal. Special Provisions. Appendix C. Daily Inspection Reports of PCC. Daily Plant Reports for AC. Summary of Mixes.	13 14 15 22 24 25 31 44 45 48 52 53
Summary of Joint Spacings Summary of Joint Sawing Summary of Test Beams Summary of Slump and Air Content Summary of Beam Strengths	54 55 56 57 58

Page

TABLE OF CONTENTS (Con't)

Page

Profilograph Summary	59
Slab Thickness Summary	
Vibrator Frequency Summary	62
Air and Concrete Temperature Summary	63
Appendix E	65
Distress Survey	
Pullout Testing	70
Road Rater Structural Ratings	71
Appendix F	73
ISU Evaluation Project Proposal	74

DISCLAIMER

The contents of this report reflect the views of the authors and do not necessarily reflect the official views of the Iowa Department of Transportation. This report does not constitute any standard, specification or regulation.

INTRODUCTION

In 1991 a thin Portland Cement Concrete (PCC) overlay using 50 mm (2 in.) and 87.5 mm (3.5 in.) thicknesses and unconventional 0.6 m (2 ft) and 1.8 m (6 ft) joint spacing was placed over a landfill access road in Louisville, Kentucky. It was used to evaluate the feasibility of concrete overlays (less than 100 mm (4 in.) thick) of asphalt concrete for residential streets, parking, and other low volume applications. The HR-559 Ultra-Thin Whitetopping is a follow up evaluation of the Kentucky project. The type and size of fiber along with the joint patterns for the different thicknesses of this project were based on the Kentucky project.

The evaluation of this research project is the Iowa DOT participation in Section 6005 of the Intermodal Surface Transportation Efficiency Act (ISTEA).

OBJECTIVE

The objective of the project is to evaluate the life and performance of various thicknesses of PCC overlay with and without the use of polypropylene fibers and with the use of various joint spacings.

PROJECT LOCATION AND CONTRACTOR

The research project is located in Iowa County on Iowa 21 from the junction of US 6, north 11.6 km (7.2 mi.) to the junction of

Iowa 212. The location is shown in Figure 1 of Appendix A. The existing pavement was constructed in 1961 of a 88 mm (3.5 in.) asphalt surface, 7.3 m (25 ft.) wide, placed on a 175 mm (7.0 in.) cement treated base with a 150 mm (6.0 in.) granular subbase. The estimated ADT is 1,350 vehicles with 13% trucks and 300,000 ESAL's.

The contract for this project was awarded to Manatt's, Inc. of Brooklyn, Iowa. A copy of the contract is found in Appendix B.

PROJECT CONCEPT

The project was divided into 65 different test sections. One section was entirely reconstructed. Sixty-one sections, including transition sections, consisted of 50 mm (2 in.), 100 mm (4 in.), 150 mm (6 in.), and 200 mm (8 in.) thick PCC overlay of an asphalt concrete (AC) surface with joint spacings of 0.6 m (2 ft.), 1.2 m (4 ft.), 1.8 m (6 ft.), 3.7 m (12 ft.), 4.6 m (15 ft.). Joints were not sealed if the thickness of the pavement was 100 mm (4 in.) or less unless specified. Two types of polypropylene fibers, monofilament and fibrillated, were added to the conventional PCC mix for designated sections. Three other sections consisted of an asphalt overlay for comparison with the concrete overlay.

Three different base preparations were utilized on the project, which consist of: patching and scarifying, patching only, and

cold in-place recycling. A table of summarizing this information can be found in Appendix A.

PRECONSTRUCTION

Prior to construction, Road Rater structural ratings were obtained which can be found in Appendix E. A photolog and a detailed crack survey were also made.

SURFACE PREPARATION

There were three different types of base preparations used on the overlay. The first type of base preparation was patching and scarifying, which was from STA 2340+00 to STA 2460+00. The next type of preparation was patching only, which was from STA 2460+00 to STA 2585+00. The final type of preparation was 94 mm (3.75 in.) of cold in-place recycled AC, from STA 2585+00 to STA 2704+00.

The full depth patches were placed on April 21 through April 25. From June 3 through June 6, the cold in-place recycle was laid. Milling was from June 6 to June 7 and also on June 20. Surface patching was on June 21.

At first, the AC subgrade was broomed and sprayed with water prior to placement of the concrete. After 4 days of paving, it was decided to stop wetting the AC prior to placing the concrete, believing that it would create a better bond between the asphalt and the concrete.

MATERIALS AND MIX PROPORTIONS

Portland Cement Concrete

A Class C PCC was required for the project. The mixes used were C-3WR-C and C-3WR. Maintenance mixes were used at the intersections. The materials used in these mixes were:

Fly Ash: American Fly Ash, Louisa and Muscatine Cement: Lafarge Type I/II Fine Aggregate: Marengo Ready Mix T-203 No. A48508 Coarse Aggregate: Vulcan, Montour T-203 No. A86002 Water: City of Belle Plaine Water Reducer: Protex, PDA 25 DP Fibers: Industrial Systems, Ltd. (Durafiber), Lakemoor, IL

The mix was produced in a central mixer. When fibers were used, three pounds of fibers per cubic yard of concrete were added and evenly distributed throughout the mix. Copies of plant reports can be found in Appendix C.

Asphalt Concrete

Type B AC was used on the binder and Type A was used on the surface of the three AC sections. The materials used in the mixes were:

Crushed Aggregate Source: Malcom, No. A79002 Sand Source: Mannatt Flint Pit, No. A86502 Asphalt Source and Grade: Bituminous Supply AC-10

Copies of the plant reports can be found in Appendix C.

CONSTRUCTION

The plant was at the north end of the project. Here, the materials were mixed in the central mixer and then transported in agitators and dump trucks to the paving location. A Gomaco Paver was used on the project. Sof-Cut saws were used to cut all joints.

On June 24, 1994, reconstruction of Section 1 began at the south end of the project at STA 2335+64 and proceeded northward. A conventional mix was used. The overlay started with Section 2 at STA 2340+00. The fibrillated fibers were added to the mix during the paving of Section 2 at STA 2341+02. The tining pulled the fibers up, forming clumps on the surface of the pavement. There were problems trying to get the slab to be only 150 mm (6 in.) thick. The thickness was closer to 175 mm (7 in.) or 200 mm (8 in.). The first work joint was at STA 2345+27.

On June 25, the depth of the slab was still running deep. In order to get 150 mm (6 in.) in certain places, the depth was up to 300 mm (12 in.) in others. As the header was being placed, it started to rain lightly. On the second day, paving proceeded from STA 2345+27 to STA 2369+34.

On June 27, paving started at STA 2369+34. Twenty minutes after starting, work was delayed for ten minutes because of a problem with the paver. There were still problems with the pavement being thicker than designed. The survey crew lowered the grade to try and get it closer to 50 mm (2 in.). A header was placed at STA 2386+75.

On June 28, monofilament fibers were added to the mix, beginning at STA 2386+75, just at the end of Section 10. The texture of the fiber made it difficult to finish the slab, more difficult than for the fibrillated. The contractor raised the pan on the paver to go over the slab a second time to try and improve it. The paver was originally set the same as paving with the fibrillated fibers the day before. The tining didn't pull the monofilament fibers up as much as it did the fibrillated fibers. However, there was still some clumping. The air had to be lowered at the plant several times. At STA 2412+75, Section 14, the use of the monofilament fibers was discontinued and fibrillated fibers were used throughout the remainder of the day. Also in Section 14, the contractor ran out of American Louisa fly ash, so American Muscatine was used in place of it. A header was placed at STA 2415+00.

On June 30, the AC subgrade was not sprayed with water before the placement of the concrete. This was believed to provide a better bond between the asphalt and the concrete. This began at STA 2425+00, Section 17. In Section 21, the frequency of the paver vibrators were recorded. This information can be found in Appendix D. The conventional mix was being used.

On July 1, an early morning rain made the AC wet when paving began at STA 2448+35, the start of Section 22. The pavement was running thicker than the design.

On July 5, paving began at STA 2459+88. STA 2460+00, Section 26, was the beginning of the patch only surface. A header was placed at STA 2488+82.

On July 6, paving began at STA 2488+82. Light rain occurred when placing the header at STA 2505+00.

On July 7, paving started at STA 2515+00, Section 35, with conventional mix. A header was placed at STA 2531+10 due to a heavy rain shower. The contractor had to refinish the concrete a second time due to the damage from the rain.

On July 11, twenty minutes after starting in Section 36, paving was stopped. While the tie bars were being placed, one jammed in the paver and the contractor had to stop the paver so no bars would be omitted. While trying to remove the tie bar, one of the hydraulic lines was disconnected. This happened twice. They also couldn't get the paver to start again. Work started again twenty minutes later. The depth of the pavement was inconsistent. Where the slab was suppose to be 150 mm (6 in.) in thickness, it was measuring 89 mm (3.5 in.) to 114 mm (4 in.) in places, and 178 mm (7 in.) to 216 mm (8.5 in.) in other places. A header was put in at STA 2536+10, Section 36, and a 75.5 m (18 ft.) gap was left for an intersection. The start of fibrillated fibers was in Section 37 at STA 2539+09. The frequencies of the vibrators were recorded in Section 41.

Information can be found in Appendix D. The source of fly ash was changed back to American Louisa which was used throughout the remainder of the project. At the end of the day, a header was put in at STA 2561+18.

On July 12, paving began at STA 2561+18, Section 40. Section 46, STA 2585+00, was the beginning of the cold in-place recycle base preparation. The mix was also changed to C-3WR in this section. The slab depth was approximately what was specified for the sections. The end-of-day working joint was at STA 2597+65.

On July 13, the survey crew rechecked the grade. This delayed paving. At STA 2598+50, Section 48, the mix was changed from C-3WR-C to C-3WR. The contractor ran out of cement, therefore, paving was stopped at STA 2612+07.

On July 14, paving began at STA 2612+07 using the C-3WR-C mix. While paving section 52, the paver was forced up by the concrete resulting in a thickened area on the west side of the slab. The contractor went back over that part of the slab. At STA 2625+50, Section 53, the mix was changed to C-3WR, which was used throughout the remainder of the day. The use of fibrillated fibers was discontinued at STA 2632+25, Section 54. A header was put in at STA 2641+97.

On July 15, paving began at STA 2642+21, leaving a 24-foot gap at an intersection. The mix used on this day was C-3WR-C. During the paving of Section 58, the stringline came loose and had to be re-strung. As the day progressed, the amount of cure and grade stakes became short; therefore, a header was put in at STA 2672+30.

On July 18, the AC had to be thoroughly cleaned before the concrete could be laid due to the mud from the trucks as they left the plant. The contractor washed the asphalt concrete surface and then broomed it well. There was another problem with the stringline in Section 61. It came loose as it had on July 15 and it had to be re-strung again. At STA 2693+00 to 2393+50, Section 62, the pan on the paver was forced up by the concrete and the stringline broke. A lot of handwork was required to finish the slab and this resulted in a rough surface. The surface was rough. A header was put in at STA 2703+95 which was the end of the last section of PCC.

On July 25, construction of the asphalt sections began. Each section was laid in three lifts. A 75 mm (3 in.) binder, consisting of two 37.5 mm (1.5 in.) lifts, was laid for Section 16 and 34 from STA 2415+04 to 2425+00 and from STA 2505+00 to 2515+00.

A 37.5 mm (1.5 in.) AC surface was laid for Section 16 and 34 on July 26. A 75 mm (3 in.) binder, laid in two 37.5 mm (1.5 in.) lifts, was also placed from STA 2703+95 to 2713+03 in Section 65.

On July 27, a 37.5 mm (1.5 in.) AC surface for Section 65 was laid. From July 28 to August 2, grinding was done on the pavement.

EVALUATION

In addition to standard inspection, testing and documentation, nine 6"x6"x20" beams and nine 4 1/2"x9" cylinders were made for each of the PCC mixes. The flexural and compressive strengths were determined at 7, 14, and 28 days with an exception of a set of 3 beams and 3 cylinders taken from the monofilament sections which were tested at a 9 day strength. The flexural and compressive strengths along with field testing and general information about the project can be found in Appendix D.

Jim Cable of Iowa State University and his assistants placed sensors in various test sections to measure and document the temperature and strain during and after construction of the overlay. A copy of the proposal can be found in Appendix F.

The Federal Highway Administration conducted pullout tests at: STA 2385+50, 2428+25, 2455+00, 2545+50, 2620+00, and 2694+50 (Appendix D).

Three 4"x4"x18" beams were made for each of the PCC mixtures and tested for flexural strengths.

POST CONSTRUCTION EVALUATION

Several problems occurred during and after completion of the project. A mid-panel crack between two baskets was found at STA 2499+37. Spalling and other random cracking was also found in various sections. Seven mud balls were found at STA 2504+95. Locations can be found in the distress survey in Appendix E.

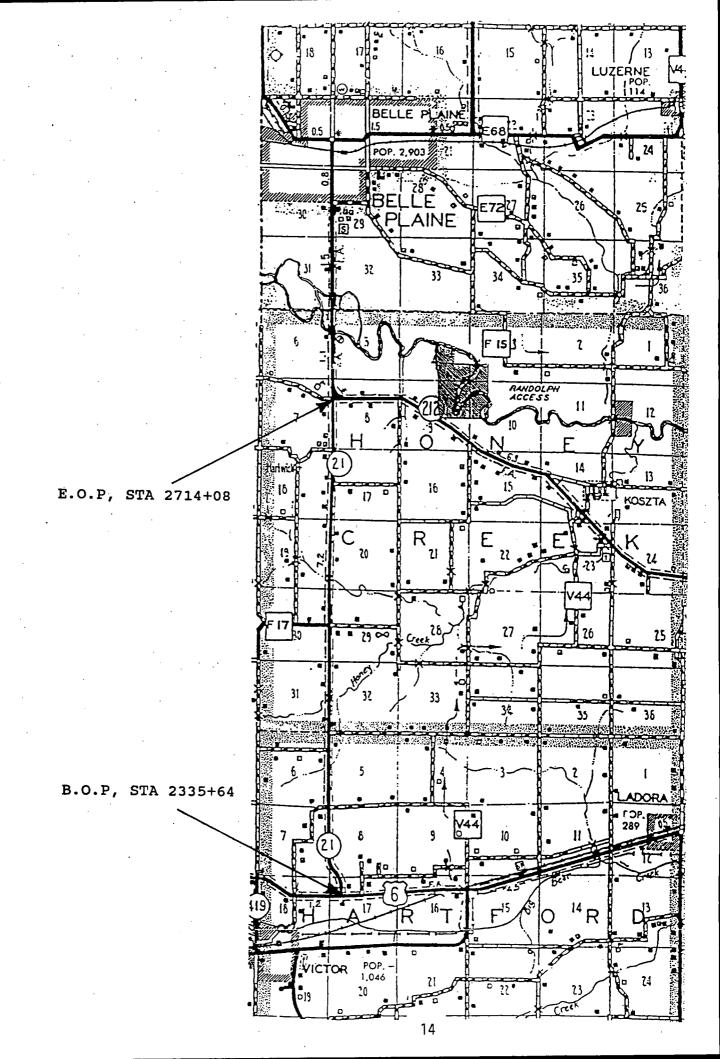
PERFORMANCE EVALUATION

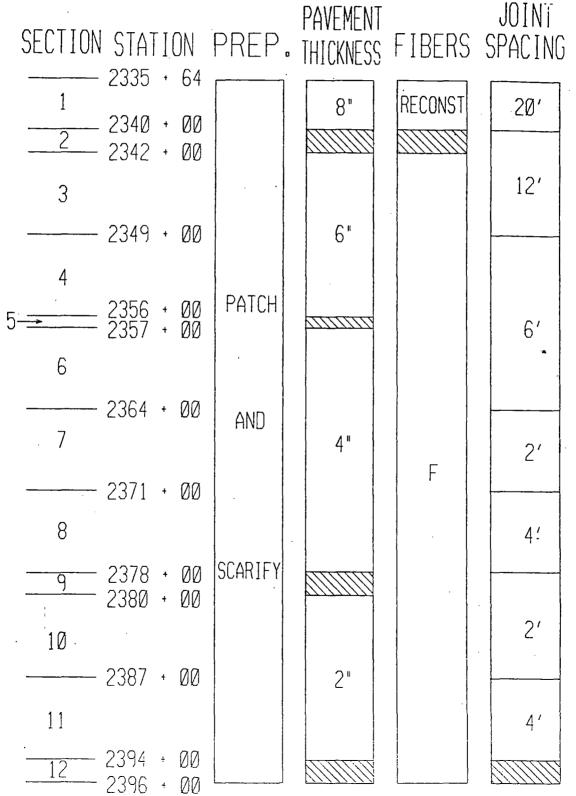
A visual review of the general conditions and a crack survey will be conducted annually. Delamination testing will also be conducted annually in the outside wheelpath of both lanes of each 50 mm (2 in.) section for selected portions of 35 m (115 ft). At least four annual Road Rater structural tests will be conducted in 41 test sections. Evaluation of the performance will be conducted through December 31, 1999.

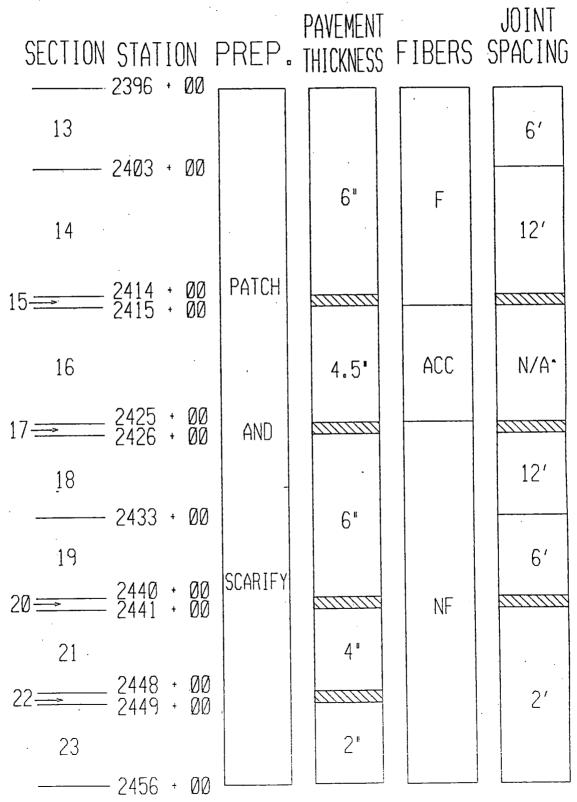
A distress survey was completed on August 6, 1994 by Iowa State University personnel. Road Rater structural testing was conducted on October 13, 1994. This information can be found in Appendix E.

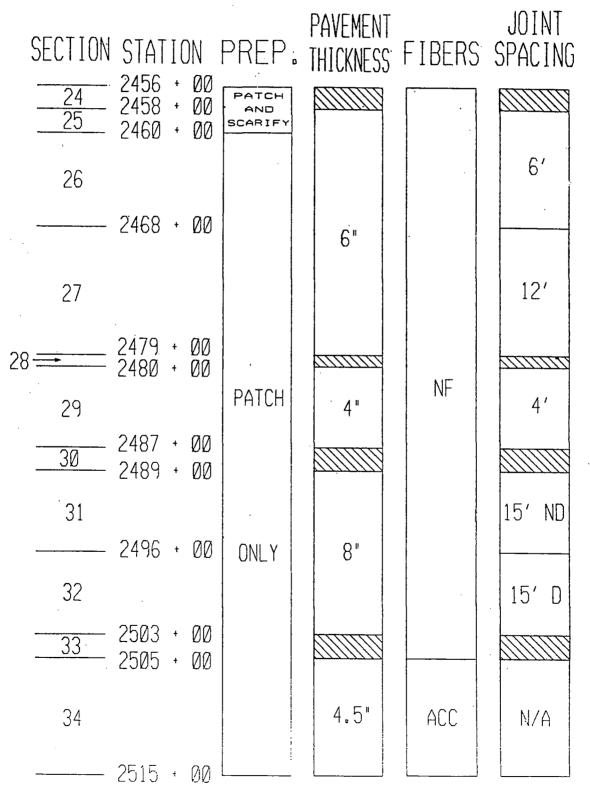
REQUIREMENTS

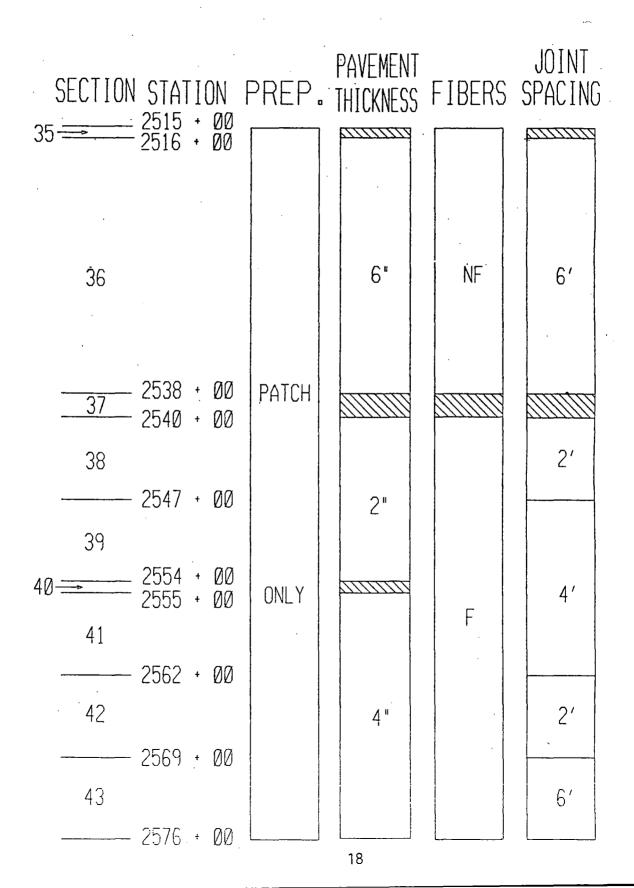
This project was conducted and met the requirements of the 1992 Iowa Department of Transportation Standard Specifications and the applicable special provisions. The special provisions can be found in Appendix B.

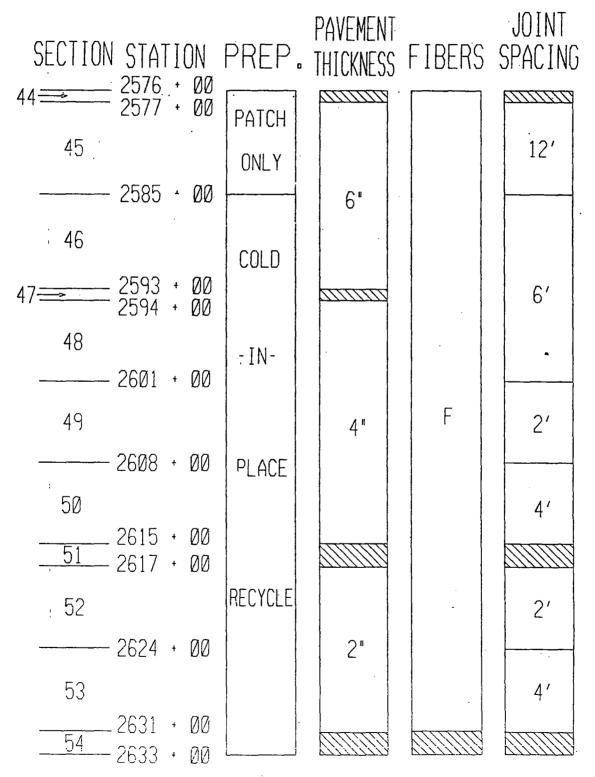

PROJECT COSTS

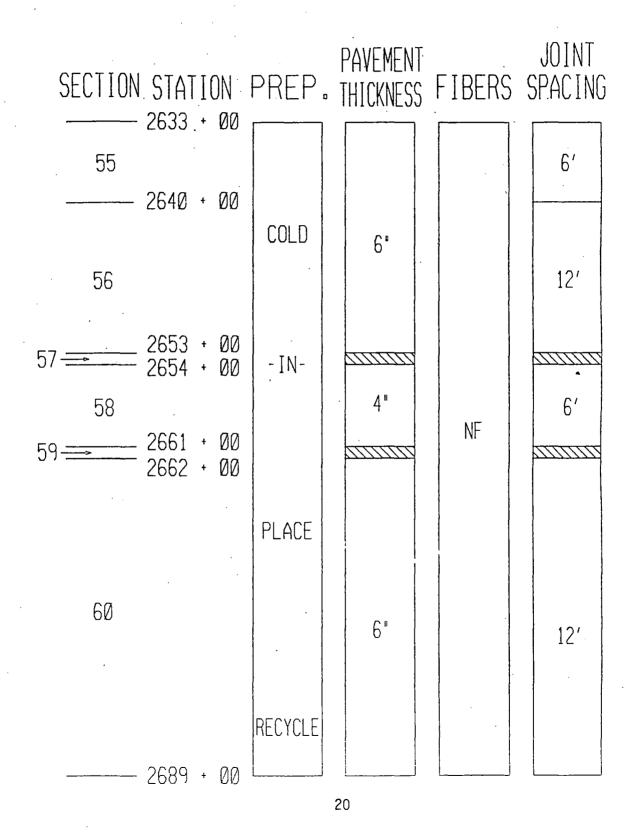

The contract in Appendix B shows a project cost of \$1,880,229.

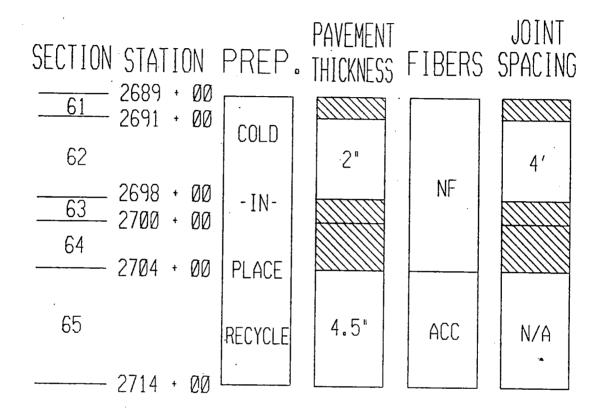

ACKNOWLEDGEMENTS


Research project HR-559 was sponsored by the Iowa Department of Transportation and the Federal Highway Administration. Funding was received from the Federal Highway Administration.


We want to extend our appreciation to Gordon Smith of Iowa Concrete Paving Association, Jim Cable and his assistants of Iowa State University, Brian McWaters of the Iowa DOT, Manatt's Inc. and all employees for their participation in construction and inspection of the project. Appendix A 1. Project Location 2. Test Section Layout 3.Summary of Variables







SECTION	BEGIN	ENDING	THICK-	THICK-	FIBER	JOINT	JOINT	SURFACE
NUMBER	STATION	STATION	NESS	NESS	F&NF	SPACING	SPACING	PREP
			(mm)	(in)		(m)	(ft)	
1	2335+64	2340+00	200	8	RECONSTR	6.1	20	***
2	2340+00	2342+00	200-150	8-6	NF-F	3.7	12	P&S
3	2342+00	2349+00	150	6	F	3.7	12	P&S
4	2349+00	2356+00	150	6	F	1.8	6	P&S
5	2356+00	2357+00	150-100	6-4	F	1.8	6	P&S
6	2357+00	2364+00	100	4	F	1.8	6	P&S
7	2364+00	2371+00	100	4	F	0.6	2	P&S
8	2371+00	2378+00	100	4	F	1.2	4	P&S
9	2378+00	2380+00	100-50	4-2	F	0.6	2	P&S
10	2380+00	2387+00	50	2	F	0.6	2	P&S
11	2387+00	2394+00	50	2	F	1.2	4	P&S
12	2394+00	2396+00	50-150	2-6	F	1.2-1.8	4-6	P&S
13	2396+00	2403+00	150	6	F.	1.8	6	P&S
14	2403+00	2414+00	150	6	F	3.7	12	P&S
15	2414+00	2415+00	150-110	6-4.5	F	3.7-1.8	12-6	P&S
16	2415+00	2415+00	110	4.5	ACC	ACC	ACC	P&S
17	2425+00	2426+00	110-150	4.5-6	NF	1.8-3.7	6-12	P&S
18	2426+00	2433+00	150	<u>4.5</u> –0	NF	3.7	12	P&S
10	2433+00	2440+00	150	6	NF	1.8	6	P&S
20	2440+00	2441+00	150-200	6-4	NF	1.8-0.6	6-2	P&S
20	2441+00	2448+00	100	4	NF	0.6	2	P&S
22	2448+00	2449+00	100-50	4-2	NF	0.6	2	P&S
23	2449+00	2456+00	50	2	NF	0.6	2	P&S
24	2456+00	2458+00	50-150	2-6	NF	0.6-1.8	2-6	P&S
25	2458+00	2460+00	150		NF	1.8	6	P&S
26	2460+00	2468+00	150	6	NF	1.8	6	PONLY
27	2468+00	2479+00	150	6	NF	3.7	12	PONLY
28	2479+00	2480+00	150-100	6-4	NF	3.7-1.2	12-4	PONLY
29	2480+00	2487+00	100 100	4	NF	1.2	4	PONLY
30	2487+00	2489+00	100-200	4-8	NF	1.2-4.6	4-15	PONLY
31	2489+00	2496+00	200	<u> </u>	NF	4.6 ND	15 ND	PONLY
32	2496+00	2503+00	200	8	NF	4.6 D	15 ND	PONLY
33	2503+00	2505+00	200-110	8-4.5	NF	4.6-1.8	15-6	PONLY
34	2505+00	2515+00	110	4.5	ACC	ACC	ACC	
								P ONLY
<u>35</u> 36	2515+00 2516+00	2516+00 2538+00	110-150	4.5-6	NF NF	1.2-1.8	4-6	P ONLY
	2438+00		150 150-50	<u> </u>	NF-F	1.8	6 6-2	P ONLY
37 38	2540+00	2540+00 2547+00	50		F	1.8-0.6		P ONLY
			<u> </u>	2	F F	0.6	2	
<u>39</u> 40	2547+00 2554+00	2554+00	50-100	2-4	F	1.2	4	P ONLY
40	2554+00	2555+00 2562+00			F F	1.2 1.2	4 4	P ONLY
41	2555+00	2562+00	100	4	F F	0.6	4	
42	2562+00	2569+00 2576+00	100	4	F F	1.8	6	P ONLY
43	2576+00	2578+00	100-150	4-6	F F	1.8-3.7	6-12	P ONLY
44	2577+00	2585+00	150		F F	3.7		
45	2585+00	2593+00	150	<u> 6 </u> 6	F F	<u> </u>	12	P ONLY
					F F		6	CIP
47	2593+00	2594+00	150-100	6-4		1.8	6	
48	2594+00	2601+00	100	4	F	1.8	6	
49	2601+00	2608+00	100	4	F	0.6	2	CIP
50	2608+00	2615+00	100	4	F	1.2	4	CIP
51	2615+00	2616+00	100-50	4-2	F	1.2-0.6	4-2	CIP
52	2616+00	2624+00	50	2	F	0.6	2	CIP
53	2624+00	2631+00	50	2	F	1.2	4	CIP

SECTION	BEGIN	ENDING	THICK-	THICK-	FIBER	JOINT	JOINT	SURFACE
NUMBER	STATION	STATION	NESS	NESS	F & NF	SPACING	SPACING	PREP
	·		(mm)	<u>(in)</u>	·	(m)	(ft)	
54	2631+00	2633+00	50-150	2-6	F-NF	1.2-1.8	4-6	CIP
55	2633+00	2640+00	150	6	NF	1.8	6	CIP
56	2640+00	2653+00	⇒ 15 0	6	NF 🖉	3.7	12	CIP
57	2653+00	2654+00	150-100	6-4	NF	3.7-1.8	12-6	CIP
58	2654+00	2661+0	100	4	NF	1.8	6	CIP
59	2661+00	2662+00	100-150	4-6	NF	1.8-3.7	6-12	CIP
60	2662+00	2689+00	150	6	NF	3.7	12	CIP
61	2689+00	2691+00	150-50	6-2	NF	3.7-1.2	12-4	CIP
62	2691+00	2698+00	50	2	NF	1.2	4	CIP
63	2698+00	2700+00	50-150	2-6	NF	1.2-3.7	4-12	CIP
64	2700+00	2704+00	150-110	6-4.5	NF	3.7-1.2	12-4	CIP
65	2704+00	2714+08	110	4.5	ACC	ACC	ACC	CIP

NOTE: ALL INFORMATION WAS TAKEN FROM PLANS ***: SPECIAL BACKFILL P&S: PATCH AND SCARIFY P ONLY: PATCH ONLY CIP: COLD-IN-PLACE RECYCLE

 \cdot

ł

Appendix B 1. Proposal 2. Special Provision

	PF	ROPOSAL DESCRIP	TION	PAGE: I
*******	**************	*************	*************	**************
Proposal 1D No Type of Wor Primary Count Cost Cente Object Cod Pre-Qual Grou	r: 611000 e: 894	UNBONDED Bi	e of Letting: d Order No.: Road System:	· · ·
Contr P Optional Tied	acting Authority: roposal Guaranty: Proposal Allowed: Plans:	\$ 60,000.00 NO YES		N, HIGHWAY DIV
Bidding Prop	osal Attachments:	FEDERAL AID	FORMS 650166,	102115
_ _			·	
Project:	STP-21-3(10)2C-	-48	Loui	nty: IOWA
-	FROM THE EAST JUN		Length (mile 6, NORTH TO T	es): HE JUNCTION OF
Federal Aid -	10WA 212. Predetermined Wag	ges Are In Effe		
Milepost:	45.55 To 52	.72	•	
	·			
	•			

Toposal ID No.: 48-0213-010 Type of Work: PCC OVERLAY - UNBONDED DBE Goal: 12.50 %	Letting Date: Bid Order No.:	January 07, 1994 9:00 A.M. 101	• •
Site Number Work Start Date	Working Days	Liquidated Damages	-
ROJECT COMPLETION ONTRACT LATE START DATE: 05/02/94	75	\$ 1,000.00	
			••
, , , , , , , , , , , , , , , , , , ,	ананыкатанатай жай жай жай жай жай жай жай жай жай ж		x X
*** PRE-BID MEETING ***		· · ·	
A PROVERT AND TO ANSWER CONSTRUCT	JSS THE CONSTRUCTI		
OF THIS PROJECT AND TO ANSWER CONSTRUCT MEETING WILL BE HELD DECEMBER 20, 1993 COMMISSION ROOM OF THE IOWA DEPARTMENT COMPLEX IN AMES, IOWA.	FION QUESTIONS. T AT 1:00 P.M. IN T	HE HE	
MEETING WILL BE HELD DECEMBER 20, 1993 COMMISSION ROOM OF THE IOWA DEPARTMENT COMPLEX IN AMES, IOWA.	FION QUESTIONS. T AT 1:00 P.M. IN T	HE HE	
MEETING WILL BE HELD DECEMBER 20, 1993 COMMISSION ROOM OF THE IOWA DEPARTMENT COMPLEX IN AMES, IOWA. *** WORK RESTRICTION ***	FION QUESTIONS. T AT 1:00 P.M. IN T OF TRANSPORTATION	HE HE	
MEETING WILL BE HELD DECEMBER 20, 1993 COMMISSION ROOM OF THE IOWA DEPARTMENT COMPLEX IN AMES, IOWA.	TION QUESTIONS. T AT 1:00 P.M. IN T OF TRANSPORTATION D TO THROUGH TRAFF	HE HE	
MEETING WILL BE HELD DECEMBER 20, 1993 COMMISSION ROOM OF THE IOWA DEPARTMENT COMPLEX IN AMES, IOWA. *** WORK RESTRICTION *** THE CONTRACTOR SHALL NOT CLOSE THE ROAD PRIOR TO JUNE 13, 1994 UNLESS WRITTEN F THE ENGINEER.	TION QUESTIONS. T AT 1:00 P.M. IN T OF TRANSPORTATION D TO THROUGH TRAFF PERMISSION IS GIVE	HE HE N BY	· · · · · · · · · · · · · · · · · · ·
MEETING WILL BE HELD DECEMBER 20, 1993 COMMISSION ROOM OF THE IOWA DEPARTMENT COMPLEX IN AMES, IOWA. *** WORK RESTRICTION *** THE CONTRACTOR SHALL NOT CLOSE THE ROAD PRIOR TO JUNE 13, 1994 UNLESS WRITTEN F THE ENGINEER.	TION QUESTIONS. T AT 1:00 P.M. IN T OF TRANSPORTATION D TO THROUGH TRAFF PERMISSION IS GIVE	HE HE N BY	
MEETING WILL BE HELD DECEMBER 20, 1993 COMMISSION ROOM OF THE IOWA DEPARTMENT COMPLEX IN AMES, IOWA. *** WORK RESTRICTION *** THE CONTRACTOR SHALL NOT CLOSE THE ROAD PRIOR TO JUNE 13, 1994 UNLESS WRITTEN F THE ENGINEER.	TION QUESTIONS. T AT 1:00 P.M. IN T OF TRANSPORTATION D TO THROUGH TRAFF PERMISSION IS GIVE	HE HE N BY	
MEETING WILL BE HELD DECEMBER 20, 1993 COMMISSION ROOM OF THE IOWA DEPARTMENT COMPLEX IN AMES, IOWA. *** WORK RESTRICTION *** THE CONTRACTOR SHALL NOT CLOSE THE ROAD PRIOR TO JUNE 13, 1994 UNLESS WRITTEN F THE ENGINEER.	TION QUESTIONS. T AT 1:00 P.M. IN T OF TRANSPORTATION D TO THROUGH TRAFF PERMISSION IS GIVE	HE HE N BY	• •
MEETING WILL BE HELD DECEMBER 20, 1993 COMMISSION ROOM OF THE IOWA DEPARTMENT COMPLEX IN AMES, IOWA. *** WORK RESTRICTION *** THE CONTRACTOR SHALL NOT CLOSE THE ROAD PRIOR TO JUNE 13, 1994 UNLESS WRITTEN F THE ENGINEER.	TION QUESTIONS. T AT 1:00 P.M. IN T OF TRANSPORTATION D TO THROUGH TRAFF PERMISSION IS GIVE	HE HE N BY	• •
MEETING WILL BE HELD DECEMBER 20, 1993 COMMISSION ROOM OF THE IOWA DEPARTMENT COMPLEX IN AMES, IOWA. *** WORK RESTRICTION *** THE CONTRACTOR SHALL NOT CLOSE THE ROAD PRIOR TO JUNE 13, 1994 UNLESS WRITTEN F THE ENGINEER.	TION QUESTIONS. T AT 1:00 P.M. IN T OF TRANSPORTATION D TO THROUGH TRAFF PERMISSION IS GIVE	HE HE N BY	• •
MEETING WILL BE HELD DECEMBER 20, 1993 COMMISSION ROOM OF THE IOWA DEPARTMENT COMPLEX IN AMES, IOWA. *** WORK RESTRICTION *** THE CONTRACTOR SHALL NOT CLOSE THE ROAD PRIOR TO JUNE 13, 1994 UNLESS WRITTEN F THE ENGINEER.	TION QUESTIONS. T AT 1:00 P.M. IN T OF TRANSPORTATION D TO THROUGH TRAFF PERMISSION IS GIVE	HE HE N BY	· · ·
MEETING WILL BE HELD DECEMBER 20, 1993 COMMISSION ROOM OF THE IOWA DEPARTMENT COMPLEX IN AMES, IOWA. *** WORK RESTRICTION *** THE CONTRACTOR SHALL NOT CLOSE THE ROAD PRIOR TO JUNE 13, 1994 UNLESS WRITTEN F THE ENGINEER.	TION QUESTIONS. T AT 1:00 P.M. IN T OF TRANSPORTATION D TO THROUGH TRAFF PERMISSION IS GIVE	HE HE N BY	• •

I

PROPOSAL SCHEDULE OF PRICES

*****	PROP0 *******	SAL SCHEDULE OF 1		Page: 1
Prima	posal ID No.: 48-0213-010 ry Work Type: PCC OVERLAY imary County: IOWA	- UNBONDED	etting Date: Jar 9:C d Order No.: 101	0 A.M.
	UNIT BIDS MUST BE TYPED OR	SHOWN IN INK OR	THE BID WILL BE	REJECTED.
Line No	Item Number Item Description	ltem Quantity and Unit	Unit Price Dollars Cts	Bid Amount Dollars Cts
	on 0001 ROADWAY ITEMS			
	2102-0425072 BACKFILL, SPECIAL	1,950.000 SY		
	2102-2625000 EMBANKMENT-IN-PLACE	662.000 CY	•	
	2102-2713070 EXCAVATION, CLASS 13, ROADWAY & BORROW	325.000 CY		
	2121-7425010 SHOULDERS, GRANULAR, TYPE A	439.000 Ton		
0050	2121-7425020 SHOULDERS, GRANULAR, TYPE B	13,447.000 TON	· · · · ·	
0060	2121-8450810 TRENCHING & RESHAPING	239.570 STA		
	2123-7450020 SHOULDER FINISHING, EARTH	11.220 STA	•	
	2212-0475095 BASE, CLEANING & PREPARATION OF	7.085 MILE	•	
	2212-5070310 PATCHES, FULL-DEPTH REPAIR	5,508.000 SY	•	.
	2212-5070330 PATCHES BY COUNT (REPAIR)	49.000 EACH	•	
	2212-5075000 PATCHES, SURFACE	10.000 TON	•	
	2301-4875006 MEDIAN, 6 IN. P.C. CONCRETE	21.000 SY	27	

rima	posal ID No.: 48-0213-010 ry Work Type: PCC OVERLAY imary County: 10WA	- UNBONDED		nuary 07, 1994 00 A.M.
l 	JNIT BIDS MUST BE TYPED OR	SHOWN IN INK OR	THE BID WILL BE	REJECTED.
Line No	ltem Number Item Description	item Quantity and Unit	Unit Price	Bid Amount Dollars Cts
	2301-5162307 PAVEMENT, STANDARD OR SLIP-FORM P.C. CONCRETE, CLASS C, 7 IN.	690.000	 	
	2301-5162308 PAVEMENT, STANDARD OR SLIP-FORM P.C. CONCRETE, CLASS C, 8 IN.	1,707.000 SY		
0150	2301-6911000 SAMPLES		LUMP	.
	2303-0375010 ASPHALT CEMENT	167.000 TON		
0170	2303-0400450 ASPHALT CEMENT CONCRETE, TYPE A SURFACE COURSE, MIXT. SIZE 1/2 IN.	882.000 TON		
	2303-0400675 ASPHALT CEMENT CONCRETE, TYPE B BINDER COURSE, MIXT. SIZE 3/4 IN.	1,985.000 TON		
	2303-6375000 PRIMER OR TACK-COAT BITUMEN	1,528.000 GAL		
0200	2310-5151050 PAVEMENT, P.C.C. SLIP-FORM, FURNISH ONLY	12,201.000 CY		
0210	2310-5151051 PAVEMENT, P.C.C. SLIP-FORM, PLACE ONLY	91,734.000 SY		
0220	2310-6960000 SCARIFICATION FOR P.C.C. OVERLAY	29,333.000 SY		
0230	2312-8260051 SURFACING, GRANULAR, CLASS A CRUSHED STONE - ON ROAD	1,000.000 TON	•	

PROPOSAL SCHEDULE OF PRICES

Proposal ID No.:	48-0213-010	Le
Primary Work Type:	PCC OVERLAY - UNBONDED	
Primary County:	AWOI	Bic

Letting Date: January 07, 1994 ED 9:00 A.M. Bid Order No.: 101

UNIT BIDS MUST BE TYPED OR SHOWN IN INK OR THE BID WILL BE REJECTED.

Line	ltem Number	l tem	Unit Price	Bid Amount	
No	Item Number	Quantity and Unit	Dollars Cts	Dollars Cts	
0240	2399-0400020 ASPHALT REJUVENATING AGENT	38,724.000 GAL		•	
	2399-0408000 ASPHALT PAVEMENT, IN-PLACE COLD RECYCLED	34,422.000 SY	•	•	
	2416-0100024 APRONS, CONCRETE, 24 IN. DIA.	2.000 EACH	•		
	2417-0225018 APRONS, METAL, 18 IN. DIA.	1.000 EACH		•	
	2417-1040018 CULVERT, CORRUGATED METAL ENTRANCE PIPE, 18 IN. DIA.	30.000 LF		•	
	2502-8212034 SUBDRAIN, LONGITUDINAL, (SHOULDER) 4 IN. DIA.	42,159.000 LF	•		
	2502-8220206 SUBDRAIN OUTLET, CORRUGATED METAL PIPE, 6 IN. DIA.	172.000 EACH	•		
	2510-6745850 REMOVAL OF PAVEMENT	2,384.000 SY		•	
0320	2520-3350010 FIELD LABORATORY	1.000 EACH	•	•	
0330	2525-2638030 SILT FENCE	100.000	•	•	
0340	2526-8285000 SURVEY, CONSTRUCTION	LUMP	LUMP		
0350	2527-9263110 PAINTED PAVEMENT MARKING	1,346.310		•	

Page:

4

PROPOSAL SCHEDULE OF PRICES

Proposal ID No.:	48-0213-010	Letting Date:	January 07,	1994
Primary Work Type:	PCC OVERLAY - UNBONDED		9:00 A.M.	
Primary County:	1 OWA	Bid Order No.:	101	

UNIT BIDS MUST BE TYPED OR SHOWN IN INK OR THE BID WILL BE REJECTED.

Line	ltem Number	ltem Quantity and Unit		Unit Price		Bid Amount	
No	Item Number Item Description			Dollar	s Cts	Dollars Cts	
0360	2528-8445110 TRAFFIC CONTROL	LUMP		LUMP		•	
0370	2528-8445112 FLAGGERS	DAY	120.00		135.00000	16,200.00	
0380	2528-8445114 PILOT CARS	DAY	20.00		200.00000	4,000.00	
	2533-4980005 MOBILIZATION	LUMP		LUMP		•	
0400	2599-6895805 RUMBLE STRIP PANEL	EACH	3.000			•	
	2599-8447010 TRAINEE REIMBURSEMENT	HOUR	520.00		0.80000	416.00	
0420	2601-2634100 MULCHING	ACRE	1.000			•	
	2601-2636041 SEEDING & FERTILIZING	ACRE	1.000		•	•	
0440	2601-2642100 STABILIZING CROP - SEEDING AND FERTILIZING	ACRE	1.000		•	•	
	SECTION 0001 TOTAL					·	
	TOTAL BID		•			•	

PROPOSAL SPECIAL PROVISIONS TEXT

Page: 1

Run Date: Proposal ID No.:		Letting Date:	January 07, 1994
Primary Work Type:	PCC OVERLAY - UNBONDED	Bid Order No.:	9:00 A.M.
Primary County:	Iowa		101

Note Description

DBE-940107

DIRECTORY OF CERTIFIED DBE'S

FHWA-1273

REQUIRED CONTRACT PROVISIONS - FEDERAL-AID CONSTRUCTION CONTRACTS (EXCLUSIVE OF APPALACHIAN CONTRACTS)

NOTE: APPENDIX 'A' (ATTACHED TO THE FHWA-1273) SHALL NOT APPLY WHEN A 'PREDETERMINED WAGE RATES' SPECIFICATION HAS NOT BEEN DESIGNATED IN THE CONTRACT DOCUEMENTS.

1A93-1.0

PREDETERMINED WAGE RATES - GENERAL DECISION NUMBER 1A930001 FOR HEAVY AND HIGHWAY CONSTRUCTION - STATEWIDE (EXCEPT SCOTT COUNTY)

*** ADDITIONAL REQUIREMENT ***

THE PRIME CONTRACTOR SHALL SUBMIT CERTIFIED PAYROLLS FOR ITSELF AND EACH APPROVED SUBCONTRACTOR WEEKLY TO THE PROJECT ENGINEER. THE CONTRACTOR MAY USE THE IOWA D.O.T. CERTIFIED PAYROLL FORM OR OTHER APPROVED FORM. THE CONTRACTOR SHALL LIST THE CRAFT FOR EACH EMPLOYEE COVERED BY THE PREDETERMINED WAGE RATES. THE PRIME CONTRACTOR SHALL SIGN EACH OF THE SUBCONTRACTOR'S PAYROLLS TO ACKNOWLEDGE THE SUBMITTAL OF THE CERTIFIED PAYROLL.

SP-1125

SPECIAL PROVISIONS FOR RESURFACING WITH PCC OVER ACC AND COLD IN-PLACE TRECYCLED ASPHALT PAVEMENTS

*** INTENDED FOR IOWA COUNTY PCC OVERLAY - UNBONDED PROJECT SiP-21-3(10)--2C-48 ***

SS-5042

SUPPLEMENTAL SPECIFICATIONS FOR SPECIFIC AFFIRMATIVE ACTION RESPONSIBILITIES (DISADVANTAGED BUISINESS ENTERPRISE) FEDERAL AID PROJECTS

SS-5050

SUPPLEMENTAL SPECIFICATIONS FOR PORTLAND CEMENT CONCRETE PROPORTIONS

SS-5055

SUPPLEMENTAL SPECIFICATIONS FOR TRAFFIC CONTROLS FOR STREET AND HIGHWAY CONSTRUCTION, MAINTENANCE, UTILITY AND EMERGENCY OPERATIONS

. . .

31

s[']S-5056

SUPPLEMENTAL SPECIFICATIONS FOR SPECIFIC EQUAL EMPLOYMENT OPPORTUNITIES - FEDERAL AID PROJECTS

rimar	y Work Type:	48-0213-010 PCC OVERLAY - UNBONDED	Letting Date: Bid Order No.:	9:00 A.M.
Pri	mary County:	10WA	•	
Note	Description			
		tinund)		
55-50	057 (cont (EQUAL EMPLOY)	MENT OPPORTUNITY RESPONS	IBLITIES)	
SS-50	075		TACING MITH POPTL	
	SUPPLEMENTAL S	SPECIFICATIONS FOR RESUR ASPHALT CEMENT CONCRETE	PAVEMENT	AND CERENT
			, ···	
SS-5	105 GENERAL SUPPLI	EMENTAL SPECIFICATION FO	R CONSTRUCTION PRO	DJECTS
			•	
SS-5	SUPPLEMENTAL	SPECIFICATIONS FOR COLD	IN-PLACE ACC RECY	CLING
SS-5	115 SUPPLEMENTAL	SPECIFICATIONS FOR PAVER	AENT SMOOTHNESS	
005.	02 *** BIDDING P	ROPOSAL PREPARATION INFO	DRMATION ***	
	SUBMITTED WIT	Y CONTAIN MORE THAN ONE H THE BIDDING PROPOSAL F ER". THE BIDDER SHOULD UMBER IS REQUESTED IN TH	REQUEST THE BIDDER ENTER THE "PROPOS	AL ID" WHEREVER
005.	03	· · ·		•
	*** REVISION	TO FHWA-1273 ***		
	DELETE PARAGR	APH IV.4.C. (1) FROM FOR	M FHWA-1273.	
005.	07			
2	*** REVISIONS	TO SS-5042 ***		
	SPECIFIC AFFI	OWING REVISION TO SS-50 RMATIVE ACTION RESPONSI EDERAL AID PROJECTS';	42, 'SUPPLEMENTAL BILITIES (DISADVAN	SPECIFICATIONS FOR ITAGED BUISINESS
	COUNTING E	LAST PARAGRAPH UNDER SU DBE PARTICIPATION TOWARD DBE COMMITMENTS WHERE D VERS SHALL BE EMPLOYEES 102115 FORM OR AN OWNER/	MEETING GOALS', V AVIS/BACON WAGE RE OF THE DBE TRUCKIN	QUIREMENTS APPLY, IG COMPANY SHOWN
005	19	· .		
-	*** REVISIONS	S TO THE STANDARD SPECIF THE 'ALKALI LEVEL' OF P	ICATIONS .C.C. PAVEMENT ***	×
				NS - SERIES OF

THE FOLLOWING REVISIONS TO THE 'STANDARD SPECIFICATIONS - SERIES OF 1992' WILL APPLY TO P.C.C. PAVING ITEMS ONLY. (I.E.: MAINLINE PAVING, RAMPS, SIDEROADS, INTERSECTIONS ETC. IT IS NOT INTENDED TO APPLY TO DRIVEWAYS, SIDEWALKS, INTAKES, PIPES AND CULVERTS, PATCHING OR BRIDGE

Primary Prim	weil ID No.: Work Type: Wary County:		D Bid Order No.:	
	Description			
	(cont TROFITS.)	inued)		
. 1.	USE OF FLY	LOWING NEW PARAGRAPH T ASH': TATION OF THE TOTAL AL COMBINATION IN ARTICLE	KALI LEVEL FOR CEME	NT AND
2.	REQUIREMENT WHEN FLY THE LIMI	LOWING NEW PARAGRAPH T S': ASH IS USED IN PORTLA TATION OF THE TOTAL AL COMBINATION IN ARTICLE	ND CEMENT CONCRETE Kali level for ceme	MIXES, NT AND
3.	REQUIREMENT PORTLAND SPECIFIC THE WORK	FIRST PARAGRAPH OF AR S' WITH THE FOLLOWING CEMENT SHALL MEET REQ ATIONS FOR THE TYPE OF . UNLESS OTHERWISE SP UIREMENTS OF ASTM C 15	NEW PARAGRAPH: UIREMENTS OF THE AS CEMENT REQUIRED FO ECIFIED, CEMENT SHA	TM R LL
	EARLY ST AND CEME SHALL ME THE PERC NOT BE M EQUIVALE THE CEME IN ACCOR EXCEED O	RENGTH CONCRETE IS SPE NT IS USED IN NORMAL P ET REQUIREMENTS OF AST ENT EQUIVALENT ALKALI ORE THAN 0.90. IF THE NT OF THE CEMENT IS BE NT MAY BE TESTED, USIN DANCE WITH ASTM P 214 .15 PERCENT. THE P 214 F FLY ASH IS USED IN	CIFIED OR PERMITTED ROPORTIONS, THE CEM M C 150, TYPE III. FOR THE CEMENT SHAL PERCENT ALKALI TWEEN 0.75 AND 0.90 G PROJECT MATERIALS WITH EXPANSION NOT 4 TEST WILL BE WAIV	ENT L , TO
4.	THE TOTA MIXES WI SUPPLEME CONCRETE THAT THE PERCENT AVAILABL ANY ADJU SPECIFIC SHALL BE SHALL BE SUBSTITU	LOWING NEW PARAGRAPHS L CEMENTITIOUS MATERIA TH FLY ASH SHALL BE IN NTAL SPECIFICATIONS FO PROPORTIONS, WITH THE TOTAL ALKALI LEVEL BA ALKALI EQUIVALENT FOR E ALKALI FOR FLY ASH SI STMENTS IN MIX PROPORT ATIONS FOR PORTLAND CE THE RESPONSIBILITY OF APPROVED BY THE ENGINI TION RATE SHALL BE 15 I ALKALI LEVELS FOR APPRO	LS FOR THE VARIOUS ACCORDANCE WITH TH R PORTLAND CEMENT ADDITIONAL PROVISI SED ON THE COMBINED CEMENT AND PERCENT HALL NOT EXCEED 0.7 IONS IN THE SUPPLEM MENT CONCRETE PROPO THE CONTRACTOR, AN EER. THE MAXIMUM F PERCENT BY WEIGHT.	E ON 5. ENTAL RTIONS D LY ASH THE

33

·. :.

AND FLY ASH ARE LISTED IN MATERIALS IM 401 AND

IM 491.17 RESPECTIVELY, AND SHALL BE USED IN

DETERMINING THE PERCENTAGES OF CEMENT AND FLY ASH OF THE TOTAL CEMENTITIOUS MATERIALS USED IN MIXES.

12/01/93
48-0213-010
PCC OVERLAY - UNBONDED
·I OWA

Letting Date: January 07, 1994 9:00 A.M. Bid Order No.: 101

Note Description

005.19 (continued)

IF THE TOTAL ALKALI LEVEL OF THE CEMEMTITIOUS MATERIALS EXCEEDS 0.75 PERCENT, THE PROJECT MATERIALS (CEMENT, FLY ASH, AND SAND) SHALL BE TESTED IN ACCORDANCE WITH ASTM P 214. IF THE EXPANSION IN THIS TEST DOES NOT EXCEED 0.15 PERCENT, THE MATERIALS MAY BE USED FOR THE PROJECT. THE IOWA DEPARTMENT OF TRANSPORTATION WILL PERFORM THE ASTM P 214 TESTING FOR THE FIRST COMBINATION OF MATERIALS PROPOSED BY THE CONTRACTOR. ANY SUBSEQUENT TESTS FOR OTHER COMBINATION OF MATERIALS SHALL BE CONDUCTED BY THE CONTRACTOR IN A LABORATORY APPROVED BY THE ENGINEER.

IF CLASS F FLY ASH IS USED IN THE MIX, THE TOTAL ALKALI LEVEL LIMITATION OF 0.75 PERCENT IN THE CEMENTITIOUS MATERIALS SHALL NOT APPLY, AND THE P 214 TEST WILL BE WAIVED. CLASS F FLY ASH MAY BE SUBSTITUTED AT A 1:1 CEMENT REPLACEMENT RATE BY WEIGHT. THE PROPORTIONS SHALL BE ADJUSTED BY THE CONTRACTOR TO REFLECT CLASS F FLY ASH USAGE, AND SHALL BE APPROVED BY THE ENGINEER.

080.00

*** DBE GOAL INFORMATION ***

THE ESTABLISHED DBE GOAL FOR THIS CONTRACT CONCERNING PARTICIPATION BY DISADVANTAGED BUSINESS ENTERPRISES (E.G., SUPPLIERS, AND SUBCONTACTORS) IS SHOWN ON PAGE 1 OF THE PROPOSAL DETAILS (SECOND SHEET OF THE PROPOSAL) AND APPLIES TO ALL FEDERAL AID PROJECTS INCLUDED IN THIS PROPOSAL.

REFER TO THE CURRENT "DIRECTORY OF CERTIFIED DBE'S" AND TO THE CURRENT "SUPPLEMENTAL SPECIFICATION FOR SPECIFIC AFFIRMATIVE ACTION RESPONSIBILITES (DISADVANTAGED BUSINESS ENTERPRISES) FEDERAL AID , PROJECTS" FOR ADDITIONAL INFORMATION AND INSTRUCTIONS.

IN ADDITION, IF THE WINNING BIDDER ELECTS TO USE DBE SUBCONTRACTORS AND/OR SUPPLIERS, FORM 830231 (SUBCONTRACT REQUEST AND APPROVAL) SHALL BE SUBMITTED TO THE PROJECT ENGINEER PRIOR TO THE PRECONSTRUCTION CONFERENCE TO DOCUMENT DBE SUBCONTRACTORS AND/OR SUPPLIERS TO BE USED. THE CONTRACTOR SHALL ATTACH A COMPLETED FORM 102117 FOR EACH DBE SUBCONTRACTOR AND/OR SUPPLIER LISTED ON THE CONTACTOR'S FORM 102115 THAT WAS SUBMITTED AT THE LETTING.

120.01

THE FIELD LABORATORY OR LABORATORIES IF APPLICABLE SHALL BE ON THE PROJECT AT ALL TIMES TESTING IS REQUIRED.

181.14

••.

THE SURFACE COURSE SHALL BE 1/2 IN. MIX WITH NO SPECIAL AGGREGATE FRICTIONAL REQUIREMENTS.

Run Date:				1001
Proposal ID No.: Primary Work Type:	PCC OVERLAY - UNBONDED	Letting Date:	9:00 A.M.	1994
Primary County:		Bid Order No.:	101	

Note Description

181.14 (continued)

182.604500

THE PERCENTAGE OF CRUSHED PARTICLES IN THE A.C.C. SHALL BE: SURFACE 60% BINDER 45%

500.05

THE FREE TIME ALLOWED BETWEEN NOVEMBER 15 AND APRIL 1 WILL NOT BE PERMITTED ON THIS PROJECT DURING THE WINTER OF 1994-1995. THE CONTRACTOR SHALL WORK DURING THE WINTER OF 1994-1995 ON ALL WORKING DAYS AS DEFINED IN 1101.03 'WORKING DAYS'.

700.00

ALL SECTIONS ON THIS PROPOSAL FORM ARE TIED, AND ALL ITEMS MUST BE BID (WITH THE EXCEPTION OF ALTERNATE ITEMS OR ALTERNATE SETS OF ITEMS). NO OTHER TIES BETWEEN GROUPS OR PROJECTS WILL BE ALLOWED.

720.00

SEE ADDTIIONAL ATTACHED REQUIREMENTS.

1 of 2

(Additional Attached Requirements)

Iowa County PCC Overlay - Unbonded STP-21-3(10)--2C-48

STATISTICAL MEASUREMENT AND PAYMENT FOR PCC PAVEMENT

THE PROVISIONS IN THIS ATTACHMENT SHALL REPLACE THE REQUIREMENTS OF ARTICLE 2301.34, PARAGRAPH A, AND ARTICLE 2301.35, PARAGRAPH A, OF THE STANDARD SPECIFICATIONS, SERIES OF 1992.

REPLACE Paragraph A of Article 2301.34, Method of Measurement, with the following new Paragraph A.

A. Portland Cement Concrete Pavement.

The method of measurement described herein for Standard or Slip-Form Portland Cement Concrete Pavement applies to pavement, concrete base, concrete base widening, concrete pavement widening and concrete paved shoulders. The area of pavement constructed of the class specified will be computed in square yards from surface measure longitudinally and nominal plan width. Areas of street connections on urban projects will be determined from plan dimensions. Areas of ramps, including acceleration and deceleration lanes, will be determined in square yards from plan dimensions, using the edges of the main line pavement as terminals of the ramp pavement. The thickness of pavement constructed will be determined from core depths as follows:

For pavement or base with a design width of 20 feet or more, the area will be divided into lots of not more than 14,000 square yards. For pavement or base with a design width less than 20 feet and for pavement widening and paved shoulders, the area will be divided into lots of not more than 7000 square yards. The number of lots, lot size, and core location shall be in accordance with Materials IM 346.

At locations determined by the Engineer, the Contractor shall cut samples from the finished pavement, base, widening, or shoulders by drilling with a core drill of a size that will provide samples with a 4-inch outside diameter. The Contractor shall restore the surface by tamping low-slump concrete into the hole, finishing and texturing. The Contractor shall identify and deliver the cores to the field laboratory or plant inspector. The Engineer will measure the cores and report the results and quality index information.

Pavement and other work described above shall not be cored for thickness determination in the following situations:

- 1. Lots less than 5000 square yards 20 feet wide or wider.
- 2. Lots less than 2500 square yards and less than 20 feet wide.
- 3. Irregular areas which total less than 2500 square yards.
- 4. Detour pavements, median crossovers, paved drives, runarounds, paved medians and other temporary pavements.

2

A.

(Additional Attached Requirements)

Iowa County PCC Overlay - Unbonded STP-21-3(10)--2C-48

REPLACE Paragraph A of Article 2301.35, Basis of Payment, with the following new Paragraph A.

Portland Cement Concrete Pavement.

The basis of payment described herein for Standard or Slip-Form Portland Cement Concrete Pavement applies to pavement, concrete base, concrete base widening, concrete pavement widening and concrete paved shoulders. Payment for the quantities of pavement in square yards in each lot will be at a percentage of the contract unit price in accordance with the following schedule:

Payment Schedule

Percent Payment	Qual	ity Inde	<u>r Range</u>
103	1.25	0 T	NORE
101	0.86	to	1.24
100	0.41	to	0.85
98	0.20	to	0.40
95	0.00	to	0.19
90	-0.25	to	-0.01
80	-0.40	to	-0.26
70*	-0.41	01	LESS

 If a QI of -0.41 or less is obtained, additional cores shall be taken to determine the extent and severity of the deficiencies.
 Depending on the results of this study the Engineer will require one of the following procedures:

- (a) The deficient lot shall be removed and replaced with pavement at the Contractor's expense, meeting the contract requirements. Payment for the replaced pavement will be as provided above.
- (b) The pavement represented by cores deficient from design thickness by more than one inch shall be replaced. These areas will be defined b limits one-half the distance to the next core which is not deficient from design thickness by more than one inch. The remainder of the deficient lot may be left in place and paid for at 70 percent of the contract price.

If all lots on a project have a quality index of 1.25 or more, the percent of payment will be 105 percent for the project.

If all cores measured in a lot are at or above design thickness, the payment for that lot will not be less than 100 percent of the contract unit price.

Payment for areas of Class A subbase, or PCC paved shoulders will not be more than 100 percent of the contract unit price.

Unless otherwise provided in the contract documents, or mutually agreed upon by the Contractor and the Engineer, areas which are paved with M, F, or FF mixes at the request of the Engineer, will be paid for as provided above except that the unit price will be doubled.

SPECIAL PROVISIONS for

SP-1125 (New)

RESURFACING WITH PORTLAND CEMENT CONCRETE OVER ASPHALT CEMENT CONCRETE AND COLD IN-PLACE RECYCLED ASPHALT PAVEMENTS

STP-21-3(10)--2C-48, Iowa County

January 7, 1994

THE STANDARD SPECIFICATIONS, SERIES OF 1992, ARE AMENDED BY THE FOLLOWING MODIFICATIONS. THESE ARE SUPPLEMENTAL SPECIFICATIONS, AND THEY SHALL PREVAIL OVER THOSE PUBLISHED IN THE STANDARD SPECIFICATIONS.

This work involves resurfacing portland cement concrete (PCC) pavement over asphalt-cement concrete (ACC) and cold in-place recycled pavements.

The contract documents will specify locations of different PCC pavement thicknesses, the areas of polypropylene fiber reinforced PCC, and the locations of different transverse and longitudinal joint patterns.

Testing and monitoring instruments will be installed in the area of PCC resurfacing for research purposes. These instruments will be installed and operated by others. The contractor's schedule shall accommodate the installation and operation of the testing and monitoring instruments.

A one day open house is planned for this work. Detailed information concerning the open house will be submitted to the Contractor after the award of the contract. The Contractor's schedule shall accommodate this open house.

Section 2301 of the Standard Specifications shall apply for resurfacing PCC pavement over ACC and Cold In-place Recycling pavements with the following modifications.

REPLACE the first paragraph of Article 2301.02, Type of Pavement, with the following new paragraph:

The Contractor shall construct the PCC pavement resurfacing with slipform paving equipment.

REPLACE the second sentence of Article 2301.03, Materials, with the following two new sentences:

Coarse aggregate used in the PCC mix shall meet requirements of gradation number 5 and be of the durability class required by Article 4115.04. Collated or Graded fibrillated polypropylene fibers shall be used where

SP-1125 Page 2

the contract documents specify PCC with fibers. The minimum length of individual fiber strands shall be 3/4 inch.

REPLACE the first paragraph of Article 2301.04, Portland Cement concrete pavement, with the following new paragraph:

The Contractor shall use a Class C concrete for PCC resurfacing. The Contractor shall use the same concrete mix design for all PCC resurfacing on this project.

ADD Paragraph F, Polypropylene Fibers, to Article 2301.04, Portland Cement Concrete Pavement.

F. Polypropylene Fibers.

Where specified in the contract documents, the Contractor shall incorporate Polypropylene Fibers into the PCC mix in accordance with the fiber supplier's instructions with the Engineer's approval. The Contractor shall add 3 pounds of fibers per cubic yard of concrete. The Contractor shall mix the fibers into fresh concrete so they are uniformly distributed throughout each batch of concrete and there is no clumping of the fibers.

REPLACE all of Article 2301.10, Subgrade Construction with the following:

2301.10 Preparation of Existing ACC and New Cold In-Place Recycled Asphalt Base Pavements.

The contract documents will specify the locations of the existing ACC pavement and the locations of the new cold in-place asphalt pavement.

The contract documents specify the locations of pavement scarification and ACC full depth repair patches on the existing ACC pavement prior to PCC resurfacing. The Contractor shall perform the pavement scarification and ACC full depth repair patch work in accordance with the contract documents and the Iowa DOT Standard Specifications. The Contractor shall perform the pavement scarification work so the surface is left with a smooth profile. It is intended that the depth of pavement scarification will average a nominal 1/4 inch.

The Contractor shall construct the areas of cold in-place recycled asphalt pavement in accordance with the current Supplemental Specifications for Cold In-Place ACC Recycling.

The Contractor shall prepare a pad line for the equipment used for PCC resurfacing. The cost of preparation of the pad area shall be included in the price of placing the PCC pavement resurfacing.

The Contractor shall clean the existing surfaces of all loose or adhering foreign material prior to placement of the PCC over the existing ACC and new cold in-place recycled asphalt pavements. At the time of PCC placement, the existing ACC and new cold in-place asphalt recycled pavements shall conform to the specified typical cross section. The pavements shall be checked, and any high spots shall be trimmed at the direction of the Engineer.

At the time of PCC placement, adequate provisions shall have been made for drainage away from the area to be paved.

ADD the following paragraph prior to the first paragraph of Article 2301.14, Placing Concrete.

The contract documents specify the PCC resurfacing to be placed at depths of 2, 4, 6, and 8 inches. The contract documents identify the locations of each depth of pavement. The contract documents also identify transition areas between each depth of pavement.

REPLACE the fourth from the last Paragraph of Article 2301.14; Placing Concrete, with the following new paragraph:

The Contractor shall install deformed tie bars for all longitudinal joints in accordance with Road Standard RH-51 in areas of PCC resurfacing without fibers and thickness greater than 4 inches. Areas of PCC resurfacing with fibers or 4 inches in thickness or less will not require tie bars in the longitudinal joints.

REPLACE Paragraph D of Article 2301.16, Finishing, with the following new Paragraph D:

D. The current Supplemental Specifications for Pavement Smoothness shall apply for this work. All bumps exceeding 0.5 inch within a 25 foot span, as indicated on the profilogram, shall be corrected, except when otherwise directed by the Engineer. Grinding of pavement less than 4 inches thick for smoothness correction shall be only when approved by the Engineer.

REPLACE the third sentence of the first paragraph of Article 2301.19, Paragraph A, Curing with White Pigmented Liquid Curing Compound.

The rate of application of curing compound on the PCC resurfacing shall be a minimum of 0.10 gallons per square yard of pavement. (Covering 10 square yards per gallon.)

REPLACE all of Articles 2301.22, Transverse Contraction Joints; and 2301.24, Longitudinal Joints, with the following new Article 2301.22.

2301.22 Transverse Contraction and Longitudinal Joints.

The Contractor shall saw transverse contraction and longitudinal joints in the PCC resurfacing in accordance with the joint patterns specified in the contract documents. Each joint shall be constructed substantially true to line with no offsets along the joint. The Contractor has the option of using a "Soff Cut" type of sawing system or approved equivalent to saw the joints in the PCC resurfacing.

P-1125 Page 4

Sawing the joints shall commence as soon as the concrete has hardened sufficiently to permit sawing without excessive raveling, and to support the weight of the sawing equipment and operator. All joints shall be sawed before uncontrolled shrinkage cracking takes place. If necessary, the sawing operations shall be carried on both during the day and night, regardless of weather conditions. Sawing shall be discontinued when a crack develops ahead of the saw. In general, all joints should be sawed in sequence. The Contractor shall not use a span saw which is supported on the new pavement, for sawing the PCC resurfacing.

The Contractor shall saw the joints in accordance with the following width and depth requirements for the specified PCC resurfacing thicknesses.

PCC Resurfacing Thickness	Joint Width	<u>Joint Depth</u>
2*	1/8.	1/2*
Greater than 2° to 4°.	1/8"	1*
* Greater than 4*	* 1/4*	* 1 1/8*

* The Contractor has the option to construct joints in pavenents greater than 4" thick in accordance with Road Standards RH-50 for transverse joints and Road Standard RH-51 for longitudinal joints.

Should uncontrolled cracking occur, a joint shall be formed with a crack saw along the line of the crack, and the joint shall be cleaned and sealed, as provided in Article 2301.25.

If the length of box out exceeds 15 feet, a contraction joint shall be constructed at both ends.

When random transverse cracks occur from a CD joint, the Engineer may require the pavement to be patched and an additional CD joint installed.

ADD the following new paragraph prior to the first paragraph of Article 2301.25, Sealing Joints.

The Contractor shall not seal transverse and longitudinal joints in PCC resurfacing 4 inches or less in thickness unless otherwise specified in the contract documents. The Contractor shall seal all joints in PCC resurfacing greater than 4 inches in thickness. The Contractor is not required to install backer rope in the joints, unless the joints are constructed in accordance with Road Standards RH-50 or RH-51.

REPLACE all of Paragraph A of Article 2301.34, Method of Measurement, with the following new Paragraph A:

A. Portland Cement Concrete Pavement.

The quantity of the various items of work involved in the resurfacing with portland cement concrete over ACC and cold in-place recycled asphalt pavements will be measured for payment by the Engineer in accordance with the following provisions:

- 1. Slip-Form PCC Pavement, Furnish Only. The Engineer will compute the cubic yards of PCC concrete furnished and incorporated in the work by count of batches and the nominal batch volume.
- Slip-Form PCC Pavement, Place Only. The Engineer will compute the total square yards of PCC resurfacing placed from plan dimensions.
- 3. Scarification for PCC Overlay.

When Scarification for PCC Overlay is an item in the contract, the Engineer will compute the area scarified in square yards from measurement. When the work is done according to plan dimensions, the area may not be specifically measured and payment will be based on plan quantities.

REPLACE all of Paragraph A of Article 2301.35, Basis of Payment, with the following new Paragraph A:

A. Portland Cement Concrete Pavement.

Resurfacing with portland cement concrete over asphalt cement concrete pavement will be paid the contract price in accordance with the following provisions:

1. Slip-Form PCC Pavement, Furnish Only.

For the number of cubic yards of PCC concrete incorporated in the work, the Contractor will be paid the contract price per cubic yard. This payment shall be full compensation for mixing the concrete and all materials, including polypropylene fibers, delivered to the grade.

·2. Slip-Form PCC Pavement, Place Only.

For the number of square yards of PCC resurfacing placed, the Contractor will be paid the contract price per square yard. This payment shall be full compensation for placing, finishing, protecting and curing the pavement, sawing and sealing joints, for furnishing and installing reinforcement, for preparation of the pad line and pavements, and for meeting all other requirements of Section 2301.

3. Scarification for PCC Overlay. When Scarification for PCC Overlay is an item in the contract, the Contractor will be paid the contract price per square yard for scarification completed. This payment shall be full compensation for furnishing all material, equipment, and labor for the scarification and disposal of scarified material, as designated in the contract documents. SP-1125 Page 6

The current Supplemental Specifications for Pavement Smoothness apply for this work. Payment may be modified as provided therein. The modifications shall be made to payments described in both Paragraphs 1 and 2 above.

Appendix C 1. Daily Inspection Reports of PCC 2. Daily Plant Reports for AC

	Form 83 9-89	0224						сом	BINED I	AILY INSP	ЕСТІО	IN REPO	RT OF P	ORTLA	ND CEME	ENT CO	NCRE	TE PAVEME	т						
	Contra	ct No	403	21.	Con	tr. <u>M</u> .	ANATS	INC	o		Co. En	ngr. <u>Ke</u> ad	YANN	(A		Projec	:t57	P-21-3 (10)	48	. County	JOWA			
	Report	No		Dat	e <u>7/14</u>	<u> 94</u>	Date of	Last Repo	ort _7	13/94	. Plant	Owner a	nd Locat	ion	UANAT	rs Pa	ORTA	BLC, H	wy 2	/	. Sq. Yard	s (Cont. QI	y.)	11,73	ų
	Weathe	r _ <u>0VE/</u>	CAST	_skie	Days	Төтр. Ма	ix7	· 4	Min.	<u> </u>	<u> </u>	Min. Ten	np. Foll. I	Night	66	P	lant In	spا	ONL	NDER		Cert. No	1602		
	Item/	STA	FION	Length	Sq.		CU. YDS	,	% of	Time	Mix	i	BATCH	MC			AC	TUAL QUAN	TITIESL	SED PER	CU. YD. (I		S)	-	Fin.
	Lane	From	То	Feet	Yards	Est.	Batched	Used	Est. Used	Start Enc	No.	F.A.	C.A.	F.A			ment	Fly Fi Ash Ag				Water Added at Grade	Total Water	Slump	Air Purt
Both	0200	21.12				283	393	391.5		6:39 9. 010			166	2 2.4	<u>n 1.5</u>	5 4	87	87 14	06 16	17 60		0	247	2 1/4	7.0 6
						485	672	0.150	138.4	9 48 1.18		1369	1670	2.0	7. 1.9	5 5	71	- 14	10 160	<u>15 6</u>	6 164	0	430 20	14 ح	9.55
l		200	2641			12	16	16.0	133.3	122.38	M- 3	1272	1559	3 2.0	1.5	5 7	88	- 13	0 15	79 6	2 237	0	299	· .	
			2641 +97	2990	7973.3	1	1						·												
																			-				•		
										/															
	TOTAL		•	2990	10,733.37	781	1080		120.2	с То		mont Rate		2027	10 134			Ash Batched			Total	Wator 1		. 154	560 (3)
	PREVIO			2432.30	1822	200,30	1	1078.5										Air Admixtur		•	Ave. '	Water/Cerr	nent 1	2x .	
		TODAT		1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	15155,140			1003,5		Ca	lcium	Chloride	门 Yes	No)			Lora	40727	406	Max. Wa	ter/Cemen	t <u> </u>	<u>/84]</u> ८४	
45			E P	20°	151° 46	00 00	12100	1208:15	122.5		iter Re urce:	ducer	X Yes		o Bran	0 _ <u>P1</u>	1405	14 T403			Normal E	Batch Size		<u> </u>	
		T		EMENT			-41 .	Method o HITE				sh Anu				<u>.</u>						2.72			
	Bra		Type I/J	Ticke	55 - 2	mount Ton タス・シフ	3	COMPO						-				T-203 No.			•				
			L.A.	2441]	Texture		Ce	rtified	Aggrega	e Verific	ation							Coarse A	gar. Durab	ility	3	<u>i </u>
	Anter	2.40.1	FI	1453	2	25.02								8-6	5882/	768	.95	tons	. Co	arse Aggre	gate 303	889-30	<u>2395:</u>	5/908.	<u>lel</u> ton:
								TINE				it And Ca Subgrade		HALT											
l		BEA	MS MAD	DE		dethod of	Coverin	g Subgrad	Je									BEAMS 1	ESTED						
	Time	e Bea		imp A	\ir] Plastic			oistene ked For	"	eam No.	Mix No.	Age Days	Depth Inches	Width Inches	Slump	Air	Lb. Water & Pail or Inc Load	Act Loa		leaction unds)	Computation Factor		od. of upture	Location of Break
l	6:5	0 15	, 1	<u>у</u> ң ч.		vethod of					1 0	-JURC	7		6.04	3/4	7.5	5600	550		- lı	24172		90	18
	11.1	5 15	ΔΙ	14 7	. 7	Central	Mix		ansit M	<u>×</u>		34JP.C.			6.53	1 . w	7.2	6600	1.56	- I		123758	. 6	SI2-	Ę
		0 15	B 11	1/2 7	8	Cold Wea Protection	ther	Yes	5	No				1											
	1	Sample			GGR SIE	E ANAL	YSIS						T PASSI		OMP.]				· .		MIX 1	CPMI	HEA.	STAH2di
		I.D.		No. 14		<u>v % IN</u>	3/1N	HIN N	5.4 No	. 8 No. 16	No. 30	No. 50 N	o. 100 No.	200		(-	Slump, Air 2MD5 72		narks 2 TEYU D		-4 -34RC			
	CAN	7.14		5		0 100	74	46 4	. 6 1.	8			0	.9 4	<u>'es</u>			75		·	63	C A		+	H- 12
	FA.	7.14		1		_	┼──┼	122 9	7 9	<u> </u>	42	النع	0.50	<u>. 2 4</u>	es	R		NICISTE 1				A 3 1	2608	·	47.5 1.3 84
						1							1			+55	a cr	, DE Po	Y Fil	<u>cr</u>					

.

Form 83 9-89	30224							со	MBINE			PECTI	ON REP	ORT O	F PORT	TLAND C	EME	NT CO	NCRE	TE PAV	EMENT								
Contra	ct No	- 11	0321		. Contr.	<u>_/I</u>	11. MIT.	5	INC.		Res	s/Co. E	ingr. <u>K</u>	<u>en y</u>	ANNA	ì		Projec	:1_ <u>57</u>	P-21-	3(10).	· 20,-4	<u>8</u> c	County .	Ιοω	•		<u></u>	
Report	No	_7_	(Date	<u>,/s/n</u>	4	Date of	Last Re	eport_	67	1.194	_ Plar	it Owner	and Lo	ocation	Mar	VATT	is F	SE TA	BLF,	<u></u> <u>H</u> u	12 21	s	iq. Yards	(Cont. QI	y.)	91,73	4	.
Weathe	er <u>partu</u>																					LINDE	<i>ا</i> ت		Cert. No	160	<u>ک</u>		<u> </u>
	STAT	TION					- CU, YDS	 5.	%		Time			Y BAT	сн	MOIST			AC	TUAL Q	UANTIT	IES USE	D PER CL	J. YD. (IN		S)		[Ľ
Item/ Lane	From	То	Fe	gth et Y	Sq. ards		Batcheo		— Es	t. ed Si	tart Er	Mi: No	^		S C.A.	F.A.	C.A.	. Ce	ment	Fiy Ash	Fine Aggr.	Coarse Aggr.	Water in Mat'ls.	Water Added at Plant	Water Added at Grade	Total Water	Slump	Air	Hand
0200	54159 + 880						488	485	2.0	6	.58 a.2	1 2.1		-5 16	62	3.5	1.4	1 4	87	90	1415	1686	74	156	0	230	- <u>/</u> 2	5.5	
							24	24	.0		9:3	- 101 - 1		7 15	51	3.5	1.4	1 7	09	80	1313	1573	68	219	0	287	1"	8.0	
	-						416	416	. 0		39	- (-3 - WK-	C. 136	5 14	.62	3.5	1.4	. 4	87	90	1415	1686	74	156	0	230	1	7.8	
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $														 														
	Ank TEMPS 86° Corc. TEMPS 84° Ank TEMPS 86° Corc. TEMPS 84° 87° 10° 10° 10° 10° 10° 10° 10° 10																												
	AL A_{11} T_{EA} P_{S} B_{C} $Conc.$ T_{EAPS} B_{4}° A_{11} T_{EA} P_{S} B_{6}° $Conc.$ T_{EAPS} B_{4}° B_{1}° B_{1}° B_{4}° B_{1}° B_{4}° B_{4}° B_{1}° B_{4}° B_{4}° B_{4}° B_{1}° B_{1}° B_{1}° B_{2}° A_{1}° B_{2}° A_{2}° A_{2}° A_{2}° B_{2}° A_{2}° A_{2}°																												
TOTAL	-	$\frac{87^{\circ}}{91^{\circ}}$ $\frac{87^{\circ}}{1416}$ $\frac{87^{\circ}$														322													
PREVI		M-3(-170)L $M-3(-192)$ $M-3$																											
		M-3(-170)L $M-3(-170)L$ $M-3(-1920)$ $M-3$																											
	OUS TOTAL 00^{-12}																												
			CEMEN	TY	· · · · · · · · · · · · · · · · · · ·					•	ן ר	Fly A	Ash _A					TINE					S	p. Gr	2:80				
Bra		Туре		ket No	74	ount Tons	1	WHI	TE URE	rig. Lonp						REISI					ю. <u>Ан</u>			5p. Gr			nt Test .		
- EFAI	<u>K.(7</u> F	- second -	H 24 0 A 2113	28 73	- <u></u>	8.94	┥╞		re Meth				rse Aggr J Aggreg				OUR	<u></u>		T-203 N	lo <u>A</u> }	86002			<u>2.63</u> gr. Durab			<u> </u>	<u>.</u>
			FLY AS					iextu	re metr	00						<u>6552</u>	9 /	100	<u>22.2</u>	<u>0</u> ton	S	Coarse	e Aggrega	te 303	382-30	23.52 EC	+/1192	1.21	tons
ANEN		<u> </u>		67-	7	5.18		TI	νE				st And C								<u> </u>					,	-		
[(r.105	CPTINE))		75							T	ype of	Subgrac	le/	Азрн	ALT		·		· · · · · ·					·				<u> </u>
	BEA	MS M	ADE T		- 1 -		Coverin										r		_	T	AS TEST	ED		·					
Time	e Bea No		Slump	Air		Plastic Slip For) Moiste Fixed I			Beam No.	Mix No.	Age Day				Slump	Air	Lb. W & Pail o Loi	or Ind.	Act. Load	End Rea (Poun		Computation Factor		od. of ipture	Locati of Bre	
8:3	09		1 3/4	9.0	Me	thod of	Mixing					3	631.12	d 10	6.0	2 6.0	00	2 3/8	8.6	62	00	6170		· .	124170	, 7	66	£	
3: 3	35 👝	1A	1 /8	8.0] ⊠	Central	Mix		Transi	Mix		4	(36)R. (8	6.0	2 6.0	2	3/4	8.0	500	0	4950	-		123758	6	,13	1/4	"
9:4	5 9M	!	25	7.10		old Weat	her	🗌 Yes		No No	, [1	(• 314)R•1		6.0	00 6.					0	5150			125000	> 6	,44	1/2	"
[Sample		Grad.	AGG	SIEVE	ANALY	ISIS						PERCE	NT PA	SSING											÷ ,		21.	~ .
	I.D.		No.	1% IN	1 IN	% IN	%IN	36 IN	No. 4	No. B	No. 16	No. 30	No. 50	No. 100	No. 200	СОМ	P.	Ado C. 3	ditional	Slump,	Air Tests	s, Remark	is <u>Apditi</u>	ONAL :	sump+	<u>AIC të</u>	<u>'sts</u> ;	74 J	7.6
CA-7	-5		<u> </u>	ļ	100	100	77	53	6.4	1.2	<u> </u>	<u> </u>			1.2	Yes			— .					\sim	REPORT				
FA-7	<u></u>		1					100	98	90	74	46	9.1	0.6	0.3	YES		.5	<u>e y b</u>	waste			/		ent.		- <u>7</u> -74	<u>7.66</u>	
																		*	Split	trke	T IN	th Ro	t. 1-2	54	en a	_b¢_		11_6	<u>n '</u>
					1	1					1							•	-1	1 (:].					~ ~	 		
Distribut	lion White	C	Office of	Constra	intion Mo	line Con	- post				<u>, </u>	L.,	- <u></u>		!	<u>.</u>	لبب	~	. •	Γ,	~ 10 * ·	7 18	ス			a	,		

			-	,																				. ·	-		• *
Form 83022	24														non=1 •				TE	CLARNIT						•	
9-89													ON REPO											· · · ·			
																		_						Tow			
Report No)	4	Da	te <u>47</u>	28/71	<u>نا</u>	Date of	Last R	eport	6/2.	7/64	_ Plan	t Owner a	and Loc	ation 🔟	MANA	<u>13, '</u>	Port	ABLE	<u> </u>	Jy 21	S	q. Yards	s (Cont. Qt	y.) <u>-</u> 9	<u>11, 73</u>	34
Weather \hat{I}	P-1-1	<u> </u>	يو فانبوا	Day	s Temp.	. Max	· .	22	N	in	1.1.		Min. Te	mp. Foll	. Night _	64	F	Plant In	sp	CAN	LINDE	rz		Cert. No	140,2		
	STATI		_	<u> </u>	<u> </u>	 C	CU. YDS	 :			Time	1	DRY	BATC	н м	OISTUR	E	AC	TUAL O	UANTIT	IES USE	D PER CL	J. YD. (II		S)	<u> </u>	[
Lane	T		Lengti Feet		s Es		Batched		- 8 Es d Us	i.	lari	Mi) No				ONTEN		ment	Fly Ash	Fine	Coarse	Water in	Water Added	Water Added	Total	Slump	Air
	rom 3%	То	·	· · · · ·						°°	En	4 	F.A.	C./	4. F./	A. C.	<u>A.</u>		Ash	Aggr.	Aggr.	Mat'le.	at Plant	at Grade	Water		91.7
RUTH +	15		ļ				100	100			12.08	L.K.	C :36:	- 166	2 3.	2 1.	10 4	187	87	1410	1689	12	116	1.	249	14	RETEST
-		415.		: 6.153.	33 415	. 14	524	5%	0 40	3 12	الذنان	u i K	1 13.4	; ;l	2 3.	3 1.	6 4	87	90	1412	1689	74	178	0	252	スち	8.0*
BATU AN	76	115	12:1.	0 610.	.67 5.3	3.0	120			13	1.09	(· · 2	(12,1)	110	5 3.	3 1.	10 4	187	90	1412	1689	14	183		257	•••	-
$\frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{1000} \frac{1}{10$																											
											\sim	<u> </u> /	24/C.	TEM			418	- 19	_				· ·		······································		
				··					·	+		┨──			<u> </u>	8.											·
ТОТАL 2829.: 75 1/1.5 1008. 1% 1221.0 121. В 121.0 121. В Тоlal Coment Batched Тоtal Fly Ash Batched Total Fly Ash Batched Total Water														P													
TOTAL		1	2827	1. 7544	1001	8.12	1248 -	1221.	0 12		Ťc				Poly-	58440		tal Flv			96 Pa	14.1080	Oc Total	MeN Q Water	متضعة	4 P.1	17-309
PREVIOU	US TOT			012466	15 80	. 54	1027.72						n Allowa		er2	82					AES 97540		_ Ave. \	Water/Cem			. 0.1
													Chloride								97540	, n		ter/Cement	·	489	
TOTAL T			- 504	\$ 20010	4 258	وكذ	3185.1	3157	· 0 12	.0		ater Re ource:	educer	ØY	es 🔲 N	lo Brai	nd Lof #	1404	3854	03		N	iormal E	Batch Size	/	CY	
		CE	EMENT					Metho			\neg		sh Am	ERICA	J-Lev	isa .	AM	ERICA	N-M	USCAT	INE	S	p. Gr. 🏅	a.72 - ;	2.80		
Brand	<u> </u>	Туре	t	et No.	Amount		י -	WH 11	'E Solv	ENT		Fine	Aggr. <u>M</u>	ARAN	<u>so Re</u>	D1-1/1	x, UA	KANG	Q7-203 N	NO. AY	8508	s	5p. Gr	2.63	Plan	t Test _	2.6
LAFARG	5E	<u>II</u>	2424		305.	41	-1	در					se Aggr.			IDNTO	un		. T-203 M	NO. 신문	6002		•	2.63		•	2.6
 			א <u>איא</u> Y ASH	04			-1 [Textu	re Met	nod	C(ertified	Aggrega aggregat	ite Verlf	ication	:278 /	1 912	25	to		•	C	oarse A	ggr. Durab 197 - <u>30</u>	ility zogz/	3,	41.2
ANTERIC	AN	Ċ.	025	6	51.	74	11	TIN	IE		Т		aggregat st And Ca		<u> </u>	<u>,,,,,,</u>				ns	Coarse	a Ağğıeğa	10 <u>5.55</u>	<u> </u>	20.12/	105	
			025	58][Subgrade		SPHA	٢											
	BEAM		E		Metho	d of	Coverin	g Subg	rade										BEA	MS TEST	ED	<u> </u>					·
Time	Bean		mo	Air	D Pla	stic		[2	Moist	ened		eam	Mix	Age	Depth	Width	Slump	Air		Vater or Ind.	Act.	End Rea		Computatio		d. of	Locati
	No.				Slip Slip	o For	m] Fixed	Form	_ -	No.	No.	Days	Inches	Inches				ad line.	Load	(Poun	ds)	Factor	Ru	pture	of Bre
7:52	5	12	5 8	3.0			Mixing				7 L						<u> </u>	<u> </u>				L					
1:35	5A		" .	7.1	Cer	ntral	Mix	<u>[</u>	Trans	t Mix	-			}													
					Cold V Protec		her	[] Yes		⊠. No	, -					1	1					<u> </u>	····			†	
[l.				1]	L	_					ONAL A	1R + 5	IUMP	•
	mple .D.	-		AGGR SI			<u>SIS</u> או א	% IN	No 4	No. A	No. 16	No. 30	PERCEI			СОМР.	Ad	ditional	Slump,	Air Tests	s, Remark	_		DEHIND	5.6		
			5					-									112	8 cy	1 - M	DNO FI		<u> </u>	.5		7.5		
<u>^A - la - 2</u>		·			00 10	00	70	45	6.9				┼──┼			<u>es</u>			<u>Y - F</u>					- 17	<u>6.3</u>		
FA. 6.	.28		1 ·					100	97	89	73	41	8.1	0.7	0.3	YES	4	DC	<u>x Gí</u>	KADE I	NASTE	7	<u>. le</u>	<u>- 179</u>			

1 74"

2"

6.8

7.9 -

-

21 CY - PLANT WASTE

· ·

47

•

Form 820007	10/91 H	-1392							iowa D	epartm	ent o	of Tran	sporta	tion						. ·			
								*		-			-					c	County _	100	A		
Ι.								BITI		TREATE				CDETE	•					7P-21-		<u> -"20</u>	-48_
Į								0110		INCALC	JEASE			ONEIL	-			c		io4C			
			-	1.5.						Main								0)ate	7-29	2-9	4_	
Contractor			ITS	INC				Plant Loc	ation	MALC	<u>om</u>					·			eport No				
Plant Type		ATCH		7	Mak		INDAM	20 216	CC PC	Ilution Equ	ipment	_DAG	HOUSE	700		Residen	t Enginee		NNET	H YAI	NNA		
Міх Туре	B			DINDO	K s	Size <u>3/4</u>		Crushed /	Aggr. Sour		<u>ALLO(</u>	$n > \alpha$	<u>x</u> H	4400	02	Recycle	Source .			45			
Asphalt Sour	rce & Gr	ade t	2 i TUN							NATIS	P	8650	52	Plan I					P.M. Mi	(NO. AB			
				. S	IEVE AN	ALYSIS OF	•									T	BMITTER			SAMPLE			
	AMPLE			100	qui,	81/95			PASSING	2.7/	_		17 .		Materials		Senders			aterials		Senders	-25A
JOB MIX FOI			100		1		70/82	710		23/3	-		2.4		tor MI		BN 7 -		<u></u>	<u>C-10</u>			
		Compl.	1½	1	100	89	82	67 4	54 4	6 30 2 2		0 10 5					BN7-		000				25B 251
CF725	AM	YES			100	187	96		27 4	66	+ /(2 7.				BN 7- BN 7-			<u>> Fee</u> ù	2 0	<u>_1. 1 -</u>	<u> </u>
								<u> </u>	Sand Art					32 897	V		UNT	270	<u> </u>	83.5		e (1. 1865	7
							and the second second							s≪ill	ended Add		6.25			Aeas.		<u>20</u> まろ	% A.C.
					2003 2005 2005									Sel Inte	ended Tot	al	0.0	% A.C	. Total	18 . L V	638 <i>(1</i> , 184	29	<u>3~</u> % A.C.
LAB. DEN	7.	355	5	L	DENSI	TY RECORI	 D	SOL		2,428	ろ			TEMPER	RATURE	RECORD				LL MATER	IALS D	ELIVER	LES
Course		T	ation	¢Re		Date Laid		Densi			Volda	Time	7	9	11	1 1	3	5		Car or Ti			
BINDE			6+96			712519			597.0	18 5	9	Air	62	75	29	82	85			1857		24.	
	.	241	8-161	10.1	07	k	31	1 2.27	996.7	73 6	1	A.C.	320	310	310	310		290		1851			012
26		242	3-185	101	RT	3J	3	2.26	1 96.6	158 L	.	Aggr.	305	310		315						24	1.34
48 48		245	14+41	51	.7	4	21	1 2.25	0 95,	541 7	.3	Mix	295	300		305		310	74 AS	215	290.	•	
∞ <u></u>		\$ 50	6+22	7.1	2r	2	231	7 2.29	0 97.2	41 5	.7	Mat		280	265	260	250		SILN	2:05	331	42	0.25
11		250	9+41	114	5	*	34	1228	2 97.	070 5	. 8			RECY	CLED MI	ONLY				D 264		.]	
BINDE	<u> </u>	251	3115	L ^ A	r 7	1/25/9	4 37	81.29	16 97.	195 5	. 4	Total R/	AP Used T	ons (To	otalizer)				L	264	569	56	.44
	<u>. </u>						AVE	+ 2.2	31 94.	358 6	;;0 ∮∛	Total A	gr. Used	Tons _					AST.SA	so co			
<u></u>								_				RAP Us	ed % (Tar	get)	(Actual)		·	L	<u> </u>	1150	37	8,67
<u>. </u>			·									Aggr. U	sed % (Ta	rget)	(Actual)				L			
Avg. Field	Density	Lot #1	9	<u>6.89</u>	<u>58%</u>	2.28						P	RODUCT	ON AN	D PLACE	MENT RE	CORD	*					
Avg. Field							* (2			Course					ation to S				ns Today			ns To Da	
Advisory -	Fines/B	itumen	Ratio =	0.6	8 *		3"		11	BIND	ER		_24	<u>15+0</u>	<u>170</u>	2425	+ 00	<u>r 8</u>	<u>63,9</u>	8		<u>863</u>	<u>,98 ×</u>
Ave. % Fie	d Voids	= 6 ,	0		•		4	17					<u>250</u>	215	XO TO	<u>2515</u>	+001					·	<u> </u>
Lab % Voi	ds =	5.0									·				·								<u></u>
Q.I. (Dens	sity) =						s —	_ <u> </u>															·
•	Calculation	•				GW	n			eptance Co			1	3/4	1/2	₩		8	16		50	100	200
96,85	8-9	15,00	0 = 1	,858	Å	D) VO	CO	MENTS	(Ce	tified Proje			l ·	100	91	82	66	53	42	27	10	5.8	4.8
	•		-	1.28	Ŧ 2,	,76				LAB 1	Zexu				,				•				
			U				j s	2.+	· • ·	1	_	•	G	~	~		Д	. T.	ai. 6		EŻ.	aF	
			,				•	20 -	· DEA	IN'E LO	, KRE	R, M);	172, 1	Eci	1, 5:	TOPPE	Dy Dy	, 10	ev 4				
								•	Mia	, 5Ya	WE	ร์กุสุธ.									• •		•
					,	•				-									•		6	WH.	•
Acceptance	Finas/Bi	tumen F	Ratio =	nal	∢																		
COMMENTS					Action	etc						,		<u> </u>				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
*Thickness:	(1),Actu	al, (2) ir	tended				•					 .		51	UNE	201.1.	ا م				-	0500))
Bituminous '	i reated	base:	Enter % N	noisture i	n % Void	s Column						Sigr	lea In	spector		mer /						Cort NI	
												•											

.

Form 820007 10/91 H-1392

49

Iowa Department of Transportation

											Da	AILY PL	ANT F	REPORT								County	-	<u>bua</u>		36.10
				-					BITUN	/INC		EATED				NCRE	ETE							P-21-3		-20-98
																			•			Contrac	t No.	4032	<u> </u>	
		MAAN		INC.							.~	Acco	•											3	<u> </u>	<u> </u>
Contracto						<'77	WAD.	Pla	ant Local	tion _				314	11011							Report		H YANN	<u>.</u>	<u> </u>
Plant Typ		ATU		BIND	Mak	2.	<u>NONK</u>	<u> </u>	10.00		. Polluti	ion Equip	ment_	A	14/00		1.1.1.0		Residen	t Enginee)r		VE1		<u>n</u>	
Mix Type			Class	DINU		Size	4 Ar v	Cr	ushed Ag	ggr. S	Sources	<u>5110</u>	<u>, 10 2</u>	//		<u>m_///</u>		<u> </u>	Recycle	Source	0100	<u> </u>		10. ABD4	100	
Asphalt S	ource & (<u>arade</u>	Situm									206	MAI	UAILS P	UNI	<u>rir p</u>	lant O					<u>Р.М.</u>				
	SAMPL	F		. 3	IEVE AN	ALYSIS C										ŀ			LES SU	BMITTE				SAMPLES SUI		
	FORMULA		1	100	au i	0 81/95			10 % P			23/33	1		2.0	70.0		bFe	-	Sender			Mate	riais	Senders	<u>NO.</u>
Spl. ID	Time	Compl.	1%		YA	<u>y 0997</u>	73		10 .	156	16	30	50) 10				DTM		BN 7-						
CF7-26		V V	1/2	The Party of	100		83		5) (183)	43	27	10		_	00	TIC	2(11)		BN7.					·	·
	~4 🕅 🛙			n an indiana		6.235														BNT						<u></u>
			1.0		14243 (States)							20.20	10.92	3.4	23							- <u>L</u>		Transfer and	No. Cak	N V
<u> </u>			S. Aller	4.24444		Line of			407 U.S.S	3.53	in an sta	1398698	1.67		16-26-			ed Add			<u> </u>			8s.		LS% A.C.
			1. 1. 1. 1. 1.					1.15	CA 10433	692	3-37 6 %	19726	121.00	60. <u>255</u> 0.		5455.74 5455.74	Intend	ed Tota	ه <u>ن</u> ا		<u> </u>	C. Tota	Bľ.		in a subscript his	≝≊% A.C.°
LAB. D	EN.	2.3	46	<u>. 18. statist</u> e	DENSI	TY RECO	RD	× • • • • • • •	SOLID	DEN	N. Z.	421	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	anter annante	S.J. 1 (2038)	TEM	PERAT	TURE R	ECORD	<u></u>		1	ALL	MATERIALS	DELIVER	IES
Cour	se Laid	s	itation	¢Re	fer	Date La	id	• (1)	Density		Densis			Time	7	- 1	e' l	11	1	3	5	Туре		ar or Ticket N		
Bix	OER	27	03.19	5 6 R	r	71261	194 1	211	2.29	5	- Lipp	辺場で	00	Air	58	6	40	78	80'	82*	79"	Ac	; [_		~
11	· · ·	27	0577	IR	7	li	2	3/8	2 244	19	5.15	2 7	7	A.C.	315			3150	3150	315		3.	CA	2.65 332	:1	
		27	06+5	111	7	. #	2	1/2"	2.293	9	7.74	185	3	Aggr.	320	° 32		315"	3150	_	315		_	265366		70
8 1		27	09+07	7 11 R	7	4		3 4	2.25	3 9	6.03	5 6.	9	Mix	300	130			305	305	305	M.5	AUA	24457	5 18	.34
1/		27	10+3	1 10 R	7	F1		74	2.27	3	16.89	的影響	网络	Mat							285					
		27	11:406		<u>r</u>			212	2,295	9	7.82	150	2			RE	CYCLE	ED MIX	ONLY			N.S	AND	61148		
BiNO	<u>ER</u>	_127	12+12	26	27 1	11261	94 2	1/64	<u>2.273</u>	19	1.97	4 6,	0	Total R	AP Used	Tons	(Totali	izer)		<u>. </u>				61178	17	1.87
		_	·	.						23			94.3×5	Total A	ggr. Úse	d Tons	3			· _						
	·	_								1		<u> </u>		RAP Us	ed % (T	arget)		(A	Actual)						\bot	<u> </u>
	· · · ·					. <u>.</u>				71		N 1986		Aggr. U	sed %.(1	Target))	(#	(ctual)		<u> </u>				<u> </u>	
Avg. Fi	eld Densit	y Lot #1	_2.	<u>275</u>				· · · · ·						P	RODUC	TION	AND P	LACEN	ENT RE	CORD		<u> </u>				
	eld Densi							* (2)	Side	_		Course L						on to S				ons Tod			ons To Da	ite
Advisor	y - Fines/	Bitumen	Ratio =	D.W	5		÷ –	3.0	<u>Lz.+k</u>	¥	_27	031 2	SIND	ER	ZЮ.	3+45	07.0	27	-13 H	0.3		59.	72		223.	70 •
Ave. %	Field Void	is = 6,	0		•					_			•											<u> </u>		
Lab %	/oids =	3.	<u> </u>				Ļ														;-¬					
•	ensity) =						L			_	· · · · ·		_			r							· i-		<u> </u>	
	w Calcula	•										nce Cold				3/4		1/2	*	4	8	16		<u>30 50</u>	100	200
91	994	91		: 1.99	11	A A)		COMM	ENTS		(Certifie	d Project	s Only)		100	9 9	72	80	61	51	41	·2	4 9.1	5.0	4.2
10		, 								,							·									
				: 1.99 0.88	12	<i>G</i> .₩	N.													•						
																								•		

Acceptance Fines/Bitumen Ratio = 0.06

COMMENTS: Delays, Breakdowns, Corrective Action, etc. *Thickness: (1),Actual, (2) Intended unionie Treated Pase: _Fr2r_11 felature in & Volte Column

SALLY BALVIN Signed

Thi GWT # 0500 Form 820007 10/91 H-1392

50

Form 8200	10/91	H-1392							lov	va Dep	artmei	nt of	^r Trans	portat	ion									
								4		•									· C	ounty	lou	2A		_
															Dete				Pi	roject S	πp-1	21-34	<u>0)2C-48</u>	<u>3</u>
								t	SITUMI	NOUS TR	EATEDE	SASE,	ASPHAL	I CONC	REIE				C	ontract N		4032		
				1							·								D	ate	7-2	6-94	/	<u> </u>
Contract	·		ATTS	INC	/			_ Plan	t Locatio	n/	NALLC	M							R	eport No.		2		
Plant Typ	E	<u>SATCH</u>			Mak		ANDA				ion Equipr	nent _	BAGI	touse			Residen	t Enginee	г <u>К</u> е	NNET	<u>+ </u>	ANNA		_
Mix Type		<u> </u>								r. Sources							Recycle							
Asphalt S	Source & (Grade "	BITU	MINOL	<u>15 </u>	UPPLY	AC-10	Sand S	Sources	A866	02	MA	NATS F	UNTR	Plant	Operated	6:45	A.M. to	<u>B:00 F</u>	P.M. Mb	(No.	IBD4_	-1015	
			,			ALYSIS O										SAM	PLES SU	BMITTED		•	SAMP	LES SUB	AITTED	
	SAMPL	E	-						% PA							Materials		Senders		Ma	terials		Senders No.	
JOB MIX	FORMULA	- LIMITS			100	92/100	84/94	61/7:	5 48/	38	24/37			33/7.	3 (0	LD FEE		<u>eft-2</u>		Ho	T MIX	5	17-24A	_
Spl. ID	Time	Compl.	1½	1	34	1/2	*	4	8	16	30	50		200		*		CF7-1			1		17-26B	_ ·
(FT-24	Am	Y				100	94	71	53	41	27	12	7.3	5.8	A	<u>C·10</u>		AC7-1	26 A-B	· ·	<u>Y</u>	5	47-26C	_
			·	27.3		5-9-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		3 S ell		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Sugar Barry	وج ذيه	白色动	state in	in .									_
(F7-26	BPM	Ý				100	93	70	52	40	26	12	. 7.8	6.2	Inter	nded Add	ed	_	% A.C.	. Tank M	Meas.	an Pen	29 Y % A.C	
AVERAGE Y 100 94 70 52 40 26 12 7.6 6.0																30				6	29 % A.C	.		
Intended Total 6.30 % A.C. Total																								
AVERAGE V 100 94 70 52 40 12 7.6 6.0 LAB. DEN. 2,359 DENSITY RECORD SOLID DEN. 2.435 TEMPERATURE RECORD ALL MATI															ERIALS D	LIVERIES	_							
Cou	rse Laid		station			Date Lai			ensity	% Densit	/ % Vo	ids	Time	7	9	11	1	3	5	Туре	Car or	Ticket No.	Total Quantity	
<u></u>	FALE		17+58			7/261	<u>94 15</u>	18 2	274	96.39	7 62	6	Air		io4"	78		82°		N-10		<u>5751</u>	24.61	_
	316	24/	19+80	5 R	r	- 11	!	12 2	20%	93,51	<u>4</u> 9.	<u>4</u>			320		3150		315*		18:	5762	24.22	<u>~</u>
	()		<u>12+48</u>			17	1	18 2	.2.38	94.87	l≼ ⊗8 ≩		Aggr.	3200	320			310°	3150	12	24	<u>-2430/</u>	19310	Z
\circ	(1	25	07+85	98	<u>r </u>	. /1	!'	14 2	265	96.86	3 6.	2 ③	Mix .	3ar	305"	3000	3050	3050	375	<u> </u>		2470	112.03	
	11	25	08+00				13	18 2	211	<u>95,84</u>	7 7.	letter .	Mat		240		280			M. SN			37.451	
	1		13+01					18 2	247	95.25	2 71	2			RECYC	LED MIX	ONLY		1			14574		-1 .
_SUR1	FACE	25	<u>14+50</u>	76	<u>r</u>	!i	<u> </u>	22	243	95,08.	3 7,	2 .	Total RAP	P Used To	ns (Tot	alizer)		· · · · ·		N.SAN			186.24	e ·
											17 18678		Total Agg	r. Used T	ons							1166		
										in the second			RAP Used	1% (Targ	ot)	(/	ictual)			(2.40		61187/		<u> </u>
				<u> </u>									Aggr. Use	d % (Targ	(ter	(#	Actual)				l. ,	61195	47.71 4	_
Avg. Fi	eld Densi	ty Lot #1	2.2	51							·		PR	ODUCTIC	ON AND	PLACEN	AENT RE	CORD						_
	eld Densi								Side		Course La					ation to S				ns Today			s To Date	_
Adviso	ry - Fines	Bitumen	Ratio =	0.95	•		Ļ	1/2	BOTH	S	RFACE	£				70 Z			<u> </u>	9.66	0 *	43	9.66	
Ave. %	Field Void	ds = '/	<u>. k</u>								V			2505	5-10C	P 2:	515+	∞						
Lab %	Voids =	3.	·																					_
	ensity) =					1 DEP					:							l·	·				<u> </u>	-
	w Calcula				F	ALLED					ince Cold			1	34	1/2	*	4	8	16	30	50	100 200	
91	5.404	1-95	000 -	0.40	04 -	0 27	С	OMMEN	ITS	(Certifie	d Projects	Only)									27		7.7 6.2	
				110		H							T	BACKU	ρ	100	94	72	52	39	ملا	12	7.9 6.4	
:				1.10	3	6 W								KURAL-		100	95	72	52	40	7.6	17.	2.8 1.2	
Low	Outl	IFR	Will	Nor	NORK.	0.37 6 WH			~vH	-						-	1	• . • •	-	- N	~· -· '			
95.4	04	1.8	9.	n 1		s to b LARG N OUT		80 1	(G. P.	ONLY	2.5A	MPLG	is co	uëCi	ED .	70DAY	1 50/	< GRA	DATIC	2N ^{3.} 1	LAN	0.200	тснер Н.	
93.5	514	110	- =	11 (1.000	EC F	DE	}	O	ver t	<u>ю</u> З	14" BII	UDER	Mı¥							_ /	1	
Tie	39	1,102	ر م	100	JÌ n	ンロスひ N ハルマ	LIFP	, , <u>.</u> 	/											~92	pt	- J G	W	
Acceptar	Ce Fines/	Bitumen	Hatio =	1.00				<u> </u>													<u> </u>	6	1	

COMMENTS: Delays, Breakdowns, Corrective Action, etc. *Thickness: (1),Actual, (2) Intended Bituminous Treated Base: Enter % Moisture in % Voids Column

SALLY BALVIN +1)5Y Signed. Inspector ALIGHT NO 100A

1. 1.6

1. 1.

Form 820007 10/91 H-1392

Iowa Department of Transportation

									*		•											Counity _	100	<u>04</u>	
									DITU								DETE								10)2(-48
									BITUN	AINO	12 141	EATED	BASE	, ASPF		CON	HEIE				(Contract N	اه. <u>4</u>	0321	
•		.A	وليت م										1								1	Date	<u>t-27</u>	-94	
Contract			DAT S	INC.				- PI	ant Local	tion		ALC										Report No.		. <u> </u>	
Plant Ty	pe <u> </u>	<u>BATCH</u>			Make	, STA	NDAR				Polluti	on Equi	pment .	'BA	141	cuse				nt Enginee		NNETH	YAN	NA	
Mix Type			Class .	JURFA	<u>CE</u> s	Size 1/1														e Source					
Asphalt	Source &	Grade 1	Binu	MINDH	<u>s Su</u>	ppiy ,	<u>AC-IÙ</u>	San	d Source	<u>s_</u> f	<u> 2015</u>	07	MAN	LIT'S A	UN	rpa	Plant	Operated	8:0	CA.M. to	513	<u>.м. м</u> ь			
				. S	EVE AN	ALYSIS OI	F COMBI	NED	AGGREG	GATES								SAMI	PLES SI	JBMITTE	D		SAMP	ES SUBI	AITTED
	SAMPL		· · · · ·	r		1/1 0 /			NO % P		IG	1				Tant.		Materials		Sender			terials		Senders No.
JOB MIX	FORMULA	- LIMITS	 		100	94100	, ⁶⁹ /41	67	75 48	158		21/3	2			3.3/1		ND FE		CF 7-2			<u>-10</u>		1C7-26A-B
Spl. ID	Time	Compl.	11/2	1	34	1/2	3%	4	8	3	16	30	50	_	100	200		DTMI		Sul					. <u></u>
CF7-2	<u>1 AM</u>	<u> </u>				100	94	7	1 5	5	<u>43</u>	28	K	理解		5.4	褒			5u7-					
	 			相對自治	S WAR	NY S		di e	6 - C - A - S	o 11. – 44	in the state			1 N 1		q sate				Su7-					
		·											- 37				- Inter	nded Add			% A.(C. Tank M	Aeas.	家族と見る	1 % A.C.
	· · ·	ļ		. Hannin	12014-0	Social constants		<u></u> 2%	- <u> </u>	2. C. S.	inter de la compañía	100-3		a : A :	(0, n)	1.00	Inter	nded Tota	al	<u>, 3</u>	% A.(C. Total		6	1 % A.C.
		1 2 20	N 1 63		地路 的合			1963	200 M 20						837 P.1	1999	ζ.					n			
LAB. C		2.338	· ·		DENSI	TY RECOR			SOLID	_		426			—r	T	EMPER	ATURE R	ECORE) . 	· · · · ·	· · · · · · · · · · · · · · · · · · ·	r ~		
	rse Laid		tation	¢Ref		Date Laic		(1)	Density	28	Density	2.96		Time		7	9	11		3	5				Total Quantity
SURF			95+11	9 17	<u> </u>	1/27/9	<u>4 [1]</u>	2	2.32	99	213	<u>84</u>	3	Air	_	<u>60°</u>	<u>65°</u>	78	84	82	80	10-10	185	<u>5800</u>	24.27
		27	05+31		r	<u> </u>		8	2.2.45	18	161		4	A.C.	_	<u>330°</u>	330		325	⁴ 325	325	17.0			
		270	7+63			<u> </u>	-12	<u>77</u>	<u>X.286</u>	11/	118		Ö 🐖	Aggr.			320°	3200	315			120		<u>471/</u>	200.92
51 "		270	0136	×	-	<u> </u>		24	2.224				3	Mix	_ <u> </u> *	305~	300	3400	305			1 4 6 0		2516	
ជ			0+35	9 4	<u>_</u>			1/4	2.22			2 8. 1 2	1084 C	Mat			280	260		<u></u>	300'	M. SAR			ZO. 60
			<u>0 +61</u> 12 + 81			7/17/9		10/1	1 1 1	7 9	17 's (8077	6 71	250	_				LED MIX	UNLY.			N'SUR			126,22
SURF	HGE	<u> </u>	2781	1-1-1-1-	Ľ/			1	x x 6)	2.70	<u>0077</u>			1			ons (Tot	Bilzer)				4		205	100120
				·									e de les de les de les Trades de les de les de			Used 1			Actual)			M. SA		203	22.33
				+						19.50 19.50			22.2			% (Targ d % (Tar		, · ·	Actual)_ Actual)			Q STATE		203	66.33
Avg E	ield Densi		2.2	74						2.383	<u>1995.995.99</u>	<u>. 10377</u>		Mggr.				PLACEN		ECOPD		11	<u> </u>		L
	ield Densi		_74 J K	+1				(2)	Side	<u> </u>		Course	hia I		T			tion to Si		LUCIND	т	ons Today	`` Т	 Ton	s To Date
			Deally d	nar	01			1/2		. <u> </u>		RFA			17			TD 2		-02		66.1C			
Advisc	Field Voi		1	8.86	0.3	9		-					<u> </u>		╴┤╴╴╸	2144	· · · ·			- V 3		33.2			72,88
	Voids =		<u></u>							+					+-	<u> </u>					¥			•	
	ensity) =							_		1					1-						•	· · · · · ·			
	w Calcula								·	1	ccepta	nce Col	d Feed			1	3/4	1/2	36	4	8	16	30	50	100 200
617	0.5.	0-00		A			Ċ	омм	ENTS		Certifie	d Projec	ts Only)			[100	94	72	54		28	12 1	7.1 5.8
77,	250 -	- 73,00	<u>x</u> = 0	.250	= 1.4	4	•										~	1,21					- /10	0,	- 76
			1,	564	~\v	ίΗ_					ALL	REGA	it It	STE	204	ANGO		1/2 0		ung	Erou	145%	10 42	56 ~ C	10 3% Down 3%
					67							·						m. 9	SANE	>	F201	l.7.5%	TO 4	5%-	Downze
					-														-						
. .			î	n n\													۰.								nort
Accepta	nce Fines	/Bitumen	Hatio =	V																	<u> </u>		•		9197
COMME	NTC. D.	- I M		0																					

COMMENTS: Delays, Breakdowns, Corrective Action, etc. *Thickness: (1), Actual, (2) Intended Bituminous Treated Base: Enter % Moisture in % Voids Column

SALLY BALVIN Signed ...

0500 10.10.4004

Appendix D

- 1. Summary of Mixes
- 2. Summary of Joint Spacings
- 3. Summary of Joint Sawing
- 4. Summary of Test Beams
- 5. Summary of Slump and Air Content
- 6. Summary of Beam and Cylinder Strengths
- 7. Profilograph Summary
- 8. Slab Thickness Summary
- 9. Vibrator Frequency Summary
- 10. Air and Concrete Temperature Summary

HR559 MIXTURES

2335+64-2341+02	CONVENTIONAL	SECTION 1-2
2341+02-2386+75	FIBRILLATED	SECTION 2-10
2386+75-2412+75	MONOFILAMENT	SECTION 10-14
2412+75-2415+00	FIBRILLATED	SECTION 14-15
2415+00-2425+00	ACC	SECTION 16
2425+00-2505+00	CONVENTIONAL	SECTION 17-33
2505+00-2515+00	ACC	SECTION 34
2515+00-2539+09	CONVENTIONAL	SECTION 35-37
2539+09-2632+25	FIBRILLATED	SECTION 37-54
2632+25-2703+95	CONVENTIONAL	SECTION 54-64
2632+25-2703+95 2703+95-2714+00	CONVENTIONAL ACC	SECTION 54-64 SECTION 65

JOINT SPACING HR559

2335+64-2340+00	20 FT
2340+00-2340+90	15 FT
2340+90-2349+00	12 FT
2349+00-2364+00	6 FT
2364+00-2371+00	2 FT
2371+00-2379+00	4 FT
2379+00-2387+00	2 FT
2387+00-2395+00	4 FT
2395+00-2403+00	6 FT
2403+00-2414+00	12 FT
2414+00-2415+00	6 FT
2415+00-2425+00	N/A ACC
2425+00-2426+00	6 FT
2426+00-2433+00	12 FT
2433+00-2440+50	6 FT
2440+50-2457+00	2 FT
2457+00-2468+00	6 FT
2468+00-2479+50	12 FT
2479+50-2488+00	4 FT
2488+00-2496+00	15 FT ND
2496+00-2504+00	15 FT D
2504+00-2505+00	6 FT
2505+00-2515+00	N/A ACC
2515+00-2539+00	6 FT
2539+00-2547+00	2 FT
2547+00-2562+00	4 FT
2562+00-2569+00	2 FT
2569+00-2576+50	6 FT
2576+50-2585+00	12 FT
2585+00-2601+00	6 FT
2601+00-2608+00	2 FT
2608+00-2616+00	4 FT
2616+00-2624+00	2 FT
2624+00-2632+00	4 FT
2632+00-2640+00	6 FT
2640+00-2653+50	12 FT
2653+50-2661+50	6 FT
2661+50-2690+00	12 FT
2690+00-2699+00	4 FT
2699+00-2702+00	12 FT
2702+00-2703+95	4 FT
2703+95-2714+00	N/A ACC

Note: These are the actual joint spacings on the project 1 FT = 0.3048 m

HR-559 SAW CUTS

2335+64-2345+27	6/24/94 Start: 6:00 PM Section 1
2345+27-2369+34	6/25/94 Start: 12:45 PM 2324+00, Section 3 Time: 3:20 PM 2349+00, Section 4 Time: 2:00 PM 2364+00, Section 7
2369+34-2386+75	6/27/94 Start: 1:45 PM, Section 7 Time: 3:20 PM 2371+00, Section 8 Time: 9:00 PM 2380+00, Section 10
2386+75-2415+00	6/28/94 Start: 12:30 PM Time: 1:20 PM, 2389+00
2425+00-2448+34	6/30/94 No Data
2448+34-2459+88	7/01/94 Start: 1:30 PM Stop: 8:00 PM
2459+88-2488+82	7/05/94 Start: 1:15 PM Stop: 12:30 AM Time: 4:40 PM All transverse to 2469+50 Time: 4:50 PM All cuts up to 2466+00
2488+82-2505+00	7/06/94 Start: 2:00 PM Stop: 9:30 PM Time: 3:30 PM cut to 2492+00
2515+00-2531+10	7/07/94 Start: 1:20 PM Stop: 8:00 PM
2531+10 - 2561+18	7/11/94 Start: 1:15 PM Stop: 3:30 AM Time: 3:45 PM 2538+50 All transverse Time: 3:48 PM 2535+25 All transverse Time: 3:55 PM 2534+25 All cuts (Gap left for intersection 2536+10-2536+28)
2561+18-2597+65	7/12/94 Start: 1:15 PM Stop: 12:00 AM Time: 3:45 PM every fourth transverse to 2565+50, Random up to 2566+50
2597+65-2612+07	7/13/94 Start: 3:00 PM Stop: 9:30 PM Started at header
2612+07 - 2641+97	7/14/94 Start: 2:00 PM Stop: 1:30 AM
(Gap for intersection	n)
2642+21-2672+30	7/15/94 Start: 2:00 PM Stop: 8:30 PM Time: 3:20 PM All cuts to 2649+00, few random after
2672+30-2703+95	7/18/94 Start: 1:30 PM Stop: 10:30 PM Time: 3:40 PM All transverse to 2679+25, all cuts to 2675+75

BEAM STRENGTHS

BEAM	SECTION	DATE	AGE	MIX	FIBER	ACT	MODULUS
NUMBER	NUMBER	MADE	DAYS	NUMBER		LOAD	OF RUPTURE
						(kg)	(kPa)
. 1	1	6/24/94	7	C-3WR-C	NONE	2060	3910
2	2	6/24/94	7	C-3WR-C	FIB	2590	4920
3	3	6/25/94	10	C-3WR-C	FIB	2800	5280
ЗA	4	6/25/94	16	C-3WR-C	FIB	2520	4780
4	7	6/27/94	8	C-3WR-C	FIB	2250	4230
4A	9	6/27/94	14	C-3WR-C	FIB	2750	5180
5	11	6/28/94	7	C-3WR-C	MONO	2340	4440
5A	14	6/28/94	14	C-3WR-C	MONO	3060	5820
. 6	-	6/29/94	7	C-3WR-C	NONE	2250	4270
6A	-	6/29/94	14	C-3WR-C	NONE	2620	4970
7	18	6/30/94	7	C-3WR-C	NONE	2290	4340
7A	21	6/30/94	14	C-3WR-C	NONE	2980	5600
8	23	7/01/94	7	C-3WR-C	NONE	2480	4690
8A	23	7/01/94	14	C-3WR-C	NONE	2880	5520
9	26	7/05/94	7	C-3WR-C	NONE	2570	4860
9M	27	7/05/94	2	M-3-C	NONE	2710	5100
9A	30	7/05/94	14	C-3WR-C	NONE	2480	4690
10	31	7/06/94	7	C-3WR-C	NONE	2980	5610
10A	33	7/06/94	14	C-3WR-C	NONE	2430	4650
11	36	7/07/94	7	C-3WR-C	NONE	2520	4760
11A	36	7/07/94	14	C-3WR-C	NONE	3150	5970
12	36	7/11/94	7	C-3WR-C	NONE	2430	4570
12A	36	7/11/94	14	C-3WR-C	NONE	2620	4920
12B	38	7/11/94	7	C-3WR-C	FIB	2660	5040
12M	39	7/11/94	2	M-3-C	FIB	1930	3660
13	42	7/12/94	7	C-3WR-C	FIB	2750	5210
13A	48 [°]	7/12/94	22	C-3WR	NONE	2880	5410
14	48	7/13/94	7	C-3WR	FIB	2520	4740
14M	N/A	N/A	2	M-3	NONE	2340	4430
15	50	7/14/94	7	C-3WR-C	FIB	2660	5040
15A	55	7/14/94	14	C-3WR	NONE	2620	4920
• 15B	56	7/14/94	7	C-3WR	NONE	2340	4450
15M	56	7/14/94	4	M-3	NONE	2390	4490
16	56	7/15/94	7	C-3WR-C	NONE	2800	5280
16A	60	7/15/94	17	C-3WR-C	NONE	3420	6410
16M	60	7/15/94	3	M-3-C	NONE	3200	6010
17	60	7/18/94	7	C-3WR-C	NONE	2800	5530
17A	62	7/18/94	16	C-3WR-C	NONE	2800	5210
18	-	7/19/94	2	M-3-C	NONE	2390	4490
19	-	7/20/94	7	C-3WR-C	NONE	2885	5370
19A	_	7/20/94	13	C-3WR-C	NONE	2980	5600
20		7/21/94	7	C-3WR-C	NONE	2780	5190
20M		7/21/94	4	M-3-C	NONE	2710	5070

*ALL DATA TAKEN FROM DAILY PLANT REPORTS

SLUMP AND AIR

DATE	SLUMP	AIR	AIR	
		BEFORE	AFTER	
6/24/94	3/4"	6.2%		
6/24/94	3 1/2"	9.5%	6.4%	
6/24/94	1 3/4"	8.8%	5.8%	
6/24/94	1 3/8"	8.0%	5.9%	
6/24/94	2 1/4"	6.4%		
6/24/94	3/4"	6.7%	·	
6/24/94	0	8.0%		
6/24/94	1"	8.0%		
6/24/94	1"	8.0%		
6/24/94	1 1/4"	8.0%		
6/25/94	1"	8.0%		
6/25/94	1 3/8"	8.8%	7.1%	
6/25/94	3/4"	7.8%		
6/25/94	1 1/2	8.2%	6.0%	
6/25/94	2"	9.0%	6.8%	
6/25/94	1 3/8"	7.1%	0.070	
6/25/94	2 1/8"	8.6%	6.5%	
6/25/94	7/8*	8.4%	6.0%	
6/25/94	1 1/2"	7.6%	0.076	
6/25/94	2 3/8*	8.6%		
6/25/94	2 3/8"	8.6%		
6/27/94	1 1/8"	8.6%	6.6%	ł
6/27/94	3/4"	8.0%	0.078	ł
6/27/94	1 1/2"	8.1%		ŀ
6/27/94	1 1/4"	8.6%	6.6%	
6/27/94	1 1/4"	7.4%	0.0 %	}
6/27/94	2 3/8"	8.6%	6.6%	ŀ
6/27/94	3/4"	8.0%	0.070	ł
6/27/94	2 3/8"	6.6%		ŀ
6/28/94	1 1/4"	9.6%		ł
6/28/94	2 1/2"	8.0%		ł
6/28/94	21/2	8.5%	5.6%	•
		9.5%		ŀ
6/28/94		8.2%	<u>7.5%</u> 6.3%	ŀ
6/28/94	1 1 /0#		0.3%	ŀ
6/28/94	1 1/8*	7.6%		ŀ
6/28/94	1 1/4" 2"	6.8%		ļ
6/28/94	<u>2</u> " 1"	7.9%		ł
6/28/94		8.0%		ł
6/28/94	1" 1"	7.8%		
6/28/94		7.1%		ļ
6/28/94	2 1/2"	8.0%		
6/30/94	1"	6.5%		ļ
6/30/94	1 1/2"	7.0%		1
6/30/94	1 1/2"	6.7%	4.4%	1
6/30/94	1 1/2"	7.5%		L

DATE	SLUMP	AIR	AIR		
		BEFORE	AFTER		
6/30/94	1 1/4"	7.8%			
6/30/94	1 1/2"	7.6%			
6/30/94	1 1/4"	7.5%			
6/30/94	1 1/2"	7.5%			
6/30/94	1 1/2"	7.2%			
6/30/94	1 1/4"	7.5%			
6/30/94	1 1/2"	7.6%			
7/01/94	1 1/2"	7.4%			
7/01/94	2"	7.9%			
7/01/94	1 3/8"	7.5%			
7/01/94	1 3/8"	7.6%			
7/05/94	1/2"	5.5%			
7/05/94	1"	8.0%			
7/05/94	1"	7.8%			
7/05/94	3/4"	7.8%			
7/05/94	1 3/4"	9.0%			
7/05/94	1 5/8"	8.0%			
7/05/94	2 1/2*	7.6%			
7/05/94	3/4*	7.6%	5.3%		
7/05/94	1 1/2"	8.0%			
7/05/94	7/8*	7.1%			
7/06/94	1"	7.0%			
7/06/94	1 3/4"	7.4%			
7/06/94	1 1/2"	8.5%			
7/06/94	1 1/4"	8.0%			
7/06/94	1 1/4"	8.0%			
7/06/94	1 1/4"	8.0%			
7/06/94	1 1/4"	7.9%			
7/06/94	1 1/4"	7.6%			
7/06/94	7/8"	7.8%			
7/06/94	3/4"	7.8%			
7/07/94	1"	8.3%			
7/07/94	3/4"	7.5%			
7/07/94	1"	7.2%			
7/07/94	1 1/2"	7.2%			
7/07/94	1 1/2"	8.0%			
7/07/94	1 3/4"	8.0%			
7/07/94	5/8*				
7/07/94	3/4"	8.0%			
7/07/94	3/4"	7.9%			
7/07/94	1 1/4"	7.1%			
7/07/94	1"	6.6%			
7/11/94	1 1/4"	7.8%			
7/11/94	1 3/4"	10.0%	7.1%		
7/11/94	1 1/2"	9.5%	6.0%		

DATE	SLUMP	AIR	AIR
	CLOW!	BEFORE	AFTER
7/11/94	1 1/4"	8.5%	6.5%
7/11/94	2 1/4"	10.5%	
7/11/94	2 1/4"	7.9%	
7/11/94	1"	7.6%	
7/11/94	2 1/4"	8.0%	· ·
7/11/94	1 1/4"	7.7%	
7/11/94	2 1/4"	9.5%	5.5%
7/12/94	3 3/4"	6.3%	0.0 /0
7/12/94	1 3/4"	9.0%	7.0%
7/12/94	1 3/4"	8.0%	
7/12/94	1 1/4"	8.0%	
7/12/94	1 1/4"	8.0%	
7/12/94	1 1/4"	7.9%	
7/12/94	1 1/4"	7.9%	
7/12/94	1 1/8"	8.0%	
7/12/94	1 3/4"		
7/12/94	2 1/4"	8.0% 8.0%	
7/12/94	<u>2 1/4</u> 1"	7.3%	
7/12/94		7.7%	
	1 1/2" 1"		
7/12/94		8.0%	
7/12/94	1 1/4"	8.0%	
7/13/94 7/13/94	1 1/2" 1 1/2"	7.3%	
7/13/94	11/2	8.0% 7.6%	
7/13/94	2 1/2"		
	1 3/4"	8.5%	
7/13/94		8.0%	6.4%
7/13/94	1 1/2"	9.5%	0.4%
7/13/94	1 5/8*	7.9%	6.00/
7/14/94	2 1/4"	7.0%	6.0%
7/14/94	2 1/4"	9.5%	5.0%
7/14/94	1 1/4"	7.0%	
7/14/94	1 1/4"	7.7%	
7/14/94	1 1/2"	7.8%	
7/14/94	1 3/4"	7.8%	
7/15/94	1 3/4"	7.5%	
7/15/94	2 1/4"	6.8%	
7/15/94	2 1/2"	7.5%	
7/15/94	2 1/4"	6.6%	
7/15/94	1 3/4"	7.6%	
7/15/94	2"	8.2%	5.7%
7/18/94	2 1/4"	8.0%	
7/18/94	1 3/4"	8.0%	
7/18/94	2 1/2"	8.5%	5.1%
7/18/94	2"	8.0%	
7/18/94	1 1/4"	7.5%	

NOTE: ALL DATA TAKEN FROM DALY PLANT REPORTS

1 inch = 25.4 mm

BEAM AND CYLINDER STRENGTHS

- 读言学学生:-

CONVENTIONAL

BEAM	AGE	LOAD	STRENGTH	CYLINDER	AGE	LOAD	STRENGTH
NUMBER	(DAYS)	(kg)	(kPa)	NUMBER	(DAYS)	(kg)	(MPa)
18-C-1	7	2630	4900	L18	7	30400	29.0
18-C-2	7	2590	4800	L20	7	29000	27.7
18-C-3	7	2430	4600	L7	7	28200	27.0
19-C-4	14	2540	4900	L35	14	28500	27.2
21-C-5	14	2590	4900	L10	14	31600	30.2
21-C-6	14	2540	4800	L8	14	36200	35.3
27-C-7	28	2400	4400	L20	28	36100	34.5
27-C-8	28	2740	5000	L18	28	33600	32.1
28-C-9	28	2680	5000	L35	28	36700	35.1

FIBRILLATED

BEAM	AGE	LOAD	STRENGTH	CYLINDER	AGE	LOAD	STRENGTH
NUMBER	(DAYS)	(kg)	(kPa)	NUMBER	(DAYS)	(kg)	(MPa)
3-F-1	7	2340	4300	L8	7	25400	24.1
4-F-2	7	2020	3900	L10	7	22600	21.7
4-F-3	7	2270	4200	L33	7	21100	20.2
40-F-9	14	2270	4100	L33	14	29800	28.5
39-F-7	14	2470	4600	L10	14	31800	30.4
38-F-6	14	2680	4800	L40	14	34900	33.4
39-F-4	28	2450	4600	L7	28	35700	34.1
39-F-8	28	2540	4600	L8	28	34800	33.3
39-F-5	28	2520	4700	L3	28	41900	40.1

MONOFILAMENT

BEAM	AGE	LOAD	STRENGTH	CYLINDER	AGE	LOAD	STRENGTH
NUMBER	(DAYS)	(kg)	(kPa)	NUMBER	(DAYS)	(kg)	(MPa)
11-M-1	9	1880	3500	L35	9	29400	28.1
11-M-2	9	2200	4100	L33	9	27200	26.0
11-M-3	9	2060	3900	L40	9	24100	23.0
11-M-4	14	2150	4100	L18	14	31000	29.6
11-M-5	14	2630	4800	L20	14	26500	25.3
11-M-6	14	2590	4800	L10	14	26600	25.4
13-M-7	28	2810	5200	L8	28	37500	35.8
14-M-8	28	2540	4800	L7	28	32800	37.5
14-M-9	28	2590	4800	L3	28	36000	34.3

HR-559 IA 21 PROFILOGRAPH

SOUTHBOUND LANE

BEGIN.	ENDING	MEASURED	PROFILE
STATION	STATION	ROUGH.	INDEX
		(mm)	<u>(mm/km)</u>
2344+97	2369+16	112	152
2369+16	2386+54	64.8	122
2386+54	2414+81	82.6	95.8
2414+81	2425+16	31.8	102

NORTHBOUND LANE

BEGIN.	ENDING	MEASURED	PROFILE
STATION	STATION	ROUGH.	INDEX
		<u>(mm)</u>	(mm/km)
2344+97	2369+16	177	239
2369+16	2386+54	66.0	125
2386+54	2414+81	122	142
2414+81	2425+16	40.6	131
2425+16	2448+13	97.8	140
2448+18	2460+05	54.6	155
2460+05	2488+67	64.8	73.2
2488+67	2504+84	61.0	123

NOTE: CONDUCTED ON 7/20/94-7/21/94, 7/28/94, 8/19/94, 8/22/94

DEPTH OF SLAB

		MINIMU	1	N	IAXIMU	4	^	SAMPLE		
SECTION	LT	CL	RT		CL	RT			RT	SAMPLE
NUMBER		NA	NA	NA	NA	NA	NA	NA	NA	
						TRANS				
2	TRANS									1
3	200	200 160	200 130	200	200	200	200	200	200	5
4	150 TDANC			220	220	180	180	190	150 TDANC	
5		TRANS						TRANS		3
6.	100	100	100	130	160	160	120	130	130	
7	110	110	80	110	120	130	110	110	100	2
8	110	100	150	170	140	180	140	120	170 TDANC	5
9	TRANS	TRANS								-
10	100	80	40	100	90	60	100	80	50	2
11	NA	NA	NA	NA	NA	NA	NA	NA	NA	
12	TRANS					TRANS	· · · · · · · · · · · · · · · · · · ·			
13	NA	NA	NA	NA	NA	NA	NA	NA	NA	
14	130	140	150	190	190	190	160	170	170	6
15	TRANS					TRANS				-
16	ACC	ACC	ACC	ACC	ACC	ACC	ACC	ACC	ACC	ACC
17	TRANS								TRANS	-
18	140	150	160	170	180	160	150	170	190	4
19	NA	NA	NA	NA	NA	NA	NA	NA	NA	-
20	TRANS					TRANS			TRANS	
21	50	80	80	100	140	140	80	110	110	3
22	TRANS					TRANS				
23	60	80	60	130	140	130	100	100	100	3
24		TRANS							TRANS	_
25	180	180	200	180	180	200	180	180	200	2
26	150	170	170	200	200	200	170	190	190	4
27	150	170	170	190	200	190	170	190	180	. 4
28	TRANS	TRANS				TRANS			TRANS	
29	150	150	140	150	150	140	150	150	140	1
30									TRANS	
31	200	210	180	_270	270	280	220	240	240	4
32	200	240	210	230	280	270	210	260	230	4
33	TRANS								TRANS	
34	ACC	ACC	ACC	ACC	ACC	ACC	ACC	ACC	ACC	ACC
35	TRANS								TRANS	
36	100	150	170	190	220	180	150	190	170	8
37	TRANS								TRANS	. —
38	40	80	80	80	100	100	60	90	90	3
39	50	80	70	100	90	110	70	80	. 80	3
40		TRANS							TRANS	
41	90	110	110	130	130	130	110	120	110	4
42	110	130	110	140	140	130	. 120	140	120	3
43	70	100	100	120	150	110	100	120	100	3
44	TRANS	TRANS	TRANS	TRANS	TRANS	TRANS	TRANS	TRANS	TRANS	— .
45	150	150	150	170	200	170	160	170	160	3
46	160	150	130	170	160	160	160	150	140	3
47	TRANS	TRANS	TRANS	TRANS	TRANS	TRANS	TRANS	TRANS	TRANS	-

SECTION	1	MINIMU	Ň	ľ	MAXIMU	M	Â	SAMPLE		
NUMBER	LT	CL	RT	LT	CL	RT	LT	CL	RT	SIZE
48	110	100	100	140	220	130	130	160	110	3
49	130	150	140	150	220	150	140	180	140	4
50	80	120	120	180	200	120	130	160	120	2
51	TRANS	TRANS	TRANS	TRANS	TRANS	TRANS	TRANS	TRANS	TRANS	—
52	50	80	50	50	80	50	50	80	50	1
53	60	60	40	60	60	40	60	60	40	1
54	TRANS	TRANS	TRANS	TRANS	TRANS	TRANS	TRANS	TRANS	TRANS	
55	130	150	110	210	220	170	160	180	140	4
56	150	130	130	210	220	200	190	190	170	5
57	TRANS	TRANS	TRANS	TRANS	TRANS	TRANS	TRANS	TRANS	TRANS	_
58	110	110	110	150	150	130	130	130	120	2
59	TRANS	TRANS	TRANS	TRANS	TRANS	TRANS	TRANS	TRANS	TRANS	-
60	120	140	140	200	180	170	150	160	150	9
61	TRANS	TRANS	TRANS	TRANS	TRANS	TRANS	TRANS	TRANS	TRANS	_
62	40	80	80	60	110	120	. 50	90	100	2
63	TRANS	TRANS	TRANS	TRANS	TRANS	TRANS	TRANS	TRANS	TRANS	_
64	TRANS	TRANS	TRANS	TRANS	TRANS	TRANS	TRANS	TRANS	TRANS	-
65	ACC	ACC	ACC	ACC	ACC	ACC	ACC	ACC	ACC	ACC

NOTE: TRANS: TRANSITION SECTION NA: NO INFORAMITON AVAILABLE FOR SECTION ALL MEASUREMENTS IN mm PAVER VIBRATOR RPM'S

	4					1.01.1			· · · · · · · · · · · · · · · · · · ·						4 -	4.0
Γ	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
RPM'S	70	6.5	6.0	5.5	65	6.5	5.9	5.9	6.0	9.0	6.8	7.0	7.2	8.5	8.4	7.4
	7.0			··· <u>·</u> ····	0.5						70	70	75	81	8.5	7.6
	7.0	7.0	6.0	5.5	6.5	6.5	6.0	6.0	6.0	9.0	1.0	1.0	1.5	0.1	0.0	1.0
1000	7.0	6.7	8.6	5.5					ļ							
	·			7.5						7.5				L		
		1			· · · · · · · · · · · · · · · · · · ·				· · · ·							

VIBRATOR NUMBER

NOTE: CONDUCTED BY ROBERT STEFFES, 6/30/94, APPROXIMATELY STATION 2443+25 ->, SECTION 21, 12:00 PM HIGH AND LOW CHANGED AT STATION 2445+75

I	1	2	3	4	5	6	7	8	.9	10	11	12	13	14	15	16
DDM'S	77	9.0	85	77	95	8.0	7.7	7.5	8.0	8.8	7.0	6.5	7.3	6.6	8.3	7.0
RPM'S	7.4	9.0	81	75	84	77	77	7.3	7.4	9.0	7.0	6.4	6.8	7.3	9.0	7.6
1000	7.4	3.0	0.1	7.5	8.0										8.8	
					0.0		L	l					·			

VIBRATOR NUMBER

NOTE: CONDUCTED BY ROBERT STEFFES, 7/11/94, APPROXIMATELY STATION 2555+25, 2558+25 ->, SECTION 41, 2:00 PM

CONCRETE AND AIR TEMPERATURES

DATE	SECTION	CONCRETE	AIR	HIGH	LOW
	· · ·	TEMP	TEMP	TEMP*	TEMP*
6/24/94	1	24		27	16
	2	29	25	· · · · · · · · · · · · · · · · · · ·	·
6/25/94	3	24	24	28	15
-	6 7	26	29		
	7	27	29	ļ	
6/27/94	. 7	24	18	27	15
••	8	25	20	·	· · · · · · · · · · · · · · · · · · ·
6/28/94	10	24	27	27	17
	. 11	24 🙄	20	1 2	
,	12	24	25		
	13	26	28	Í	
	14	26	28		
6/30/94	17	23	18	29	14
	19	24	24		
	21	27	29		
7/01/94	22	24	20	30	17
· · · ·	23	26	22		
·	25	26	26		
7/05/94	26	26	24	32	23
	27	28	28	. 	
	29	29	32	· · · · · · · · · · · · · · · · · · ·	
7/06/94	31	27	29	31	19
	32	29	29		
7/07/94	35	26	21	30	18
	36	26	26		· · · · · · · · · · · · · · · · · ·
7/11/94	36	24	19	30	17
	38	26	27		
	39	27	29		
	41	27	31	· · · · · · · · · · · · · · · · · · ·	·
7/12/94	41	25	23	30	19
	42	26	24		
	43	27	26		
	45	28	28		х. ¹
· ·	48	29	31		· · · · ·
7/13/94	48	26	23	27	19
	49	24	25		
	50	24	26	<u> </u>	
7/14/94	50	24	17	22	15
	52	24	18	1	
	53	22	18		
	54	24	-	1	
	55	24	18		
7/15/94	56	22	18	28	13
	58	22	23		
	59	_	27		
	60	24	25		,
7/18/94	60	22	18	29	15
	61	24	27		
	62	25	29		
				1 N	

NOTE: ALL TEMPERATURES ARE IN DEGREES CELSIUS

HIGH AND LOW TEMPERATURES FROM CEDAR RAPIDS AIRPORT

HR-559 IA-21 10/23/94 CONCRETE AND AIR TEMPERATURES

DATE	CONCRETE	AIR
	TEMP	TEMP
6/25/94	24	27
	24	. 28
• •	27	28
6/27/94	25	27
	23	27
6/28/94	24	21
·	25	24
	26	26
	26	27
6/30/94	23	19
7/07/94	26	24
•	26	26
	28	30
7/12/94	25	23
	26	24
<u></u>	27	26
7/15/94	23	22
	23	- 23
	24	24
7/18/94	22	19
,	24	26
	24	27
	23	28
	24	28

NOTE: ALL TEMPERATURE IN DEGREES CELSIUS ALL DATA TAKEN FROM DAILY PLANT REPORTS

Appendix E 1. Distress Survey 2. Pullout Testing 3. Road Rater Structural Ratings

DISTRESS SURVEY, IOWA 21 8/6/94

Section 1	Station 2338+50	Distress(type, severity, extent) Corner cracks at two adjacent joints on right edge
	2338+88	(sides 2 inches in length) Corner cracks at left and right edge (1 inch in longitudinally and 2 inches transversely)
	2339+06	Hairline cracks in longitudinal direction near centerline joint, 2-4 inches in length and extending 2 foot left and right of the longitudinal joint
7	2364+	Exposed aggregate along the joints resulting from the shoe on the saws.
	2369+36	Double joint cut and one one sealed
9	2379+20	Surface loss of individual aggregates for 20+ feet longitudinally and in the transversely at each of the joints
10	2380+24	Surface loss of individual aggregates for along the centerline in areas rectangular in shape and 6 inches in length/width.
19	2433+50 to 2435+42	Surface spall, 3 inches in width and 1/2 inch deep, at the right edge of pavement at joint
21	2443+24	Spall at the joint on the left edge of pavement, 3 in. by 3 in. by 1/2 in.
24	2457+48	Surface aggregate loss due to mud ball, 18 inches left of centerline (3 in. by 5 in. by 2 inches deep)
29	2481+76	Corner crack at left edge of joint, 1 inch longitudinally by 4 inche transverse (tight at this time)
• •	2481+80	Spall at the joint, left edge, 2 in. by 9 in. by 3/4 in.
31	2492+10	Spall in the NW corner of centerline joint, 1 inch longitudinally be 3 inches transversely, by 1/2 inch in depth
32	2499+37	Midpanel crack (has been sawed, but not sealed)
33	2504+95	Seven poputs due to mudballs (2 inches in diameter and 1 inch in depth) accross the slab

1.

	2526+95	Size 8 foot prints across the slab, 1/4 inch in depth
		Transverse crack 4 in. north of joint at right
		edge extending to joint 1 foot from edge of pavement
		Transverse crack 1 in south of joint at left
·		edge and extending to joint 3 foot from edge
	2547+86	Transverse crack 1 inch north of joint at right
		edge and extending to joint 10 foot from right edge
	2548+02	Transverse crack 7 inches north of joint at
		right edge and extending to the joint 14 foot
		from the right edge
	2548+34	Transverse crack 1.5 inches north of joint at right edge and extending to the joint 11 feet
		from right edge
	2548+50	Transverse crack 1 inch north of joint at the
		right edge and extending to the joint 0.5 feet
		from right edge
	2548+66	Transverse crack 1.5 inches north of joint at the right edge and extending to joint 1.0 feet
		from edge
	2548+72	Transverse crack 1.5 inches north of joint at
		the right edge and extending to joint 7.0
		inches from edge
	2549+00	Transverse crack 1.5 inches north of joint at the right edge and extending to the joint 7.0
		inches from edge
	2550+28	Transverse crack 7.5 inches north of joint at
		right edge and extending to joint at 9 foot
		from edge Transverse crack 1.5 inches south of joint at
		left edge and extending to joint at 2.0 feet
		form edge
	2550+92	Transverse crack 7.5 inches north of joint at
		right edge and extending to joint 14 feet from
	2551+04	edge. Transverse crack 3.5 inches north of joint at
	2001 01	right edge and extending to joint 11.5 feet
		from edge
	•	Transverse crack 4 inches south of joint at
		left edge and extending to joint 4.0 feet from edge
	2551+20	Transverse crack 7 inches north of joint at
		right edge and extending to joint 13.0 feet
		from edge
		Transverse crack 2.0 inches south of joint at
		left edge and extending to joint 2 feet from edge
	2551+36	Transverse crack 1 inch north of joint at right
	-	edge and extending to joint at 13.0 feet from
		edge -

36

39.

2.

67

2551+52	Transverse crack 1.5 inches north of joint at right edge and extending to joint 18 inches from edge
2551+68	Transverse crack 7.5 inches north of joint at right edge and extending to joint 13 feet from edge
2551+84	Transverse crack 7.5 inches north of joint at right edge and extending to joint 8 feet from edge
2552+00	Transverse crack 2.0 inches north of joint at right edge and extending to joint 2.0 feet from edge
2552+46 2552+60	Midpanel transverse crack across slab Transverse crack 7.5 inches north of joint at right edge and extending to joint 12 feet from edge Corner break at left joint edge (30 inches
. •	north, 13 inches south and 12 inches transversely) (ck constr. records for shoulder stone roller operation)
2552+76	Transverse crack 6.0 inches north of joint at right edge and extending to joint 15.0 feet from edge
2552+92	Corner break at left joint edge (29 inches north, 20 inches south and 14 inches transversely) (ck shoulder roller operation)
2553+12	Transverse crack 1.5 inches north of joint at right edge and extending to joint 13 feet from edge Transverse crack 1.0 inches south of joint at left edge and extending to joint 5 feet from edge
2553+24	Transverse crack 3.0 inches north of joint at right edge and extending to joint 12 feet from edge
2553+46	Transverse crack 4.0 inches south of joint at right edge and extending to joint 14 feet from edge
2554+08	Transverse crack 1.0 inches north of joint at right edge and extending to joint at 2.0 feet from edge
2554+42	Transverse crack 4.0 inches north of joint at right edge and extending to joint 6.0 feet from edge
2554+62	Transverse crack 3.0 inches north of joint at right edge and extending to joint 13.0 feet from edge
2554+72	Transverse crack 7.0 inches north of joint at right edge and extending to joint 9.5 feet from edge
	3.

41	2555+08	Transverse crack 3.5 inches north of joint at right edge and extending to joint 14.0 feet from edge
	2555+42	Transverse crack 3.5 inches north of joint at right edge and extending to joint 14.0 feet from edge
	2555+72	Transverse crack 8.0 inches north of joint at right edge and extending to joint 14.0 feet from edge
	2556+36	Transverse crack 4.5 inches north of joint at right edge and extending to joint 3.0 feet from edge
	2561+20	Transverse crack 3.0 inches south of joint at right edge and extending to joint 2.0 feet from edge
43	2574+03	Transverse crack 1.0 inches south of joint at left edge and extending to joint 1.0 feet from edge
	2574+40	Transverse crack 1.0 inches south of joint at right edge and extending to joint 15.0 feet from edge
45	2578+70	Transverse crack 2.0 inches north of joint at right edge and extending to joint 2.0 feet from edge
46-65	•	No defects noted in concrete or asphalt

· · · ·

Note: mismatched saw joints or extra saw joints were not recorded

Survey conducted by Jim Cable and Tom Powers Weather - hot (70 degrees) and sunny Direction of survey south to north Direct access to surface of the pavement for examination Time of survey - 8:30 am to 1:00 pm

4.

HR-559	IA-21
PULLOUT 1	<i>TESTING</i>
10/26	/94

STATION	SURFACE	THICK-	JOINT	FIBERS	LANE	3' FROM	5' FROM	9' FROM
	PREPARATION	NESS	SPACING			SHOULDER	SHOULDER	SHOULDER
		(mm)	(m)			(kPa)	(kPa)	(kPa)
2385+50	PATCH & SCARIFY	50	0.6	FIB	NORTHBOUND	BROKEN	**265	*284
2428+25	PATCH & SCARIFY	150	3.7	NONE	NORTHBOUND	BROKEN	BROKEN	BROKEN
2455+00	PATCH & SCARIFY	50	0.6	NONE	NORTHBOUND	BROKEN	BROKEN	*148
2545+50	PATCH ONLY	50 ·	0.6	FIB	SOUTHBOUND	**469	**247	**92.4
2620+00	COLD-IN-PLACE	50	0.6	FIB	NORTHBOUND	**111	BROKEN	BROKEN
2695+00	COLD-IN-PLACE	50	1.2	NONE	NORTHBOUND	**136	BROKEN	BROKEN

70

NOTE: ALL BOND TESTS WERE CONDUCTED AFTER CONCRETE HAD A MINIMUM OF 7 DAY CURE * CORES BROKE AT CONCRETE-SUBBASE INTERFACE ** CORES BROKE AT DEPTH OF THE CORING INTO THE SUBBASE 10/13/94

AVERAGE STRUCTUAL RATINGS

SECTION	NORTH	NORTH	SOUTH	SOUTH	COMBINED	COMBINED
NUMBER	BOUND	BOUND	BOUND	BOUND		404000
	(4/28/94)	(10/13/94)	(4/28/94)	(10/13/94)	(4/28/94)	(10/13/94)
1	2.76	4.82	2.73	5.53	2.75	5.18
2	2.14	5.14	2.24	4.99	2.19	5.07
3	1.78	5.04	1.99	5.31	1.89	5.18
4	1.93	3.98	1.97	5.60	1.95	4.79
5	2.20	4.73	1.76	3.89	1.98	4.31
6	1.82	3.95	1.75	3.17	1.78	3.56
7	1.83	2.50	1.81	3.00	1.82	2.75
8	2.07	4.83	2.23	3.60	2.15	4.22
9	1.89	3.35	2.61	3.04	2.25	3.20
10	2.15	2.23	2.18	2.86	2.17	2.55
11		2,30	2.14	2.23	_	2.27
12	2.20	3.61	1.89	4.37	2.05	3.99
13	1.50	7.02	2.35	5.12	1.93	6.07
14	2.14	4.66	2.02	4.65	2.08	4.66
15	2.33	4.51	2.07	3.74	2.20	4.13
16	1.60	2.59	2.13	2.45	1.87	2.52
17	1.43	4.56	2.19	4.56	1.81	4.56
18	1.83	5.63	3.61	4.79	2.72	5.21
19	2.59	5.86	2.94	5.02	2.77	5.44
20	2.85	4.70	2.04	3.81	2.45	4.26
21	1.62	4.43	2.08	4.16	1.85	4.30
. 22	2.60	3.16	2.23	2.62	2.42	2.89
23	2.64	3.02	2.23	2.40	2.44	2.71
24	2.83	4.42	2.47	4.47	2.65	4.45
25	2.47	5.98	1.91	5.69	2.19	5.84
26	1.47	6.21	2.12	4.80	1.79	5.51
27	1.89	5.51	2.38	5.24	2.14	5.38
28	2.08	4.45	2.35	4.26	2.21	4.36
29	2.77	6.17	2.29	4.53	2.53	5.35
30	2.07	6.64	2.18	5.07	2.13	5.86
31	1.78	7.74	2.34	6.74	2.06	7.24
32	2.27	7.31	2.28	7.58	2.28	7.45
33	2.37	6.13	2.91	6.35	2.64	6.24
34	2.37	3.93	2.30	2.44	2.34	3.18
35	2.44	5.79	2.57	5.02	2.51	5.41
36	2.18	6.47	2.87	6.40	2.53	6.44
37	2.21	5.25	2.47	4.61	2.34	4.93
38	3.23	4.45	3.35	3.79	3.29	4.12
39	1.97	2.41	2.39	2.63	2.18	2.52
40	2.52	3.99	2.42	3.45	2.47	3.72
41	2.63	4.26	2.21	4.71	2.42	4.49
42	1.98	3.42	1.75	3.57	1.86	3.50
43	1.65	3.52	2.86	4.10	2.26	3.81
44	2.16	3.72	2.26	3.96	2.20	3.84
44	2.10	4.35	2.20	5.28	2.47	4.82
46	2.87	4.33	2.49	4.56	2.68	4.45

SECTION	NORTH	NORTH	SOUTH	SOUTH	COMBINED	COMBINED
NUMBER	BOUND	BOUND	BOUND	BOUND		
	(4/28/94)	(10/13/94)	(4/28/94)	(10/13/94)	(4/28/94)	(10/13/94)
47	2.61	4.33	2.09	4.36	2.35	4.35
48	2.42	4.38	2.52	4.56	2.47	4.47
49	2.63	4.94	2.38	4.35	2.51	4.65
50	2.57	3.83	2.66	4.47	2.62	4.15
51	1.84	2.58	1.98	2.77	1.91	2.68
52	2.63	3.16	2.07	2.76	2.35	2.96
53	1.95	3.60	2.50	2.50	2.22	3.05
54	2.35	3.54	2.69	3.45	2.52	3.50
55	1.77	4.45	1.81	5.37	1.79	4.91
56	2.72	4.94	2.35	5.71	2.53	5.33
57	2.58	3.44	1.98	4.36	2.28	3.90
58	2.11	4.94	2.15	4.63	2.13	4.79
59	1.62	3.11	1.73	3.68	1.68	3.40
60	2.18	5.25	1.76	4.79	1.97	5.02
61	1.71	3.26	1.82	2.44	1.77	2.85
62	2.01	2.94	2.35	2.19	2.18	2.57
63	2.80	4.65	1.84	4.44	2.32	4.55
64	1.83	4.67	2.51	4.21	2.17	4.44
65	3.78	3.44	3.16	3.21	3.47	3.33

Appendix F 1. ISU Evaluation Project Proposal

. 1

PROPOSAL

submitted to the

IOWA DEPARTMENT OF TRANSPORTATION

HIGHWAY DIVISION

Institution:

Iowa State University Ames, Iowa 50011 Engineering Research Institute Dept. of Civil & Construction Engr. Telephone: 515-294-2336

Principal Investigator:

James K. Cable Associate Professor, Civil Engr. Civil Engineering: Transportation

Title of Proposed Research: Th

Proposed Starting Date: Proposed Time schedule: Thin Bonded Overlay Evaluation

September 1, 1993

Pilot Study - September 1 to December 31, 1993

Field Verification - January 1, 1994 through December 31, 1999.

Proposed Amount:

Laboratory Study \$46,960

Field Verification \$198,730

\$245,690

Total Project

Endorsements:

James K. Cable P.E. Principal Investigator 515-294-2862

Richard E. Hasbrook 7-14-97 Contracts and Grants Officer-515-294-5225

Table of Contents

		Page
1.	Introduction: The Problem	1
2.	Objectives:	2
3.	Proposed Research	2
	Task I - Laboratory Pilot Study	
	Task II - Field Instrument Installation	
	Task III - Data Analysis	
	Task IV - Report Development	
4.	Evaluation	5
5.	Estimated Budget	7
6.	Program Schedule and Reports	9
7.	Personnel	11
8.	Appendix A: Resumes	12

In this day of the mature highway systems, a new INTRODUCTION: set of problems is facing the highway engineer. The existing system has aged to or past the design life of the original pavement design. In many cases, the increased commercial traffic is creating the need for additional load carrying capacity at this time. This situation has caused the State Highway Engineers to consider new alternatives for rehabilitation of the existing surfaces. Alternative surface materials, thicknesses, and methods of installation must be identified to meet the needs of individual pavements and budgets. With overlays being one of the most frequently used rehabilitation alternatives, it is important to learn more about the limitations and potential performance of thin bonded portland cement concrete overlays. In addition it is important to learn more about matching the overlay thickness to the proper jointing patterns to

1.

achieve maximum performance in the finished product.

<u>PROBLEM STATEMENT:</u> Currently sufficient information regarding thin bonded portland cement concrete pavement overlay bonding characteristics, minimum thicknesses and jointing patterns does not exist in Iowa or the nation. This information serve to join the several variables, required in the development of a thin portland cement concrete overlay design procedure.

The Iowa 21 project, located near Belle Plaine, Iowa will provide an opportunity to measure the bonding characteristics associated with overlay of an existing asphalt pavement.

Different surface preparations will be used to identify the best combination of surface preparation, overlay thickness and jointing pattern to achieve adequate bond and long term performance.

2.

<u>OBJECTIVES:</u> Most of the current overlays of asphalt roads are constructed of asphaltic concrete. Are concrete overlays (whitetopping) an acceptable alternative to this process and what can be learned about the amount of original bonding between material layers and the bond retention between the overlay and original surface over time?

The objective of this project is the study of the retention of bond between various overlay thicknesses and jointing patterns of portland cement concrete, to asphaltic concrete pavement with different surface preparations. It will be accomplished through the completion of the following series of tasks:

Task 1: Laboratory instrumentation verification.

Task 2: Field installation of instrumentation.

Task 3: Data collection and analysis.

Task 4: Report development.

<u>PROPOSED RESEARCH</u>: The research effort expended to accomplish each task is described as:

Task 1: Laboratory pilot study of research instrument installation methods and bond development in simulated field conditions. Some 64 composite test specimens will be constructed in the laboratory to represent the use or absence of the fibers

in the portland cement concrete and the response to static and dynamic loading. Dynamic test specimens will be subjected to repeated loadings while instrumented to determine the best ways of attaching the instruments, the expected magnitude the specimen behavior as it is subjected to loading. Repeated loading will be of a short term nature and would be carried out until the asphalt or concrete cracks and/or allows debonding to occur at the layer interface or a maximum number of cycles is reached. This portion of the study will concentrate on three areas of interest.

First, static testing, will provide information on the which sensors can provide the best measurements of relative movement between the asphaltic concrete and the portland cement concrete overlay depths.

Secondly it will provide information on the best way to connect sensors to the two material surfaces through static testing.

Thirdly it will provide information on the expected levels of strain associated with bond in the static condition and under repeated dynamic load. Static testing will also provide a measure of the global stiffness of the composite section layers.

Laboratory work will simulate the action of the materials during construction and under repeated loading conditions. Where possible information from the Minnesota Test Road project will be employed in experimental design in terms of sensor selection and attachment methods.

Task 2: Field installation of pavement instrumentation

3.

during and after construction of the overlay. Some 32 sites will be selected for instrumentation in the field. This allows for two replicates of each of 16 test cases. The plan calls for the purchase of approximately 130 longitudinal strain devices, 32 temperature/humidity devices and 15 LVDTs. The exact brand and type of gage for each of these applications will be known after the laboratory study.

This work will involve the installation of the longitudinal strain and temperature gages at specified locations along the route to measure the change in temperature of the various pavement layers during and after placement of the overlay. Where possible, the gages will be moved from site to site to reduce the number of gages required and retain security. Gages will be installed near the edge of the pavement to provide the least problems for the paving operation and gage maintenance.

Task 3: Data collection of strain measurements and condition surveys at the field construction site and over a five year period after the installation. Measurements will begin when the concrete has reached a strength that allows installation of the strain gage reference points. Initial strain and temperature/humidity measurements, and deflections will be made on an hourly, daily and weekly basis during and after construction until the pavement is opened to traffic and one measurement to represent the 28 day curing time. Measurements will then be conducted at quarterly intervals for the remainder of the five year period or until the instruments fail to provide

4.

measurable data.

Visual condition surveys of the pavement surface will also be conducted weekly for the first month after construction and at each of the time periods where strain information is gathered thereafter. Distress data will be identified in number of slabs per test section that exhibit individual types of cracking or loss of bond and recorded.

Falling Weight Deflectometer (FWD) information will be collected prior to the overlay, immediately after the overlay and at one year periods after the overlay placement. Test sites will coincide with the strain measurements to measure pavement reaction to changes in bond, pavement structure (layer moduli), and load transfer capability at joints. Additional points will be surveyed near the centerline and in the interior of selected slabs. This information will be coordinated with pavement sensors to identify bond conditions at interior points in the pavement section.

Task 4: Report Development. Three reports will be prepared to document the research results. The first report will document the results of the laboratory pilot testing. The second will be completed after the installation to document the construction and installation process. The third, at the end of the five year study period, will document the performance of the overlay in terms of distress development and bond retention.

<u>EVALUATION:</u> This report is designed to give guidance to the

•••••

5.

Iowa DOT staff on bond retention between thin portland cement concrete overlays and asphaltic concrete pavements. It will assist engineers in understanding the potential bond, and retention under repeated load for various pavement thicknesses and joint configurations.

ESTIMATED COST:

A detailed budget for the project is shown on page 7.

PROJECT BUDGET

Task 1 Laboratory Pilot Tests	· ·
SALARIES AND WAGES	Proposed
PRINCIPAL INVESTIGATOR	
James K. Cable (0.25 months)	\$ 1,560
Assistant Scientist (2 month)	5,680
OTHER PERSONNEL	
Technician (2 months)	7,000
Research Assistant	
Partial M.S.(2 months)	2,000
Secretary (0.5 month)	850
Hourly (Total Hours = 600)	3,600
FRINGE BENEFITS	
24.55% of faculty salaries	383
30.80% of professional and scientific salaries	3,905
24.92% of research assistant salaries	498
39.45% of clerical salaries	335
MISCELLANEOUS: MATERIALS, SUPPLIES, TRAVEL	6,000
REPORT/PUBLICATION COSTS	
Project report (50 copies of final)	800
TOTAL DIRECT COSTS	\$32,611
INDIRECT COSTS	ş
44% of modified total direct costs	14,349
TOTAL DIRECT AND INDIRECT COSTS	\$46,960

PROJECT BUDGET

8.

Tasks 2-4, Field Verification-Final Report	t
SALARIES AND WAGES	Proposed
PRINCIPAL INVESTIGATOR	
James K. Cable (2.0 months)	\$12,470
Assistant Scientist (4 months)	11,370
OTHER PERSONNEL	
Technician (5 months)	17,500
Research Assistant	
Partial M.S. (9 months)	9,000
Secretary (1 month)	1,700
Hourly (Total Hours = 900)	5,400
FRINGE BENEFITS	· · · · · ·
24.55% of faculty salaries	3,061
24.92% of research assistant salaries	2,243
39.45% of clerical salaries	671
30.80% of professional and scientific salaries	8,892
EQUIPMENT RENTAL SERVICES	15,000
MISCELLANEOUS: MATERIALS, SUPPLIES, TRAVEL	45,700
REPORT/PUBLICATION COSTS	
Interim and final project report (100 copies)	5,000
TOTAL DIRECT COSTS	\$138,007
INDIRECT COSTS	· ·
44% of modified total direct costs	\$ 60,723
TOTAL DIRECT AND INDIRECT COSTS	\$198,730
TOTAL TASKS ONE THROUGH FOUR	\$245,690

<u>PROJECT SCHEDULE AND REPORTS</u>: The laboratory pilot project would begin on or before September 1, 1993 and would be completed on or before December 31, 1993. Draft reports will be developed and reviewed in January, 1994 and the final report on this phase of the work would be completed in February, 1994.

9.

The field verification portion of the work will begin in January, 1994 with purchase and preparation of the instrumentation. It will begin on the site when the construction project begins. The second report will be developed for review two months after the completion of field installation and completed the following month. The final report will be scheduled for draft review in November, 1999 and completion in December 1999.

SCHEDULE:

TASK I: September 1, 1993 - December 31, 1993 TASK II: January 1, 1994 - August 31, 1994 TASK III: June 1, 1994 - October 31, 1999 TASK IV: December, 1993 - December 31, 1999

REPORTS:

Each of the three reports specified will be provided with 50 copies to the Iowa Department of Transportation for distribution. <u>PERSONNEL:</u>

James K. Cable P.E., Associate Professor, CCE will be in charge of the overall organization and management of the project including advisory committee meetings. He will be assisted by

a research assistants from the ISU Civil and Construction Engineering Department. FWD work site investigation and data analysis will be provided by outside consultants hired by the University. The research staff will be responsible for the field data collection, analysis and assist in the report development. A copy of the resume for the Principal Investigator is attached.

85

11.