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DISTRIBUTION OF WHEEL LOADS ON HIGHWAY BRIDGES \
ABSTRACT '

The purpose of the research was to develop a more realistic design
critgria for distribqtion of wheel loads on highway bfidges. A compre-
‘hensive study was made of the static load distribution in a broad range
of short and medium span bridge types used by_today's designers.

The bridge types studied were classified into three general cate-
gories: beam and slab; multi-beam; and cast-in-place concrete box
girder. The behavior of these bridges was characterized by the fol-
lowing major variables: aspect ratio (bridge width/bridge span), rela-
tive stiffness of beams and floorz and relative diaphragm stiffness.

The effect of these variables, as well as others, on the load distribuf
tion was investigated with respect to the number and position of wheel
loa&s. The theories used for the major Studies were: for beam and slab
bridgeé, orthotropic plate theory; f&r muiti-beam bridges, articulated
plate theory; and for concrete box girder bridges, folded plate theory.

The validity of the theories to predict the behavior of an actual
bridge under load was determined by correlation of the moments or stresses
obtained from actual field tests with those computed by the épplicable
theory using the actual bridge geometry and loading.

Extensive numerical studies;relating beam momeﬁts to the number and
the lateral position of standard truck loadings for various combination
of the variables listed were conducted. However, the complexity of the
interrelation of the variables makes the use of the numerical data in a
design office virtually impossible. Thus, an empirical equation was

N

formulated and is presented in a proposed revision to the current AASHO



"Standard Specifications for Highway Bridges." Although numerous revisions

are proposed in Section 3 on "Distributibn of Loads," the major change is

recommended for Article 1.3.1(B) in distribution of bending moment in

stringers and longitudinal beams.
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DISTRIBUTION OF WHEEL LOADS ON HIGHWAY BRIDGES
SUMMARY

The research reported herein was undertaken for the purpose of
developing more realistic design criteria for distribution of wheel
loads on highway bridges.

For ovér 30 yr the ”étandard Specifications for Highway Bridges"
of the American Association of State Highway Officials (AASHO) has in-
cluded a prqcedure for determining this load distribution. Although
several detailed studies were conducted on specific bridge types, many
of the criteria have been based on extensions developed from separated
limited studies. It is the purpose of this investigation to study at
one time the static distribution of movable wheel loads in a broad
range of bridge types used by today's designers. This approach gives a
uniform approach to the development of specification criteria.

The current AASHO specifications for load distribﬁtion were es-
sentially developed in their present format about 25 yr ago. Although
some minor changes in procedures have been made and seve;al new bridge
types included, the basic approach has remained unchanged since that
tiﬁe. Presently, the only major variables considered are beam spacing
and general bridge floor system makeup. However, many other variables
affect the behavior (some quite significantly), and with the many
analytical tools available, more realistic distribution criteria can beA
developed. Tt is for this purpose that this study was undertaken.

However, the study was limited to short and medium span bridges,
that is bridges with spans up to about 120 ft. In this span range,

the bridge types can be classified into three general categories: beam



it

and slab; multi-beam; and cast-in—piace concrete box girder. The be~-
havior of these bridges can be characterized by the following major
variables: aspect ratio (bridge width/bridge span), relative stiffness
of beams and floor, relative diaphragm stiffness and extent of bridge
continuity. The effect of these variables on the load distribution was
investigated with respect to the number and position of wheel loads.
During the past 50 yr many theories have been proposed and developed
which are applicable to the determination of the behavior of the floor
system under load. These include: orthotropic plate theory, articulated
plate theory, flexibility or stiffness methods, grillage method, finite
element method, harmonic analysis, folded plate theory and moment distribu-
tion procedures. Each of these theories has particular inherent assump-
tions which make it more applicable-to a particular bridge geometry.
However, since a wide variety of bridge types is considered herein,
several generally applicable modifications of the plate theory have been
employed in the overall analysis. To limit complexity, the general-
plate theory was used and adapted to the specific pridge types listed
above. Thus, a similar set of geometric parameters is applicable to

the bridge types studied. For the beam and slab bridges, the orthotropic

plate theory was used; for the multi-beam bridges, the articulated plate

theory; and for concrete box girder bridges, the folded plate theory.
To verify thé validity of the theories and their assumptions in
predicting the behavior of an actual bridge under load, correlations
were made between moments or stresses obtained from actual field tests
and those computed by applicable theories using the actual bridge geometry

and loading. These correlations indicate that the theories selected do

adequately predict the load distribution in the particular bridge types.




Extensive numerical studies relating beam moments to the number and

the lateral position of standard truck loadings for various combinations
of the variables previously listed were then conducted. .These results
were used to determine a number of influence lines for beam moment.
However, the complexity of the interrelation of the variables makes using
these charts in a design office virtually impossible. Thus, an
empirical equation developed from these charts was formulated and is
presented in a proposed revision to the cu?rent AASHO Specifications
(279) for load distributiom.

Although nume;ous revisions have been proposed in Section 3 on
"Distribution of Loads," the major change has been recommended for
Article 1,3.1(B) in distribution on bending moment in stringers.and
longitudinal beams. Even though these changes, in many cases, do not
significantly affect current designs, they do make them more realistic
and do consider the benefits derived from improving bridge properties.
It is recommended that this entire article be replaced as follows.

Shown below is the new Article 1.3.1(B) recommended for inclusion in the

AASHO Specifications (279):
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1.3.1 — DISTRIBUTION OF LOADS TO STRINGERS, LONGITUDINAL BEAMS AND
FLOOR BEAMS.

(A) Position of Wheel Loads for Shear — unchanged.

(B) LiQe Load Bending Moment in Stringers and Longitudinal Beams

for Bridges Having Concrete Decks¥.

In calculating bending moments in longitudinal beams or stringers,
no longitudinal disgribution of the wheel load shall be assumed. The
lateral distribution shall be determined as follows:

(1) Load Fraction (all beams),

The live load bendiﬁg moment for each beam shall be determined by
applying to the beam the fraction of a wheel load (both front and rear)

determined by the following relations:

TLoad Fraction =

g

where S is

Aol
7

Sa for beam and slab bridges**

*In view of the complexity of the theoretical analysis involved in the
distribution of wheel loads to stringers, the empirical method herein
described is authorized for the design of normal highway bridges. This
section is applicable to beam and slab, concrete slab, multi-beam, and
concrete box girder bridges. For composite steel box girder bridges, the
criteria specified in Article 1.7.104 should be used.

“%*For slab bridges, S = 1 and the load fraction obtained is for a one

foot width of slab.
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values for concrete box girder bridges

for multi-beam bridges*, and the maximum of the two

and the value of D determined by the following relationship:

1

N 2N
L L .2
= — - —= - = <
D 5+ 10 + (3 7 Y (1 3) ’ c<3
N :
=5+I(%‘, ) c=>3
where: Sa = gverage beam spacing, feet,
N. = total number of design traffic lanes from Article 1.2.6,

'Ng = pnumber of longitudinal beams,
C=a stiffness parameter which depends upon the type oﬁ
bridge, bridge and beam geometry and material properties.
The value of C is to be calculated ﬁsing the rélationships shown below.

However, for preliminary designs, C can be approximated using the

J '

values given in Table 1.3.1. For beam and slab** and multi-beam bridges:

oo ¥ [E_.__I_L__T/z
L ?G (Jl + Jt)

For concrete box girder bridges:
(g . E 1/2
L+ Ng W) [;G(l +-Nd£}

*A multi-beam bridge is constructed with precast reinforced or pre-

-1
¢=3

Hi=

stressed concrete beams which are placed side by side on the sﬁpports.
The interaction between the beams is developedvbi continuous longitudinal
shear keys and lateral bolts which may or may not be prestressed.

é*For noncomposite construction, the design moments may be distributed

in proportion to the relative flexural stiffnesses of the beam and

J

slab section.
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where: W = the overall width of the bridge, feet,

L = span length, feet (distan;e between live load points of
inflection for continuous spans),

E = modulus of elasticity oflthe trans formed beam section,

G = modulus of rigidity of the transformed beam section,

Il = flexural moment of inertia of the transformed beam section
per unit width¥,

Jl = torsional moment of inertia of the trans formed beam
section per uﬁit width¥* (Jl = Jbeam + % Jslab)’

Jt = 1/2 of the torsional moment of inertia of a unit width

of bridge deck slab*
and for concrete box girder bridges:

d = depth of the bridge from center of top slab to center of

\

bottom slab,
N
g

Ny

number of girder stems, and

number of interior diaphragms.

For concrete for girder bridges, the cantilever dimension of any
slab extending beyond the exterior girder shall preferably nog exceed
s/2.

When the outside roadway beam or stringer supports the sidewalk
live load and impact, the allowable stress in the beam or stringer
may be increased 25 percent for the combination of dead load, sidewalk

live load, traffic live load, and impact.

%*For the deck slab and beams consisting of reinforced or prestressed .

concrete, the uncracked gross concrete section shall be used for

rigidity calculations.




TABLE 1.3.1 VALUES OF K TO BE USED IN THE RELATION: C

I
=~
==

BRIDGE TYPE BEAM TYPE AND DECK MATERTIAL ‘ K
Beam and slab (includes Concrete deck:
concrete slab bridge)
' Noncomposite steel I-beams 3.0
Composite steel I-beams 4,8

Nonvoided concrete beams

(prestressed or reinforced) 3.5

~ Separated concrete box-beams 1.8

Concrete slab bridge 0.6

Multi-beam Nonvoided rectangular beams } 0.7

Rectangular beams with circular

voids , 0.8

Box section beams 1.0

Channel beams 2.2

Concrete box girder Without interior diaphragms 1.8
With interior diaphragms 1.3

(2) Total Capacity of Stringers.

The combined design load capacity of all the beams in a ;pan shall
not be less than required to support the total live and dead load in
the span.

(3) Edge Beams (Longitudinal).

Edge beams 'shall be provided for all concrete slab bridges having

! main reinforcement parallel to traffic. The beam may consist of a slab
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section additionally reinforced, a beam integral with and deeper than
the slab, or an integral reinforced section of slab and curb.
It shall be designed to resist a live load moment of 0.10 PS,

where

P

wheel load, in pounds (P15 or PZO)

I

S span length, in feet.
This formula gives the simple span moment. Values for continuous

spans may be reduced 20 percent unless a greater reduction results from

a more exact analysis,




CHAPTER 1: INTRODUCTION

STATEMENT OF PROBLEM

This study was undertaken.to develop a more realistic analysis of
and to develop better design specifications for the distribution of live
load in the floor systems of highway bridges. Numerous analytical and
expérimental studies have been made to help improve the methods used
for highway bridge design; however, in some areas the studies have not
resulted in realistic, yet simple, procedures for design. One of these
areas is in highway bridge floor systems.

It has been suggested that the present specificatiéns (279), al-
though giving satisfactory designs for service, are too conservative
and limited in consideration of variables affecting behavior. They
provide no satisfactory consideration of such important variables as
the flexural and torsional stiffnesses of the floor slab and beams, the
bridge span and the bridge width in the determination of the distribution of
beam live loads. 1In addition, they do not provide consistent design criteria for
all types of highway bridges. Thus, changes, wﬁere warranted, are recom-
mended in the current specifications for distribution of wheel loads
for use in design of floor systems for highway bridges. .

The study outlined herein relies significantly on the theoretical
methods and field test results of other investigators. These studies
were used as the basis for the investigation. Modifications and exten-
sions of the applicable theories were made so that the theories would
be applicable to all bridge types considered. After correlation with
the field test results, extensive analytical results Qere obtained

relating all significant variables. From. these results, proposals for

appropriate specification changes have been developed and are presented.

12




STATE-OF-THE-ART -

For over 25 yr, numerous researchers have studied the behavior
of bridge floor systems. Although most of these studies were limited
to theoretical behavior, a significant number of field tests have been
reported iq the literature. An extensive bibliography of available
references in both areas is given in Appendix C. An extensive report
of the state-of-the-art of the analysis of most common bridge types has
been presented by Reese (182). The succeeding paragraphs in this
section briefly outline available theoretical and experimental studies.

The designs of the floor systems of highway bridges are quite varied
and depend upon many factors. These varied designs, however, may be
classified, based on their assumed behavior, into a few major cate-
gories. There are several types of structures that may be analyzed

5 .

by the same theoretical methods, although their physical nature may be
somewhat different. Slabs, plates, open grid frameworks, interconnected
bridge girders, bridge decks and cellular plate structureé, for example,
may all be classified as grids. Nearly all of the floor systems of the
many types of highway bridges fall, in one form or another, into one of
the classifications. For this study, the various types of bridges have
been classified as shown in Figure 1, into three majof categories:

beam and slab type, multi-beam and concrete box girder bridges.
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BEAM AND SLAB

o0

MULTI—BEAM

-

BOX GIRDER

.Figure 1. intermediate length highwey Bridge types.'

N

Theoretical Analyses

N

" Beam and- S1ab Bridges
?heoretical investigatione of beam aqd slab bridges'vary iﬁ their
approach as'well as in their accuracy and assumptédns. The majority of the
analytical approaches can be pﬂaced into the foilowing four cléseificatidns:
1. ‘unit or plate analysis, |
2. ‘redundant of grid analyeis, :
3. combinetion‘of plate and grid analfees, and

4. specialized methods.




The unit method, commonly known as orthotropic plate analysis, re-
places the actual structure with an equivalent orthogonally anisotropic
plate. This method is characterized by a relatively complex closed form
solﬁtion. "The equivalent plate has the same transverse and longitudinal
torsional and flexural rigidities aslthe actual structure. Initial
development of the orthotropic plate analysis as applieé to bridge
decks is due to the work of Guyon (67, 68) who found solutions for the

)
limiting cases of torsional rigidity in the equivalent plate. His
results are valid for the no—torsion condition and the full-torsion or
isotropic condition. Massonnet (129 — 133) extended the analysis to
include intermediate values of torsional rigidity through the use of an
interpolation formula. Both of these investigators assumed Poisson's
ratio of the equivalent bridge materials to be zero. Rowe (;gé — 199,
201) exteﬁded the analysis by providing for the inclusion of any value .
of Poisson's ratio. Another solution of the orthotropic plate equation
was found by Sanders and Munse (210) and Roesli (191) who considered the
applied load to be uniformly distributed over a small rectangular area.
A third solution of the orthotropic plate equation has béen proposed
by Stein (236). 1In this case, singularity functions are used to
represent Huber's orthotropic plate equation and the solutions found
after transformations between the singularity and cartesian systems.
Numerical solution of the plate equation has also been empioyed by
various investigators. Notable are Heins and Looney (74, 75) who applied
finite difference techniques to the plate equation for comparison with
experimental results from tests on several differenf bridge types. De-

tailed reviews and analyses of the development of the orthbtropic plate

solution can be found in the references cited or in Appendix A of this report.




In the second general method of analysis, the actual bridge
structure is replaced with an equivalent grid system. A direct'soiu—
tion of gridworks through the use of slope-deflection and compatibility
equations has been developed by Homberg (84, 85). Lazarides (108, 122)
has solvedAthe gridwork problem by determining the deflection compatibility
equations at each beam intersection and solving the resultant simultaneous
equations; Numerical solutions have also been used for gridwork aﬁalysis
by Leonhardt. (109, 110) through tﬁe use of moment or torque distribution,
while Scordelis,(ggg) used shear distribution and Fader (50) used a
reaction distribution method. The gridwork or redundant éqalysis.
‘usually involves a large numbef of simultaneous equations if solved
'eXactly,vor numerous arithmetic calculations if one of the numerical
techniques is employed. .

The third general analytical approach to the load distribution
problem, a combination of the platé and redundant procedures, is
represented by two théories; harmonic analysis and numerical moment
distribution.

fhe development of harmonic analysis as a technique fér the
determination of load distribution in highway bridges results from the
work of Hendry and Jaeger (76 — 79). This procedure considers the same
flexural and.torsional rigidities as the orthotropic plate analysis with
the e#ception that torsional figidity in the transverse direction
is neglected. The harmonic analysis, however, requires the calculation
of a number of constants, which are utilized in an infinite series sum-
mation. Preliminary calculations for the determination of these constants
ére somewhat lengthy. This procedure is also characterized by a rela-

tively slow convergence of the series for the most highly stressed beam.




The second method of analysis that combines the plate and redundant
member technique is the numerical moment distribution procedure developed

by Newmark (152, 154 — 157) and Jensen (94). In this procedure the

slab is first considered independent of the beams and is assumed to Be
isotropic. From boundary conditions and the Levy series expression for
loading, a solution of the isotropic plate equation is found. A slab
strip.is now considered to be a beam continuous over flexible éupports
(the actuai beams), and a Hardy Cross moment distribution procedure

is carried out to determine moments in the actual beams.

The fourth general category_of distribution procedures, specialized
methods, contains widely differing approaches. An approximate gridwork
solution was developed by Pippard and deWaele.(l71). This procedure re-
quires the replacement of all transverse grid members by a singie
member at midspan with equivalent stiffness. This approximation results
in fewer calculations than those required in the general gridwork solu-
tion. The beam on elastic foundation analogy has been proposed by
Massonnet (131). Because of similarity between the plate equation
when the torsional term is ignored and the beam on elastic foundation
equation, the elastic foundation analogy can be used for bridges with
little torsional rigidity with only a small error if the equivalent
plate is assumed to have zero torsional rigidity. If a bridge system
has few longitudinal beams and ifvtransverse beams or diaphragms are
ignored, another approach can be used by considering the bridge to be a
complex beam. This analysis is relatively simple but has limited
applicability. 1In fact, all of the approximate methods can be applied
with reasonable accuracy to very specific beam and slab types, but chance

of potential error is greatly magnified when these methods are applied to

the general beam and slab bridge.
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Multi-Beam Bridges

The number of methods available for the analysis of multi-beam
bridges is somewhat more limited. About 10 yr ago, Duberg, Khachaturian
and Fradinger (45) analyzed a multi-beam bridge by assuming that it
consisted of beam elements placed side by side and connected, to each
other along the span by hinges at the corners of the cross section at
the level of the top fiber. Other investigators (80, 171) have made
similar assumptions, such as:

1. no rotation of individual members at their intersections with

other members,

2. floor system pre&ents twist of main girders, and

3.. cross girders are replaced by a continuous connecting system.k

The behavior of multi-beam bridges is in many respects similar to
that of the beam and slab bridges. The major difference is the elimina-
tion of the moment restraint between the individual beam units which leads
to some modifications in the applicable theories. The methods of analyses
can be divided into two major categoriés. Tﬂe first category is normally
called the method of compatible deformation based on the flexibility
method. The second category can be classified as a plate theory.

The first step involved in the first category is to consider the
equilib:ium of the mechanical system and express various mechanical
quaﬁtities such as deflection and bending moments in'terms of certain
unknown forces acting on the system. The solutions are obtained by
considering the compatibility conditions of the system; subsequently,

the last step is to solve simultaneous 1iPear equations for these unknown

forces. Arya (6) and Pool (100, 172, 173) used this method of compatible

deformation to analyze multi-beam bridges.




The second category assumes that the number of beam elements is
large enough for the real structure to be replaced by an idealized
plate witﬂ continuous properties so that differential calculus can be
applied. The plate theory can be divided into several methods. One
method assumes no flexural rigidity in-the transverse direction of the
bridge because oflthe discontinuities at the shear keys. On the other

hand, another method would allow some flexural rigidity in the transverse

and some continuity even at the location of shear keys. The first method
is usually known as articulated plate thegry, while the latter is termed
orthotropic plate theory which was first studied by Gﬁyon and Massonet
and has been extensively used in the analysis of beam and slab bridges,

as previously mentioned. Roesli (189), Nasser (151) and Pama (38, 165,

166) used these theories to analyze multi-beam bridges.

Concrete Box Girder Bridges

Numerous analyses of concrete box girder bridges have been carried

out by Scordelis (221, 222, 224). The method of analysis used was

|
\
|
direction taking into account the effect of transverse prestress force

based upon a direct stiffness solution of a folded plate harmonic
analysis based on an elasticity method (4l). Scordelis used elastié
plate theory for loads normal to the plane of the plates and two-
dimensional plane stress theory for loads in the plane of the plates.

This is the only method of analysis used extensively for this bridge

type.




Field Test Investigations

t

There are a number of field tests of the types of bridges con-
sidered in this study. However, most of these tests were conducted on
beam and slab bridges. The most extensive single effort of field
testing was conducted at the AASHO Test Road at Ottawa, Ill. (gzg).
Eighteen bridges of the four general beam and slab bridges types were
tested. These types were: |

1. noncomposite steel wide-flange beam bridges,

2. composite steel wide flange beam bridges,

3. reinforced concrete beam bridges, and

4, prestressed concrete beam bridges.

In addition, numerous field tests of this bridge type have been repo}ted
in the literature. A summary of these tests performed up to 1965 has
‘been prepared by Varney and Galambos (252). Numerous tests have been
éonducted since that time on beam and slab bridgeé. These include a
series of tests of box beam bridges by Van Horn et al. (44, 62, 63, 113)
and three tests in Maryland by Reilly and Looney (183). A summary of a
number of these tests of beam and slab bridges has been prepared by |
Arendts (5).

As indicated previously, the number of tests of multi-beam and
concrete box girder bridges is limited. Only three full-scale tests of
the  type of multi-beam bridges studied herein are reported (23, 202, 204).
The first test (23) was conducted on a bridge consisting of channel
sections; the second (204) on a bridge with solid sections with holes;
and the third (202, 204) on a bridge composed of solid sections.

The latter two tests were conducted in England. All of the tests of
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concrete box girder bridges have been conducted on bridges constructed
by the California Department of Highways. The only field test reported
to date was conducted By Davis, Kozak and Scheffey (39, 222) én the
Harrison Street Undercrossing in Oakland, Calif.
Although limited in some cases, the number of testé and the types
of bridges studied in thé field tests are sufficient to verify the ap-
plicability of the theories used to predict the behavior of the particular )

bridge types included in this investigation.

SCOPE OF INVESTIGATION

The determination of beam bending moments in highway bridges re- ,
quires a design procedure to predict with reasonable accuracy the maximum
beam moment produced by a standard loading. This design procedure
should be governed by bridge behavior characteristics or parameters which
reflect the bridge beha&ior. The development of this procedure and of
the recommendations for changes in the current AASHO Specifications

(279) were based on:

1. A thorough bibliographic search for all available studies
into the theoretical and experimental behavior of highw;y
bridges. This bibliography is given in Appendix C.

2. The study of these feferences to determine the theoretical
procedures which were most applicable to the bridges included
in the study scope. These theoretical procedures were then
used to predict the behavior of field tested bridges. A com-

parison of these results with those actually obtained in the

field tests was used to verify the applicébility of the
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procedures. The comparisons are discussed in detail in

Chapter 2,

An extensive study of the effect of the variation in the
parameters affecting the wheel load distribution., The
procedures selected were used to determine the maximum beam

bending moments due to numerous possible loading conditions.

The results of this analytical study are given in Chapter 3.

The simplification of these results into a form that would
still be readily usable in the design office, yet give

sufficient accuracy in the prediction of load distribution.

" Where the difference in accuracy between these procedures

and the current specification was felt to warrant changes,
recommendations for new criteria were then made. The details

of this simplification and the resulting recommendations are

-given in Chapters 4 and 5.

After a thorough study of the theoretical procedures found in the

bibliographic search, procedures were selected for use in the analytical

studies which were felt to best predict the behavior of those bridges

included in this investigation. For beam and slab bridges, the ortho-

tropic plate theory and harmonic analysis were selected; for multi-beam

bridges, the articulated plate theory; and for concrete box girder

’ bridges, the theory of prismatic folded plate structures.

| procedures were considered and although applicable to specific bridge

"~ plicable.

geometries, it was felt that those selected were more generally ap-

Because of the' existence of a wide variety of highway bridge

geometries, some bridge geometrical restrictions were specified to

Numerous other
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limit the scoﬁe of the study. The bridges studied conform to the fol-
lowing geometrical conditions.

1. The longitudinal axis of the bridge is at right angles to the
piers or abutments.

2. The bridge spans between adjacent piers or abutﬁents are
simple or noncontinuous, although the effects of bridge con-
tinuity are considered based on other investigations.

3. The‘spans are of short or intermediate length (20 to 130 ft).

In addition to the above comstructional and geometric conditions,
the study of the bridges was restricted to statically applied 1ive.loads
only. This loading condition requires that the test load.vehicles in
the field tests be either stopped on the’bridge or moving at creep
speeds (less than about 5 mph) while measurements were in progress.
Furthermore, the consideration of beam and slab type bridges with com-
posite wood-concrete members or timber stringers and orthotropic plate
deck type bridges were not within the scope of the study. FEven though
the above constructional and geometric conditions may seem quite
restrictive, these conditions will be satisfied for the construﬁtion
and design of the majority of actual highway bridges.

Major variables or geometrical parameters which were considered in
the study included: ' torsional and flexural stiffness of the beams, deck
and diaphragms; the width of bridge; the roadway width; the span of
the bridge; and the number and position of design traffic lanes. 1In
addition, although the stiffness of the floor such as the concrete slab
or steel grid was considered in the distribution of wheel loads in beam

and slab bridges, the actual design of the floor was not considered.
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The details of these parameters and the theories are presented in
Chapter 3.

.Beam and slab, ﬁﬁlti-beam, and box girder highway bridges are
classified as different type bridges due to their differences in con-
‘struction and structural behavior upder load. Figure 1 illustrates the
differences in construction.

Beam and slab bridge construction is characterized by separated
longitudinal beams which support a deck slab. The beams, as shown in
Figure 2, can vary in méterial as well as construction. Steel beams
may be rolled shapes or plate girders and may have either a composite or
noncomposite deck slab., If the beams are prestressed concrete, then
composite action is generally provided for through shear connectors.
Prestressed concrete beams aré usually precast as "I" shapes, but other
beam shapes are possible such as "T" shaﬁes where the beams are cast
monolithically with a portion of the deck slab. Also, in reinforced
concrete beam bridges, the beam shape is considered as the "T" formed
of the beam stem and a portion of the slab. 1In fact, when any beam and
slab bridge is compositely constructed, a portion of the slab is always
considered to be a part of the beam. |

Multi-beam bridges consist of several longitudinal beams placed
side by side. The beams are usually precast prestressed concrete and are
connected by longitudinal shear keys., In addition, the beams are usually
tied together by post-stressed transverse steel cables. Although
transverse prestressing may be present, it may not be of sufficient
magnitude to provide transverse continuity through the loading spectrum.

Beam shapes vary, but a common configuration is the concrete channel beams
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Figure 2. Beam and slab highway bridge types.
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shown in Figures 1 and 3. Nonvoided rectangular, tee, and voided or
hollow rectangular beam shapes; as shown in Figure 3, are also common.
Box girder bridges are usually made of monolithicg}ly cast rein-
forced concrete, but a recent method of construction combines light
gage steel box sections with a composite concrete deck. The reinforced
concrete box girder bridge shown in Figure 1 is conétructed of two con-
tinuous flanges with monolithic vertical webs. Separated box-beam
and slab bridges should not be confused with concrete box girder bridges.
The compoqite steel concrete box girder bridges are qharaéterized by a
separation of the steel boxes and are, thus, in reality, beam and slab
type bridges. |
Structural behavior is important to the classification of beam and
slab, multi-beam, and concrete box girder bridges. Both beém and slab
and multi-beam bridges can be represented by an equivalent plate, but
the structufal models representing these plates differ. The principal
difference is the ability of the bridge or equivalent plate to transmit
bending moment in thé transverse direction. Beam and slab bridges are
flexurally continuous in the transverse direction due to the deck
slab's and transverse beam's or diaphgagm's ability to transmit bending

moment. On the other hand, the shear keys connecting the individual

beams of a multi-beam bridge act as hinges. Therefore, transverse
flexural continuity is not present in multi-beam bridges and the
equivalent plate must be treated differently from the equivalent
orthotropic plate that represents the beaﬁ and slab bridge. Concrete
box girder'bridges differ from the previous two bridge types in that

procedures are not currently available for theoretically representing the o
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Figure 3. Multi-beam highway bridge types.




entire structural system as a single equivalent plate. Each plate
element in the concrete box girder bridge can be treated individually
by using folded plate analysis or a similar procedure. This does not,

however, mean that approximate design methods could not be developed

for this type of bridge.
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CHAPTER 2: COMPARISON OF FIELD TEST RESULTS WITH THEORETICAL STUDIES

18

GENERAL

The validity of the use of any theoretical procedure for predicting
load distribution characteristics can be determined by comparing the.
results obtained from field tests of bridges to similar results as pre-
dicted by the theory. The research outlined herein was conducted for
that purpose. The results show the validity of the theoriés selected.

In this investigation the procedures used for determining the distribu-
tion in beam and slab bridges (5) and in multi-beam bridges (261) were
studied. However, the method of analysis used for studying concrete box.
girder bridges was not used to investigate actual bridges because of

the verification provided by Scordelis in the procedure development

(222, 224). |

A literature search has indicated that existing work dealing with
load distribution in beam and slab and multi-beam highway bridges can
be separated into two categories: reports of experimental investigations
on prototype and model bridge structures, and theoretical investigations
on idealized structures. Although load distribution tests have been
conducted on both model and actual highway bridges, only experimental
research dealing with prototype bridge structures was considered for
verifying the procedures for actual conditions. Much of the experimental
work stems from dynamic studies of highway bridges. Only the results
obtained for calibration of these bridges were considered since results
usable for predicting static load distribution are obtained only at
static or creep speeds (0 — 5 mph). Another important but limited
source of field test data is reports dealing solely with static or creep

loading.
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It can be seen in the bibliography that there have been numerous
field tests of beam and slab bridges reported in literature. These
studies of highway bridges can be categorized according to the type of
Supporting beams. The most numerous experimental reports deal with
bridges with reinforced concrete deck slabs supported by steel beams.
The beam and slab system is constructed as either composite (connected
by shear transfer devices) or noncomposite. Prestressed concreté beams
composite with a reinforced concrete slab form the second type of
bridge studied. Reinforced concrete beams monolithic with a concrete

| deck is the third type of bridge studied experimentally. 1In all beam
and slab bridge types, transverse beams, bulkheads, cross-bracing or
diaphragms are usually present. A detailed study was conducted of
eleven bridges covering all types of the beam and slab bridges listed.
However, in this summary report, only results of three typical bridges
are discussed in detail, The studies of the remaining bridges are dis-
cﬁssed in Reference (3).

The number of reported tests ;n multi-beam bridges is very limited.

'In addition, some of the reportéd results are for bridges with substantial
skew and, thus, are not of significant value. 1In verifying the validity
of the theoretical procedure used, the results of four test bridges were

analyzed (261). The study of three of these is presented herein to

indicate the general trend of the résults.
In each case, the theories proposed for the type of bridge being |

studied were.used to determine the moments in each beam element for the

particular loading on the bridge. The results of thééé analyses were |

then compared with the results of the field test to determine the validity
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of the procedure in predicting actual behavior. The‘comparisons ére
shown usiqg moment or deflection distribution coefficients, i.e. the
individual beam moment or deflection divided by the average moment or
deflecﬁion, These coefficients were used to normalize the plots for

ease in comparison.

BEAM AND SLAB BRIDGES

The studies of the three bridges discussed in detail cover the
cross section of bridge types generally constructed. The bridge types
iﬁcluded are: | |

1. a prestressed concrete "T'" beam bridge with the top flanges

forming the roadway,

2, a two lane composite concrete deck and rolled steel I-beam

bridge, and

3. a simplé span structure consisting of a reinforced concrete

slab composite with box—sgction prestressed concrete
longitudinal girders.

The overall investigation (5) also included four of the beam and
slab bridges constructed and tested as part of the AASHO Test Road at
Ottawa, Il1l. (278). One bridge of each of the four generally designed
types was studied: 9-A, a noncomposite steel wide~flange beam bridge;
2-B, a composite steel wide-flange beam bridge; 7-A, a reinforced concrete
beam bridge; and 5-A, a prestressed concrete beam bridge. 1In addition,
four other steel beam bridges (15, 82, 101, 103) were considered. These
included:

1. a 41 ft composite slab and beam, simple span bridge,




2. two separate, but identical, 67.5 ft bridge spans from multi-
simple span structures; each consisting of 4 longitudinal
girders composite with a concrete slab, and

3. a 45 ft simple span portion of a four-span system composed of
four rolled beams supporting a noncomposite concrete slab.

The distribution of moments in each of these bridges was analyzed

using both orthotropic plate theory and harmonic analysis. These two
theories were selected because of their application to the broad

range of beam and slab bridges and the availability of generalized func-
tions to predict behavior. The application of these theories to actual
test bridges‘assumed the properties of the cross sections‘éonformed.to
the following assumptions of the theories.

1. The bridge is rectangular in plan.

2. All beams and diaphragms are evenly spaced. : ,

3. All beams are of equal stiffness.

4, All diaphragms are of equal stiffness.

5. All beams and diaphragms are prismatic.

6. The deck slab does not contain joints or hinges.

7. The bridge behaves elastically.

In addition, for the particular solutions of the governing equations,
the following support conditions were also assumed: two opposite
edges are simply supported and the other two edges are free. The
dévelopment of the two theories is presented in the next chapter and
in Appendix A. However, the relationship between the theoretical and
experimental results is presented in this chapter to show the validity

of the theories in predicting load distribution. The procedures used
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for calculating the geometrical parameters uséd in the theories are
given in Appendix B,

The general trend of the results can be seen by examining in some
detail the comparisons of theoretical and experimental behavior for three

of the bridges studied. The results are typical of all bridges studied.

Shawan Road Bridee (183):

This bridge, as shown in Figure 4, was built of nine prestrqssed
éoncrete "' beams placed side by side so that the top flanges form the
roadway. This structure is not a multi-beam bridge due to the presence
of full transverse prestressing cables in the top flanges of the beams
and through the diaphragms. The bridge is 36.5 ft wide and spans 100 ft.
Interior diaphragms are located at the quarter-span points. The diaphragms
are monolithic portions of the longitudinal girders and are post-stressed

together.

l-ﬂ 36'-6"

| 8 at 4'-| /4" = 321_[0"

NOTE: EXTENSIVE TRANSVERSE PRESTRESSING IN EFFECT MAKES TOP FLANGES
ACT AS CONTINUOUS TRANSVERSE SLAB

Figure 4. Cross section of Shawan Road presgressed concrete beam bridge.

The results of the analysis, shown in Figure 5, indicate good

agreement between both theoretical procedures and the moments obtained
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" Figure 5. Transverse moment distribution in Shawan Road Bridge.

from strain readings on the actual bridge. In the vicinity of the load

the harmonic analysis does, however, predict moments about 20 percent
!

‘higher than the experimental moment for the central loading, but about

. ’
10 percent lower for the eccentric loading.

In additién to the wheel positions sHoWn in the figure; two bther
tests with eccentric loadings wére‘conducted. Combining the results of
one of these with those, presented in'Figure 5, a 1oadiﬁg‘pattérn similar
to. that expected.from the current AASHO loading critefia can be obtaiqed.

In this case, the maximum moment coefficient (i.e. the ratio of the !
- [

[w——
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individual beam moment to the average beam moment) was 1.232 and oc-
curred in the outside girder. The orthotropic plate theory predicted

a coefficient of 1.282 (a + 4.5 percent error) and the harmonic analysis

"one of 1.178 (a - 4.4 percent error). The current AASHO distribution:

formula would have predicted a coefficient of 1.680 or 35 percent
higher than that actually obtained from a loading similar to that

expected from the specifications.

Holcomb Test Bridge (82)

/
This bridge, located in Ames, Iowa, is a two-lane 71 ft bridge

composed of four rolled beams supporting compositely an 8 in. concrete
slab. The details of the bridge cross section are shown in Figure 6.

The 16WF36 transverse interior diaphragms are located at the third span

points.
[ i P
= 32 ”]
. - 30' ﬁry—i
—,8.07" L el =1
—:=======:=:: 1

(C”' |/3 Span)

33WFI30 —|
T S———33WF|94 1 1
t—— Q'8 | /4" @-L 9'-8 |/ "—Q—L—ty'-s /4" ——s

Figure 6, Cross section of Holcomb field test bridge.

The results of the comparative analyses are shown in Figure 7.
It can be seen that for the central loading that the two theories compare

favorably with the experimental results. However, for the wheel loads in
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Figure 7. Transverse moment distribution in Holcomb test bridge.

an eccentric position, the orthotropic plate theory predicts the
behavior, whereas the harmonic analysis underpredicts the maximum beam
moment by 21 percent (moment distribution coefficient of 1.920 vs 1.518).
The results from the orthotropic plate theory are shown on both a per foot
basis and a per beam basis. The per beam coefficient is simply obtained
by integrating the area under the distribution coefficient per foot
curve over a width of half the distance to each adjacent beam and nor-
malizing the answer.

Four additional tésts were conducted: one with a single

truck and the other three with two trucks for the loading.




The results for these tests were similar with both theories predicting
behavior favorably for the central loadings, whereas for eccentric

{ loadings the harmonic analysis significantly underpredicts the maximum
beam moment.

For the loading which corresponds most closely to the AASHO loading,
the maximum moment distribution coefficient obtained from the field test
was 1.490 for an exterior beam. Using the current AASHO procedure, the
coefficient would be 1.761; whereas from the orthotropic plate theory
the maximum coefficient was 1.554; and from the harmonic analysis it was
1.278. It can be seen that the results of the AASHO procedures are
18 percent higher than the field test result and the harmonic analysis
is 14 percent lower, while the orthotropic plate accurately predicts

the maximum moment.

Drehérsville Bridge (44)

This is a simple span structure consisting of a 6.7 in. reinforced
concrete slab composite with five identical box-section prestressed
concrete longitudinal girders. The overall width of this structure,
as shown in Figure 8, is 35.5 ft and the span is 61.5 ft. FEach beam is
33 in. deep by 48 in. wide and consists of 5-in. vertical and bottom
walls with a 3-in. top wall. A 10-in. thick cast-in-place transverse
diaphragm is located at midspan.

The results of the comparisons are shown in Figure ‘9. For both
the central loading and the eccentric loading, the coefficients predicted
by both theories are in good agreement with the field test results.

However, for the combination of truck loads which most nearly conform to

the AASHO loading, the maximum moment distribution coefficient from the
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field tests was 14 percent less than that predicted by the current
specifications, but 10 percent above those from the two theories.,

In the studies presented herein, three major beam and slab bridge
types are represented by comparisons of experimental results with
analytical predictions of beam moments. In addition, similar results
were obtained from comparison for eight other bridges consisting of |
either steel beam and concrete deck bridges or nonvoided prestressed
and reinforced concrete beam and concrete deck bridges. When all
loadiﬁg conditions for all test bridges are examined, the following
conclusions are fognd:

1. Of -the total of 18 maximum beam moment cases considered,
orthotropic plate theory predicted 11 moments conservatively (positive
error) while harmonic analysis predicted five momenté conservatively,
The conservative harmonic analysis predictions were all within 10 percent
of the field test results, while ali orthotropic plate predictions were
in error by less than 10 percent except two which were 12 and 28 percent
in error.

2. - Harmonic analysis predicted thirteen unconservative moments
(negative errors) of which seven errors were between 10 and 20 percent,
with the remaining errors less than 10 percent. Orthotropic plate
theory predicted seven unconservative moments when compared to the field
test results with all less than about 10 percent in error.

It can be seen from the above summary that harmonic analysis pre-
dicted unconservative maximum moments more frequently with errors of
greater magnitude. The converse is true of the conservative results.

Table 1 presents the maximum moment error for all bridges.
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MAXIMUM BEAM MOMENTS, AVERAGE»ERRORSa

! ORTHOTROPIC HARMONIC
PLATE THEORY ANALYS IS AASHO
POS.. NEG. POS. NEG. POS. NEG.
ERROR ERROR ERROR ERROR ERROR ERROR
Single truck loads
Avg error 10.6 4.7 8.6 8.4 - 15.4
Tests run 6 5 4 7 0 4
2 truck loads superimposed
Avg error 6.5 5.7 2.6 10.3 23.2 -
Tests run 3 . 2 1 4 5 0
2 truck loads és measured
Avg error 3.2 - - 18.6 7.3 -
Tests run 2 0 0 2 2 0

%For all beam and slab bridges analyzed.

From the comparisons presented herein and those also presented by

Arendts (5), it can be seen that the shape of the predicted moment

coefficient curves from orthotropic plate theory is in close agreement

with the experimental distributions.

However, not only are some of the

harmonic analysis distribution curves not consistent with the experimental

distributions, but all the maximum moments occurred at interior girders,

although test results place the maximum moment at the exterior girder.

In fact, most of the harmonic analysis comparisons tended to underpredict

the exterior beam moments, especially for loads with large eccentricities.

From these results, it is felt that the orthotropic plate theory is

the more accurate of the two theories considered.

This conslusion is
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based on the accuracy of the prediction of the maximum bean moment, the
beam location of the maximum moment, and the general distribution curve.
Furthermore, the procedures used for determining the stiffness parameters,
as presented in Appendix B, are felt to accurately represent the behavior
of the types of beam and slab bridges studied. It is obvious that both
an accurate analytical procedure and an accurate method of computing
stiffness parameters are necessary for satisfactory comparisons. The
comparisons of experimental results and theoretical predictions support
this conclusion. - However, it is felt that the harmqnic analysis is still
a valuable tool to use as a check for the validity of the orthotropic
plate theory in ranges of variables beyond those considered in the field
test comparisons.

The results of comparison of the current AASHO distribution procedure
with the individual test results and the summary in Table 1 showed that
the current procedures are inconsistent with experimental results. The
comparison showed that the average errors were.+ 15 percent for single
truck loads and + 23 percent for two truck loads superimposed. HoweVer,
for individual bridges, the AASHO predictions ranged from very conserva-
tive (+ 35 percent error) for two-lane bridges to unsafe (- 23.8 percent
error) for the one-lane AASHO Road Test Bridges. Also, only two AASHO
predictions were relatively accurate (less than 10 percent error) and
one of these was unconservative. These results show that a new design
procedure is vitélly needed to accurately predict load distribution

by considering more fully the overall behavior.
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MULTI-BEAM BRIDGES

‘The number of.field tests and large-scale laboratory tests of
multi-beam bridges isllimited. After an extensive literature search,
reports of only four such tests that were applicable to this study were
located. These are summarized in Table 2. It can be seen that, although
the number of tests is small, the types of cross sections investigated
do include the three mgst commonly used multi-beam systems. The results
of the tests of the three actual bridges will be discussed in some detail
to show the accuracy of the theoretical procedure in predicting behavior.
A complete analyéis of all four tests is presénted in Reference (261).

The behavior of each of these bridges was predicted using the arti-
culated platé theory. This theory has also been used by other investi-
gators to analyze similar bridges (6 — 8). It was selected initially
because of the good relationship of the assumptions in the analysis with
the structural geometry and, also, because of the similarity of parameteré
with the plate theory and harmonic analysis.considered for beam and»slab
bridges. A detailed outline of the theory is given in Chapter 3 and
Appendix A. Tﬁe procedures used in compufing the geometrical parameters
are presented in Appendix B.

The wvalidity of the ﬁroposed procedures can be seen by examining
the results of the comparisén of the moment distribution coefficients
obtained from the tﬁeory @nd parameter calculations and from the field

test results for each of the three bridges.



TABLE 2

DIMENSIONS AND CHARACTERISTICS OF THE MULTI-BEAM BRIDGES TESTED

SPAN NO. OF BRIDGE CROSS SHEAR TRANSVERSE LOAD ING
NAME LENGTH BEAMS WIDTH SECTION KEY PRESTRESS SCALE SYSTEM MEASUREMENT
North 30'-0" 10 25'=6" Channel Mortar At 7 loca- Full 22FG Corbett 120 strain
Carolina curb: 9" tions, truck . gauges (SR-4),
- PC beams up to 18.72 t/truck deflection
18,900 psi dials of
each 0.001" least
reading
Center- 32'-0" 9 27'-0" Solid Dry- No pre- Full ‘Scale truck and Control gauges,
port with 2 packed stressing tractor trailer level bar
: circular mortar in trans- truck and hydrau- readings
holes verse di- lic jacks
curb: 8" rection,
RC beams a2 in. @
tie rod
at E
Lang- 31'-0" 16 34'-0Q" Solid Dry- 0.2" ¢ Full Two bogie 39 Ames dial
stone PC beams packed Freyssinet vehicle total gauges of 0,001
curb + mortar cables at load: . central to 0.001 least
footpath: 12 points loading 20.8 — 90t reading, level
575" eccentric bars, strain
loading 60.7 — 90t gauges
Lab. 17'-10" 12 11'-10"  Solid Mild-  None 1/4 Hydraulic jack: 6 dial gauges,
test PC beams sgteel pads; 3-3/4" X 8' Demec gauges
by Best shear 1-1/2", up to (strain gauges)
loops 18 tons '
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North Carolina Bridge (23)

This test bridge is composed of 10 precast, prestressed concrete,
channel beam élements. The cross section of the bridge is‘shown in Figure 10,
The shear connection consists of a tongue and groove type of key, triangular
in shape, which was packed from the top with a jute fiber and grouted to
prevent the asphalt seal from entering the joints. The interior members
are channel sections and prestressed longitudinally with five cables of
7/16 in. aiam in each stem; the exterior members were constructed by
casting a curb to an interior beam element.

The comparison of the distribution coefficients from the theory with
those from the field test results~is shown in Figure‘ll. It should be
noted that-because of damage to the strain gauges during loading, fhe

7

distribution coefficients from the field test are based on the deflection

‘gauge readings. The theoretical distribution is, however, based on the

beam moments. The field test experiment showed that the change of prestress

force significantly affects the distribution of wheel loads as can be

seen from the widely scattered experimental values. In addition, the
prestress force reduces the coefficient near the loading points. When

the average experimental values are considered, the results have reasonably

good correlation with the theory.
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Figure 10. Details of North Carolina Bridge.
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Figure 1lb. Distribution coefficients for a single truck load, North
Carolina Bridge.

Centerport Bridge (204)

This test bridge is composed of nine precast, prefabricated beam
elements. ItAhas a clear span of 32 ft and a width of 27 ft. These
beam elements were placed side by side, as shown in Figure 12, and con-
nected by dry-packea mortar and a steel bolt at the midspan. Each beam
element had a cross section of 36 in. X 21 in. and an overall length of

35 ft-6 in. The rectangular cross section had two hollow circular cores

of 12-1/2 in. diam.
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The results of the comparison of theoretical and experimental
moment distribution coefficients are shown in Figure 13a and b. The
‘maximum deflection coefficients by experiment turned out to be roughly
10 to 20 percent higher in average than the theoretical deflection
values. Also, the range of the experimental coefficients at or near
the loading positions was roughly 20 percent of their average ordinates.
However, the gxperimental coefficients were in good correlation with the
theoretical moment coefficients per beam. It should be noted that the
effect of the transverse torsional stiffness was so small compared with
the stiffness in the longitudinal direction that the difference Between
the theoretical distribution coefficients corresponding to both torsions

and to longitudinal torsion only was hardly recognizable.
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Figure 13a. Distribution coefficients for a single truck load, Centerport
Bridge. ‘




40
Ny=9 DEFLECTION COEFF.
;50 = 0.3745 —————— QAE%AENT COEFF. PER
= 0.3720 |

c)L(]; 0 Omtmmmenca) EXP . DEFL. COEFF .

—
¢
&
o 2.0 I —2.0
=
0
O T~
v
o
'— v
% 1.0 1.0
= | POSITIONS
o 0.5F 0.5
0.0 —0.0
O 0|0 0|0 OO OO0 0|0 O|O OO O|0O O

Figure 13b. Distribution coefficients for two jack loads, Centerport
Bridge.

Langstone Bridge (202, 204)

This bridge comprises twenty-nine simply supported beams, each of
31 ft effective span. Each beam element, as shown in Figure 14, was
18 in. in depth and 18 in. in width. Sixteen elements were placed side
by side jointed with a dry-packed mortar and transversely stressed with
twelve cables. This bridge has two prestressed concrete 'fascia' beams
at the edges. The bridge was loaded with two bogie loads consisting of
eight solid wheels on two axles. Two' loading patterns were considered:
one pattern yielded a symmetric loading with respect to the middle line

of the bridge, while the other was such that the external wheels were

one ft from the curb.
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Figure 14. Details of Langstone Bridge.

The comparisons of the distribution coefficients as predicted by
applying the articulated plate theory to the properties of the actual
loaded bridge with those obtained in the field test are shown %n
Figure 15. The theory was applied only to the sixteen beam elements
carrying the roadway without regard to the edge beams. The results are
in good agreement with the theory.. Furthermore, when the theory %g

I

based on the single torsional figidity in the longitudinal direction,

thé maximum error was less than 5 percent for the central 1oad£ng,

while 15 percent for the eccentric loading. If both the transverse and
the longitudinal torsional rigidities are taken into account, the maximum

error was found to be around 10 percent for the central loading and

almost none for the eccentric loading.
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Figure 15a. Distribution coefficients for two truck loads, Langstone .
Bridge.
In summarf, the comparison of test.results with theory for all
three bridges shows relatively good correlation of the theory with the
tests. The theory tends to underpredict the maximum bending moment in
most cases by less than 10 percent. 1In some cases, though, the error
was up to 20 percent. However, it is felt’ that the articulated plate |
theory as developed herein has sufficiently predicted the behavior. The
only other major theory considered, that proposed by Arya and others (6 — 8), II
predicted even lower moments than those obtained from the theory used in

this investigation. Thus, the articulated plate theory as outlined in

Chapter 3 was used for the study of multi-beam bridges.
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Distribution coefficients for two truck loads, Langstone

CONCRETE BOX GIRDER ‘BRIDGES

As mentioned earlier, the theory considered for the study of concrete

box girder bridges is based on the théory of prismatic folded plates

developed by Goldberg and Leve (57).

The solution procedure was

developed by Scordelis of the University of California at Berkeley (222).

To indicate the validity of this theory for predicting the bridge behavior,

an analysis was made by Scordelis of the results obtained from the test

of the Harrison Street undercrossing (39).

In addition, studies were




bt

also made of the following California bridges: the La Barranca Way
Undercrossing, the College Avenue Undercrossing, and the Sacramento
River Bridge and Overhead. The details of these studies are presented
by Scordelis (222).

The validity of the theory to predict the behavior of concrete box

girder bridges has beén shown in the development of the theory.

SUMMARY

The validity of the theories proposed for the study of the behavior
for each type of bridge considered in this investigation has been
demonstrated in this chapter and in supporting work (5, 222, 261). Thus,
for the studies of the effect of variations in loading pattern and
bridge geometry on load distribution, the theories as outlined have
been used.

1. Beam and slab bridges: Orthotropic plate theory. However,
harmonic analysis has been used to verify results when studies
are made in ranges extended beyond those studied in field
tests,

2. Multi-beam bridges: Articulated plate theory.

3. Concrete box girder bridges: Theory of prismatic folded plate

structures.
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CHAPTER 3. ANALYTICAL STUDIES ON THE EFFECTS OF VARIABLES

GENERAL

Extensive analytical studies were condqcteé to determine the
theoretical load distribution characteristics of each type of bridge
considered in the program. The studies of these bridggs encompassed the
range of each of the variables that probably will occur in practice in
each bridge type. The initial analytical results provided the transverse

/
variation of the longitudinal Beam moment for numerous transverse positions
of a single wheel, i.e. influence lines were generated. Thus, any combina-
tion of specific wheel positions could be considered for the determina-
tion of maximum beam moments. The use of theselinfluence lines in combina-
tion with all of the loading conditions possible under~fhe loading criteria

yielded the maximum deéign moments.

The direct use of moments as a specification criteria would require

~ significant changes in the design procedures. However, there is a direct

relationship between the beam moment and the width over which a wheel
loaa is distributed. This width is, in fact, used in the current specifi-
cation in the distribution load factor equation, S/D. Thus, results of
the load distribution studies were expressed in terms of D, the width
of bridge over which one longitudinal line of wheels is distributed.
If a satisfactory felationship between all of the variables and this
width can be obtained, a more accurate and realistic distribution could
be obtained without significantly altering the general distribution proce-
dure.

In this chapter, a brief outline of the analytical procedures used

to develop the extensive results is provided. In addition, summaries of
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the results obtained are given. Since there is significant variation in
the analysis and behavior of each bridge type considered, the discus-

sion of each bridge type is treated separately.

BEAM AND SLAB BRIDGES

Development of Theories

There are numerous theoretical methods for analyzing this bridge
type, as outlined in Chapter 1. Each method has special features which
make it more suitable for a particular cross section or loading. How-
ever, after reviewing the available methods for the analysis ofvbeam and'
slab bridges under live loads, two methods were considered primary for
determining the general behavior of this bridge type. These methods, as
mentioned previously, are orthotropic plate theory and harmonic analysis,
The reasons for this selection were:

1, These two thgories seem to predict the load distribution more
accurately than other methods for the entire range of geometries,
configurations and materials used (82, 191).

2. They can be used to express the load distribution properfies
of a bridge as a function of only a few generalized dimension-
less variables so that investigation of a large variety of
bridge properties becomes feasible. Both theories assume the
beams ana slab to be replaced by a contiinuous mediuﬁ, which
eliminates the requirement for knowing the specific bridge
beam geometry in the theory formulation. Most other theories

require advance knowledge of beam geometry, bridge dimensions,

etc.
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3. Parameters used in one method can be expressed in terms of

the parameters in the other. Thus, one method can readily be
compared with‘the other as well as with field test results.

Extensive comparisons of theoretical results and field test results,
as outlined in Chaptér 2, have already shown that the plate theory can
more accurately predict the behavior of the specific bridges considered.
However, initially, analytical results from both of the theories were
obtained to determine if any significant difference in the behavior of
bridges as predicted by the theories could be seen. These comparisons
were used particularly in the variable ranges where field“test data were
not available to verify the theories.

Orthptropic plate theory and harmonic analysis have been used ex- 1.
tensively and detailed developmenf of the theories ig given in numerous
references (28, 29, 76 — 78, 88, 199, 245). Thus, 6n1y the basic equations
are presented herein. However, a more extensive review of the develop-
ment of the theoriés is presented in the above references and in Appendix A

' for the orthotropic plate theory.

Orthotropic Plate

Orthotropic plate is the common name for an orthogonally-anisotropic
plate. This is a plate that has elastic properties that are uniform but 3
different in two orthogonal directions. In bridges, this is primarily
due to the different moduli of elasticity and different flexural and
torsional momenté>of inértia along the major axes of the bridges.
The géverning differential equation for orthotropic plates has been
known and extensively used for many years. Many methods héve been devised

for the solution of this basic equation. For this investigation, the
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approach as originated by Guyon (67, 68) and expanded by Massonnet (130 —
132) was used.

In this method of analysis the folloWing assumptions, in addition
to those of the thin plate theory and small deflections, have been made:

1. Representation of the structural system with an "equivalent"

orthotropic plate with uniform thickness in two orthogonal

directions is sufficiently accurate. This is equivalent.to
stating that the effect of longitudinal edge stiffening is

negligible in the overall behavior of the bridge.

2. Poisson's ratio is equal to zero.

3. All connections can transfer the full effects of moment ,

torque and shear.

4, In a beam and slab bridge, spacing of the beams as well as the

diaphragms is uniform.

The first of these assumptions has been verified by experimental
work and field test results. In'effect, this permits the change of the
beams to an equivalent continuous medium which is then considered as
part of the slab. Details of behavior comparisons between predictions by
theory and field test results were presented in Chapter 2.

The second assumption is theoretically not correct. Poisson's ratio,
if considered, tends to increase the value of the maximum moment coeffi-
cient., However, this increase is usually small and can be neglected.

For beam and slab bridges, thi§ effect was found to be within 2 to
3 percent if Poisson's ratio is assumed to be 0,15 for concrete (199).

The third assumption holds true if the connections between the

various elements of the bridge are rigid. For semirigid or flexible
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connections, as are most bolted or riveted joints, a reduction of the
corresponding rigidities is necessary. Sanders and Mumse (210), for
example, suggested that the effective rigidity of diaphragms of railroad
bridges be taken as 25 percent of the computed value because of flexi=-
bility of the connections at the beams. Similar reductions would be
applicable in highway bridges with steel diaphragms.

| The fourth assumption is generally true with respect to current
practice. This assumption relates to the first in that generally a
nonuniform beém spaciﬁg is similar in effect to edge stiffening. If
the spacing is nonuniform the total stiffness can be spread uniformly
across the cross section with sufficient accuracy.

Considering these assumptions, the behavior of the plate satisfies
the following fourth order linear differential equation (245). The
equivalent plate used has the same average flexural and torsional stiff-
nesses in the two orthogonal directions as the actual bridge strﬁcture

being studied. So,

04w 84w R
D —j + 20 — 5+ D, 5 = PG y) (1)

B 3 3
y y

o) )
X X
where x and y are the axes of the coordinate system used as in Figure 16,

o/

and
DX = EIx’ flexural rigidity per unit width in x direction,
Dy = EIy’ flexural rigidity per unit width in y direction,
H=D _+ D__, sum of orthogonal torsional rigidities,
Xy VX

IX = moment of inertia per unit width in x direction,

Iy = moment of inertia per unit width in y direction,

E_ = modulus of elasticity in x direction,
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Figure 16. Bridge deck nomenclature for orthotropic plate theory.

Ey = modulus of elasticity in y directidn,

ny = torsional rigidity per unit width in x direction, '\’
Dyx = toersional figidity pef unit width in y direction, and
p(x) = function depending upon live load on bridge.

If the Levy series is used to determine the solution of the differen;
i

tial equation for the bridge with a concentrated load acting at midspan

at a distance v from the centerline of the bridge, the deflection of the

bridge is expressed in the following form:
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[oe]

m w .3 mTik
= ) e . mTix
W Zl6 D «/2 (1 + Q) (mdﬂ.) F(y, v, m, , C(.)Sln T (2)
m=1 y _,
where
D _+D
q= 2L X , a relative torsional stiffness parameter,

2yD D
Xy

D

= gf Y 6§ » @ relative flexural stiffness parameter,
y

F(y, v, m, 8, @) = a function dependent on bridge parameters,
location of deflection determination, location of concen-
trated load, and the boundary conditions of the bridge, and

Hm = Fourier constant for the concentrated load.

In the above equations defining 0O and q, it can be seen that 6, the
relative flexural stiffness parameter, primarily depends on the aspect
ratio of the bridge (W/L) for its sensitivity rather than the ratio of
the flexural stiffnesses. For example, if the cross-sectional geometries
remain the samé and the width doubles, the parameter 8 doubles. On the
other hand, doubling the longitudinal stiffness (Dx), the parameter 8 is
only increased by 19 percent, which is one-fifth as much. It can also
be seen that the aspect ratio of the bridge has no effect on the rela-
tive torsional stiffpess parameter, a; Thus, if the cross-sectional
geometries of the bridge remain the same, the parameter o is unchanged
and, henge, is only a measure of distribution due to local torsional
conditions in the bridge.

If the load on the bridge was a concentrated line load acting
transversely on the bridge at midspan instead of the concentrated load
as represented in the equation above, the deflection of the bfidge can

be expressed in the following form:
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o H .
_ m_ L 4 . mhx .
w = E WDX (ng sin == . (3)

m=1

The longitudinal moments in the bridge are found by differentiating
either deflection equation twice with respect to x and multiplying by

the longitudinal stiffness. Thus,

M =-p 2% | (4)

The second derivative of Equation (2) results in the series equation

neceséary to find the longitudinal moment at any point on the bridge.

The second derivative of Equation (3) results in the series equation )
for the mean longitudinal moment at any transverse section of the

bridge. The moment distribution coefficient for this concentrated load

can be found by taking the ratio of these two series equations. Thus,

o H i
n . mTix
Oﬂ‘;_l - F(y, v, m, 8, )sin =N
K = T ‘ (5)
m . _ WK 3
M2 (1 + Q) 5 5 sin =7 .
m=1 m

where Km is the moment coefficient for the concentrated load at midspan.

Harmonic Analysis \

As mentioned previously, the second method of analysis considered
was the harmonic analysis. 1In this method the bridge is assumed to
consist of a continuous member supported by a set of elements in the
longitudinal direction. In this respect, the method is quite similar
to that developed by Newmark (152).

The Newmark method was developed for noncomposite beam and slab
bridges and the torsional rigidity of the beams is neglected. Harmonic

analysis on the other hand takes into account composite action of beams
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with the slab. The torsional rigidity of the beams is also included
in the formula developed. This comparison is made to indicate only
thé differences between the two methods.

The harmonic analysis method was developed by Hendry and Jaeger (77)
and was found to correlate with experimental results by independent re-

N

searchers (86). However, as mentioped in Chapter 2, the correlation
between test results and the orthotrdpic plate solutions was found to
be better. For this reason, only the briefest review of the harmonic
- analysis is given here. A detailed discussion of the theory ié given
"in References (5), (65) and 0.

The assumptions in this method are basically the same as those
used in the orthotropic plate method. The major difference in assump-
tions between the methods is that the effect of torsional rigidity in
the transverse direction is neglected.

Harmonic analysis is used to compute bending moﬁent coeffiéients by
a distributioﬁ of the individual harmonics in the Fourier series expansion
for concentrated loads acting on beam and slab bridge decks. The applied
load is first distributed to the individual.beams by assuming that the ..
deck slab is a continuous beam over nondeflecting supports (the actual
beams). Expressions for shear, moment, slope, and deflection for each
beam are found by successive integrations of the load series. By using
these expressions, transverse force equilibrium and the transverse
slope-ﬂeflection equations, the‘ioaq influence.coéfficients, Pijk’ can
be found (77) which define bgnding moment according to the following

expression (65).
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n [es)
= 2L S 1_ .o M L MK
Mi— 5 ; [Z 2Pij sin == sin = )VJ (6)
m j=1
where i refers to the beam at which the moment is to be‘found,

j refers to the loaded beam,
k refers to the harmonic term,
Vj refers to the concentrated unit load reaction on the jth
beam when the beams are nondeflecting,
N is the number of beams, and
L is the span length of the bridge.
Figure 17 illustrates the above terminology.
According to the definition of the moment coefficient, the expres-
sion for the coefficient at midspan due to a concentrated load acting at

the midspan can be written as (65):

N o) ‘
_ 8N S 1_
1702 2_[(1{—1 3. K ,Pijk) VJ] 0

where Ki i1s the bending moment coefficient for the ith beam. ‘ -

In the above equation, P, is a function of the number of beams,

ijk
the transverse and loqgitudinal flexural stiffnesses and the longitudinal
torsional stiffness. Thé parameters associated with the determination
of the Pijk values can be directly related to the stiffness parameters,
0 and «a, used in the orthotropic plate anaiysis. Thué it is possible
to compare the two solutions for‘any bridge with the use of these two
parameters.

Harmonic analysis predicted higher coefficients for bridges having

few beams, but as the number of beams increased, harmonic analysis tended

to predict lower coefficients. From the field test comparisons (Chapter 2)

and the generally unconservative results found from the harmonic analysis
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in a rather extensive study of the variation of beam moment with varia-
tion in the bridge parameters, it was felt that in the final analysis,
results of analytical studies used to generate design criteria should
originate from the orthotropic plate analysis. The results, it was
felt, would be more realistic over the entire range of parameters con-

sidered,

Range of Parameters \

The maximum value of Km at midspan for a concentrated load that is
not placed at the midspan of the bridge is alﬁays less than the K.m value
. ‘
for a load at the midspan of the bridge. Thus, when multiaxle loads are
considered, the Ky values for the midspan load are used, and the moment
at any point on the transverse section at midspan is Km multiplied by
the mean static moment of all axles. This produces slightly conservative
design moments, but this was preferable to introducing an additional
parameter defining the longitudinal positions of the actual concentrated
loads.

In the determination of a Km value, it was estimated that using the
first nine terms of the series yields at least 97 percent of the maximum
moment coefficients for a single concentrated load. This percentage was
based on studies of selected ranges of the variables with up to fifteen
terms (65). However, other investigators have found that if only the
first term of the moment series was used, the resulting value yielded
oﬁly 85 to 90 percent of the maximum moment coefficient (67, 68, 144, 199,

210). Thus, the use of nine terms was felt to yield results of sufficient

accuracy, since in nearly all other instances, conservative assumptions to

maximize effects were used.




However, it should be noted that, because of rapid convergence,
the deflection coefficients can be determined with sufficient accuracy
using only the first term of the deflection series. This var;ation in
rate of convergence between the moment and deflection coefficient series
can lead to erroneous comparisons if 6n1y the first term of the respective

series is used. The deflection coefficients would be quite accurate, but

as mentioned previously, the moment coefficients would be 10 to 15 percent
B N

L
below the tru. value.

In the development of the Km influence lines for concentrated loads
acting at the midspan of the bridge, seventeen equally spaced points on
the transverse section at midspan were considered. Making use of symmetry,
nine moment coefficient curves were needed for each combination of the
stiffness parameters, 8 and a.

Rowe (199) stated that the range of the flexural stiffness paraheter
0 is about 0.3 to 1.13 for slab bridges, 0.5 to 1.2 for concrete T~beam
bridges and 0.3 to 1.0 for box beam bridges. A study of standard bridges
(281, 295) and of a number of typical bridge plans furnished by various
state highway departments shows that the value of 6§ lies in a range from '
about 6,4 to 1.25 for all types of beam and slab bridges. Thus to en~
compass all of the values of the parameters currently found and.to con-~
sider possible changes in sections, the range of 0 used in computations
wés 0.25 to 1.25 with an interval of 0.25,

Rowe (199) also stated that the range of the torsional stiffness
parameter ¢ is from about 0.05 to 1.00 for the common bridges. The
parameter for standard Bureau of Public Roads bridges (281, 222) was

estimated to be from about 0.045 to 0.30. To include this range, the
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load distribution was determined for values of the JE ranging from 0.0
to 1.0 at 0.2 intervals. These values of .,/a correspond to o values of
0.04, 0.16, 0.36, 0.64, and 1.00.

It can be seen that there will be 9 x 5 X 6 or 270 influence lines
necessary to determine the Km value for a load at any position at midspan
for any of the 30 combinations of the stiffness parameters. In reality,
however, not all of these combinations are possible because of design

or physical limitations.

Loading System

Standard AASHO truck loading was used in the analysis for all bridge
types. The criteria for its uée are given in detail here for beam and
slab bridges and are referred to in the discussions for other bridge
types.

The current specifications (279) require in Section 1.2.6 that the
standard truck "'shall be assumed to occupy a width of 10 ft. These loads
shall be placed in design traffic lines having a width of WL =.WC/N cecos
The lane loadings or standard trucks shall be assumed to occupy any
position within their individual design traffic lane (WL), which will
produce the maximum stress." In addition, the number of 1apes is speci-
fied for various roadway widths, with the minimum width about 10 ft and
the maximum at 15 ft. However, for all practical purposes, it is im-
possible to have ﬂormal lanes of less than 12 ft. Thus, for this study,
several modifications have been made in these requirements to make the
loading more consistent with the actual maximum loading conditions°

Congiderable discussion has occurred in the AASHO Bridge Committee over
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a number of years concerning loadings and the loading criteria used in
this stﬁdy seem to be a conservative consensus of the proposed changes
considered by the Committee. In addition, the criteria are similar to
the loading system used in the development of the distribution procedure
for composite box girders in the AASHO Specifications (279), Section 1.7.104,
particularly conccerning the number of lanes in a roadwéy.
The criteria used for this study differ from the current requirements
in that:
1. the number of design traffic lanes is the whole number of 12-ft
lanes which can be placed within the rbadway Qidth, and
2. the 12-ft lanes are placed anywhere transversely across the
roadway cross section to produce maximum stress, altﬁough
they may not overlap.
Furthermore, the standard trucks are assumed to be centéred in a 10-ft
width which may be positioned for maximum effect anywhere within the
12-ft lanes. The maximum number of design traffic lanes is shown in
Table 3.
TABLE 3

NUMBER OF DESIGN TRAFFIC LANES

BRIDGE WIDTHa ROADWAY WIDTH NO, OF LANES
W, FT W, FT N
c L
27 to 38.9 24 to 35.9 2
39 to 50.9 _ 36 to 47.9 3
51 to 62.9 48 to 59.9 4

63 to 74.9 60 to 71.9 5

%Based on a 1.5 ft curb width.
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Due to the different requirements used in placing the actual driving
lanes within the curb to curb dimensions of a bridge, the 12-ft lanes
were placed within this width without consideration of lane lines, but
placed so as to produce maximum effects., Current practice, in some
instances, reQuires safety or shoulder lanes which, under these criteria,
produce more driving lanes than actually are used. However, considering
the tremendous growth in traffic, the use of the full roadway width was
considered a realistic conservative assumption. In any case, only as
many 12-ft lanes were loaded as was necessary to produce maximum moment.

There were two conditions considered in the placement of the 12-ft
lanes. The first consideration was the arrangement of the loads to
produce maximum eccentricity with respect to the centerline of the bridge
(or the eccentric loading case). This arrangement developed maximum
moments in the exterior girders of the bridge. This was accomplished by
arranging the 12-ft lanes side by side with the outside edge of the
first lane 1.5 ft from the edge of the bridge (it was assumed that'the
curb width was 1.5 ft). - The first 10-ft truck width was then positioned
in each of the adjacent 12-ft lanes with an eccentricity of 2 ft. There-
fore, the first wheel load was 3.5 ft from the edge of the bridge and,
thus, 2 ft from the edge of the curb as specified by the.AASHO Specifica-
tions (279). Arrangements of wheel loads for eccentric loadings are
shown in Figure 18,

The second consideration was the arrangement of the loads to produce
minimum eccentricity with respect to the centerline of the bridge (or

the central loading case). This arrangement developed maximum moments

in the center girders of the bridge. There are two possible arrangements

J
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Figure 18. Loading cases considered for various bridge width-central
loading cases. '

that can be used to produce this effect. The first is with one 12-ft
lane centered over the bridge centerline with the truck centered in this
lané. The adjacent 12-ft lane would have the 10-ft truck widths posi-
tioned eccentrically 2 ft towards the centerline of the bridge. The
second arrangement is with two 12-ft lanes placed side by side on the
centerline of the bridge. The 10-ft truck widths would be positioned
eccentrically in the 12-ft lanes, 2 ft towards the centerline of the
bridge. Arrangements of wheel loads for central loadings are shown in

Figure 19,
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Figure 19. Loading cases considered for various bridge widths, eccentric
loading cases. '

Maximum Load Factors

To determine the maximum effect in each girder or beam, moment
coefficient curves for seventeen positions across the width of the
bridge were obtained using orthotropic plate theory for all combinations
of stiffness parameters. When finding the moment curve for a particular
concentrated load that does not fall at one of the seventeen positions,
linéar interpolation was used. The moment coefficient curve for a truck
or combination of trucks is formed by summing the moment curves for each
concentrated load position and dividing by the sum of the number of
wheei loads. Thus, the average moment Qill remain unity. The moment
coefficient curves are output for each combination of 12-ft lanes until
the maximum number of lanes is reached for each possible combination.
Table 4 shows the widths of bridges used for various numbers of lanes.
Although the influence lines are nondimensional, the use of actual truck

loading dictates the use of actual bridge widths for loading considerations.
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TABLE 4

BRIDGES CONSIDERED FOR LOAD FACTORS

NO. OF LANES

2 3 4 6
28 39 51 75
‘W 33 41 53
(fe)
37 45 57
49 61

In conjunction with the determination of moment coefficient curves
for each load combination, the value of D, the width of bridge over
which one longitudinal line of wheels is distributed, was also obtained.
These value$ were based on the assumption the bridge had eight girders
or beams. Thus, the moment coefficient at any beam is:v

Km8 = % (K.m + 4Km + Kﬁ ) (8)
i-1 i i+l
where the Km terms are the values from the seventeen positions on the

influence curves. The corresponding D value is found from the following
\

equation.
_ W
D= T% (9)
w m8
where W = width of bridge,

Nw = number of longitudinal lines of wheels,

D = equivalent width of bridge needed to support one line of
wheel load as used by the current AASHO Specification in
the Load Factor equation, L.F. = S/D, in which S is the

)

spacing between girders.
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In the calculation of Km, the assumption of eight beams generally
leads to a conservative value since bridges normally have fewer beams.
Since the Km value per beam is found by integrating under the Km value
per foot curve, the use of ng yields a higher value than that based on

the actual number of beams because of the concentrated effect of the peak

~in the moment coefficient curve. If there are more than eight beams, the

moment coefficient petr foot and per beam curves are sufficiently close
together to cause negligible difference.

The minimum D value from all possible load combinations for a
particular bridge width and stiffness parameters, 6 and o, is the theoretical

value that was used to determine a design criteria. These theoretical D

values for various bridge widths for different combinations of stiffness

parameters, 0 and Q, are shown in Table 4A. The critical loading case is
also indicated in this table.

The use of two loading criteria (one for maximum central loading and
one for maximum eccentric loading) yields two critical values of D, one
for each criterion. For the central loading case, the critical beam is
at the center of the bridge, whereas for the eccentric loading case, it
is near the edge of the bridge. In the latter case, the critical
girder could be either the exterior girder or the first interior girder,
depending upon the number (or spacing) of beams. Tt was felt, however,
that the design should be based on the absolute critical case since the
loading case which is critical varies with the bridge stiffness parameters.
Thus, to determine different criteria for interior or exterior girders
requires almost a complete analysis of a known bridge geometry. In ad-
dition, the difference between the two critical cases was not great

enough to warrant the more complicated procedure.
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TABLE 4A
THEORETICAL RESULTS FOR BEAM AND SLAB BRIDGES VALUE OF D IN EQUATION:
LF = S/D
\} W, WIDTH OF BRIDGE IN FT (Nw, NO. OF WHEEL LOADS)
78 T3 37 19 7T %5 %9 51 53 57 51 75
i a (4) (4) (4) (6) (6) (6) (6) (8) (8) (8) (8) (10)
0.25 0.00 5.66 5.23 5,16 5.17 5.20 5.27 5.13 5.10 5.08 5.08 5.12 5,04
0.04 5.97 5.78 5.82 5.87 5.88 5.72 5.68 5.68 5.70 5,76 5.65  5.63
0.16 6.38 6.59 6.85 6.23 6.25 6.34 6.49 6,17 6.18 6.24 6.32  6.10
0.36 6.60 7.12 7.55 6.33 6.46 6.73 7.01 6.24 6,36 6.54 6.75 6.16
0.64 6.71 7.42 7.97 6.38 6.58 6.95 7.32 6.27% 6.43 6.71 6.99 6.189
1.00 6.78 7.61 8.25 6.408 6.64 7.08 7.52 6.292 6.48 6.81 7.14 6.193
0.50 0.00 5.8l 5.53 5.44 5.42° 5.43 5.47 5.41 5.36 5.33 5.30 5.32  5.25
0.04 5.89 5,70 5.63 5.63  5.64 5.67 5.57 5.53 5,51 5.50 5.53 5,45
0.16 6.06% 6.07 6.10 6.09° 6.07 5.97 5.95 5.95 5.95 5.95 5.90 5.86
0.36 6.17% 6.47 6.62 6.15° 6.24 6.29 6.36 6.03% 6.16 6.20 6.24 6,032
0.64 6.282 6,79 7.08 6.20° 6.36 6.54 6.71 6.087 6.26° 6.40 6.53 6.06°
1.00 6.38% 7.05 7.45 6.25° 6.46 6.72 6,98 6.12% 6.31% 6.55 6.75 6.097
0.75 0.00 5.13% s5.52% 5.86 5.58% s.64® 5.73  s5.74  5.49% s5.54% 5.66% 5.65 5.62
0.04 5.21% 5.63% 5,92 5.63% 5,717 5.83 5,86 5.547 5.60° 5.73% 5,73 5,697
0.16 5.41% 5.89% 6.09 5.76% 5.86% 6.00 5.99 5.65° 5.73% s5.90% 5,96 5.77°
0.36 5.62% 6,187 6.33 5.88% 6.02% 6.15 6.17 5.76% 5.87° 6.09° 6.12 5.85°
0.64 5.82% 5.43 6.61 5.99% 6.16° 6.30 6.39 5.86% 5.99% 6,23 6.29 5,927
1.00 5.98% 6.64 6.88 6.08% 6,277 6,45 6.59 5.94% 6.09% 6.35 6.45 5.97°
1.00 0.00 4.647 4.88% 5.15% 5.297 5.29% 5,302 5,37% 5.20° 5.20% 5.23% 5.29% 5.44°
0.04 4.73% 4.98% 5.26% 5.35% 5.367 5.40% 5.48% 5.25% 5.267 5,317 5.39% 5,487
0.16 4.93% 5.24% 5,567 5.49% 5.547 5.62% 5.74% s5.38% 5.42% 5.50% s5.61% 5,582
0.36 5.18% 5.56% 5.92% 5,667 5.73% 5.88% 6.04% 5.527 5.59% 5,732 s5.87% 5.68°
.0.64 5.41% 5,877 6.27% 5.79% 5,917 6.12% 6.21 5.65° 5.74% 5,932 6.11% s5.77°
1.00 5.61% 6.14% 6.5 5.91% 6.05% 6.29 6.36 5.762 5.87% 6.10% 6.327 5.85°
1.25 0.00 4.42% 4.58% 4.79% 4.91? 5.04% 5.15% 5.16% 5.06% 5.05% 5.06%° 5.10%° 5.28°
0.04 4.49% 4.66° 4.88% 5,00° 5.137 5.22% 5.24% 5,10° s5.,10% 5,122 5.17% 5,342
0.16 4.65% 4.86° 5.10% 5.247 5,372 5.40% 5.44% 5,217 5.23% 5,287 5.35% 5.45°
0.36 4.86% 5.13% s5.41% 5.50% s5.58% 5,637 5.70% 5.34% 5.39% 5.48% 5.57% 5,552
0.64 5.08% 5.,42% s5.96% s5.64% 5,717 5.85% 5,977 5.47% 5,54 5,67 5.81°% 5.64°
1.00 5.29% 5.70% 6.06% 5.76% 5.86% 6.05% 6.20 5.59% 5.67% 5.852 6.022 5,738

4Controlled by

central load%ng; other values controlled by eccentric loading.

In nearly every case

where central loading controlled, the minimum

D value (or maximum Km) was obtained in the central girder with all lanes

loaded.

cases the critical value of D was obtained in the exterior girder with

However,

for eccentric loading, although in the majority of the

all lanes loaded, there were numerous cases where partial loadings
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controlled. Iﬁ these cases, the difference between the D value for the
partial 1oading-case and the fully loaded cases was very small. 1In

a very few cases where eccentric loading controlled, the critical K.rn
(or D) value was found slightly inside the edge of the bridge which, if
there were a number of girders, could lead to the first interior girder
being critical. In each of these later cases, the critical conditions
always occurred with all lanes loaded.

The reduction of the data in Table4A to a useful design criteria
will be treated in Chapter 4. However, there are many observations that
should be made here as to the meaningfulness of this data. There are four
principal variables:

1, &, the relative torsional stiffness parameter,

2. 8, the relative flexgral stiffness parameter,

3. W, the actual width of the bridge, and

4, Nw’ the number of longitudinal lines of wheel loads.

First, it can be seen that as o increases the value of D increases, an
indication that load distribution characteristics improve. Secénd, as

0 increases, the value D decreases, indicating a lessening of the load
distribution characteristics. Third, as the bridge width increases for

a specific number of wheel loads, the distribution characteristics improve.
Fourfh, as the number of longitudinal lines of wheel loads increase,

the load distribution characteristics lessen.

The first observation can be explained in the following manner.
Comparing a box section beam system to a steel WF type section system
supporting similar slabs where the Ix and Iy values are the same, the q

value for the box type section is larger due to the increase in the torsional




stiffness of the beams. Thus, with respect to load distribution, since
the box type section is torsionaliy stronger, the lateral stiffness.of
the plate between the beams is greater, This improves the load distribu-
tion characteristics as is demonstrated by tﬁé data in Table 4A. The
second observation can be explained by noting that as 0 increases, Iy
decreases if other variables remain theysame. Thus, the lateral stiff-
ness in the transverse direction is less, reducing the load distribution
characteristics of the bridge. The third observation is rather obvious
considering ;hat the total width of the bridge is increased to support
the same given total static moment. The fourth observation can be ex-
plained by considering the fact that as the number of wheels increases
alopg with the width of the\bridge, the concentrated wheel loads are
relatively closer to the more critically loaded beam.. As the spacing

of the loads becomes relatively closer, it can beAseen that the totalb
moment on the beam increases siﬁce the influence line.for the beam is
curved in the vicinity of thelbeam. Howe;er as the bridge becomes in-
creasingly wider, this effect graduélly.diminishes.

The wvalue of D 1ist5d in Table4A couldtactually be used in the
design of highway bridges. However, to use this table, the user must
employ a three;way interpolation between the three parameters involved,
i.e,; the bridge width, the flexural stiffness parameter 8, and the
torsional stiffness parameter Q. 6f course, this is highly impractical
and the reduction of this table.to a more usable form is outlined in

Y
\

Chapter 4. ~
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MULTI-BEAM BRIDGES

Development of Theory

The analy/sis of multi-beam bridges used in this study was basically
an exten&‘:ion o\f the work using articulated plate the‘ory L)mdertaken by
Arya, Khachaturian, and Siess (6 — 8). ‘ In the method as presented by
Arya, the solution is found by solving the simultaneous equations found
through satisfying the compatibility equations of the structural system.
The effect of transverse prestressing is not considered in this analysis.

The extension of this method of analysis by Watanabe (é__6_l_) uses t»he
same basic derivations as presented by Arya. A summary of the extension of
the theory is presented in this section with a more detailed development in

Appendix A.. The significant difference in the method development by Watanabe is

that the equilibrium of the system is expressed in terms of the deformations and the

limit of these expressions is taken as the element size shrinks to zero. This dif-

ferential equation is then similar in many respects to the orthotropic plate equa-
tion except that the term representing the transverse stiffness is absent and the |
equation includes a term for the torsional warping stiffness. Therefore, the solution

will satisfy the following differential equation:

84w 54w 86w .
p “L.4x ~-Cc - = P(x) (10)
2
x ax4 ax2 oy % 6x43y2

where Dx’ H, P(x) have the same definition as in the previous section

and CX = torsional warping stiffness per unit width. The basic dimensions
as used for multi-beam bridges are similar to those used in beam and slab
bridges as shown in Figure 16. Using the Levy series to determine the
éolution of the differential equation for the bridge with a concentrated
load acting at a distance v from the centerline of the bridge at midspan,

the deflection of the bridge can be expressed in the following form:
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W=D 16 7 G TG Ve ms 8 g)) (11)
= +
m=1 (ny Dyx)
where
¢ = 2T 5—-fff5—— , a combined flexural-torsional stiffness
Xy yx
parameter, and
Cx mTT, 2
gm = /1 + 5——f:ﬁ5—- (E_) , a torsional warping parameter.
Xy VX

The longitudinal moments in the bridge are then found by differentiating
this equation twice with respect to x and multiplying by the longitudinal
stiffness (Equation (4)). The moment coefficient for a concentrated
load at midspan may be found by taking fhe ratio of the moment as deter-
mined by Equation (4) and dividing by the moment caused by the same load

distributed uniformly in the transverse direction. Thus, ,

[os]
m . mTix
¢TT§ F(y’ v, m, ¢, g ) sin L
=1 mgm» ™
K = = = . (12)
m
B osin mTx
) L
m=1 m

Parameters and Loading System

Moment coefficient curves were calculated using the integration of
the above equation for various numbers of beams; values of ¢, and values
of Cx' From the results of these calculations, it was found that the
number of elements involved in the bridge did not greatly affect (maximum
difference of approximately 5 percent) the value of the moment coeffi-

.

cients per unit width. Therefore, sixteen beams were chosen for design

-

reference. Furthermore;, as in the case of beam and slab bridges, the
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determination of K.m was made using the first nine terms of the Levy
series solution. Since this series for multi~beam bridges converges at
least as rapidly as the béam'énd slab series, the computed K.m value is
within about 1 to 2 percent-of the true value.

1t Was also found that if the torsional warping factor (CX) was
included, there was a small difference of 3 to 4 percent in the moment
coefficient values when compared with similar values for a CX value of
zero. This makes the constant & equal to 1.0. The results are, there-
fore, conservative for open sections where the torsional stiffness is
increased by resistance to torsional warping.

The values of ¢ used in aetermining the moment coefficients were:
¢ = 0.1, 0.3, 0.5, 0.7, 1.0, 2.0.

The widths of bridges chosen for the analysis were the same as those
listed for beam and slab bridges, except that bridge widths over 53 ft
were not included.

The values of D were calculated for the same truck loading combina-

tions as listed in the previous section and shown in Figures 18 and 19.

Maximum Load Factors

Table 5 lists the results of the computations for the minimum D
value for each bridge width and for ¢, the flexural torsional stiffness
parameter value. This minimum value gives the maximum load factor.

It can be seen in Table 5, that for multi-beam bridges, the

following effects on the load factor or value of D were obtained.
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TABLE 5
THEORETICAL RESULTS FOR.MULTI-BEAM BRIDGES VALUE OF D IN EQUATION:
LF = S/D .
W, WIDTH OF BRIDGE, FT (NW, NO. OF WHEEL LOADS)
75 33 37 39 ) %5 %9 5T 53

@ (4) (4) - (&) (6) (6) (6) (6) (8) (8)
0.1 6.85 8.00 8.82% 6.44  6.76  7.35% 7.90% 6.32  6.55
0.3 6.32 7.18 7.81% 6.24  6.48  6.96  7.27%  6.10 6.29
0.5 5.85 6.47 6.98  6.03  6.22  6.57  6.82% 5.89  6.02
0.7 5.46 5.91 6.31  5.85  6.00 ' 6.24  6.43  5.69 5.81
1.0 5.03 5.34 5.62  5.64  5.75  5.88  5.95  5.46 5.55
2.0 4.40 &.54 4.72- 4.78° 4.93° '5.10° 5.25  5.08 5.14

Note: TUnless indicated, central loading with all lanes loéded controlled.

l.

%Eccentric loading, all lanes loaded, controlled.

bCentral loading, two lanes loaded, controlled.

value of D increases (lower load factor and better distribution).

As the value of ¢ decreases, for a given bridge width, the

Thus,

if the cross~sectional properties of the bridge are constant, as the

length of the bridge increases the value of D increases since ¢ would be

inversely proportional to that length.

2.

improves (higher D value) as the bridge widens.

For a given value of ¢ ‘and number of lanes, the distribution

This is obvious since

there is more total longitudinal stiffness to support the same statical

moment.

The effect is more significant at lower values of ¢.

The critical loading case is shown in Table 5 and in the majority of

cases considered was the central loading case with all lanes loaded.

~
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However, there were several instances where the full eccentric loading
controlled with the exterior beam critical or where a partial central
loadiné controlled. 1In this latter case, ;he difference between the
critical partial and full loading cases was very small. As indicated
for beam and slab bridges, it was felt that the use of the absolute
critical case for design, rather than the consideration of the critical
beam, and loading criteria, would lead to a satisfactory design without
the complications of including these factors.

As stated previously, the information presented in Table 5 can be
used to design multi-beam bridges, but does not readily lend itself to
such use. A reduction of this raw data to a more usable form is given

in the next chapter.

CONCRETE BOX GIRDER BRIDGES

Development of Theory

The analyéis of the concrete box girder sections was carried out
using a modification of the theory of prismatic folded plate structures.
The use of this theory for analyzing concrete box girder bridges was
developed by Scordelis of the University of California at Berkeley (222).
The direct stiffness solution was developed using a folded plate harmonic
analysis based on an elasticity method (41). Scordelis used elastic
plate theory for loads normal to the plane of the plates and two-dimensional
plane stress theory for loads in the plane of the plates.

Using these theories, a computer program, MUPDI, was developed by
Scordelis. This computer program can be used to analyze box girder

bridges, with and without intermediate diaphragms, under concentrated or
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distributed loads anywhere on the bridge. the progrém was used as the

Basis for studying the parameters affecting the bridge behavior. The

basic program, however, was altered slightly so that the format was

cé;patible with the Towa State computer system. In addition, some
subroutines were eliminated or changed to compute only those quantities
needed for this investigation. A subroutine was also written to compute,,
the equivalent longitudinal beam moments and the corresponding bending
moment coefficients.

The basic assumptions used in the analysis are as follows (222).

1. The elements of the box girder are rectangular plates of uniform
thickness and are made of an elastic isotropic and homogeneous
material.

2, The force deformation relationships ére_linearly elastic so
that superposition is valid,

3. The bridgé is simply supportea at the ends.

4, Diaphragms are considered to be nondeformable in their own
plane, but perfectly flexible normal to their own plane,

5. Stresses énd displacements in a plate element due to normal
loading shall be determined by\classical thin plate bending
theory as applied to plates supported on all sides.

6. Stress and displacements in a plate element due to in-plane

loading shall(be determined by classical thin plate theory

assuming a condition of plane stress.
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Parameters and Loading System

L

For beam and slab bridge and multi-beam bridge, the analysis'was
carried out using a simple variation of only one or two parameters.
However, due to the nature of the method of analysis used for the solu-
tion of the box girder broblem and the complexity of the cross section,
each variable had to be specified independently. The major variables
studied for the analysis of box girders were:

1. spanllength,

2. overall width,

3. overall depth of the cross sectioﬁ,

4, number of girders (vertical longitudinal plates),

. 5. number of transverse diaphragms,

6. thickness of webs and flanges, and

7. edge conditions.

To estimate the ranges which must be considered for each of these
variables, the information on their ranges obtained by Scordelis (222)
from two hundred California box girder bridges was used alongwith additional
information secured from the California Departmentiof Highways énd the
Iowa State Highway Commission. In summary, the variables ranged as
follows:

1. Spén length: The span lengths of the majority of simple span
box girder bridges fall within the range of 50 to 110 ft., Spans of 50 fe,
80 ft, and 110 ft were considered in the analysis‘to incorporate'the
entire range. 7 |
.2, Overall width: Overall widths considered herein correspond to
- the widths studied for the beam and slab and multi-beam bridges, except

that the narrowest width (28 ft) was not considered.
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3. Depth of cross section: According to the sources cited above,
the depth of the bridge is related to the sﬁang The depth/span ratio
ranges from 0.05 to 0,07 for reinforced concrete bridges, although a
prestressed box girder bridge may have a ratio as low as 0,045. 1In
this study, depth/span ratios of 0.05 and 0.07 were considered.

4, Number of girders:  The number of girders equals the number of
cells plus one. The number of cells and fhe.width of the cells were
chosen such that the transverse spacing between the vertical webs of
the girders was Within‘the normal design range of from 7 to 9 ft. There-
fore for the widths of bridges studied, bridges with 4,.6, and 8 ceils
were included.

5. -Number of diaphragms: The geometries considered included
bridges with no diaphragms and with one or two diaphragms. Since the
most common design is one with no diaphragms, this case was studied in
depth. Six combinations af length and depth were considered for each
width of bridge. However, to determine the effect of the diaphragﬁé
on the load distribution characteristics, limited studies of bridges
with diaphragms we?e conducted. TFor the case of only one interior
diaphragm (at center span), two combinations of span and depth were
considered for selected Widths,A For the case with two diaphragms (at
the third-span points of the bridge), only the most critical situation
of the shortest bridge with the deepest section was studied.

6// Thickness of webs and flanges: The thicknesses of the plates
used iﬁ the general study were 6.5 in. for the top flange, 5.5 in. for
the bottom flange, and 8.0 in. for the webs. These dimensions are felt

to be typical of the designs used in practice for most box girder bridges.
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However, it was found that these dimensions could be increased to 7.0,
6.Q and 12,0 in., réspectively, in those cases where the depth of the
bridge may be limited (e.g. prestressed bridges with d/L of 0.045).
Additional information was obtained for these greater thicknesses in a‘
few_cases to determine the overall effect of the change in thickness.

7. Edge conditions: A cantilever overhang of 3.5 ft was_assumeé
to exist in all cases studied for two>reasons. First, this COpfiguration
is commonly used in many designs. And second, this condition puts the
exterior wheels directly over the exterior web, teﬁding to maximiée the
moment in this section for the eccentric loading case.

Table 6 illustrates the range and values of each‘variable considered.

The loading patterns used in the computation of the maximum load
factors (i.e. minimum D value) included the same as those shown in
Figures 18 and 19 for beam and slab bridges as well as two SPeciai box
girder loading cases. These two special cases are shbwnfin Figure 20

and were developed to maximize the moment coefficients due to the peaked

condition of the influence lines in the region of the webs.




TABLE 6

VARIABLES IN BOX GIRDER BRIDGE STUDY

NUMBER OF CELLS
% I 6 : ] 8
NUMBER OF WHEELS . _
4 6 8 12
Width of bridge
w, ft . 33 37 39 41 45 45 49 51 53 57 61 61 75
Cell width, ft 6.5 7.5 8.0 8.5 9.5 6.3 7.0, 7.3 7.7 8.3 9.0 6.8 8.5
Depth/span R ) .
d/L p.0o7 0.05 0.07 0.05 [0.07 0.05 [0.,07 0.05[0.07 0.05 {0.07 0.05 .07 0.05 10.07 0.05 .07 0,05(0.07 0.,05|0.07 0.05 (0.07 0,05 [0.07 0.05
Number of diaphragms cénsidered, Nd
Span, ft -
50 D, 1, 2 ga , 1,2 010, 1,2 0O 0 0 0,1,2 0 p,1,2 0 p, 1,2 0 pP,1,2 0 0 0 0 0 0,1, 2 01}0,1,2 0 0 0
80 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o] 0 0 0 ] 0 0
110 ] g,l‘ 0 0,1 0 0,4 O [¢] o] 0,1 0 0,1 0 0,1 0 0,1 0 0 0 [} 0 0, 1 0 0,1 o0 0
1

3¢nderlined values refer to combinations where variations in thickness were atudied.

LL
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Figure 20. Additional loading cases considered for concrete box girder
bridges. o

2 Maximum Load Factors

Influence lines were generated for the girder moment coefficients -

for each of the combinations listed in Table 6. The final moment

coefficients from the actual truck loads were found by superposition
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using thege influence lines. As in the study of beam and slab and multi-
beém bridges, the final moment coefficient .is reduced to D as used in

the S/D load factor equation. The value of S used in this equation is
modified as explained in Chapter 4. The results of these computations,
alongiwith the critical girder and loading cases, are tabulated in

Table 7. The absolute minimum value of D for all loading caseslconsidered
is shown in the table. The reduction of these data to a proposed design
equation is discussed in Chapter 4.

It shoﬁld be pointed out, however, that because of the complexity
of the analysis and because of the integral nature of the section, the
most accurate design can only be obtained by an analysis of the complete
section., However, for ordinary design pﬁrposes, it is felt thét a
satisfactory distribution procedure can be obtained from the preceding
analysis and range of variables.

The results presented in Table 7 do, however, show several significant
facts abcut the behavior of box girder bridges. |

1. For a particular bridge cross section, as the span increases
the distribution of loads improves since the value of D increases.

2. The inclusion of diaphragms‘improves the load distribution
characteristics (D increases). A single diaphragm at midspan apparently
is better in distributing the loads than a pair of diaphragms at the
third points of the span. However, this is probably due to the fact
that all wheel loads were placed at midspan and, thus, were directly
over the single diaphragm. Actually, the benefits from diaphragms should

be computied for the wheel loads in their true longitudinal position.
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TABLE 7
THEORETICAL RESULTS FOR BOX GIRDER BRIDGES VALUE OF D IN EQUATION:
LF = 8/D
N W N N L d/L D.
W g d
4 33 5 0 50 0,07 6.35
0 50 0.05" 6.47 (6.53)2
0 80 0.07 6.67
0 80 0.05 6.76
0 110 0.07 6.86
0 110 0.05 6.92 (7.00)
1 50 0.07 7.04
1 110 0.05 7.43
2 50 0.07 6.52
4 37 5 0 50 0.07 6.39
| 0 50 0.05 6.61 (6.69)
| 0 80 0.07 6.90
‘ 0 80 0.05 7.08
| 0 110 0.07 7.21
| 0 110 0.05 7.34 (7.44)
| L 50 0.07 7.60 .
1 110 0.05 8.28
2 50 0.07 6.76
6 .39 5 0 50 © 0.07 6.22
0 50 0.05 6.26 (6.29)
0 80 0.07 6.39
0 80 0.05 6.39
0 110 0.07 6.50
0 110 0.05 6.48 (6.53)
1 50 0.07 6.63
1 110 0.05 6.80
2 50 0.07 6.25
6 41 5 0 50 0.07 6.03
0 50 0.05 6.08
0 80 0.07 6.23
0 80 0.05 6.25
0 110 0.07 6.35
) 0 110 0.05 6.36
6 45 5 0 50 0.07 5.99
0 50 0.05 6.08 (6.13)
0 80 0.07 6.25
0 80 0.05 6.33
.0 110 0.07 . 6.43
0 110 0.05 6.48 (6.54)
1 50 0.07 6.50
1 110 0.05 © 6.93
2 50 0.07 6.20
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TABLE 7
CONTINUED
N W N L d/L D
w .
6 5 0 50 0.07 5.94
0 50 0.05 6.03
0 80 0.07 6.23
0 80 0.05 6.32
0 110 0.07 6.40
0 110 0.05 6.48
1 50 0.07 6.36
1 110 0.05 6.90
2 50 0.07 6.09.
6 49 0 50 0.07 5.85
0 50 0.05 6.01 (6.06)
0 80 0.07 0.24
0 80 0.05 6.41
0 110 0.07 6.50
0 110 0.05 6.66 (6.74)
1 50 0.07 6,51 °
1 110 0.05 7.29
2 50 0.07 6.11
8 51 0 50 0.07 6.15
0 50 0.05 6.17 (6.20)
0 80 0.07 6.30
0 80 0.05 6.32
0 110 0.07 6.40
0 110 0.05 6.41 (6.44)
1 50 0.07 6.49
1 110 0.05 6.69
2 50 0.07 6.18
8 53 0 50 0.07 5.91
0 50 0.05 5.95
0 80 0.07 6.10
0 80 0.05 6.14
0 110 0.07 6.23
0 110 0.05 6.26
8 - 57 0 50 0.07 5.65
0 50 0.05 5.73 (5.77)
0 80 0.07 5.89
0 80 0.05 5.98
0 110 0.07 6.06
0 110 0.05 6.15 (6.20)
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TABLE 7
CONT INUED
N W N N L d/L D
W g d .
| 8 61 7 0 50 0.07 5.79
| 0 50 0.05 5.89
| 0 80 0.07 6.06
| 0 80 0.05 6.19
| 0 110 0.07 6.27
0 110 0.05 6.40
1 50 0.07 6.18
| 1 110 0.05 6.90
| 2 50 0.07 5.96
8 61 9 0 50 0.07 5.68
0 50 0.05 5.77 (5.81)
0 80 0.07 5.97
0 80 0.05 6.11
| 0 110 0.07 6.19
| 0 110 0.05 6.33 (6.39)
| 1 50 0.07 5.98
1 110 0.05 6.71
2 50 0.07 5.78
12 75 9 0 50 0.07 50892
0 50 0.05 5.96,
0 80 0.07 6.00,
0 80 0.05 6.06,
0 110 0.07 6.08,
0 110 0.05 6.12

Note: Unless indicated, eccentric loading controlled with the first
interior girder critical. All lanes were loaded.

a . . : . . .
Values in parenthesis refer to special computations where thick-

nesses were varied.

b /
Central loading controlled with center girder critical.
3. If the depth of the section increases (d/L increases), the
load distribution is slightly worse due to the reduction in torsional
stiffness. This is, however, more than offset by the increase in the

longitudinal moment of inertia. Thus, the resultant extreme fiber
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stress decreases, Also, if the thicknesses of the section elements
are held within the ranges selected for study, no significant change

in distribution behavior is expected.
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CHAPTER 4. DEVELOPMENT OF DESIGN PROCEDURES

GENERAL

In the development of any design procedure, the main consideration
to be kept in mind is the realization that the final procedure must not
be so complicated that it is totally unacceptable to the praqticing
engineer., In addition, the procedure must offer improvement in accuracy
over previously accepted procedures. Therefore, the objective becomes
one of finding the simplest procedure with the best accuracy with
respect to the known theoretical and experimental behavior.

The present design criteria have remained essentially unchanged for
the last 25 years except where new bridge types have been introduced.
The criteria have proved to be conservative in predicting the maximum
moments in most structures considered. In addition, only a very limited
number of variables is considered in the current procedures. The proce-
dures given herein were developed so that the design moments can be more
realistic in keeping with the actual behavior of the bridge and can
consider all of the significant variables affecting that behavior.

The main objection to the present design procedures has been that
the design of the members is based only on the Eype of bridge and the
spacing between longitudinal girders (as in the case of beam and slab
bridges and box girder bridges). It is apparent from the results given
in Chgpter 3 that as the aspect ratio of the bridge (width to length
ratio) decreases, the load distribution characteristics of the bridge
should improve. Secondly, there are no provisions for the flexural
and torsional stiffness characteristics of the individual bridge. For

example, there has been no design benefit from adding diaphragms or
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deepening the slab. It is necessary that the final procedure(s) eliminate
these objections, to the extent that this is feasible, so that improve-
ments in designs can be obtained.

Although the results of the studies outlined in Chapter 3 showed
that the critical girder or beam could be either the exterior girder or
an interior girder, if was felt that, since the critical condition varied
with the combination of parameters, the design criteria should be
uniform for all beams and should be based on the absolute critical ‘
case. In the normal range of parameters, the differences between the

critical cases for both girder positions did not warrant this considera-

tion., Thus, a common design criteria has been developed for all beams.

BEAM AND SLAB BRIDGES

In heam and siab bridges, it was found that the major variables
describing the behavior of the bridge for a particular case could be
combined into a flexural stiffness parameter, 9x (the relative flexural
stiffness ratio multipled by the aspect ratio of the bridge), and the
torsional stiffness parameter, ar(the relative ratio of the torsional
stiffness to the flexural stiffness of the bridge). There are several
analytical and graphical methods which can be applied to the theoretical
data of Table 4 to show the relationship between D (in S/D) and the
stiffness parameters.

The method used to determine a possible relationship was to sketch
contour lines of constant D on a coordinate system using ./a as one coordinate
and 0 as the other coordinate. A typical example of this type of representation

is shown in Figure 21. These plots clearly show that for the practical
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Figure 21a. Contours of D for beam and slab bridges, W = 33 ft.

ranges of O and o the contour lines are nearly straight lines converging
on the coordinate axes. This indicates that for a particular bridge
width, a‘pérameter which cduld be used in the design prqcedure is CINGR
This ratio, which will be referred to as C, is used rather than con-

sidering 6 and VE each as an independent parameter. Thus,
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Figure 21b. Contours of D for beam and slab bridges, W = 39 ft,.

W Dx

WL VPxy ¥ Dyy

C (13)

There remains then the question of the influence of the deviation

of the actual contours from the straight lines (use of one parameter for
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Figure 21lc. Contours of D for beam and slab bridges, W = 45 ft.

the two), the effect of the bridge width, and the number of wheel 1o;ds
acting on the bridge. This can be seen in thejplot of D vs8 C for all
values listed in Table 4. These plots, Figures 22 — 24, show that the
D values are comparatively well banded with respect to.the value of C

for each particular set of wheel loads. One of the simplest equations
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Figure 21d. Contours of D for beam and slab bridges, W = 51 ft.
N {

i

which best suits these results and incorporates all‘va'riables, is in the

\
/

following form:

N ‘ "N

- - . - G2
D = 5.0 + 55+ (3.0 - 59 (1.0 = 3) C<3
NW , '
D = 5.0 + 35 : | : c=3 - _).(14)



90 -

1.25

1.00°

0.75

0.50
0.25
/// / —_— . onmm—THEORETICAL RESULTS
)/,’ —;_____—_-——' - ———— FROM EQ. (]4) )
0 «& - | 1 | ¥ !
0 0.2 0.4 0.6 0.8 1.0

Figure 2le. Contours of D for beam and slab bridges, W = 57 ft.

also,

- Ds

E:Z!IE!

where C = eﬁJ&, and Nﬁ = number of design wheels from AASHO Article 1.2.6,

modified to conform to the criteria used in this study. Equation (14)
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can also be expressed directly in terms of the total number of design

traffic lanes (NL) by changing the Nw term to Z(NL). Thus, the equation

becomes
: N ) 2N
L Y L C.2 '
= —_— - —— . - — <
D 5.0 + 0 + (3.0 7 Y(1.0 3) c<3
¢ . NL _
= — >
D 5.0 + 0 ° C>3 (14a)

NL in this case would be obtained from a new Article 1.2.6 — Traffic
Lanes, which would be based on the lane cfiteria used in this stﬁdye
This criteria is, in effect, the width of the roadway kcurb to cﬁrb)
in feet, divided by 12, reduced to‘the nearest whole number. Then N@
in Equation (14) is just twice the number of lanes,

The details involved in the computation of C can be found in
Appendix B. However, in the case of composite steel box girder Eridges;>
because of the special nature of the cross section,.the efféctive to?—'
sional rigidity is somewhat less than the torsional rigidity computed
using standérd procedures., Thus, the computed C would be-less than the
effective C to be used in Equation (14). By comparison of the above
equétion with the extensive results of Johnston, Mattock and others (97,
135), it was found that the effective rigidity was approximately 25 peréent
of the indicated torsional rigidity, and, thus, fd; composite steel box
girders, the effective C is twice the computed C, Table 8 summnarizes
these ?esults showing the'relationship.of D from Equation (14) to 'the
thgoretical results (97) and the D from.the'new load disfribution
equation (97, 135) and from Article 1.7.104 of the 1966-1967 AASHO
Interim Specification (279). Tt can be seen that the use of Equation (14)

with the modified C gives better correlation than the new specifications.

P
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TABLE 8 '

COMPARISON OF PROCEDURES FOR LOAD DISTRIBUTION IN COMPOSITE BOX GIRDER
BRIDGES :

Bridge number (97) 50-4 50-6 75-2 75-3 75-5 100-4 100-6
Number of lanes . 3 4 2 ‘ 3 4 3 4
Span, feet 50 50 75 75 75 100 100
Number 6f girders 4 5 3 3 4 4 5

Girder spacing, feet 10.50 10.50 10.50 14.33 13.33 10.50 10.50
D, from theory (97) 5.58 5.52 6.44 6.10 5.70 6.12 5.71

D, from box girder : )
equation (97, 135) 6.33 6.33 6,45 6,90 6.64 6.33 6.33

D, from Equation (14)
using effective C 5.66 5.61 6.28 6.07 6.06 6.18 6.02

However, it is felt that the current interim specifications are more
readily usable in design offices, especially considering the small dif-
ferences in the D values.

Equation (1l4) seems to indicate that there is no influence of the
transverse stiffness of the bridge, EIy on the load distribution
characteristics of the bridge. However, it must be remembered that the
ranges of the parameters 8 and JE have been previously established.
This, therefore, automatically limits the minimum value of Iy. For

example, assuming that the value of 0 is limited to a maximum of 1.00

o

WM x
0 = % = 1.00

y

then the value of Iy must be at least equal to or greater than one-sixteenth

of IX multiplied by the fourth power of the aspect ratio of the bridge or
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(0 < 1.00)

(6 > 1.25)

For the practical range of bridge design, it is obvious that this
criterion will always be satisfied. 1In reality, the major effect of an
increase in I_ is included in a change in the torsional stiffness
parameter. This change may be significant if the Iy is increased due
to thickening of the slab but will probably be minimal if due to
including diaphragms. The reason that individual diaphragms are inef-
fective in this analysis is that an equivalent plate is used to represent
the actual bridge system. Therefore, the true effects of a tranéverse
diaphragm on the distribution characteristics are not represented
because the stiffness of these members has been distributed longitudinally
along the bfidge. Thus, in the case of bridges with transverse dia-
phragms, Equation (13) yields conservative results. However, unless
the diaphragms are rigid and closely spaced, their effects or distribu-
tion will usually be minor. For the general bridge system with various
considerations of flexural and tdrsional stiffnesses,. Equation (13) will
pgoduce D values that are within + 10 percent of the correct value with

respect to the equivalent plate.

In the design of a beam and slab bridge the determination of the Load

Factor is as follows:
Load Factor, Beam and Slab = S/D (15)

where
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S = the average distance between beams in beam and slab bridges
(S will be taken as 1.0 ft for slab bridges to determine
the moment per foot). |

D = the width of bridge in feet necessary for the design of omne

line of wheels as determined by Equation (13).
The design load per beam is then the Load ‘Factor times the magnitude of

the wheel load.

MULTI-BEAM BRIDGES

In multi-beam bridges, it was found that only one physical parametér
@ is required to predict the distribution. It can be seen from ﬁquations (1D
and (13) that the parameter ¢ in terms of physical properties is identical
to the C used in beam and slab bridges except that it must be multiplied
by the square root of 2, Thus, C, a stiffness parameter, for multi-beam
bridges becomes

= /2)¢.

Cmulti-beam

Using the same methods as outlined for beam and slab bridges, it was

found that the D values have the same type of relationship to the C values.
It was also found that the banding in the D vs C plot is not as strong

as for the beam and slab bridges, but was scattered due to the sensitivity
of the D value to the width of the bridge. However, it waé found that

if the S value used to compute the load factor, S/D, was changed‘to
correspond to the average width of bridge for a given number of wheel
loads, the same equations for D in beam and slab bridges could also be

used for multi-beam bridges. The values of D modified for the change in
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the definition of S are given in Table 9. The variation of the modified
D with C for multi-beam bridges is shown in Figures 25 — 27. Thus,
for multi-beam bridges, S in Equation (15) to determine the load

factor should be taken as:

Smulti-beam - (6Nw + 9)/Ng (16)

where
Nw = the number of longitudinal lines of wheel loads
Ng = the number of beam elements

and D should be taken as given in Equation (13). The design load per

beam is then obtained by multiplying the wheel load by the Load Factor.

TABLE 9

THEORETICAL RESULTS FOR MULTI-BEAM BRIDGES VALUE OF D IN EQUATION:
LF = §/D; S.= (6N + 9)/Ng '

W, WIDTH OF BRIDGE IN FT (NW, NO. OF WHEEL LOADS)

28 33 37 39 41 45 49 51 53
® (4) 4) (4) (6) (6) (6) (6) (8) (8)

0.1 8.08 8.00 7.87 7.43 7.42 7.35 7.25 7.07 7.04
0.3 7.45 7.18 6.97 7.20 7.12 6.96 6.67 6.82 6.76
0.5 6.90 6.47 6.23  6.96 6.83 6.57 6.26 6.5  6.48
0.7 6.44 5.91 5.63 6.75 6.59 6.24 5.90 6.36 6.25
1.0 5.93 5.34 5.0l 6.51 6.31 5.88 5.46 6.10 5.97

2.0 5.19 4,5 4,21 5.55 5.41 - 5.10 4.82 5.68  5.53
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CONCRETE BOX GIRDER BRIDGES

In concrete box girder bridges, no attempt was made to analyze
these sections based on equivalent plate type of approach., Therefore,
the parameters involved in the study were based on the basic dimensions
of the bridge itself. However, the dimensionless parameters found to
affect the load distribution characteristics to the greatest extent
were the aspect ratio (W/L), the depth of box girder bridge width
ratidi(d/W), the number of vertical webs (or girders), Ng, and fhe
number of diaphragms, Nd' It was found that by defining ﬁhe stiffness

parameter of the bridge (C) as,
_ W d. 1
C=0.557 (1+ Ng fw) ( ) (17)

and S in Equation (15) as,

6Nw + 9
S = Maximum (Sa or-——ﬁ———~)
g
where
Sa = the actual girder spacing, ‘
NW = the number of wheel loads, and
Ng = the number of girders.

Then D in Equation (15) can be defined by Equation (14) as used in the
previous discussion for beam and slab and multi-beam bridges. The actual
values of C and D as found from the analytical solutions as well as the
values of D as computed using C and S from Equation (17) together with
Equation (14) are listed in Table 9. This table also lists thé error

of the value of D from the equations with respect to the actual computed

’

theoretical value. The results are also shown in Figures 28 — 30.
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Figure 28. Variation of D with bridge stiffness parameter C for concrete
box girder bridges, N& = 4,
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girder bridges, N = 8.
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TABLE 10

CONCRETE BOX GIRDER BRIDGE PARAMETER STUDY RESULTS

1 2
C D D PERCENT DIFFERENCE
N, W Ng- Ny L d/L (EQUATION (17)) (TABLE 7)  (EQUATION (14)) BETWEEN 1 AND 2
4 33 5 0 50 0.07 0.952 6.35 6.34 + 0.2
, 0 50 0.05 0.858 6.47 (6.53) 6.43 + 0.6 (+ 1.6)%

0 80 " 0.07 0.693 6.67 6.63 + 0.6
0 80 0.05 0.620 6.76 6.75 + 0.1
0 110 0.07 0.562 6.86 6.82 + 0.6
0 110 0.05 0.500 6.92 (7.00) 6.90 + 0.3 (+ 1.4)
1 50 0.07 0.674 7.04 6.65 + 5.9
1 110 0.05 0.354 7.43 7.11 . + 4.5
2 50 0.07 0.550 6.52 6.82 - 4.4

4 37 5 0 50 0.07 1.029 6.39 6.24 + 2.4 Y
0 50 0.05 0.931 6.61 (6.69) 6.34 + 4.3 (+ 5.5) b
0 80 0.07 0.747 6.90 6.58 + 4.9 \
0 80 0.05 0,671 7.08 6.65 + 6.5
0 110 0,07 0.606_ 7.21 6.75 + 6.8
0 110 0.05 0.540 7.34 (7.44) 6.82 + 7.6 (+ 8.2)
1 50 0.07 0.728 7.60 6.58 + 15.5
1 110 0.05 0.382 8.28 7.07 + 17.1
2 50 0.07 0.594 6.76 : 6.77 - 0.1

6 39 5 0 50 0.07 1,068 6.22 6.20 0.3
0 50 0.05 0.969 6.26 (6.29) 6.28 - 0.3 (+0.1)
0 80 0.07 0.774 6.39 6.50 - 1.7 '
0 80 0.05 0.695 6.39 6.56 - 2.6
0 110 0.07 0.626 . 6.50 " 6.67 - 2.5
0 110 0.05 0.560 6.48 (6.53) 6.73 : - 3.7 (- 3.0)
1 50 0.07 0.755 6.63 6.50 + 2.0 |
i 110 0.05 0.396 6.80 6.90 - 1.4
2 50 0.07 0.617 6.25 6.67 - 6.3

6 41 5 0 50 0.07 1.107 6.03 6.15 - 1.9
0 50 0.05 1,001 6.08 6.24 - 2.6
0 80 0.07 0.800 6.23 6.45 - 3.4
0 80 0.05 0.719 6.25 6.56 - 4.7
0 110 0.07 0.647 6.35 6.62 - 4,1
0 110 0.05 0.579 6.36 6.69 - 4.9

6 45 5 O 50 0.07 1.180 5.99 6.09 - 1.6
0 .50 0.05 1,074 6.08 (6.13) 6.20 - 1.9 (- 1.1)
0 80 0.07 0.853 6,25 6.39 - 2.2 )
0 80 0.05 0.767 6.33 ' 6.50 - 2.6
0 110 0.07 0.689 6.43 6.58 - 2.3
0 110 0.05 0.619 6.48 (6.54) 6.67 - 2.8(-2.1)
1 50 0.07 0.885 6.50 6.37 + 2.0
1 110 0.05 0.436 6.93 6.86 + 1.0
2 50 0.07 0.646 6.20 6.62 - 6.3
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TABLE 10
CONTINUED
1 2
o . D D PERCENT DIFFERENCE
N,OW Ng N, L d/L (EQUATION (17)) (TABLE 7)  (EQUATION (l4)) BETWEEN 1 AND 2
6-45 7 0 50 0.07 1.454 ‘5.94 5.87 + 1.2
< 0 50 0.05 1.305 6.03 5.98 + 0.8
0 80 0.07 1.071 6.23 6,20 + 0.5
0 80 0.05 0.950 6.32 6.30 + 0.3
0 110 0.07 0.875 6.40 6.37 + 0.5
0 110 0.05 0.774 6.48 6.50 - 0.3
1 50  0.07 1.019 6.36 6.24 + 1.9
1 110 0.05 0.547 6.90 6.73 + 2.5
2 50 0.07 0.840 6.09 6.39 - 4,7
6 49 7 0 50 0.07 1.542 5.85 5.81 + 0.7
0 50 0.05 1.387 6.01 (6.06) 5.92 + 1.5 (+ 2,4)
0 80 0.07 1.131 6.24 6.13 + 1.6
0 80 0.05 1.006 6.41 6.24 + 2.7
0 110 0.07 0.924 6.50 : 6.35 + 2.4
0 110 0.05 0.817 6.66 (6.74) 6.43 + 3.6 (+ 4.8)
1 50 0.07 1.091 6,51 » 6.15 + 5.8
1 110 0.05 0.578 7.29 , 6.69 + 9,0
2 50 0.07 0.891 6.11 6.37 - 4,1
8 51 7 0 50 0.07 1.581 6.15 5.82 + 5.6
0 50 0.05 1.428 6.17 (6.20) 5.92 + 4.2 (+ 4.7)
0 80 0.07 1.160 6.30 6.10 + 3.3
0 80 0.05 1.035 6.32 6.19 + 2.1
0 110 0.07 0.945 6.40 6.27 + 2.1
0 110 0.05 0.838 6.41 (6.44) 6.38 + 0.5 (+ 0.9)
1 50 0.07 1.119 6.49 6.12 + 6.0
1 110 0.05 0.592 6.69 6.60 + 1.4
2 50 0.07 0.915 6.18 6.31 - 2.1
8 53 7 0 50 0.07 1.627 5.91 5.79 + 2.1
0 50 0.05 1.464 5,95 5.90 + 0.8
0 80 0.07 1.190 6.10 : 6.08 + 0.3
0 80 0.05 1.060 6.14 6.18 - 0.6
0 110 0.07 0.969 6.23 6.25 - 0.3
0 110 0.05 0.858 6.26 6.34 - 1.3
8 57 7 O 50 0.07 1.706 5.65 5.75 - 1.7
0 50 0,05 1.535 5.73 (5.77) 5.84 © = 1.9 (- 1.2)
0 80 0.07 1.250 5.89 6.03 - 2.3
0 80 0.05 1.115 5.98 6.12 - 2,3
0 110 0.07 1.016 6.06 6.21 - 2.4
0 110 0.05 0.901 6.15 (6.20) 6.31 - 2.5 (= 1.7)
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TABLE 10

CONT INUED

1 ’ 2
c D . D PERCENT DIFFERENCE
N W N N L d/L (EQUATION (17)) (TABLE 7) (EQUATION (14)) BETWEEN 1 AND 2

8 61 7 O 50 0.07 1.788 5.79 5.69 + 1.8
0 50 0.05 1.610 5.89 5.80 + 1.6
0 80 0.07 1.302 6.06 5.99 + 1.2
0 80 0.05 1.164 6.19 6.10 + 1.5
0 110 0.07 1,060 6.27 6.18 + 1.5
0 110 0.05 0.945 6.40 6.27 + 2.1
1 50 0.07 1,263 6,18 6.01 + 2,8
1 110 0.05 0.668 6,90 6.51 + 6.0
2 50 0.07 1.032 5.96 6.19 - 3.7

8 61 9 O 50 0.07 2.108 - 5.68 5.56 + 2,2
0 50 0.05 1.878 5.77 (5.81) 5.66 + 1.9 (+ 2.7)
0 80 0.07 1.555 5.97 5.84 + 2.2
0 80 0,05 1.377 6.11 5,95 + 2.7
o 110 0.07 1.276 6.19 6.01 + 3.0
0 110 0.05 1.128 6.33 (6.39) 6.12 + 3.4 (+ 4.4)
1 50 0.07 1.491 5.98 5.88 + 1.7
1 110 0.05 0.798 6,71 6.40 + 4.8
2 50 0.07 1.219 5.78 6.06 - 4.6

12-75 9 0 50 0.07 2,413 5.89 5.65 + 4.2
0 50 0,05 . 2,168 5.96 5.69 + 4.7
0 80 .0.07 1.777 6.00 5.80 + 3.5
0 80 0.05 1,582 6,06 5.89 + 2.9
0 110 0.07 1.451 6.08 5.95 + 2.4
0 110 0.05 1.285 6.12 _ 6.02 + 1.7

8Values in parenthesis refer to cases where the thicknesses were varied.
INITIAL DESIGN CONS IDERATIONS

The design of bridges as determined by the use of the equations in
the previous secfions presupposes an actual knowledge of the bridge
geometries which is not actually the case. The only information usually
available prior to design is the value of the aspect ratio of the bridge
and possibly the beam spacing and slab thickness. Therefore, initial

values of D must be found to expedite the design procedure. To provide
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information in this regard, it is suggested that '"C' be approximated for

preliminary design, purposes by:

¢ = (K (18)
L .
where !
W = width of the bridge,
L = length of the bridge, and

K = a coefficient dependent on the bridge type.

“Table 11 lists values of K as determined from bridges already built which

conform to the present AASHO Specifications. The K value suggested for
composite steel box girder bridges does consider the effective torsional
rigidity. However, the table gives an indication of the range of the
stiffness pafameter which can be expected for each bridge type.

It is recommended that if the current AASHO Specifications are changed
to correspond to the recommendations in this report, that the values of
K listed in Table 11 be sﬁudied in about five years and modified to con-
form to the pracfice at that time. The reason for this statement is that
present design criteria tend to make the bridge conform to the design
criteria.. Therefore, bridges with a very small aspect ratio now tend
to be conservative; thus, the C vélues tend to be unnaturally
high éoﬁpared with an optimum design.

Figure 31 illustrates for a four-lane bridge the design moment
per foot of bridge width for various bridge lengths and various values
of C under HS-20 loading. The current AASHO design eéuation for slabs
(Section 1.3.2C) for HS-20 loading is also shown. This figure clearly

shows the change in design moment due to the change in the value of C



110

TABLE 11

VALUES OF K TO BE USED IN THE RELATION: C = K(W/L) N

BRIDGE TYPE DECK MATERIAL AND BEAM TYPE K
Beam and slab (includes Concrete deck:
concrete slab bridge)
Noncomposite steel I-beams 3.0
Composite steel I-beams 4.8

Nonvoided concrete beams
(prestressed or reinforced) 3.5 i

Separated concrete box-beams 1.8

Separated steel box-beams
(composite box girders) 2.6

Concrete slab bridges
Multi-beam Nonvoided rectangular beams 0.7

Rectangular beams with circular

voids 0.8
Box section beams 1.0
Channel beams 2,2
Concrete box girder Without interior diaphragms 1.8 \
With interior diaphragms 1.3

for various lengths of bridges. Therefore, an alternate initial design
for a four-lane bridge would be to determine the value of C from Equation (17)
and to determine the design moment per foot from Figure 32. The design

moment per girder would then be

M= Is. ' (19)

M(Eigure 32)




111
i C = 3-0
200 C =2
180 [~ C=1.0
LONGITUDINAL MOMENT PER UNIT WIDTH C=08
FOR 4-LANE BRIDGES C=0.6
C =0.4
160 |- /) C = 0.2
C=0
140 {—
<
- £
T 120
l—\
yd
| b
=
80 AASHO SLAB EQUATION
-
60
T PER ft (AASHO)
L (L = 50)
L - 20 L > 50)
1 1 | l 1
60 80 100 120 140
SPAN, ft .
Figure 31.. Comparison of design moments from Equation (14) with cur-

rent AASHO slab equation.
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A more accurate value of C would then be determined from this pre-
liminary design. Similar figures could be constructed for this procedure

for bridges with different numberslof lanes.

EFFECTS OF EDGE STIFFENING

In the case of beam and slab bridges haviqg curbs and rails, the
effect of additional members may be taken into account by defining fhe
effective width of the bridge as

| I

(N - 2)S + 2(—I-e—)s ‘ | (20)
g i .

where » : ‘ . R

W
e

We = the effective width,

. !
Ie = moment of inmertia of exterior girder section,
Ii = moment of inertia of interior girder section,

S = beam spacing, and
N = number of longitudinal beams.
For bridgés having nominal safety curbs (up to 2 ft wide andlabout
1 ft deep), the effect of these additional edge members (such as built
up curbs and rails) can be neglected, a common practice. This conclu-
sion is based om a study of actual bridges that showed the effective
width obtained by Equation (20) to be about equal to a width computed
from (N )S.
) g .
However, for bridges having stiffer curbs (acting integrally with
the slab) and possibly an additional longitudinal member which supports

the curb, the previous definition of effective width (Equation (20)) should

be used to determine the design moment for the beams. However, C should
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be found using the actual overall bridge width. . Thus, the interior beams
should be designed using Equation (15) where S is the actual beam spaciné,
and the exterior girders should be designed using Equation (15) where S

is the effective spacing Se, for the exterior girders as defined in
Equation (20) or,
S = ES S | (21)

e Ii
and, thus, the

load factor = Se/D.

For low values of Ie/Ii (i.e. less than 5) it is felt thét this design
procedure will be sufficiently accurate.

The edge stiffening members in slab bridges are usually designed
in the form of safety or sidewalk curbs. Conéiderable work has‘Béen
done on the slab bridges with curbs. Jensen (22) presented a design
procedﬁre in which empirical formulas are used.in determining the moments
in curbs and in the slabs. Test results have shown this éo be correct.
A review\of this method is felt to be unwarranted due to length of sub-
ject matter required. |

Rowe (199) pfesented a method in which the effect of edge-stiffening
beam can Be taken into account accurately. This method, however, would
be difficult to adopt for use in a design office due to its complexity.
Pama and Cusens (166) also studied edge beam stiffening of multi-beam
bridges. They concluded that as the flexural rigidity of the edge-
stiffening beam increases, the absolute maximum value of K.m no longer
occurs at the edge but moves to the center of the bridgé. Also the

absolute value of K.m decreases at a diminishing rate. Although the study
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is on multi-beam bridges, the same conclusions are applicablé to slab
5ridges. |
The edge member decredses the maximum longitudinal momenfs in two
ways (199):
1. the decrease in the mean moment caused(by the'additional‘stiff-'
ness. at” the edges (due to increase in.the»effect width), and
2, ihe reductioﬁ in the maximum distribution coefficient due
primarily to the edge shear forces.l
The decrease in the longitudinal moment per unit width may be’

readily taken into account by using the effective width:

I
we=wc+2fsc | | | | @)
where _ ' ' _ " .
WC =vcur5 to curb width,
’Ie = moment of inertia of edge beam (curﬁ) per unitlwidth,
‘Is = moment of inertia:of slab per unit.width, and
SC = width of edge beam (curb).

Thus for slab bridges, the load factor per foot of width is 1/D.

For the curb portion of the bridge, the effective width is

. I ‘
o
5, =T S, (23)
s .
and
S , .
Load Factor = 53 . ' (24)

For low values of Ie/Is it is felt that this design procedure is sufficiently

accurate,
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CONTINULTY EFFECTS

Bridges which have end conditions other than simple supports as
assumed in this report require special attention. When the ends of
a bridge are restrained against rotation,the immediate effectlis the
reduction of the mean positive moment. . The secondary moments in the
bridge due to its flexibility and the eccentricity of the loading are
not equally reduced. This problem has been given some attention by
Rowe (199). The method of design in this case can be handled by
assuming that the effective length of the bridge for load distribution
effects (Equation (14)) is the distance between points of contraflexure
of the bridge. Equation (15) can then be used as before to determine
the load factor per beam. It is felt that this procedure will be
conservative but should be clarified through future additional
theoretical work. In the case of EOncrete box girder bridges, con-
siderabye work on the effects of continuity has been conducted (221)
and is continuing at the University of4Calif0rnia at Berkeley. However,

no specific design recommendations have been published.
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CHAPTER 5. PROPOSED REVISIONS TO AASHO SPECIFICATIONS

GENERAL

In the previous chapters, the bases for the proposed revisions to
the specifications (279) have been presented. The development of the
proposals were outlined specificglly'in Chapter 4.

The current procedures for distribution of loads have been shown
generally to be conservative in predicting beam moments., Numeroué

investigators (2, 6, 135, 151, 182, 222, 228) have realized, however,

that more realistic procedures are required and have proposed numerous
‘revisions to the specifications for specific bridge types. It wés the
purpose of this investigation to make an overall study of the wheel load
distribution in most of the types of short and medium span bridgés aﬁd_
propose revisions where required.

| Because of the extreme simplicity of the current requirémeﬁts, it is
obvious that any change to make them more realistic must entail some
increase in-complexityn The proposais presenﬁed-herein are a balance
between the need for an accurate distribution criteria and for a usable
design office criteria. It should be noted that as the éomplexity of
the bridge system increases, the simplification of the theoretical
procedures requires more approximations. Thus, considerations of un-
usual conditions are required. The use of any theory outlined.
herein for a total computerized analysis of the basic behavior will
lead to ghe moét accurate design and would be the optimum considera-
tions. Itiis felt, though, that the changes proposed will léad'to

"sufficiently accurate designs.
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{

PROPOSED SPECIFICATIONS

Based on the research summarized herein the following revisions
) are recommended in "Section 3, Distribution of Loads'" of the 1965 edition

of the AASHO Standard Specifications for Hichway Bridges (279) as re-

vised by the 1966-1967 Interim Specifications.
i

1.3.1 — DISTRIBUTION OF LOADS TO STRINGERS, LONGITUDINAL BEAMS ANb
FLOOR BEAMS. |

(A) Position of Wheel Loads for Shear — unchanged.

' (B) Live Load Bending Moment in Stringers énd Longitudinal Beams
for Bridpges Having Concrete Decks*.

.In calculating bending moments in 1ongitudina1 beams or stringers,
no longitudinal distribution of the wheei load shall be assumed. ‘The.
lateral distribution shall be determined as follows:

(1) Load Fraction (ail beams) |

p | The live load bending moment for each beam ghall be determined by

el applying to the beam the fraction of a wheel load (both front and rear)

determined by the following relations:

Ldad Fraction = %

'

*In view of the complexity of the theoretical analysis involved in the
distribution'of wheel loads to gfringers, the empirical method herein
described is authorized for the design of normal highway bridges.w This
section is applicable to beam and slab, concrete slab, multi-beam, and

concrete box girder bridges. For composite stecel box girder bridges, the

criteria specified in Article 1.7.104 should be uscd.
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where S 1is

. : )
Sa for beam and slab bridges*

12N, + 9

; — for multi-beam bridges**, and the maximum of the two
g ' '

values for concrete box girder bridges

and the value of D determined by the following relationshiﬁ:

N . 2N
L L C.2
=5+ =+ - -3 <
D 5 10 (3 7 )y (1 3) , C —.3
N ,
L
- _L >
5 + 10 ° , C 3
{
where: S,l = average beam spacing, fect,
N. = total number of design traffic lancs from Article 1.2.6,

L

Ng = number of iongitudinal beams,
G =a stiffness parameter which depends upon the type of
bridgé, bridge and beam geometry and Aéterial properties.
The value,of C is to be calculated using. the rélationships shown below.
However, for preliminary designs, C can be nppréximated'using the

values given in Table 1.3.1. For beam and slab##i and multi-beam bridges:

*For slab bridges, S = 1 and the load fraction obtained is for a once

" foot width of slab.

#%A multi-beam bridge is conétructed with précast reinforced or pre-
stressed concrete beams which are placed side By side on the supports.
The interaction between the beams is deyeloped by continuous longitudinal
shear keys and lateral bolts which may or may not be prestressod.

*¥¥%¥For noncomposite construction, the design moment may be dotorminoJ

in proportion to the relative flexural stiffunesses ol the beam and

slab section.




For concrete box girder bridges:

C =

where: W

G

d

1w u E 1/2
7 Ngfg) [20(1 + N )] :

the overall width of the bridge, feet,

span length, feet (distance between live load points of
inflection for continuous spans),

modulus of clasticity of the transformed beam section,
modulus of rigidity of the transformed beam section,
flexural moment of incertia of the transformed beam section

per unit width*,

= torsional moment of inertia of the transformed beam

!

section per unit width* (Ji_= Jbeam + % Jslab)’

= 1/2 of the torsional moment of inertia of a unit width

of bridge deﬁk slab*

and for concrete box girder bridges:

/

d = depth of the bridge from center of top slab to center of

N

g

Na.

bottom slab,
numbcr of girder stems, and

number of interior diaphragms.

For concrete for girder bridges, the cantilever dimension of any -

slab extending beyond the exterior girder shall preferably not exceed

S/2.

*For the deck slab and beams consisting of reinforced or prestressed

concrete, the uncracked gross concrete section shall be used for

rigidity calculations.




When the outside roadway beam or stringer supports the sidewalk
live load and impact, the allowable stress in the beam or stringer
may be increased 25 percent for the combination of dead load, sidewalk

»live load, traffic live load, and impact.

TABLE 1.3.1 VALUES OF K TO BE USED IN THE RELATION: C = K % .
" BRIDGE TYPE BEAM TYPE AND DECK'MATERIAL K
Be;m and slab (includes Concrete deck:
concrete siab bridge)
Noncomposite steel I-beams 3.0
Composite steel I-beams _. 4.8
Nonvoided concrete beams
(prestressed or reinforced) ‘3.5
Sepayated concrete box-beams 1.8
Concrete slab bridge | G.6
Multi-beam . - Nonvoided rectangular beams 0.7
Rectasngular beams with circular
voids : 0.8
Box section beams o ' 1.0
e, . Channel beams 2.2
Conérete box girder . Without interior diaphragms 1.8
With interior diaphragms 1.3

(2) Total Capacity of Stringers.
The combined deéign load capacity of all the beams in a span shall

not be less than rcquired to support the total live and dead load in

the span. )
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(3) Edge Beams (Longitudinal).

Edge beams shall be provided for all concrete slab bridges having
méin.reinforcement parallel to traffic. The beam may consiét of a slab
section additionally reinforced, a beam integral with and deeper than
the slab, or an integral reinforced section of slab and curb.

It shall be designed to resist a live load moment of 0.10 PS, .

where

T - P = wheel load, in pounds (P15 or on)

S

span length; in feet.
This formula gives the simple span moment. Values for continuous
L spans may be reduced 20 percent unless a greater reduction results from

.a more exact analysis.

(C) Live Load Bending Moment in Stringers and Longitudinal Beams
Supporting Timber Floors and Steel Grids¥*.
(1) Interior Stringers and Beams .
(This section should include those parts of current Article 1.3.1(B)(1)
which are applicable to these floor systems.)
(2) Outside Roadway Stringers and Beams
The live load bending moment for outside foédway stringers or beams
shall be determined by applying to the stringer or beam the reaction of
the wheellload obtained by assuming the flooring to act as a simple
span between stringers or beams.

(D) Bending Moment in Floor Beams (Transverse) — unchanged.

(E) Dead Load for Stringers and Beams.

*Article 1.3.1(B)(2) is also applicable to this article.




The dead load
beam shall be that
or beam. However,

after the slab has

122 .

considered as supported by the roadway stringer or
portion of the floor slab carried by the stringer
curbs, failings and wearing surface, if placed

cured, may be considered equally distributed to

all roadway stringers and beams.

1.3.2 — change titles and modify:

DISTRIBUTION OF LOADS AND DESIGN OF FLOOR SYSTEMS

(A) Concrete

Slabs

(1) Span Lengths — same as Article 1.3.2(A)

(2) Edge

Distance of Wheel Load — same as Article 1.3.2(B)

(3) Bending Moment — same as Article 1.3.2(C) except that

Case B is applicable only to slabs supported by transverse

floor beams and the approximate formula in this case

- should be changed to:

 HS-20 Loading: ¢LLM = 900S foot-pounds

HS~15 Loading: wunchanged

The last paragraph on lateral distribution for multi-beam

bridges should be deleted.

(4) Distribution Reinforcement — same as Article 1.3.2(E)

(5) Shear and Bond Stress in Slabs — same as Article 1.3.2(F)

(6) Unsupported Edges, Transverse — same as Article 1.3.2(G)

(7) Cantilever Slabs — same as Article 1.3.2(H)

(8) Slabs Supported on Four Sides — same as Article‘l.3.2(I)

(9) Median Slabs — same as Article 1,3.2(J).

(B) Timber Flooring

Same as Article 1.3.4 except that subsection headings changed to:

-
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\
’ ‘ (1) Flooring Transverse
(2) Flooring Longitudinal
(3) Continuous Flooring
‘ ' (C) Composite Wood-Concrete Members,
Same as Article 1.3.5 except .that subsection headings changed .to:
‘ . (1) Distribution of Concentrated Loads for Bending Moment and
Shear
(2) Distribution of Bending Moments in Continuous Spans:
(3) Design
(D) Steel Grid Floors.
Same as Article 1.3.6 except that subsection headings changed to:
(1) General
(2) Floors Filled with Concrete

- (3) Open Floors
1.3.3 — MOMENTS, SHEARS AND REACTIONS — same as Article 1.3.7

1.3.4 — DISTRIBUTION OF WHEEL LOADS THROUGH EARTH FILLS — same as Article 1.3.3

" COMMENTARY

The major change proposed is in Article 1.3.1(B) where a complete
revision is recommended. The majority of the other changes suggested
are only made in order to make the entire Section 3 consistent in design
approach since many of the systems covered were not within the scope of
this study. For example, it is suggested that current Article 1.3.2(D)
on "Edge Beams Longitudinal” be moved to Article 1.3.1(B)(3) in order

that the design of longitudinal beams be consolidated. The change suggested
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in Artlcle 1.3.2(A)(3) is due to the inclusion of slab brldge design
in Article 1.3.1(B). Thus, the slabs designed under Artlcle 1.3.2(A) (3)
will be thoée spanning transverse floor beams and the longer spans are
no longer applicable.

It should be noted that the proposal just presented is also based
on a ehange in Article 1.2.6 — TRAFFIC LANES. Since the lanes used inl
the development were 12 ft wide, it is further recommended that Article 1.2.6
be changed to:

"The lane loading or standard trucks shall be assumed to occupy a
lwidth of 10 ft. These loads shalllbe placed‘in design traffic lamnes
having a width of 12 ft, which are placed in a position to produee
maximum stress. The lanes may not overlap. The lane loadinge or
staﬁdard trucks shall be assumed to occupy any position within these
individual design traffic lane which will produce the maximum strees.

The number of design traffic lanes shall be equal to the roadway width
between curbs (in feet) divided by 12, reduced to the nearest whole
number." 1f this change is not considered ;n conjunction with the recom-
mendations for changes in Section 3, then the following definition should

be used in Article 1.3.1(B)(1):

NL = WC/12, reduced to the nearest whole number.
WC = roadway Qidth between curbs (ft)}

Io—the development of the lateral load distribution crlterla for

comp051te steel- concrefh”boxﬁg&hwers, the use_ of—Artlcle 1 2 9 — REDUCTION
M

,,.rmwf‘ e’

R

IN LOAD INTENSITY was_ not/recommended Thlswmecgmmendation was included

/" s S
/ Ry,

n«Artlcle 1.7.104 of the 1966-67 Interim Specifications (279) Ig-.1s

‘
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o

. . . e
Felt, however, that the purpose of Article 1.2.9 is to consider tlhe
& ﬁ_'b";ﬂ

probability of all lanes being fully loaded simultaneoggiﬁfﬂ At those
. 'M& 8

el
occasional periéﬁs%yhen this loading may occur, &€ structure could
Mﬂm%& g = o
sustain the overload tempbrgsily. This overload could be considered as
o, “ ,

S

a factor being included in the f;éﬁqgs of safety in the design stresses.
- e

.\&“;‘\.,,

In the fewvinstaniii/zggze less than all'Thn%§ are loaded to obtain the

,
Mz,

critical conditjerl, the difference between the maﬁimug beam moment for
: N oo
. S
the fulLy/TgZ;:; condition and the critical condition is vety,small.

Py,

.
Phus, the continued use of the load intensity reduction is recommended.

SIGNIFICANCE OF PROPOSED CHANGES

The proposed changes, in many cases, do not significantly affect
current designs. However, they do make them more realistic and do
consider the.benefits derived from improving bridge properties.

The design of a bridge using the detailed data outlined in Chapter 3
would lead to even more accurate analysis,since-conservative assumpfioﬁs
have been made in developing the empiriéal equations proposed.

In'general, the proposal permits the considerations of the significant

variables affecting load distribution. Since the present AASHQ criteria

were developed on the basis of the behavior of typical bridges of the

types considergd, it should be expected that the average values for
distribution coéfficients in the proposal would be near those in the
current>specifications.

The major benefit of the proposal is the consideration of the effect
of individﬁal and new bridge geometries on lpad diStriBution, For

example, by increasing the slab thickness the load distribution characteristics




will generally improve., This improvement is reflected in the proposed
speéifications, whereas it is nof in the current specifications.
Although, to some extent the torsional rigidity of the beams is con-
sidered in the present specifications (by use of different D values for
steel stringers, concrete T-beams and concrete box girders), it is an
integral part of the proposal for all variations of .beam geometry. In

addition, the aspect ratio (W/L) has a significant effect on the

distribution and it is not currently considered. Since the designer

can ob;ain lower design live loads per beam with appropriate changes
in the cross section, he is more likely to incorporate them. Thus,
economies should resultm'

/In the present specifiéations, separate design criteria are pro-
posed for interior and exterior beams, yet the study showed that the
critical beam can be either, and is a function of the bridge properties
and loading. Thus, a single criferion for all beams is proposed.

The specific significance of the changes will be discussed for each

of the bridge types considered.

Concrete Slab Bridges

The significance of the proposal can be readily seen in Figure 32,
For spans less than about 50 ft, the new criteria will generally require
less moment than currently specified. This span isabout the upper

economic limit and, thus the section required to carry the static live

]
a

load in this bridge type can be expected to have a-similar or smaller

thickness.




Beam and Slab Bridges

The D value currently reqﬁired varies from 5.5 for steel I-beam
stringers and prestressed concrete girders to 7.0 for concrete box
girders. The proposal will yield D values in about the same range,
but, more important, will permit an increase in D if the specific
cross section has the improved distribution properties. The specific
benefits can be seen in Table 12. This effect of improved distribution
can be noted, in particular, for prestrgssed concrete beams where the
D valués can vary significantly depending on the cross section. it
should be noted that the use of the new criteria should lead to mére
economical designs as such changes as increasedvslab thickness and
improvéd beam torsional rigidity will lower design beam moments, thch

is not generally the case presently.

TABLE 12

COMPARISON OF PROPOSED SPECIFICATIONS AND CURRENT SPECIFICATIONS FOR
BEAM AND STAR BRTDGES

SPAN BRIDGE WIDTH

RANGE RANGE - Cc CURRENT PROPOSED
BEAM TYPE - FT FT RANGE3 pb D RANGEP
Composite steel I-beam 41 — 90 29 — 37 1.96 — 2,40 5.5 5.3 = 5.7
Noncomposite steel I-beams 50 — 70 25 = 30 1.50 — 1.60 5.5 5.9
Concrete T-beams 40 — 70 29 — 36 1.33 — 1.46 6.0 5.9 — 6.1
Prestressed concrete I-beams 35 - 100 29 — 37 1.59 - 3.83 5.5 5.2 — 5.9
Prestressed concrete box-beams 61 — 72 33 — 46 0.67 — 0.83 5.5 6.5 — 6n7‘

a . :
Based ‘on typical bridges included in field tests and provided by various state
highway departments.

b
In load fraction equation: LF = S/D.

cTypical value for longer spams, about 5.8.
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Multi-Beam Bridges

The D value currently required for this bridge type is based on slab
design for main reinforcement parallel to traffic. The distribution
width per wheel is equal to 4.0 + 0.06L and varies from 5.2 for a span ’
of 20 ft to a maximum of 7.0. This range is essentially the same as
the proposed criteria will give, although the resultant.diétributions
-will not necessarily be the same. The relatibnship between the proposed
and current specifications can be obtained by examining the distribution
widths computed for the multi-beam bridges described in Chapter 2. These

widths are shown in Table 13. The ratio of the resultant wheel load

TABLE 13

DISTRIBUTION WIDTHS FOR MULTI-BEAM BRIDGES

SPAN E? p°

BRIDGE FT C FT FT

North Carolina 30 1.28 5.80 6.02

Centerport 32 0.53 5.92 6.86
Langstone 31 0.59 5.86 6.76 )

85ection 1.3.2(B) — Case B: Current specifications
(279). : '

b
Proposed specifications.

fractions may vary somewhat due to the different criteria for effective
beam width. - However, it can be seen that the new criteria considers
the wheel to be distributed over a wider area (better distributionf.

These bridges are quite narrow in comparison to today's standards, where
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the actual and effective beam widths are practically identical and the
difference between E and D shown in the table would be a realistic
comparison of design moment per beam. Thus, it is expected that

economies will result.

Concrete Box Girder Bridges

l

The current specifications indicate that a wheel load shéll be
distribﬁted over a width of 7 ft. It can be seen in Table 10 that this
width (D) cén actuall;‘vary from about 5.7 for short span bridges with
four lanes to about 8.3 for longer span (110 ft) bridges with two
lanes. However, the proposed specifications are somewhat conservative
in the higher D values and the value is limited to about 7. Of more

importance, it.should be noted that for most designs the actual D value

~is about 10 percent less than currently specified, indicating that

\

current designs may be slightly unconservative.

Summary

In summary, the proposed specification does provide‘a more fealistic
approach to load distribution. 1In some cases, significant econémies
may result. In other cases, such as the concrete.box gifder bridges,
higher désign moments.are:specified. However, in each case, the load
fraction applied to the beam, and the resultant moment, will mére truly

represent the actual conditions.
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CHAPTER 6. CONCLUSIONS

The purpose of the research summarized in this report was to study
the distribution of wheel loads in highway bridges and to recommend,
where warranted, changes in the AASHO "Standard Specifications for
'“ﬂighway Bridges." The study was generally limited to short and medium
span bridges of the following types: slab, beam and slab, multi-beam,
and concrete box girdér,

After an extensive bibliography search and a study of available
methods of analysis, it was found that the distribution of wheel loads
in these bridge types could be accurately determined using the
following theories:

1. beam and slab bridges: orthotropic plate theory,

2, multi-beam bridges: articulated plate theory, and

3. concrete box girder bridges: prismatic folded plate theory.

These procedurés have been used £o obtain extensive results re-
1ating the behavior of highway bfidgés with the variables affecting the
behavior. From these studies it is was‘found that:

1. Although generally predigting conservative load distribution
in bridges, the current AASHO load diséribution criteria (279) do not
realistically consider the significant variables affecting behavior.
VHowever, it should be noted that presentxcriteria do give realistic
values for many txpical beam and slab bridges. Yet, substantial improve-
meﬁts in geometfy can be made without a resulting change in the distribu-
tion of loads aé currently specified.

2. Accurate empirical relationships betﬁeen the vafiables which

significantly affect the load distribution and the fraction of wheel
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loads carried by each beam can be obtained. Relationships of this type
are presented herein.
3. The major variables which affect the load distributionhin each
of the major bridge types are: relative flexural stiffness in longitudinal
and transverse directions, relative torsional stiffness in the same
directions, bridge width and effective bridge span. Each of fhese
variables is considered in the relationships developed.
The results‘of the analytical studies and the development of o
empirical load distribution equations have been used to prepare specific

recommendations for changes in the current load distribution criteria.

It is felt that with these new criteria, prediction of wheel load

distribution will be more accurate and will more truly indicate the

behavior of the bridge types studied.



APPENDIX A
DEVELOPMENT OF THEORIES AND MOMENT COEFFICIENT EQUATIONS

BEAM AND SLAB BRIDGES

Orthotropic Plate Theory (5, 65)

Using the stress-strain relationships and the equétions'of
equilibrium, the following governing differential equation for laterally

loaded orthotropic plates has been obtained (245):

by x | - '
D ——%-+ 2H —-5——E'+ Dy ——% = P(x, y) (AL
X X oy ay '

where x and y are the axis of the coordinate system used in Figure 19.

The following definitions are based on an assumed Poisson's ratio

of zero.
-D# = EIX, flexural rigidity per unit width in x direction,
Dy = EIy’ flexural rlgldlty per unit w1dth in y direction,
H=1D 4+ D , sum of orthogonal ‘torsional rlgldltles,
Xy yX
ny = GJ#, torsional rigidity_per unit width in XJdlrection,
Dyx =_GJ&, torsional rigidity per unit width in'y direction,

E = modulus of elasticity in x direction,

G = modulus of rigidity,

'Ix = moment of inertia per unit width in x difectigﬁ,
Iy = moment of inertia per unit width in y direction,
Jy = torsional moment of inertia per unit width ip:x direction,
Jy = torsional moment of inertia‘per unit.width in y direction,
P(x, y) = lateral loading, and

deflection of bridge.

w(x, y)
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-The orthotropic plate considered is simply supported along the
two opposite sides of length 2b (or W) and freely supported along the
other two sides of length L (Figure 16). The boundary conditions are:

1. w =0, Mx =0atx=0 and x =L and.

2. My=0,Ry=Oaty=-bandy=+b.
where MX and M& are the bendiﬁg moments in the longitudinal and trans-
verse directions respectively and Ry is the reactive force at the free

edges. The solution to the governing differential equation may be ob-

tained in two parts (245) as:
wix, y) =w, + v, (A.2)

where Wh is the general solution to the homogeneous differential equation

and Wp is a particular solution. For Wh, the Levy series can be used:

» o]
- . mTX .
w o= ;=1 Y sin = ' (A.3)

where Ym is a function of y only. This series automatically satisfies
the first boundary equations. If this series is substituted into the

homogeneous differential equation, the mth term is:

miT, &4 mTl, 2 dZYm daYm
Dme<_f) + 2 —5 + Dy 5 =0 . . (A.4a)
dy dy
or
; 2
x mm& H X ,mTi 2 d Ym d4Ym ' "
— Y +2 — = () —_— 4 - =0 (A.4b)
DL —|D, L’ 4,2 gt ,
y Dy Y y y :
if

@
i
o
<<EEW
oUl.g
]
1
= o
T~
HIxH

y y
B i U S R 4
E
ZA/JSXDy_ 2A/1X1y

Q=
Il
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4 e‘* 92 sz d“Ym o
(mT) = Y + 2(mm) 5 o __2_m_ + % T 0 - (AJ4e)
b m b dy dy . .

the roots of the characteristic equations are (199),
m8 ,J1 + g (1 = ‘
b (T2 *t 7

(c + if)

I+

i, 2, 3, 4 =

or

Yi, 2, 3, 4 =+ —

or the characteristic equation is

mTic O L vy Bm Z
Ym = e Amcos(mﬂfe b) + ra s1n(mﬂfe b)
-mTlc 6 % v F v :
+ e o Cmcos(mﬂfe b) + : sin (mTfH b) | (A.5)
¢ 2
- (Lta
f = 2 .

For the ﬁarticularhsolution, the case oflgn infinitely wide. plate
which is simply supported on the two 6p§osite edges'is considered. If
the idad is applied at.y = 0, and the absolute value of y‘is used, then
constants Am and Bm in the characteristic equationAmﬁst be zero.,

Thus for this type of_loading, Ym becomes

-mTic 6 l%l

F
Y =e | [Cmcos(mT@f l%l + Em sin(mmBf I%I)]; (A.63)

The slope in the y direction must be zero at y = 0 or,

-mﬂ@c[ll

b - '
Ym = Gme [ cos (mOTE i%l? + % sin(mmOf I%l)]. (A.6b)
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Thus ,

) -mﬂ@cl%[ . S
w =) Ge P lcosmont |£]) + £ sin(mmét |[L])] sin = . (A7)
P e . b £ - b L

If a Fourier sine series expansion for a concentrated load is used

at y = 0 and x = u then,

P = sin sin = H_ sin mix o (A.8)

The solution for Gm is found from the boundary condition that the reactive

force in the slab at y = 0 must be equal to Pm/2 or
3

b
221 + o) Dym3ﬂ383 '

o _
m

s

For a load at y = v Equation (A.7) becomes,

@© -mTc 6 lz__l; Y -y ) . . e
Wp ==2;;'Gme .[cos(mﬂfe lz—g——l) + r sin(mmf 6 ]X—E~f|)]sin ff—

The combined solution (Wh + Wp) must.satisfy thé boundary edquations at
the two edges of the actual bridge: namely the méments and feactive forces
arée zero. Using these boundary conditions the gemeral solution is,

H

wo=p - ( ?re)?) [A cosh ¢ cos § + B sinh ¢ cos
m=1 2,2(1L + oy ™ m m

+ Cm cosh ¢ sin { + Fm sinh ¢ sin "y + (cosh 1¢ - Yl - sinh L® - Yl)
(cos |{ - 6| + % sin |} - §[)7 sin Eﬁi ' (A.9)

where
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A = %— <ﬁcosh Ycos 6§ (c sin 4 -~ £ cos £) - sinh Y sin & (c cos £
m ‘ .

+ f sin £)][- sinh k cos £ + % cosh k sin )] + cosh v cos & (o sin £

+h cos £) - sinh Y sin 8 (. cos £ - h sin £)][2c cosh k cos £

. S S .
+ o sinh k sin £)]>

B = %f <¥Sinh Y cos 6 (c sin £ - £ cos §) - cosh Y sin & (c cos %
m .

+ £ sin £)][- cosh k cos 4+ % sinh k sin £)] + [sinh Y cos & (a sin |,

+ h cos 4) - cosh Y éin 5 (& cos 4 - h sin £)1l2c sinh k cos 4

a .
-+ F cosh k sin z)]}

c = éfg <1sinh Y cos & (c sin ¢ - £ cos £) - cosh Y sin 8 (¢ cos 4
L : -

<

+ £ sin £)][sinh k sin £ + T sinh k sin £)] + [sinh a sin £ .

+ h cos 4) - cosh Ycos 8§ (0 cos 4 - h sin zj][ - 2c cosh k sin £

a
+ - sinh k cgs ﬂ)]}

F = ﬁfg‘<tcosh Y cos § (c sin 4 < £ cos £) - sinh Y sin § (c éos 2
m

<

+ f sin 4)][cosh k sin £ + R cosh k cos £)] + [cosh Y cos & (a sin £

+ h cos 4) - sinh Y sin § (a cos £ - h sin £)][- 2c sinh k sin £

!

+.f cosh k cos 2)i>

cosh k - .sinh k

Lo
0

h =yl - q?
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l+ay
mTo 7 b
l-ay
mT7o > b
+(1\_£
m1o > P
- Qv
mTTo 5 5
mT70 1 ; %
mTo ‘l ; Q&
b | x
L D

(200 + 1)f sinh k cosh k' - (2o = 1)c sinh £ cosh £

1]

(2o + 1)f sinh k cosh k + (2a - 1)c sinh 4 cosh 4. -

be noted that the function enclosed in bracket$>in'Equation (A.9)

is independent of 2 and will hereafter be referred to as

[+

" - The mome

‘teristics of

a transverse

the Bridge at
If PO/W

acting transv

series

ceer] = F(y, v, m, 8, Q).

nt coefficient used in measuring the load distribution charac-
the bridge is defined as the actual 1oﬁgitqdina1 moment at
point on the bridge divided by the average moment across

this point.
equals the magnitude of the uniform concentrated line load

ersély across the bridge then in terms of the Fourier sine
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The average deflection becomes

o H ' .
- NGl mo o mix S
w, = (ﬂ) W z sin =7 . - (A.10)
m=1 m

The moment in the longitudinal direction with Poisson's ratio equal to

zero 1is

. aZW
M =-D —/=. _ o (A.1D)
X X 2
ax‘ :

Thus, the ratio of the actual moment to the average moment becomes

x_ H

z , m—m F(y, v, m, U, @)sin I% _
R o= —o ‘ . (A.12)
ORI S g

MULTI-BEAM BRIDGES

Articulated Plate Theory (261)

The following basic assumptions are made for the analysis:
1. Beams are made of a homogeneoué, isotropic and elastic material.
2. All beam elements in‘a.bridge are the same with regard to
their geometric and mechanical properties. No edge-stiffening
effect is considered.
3. Beams are prismétic.
4, Beams are all simply supported.
5. Deflections of beam elements are small compared with their depth.
6. The connection between beams is hinged along the middepth of
the shear key so that no relative movement except the trans-
verse rotation.is possible. 1In thé case of dry-packed mortar con-

nections, cracks are assumed at the location of shear keys.



7. The effect of préstress in transverse direction is.hot>taken
into account. |
8. In the design of multi-beam bridges, the 1Qngitudiﬁal posi-
tions of the wheel loads are éet to be at the midspén.
9. Poisson's ratio will be taken to be zero in the actﬁal computa-
tion.
10, -SkewlbriAges will not be considered.
11u The nﬁmber of beam elements is iarge'eﬁough so:that.the dif-
ferential calculus can be appliéd. |
12, The‘galculations will be based on the cross-sectional area of o
the beam elemenﬁs (t?ansformed).
Figure A.1l shows a multi-beam bridge and its cross section. Single
arrows iﬁdicate various forces while the double arrows indicéte moments.

or torques obeying the right?hand screw law. The baéiC'équations will be -

‘obtained by considering the equilibrium of a unit beam element under

load (6):
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i +1 th JOINT e

(j + 1) th ELEMENT | |
- (i) th ELEMENT - |
(@) MULTI-BEAM BRIDGE B '

M . V'.+dV

o 1/2 a. d
S: SHEAR CENTER / e~
G: CENTER OF GRAVITY - ,

(b) CROSS SECTION OF A MULTI-BEAM BRIDGE
AND FORCES: APPLIED ON IT

Figure A.l. Cross section of a multl-beam bridge and forces applled
on it.
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Equilibrium of Vertical Forces

The equilibrium of vertical forces requires that the algebraic sum -
of these forces should vanish

-V .+ (V. +dV_ )+ (s, - s, )dx +p_.dx = O.
zj ( z] ZJ) ( j J—l) . pX]

Therefore
av. .

s (sj Sj-l) . pxj . o | ’(A,l3)

The algebraic sum of moments and torques which have the vectorial

- direction in y-direction should vanish, so

\
‘

-M, + M, + dM . -- V .dx - . -’., )2'dx = 0.
A ( yi o YJ?‘ z] (qJ qJ-l) S

Hence,
~Ll=v 4+ (@ -aq. 2. - R (A.14)

The algebraic -sum of moments and torques in x-direction should .vanish:

- TXj + (TXj + dej)'--(#j - rj-l)de.- (sj + sj—l) j 1/? bdx
- p_.e.dx - Qdq, +dq, ;) = 0.
Pyi®i9% (‘qJ 93—1)
Hence,
dTX. _ _ .~'d : . C ‘
—E;l % ijej + Q an (qj + qj-l) + (rj - rj?l)z + (sj + Sj*l) f 1/2 a. (A.15)

“From structural mechanics, the following relations between the moment
v . I R , ,
Myj and the deflection w and between the torque ij and the éng1e of rota-

tion ¢ are known.
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2
M.=-EIQ--;~7
Y3 dx | |
. 3 e : ,
T . =-cJ $@4pcdf, | (A.16)
x]j L dx dx3 -

Combining all the relationships presented here, the following relation-

ships are obtained:

d4w Cd -
—_— = _ - - ' ‘ : : .
E b Pyt (sj sj_l) a= (qj qj_l)z | (A.17)
atg g d -
- EC + GJ. == =-p .e. - (q. +q._)Q
dx4 L de’ xj ] dx i i 1
- (rj - rj_l)z - (sj + Sj-l) . ;/2 a. KA.18)

The relationship between the deflection and rotation is found as

Vgl TV T 1/2 a(&bj + ¢j+1)‘ ' _ '(A,19) |

Now, assuming the uniformity of shears, defiectioﬁs and the transvéfse
normél'forces rj, the horizontal shearing forces‘qj will be négligible
compared -with the transverse shear forces sj. Letting the distance between
the stations designated by j and j + 1 tend tolbe infinitesiméll& small,

then

e, —» 0.
J

Also, Equations (A.17) — (A.19) will be rewritten as follows:

A ) . ‘ ‘ ‘ .
Elop.x, & | (4.20)
ox y
b GI 2 :
E . .
_.;gazhr axagu_s (A.21)
for4 ox N N
o _ ' .
5 = 0 | (A.22)

Set
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then, Equations (A.20) — (A.22)'become

4 6 4 P
p 8% _, _9W L, _9WwW_ _ X (A.24)
b'd 4 a

3 X 6X46y2 Xy szayz
It should be noted that Py repfesents an impﬁlsé type function; in other
words, this is of finite value at the loading point and zero at the.other
points. |

A modification is made to take into account the transverse torsional
stiffness. If there is a transverse torsional stiffness‘existing,

Equation (A.20) can be rewritten as follows:

4 4

J

dw d'w x 3 .
D +D- =X 4+ & . ~ (A.25)
x ax4 yx axzayz a .ay .

Then the basic equation corresponding to Equation (A.24) will be as follows:

, 4 6 - ' : b P
% ox ' dy Y ax"ay A :

|

where Dyx'= GJy/L, the transverse torsional stiffness pet unit width.

‘Important Parameters Tnvolved

Stiffness and Rigidity

Before mentioning the various controlling pérametefs, the rigidities
and Stiffnesses must be defined. In the analysis, the rigidity>is de fined
as a reduced force to deformation ratio. For ekample, ET and GJ are

|

flexural rigidity and torsional rigidity, respectively. Also, the stiff-

ness is defined as a quantity designating a reduced force to deformation

ratio of the unit length or width of the structural system. For instance,
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Dx’ Dgy and CX are flexural stiffness, torsional stiffness and tdrsional
warping stiffness, respectively.

The controlling parameters will be divided iﬁto three categories.
These are: first, the geometric dimensions; second, the mechanical
properties; and third, the design criteria used by engineers. Each
of these three parameters is explained subsequentiy.

"Geometric dimensions: The following parameters can be claésified

into this group:

1. Number of beam elements: N,
2, Ratio of width of a beam element to the span length:. therefore,
B = a/L. (A.27)

Mechanicél properties: The previous parameters'depend on only the
geometry of bridges,vbut the next two parameters depend also on the
mechanicai properties of the material.

1. . Flexure-torsion parameter: ¢, where ¢ is defined By thé

equation:

o = half bridge width flexural stiffness in long. direction
' span length N total torsional stiffness

]

1/2 N BJDX/(ny+Dyx) = 1/2 N g/ (A.28)

where

X
Il

DX/ (ny + Dyx). : ' ' : , (A.29)

2, Torsional warping parameter: A, where X is defined by the -

equation:

torsional warping stiffness Cx

A_ = 2 = . (A'BO)
flexural stiffness - (beam width) Dxa ‘

2




145

Solution of the Fundamental Equation

vKuation'(A.26) may be solved by. expanding the solution.in‘terms{
of trigonometric series. Since oniy simply -‘'supported briages'are'being

. considered, the deflection w may be expressed by the series

© © i . ' a
w = 5 W = 5 v sin EE§ . _ o '__.(A.31)
m=1 m=1 R . ' C

Similarly, the load p can be expressed'as

peY o =y _EoemZE @A

. m=1 m=1

where Hm can be determined as

| S ‘ Hm 7 sin . . (A.33)

i .
where u is the longitudinal position designating the wheel load. As the

next’ste'p,-Hm in the y-direction can be expanded to‘fepreseht the load

intensity Eﬁ

P, = Hmé(y)

where &5(y) 1 at the loading point

1

0 at the other points., R (A.34)

Finally, the load intensity q can be expressed -as follows:
@.=) _p_sin . _ - (A:35)
=1 " ‘ o ‘

Sgbstitution of Equations (A.31), (A.33), (A.34) and (A.35) into Equation (A.26)

yields: _
dzv_vm ” N o |
7 " %¥m T — ' T2 : (4.36)
dy CX(L Y+ (ny + Dyx)(L )
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where

o g mTT/L =' 2L¢ mm/L
" " 2 Na s@
/1 + (f-)

2mﬂ 2m =
. \/+mTrBK)\ '

where ¢ and X have been defined by Equations' (A.28) and (A.30). Also

g(m) and E are given by:

g(m)=mm o (A.37)

R (0 _
= Sy - (A.38.)

Using a nondimensionalized coordinate system, where

o= 2X S (A.39)
Na
_ 2e .
b= o (A.40)

Equation (A.36) becomes

—_— 1 —
Fa & Na)*p_(0)
22 = "2 m
—_5— -mg Ym T mTT, &4 mm, 2 ° (4.41)
do D (/) + (ny + Dyx)(f—)

x L

\

The complementary solution of Equation (A.41) is obtained as:

= _ . O -mgo o
LA Cle + C2e . | (A.42)

To obtain the particular solution of Equation (A.41l) the width of a
bridge is assumed infinitely large. Noting that pm(o) represents an im-

pulse load actiﬁg at o = {, the solution is found in the following form:

w =C e"“¢lof“‘| « (A.43)
mp m
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where the absolute value of Io - ¢| is used for symmetry and Cm is deter-
mined from a condition that the reaction force along the line o ='¢ is

equal to half of the load. Therefore,

aswm ‘ 3me 1 = mTX '
D, ———P-’q - @ +D, ) —5 =5 B sin—— (A.44)
3x ' dy T oy |
o={-0
The left term becomes
t(“ﬂ)4' + @ +D )@EH2 Fn sin BE | (a.45)
L Xy yx’ L " Na do ‘ L - :
A o=1§-0
Since
an _
oo - m¢Cm
the constant Cm,can be obtained .in the form:
Na 1 L (2 ﬁﬁ 1
C = — = (— - . : ' (A.46)
mo 4 mg P Oy POy gm? , ,

Therefore, the complete solution ;ﬁ can be shown as follows

2. = - '

L NaH g & @

= B (8™ 8 4 eIl L )
) .
»(ny.+ Dyx)m m ¢g (m)

Let W, be the deflection of an idealized beam with the flexural rigidity

of (El)total’ where

(ET)

total ~ Nan = total flexural rigidity of a bridge section

then, the beam equation is

d4W
o

total dxa

(ET) = p. (A.48)

Expanding WO in terms of trigonometric series:
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[oo] [ee)

- = o . MTX
W = E Wom E Wom sin = (A.49)

© m=1 m=1

and using Equation (A.32), the relation is

—

H
_ _m_ L \4
wom - NaDX (ng ‘ (A.50)

Constants Al’ A2 in Equation (A.47) are determined from a boundary

condition that the reaction force along the two edges must vanish; hence,

aswm 83wm :
C - D +D ) = 0, (A.51)
x axaay Xy yx axzay

o=+l

This condition is identical with the condition:

83wm

5 =0 (A.52)
0X o7

o=+1
or
Bﬁﬁ
SE_ ‘ = 0, - (A.53)
o=+1

By substituting Equation (A.47) into Equation (A.53), the constants Al

and A2 are as follows:

mgy . -mp(2+)) Moy, mp(2- )
P8 T T g L _me (4.54)

e
A, = = =
1 eZm¢ - e-2m¢

The mean moment M then is obtained in terms of the mean deflection W,

M = E Mm = M sin —%—
m=1 m=1
2 2
=_D dwO:-D Em .c.l.._‘fp_n_l.—D EOO (1'_[_1_1___[)2"3 H I_H_TE A55
x . 2 X 2 Tx L om °t% T ¢ (A.55)
dx m=1 dx m=1

Therefore




H
T = mm2 o ;L2
Mm - Dx (L ) wm Na (mrg T
Statics requires that
1/2Na
1 p— _.-—
Na mmdy - Mm
-1/2Na
Cor
1

1/2j mdo =M
m m
-1 ,

where m refers to the bending moment per unit width and is given as:

2
0 Y mt, 2 - mTIX - mTx
m =~-~D ——=D ()" w sin — =m_sin —/— (A.58)
m X 2 x L m L m L-
_ ox
where m =D (EE)Z W . ]

m x L

The relation indicated by ﬁquation (A.57) can be proved in the following
| ’ .

manner. By simple calculations with the use of Equation (A.54),

1

' mﬁb ' -mzb -ﬁ6|6-¢] - 2 .
;Jp. (Ale + A2e + e Ydo ng (A.59)
-1 .
Subsequently, referring to Equations (A.47) and (A.56)
1 2 = |
— Dx mf7, 2 L NaHm 2 1
1/2 mmdcr =7 (E—) 3 2— g 2
-1 4(ny + Dyx)E T ¢ m@ gm) _
D H 2.2 : H -
= 1/4 X Na m _ ¢ L . Na . m

D +D ) 2 — >
(Xy yx)mz ¢2g<m)2 Nzaz 2 22

m L2 _ =
Na (ng - Mm '

From this equation, the condition represented by Equation (A.57) is

satisfied by the condition indicated by Equation (A.45).



Definition of Deflection Coefficient

The deflection coefficient is defined by the equation:

8

K. = m=1 . (A.60) }

From Equations (A.47), (A.49), (A.SO) and (A.54)

- . mTX 29 2 m
__ Wy ST g D L°N"a 44— 3= 2
K. = m=1 = = I m=l m” gz (m) . gip DX
d 2 — . mTx - 4(b. +D )Tr2 LAZOD: Hm . mTX L
W sin — Xy VX — sin —
o om L =1 m4 L
(Alemw ey mlo-uly o (g? %T— — L \
. -
— sin —/—
m=1 mbf L
. _ _ _ -
E — (A em¢:I + A e-mqj[j + e-m¢lg-¢l)sin Uil (A.61)
— 3 1 2 L
m=1 m~g(m)

Finally, the deflection coefficient Kd is as follows:

|
|

Hm [em(w + e-m¢(2+¢) m?bo e_mgbjj e—m¢(2-¢).o e—mao_i_e—malo— QJU . MTX

—— — + . - sin—
3 So- . € _ .
_ =1 m g (m) e2m<7) De 2m¢@ e2m@ - e 2mg I
K. =T , —
d o H
Z I?m- sin 'm—-——-]tm
m=1 ’
(A.62)
Definition of Moment Coefficient Per Unit Width ’
The moment coefficient per unit width is defined as:
2_m
m=1
K =——, (A.63)

M
=

=]
i
'—-l




From moment-deflection relations

o Jdw ©
'DXEZ: 2 2::
X m=1 ox = =
m © dzw o (r_n_r_r)Z sin mix
-D om — “om L L
X 2 m=1
m=1 dx

Upon substitutions, the moment coefficient per unit width Km is obtained

as . _ .
Efi H em¢¢-keﬂn¢(2+¢) mgs eﬂn¢¢4_e—m¢(2-¢) ~mgo _malo_wl . ommx
e + e + e sin
=1 W (m) e2m@_~e--2m6 : : e2m"¢_ e-Zm'g'ZS . L
K = ﬂ¢ ﬁ .
m ' ©
m=1 m
(A.64)
Definition of Moment Coefficient Per Beam
The moment coefficient per beam is defined as
1
o (N
E m (E)d§
m=1 1 "
N .
K. = (A.65)

mb - 1
7 | m(9dE
m=1 -1

where o designates the position of the centroid of the beam element con-

cerned. Since

1
Jﬂ m do = 2M
m m

-1

the definition can be rewritten as



. (A.66)

Due to the singularity of the function m at the loading point,

two cases must be considered in integrating m

1
~j~. m_(£)d5 .
-1

These cases are, first, the coefficient for the loaded beam element;
second, that fof the unloaded beam element. They may be distinguished

by knowing the sign of the function DO defined by the equation (Figure A.2):

b, = o= P - i +P - 4. (4.67)
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D= - I/N) -3 (o+I/N)-p

L MOMENT PER UNIT

WIDTH CURVE
D >.0 /
i - 0
i | \{/

o- I/N loH/NG b

—-amZ/Nmﬂ—

! ‘ L% : 2 : 5P

BEAM SEGMENT AWAY FROM CONCENTRATED LOAD
\
|

? MOMENT PER UNIT
D_ <0 TN WIDTH CURVE
| \ |

o

i \\5&”/ - O

5 3 03 L0 03 L

C 10

u)

UNDER CONCENTRATED LOAD

BEAM SEGMENT

Figure A.2. Moment coefficient curves for multi-beam bridges.
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Coefficient for Unloaded Beam Element

Y,

By simple computations Kmb is found for Do 0:
mey + e-m¢(2+¢)

1 = ﬁm e
Z 2. eZmE _ e-2m’§5 '

m=1 m
Eﬂ(@ﬂ/m i emTZ)(O‘-l/N)] p e D o1/ _e-m5(0+l/Ni]
N equzj e-Zm'@ !

+ oMo o= Y] -1/N) _e'm5(|"“1’|+1/m} sin BIE ., (A.68)

Coefficient for Loaded Beam Element

Similarly, for D0 < 0 the coefficient is

- =.1: N 1 @ Hm em¢¢ + e_m¢(?+¢)
mb 2 o H Z_ 2 2mg ~2mg
m . mxX m=l m e - e
E — sin —/—

m=1 m

Z( ]‘/N) m¢(0’-l/N) e Z'L m¢(2'¢)
‘e - e l , + e
2mo -2m@

mTe

E-m-g—b(c-llN) _ e-m¢(o+l/Nﬂ Lo - em?/j 1/N [:emgb(c- 1 e-m<—;§(0- \‘J)jl}sin =
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APPENDIX B

EVALUATION' OF PARAMETERS FOR LOAD DISTRIBUTION IN HIGHWAY BRIDGES

In beam and slab bridges, the following two bridge parameters are

considered the most significant regarding the lateral distribution of

wheel loads.

: 1. Flexural parameter, 0:

o o W N[ x
2L D
y
\ . .2, Torsional parameter, o:
‘ D + D
SRR S 5 A 2.4
2
B3
where
L = span length, ft,
| W = bridge width, ft,
{ ny = torsional stiffness in the longitudinal direction,
.2 -
1b in. /ft,
Dyx = torsional stiffnmess in the transverse direction, 1b in.z/ft,
DX = flexural stiffness in the longitudinal direction, 1b in.z/ft,
' : 2
Dy = flexural stiffness in the transverse direction, 1b in. /ft.

It was found that these two parameters can be combined into one

parameter to predict the wheel load distribution. This new parameter

C is defined by \

D

/ _ /R N e S
C = o//a = 2 (L) ny+1)yx'

Also in multi-beam bridges, it was found that the most important

cross-sectional parameter was ¢ as defined by
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It can Be easily seen that the.parameters in beam and slab bridges and
in multi-beam bridges are essentially identical, the only difference

being the numerical constant. In other words, the relationship between

parameters C and ¢ is

‘C = (’\/Z)ﬁbv

Therefore, the evaluation of the constant or parameter C can be carried
out in the same manner both in beam and slab bridges and in multi-beam ,'

bridges.
| |

The assumptions on which the parameter calculations are based may

be summarized as:
1. A typical interior beam or\éiaphragm and its portion of the l
deck slab (the width of a beam or diaphragm spacing) are
used for parameter calculations.
2, Full transverse flexural and torsional continuity of the
-diaphragmsvis assumed only when they are rigidly connected
to the longitudinal beams.

3. The torsional rigidity of steel beams or diaphragms is ignored.
4, For flexural and torsional rigidity calculations of steel beam-
concrete deck bridge types, the steel cross-sectional area

" should be expressed as an equivalent area of concrete.

5. The uncracked gross area of the concrete cross section may be

used for ridigity calculations imvolving prestressed or rein-

forced concrete structural members.
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6. Standard engineering procedures are used for computing the
torsional and flexural rigidities of typical bridge systems., -

Using these assumptions, the stiffness parameter C can be found by
using bridge dimensions and the mechanical properties of matérials for
different cross sections as outlined in subsequent sections.

The effect of diaphragms is generally small or negligible and,
thus, is normally not considered in determining the stiffness parameter
C. Thus in subsequent sections, the stiffness of the diaphrégms.is not

indicated in the calculations. However, if consideration of the dia-

phragms is desired, the torsional stiffness in the transverse direction,

.D__, should be increased by the torsional stiffness of the dia hra
vx P gm

divided by its spacing (stiffness/ft).

Steel Beams and Concrete Deék

Noncomposite Cross Section

The moment of inertia of the total cross section which has the

width of S is expressed as follows: (see Figure B.la)
1 3
= + =
I nIb 12 StS
where
Ib = moment of inertia of a beam element in in.4,

n = modular ratio = Es/Ec’
S = beam spacing, ft, and

tS = thickness of slab, in.

Therefore, the longitudinal flexural stiffness is
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= S *—
T ?— R ———— cg
_ A
‘ ' Q i i
‘ | T 1 _
dy
|

i
Y - C = ¥

INE]

l S |
3 -
- 5 :
5 = B
i‘s i‘—blﬂ-ff ﬂ'lv -avlnﬂ——-fw
7 Ly, - h
S| | i

[ b —]

C. SEPARATED CONCRETE BOX-BEAM

Figure B.l. Nomenclature for calculation of bridge stiffness parameter
C, beam and slab bridges.
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CBD 0L
X S s St: 12

Also, the torsional stiffnesses are given by

Finally,

For most cases, the second term in the square root term is negligible

compared with the first term, or

w ™
C=1.9 .=+ [— v = 0.2 (Poisson's ratio)
L 3 ;
St :

s

nl

C= 1.7 » % o ——%- v = 0.
StS

Moreover, the expression of C for slab bridgeé can be derived by neg-

lecting the moment of cross section of steel beam element, Ib' Therefore,

v = 0,2

(@]
]

0.55 -

=

for slab bridges.
= . ¥ -0
c =0.5 T v=20

" Composite Cross Section

~ The position of the neutral axis is given by: (see Figure B.la)

. Stsdl + nAbd2
StS + nAb

where

dl = distance indicating the position of the center of gravity

of the slab portion,
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o
Il

distance indicating the position of the center of gravity
of the beam portion, and : .

cross~sectional area of the beam portion.

]

Therefore, the moment of inertia of the cross section, I, is'given as

follows:

_ 1 ..3 _ 32 — 2
I nIb + 17 St + Sts(d1 d)y- + nAb(d dz)

Thus, the following is the expression for the flexural stiffness

D -k t nI,b nAb d1 - d2)2
x c's 3 12 St + nAb t : "“\

St s
s

The torsional stiffnesses are similarly: ‘ B

[op]

Gc
D =6—'t

3 _.¢c .3
Xy s’ Dyx "6 ts

Finally:

nAb d -d, 2 '

E 1 2 . ‘
= /6 j; 2 LJ/—__ St + nAb ) - ' |

It was found that the following relation-exists practically:

nIb+_1__+ nAb (dl -d2)2.=16 nIb : '
+ Lo/ /5. : \
St: 12 StS nAb t .St3
Hence,
w [
C=3'OE —-—5'
St
s

a
Hi
N
[0¢]
s
w15
T -t
oo
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- Nonvoided Concrete Beams and Concrete Deck

The expression for the flexural stiffness is exactly in the same

y - | form. The torsional stiffnesses are as follows: (see Figure B.lb)

b
_ i3 1.3
ny— c Z Kl S tl +Gc6 ts
i=1
G
c 3
where
bi‘= length of the ith rectilinear portion of the concrete
] : beam
Ki = St. Venant's torsion constant for the ith rectilinear
{
, portion of the concrete beam, and
t, = thickness of the ith rectilinear portion of the concrete
beam.
( Therefore -
o1, ™ (dl’dz)z
A E St3 12 8t + nAb 'tS
. C = é@ -—C- s — ° T’—q
' 2 {6, | R b, t; 3 L
- 1+3) K == (9
| . i8§ [
i=1 ]
. Upon making use of the simplification:
/Ib L1, nA, (dl-d2)2_16 nI
—_ =1, —, |
St3 12 StS + nAb tg . St3
- s, . : 2.8
gives

. because practically
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1 R bl t13 1h tw3 R
g RFad ) K560 5596
i=1 s s
Finally
4
I
c=3.o% 3b : v=0.2
St> + ht |
s W
T
c=2.81 o v =0
St~ + ht
S w -

Separated Concrete or Steel Box Beams and Concrete Deck -

Again, the expression for the flexural stiffness is exactly in the
" same form as before (see Figure B.lc). The torsional stiffnesses at

this time are as follows:

! 2
5 =i ‘t3 N 4(1h1v) GC |
xy 6 s 1 1 t, + ¢t
4 v h t b
@ t + Tt ) t )S /
w t b '
G \
c 3
Dyx 6 ts

where

- L =h -
1h-—h-2(tb+t)—h t,

1 =b-t¢t, ' . ll
v w .

-1
t—z(tb+tt)

‘thickness of the bottom flange of box beaﬁ, in.,

rt
n

b
tt = thickness of the top flange of box beam, in.;
tW = web thickness, in.,

h = height of box beam element, in., and

il

b = width of box beam element, in.

Therefore
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_1.6(Fc w [ b h Db Wy L b
C = T T 77 Gt /-5 -p.
C b h W

Here, the approximate relationship as follows was used:

nI n d, -~ d, 2 nl
/b+1_ & e N

+ — ( .

St3 12 Sts ~+ nAb tS St3

s s

Finally,

. I t -

- Wb h._ Db, L W £l -
C_l'ZL/ZZ(t +E) (1+b)(1+h) v = 0,2

b"h w .
I ' t —- .

- Wi Db /h by, W .t _

c=1.1 L\/bzhz (tw + F> (1 + 5 Y(1 + h) v=20

Note: It was assumed that the geometrical mean value is approximately

equal to the algebraic mean value; i.e.,

— 1 R
t = — L °
7 (b T ) B

Also, since tw/b and t/h are much smaller than unity,

t t -
Wy W, By o
/(1 - 5 ) 1+ 5 1/ (1 h) 1+

5 et ]

Solid Concrete Cross Section without Voids for Slab and Multi-Beam Bridges

For slab bridges this can be considered to be a special case of
steel beams and concrete deck. Therefore Ib and Ab can be set equal to
zero in the expression of C for steel beams and concrete deck (refer to

Figure B.la, B.2c¢). However, in the derivation of the expression for

C in beam and slab bridges it was assumed that

]

c .3
ny =3 ts .
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| - b >
I d— F : '
?S I i f T ' t?.
] | _—jl‘ I.
nL = L

. ,
| 2 B .
1 a. CHANNEL CROSS SECTION b, BOX CROSS SECTION
1 ' N
1
|
| = b > N
‘ | b -
; : K
i - AR B
| e d. SOLID CROSS SECTION
c. SOLID CROSS SECTION WITH CIRCULAR HOLES

Figure B.2. Nomenclature for calculation of bridge stiffness parameter
C, multi-beam bridges.
Therefore, St. Venant's torsion constant“K1 for thg longitudinal torsion
in slabs was assumed to 1/6 which corresponds to the torsional resistance- '
of a small transverse section of the slab., Hence, it may be better to
u;e the general coefficient Kl in slab bridges for the torsional étiff-

ness in the longitudinal direction for multi-beam bridges. Now, the

flexural stiffness can be obtained as follows:
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Also, for torsional stiffness in general

[op]

3
= .
D,y G Kt ;D

=< .3
yx 6 b -

Therefore, the following general expression for C is obtained:

1

12 Kl + 2

. % . ov=20,.
Thus, for multi-beam bridges K, can be found from Table B.l and for

slab bridges Kl can be assumed to 1/6.

TABLE B.l

COEFFICIENTS FOR SOLID SECTTIONS

s/tS = b/t K, c
1.0 0.14 0.521 W/L
1.5 0.20 0,480 W/L
2.0 0.23 0.459 W/L
3.0 0.26 0.442 W/L
10.0 0.31 0.418 W/L
o 0.33 0.408 W/L

Ordinarily, b/tS falls in between 1.0 and 1.5 for multi-beam bridges;

hence,

_ W -
C =0.5 T |- v 0.

It would be interesting to note that the expression for C is identical
both for slab and multi-beam bridges. However, it was found necessary

to revise the value of beam spacing when the same load distribution
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formula LF = S/D- is used in multi-beam bridges as was shown in Chapter 4. ‘
That is, instead of using the real beam spacing b, the following length

, should be considered for it:

°

s = (6Nw + 9)/N.

The comparison of the load fraction between slab bridge and multi-beam

bridge is shown in Table B.2.
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TABLE B.2

LOAD FRACTIONS FOR SLAB AND MULTI-BEAM BRIDGES

SLAB BRIDGE MULTI-BEAM BRIDGE
W, FT N S, FT LOAD FRACTION S, FT LOAD FRACTION
27 4 27/N 27/(N - D) 33/N 33/(N - D)
33 4 33/N 33/(N « D) 33/N 33/(N « D)
37 4 37/N 37/(N + D) 33/N 33/(N . D)
39 6 39/N 39/ (N - D) 45/N 45/ (N * D)
45 6 45/ 45/ (N + D) 45/N 45/ (N + D)
49 6 49/N 49/ (N - D) 45/N 45/ (N ¢ D)
51 8 51/N 51/(N . D) 57/N 57/ (N « D)
57 8 57/N 57/(N . D) 57/N 57/(N - D)
61 8 61/N 61/(N . D) 57/N - 57/(N - D)
63 10 63/N 63/(N - D) 69/N 69/ (N - D)
69 10 69/N 69/ (N - D) 69/N 69/(N . D)
73 10 73/N 73/(N - D) 69/N 69/ (N - D)
Here,
Nw Nw G2
= — .5 I <
D=5+55+ (3 7 ) (1 3) C<3
N N
=5+ 50 C £ 3,
and N = number of girders.

Solid Concrete Cross Section with Circular Voids for Multi-Beam Bridges

Since the number of holes does not influence the value of C signi-

ficantly the same formula as in Section 4 can be used (see Figure B.2d).

i}
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Box Concrete Cross Section for Multi-Beam Bridges

The expression of C for this cross section will be obtained as a
special case of the cross sections dealt in 3 (see Figure B.2b). Here,

the moment of inertia of a beam portion is given by:

_ 1 3 _ - _ o3
I = 12 [bh (b 2tw)(h 2t)7]

b
3 - - t *
. bh Eyra £ 4 W g _ 5, E\2
=S Q-2pBet+g @ 2 97
3 - - t *
_bh’ Lt EL W o, E
=i A -2pBe+rg -4
where t = L (¢, +t ).
2 t b
| However, ordinarily;
|
1 — t ‘ —_—
t W t
3 = >> —= - 4 =
3h > - (1 4h).
Therefore,
3 - —
= bh_ | o B E

Assuming that the Poisson's ratio is zero:

t

C = 0.5 (1-+b—w) v =0,

==
nlﬁ]

h
1+ b

\d

Channel Concrete Cross Section for Multi-Beam Bridges

This section can be regarded as a special case of the nonvoided
concrete beams and concrete deck section (see Figure B.2a). The moment
of inertia of the beam portion (actually, of the leg portion of the

channel cross section) can be obtained as follows:
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twh3 t, 3
L, =% Q-3
where
t'"—;l(t +t,).
W 2 1 2

As in previous cases (in nonvoided concrete beams and concrete cross:

section) it can be considered that
K, = 1/3.
i

Compared with continuous slab in beam and slab bridge, the longitudinal

torsional stiffness is somewhat different:

G R=2 b, G h - t
p.==2¢d 4> o L3232 S 3,
Xy 3 ] =1 © ib- -1 3 s 3 ¢ b w
There fore, .
h -t t 3 |
N _ 3112 s , W
ny + Dyx - Gcts [% + 3 b (ts);]
=feed |1+ 2 L5 (Eﬂ)3
2 “c’s 3 b tS ’
Then, C can be obtained as follows
. , e (b= )’
C= /3« 7+ (L&) « | -5 3 ,
bt” 4+ =~ (h - t )t
s 3 s’ w
where it is assumed that
{ nIb . 1 N nAb (dl - d2)2 e nIb
St3 12 StS -I--nAb tS Stz
Finally the expression of C is written as follows:
' 3
/ e (h - t)
C=0'92}L1 7 2 v =0. :

3 4 3
/bts + 3 (h - ts)tw
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Also, the following expression was found to approximate the rigorous

expression within small error:
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APPENDIX D
PROJECT STATEMENT AND RESEARCH PLAN

In this appendix are presented the Research Problem Stétement anid
the Objectives as given in the Project Statemen£ for this investigation,
as originally issued by the National Cooperative.Highway Research
Program. ‘in addition, the.Proposed Research Plan included in the
Research Proposal submitted by Iowa State University (dated 30 July
1965) as modified on 19 ﬁovember 1965 is given,

Research Problem Statement:

i

The factors currently in use for load distribution are inadequate
for the various types of floor systems used in bridges. A large amount.
of research has been conducted on this problem, but the results of this
work have not been correlated and evaluated in a manner such that
suitable recommendations for changes in the specifications can be made.
There is a need for a review of the past work, both analytical and
experimental, and analyses to determine load distribution factors for
each type.

Objectives:

The primary objective of this project is to recommend changes in
specifications for distribution of wheel loads for use in design of
floor systems for bridges. '

The accomplishment of this research should include the following:

1. Review available analytical solutions and evaluate their ade-
quacy by comparison with laboratory and field test data ob-
tained from other research studies;

2. Identify those areas where experimental data are not yet ade-
quate to determine whether analytical procedures are correct;

3. As necessary, extend existing, or develop new, analytical
solutions such that all major types of floor systems are
included. Laboratory and field tests are to be used to
verify the analytical solutions;

4, Determine the variables that have an important influence on
load distribution;
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5, Recommend specification changes such that resulting designs
. will be more economicall and yet have adequate factors of
safety.

It is intended that the major emphasis of the work will be limited
to short and medium span bridges with no skew. Floor slabs supported
by steel, reinforced concrete, or prestressed concrete beams are to be
v included as well as floor systems produced by adjacent box beams and
similar typesz.

¢

PROPOSED RESEARCH PLAN:

The research program will be divided into the following phases
and studies. The details outlined in each phase will be developed by
the Project Investigator and reviewed periodically, probably on a
semi-annual basis, by consultation with the Research Engineer and his
staff. The phases are intended to indicate the general order of proposed
research; however, it is anticipated that there will be considerable over-
lap of endeavor.
Phase 1: Evaluation of current status of research on load
distribution in highway bridges.
This study will include:
(a) Aisurvey of all available analytical and experimental
studies on load distribution, including:
1. published reports and papers
2. current research investigations.
Summarizations of this information will be made and
an outline of the proposed analytical procedures

developed.

(b) The collection of results of field tests of actual
highway bridges. '

The basis of this phase will be the work by Varney and
Galambos on field dynamic loading studies as published
in "Highway Research Board Record No. 76." Collabora-
tion with these authors will constitute the major

~ emphasis in this effort.

!

In the Iowa State University proposal, the word “economical' was changed
to the word "realistic."

2In the Iowa State University proposal, a sentence has been added here.
"Only the load ‘distribution to bridge floor systems of movable loads under
static conditions will be considered."




(c)

Phase 2:

(a)

(b)

(c)
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An evaluation of current specifications and of the pro-
posed analytical solutions by comparison with available
experimental data.

Extension and revision of past research.

Determination of all variables that affect load distribu-
tion behavior in the types of bridges included in this
study, In addition, this phase will also include the
study of the range to be expected in these variables.

Not only will current bridge design practice be included,
but estimates of possible future changes in design
practice will be made and their effects on the ranges of
each variable considered. Among the variables which are
already known to affect this behavior are: aspect ratio
(beam spacing/beam span), relative stiffness of beams and
floor slab, relative diaphragm stiffness, amount of hori-
zontal prestress, extent of bridge continuity, and loca-
tion of wheel loads. Any additional variables which af-
fect the distribution will also be included.

Identification of those ranges of each variable where
currently available studies (experimental and analytical)
are inadequate.

Extension and revision of presently available, or develop-
ment of new, analytical procedures to include areas
determined in (2b).

A number of methods of analyses have been used in the
development of these analytical solutions. It is
anticipated that any required modifications in the pro-
posed procedures will be made by considering the basic
analytical techniques used in their development. How-
ever, since most of these methods include the considera-
tion of the floor system as a grid work, it is hoped that
the modifications of the procedures and extensions will
be simplified. The methods of analyses of grids which
have been used in the development of the distribution
procedures may fall into four general categories.

1. Elementary methods of equating deflections at beam
intersections.

2. Moment distribution and relaxation methods.

3. Plate theory. : ‘

4, Methods based on some simplifying assumption as to the
construction of the grid and/or its mode of deflection.

Each of these methods considers the behavior of the floor
system in a different manner, and the use of several of
the methods of analysis may be suitable in arriving at a
more realistic evaluation of floor system behavior.
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(d)

Phase 3:
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Development of a test program, with possibly laboratory
and field'studies, to obtain the required additional

data to compare with presently available or new analytical
procedures. .The initiation of this development and any
subsequent test program (Phase 3) will be made only if
necessary because of the unavailability of sufficient

test data to verify the analytical procedures and then

-only with the approval of the Research Engineer. The

test program will, if reéquired, be within the objectives
of the project and within budgeted funds."

Laboratory and field test as developed in previous phase
(see 2d).

' Because of the varied types of bridges considered in this
study, it is anticipated that, where possible, state highway
departments will be approached to assist in field tests of
actual bridges. When actual bridges that include the range of
variables to be studied are not available, scale model labora-
tory bridges or bridge sections will be fabricated and tested.

The data from these tests will be compared with that obtained
from previously developed or revised analytical procedures.

Phase 4:

(a)

(b)

(c)

These comparisons will indicate any required changes.

Development of design procedures.

Revision of analytical procedures in line with information
obtained in this research program to more accurately pre-
dict the actual load distribution.

Simplification of analytical procedures so that they will
be suitable for use in design offices. J

Development of specific recommendations for changes in the
appropriate specifications controlling design wheel load
distribution. These recommendations will attempt to more
accurately indicate the actual load distribution and will
consider all of the variables which affect this distribu-
tion.
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FINAL REPORT
DISTRIBUTION OF WHEEL LOADS ON HIGHWAY BRiDGES]
W. W. Sanders, Jr. and H. A. Elleby

ERRATA SHEET

Eq. (1) should read:
4 4 4
Dx—a—Vl—Z+2Ha—2W—2-+D —a'—z=p(x,y)
ax x“dy 7y
Para. 2, lines 9 and 10: E should be EX and Ey’ respectively.
Para. 2, line 11: H should be 2H. Thﬁs, 2H =D +D .
. Xy VX

line 4: should be p(x, ¥).

P(x)

Eq. (2) term (;%— 3 should be (a%— 3.

Eq. (4) should read:
2
Mx=-DX§—¥.
ax
. N
Eq. (6) ¥ should have limits X

2 ft should be 1 ft. ™

. J
Para. 2, last line:

Para. 2, line 9:
Fig. 18 should be Fig. 19.
lines 4 and 7: 2 ft should be 1 ft.:

last line: Fig. 19 should be Fig. 18.

Fig. 18 and p. 62 — Fig. 19:
(10):

bridge width should be W. 4
dw

the middle term on left side should be 2H > 2 -
ox "~ dy

Eq.
Eq. (11): initial W should be w.

1ine 3: 9 should be 0.

X

Table 4 should be Table 4A.

Para. 2,
Para. 2, line 8:

1ine 3: Table 4 should be Table 4A.

line 5: ‘Eq. (13) should be Eq. (14). .

1Engineering Research Institute, Iowa State University, Ames, Iowa (December 1968).



p; 98 — line 9: Eq. (13) should be Eq. (14).
p. 100 — Fig. 26: Equation should read:
D= 5.0 +N/20 + (3 - N/ - c/3)%.

p. 102 — 3rd line from bottom: Table 9 should be Table 10.

p. 110 — line 3 and Eq. (19): Fig. 32 should be Fig. 31.

p. 118 — Note *¥%*% — 3rd line from bottom, 'determined'" should be '"distributed.

p. 132 — Eq. (A.1) Dy should be Dy'

p. 132 — Para. 2, line 5: H should be 2H. Thus, 2H =D +D .

Xy yX
p. 133 — lines 11 and 12: change Wh to W and Wp to wp.
p. 134 — Eq. (A.5) should have brackets added as noted:
mTic O % v Bm y
Ym = [Am cos (mTif O b) + 7 sin (mmiE B b)]
-mTic O % v Em 5
+ e [Cm cos (mTfH b) + sin(mmf6 b)].

1 1
p. 138 — Eq. (A.10): - term should be WDX .

p. 162 — In equations for Separated Concrete or Steel Box Beams and Concrete Deck,

equivalent trans formed concrete areas shall be used for steel sections.

Additions to Commentary

p. 125 — add after line 9:

"The use should be restricted though to those cases where the specific
critical lane loading pattern is known, such as reaction shear distribution
(Article 1.3.1A). However, in the case of wheel load fractions used for
determination of bending moment, where the critical loading pattern is

not known and may be for less than the total number of lanes, the re-
duction should not be used. This restriction is currently practiced and

is consistent with Article 1.107.4.

The equations for C, the stiffness parameter, given in the proposed
Article 1.3.1(B)(1) includes the factor E/2G. It should be noted that
further simplification of these equations can be obtained, if desired,
by noting the relationship between E, the modulus of elasticity and G,
the modulus of rigidity. 1If Poisson's ratio is assumed to be zero, the
factor becomes onme. If, in the case of concrete box girder bridges,
Poisson's ratio is assumed to be 0.15, the equation for C shown becomes
identical with Eq. (17)." '
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