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NOMENCLATURE 

A = stress range (y-axis) intercept at N = 1 for the SN-curve, for Category E details by the 
Aluminum Association: A= 160 ksi, and for a F3-Classification by ECCS: A= 574.9 
MPa (83.4 ksi); 

C1, C2 constants associated with the linear-regression line that is soecufued by the AASHTO­
LRFD aluminum fatigue design provisions, for Category E details: C1 = 36.0 x 108 and 
C2 = 0.237; 

E = modulus of elasticity; 

Fu = ultimate tensile stress; 

FY = yield stress; 

lex = experimental moment of inertia with respect to the neutral axis (x-axis) of the girder 
spe".1men; 

Iix = theoretical moment of inertia with respect to the neutral axis (x-axis) of the girder 
specimen; 

M = · calculated girder bending moment at a strain gauge position; 

m = absolute value of the slope of the linear-regression line for the SN-relationship, for 

N = 

pmax = 

pmin = 

R = 

SR = 

Category E details by the Aluminum Association: m = 3 .45 ksi, and for a F3-
Classification by ECCS: m = 4.32 MPa (also 4.32 ksi); 

number of load cycles; 

maximum cyclic load; 

minimum cyclic load; 

stress ratio; 

stress range; 

sra = induced, service level, nominal-stress range at a weldment; 

srd = allowable, fatigue strength, stress range; 

Yen = experimental neutral-axis location, measured from the underside of the bottom flange 
of the girder; 
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NOMENCLATURE (Cont'd) 

Y1n = theoretical neutral-axis location, measured from the underside of the bottom flange of 
the girder; 

y1, Y2 = heights to strain gauges; 

(AF)n nominal-stress range fatigue resistance; 

(AF)1h = constant-amplitude fatigue threshold specified by the AASHTO-LRFD aluminum 
fatigue design provisions, for Category E details: (AF)th = 2.0 ksi at 10-million load 
cycles; 

e 1, e2 = experimental bending strain at the strain gauges that were at heights 
y2 and y2, respectively, from the bottom of the girder; 

am = mean flexural stress; 

amax = maximum flexural stress; and 

amin = minimum flexural stress. 
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PREFACE 

The final report entitled "A Continuous Span Aluminum Girder Concrete Deck Bridge" is 
published in two parts: Part I - "Field Test Performance and Evaluation" and Part II - "Fatigue Tests 
of Aluminum Girders". Part I of the final report addresses the field testing and analysis of those 
results to establish the behavior of the original Clive Road Bridge that carried highway traffic over 
Interstate 80 (I-80) in the northwest region of Des Moines, Iowa. The bridge was load tested in 
1959, shortly after its construction and in 1993,just prior to its demolition. Part I of the final report 
presents some of the results from both field tests, finite element predictions of the behavior of the 
aluminum bridge girders, and load distribution studies. Part II of the final report addresses the 
laboratory fatigue testing and analysis of those results to establish the behavior of aluminum girders 
that were removed from the original Clive Road Bridge. The fatigue strength of the weld details that 
existed in the original bridge girders and the weld details that are common in welded girders and that 
were added to the aluminum girders are presented in· this part of the final report. 
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ABSTRACT 

Aluminum alloys have been used to a limited extent in bridge construction. Only nine 
aluminum girder bridges have been built -in the continental United States. Recently however, 
renewed interest in using aluminum alloys for bridges has occurred. Aluminum has a low weight 
to strength ratio and has a natural resistance to corrosion. To improve current specification 
provisions for structural application of aluminum, resesarch on the behavior of full-size aluminum 
members needs to be conducted. 

In 1957, the Iowa State Highway Commision, with financial assistance from the aluminum 
industry, constructed a 220-ft long, four;.span continuous, aluminum girder bridge to carry traffic on 
Clive Road (86th Street) over Interstate 80 near Des Moines, Iowa. The bridge had four, welded!­
shape girders that were fabricated in pairs with welded diaphragms between an exterior and an 
interior girder. The interior diaphragms between the girder pairs were bolted to girder brackets. A 
composite, reinforced concrete deck served as ·the roadway surface. The bridge,. which had 
performed successfully for about 35 years of service, was removed in the fall of 1993 to make way 
for an interchange at the same location. · 

Prior to the bridge demolition, load tests were conducted to monitor girder and diaphragm 
bending strains and deflections in the northern end span. Fatigue testing of the aluminum girders 
. that were removed from the end spans were conducted by applying constant-amplitude, cyclic loads. 
These tests established the fatigue strength of an existing, welded, flange-splice detail and added, 
welded, flange-cover plates and horizontal web plate attachment details. 

This part of the final report focuses on the fatigue tests of the aluminum girder sections that 
were removed from the bridge and on the analysis of the experimental data to establish the fatigue 
strength of full-size specimens. Seventeen fatigue fractures that were classified as Category E weld 
details developed in the seven girder test specimens. Linear-regression analyses of the fatigue test 
results established both nominal and experimental stress-range versus load cycle relationships (SN­
curves) for the fatigue strength of fillet-welded connections. The nominal strength SN-curve 
obtained by this research essentially matched the SN-curve for Category E aluminum weldments 
given in the AASHTO-LRFD specifications. All of the Category E fatigue fractures that developed 
in the girder test specimens satisfied the allowable SN-relationship spedfied by the fatigue 
provisions of the Aluminum Association. The lower-bound strength line that was set at two standard 
deviations below the least-squares regression line through the fatigue fracture data points related well 
with the Aluminum Association SN-curve. The results from the experimental tests of this research 
have provided additional information regarding behavioral characteristics of full-size, aluminum 
members and have confirmed that aluminum has the strength properties needed for highway bridge 
girders. 
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CHAPTER 1. INTRODUCTION 

1.1. General Background 

Aluminum has proven to be an economical choice in structural applications beyond those 

in the aerospace industry. The use of aluminum in the building and construction industry has grown 

to possess an annual 15-billion dollar market share [21]. The applications in which aluminum has 

been used are quite diverse. Curtain walls and skylight framing, roof sheeting, storage vessels, and 

long span domed roofs have been commonly made from aluminum alloys. In the transportation 

structures sector, aluminum has been used for signs, sign structures, light poles, guardrails, bridge 

girders, and bridge decks. 

Since connections between aluminum members can be bolted, welded, and riveted, the 

breadth of applications for this metal are comparable to those for structural steel [34]. Aluminum 

alloys possess a natural resistance to corrosion and have yield strengths comparable to commonly 

used carbon steels as A36 or high strength steels A572 Grades 42 and 50. One of the most 

significant advantages of aluminum compared to steel is its strength-to-weight ratio. Aluminum is 

particularly attractive where dead load is a primary concern, since aluminum weighs about one-third 

the weight of an equivalent volume of structural steel. Aluminum is available in cast, forged, rolled, 

extruded, and sheet forms; therefore, aluminum is as commercially versatile as structural steel. 

Design specifications for aluminum have been developed to provide structural engineers with design 

requirements for this material. Due to the ease of erecting aluminum structures and the trend of 

decreasing costs in the production of aluminum [21], the utilization of aluminum iri structural 

applications will continue to develop. 

As of 1996, only nine bridges that used aluminum for the major components were built [3] 

in the United States of America (USA). One of these bridges [15,16,39,56] was built in 1957 to 
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carry Clive Road (86th Street) traffic over Interstate 80 (I-80). The original Clive Road Bridge was 

located in Polk County near the northwest side of Des Moines, Iowa. This bridge, which was 

constructed with the partial financial support from the aluminum industry during a period of time 

when structural steel was not readily available, was the only welded, I-shaped, aluminum girder 

bridge ever built in the USA. The bridge had four continuous spans, an overall length of 220 ft, and 

a width of 3 6 ft. Figure 1.1 shows an elevation and a cross section of the bridge. The roadway width 

was equal to 30 ft and a 3-ft wide curb existed along both the east and west sides of the bridge. Four 

aluminum girders were spaced at 9.50 ft on .center across spans of 41.25, 68.75, 68.75, and 41.25 ft. 

The girders acted compositely with an 8-in. thick, reinforced concrete slab through the use of shear 

connectors. 

The depth of the interior girders was approximately 38 in. and that of the exterior girders 

was about 3 6 in. The flange widths ranged from 12 to 18 in. A total of six different girder cross 

sections (three for each interior girder and three for each exterior girder) were used along the length 

of the bridge. For each line of girders, one field-bolted and five shop-welded connections were used 

to splice the girders at the points where the cross section of a girder changed. 

The continuous aluminum girders were connected to each other by welded, I-shaped, 

aluminum diaphragms that were uniformly spaced at 13.75 ft along the length of the bridge. The 

plate material for the diaphragms was the same as that for the girders. Six sizes of diaphragms were 

used in the bridge. The diaphragm connections between an exterior girder and an interior girder 

were shop welded, while those between the interior· girders were field bolted. This type of 

construction permitted the shop fabrication and field erection of the girders in pairs. The structural 

members were fabricated from 5083-Hl 13 aluminum plates. This alloy series is a non-heat-
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treatable, structural aluminum alloy that has suitable properties for welding. Over 76,000 lb of 

aluminum were required for the bridge superstructure and expansion joints at the ends of the bridge. 

The bridge had performed successfully during its 35 years of service, as evidenced by a 

review of the inspection reports that were periodically written throughout the life of the bridge. 

These reports revealed that the girders in the second and third spans had been struck in 1978 by 

overheight vehicles. The major notches that occurred in the bottom flanges of the impacted girders 

had been ground smooth. Also, the inspection reports noted that cracks had developed in four of the 

welded joints between the intermediate diaphragms and the girder webs in span 3 (the third span 

south of the north abutment). Some of these cracks may have been caused by the major vehicle 

impacts and/or induced by fatigue loading. Even though many years of useful life remained for this 

bridge, it was removed during September and October of 1993 as part of an interchange and roadway 

widening construction project. 

Just prior to the start of the bridge demolition, static-load tests of the bridge were conducted 

by researchers at Iowa State University (ISU) [2,42]. The strain results measured during the 1993 

field tests, predicted responses obtained from a finite element model of the bridge, and load 

distribution behavior for this bridge were presented in Part 1 of the final report [ 1] for this research, 

in the thesis by Mahadevan [33], and in a paper by Abendroth, Sanders, and. Mahadevan [2]. During 

the demolition of the bridge, the girder end spans were retained to examine the fatigue behavior of 

these aluminum girder sections when they were subjected to constant-amplitude cyclic loads. The 

bending stress versus load-cycle responses for the girders and discussions of the induced fatigue 

fractures are presented in this part (Part 2) of the final report for this research. A historical 

discussion that addressed the construction and the 1959 static and dynamic-load field testing of the . 
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bridge is given in Ref. 2 and 30. · A discussion of the potential redesign of the bridge based. on 

current European codes is contained in Ref. 31. 

1.2. Need for Study 

Design specifications for aluminum girder highway bridges [11] have been available for a 

number of years. The recent American Association of State Highway and Transportation Officials 

(AASHTO) Load and Resistance Factor Design (LRFD) Bridge Specifications [12] includes a 

section for the design of aluminum bridges. However, in many instances, the design criteria for 

aluminum girder bridges have been taken directly from or modified from those for steel girder 

bridges [10,12]. Specific studies are needed to develop distinct criteria for aluminum girder bridges 

or to confirm the applicability of the steel girder criteria to aluminum girder bridges. 

Various fatigue strength studies of aluminum welds have accumulated vast amounts of data 

that have been used to produce design criterion. However, the majority of this data has been 

obtained from testing small-size specimens. The relevance of data obtained from small-size 

specimens compared to that obtained from full-size specimens has been questioned [41]. Fatigue 

· testing of full-size commonly used aluminum weldments is essential in order to justify and improve 

the specification criteria for fatigue design [43]. Only a limited number oflarge, welded aluminum 

members have become available for laboratory fatigue testing. 

Several years ago, the Iowa Department of Transportation (Iowa DOT) and Polk County 

engineers determined that the Clive Road Bridge needed to be redesigned as a full-interchange. The 

removal of the original bridge provided a unique opportunity to obtain experimental data for both 

the static-load behavior of an aluminum girder bridge and the fatigue strength behavior of full-size 

aluminum components. One of the objectives of the fatigue study was to affirm the validity. of 

current fatigue design criteria for Category E weld details for aluminum girder elements. Another 
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objective was to increase the state of knowledge on the fatigue behavior of full-size aluminum 

specimens. This part of the final report is limited to the discussion of the fatigue testing of the 

aluminum girder segments. As noted earlier, details concerning the field testing and finite-element 

modeling of the original aluminum girder bridge are compiled in Part 1 of the Final Report [l], and 

in the works of Mahadevan [33], and Abendroth, Sanders, and Mahadevan [2]. 

1.3. Research Program 

The overall research program consists of four parts: inspection; static-load, field tests and 

analyses of the original bridge; and laboratory fatigue tests of aluminum girder sections. The 

inspection of the bridge superstructure, particularly the aluminum girders, was done by a team 

consisting ofISU staff, Lehigh University staff, and personnel from the Iowa DOT. 

The 1993 field tests consisted of loading the bridge with an overloaded truck that was driven 

to various points on the bridge. The load points complied with the critical AASHTO Bridge Design 

Specifications [1 O] loading positions. Instrumentation consisted of electrical-resistance strain gauges 

and direct-current displacement transducers. The test results provided data on load distribution and 

on general static-load behavior. 

Laboratory fatigue tests were conducted on the girders that were removed from the end 

spans of the original bridge. The girder sections were modified by welding plate attachments that 

reflect the type of connections that are used in present construction techniques for which additional 

fatigue data is needed. The beams were also tested to establish their remaining fatigue life. Other 

objectives of the research program were to provide information on the effects of 35 years of service 

of an aluminum girder bridge and to establish load-distribution factors for the composite concrete 

deck-aluminum girder bridge. 
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1.4. Literature Review · ' ·. 

A short description of the aluminum bridges that were constructed in the USA and Canada 

and the literature review associated with the field testing of the Clive Road Bridge is given in the 

first part of this final report [l]. The literature review presented here will address only fatigue 

strength studies of aluminum. 

In 1947, Hartmann, Holt, and Zambocky [29] investigated the fatigue behavior of welded 

joints for aluminum alloys. These researchers used several welding techniques. They concluded that 

the inert-gas welding procedure produced the best fatigue strength. Prior to this time, the aerospace 

industry had performed fatigue tests [ 40] of high-strength aluminum alloy plates that were connected 

by rivets. By 1960, inert-gas welding methods essentially replaced the use of metal fusing 

techniques such as oxy-acetylene welding, metal-arc welding, and brazing in structural aluminum 

applications [51]. Two inert-gas methods are commonly used: Gas-Metal-Arc Welding (GMAW, 

formerly known as Inert-Gas-Metal-Arc Welding (MIG)) and Gas-Tungsten-Arc Welding (GTAW, 

formerly known as Inert-Gas-Tungsten-Arc Welding (Tl G)) [3 8]. GMA W is generally more popular 

than GTAW, since the former can be performed at a high rate of speed and at any weld position. 

However, GTAW is reputed [5,51] to provide a superior weld bead and to produce a wider heat­

affected-zone due to its slower welding rate than GMAW. The best inert:-gas welding results are 

produced by a Helium and Argon gas mixture ratio of 4 to 1, respectively [9]. 

When welding is used for connections, only certain alloys are recommended for the 

aluminum members. The heat generated during the welding process reduces the strength of 

aluminum alloys that attained their strength by heat treatment or cold working [21]. Heat-treatable 

alloys [47] are classified as the 2000, 6000, and 7000 aluminum alloy series, for which the main 

alloying elements are copper, magnesium and silicon, and zinc, respectively. The ultimate strength, 
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yield strength, and ductility characteristics for these alloys can be reduced by as much as 60% in the 

vicinity of the welded connections [38]. Reheat treatment after welding can be performed to restore 

the yield and ultimate strengths; however, a reduction in the ductility of the metal will occur. Such 

characteristics make heat-treatable, aluminum alloys less suitable for use in structures that will be 

subjected to dynamic loading conditions. 

Non-heat-treatable, weldable, aluminum alloys [47] are exclusive to the 3000 and 5000 

aluminum alloy series as designated by the Aluminum Association [4]. The 5000-series, aluminum 

alloys are used for structural applications, since their tensile strengths and ductility are higher than 

that for the 3000-series, aluminum alloys. Magnesium is the primary alloying elem~nt for the 5000 

series. Moderate to high-strength alloys are produced by controlling the magnesium content. 

Aluminum alloys with a 4-6% magnesium content have yield strengths comparable to A36 steel. 

A significant amount ofresearch has been conducted with welded, 5000-series, aluminum alloys for 

shipbuilding.and storage vessel applications [38,41]. The majority of the fatigue tests of aluminum 

specimens have been performed on the 5000 series (or foreign equivalent) alloys [43]. 

Most welded-aluminum, fatigue-test programs have involved axial stress testing. The 

investigations by Hartmann, Holt, and Zambocky [29] utilized a mechanically driven testing 

machine. Their tests were performed at 3.5 cycles per second (hz) with maximum stresses as.great 

as 30 ksi. Gunn and McLester [22] performed constant-amplitude, axial-stress tests on various 

specimens containing fillet welds at rates as great as 216 hz. 1bis fast testing rate was possible due 

to the small size of their specimens and the low magnitudes of load. 

Full-sized structures and structural components are usually tested by bending methods using 

servo-controlled, electro-hydraulic, direct-stress cycling machines [34]. Sutherland [52] performed 

bending tests of various geometries of butt welds on extruded, 7-in. deep by 4-in. wide, I-beams that 
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were between 4 and 10 ft in length. ; Gurney [25] investigated the 'fatigue strength of vertical web 

stiffeners in regions of combined moment and shear and in regions of pure moment, using 11-in. 

deep by 5-ft long beams. Gurney concluded that stiffeners in combined stress regions failed at a 

lower principal-stress range than stiffeners in constant-moment regions. 

Fatigue testing is usually performed by constant-amplitude, stress cycling. The loading 

cycle is defined by the minimum and maximun:i stresses in the cycle ( crmin and crmax• respectively). 

The mean stress, crm, stress range, SR, and stress ratio, R, are defined as: 

(Jm = ( (Jmin + CJmii.J/2 

SR= ( (Jmax - (Jmin) 

R = (CJ min/CJ max) 

(1.1) 

(1.2) 

(1.3) 

Laboratory data gathered through testing similar specimens are usually reported in terms 

of a graph of the nominal-stress range versus the number of load cycles, N, that produce a fatigue 

fracture [43]. These plots of the fatigue data are referred to as SN-curves. A nominal stress is 

considered to be a stress that is calculated by applying engineering mechanics principles. Nominal­

stress values are normally used because the actual stress at the point of fracture is difficult to 

determine to an acceptable degree of accuracy. 

SN-curves are normally plotted using logarithmic scales for both axes, since a linear­

regression analysis of the fatigue data can be presented by straight-line relationships [13]. The basic 

linear-regression line that is established from a statistical analysis of the fatigue data represents a 

50% survival line. Lines that are drawn at two standard deviations above and below the basic 

regression line represents the 5% and 95% survival lines, respectively. Guidelines and 

recommendations for the statistical analysis of linearized, stress-life, fatigue data can be found in 

ASTM E739-80 [13]. 
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SN-curves are usually characterized by either two or three behavioral regions [34]. The first 

region contains fatigue failures that occur at less than 10,000 load cycles. These fatigue strength 

usually coincide with the static-load strength of the member [51]. When amax is decreased from the 

static-strength level and when the SR versus N relationship is plotted on a log-log scale, the number 

of load ·cycles needed to induce a fatigue failure essentially increases linearly. This linear 

relationship is associated with the second region of fatigue behavior. For constant-amplitude cyclic 

loading, a third region exists. This region is characterized by a threshold stress or endurance limit 

(constant-stress range level). For this region of behavior, fatigue failure will not occur if SR does 

not exceed the endurance limit, regardless of the number of load applications. The number of load 

cycles that corresponds to the endurance limit is a function of the geometry of the detail and is 

always in excess of one-million load cycles. 

For variable-amplitude, cyclic loading an endurance limit is assumed not to exist. Instead, 

either a "knee point" may occur in the SR versus N relationship that signifies the start of a third 

region of fatigue behavior, where the slope of the SN-curve is flatter than that in the second region, 

or a "lmee point" might not occur, and the second region of SR versus N relationship is assumed to 

extend indefinitely. For this latter model of variable-amplitude loading, a third region of fatigue 

behavior does not exist. More variable-amplitude fatigue research, involving very large numbers 

of load cycles, is needed to resolve which model of fatigue behavior is correct. During variable­

amplitude loading, researchers [21,34] suspect that fatigue damage induced by the largest stress 

ranges permits the low-stress cycles to also cause fatigue damage. For a particular detail category, 

the initial portion of the SN-curves for variable-amplitude load cases is the same as that for constant­

amplitude load cases~ American aluminum-alloy fatigue provisions [8,12] for variable-amplitude 

ioading specify SN-curves with a continuation of the constant-amplitude slope that occurs in region 
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two of the SR versus N relationship· beyond the constant..:al:nplitude, threshold stress, while a 

European standard [20] specifies a reduced slope beyond the constant-amplitude, threshold stress. 

Extensive research has been performed on the fatigue behavior of aluminum weldments. In 

the past 50 years, research programs have examined the fatigue strength of various joint 

configurations and the influence of weld-related parameters, such as post-weld treatments, 

magnitude of residual stresses, and size of components. Motivation for this research concerns the 

development of design criteria for aluminum alloys comparable to those for structural steel. The 

earliest research programs investigating the fatigue behavior of aluminum weldments established 

the weld geometry as the prime factor influencing the fatigue life of a specimen. Hartmann, Holt, 

and Zambocky [29] examined the fatigue lives of 15 weld configurations representing typical butt 

and fillet-welded details in 3/8-in. thick plates. The researchers concluded that a butt weld with the 

reinforcement ground flush with the connected plates had the greatest fatigue strength. This 

conclusion was confirmed by the works of Hartmann, Holt and Eaton [28], and Mindlin [35]. The 

geometrical effects of butt welds in steel were further examined by Sanders, Derecho, and Munse 

[ 44]. They determined that the presence of weld reinforcement increases the static strength of a 

member; however, the reinforcement could reduce the fatigue strength by as much as 50%. 

Gunn and McLester [22] tested specimens with joints characterized by strong configurations 

(such as longitudinal, butt-welded plates with the reinforcement removed) and weak configurations 

(such as single, fillet-welded tee-joints) of various alloys and treatments in order to obtain data for 

the development of alumin~, fatigue-design rules. They determined that fatigue fractures 

occurring beyond the application of 10,000 load cycles for an aluminum weld detail is independent 

of the specimen alloy. Person [38] investigated the relative strengths of butt and fillet welds 

involving six configurations. He tested butt, lap, and tee-welded joints for 5052 and 6061 aluminum 
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alloy plates that were 3/16 to 3/8-in. thick. Person concluded that the weakest joints tested were tee 

joints that had a single-fillet weld. These joints had strengths equal to about 25% of the strength of 

double-fillet-welded tee joints and about 1.5% of the strength of full-penetration, groove-welded, tee 

joints with the reinforcement removed. 

TomliiJ.son and Wood [55] discussed the metallurgical, geometrical, and physical factors that 

affect the fatigue strength of welded joints. After reviewing aluminum fatigue data, they concluded 

that a symmetrical joint configuration is important to improve the fatigue strength of a welded 

connection; fatigue failures in specimens with sound butt, lap, or fillet-welded joints occur at the 

junction of the weld bead and the parent metal; and relief of residual-tensile stresses improve the 

fatigue performance of a detail. 

Gurney [25,26], demonstrated the influence of externally induced residual stresses on the 

fatigue strength of steel and aluminum specimens. He used spot heating and the application of local 

compression to induce compressive-residual stresses near fillet welds on 1/2-in. thick, axial-test 

specimens. Gurney determined that these methods increased the fatigue strength of non-load 

carrying fillet welds by as much as 100% at two-million load cycles. Another method that can be 

used to improve the fatigue perform~nce of welded aluminum joints involves peening of the weld 

to induce residual-compressive stresses in the material. Brosilow [18] stated that hammer, needle 

and shot peening are post-weld treatments that substantially improve the fatigue life of a weld when 

implemented properly. Montemarano and Wells [37] tested brush-shot peened, butt and fillet welds 

on 1/4 and 5/8-in. thick, 5086 aluminum alloy plates. They determined that post-weld, brush-shot 

peening improved the fatigue performance of butt welds to that associated with an unwelded 

aluminum plate and that the fatigue strength of fillet welds increased from a stress range of2.75 ksi. 

to 5.0 ksi at IO-million load cycles. 
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In 1969, the Aluminum AHoys Committee of the Weld~ng.Research Council (WRC) began 

a review of fatigue research regarding aluminum weldments. Studies from worldwide private and , 

government laboratories were analyzed to determine the state-of-knowledge and to outline areas that 

needed further research. A computerized data bank of fatigue-test results was developed to be used 

for statistical analyses that would establish factors affecting fatigue behavior. Sanders [ 41] 

recommended further studies on the influence of joint configurations and the effect of loading 

history. As a result of this extensive review, additional studies concerning the fatigue behavior of 

butt-welded, 5000-series, aluminum alloy members were undertaken by Sanders and Gannon [45] 

and Sanders and McDowell [ 46]. These studies examined weld geometry and the effects of 

corrosive environments on the fatigue behavior of these connections. 

In 1983, a second survey that addressed the state-of-the-art of fatigue behavior in aluminum 

· weldments was published by Sanders and Day [43]. Even though a computer data bank that was 

sponsored by the Committee for Aluminum Fatigue Data Exchange and Evaluation (CAFDEE) 

contains the results from over 1,000 fatigue-test series involving nearly 12,000 individual tests, 

Sanders and Day recommended the need for additional fatigue testing of fillet-welded joints. They 

also noted that most of the fatigue data was associated with small-size, butt-welded specimens that 

were loaded in axial tension. They urged the testing of full-size members and welded joints in order 

to justify t11:e continued use of fatigue-test data· obtained from small-size test specimens for the 

development of design criteria. 

In recent years, an increase in the fatigue testing of full-size aluminum components has 

begun; however, the results are limited [34]. A paper published by Taylor [54] describes the fatigue 

testing of a 28-in. diameter, welded, pressure vessel that was fabricated from 3/4-in. thick, 5083 

aluminum alloy plates. Sharp and Nordmark [48] investigated the fatigue strength of a 3-ft high by 
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25.5-ft long, welded tubular truss. The extruded-tube truss members were 6061-T6 aluminum. The 

primary concern of their study was to determine the influence of welding and erection-residual 

stresses on the fatigue strength of the truss. They conclude that residual stresses did not appear to 

influence the fatigue performance of the welded connections and that the fatigue behavior of the 

truss related well to that established from small-size specimen data involving similar connections. 

However, Mazzolani [34] noted that the fatigue strength of welded specimens decreases as the 

component size increases. A possible explanation for size effects relates to the phenomenom that 

residual stress magnitudes increase as the plate thickness increases. Gurney [23] concluded that the 

fatigue strength of transverse, non-load carrying, fillet-welded joints depends on the thickness of the 

stressed member, as well as the toe-to-toe length of the attachment. 

Extensive laboratory testing of structural aluminum weldments has been conducted at the 

Technical University of Munich in Munich, Germany. Under the direction ofKosteas [19], fatigue 

tests were performed at various stress ratios on 52 beams that were fabricated from 5083 and 7020 

aluminum alloy plates. The beams contained ten weld configurations that are commonly 

incorporated into structures. These fatigue test results were compared to those obtained from 

existing, small-size, specimen data, involving similar weld configurations. With respect to non-load 

carrying transverse welds, they concluded that a reduction in fatigue strength exists for full-size 

. specimens compared to that for small-size specimens. Erickson and Kosteas [19] noted that relating· 

small-size specimen fatigue data to the behavior of large-size specimen weldments was difficult. 

They stated that the compilation of fatigue data for full-size specimens is crucial in order to properly 

establish the relationship between the existing small-size specimen data and that for realistic sizes 

of structural components. In a textbook by Sharp, Nordmark, and Menzemer [49], the authors 
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briefly discuss the effect of specimen size on the fatigue strength. They comment that full-size 

specimens will have lower fatigue strengths than comparable small-size specimens. 

Provisions for fatigue design of welded-aluminum connections have been presented in 

several national codes. Beginning in the early 1980's, efforts began in the USA, Canada, and Europe 

to bring the specifications for structural use of aluminum into compatibility with those of other 

structural materials and to develop more realistic criteria. Both CAFDEE in the United States, and 

the Aluminum Fatigue Behavior Evaluation and Testing (ALF ABET) project in Germany, under the 

direction ofKosteas of the Technical University of Munich, maintained aluminum fatigue data bases 

to assist in the expansion of knowledge and in the organization of information. More recently, the 

Munich data base has become the primary data base. Each international fatigue strength criteria 

reflects the philosophies and traditions of those involved with their inception [34]; therefore, each 

criteria is inherently different. The differences in the national fatigue design criterion concerns the 

selection of the specified materials, classification of detail categories, and strength parameters. 

Sanders and McDowell [ 46] noted that the first USA design provision for the fatigue strength 

of aluminum components was developed in 1962 by the American Society of Civil Engineers 

(ASCE). This document pertained only to 6061-T6 and 6062-T6 aluminum alloys, which are 

magnesium-silicon alloys that are artificially aged by immersion in a chemical solution. The fatigue 

provisions only addressed riveted and bolted connections. The specification states that mechanically 

fastened members, which are designed in accordance with the specification and which are free of re­

entrant comers or other stress raisers, can withstand at least 100,000 cycles of maximum live load 

without experiencing a fatigue failure. For load applications greater than 100,000 cycles, allowable 

stress equations are provided for two categories of stress ratio (R.:::: 0.5 and R > 0.5). Although 

limited in topics, the ASCE aluminum fatigue design recommendations were used worldwide until 

the early 1980's [34]. 
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Aluminum structural design specifications for the USA are published by the Aluminum 

Association. Prior to the fifth (1986) edition of Specifications for Aluminum Structures [7], the 

fatigue design provisions were actually the 1962 ASCE Specification. The third edition of the 

Specifications for Aluminum Structures [6] and the two previous editions permitted the effects of 

fatigue to neglected when 20,000 or fewer repetitions of the maximum load occurred. This approach 

was consistent with the results of priorresearch, which concluded that the low-cycle fatigue strength 

of a connection was essentially the same as the static strength. When more than 20,000 load cycles 

exist, the specifications suggested that prototypes of the specific detail in question should be tested 

to establish the fatigue strength. In addition, these specifications suggested implementing variable­

amplitude, loading techniques to better approximate the actual loading history. Since such testing 

is difficult and costly to conduct, the first three editions of these specifications essentially 

discouraged the use of aluminum welding for dynamic load applications. 

The .fifth edition of the Specification for Aluminum Structures [7] adopted the same 

methodology that was used for the fatigue design of steel weldments. Allowable-stress ranges are 

specified for detail categories that correspond to particular weld details. Twenty weld details are 

illustrated for six detail categories. The sixth edition of the Specification for Aluminum Structures 

[8] reflects the progress made in the organization and analysis of aluminum fatigue data. This 

specification addresses constant and variable-amplitude loading. The detail category definitions are 

the same as those in the fifth edition of the specification. 

The British BS 8118 Standard [ 17] devotes a chapter to the design of welded aluminum 

structures that are subjected to fatigue conditions. These specification mention the usage of 3000, 

5000, 6000 and 7000-series aluminum alloys in welding; however, the specification does not apply 

different criteria to these alloys. Twenty-nine classes ofjoints that are divided into three groups are 

mentioned: Non-welded details (7 classes); welded details on the surface of loaded members (11 
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classes); and welded details at end connections (11 classes). E.ach class of joint has an SN-curve that 

relates the maximum stress range to the number of load cycles. The BS 8118 Standard does not 

address the influence of the stress ratio o~ the fatigue perf9rmance of a joint class. 

The European Convention for Cbnstruction Steelwork (ECCS) presented the European 

Recommendations for Aluminum Alloy Structures (ERAAS) Fatigue Design document [20], which 

was the product of years of research, analysis, and international .collaboration. - The document 

specifies 32 joint details that belong to six classes based on their mechanical and geometrical 

features. SN-curves that relate the nominal, allowable-stress range to the number ofload cycles are 

provided for each detail. The stress ratio is incorporated into the SN-curves by providing factors for 

the various joint types. Variable-amplitude, cyclic-load cases are evaluated through the use of the 

Palmgren-Miner Rule [36]. The approach provides for a sloped continuation of the SN-curve 

beyond the constant-amplitude, endurance limit that was· set at 5-million load cycles. This third 

region of the SN-relationship continues until· 100-million load cycles, after which an assumed 

variable-amplitude, endurance limit is reached. Effects of residual stress and stress concentrations 

are considered for each detail. The ERAAS document provides for a fatigue strength reduction when 

plate thickness are greater than 1 in. In recent years, the development of a European standard for 

design has been initiated through Eurocode. This development is still underway. 
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CHAPTER 2. LABORATORY TESTS 

2.1. Test Specimens 

2.1.1. Girder removal fr~m bridge 

Eight girder segments were obtained when the original Clive Road Bridge was removed to 

allow for the construction of a new interchange. As the bridge was being disassembled, the four 

girder sections in each of the 41.25-~ long end spans were salvaged. Each of the girder sections was 

flame cut in the adjacent span just beyond the girder bearing point at the bridge pier. The 8-in. thick 

reinforced concrete slab was saw cut parallel to the girder length in order to retain a portion of the 

concrete deck. The exterior and interior girder sections retained deck widths of approximately 18 

and 24 in., respectively. Four girders were used to obtain specimens for constant-amplitude, fatigue 

testing; and the four remaining girders were saved for possible future variable-amplitude, fatigue 

testing. The girders that were designated for the constant-amplitude, fatigue testing were cut into 

two sections. An approximately 26-ft long section was cut from the end of the girder that was 

closest to the original bridge pier location. The remaining approximately ·15-ft long section was the 

portion of the girder that was closest to the original bridge abutment location. 

2.1.2. Girder material composition 

The girders had been fabricated in 1958 by the Pullman Standard Car Company of Chicago, 

Illinois. The Aluminum Company of America (Alcoa), Kaiser Aluminum and Chemical 

Corporation, and Reynolds Metal Company manufactured the 5083-Hl 13 aluminum alloy plates for 

the girders. The Hl 13 designation refers to the temper for this wrought alloy. The notation Hl 

indicates that only strain hardening was used to obtain the specified strengths for this alloy, and the 

number 13 refers to the degree of strain hardening [ 4 7]. The chemical composition (expressed as 

a % by weight) for each element in this aluminum alloy as produced by the three manufacturers and 
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as published by the Aluminum Association is listed in Table 2.1. This table also lists the chemical 

composition for the 5183 aluminum alloy metal for the welding wire. Magnesium is the primary 

alloying element in this material. The 5000-series aluminum alloys possess moderately high 

strength and they are not heat treated. 

The average values for the ultimate tensile stress, Fu• and yield stress, FY , for the 5083 

aluminum alloy that were obtained from the 1958 mill reports for the aluminum plates, are currently 

published as typical values by the Aluminum Association, and were determined from tension test 

coupons taken from the girder specimens are listed in Table 2.2. 

The rectangular-shaped, aluminum, tension-test coupons were cut from an original girder 

web plate at a location that was several feet away from a flame-cut scar or region that experienced 

effects of fabrication during specimen preparation. The long dimension for the tension coupons was 

parallel to the rolling direction of the girder web plate. The test coupons were prepared and tested 

in accordance with the American Society for Testing and Materials (ASTM) Standard E8 [14]. The 

alumiilum used in the tension-test coupons had been in service for over 35 years. The modulus of 

I 

I 

elasticity, E, for the aluminum plates was determined to be equal to 10,300 ksi from the tension-test 

coupons. This measured E-value was in agreement with published magnitudes for this parameter. 

New, 5083-H321 aluminum alloy, bottom flange, cover plates; horizontal web plate 

attachments; and vertical web stiffener plates were welded to the girder test specimens. This alloy 

differs from the original, 5083-Hl 13 aluminum alloy only by the temper. Both alloys are strain 

hardened to attain a desired strength, but the 5083-H321 aluminum alloy is also stabilized by a 

chemical aging process to improve the ductility of the metal. The Aluminum Association specifies 

that for 1/8-in. to 1 Yi-in. thick plates in this alloy, the range in Fu and FY should be between 44.0 and 

56.0 ksi and 31.0 and 43 .0 ksi, respectively. The welding wire for the original and the new welds 



Table 2.1. Chemical composition of aluminum alloy plates and welding wire(% wt.) 

Item Alcoa Kaiser Aluminum Kaiser Aluminum Reynolds Metals Aluminum 
Association 

Alloy 5083-Hl 13 . 5083-Hl 13 5183 5083-Hl 13 5083 
-

Material Yi-in. thick web 1 & 1 3/4-in. thick 0.063-in. diameter 3/8, 3/4, and 1 1/4- plates 
plates plates welding wire in. thick plates 

Copper (max.) 0.10 0.05 0.10 0.10 0.10 

Iron (max.) 0.40 0.25 0.40 0.40 0.40 

Silicon (max.) 0.40 0.25 0.40 0.40 0.40 . -· 

Manganese (max.) 1.00 0.80 1.00 1.00 1.00 
·---

Manganese (min.) 0.50 0.50 0.50 I 0.50 0.40 

Magnesium (max.) 4.90 4.90 5.20 4.90 4.90 
N ....... 

Magnesium (min.) 4.00 4.40 4.30 4.00 4.00 

Zinc (max.) 0.25 0.20 0.25 0.25 0.25 

Chromium (max.) 0.25 0.18 0.25 0.25 0.25 

Chromium (min.) --- 0.07 
. . ~ ,. 

--- --- ---
Titanium (max.) 0.15 0.10 0.15 0.15 0.05 

Beryllium --- --- 0.0005 --- ---
Others (each) 0.05 0.05 0.05 0.05 0.05 .-

Others (total) 0.15 0.15 0.15 0.15 0.15 

Aluminum remainder remainder remainder remainder remainder 
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Table 2.2. Yield and ultimate strengths of 5083-Hl 13 aluminum alloy 

Source Fu (ksi) FY (ksi) 

max. mm. max. mm. 

Y2-in. thick web plates (1958 mill reports) 48.7 47.0 37.6 36.8 
3/4-in. thick flange plates (1958 mill reports) 51.0 44.0 --- 31.0 
1-in. thick flange plates (1958 mill reports) 46.4 45.4 34.0 32.8 
1 114-in. thick flange plates (1958 mill reports) 51.0 44.0 --- 31.0 
1 3/4-in. thick flange plates (1958 mill reports) 44.8 44.2 35.2 31.7 

Aluminum Association --- 44.0 --- 28.0 

Tension coupon (1996 test) --- 46.9 --- 30.5 

on the girders was 5183 and 5356 aluminum alloy, respectively .. 

The original design of the bridge specified a minimum, concrete compressive strength of 

3,000 psi for the bridge deck. However, since the concrete in the bridge deck was over 35 years old 

and since the diameter of the aggregate was as large as 1.25 in., the concrete compressive strength 

was assumed to be at least equal to 5,000 psi when the fatigue tests were conducted. The 

compressive strength was used to calculate the concrete modulus of elasticity for the composite 

girder specimens. 

2.1.3. Long girder specimens 

Four long girder specimens were prepared for the constant-amplitude, fatiglie testing. Two 

of the specimens were obtained from the exterior girders and the other two specimens were obtained 

from the interior girders of the original bridge. The simple span length of the four specimens was 

equal to 25 ft-2 in. These specimens extended approximately 1 ft-6 in. beyond the roller support, 

but this overhang was assumed to not influence the fatigue behavior of the weld details that were 

located well within the span of these specimens. As shown in Fig. 2.1, each of these specimens had 

a portion of the reinforced concrete deck attached to its top flange. The pinned support was the pier 
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Varied 

8 ft- 7 in. 

Shear connectors: see 
Fig. 2.5 for description, 
Fig. 2.6 for spacing 

8 ft - 0 in. 

Flange splice embedded in concrete 
similar to Fig. 2.2, except 0.75 in. 

flange thickness each side of splice 

8ft-7in. 

Load position (typ.) 

Diaphragm connection 
see Fig. 2.4 

Reinforced concrete deck 

Pier bearing 
stiffeners not 

shown 

3 ft- 7 in. 

Web splice 

typ. >----.--,.{ ) 

3/8 

New horizontal web 

plate attachment no. 1 

4 ft - 0 in. 

New bottom flange 

cover plate no. 1 
6 in. 

·········---..... . . 

PL 1 x 3 x 12 (typ.) 

New horizontal web £ pfate attachent no. 2 

PL 5/8 x 10 x 48 (typ.) 

New bottom flange 

1 

I 
cover plate no. 2 4 ft _ o in. 3 ft _ 7 in. 

9 ft- 7 in. .I== l:ft = I 

\ 11 ft - 0 in. ~ .. t-----------~ .. ---------11--~I 
1 ft - 7 in. l.,. 9 ft~ 7 in. .,. 

13 ft- 0 in. 12 ft- 2 in. 

25 ft - 2 in. 

Figure 2.1. Elevation of the long girder specimens 

Varied 
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reaction point for the original bridge girder. A bearing stiffener (not shown in Fig. 2.1) occurred at 

this location. Two distinguishing features that were present on the original bridge girders were 

incorporated into the long girder specimens. The first feature involved a horseshoe-shaped, 

transition plate that was located at the bottom flange splice near the midspan of these girder sections. 

Figure 2.2 shows the geometrical configuration of the original girder, bottom flange splice. At this 

location the cross section of the girder changed. The smaller cross sect~on was used along the 

portion of the girder length that was closest to the original bridge abutment. Cross-sectional views 

for the girder sections near the pier and abutment ends of the long girder specimens are shown in Fig. 

2.3. The web plate for the interior girder sections was 2 in. deeper and the bottom flange plate was 

larger than those plates used for the exterior girders. 

The second feature involved the diaphragm connections in the original bridge. Both the 

exterior and interior girder specimens had a segment of an I-shaped diaphragm that was fillet welded · 

to one side of the girder web plate, as shown in Fig. 2.4. An interior girder diaphragm connection 

(Fig. 2.4c) consisted of separate rectangular plates that passed through slots that had been cut in the 

girder web. These plates were fillet welded to the girder web plate and served as flange connection 

plates for an interior I-shaped diaphragm. The interior diaphragms had connected together the shop-

fabricated girder pairs in the original bridge. The 1/2-in. thiGk, vertical stiffener plate shown in Fig. 

2.4c was fillet welded to the bottom flange plate for the diaphragm connection and to the web and 

bottom flange plates of the girder. 

Two types of plate attachments that were not present on the original bridge girders were 

added to the long girder specimens. These plate attachments represented details that are commonly 
1 · I · 

used on welded plate girders. Figure 2.1 shows two, bottom flange, cover plates that were fillet 

welded along all four edges to the bottom flange of the girder specimen and two, horizontal, web 



Web plate 

16 in. (exterior girder) 
18 in. (interior girder) 

1-1/4-in. thk. 
flange plate 

7/8 
5/8 

6 in. 

Horeshoe-shaped 
transition plate 

25 

(a) 

6 in. 5 in. 

(b) 

7 in. 

. Webplate 

114 

1/2-in. thk. horseshoe­
shaped transition plate 

112 

12 in. 

3/4-in. thk. flange plate (exterior girder) 
1-in. thk. flange plate (interior girder) 

Figure 2.2. Midspan flange splice detail: (a) Partial elevation; (b) Underside of the bottom flange 
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24 (nominal) 
~1 

8-in. (nominal) thk. 

reinforced concrete 
slab (typ.) 

24 (nominal) 
~1 

PL 3/4 x 12 (typ.) 

"' 114 ~ < typ. 

New horizontal web 

plate attachment 
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Figure 2.3. Cross-sectional views of the long girder specimens (all dimensions in inches): 
(a) Interior girder segment along the abutment side of the splice; (b) Interior 
girder segment along the pier side of the splice; ( c) Exterior girder segment 

along the abutment side of the splice; ( d) Exterior girder segment along the 
pier side of the splice 
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Figure 2.4. Diaphragm connections on the long girder specimens (all dimensions in inches): 
(a) Front elevation of an exterior girder; (b) Rear elevation of an exterior girder; 
( c) Front elevation of an interior girder; ( d) Rear elevation of an interior girder 
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plate attachments that were fillet welded all around to each side of the girder web plate, as indicated . 

in Fig. 2.4. 

The interior and exterior, long girder specimens had different amounts and locations of 

longitudinal reinforcing bars and shear cpnnectors in the concrete deck. An angle-shaped, shear 

connector is shown in Fig. 2.5. The locations of the shear connectors along the long interior and an 

exterior girder specimens are shown in Fig. 2.6. The long interior girder specimens had a larger 

number of shear connectors than that for the long exterior girder specimens. 

2.1.4. Short girder specimens 

' 
Four short girder specimens were prepared for the constant-amplitude, fatigue testing. 

However, only three of these specimens were actually tested. The short specimens were obtained 

from the portion of the girders that were near the abutments of the original bridge. At this location, 

each girder had a uniform cross section. Figure 2. 7 shows an elevation of a short girder specimen. 

The test span for these specimens was 13 ft-9 in. The ends of the short girder specimens had weld-

plate attachments (not shown in Fig. 2. 7) that w~re part of the origin~l bridge construction. At the 

pinned support, an extensive diaphragm assembly existed that was a portion of the abutment 

diaphragm. At the roller support, an 1-sh_aped, intermediate, diaphra~ connection existed that was 

identical with the one described for the long girder spec~ens. The interior and exterior girders had 

been fabricated with different size plates. The cross sections of the short interior and exterior girder 

specimens are shown in Fig. 2.8. 

Due to the limits on the capacity of the loading apparatus, the concrete deck.was removed 

from each of these specimens to reduce the flexural stiffuess of the specimens. To facilitate the 

loading of the short girder specimens, 8-in. thick by 18-in. square, concrete, load pads were cast in 

place at the load points on the top flange of these specimens. In order to avoid composite action 
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Figure 2.5 Shear connectors: (a) Plan view; (b) Elevation; (c) Side view 
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Figure 2.6. Shear connector locations: (a) Long exterior girder specimens; 
(b) Long interior girder specimens; ( c) Short exterior girder specimens; 
( d) Short interior girder specimens 



1ft-4.5 in. 

Varies 

35-1/2 

PL 3/4 x 12 

5 ft - 4.5 in. 

8 in. x 18 in. x 18 in. 
concrete load pad (typ.) 

New vertical stiffener plate 
PL 3/8 x 5-1/2 x 18 (typ.) 

Abutment diaphragm 
not shown 

New bottom flange 
cover plate no. I 
PL 5/8 x 10 x 36 

3ft-Oin. 

I ft - 6 in. 

6 ft-1.5 in. 

31 

3ft-Oin. 5 ft - 4.5 in. 

3/4-in. thk. 
flange plate 

Intermediate diaphragm 
connection plates not shown 

1/2-in. thk. 

webplate \ 

New bottom flange 
cover plate no. 2 
PL 5/8 x 10 x 36 

3 ft- 0 in. 

6 ft-1.5 in. 

1 ft-4.5 in. 

Varies 
--~~~~~~~~~~~------~f------<----

13ft-9in. 
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Figure 2.8. Cross-sectional views of the short girder specimens (all dimensions in inches): 
(a) Exterior girder; (b) Interior girder 
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between the concrete pads and the aluminum girder, the top surface of the girder flange was oiled 

prior to casting the concrete. The angle-shaped, shear connectors within the midspan of the short 

girder specimens were removed to eliminate possible interference with the load pads. 

Two types of plate attachments were added to the short girder specimens to represent 

connection details that are common to plate girders. Figure 2. 7 shows two, bottom flange cover 

plates, similar to plates that were welded on the long girder specimens. These plates were fillet 

welded along all four edges to the bottom flange of a short girder specimen. This figure also shows 

partial-height, web stiffener plates that were fillet welded all around to the web and bottom flange 

plates in the central region of the short girder specimens. Figure 2.8 shows that these web stiffener 

plates were placed in pairs on opposite sides of the girder web plate; therefore, each short girder 

specimen had four partial-height, web stiffener plates. 

2.1.5. Welding procedure for the new plates 

The girder plate surfaces at the locations for the new plate attachments were lightly ground 

with a grinding wheel to expose a clean surface. Just prior to welding, a steel-wire brush was used 

to clean the surface. All welding was performed in the flat position. Prior to depositing the 3/8-in. 

fillet welds, each new plate attachment was held in position with tack welds. For the bottom flange 

cover plates, the tack welds were located at approximately 6 in. from each of the four comers of the 

plate along the length of the plate. The tack welds for the horizontal, web plate attachments were 

placed at each end of a stiffener across its thickness. 

All fillet welds were deposited by using a single pass of the electrode. The welding of each 

cover plate to a girder bottom flange plate was performed in four steps. The first two steps involved 

welding along the plate width (across the girder flange width). These welds started at the position 

of one of the tack welds and extended across the end of the plate to the tack weld on the opposite 
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side.. The last two steps involved welding along the cover plate length (along the girder flange 

length) between the tack weld locations .. Each horizontal, web plate attachment was welded to a 

girder web plate with a single pass being made on each side of the stiffener. The welding parameters 

for the new and original welds on the girder segments are given in Table 2.3. 

All new welds were visually inspected for detects by a Certified Welding Inspector. A 

second weld pass was performed in instances where the fillet weld leg size was not at least three-

eighths of an inch. When rewelding was required, the surfaces were first scraped clean with a 

stainless-steel brush. 

Table 2.3. Welding parameters 

· Welding parameter New welds (1995) Original welds (1958) 

Filler wire alloy 5356 5183 

Filler wire diameter (in.) 3/32 1/16 

Voltage (volts) 26 27 

Current (amp) 250 210 

Wire speed (in./min.) 150 unknown 

Pµlse (hz) 227 unknown 

Gas mixturea 75% He-25% Ar 75% He-25% Ar 

Gas flow rate (cfm) 60 120 

aoriginal welding gases were contained in separate tanks and new welding gases were mixed 
in a single tank 

2.1.6. Weld detail categories 

The original and new welds that were used on the girder specimens produced several stress 

categories as defined by the Specifications for Aluminum Structures [8]. A particular stress detail 

category is characterized by general and specific conditions that describe a location where a fatigue 

fracture could occur in the base metal or weld metal. The five general conditions are plain material, 
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mechanically-fastened connections, fillet-weld connections, groove-weld connections, and welded 

attachments. The specific conditions address identified geometries. A specific detail is classified 

by a letter from A through F based on the degree of susceptibility that a detail possesses for a fatigue 

:fracture. The order from the least to the most critical detail categories is A, B, C, D, F, and E. Each 

detail category has a specific stress-range versus load-cycle (SN) behavioral relationship. 

The original, full-penetration, groove-welded, bottom flange splice shown in Fig. 2.2a is a 

Category C detail. However, the original fillet weld between the horseshoe-shaped, transition plate 

and the bottom flange of the girder involves a Category E detail in the region of the weld near the 

apex of the curved edge. The original, fillet-welded connection between the bottom flange plate of 

the diaphragm and the exterior girder web plate, shown in Fig. 2.4b, involved both Category C and 

E details. Figure 2.4c that shows the original, stiffened-seat, diaphragm connection on an interior 

girder involved complex geometry. Recall that the horizontal, 1-in. thick plates passed through slots 

cut in the girder web plate. The portions of the all-around, fillet-welded connection between this 

plate and the interior girder web plate that were similar to those on an exterior girder can not clearly 

be classified as Category C or E details, according to the description provided in the Specifications 

for Aluminum Structures [8]. Therefore, any fatigue fracti.ons which propagated from the bottom 

web plate slot were not included in the statistical analysis of the other Category E details. The fillet­

welded connection between the vertical stiffener plate for this diaphragm connection and the girder 

web and flange plates was a Category C detail. Figure 2.4c shows that the fillet-welded connection 

to the top surface of the girder bottom flange plate is in the same location as the fillet-welded 

connection between the horseshoe-shaped, transition plate and the bottom surface of the girder 

bottom flange plate. 
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The new, bottom flange, cover plate attachments shown in Figs. 2.1, 2.3 , 2.7, and 2.8 

involved two detail categories. The longitudinal fillet weld along the length of the cover plates was 

a Category B detail, while the transverse fillet weld along the width of the cover plate was a 

Category E detail. Figures 2.1, 2.3, and 2.4 show fillet-welded connections for the new, horizontal 

web plate attachments on the long girder specimens. These connections are classified as Category 

E details, since the length of the plates were longer than 4 in. The fillet-welded connections between 

the new, partial-height, web stiffener plates and the interior girder web and flange plates, shown in 

Figs. 2.7 and 2.8, were Category C details. 

2.2. Instrumentation and Test Apparatus 

2.2.1. Test frame and load actuators 

The girder specimens were tested in the Structural Engineering Laboratory at Iowa State 

University. Figures 2.9 and 2.10 show a long and a short girder specimen, respectively, positioned 

in the test frame. All of the specimens were simply supported. The original pier and abutment 

bearing plate on a long and short girder specimen, respectively, was used as the pin support. The 

other end of each specimen was supported by a roller assembly that consisted of several 1-in. thick 

by 12-in. square, steel plates and a 3.5-in. diameter by 12-in. long, steel rod. The short girder 

specimens were supported on fabricated abutments made from aluminum and steel sections that were 

independent of the test frame. Lateral bracing for top flange of the long girder specimens was 

provided at the vertical supports and at the midspan. The short girder specimens were laterally 

supported only at the ends of the simple span. 

Loads were applied by two, servo-controlled, electro-hydraulic actuators that were 

manufactured by MTS Systems Corporation, Material Test Systems Division. The actuators were 

symmetrically positioned with respect to the midspan of a specimen and the test frame. When a long 



Figure 2.9. Test frame and apparatus for the long girder specimens 



Figure 2.10. Test frame and apparatus for the short girder specimens 
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and a short girder specimen was tested, the actuators were spaced at 4 ft and 1.5 ft, respectively, on 

center. Each actuator load was distributed through a 2-in. thick by 15-in. square, steel plate and 2-in. 

thick, neoprene pads. The actuator plates were restrained from lateral motion by steel guides that 

were clamped to the top flange of a test specimen. Each actuator had a 55-kip load capacity and a 

6-in. stroke range. A load cell within each actuator monitored the applied load magnitudes. 

2.2.2. Instrumentation 

For each specimen, electrical-resistance, .strain gauges (strain gauges) and direct-current, 

displacement transducers (DCDTs) monitored longitudinal, flexural bending strains and horizontal 

and vertical displacements, respectively. This instrumentation was used to detect fatigue fracture 

development and to obtain experimental measurements of particular strains and deflections, which 

could be compared with theoretical predictions of these girder responses. Many of the strain gauges 

were located in close proximity to welds that were expected to fail during the fatigue tests. 

The strain gauges that were attached to the aluminum girder plates and reinforced concrete 

deck were manufactured by Micro-Measurements of Raleigh, North Carolina. The strain gauges for 

the aluminum were CEA-13-250UW-120 gauges and had a 0.25 in. gauge length. The strain gauges 

for the concrete were EA-06-40CBY-120 gauges and had a 4.0-in. gauge length. All of the strain 

gauges that were used with the data acquisition equipment had an accuracy of± 2. 7 microstrains. 

Each long girder specimen was instrumented with 18 strain gauges. The gauge positions are 

shown in Fig. 2.11. The gauges labeled "a" were attached to the top surface of the bottom flange 

plate, and they were positioned 3 in. from each side of the web plate. Two strain gauges were used 

at each of these locations. The gauges labeled "b" were attached to the web plate in vertical 

aligriment with the center of the new, web plate attachment. One strain gauge was used at each of 

these locations. The gauges labeled "c" were attached to the web plate in vertical alignment with 
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·Figure 2.11. Strain gauge locations on the long girder specimens 



40 

the bottom flange tip of the original, I-shaped diaphragm. One strain gauge was used at each of 

these locations. The gauges labeled "d" included strain gauges that were mounted on the aluminum 

top flange plate and on the reinforced concrete deck. Two strain gauges were attached to the 

underside of the aluminum flange plate. Each of these gauges was positioned at 3 in. from each side 

of the web plate. Also at this location, two strain gauges were attached to the underside of the · 

reinforced. concrete deck. Each of these gauges was positioned at 6 in. from each side of the web 

plate. The gauges labeled "e" were attached to the top surface of the slab, and they were positioned 

at 6 in. from each side of the web plate. Two strain gauges were used at this location. 

The strain gauge positions for the short girder specimens are shown in Fig. 2.12. Each short 

girder specimen was instrumented with 10 strain gauges. The gauges labeled "a" were attached to 

the bottom flange plate. Two strain gauges at this location were positioned the same as those for a 

long girder specimen. The gauges labeled "b" were attached to the web plate in vertical alignment 

at the midspan of a specimen. One strain gauge was placed at each of these locations. The gauges 

labeled "c" were attached to the underside of the aluminum top flange plate at the midspan of a 

specimen, and they were positioned at 3 in. from each side of the web plate. Two strain gauges were 

used at this location. 

String-type and stem-type DCDTs were used to measure girder deflections and support 

motions. The girder displacements were monitored in the vertical and horizontal directions. The 

measurement accuracy for the DCDTs was specified to be ± 0.003 in., when a high-speed, non­

integrating voltmeter was used. The locations of the DCDTs for long and short girder specimens 

are shown in Figs. 2.13 and 2.14, respectively. The gauges labeled "a" represent a pair of stem-type 

DCDTs that measured potential vertical displacement of the top surface of the bottom flange plate 

at the center line of the vertical supports for a specimen. The gauges labeled "b" were string-type 
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DCDTs that measured the vertical displacement at the specified locations along the length of a 

specimen. The gauge labeled "c" was a string-type DCDT that was positioned at 4 in. below the top 

flange of the aluminum girder. This gauge measured the lateral displacement of a specimen at the 

midspan. The gauges labeled "d" were stem-type DCDTs that were positioned at 4 in. below the top 

flange of the aluminum girder. These gauges measured potential lateral displacement of a specimen 

at the vertical supports for a specimen. 

2.3. Test Methods 

2.3.1. Test parameters 

The magnitudes of the fatigue loads that were to be initially applied to a specimen were 

selected after investigating the critical stress range at the location of a weldment that was considered 

to be the most vulnerable to fatigue damage. A desired stress range was established after reviewing 

past fatigue stress-range versus load-cycle relationships (SN-curves) [19], as well as appropriate 

sections of design specifications [8,12] for the specific weld detail. Low-stress ranges were selected 

in an attempt to induce fatigue fractures after two-million load cycles. The general flexure formula 

that is applicable for either symmetric or nonsymmetrical bending was used to obtain the minimum 

and maximum load magnitudes, P max and P min• respectively. The longitudinal reinforcing bars in the 

reinforced concrete slab were included in the determination of the geometric properties of the long 

girder specimens. 

The specimens were positioned in the test frame for symmetrical two-point loading (Figs. 

2.9 and 2.10) to induce a region of pure bending between the actuators. Each specimen was 

subjected to constant-amplitude, full-tension loading with a stress ratio, R, equal to 0.05. Therefore, 

the stress range, SR, was always 95% of the maximum tensile stress, crmax· The load frequency for 

a specimen was affected by the flexural stiffuess of the girder and the magnitude of the maximum 
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load in a test cycle. The flow-rate capacity of the oil through the servo-valves in the hydraulic 

actuators limited the frequency of the load. The frequency of the loading on the girder specimens 

was between 1 and 5 hertz. 

An electro-hydraulic, direct-stress, cycling system controlled the load magnitudes and 

frequency that were applied to a specimen. Each test was performed in a load-control mode and 

displacement interlocks were used to monitor the stroke of each actuator. The displacement 

interlocks were set to terminate the loading when an actuator stroke exceed a predetermined 

displacement limit. This limit was set at± 0.015 in. with respect to the minimum and maximum 

displacements of the actuator during a load cycle. The minimum and maximum displacements were 

determined early in the loading history of a specimen, usually after an hour of dynamic loading. As 

fatigue cracks developed in a specimen, the actuator stroke had to be increased in order to apply the 

desired load. Following the reinforcement of a girder cross section at the location of a fatigue 

fracture, the stroke limits were adjusted for the new stroke rahge. 

2.3.2. Data acquisition 

A computer-based, data acquisition system (DAS) was used to manage the collection oftest 

data. The software for the DAS consisted of a computer program that was written by Hansz [27] to 

collect strain and displacement data and to compile this data for analysis. The program permitted 

the voltage output from the instrumentation to be monitored by pressing a function key on the 

computer keyboard or at prescribed, programmed-timed intervals during the fatigue testing. The 

DAS collected burst-readings of the voltage outputs for the instrumentation devices. Each burst­

reading lasted for about one second. During that time, voltage output from each instrument was 

sequentially sampled 60 times. During each of these samples, the voltage output from each 

instrument was monitored five times and the median value of these five readings was saved as the 
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test value for a particular sample. By using multiple readings for an individual measurement, the 

influence of erroneous data produced by electrical noise was minimized. The DAS converted the 

voltage readings to the appropriate units of measurement for each instrumentation device. 

2.3.3. Test Procedure 

After each girder specimen was symmetrically positioned and braced in the test frame, the 

instrumentation was installed and connected to the DAS. Prior to commencing the fatigue testing, 

the alignment of a specimen was verified by incrementally loading the specimen several times from 

the unloaded state to the maximum load that the specimen would experience in a load cycle. Strains 

and displacements were recorded during the incremental static loading to observe whether 

essentially linear, load versus strain and load versus displacement relationships were produced. This 

initial loading phase established whether additional shimming or repositioning of the supports for 

a specimen was necessary. 

·After the initial stability of the specimen was confirmed, the instrumentation measurements 

were initialized when the load from the hydraulic actuators was equal to zero. Additional 

measurements were recorded when the actuators applied the minimum and maximum cyclic loads 

(P min and P max' respectively). For these load levels, a constant load was maintained; therefore, these 

readings were referred to as static-load readings. Static-load readings were taken before and after 

a cyclic-load, test sequence was performed on a specimen. 

Each specimen was visually inspected during the dynamic loading to establish whether 

adjustments in the load or support positions were required. Excessive support motion or twisting 

of the top flange plate of a specimen indicated misalignment conditions. Adjustments at the support 

or load points were made to minimize these motions prior to the resuming the fatigue testing. After 

·several hundred load cycles were applied to a specimen and after the displacement responses of a 
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specimen had reached an essentially stable hysteretic condition,• the stroke interlocks for the 

hydraulic rams were set to prevent over-loading of a specimen or damaging the test equipment, if 

a specimen became geometrically unstable .. 

I •. 

During the dynamic loading of a specimen, instrumentation readings were automatically 

recorded at specific time intervals. The length of a particular time interval was a :function of the load 

frequency and the number of anticipated load cycles that would produce a fatigue failure at a 

particular weld. If the cyclic loading did not produce a fatigue fracture after the number of load 

cycles had significantly exceeded the anticipated endurance limit for constant-amplitude, fatigue 

load, the stress range was increased and the cyclic loading was continued at the higher stress level. 

Eventually, a fatigue fracture developed at one of the stress concentration points within a specimen. 

After a fatigue crack developed, the dynamic loading of a specimen was stopped, so that the 

crack could be documented and girder reinforcement techniques could be initiated. A girder 

specimen was strengthened at the location of a fatigue crack, so that further dynamic loading of the 

specimen could be performed in an attempt to induce a fatigue fracture at another location in the 

specimen. After strengthening a girder section, a static-load test was conducted at the minimum and 

maximum load magnitudes that induced the last fatigue fracture. If new load magnitudes were 

selected for the continuation of the dynamic loading, another static-load test was conducted at the 

revised minimum and maximum loads. After completing the static-load tests, the cyclic loading of 

the specimen was resumed to induce another fatigue fracture or until the dynamic loading of the 

specimen was terminated. 

2.3.4. Fatigue fractures 

Three techniques were used to detect a fatigue fracture in a specimen. One method involved 

visually inspecting a specimen during the dynamic loading of the specimen. Another technique 
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involved comparisons of the monitored flexural strains to determine if any of the strains were 

significantly changing as the number ofload cycles increased. A significant change in a strain could 

indicate the propagation of a fatigue crack. The detection of strain fluctuations at one of the 

monitored strain gauge locations improved the likelihood that a visual inspection near the same 

location would reveal the initiation of a fatigue fracture. The third and most common means of 

identifying that a fatigue fracture occurred involved the activation of a stroke interlock. As 

previously mentioned, the interlock was set to only allow for a small increase in the amount of 

deflection of the specimen in a given phase of cyclic loading. Due to difficulties associated with the 

sensitivity of the interlock mechanism, the displacement variance that was needed to permit for the 

fatigue testing equipment to operate, without prematurely tripping these interlock devices, caused 

a fracture crack lengths to be between 1 and 12 in. long when they occurred. Since the load cycles 

were terminated when the stroke interlock was activated, the number of load cycles that occurred 

when a fatigue crack was first initiated could not be established. Therefore, for fatigue failures that 

were detected by this third technique, the number of load cycles that c~used the fracture to develop 

was selected as the.number of cycles associated with the activation stroke interlock mechanism. 

Each fatigue fracture was examined with a measurement magnifier to determine the length 

of the crack. This device magnified the viewed region by 30 times its original size and illuminated 

the area. After a crack was documented, new static-load readings were taken for the minimum and 

maximum loads that produced the fatigue fracture. After these static tests were conducted, the girder 

cross section at the fracture location was reinforced to allow for additional dynamic-load testing of 

other weld details on the same specimen. If a fatigue crack propagated into the web plate of a 

specimen, the crack tip was located with the aid of the measurement magnifier. To prevent further 

crack growth, a 1-in. diameter hole was drilled at the end of the fatigue crack through the web plate 
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of the specimen. The center of the hole was positioned 1/2 in. from the crack tip in the direction of 

the crack's propagation. The edges of the hole were rubbed smooth "7ith sand paper to remove any 
~ ' '" .· . 

potential abrasions that might induce the formation of additional fatigue cracks. 

2.3.5. Fatigue fracture reinforcement 

Figures 2.15 and 2.16 show the structural steel plates that were used to reinforce a specimen 

that experienced a fatigue fracture at a new, bottom flange, cover plate and/or at the original, 

midspan bottom flange splice in a long girder specimen. The cover-plate, repair detail no. 2 shown 

in Fig. 2.16 was used only once, as a bottom flange reinforcing plate, after fatigue fractures at both 

the new, bottom flange cover plate no. 2 and original, midspan, bottom flange splice had occurred · 

in the long, exterior girder specimen no. 1. This long repair plate was. used in an attempt to reinforce 

this girder specimen at both locations, so that a fatigue fracture at the new, bottom flange, cover plate 

no. 1 might be developed. However, due to the high-load magnitudes and the length of this repair 

detail, the original fatigue fractures continued to propagate. Therefore, this long reinforcing plate 

was not an effective strengthening method. Figure 2.17 shows a double-angle, web plate 

reinforcement that was placed horizontally on the web plate of a specimen to prevent a web plate, 

fatigue crack from occurring or to stop the propagation of an existing, web plate, fatigue crack. The 

bolts used for these repair details were 1-in. diameter, A325 bolts with hardened nuts and washers. 

The turn-of-the-nut method was implemented to properly tension the bolts. 

Figure 2.18 shows the double-angle, web plate brace that was attached along the bottom of 

the web plate of a long girder specimen after an 8-ft long section of the bottom flange plate and the 

lower 3-in. depth of the web plate was removed in an attempt to induce a fatigue fracture at the new, 

horizontal, web plate attachments. Figure 2.19 shows the portion of a specimen that was removed. 
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The angle brace was attached along the length of the web plate with 5/8-in. diameter bolts to prevent 

lateral buckling in the web plate. These bolts, which passed through 3/4-in. diameter holes, were 

fastened finger-tight to permit slippage between the angle brace and the web plate. 

All of the short girder specimens had a slightly warped web plate, which could cause an 

eccentric loading of these specimens. To prevent vertical buckling of the web plate and to minimize 

twisting of the top flange plate, the double-angle, web brace shown in Fig. 2.20 was installed under 

the load points on the short girder specimens. Shim plates were driven between the welded, end 

plates on these braces ahd the underside of the top flange plate of these specimens. 



53 

CHAPTER 3. EXPERIMENTAL AND ANALYTICAL RESULTS 

3.1. Stress Ranges and Events 

Four long girder specimens and three short girder specimens were subjected to cyclic loading 

to induce various stress ranges, SR, in the base and weld metals associated with welded connection 

details. A total of 17 fatigue :fractures occurred at weldments that qualified as Category E details by 

the Aluminum Association [8]. Ten fractures were in the bottom flange plate for the long and short 

girder specimens, along the toe of the transverse weld that attached a new, flange cover plate. Four 

fractures occurred along the new, horizontal web plate attachments on the long girder specimens. 

Two fractures occurred at the original, midspan, bottom flange plate splice on the long, exterior 

girder specimens. And, one fracture occurred along the weld of an original, I-shaped, diaphragm 

connection in the web plate of a long, exterior girder specimen. Secondary fatigue fractures occurred 

at several holes that were drilled through the web and flange plates. The open holes in the web plate 

served as crack arresters for previous fatigue fractures. Bolt holes in the web and bottom flange 

plates were used to attach reinforcement angles and plates that strengthened a girder specimen after 

a prior fatigue fracture had occurred. A close visual examination of the particular holes that 

experienced a fatigue :fracture revealed that an imperfection along the perimeter of the hole existed 

at the fracture location. 

When a girder specimen was tested, a log book was maintained to chronologically record 

events relative to the fatigue behavior of the specimen. This information described the experimental, 

fatigue-life history of the specimen. The date.and the number ofload cycles were recorded when 

changes made to a specimen, the test frame and bracing apparatus, and the loading parameters (P min' 

P max' and frequency ofloading) and when a fatigue :fracture occurred. The log-book information for 
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a particular specimen was condensed into a tabular format and that information is listed in Tables 

Al to A 7 of Appendix A. 

The test program for each specimen produced a large amount of data in the form ofburst­

read, data files. These files contain strain, displacement, and load measurements at specific times 

in the experimental, fatigue-life history of a specimen. While a specimen was being dynamically 

tested, spreadsheet files were generated to monitor the changes in the magnitude of the longitudinal 

strain at the gauges that were located near the weldments. Figure 3.1 shows a plot of the strain 

history for strain gauge nos. 15 and 16 that were located near the bottom flange, cover plate no. 2 

on the long, exterior girder specimen no. 1. As the fatigue fracture propagated across the flange 

width, the measured strain increased at the gauge !<?cations until the fracture grew to a size that 

caused the deflection of the specimen to activate the hydraulic-ram stroke interlocks, which stopped 

the testing by shutting off the hydraulic system. The load cycle for which the loading was 

terminated was chosen as the load cycle for which the fatigue fracture occurred, although the initial 

fracture may have started long before this load cycle. An examination of the average strains for the 

two gauge measurements shown in Fig. 3.1 reveals that the bottom flange strains began to increase 

at about 1,100,000 load cycles, while the testing terminated at about 1,900,000 load cycles. 

Figure 3.1 also shows that the measured strains from gauge no. 15 were about 10 to 15 

microstrains larger than those measured by gauge no. 16. These strain gauges were symmetrically 

positioned on the bottom flange plate. The differences in the measure flexural strains were believed 

to be ca:used by minor nonsymmetry of the long girder specimen. The longitudinal reinforcement 

in the concrete slab was not symmetrically positioned across the width of the girder top flange. 

Also, the web and flange plates on the girder specimen were slightly warped. The girder plates may 

have been warped during the fabrication, erection, or removal of the bridge girders. Shim plates and 
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bracing at the supports were used in an attempt to eliminate the unsymmetric strain measurements; 

however, these efforts produced only minimal improvements in the symmetry of the bending strains. 

Therefore, the average of the two strain gauge readings was used to represent the longitudinal strain 

in the bottom flange of the girder specimens at these strain gauge locations. The effect of the slightly 

unsymmetric behavior of the girder specimens on the longitudinal strains in the web plate were 

considered to be negligible. Therefore, the strains measured by the gauges that were bonded on one 

side of the web plate established the web plate longitudinal strains at these strain gauge locations. 

As discussed in Chapter 2, the voltage output from the strain gauges were monitored in a 

burst of 60 readings. The burst-read, data files were compiled in spreadsheets, and the .strain data 

was examined to discard any erroneous readings. Figure 3.2 shows the strain data that was recorded 

from a burst reading of gauge no. 15 on the long, exterior girder specimen no. 1, after the erroneous 

data points were eliminated. The resulting sinusoidal function is relatively smooth. The dotted line 

shown in the figure was drawn to represent the expected strain readings in the region where a voltage 

spike occurred. Similar curves were constructed for the other strain gauge readings. Since the strain 

data was used to develop the experimental stress ranges at weld locations, the elimination of strain 

data associated with voltage spikes was necessary to record the appropriate stress history. After the 

extraneous strain data was removed from the strain record, the experimental strain measurements. 

at specific weld details were computed by averaging the monitored strains from the appropriate 

gauges. The resulting strain ranges were established and the corresponding stress ranges were 

evaluated by applying Hooke's Law. The strain and stress ranges for all of the gauge locations, the 

minimum and maximum hydraulic loads, and the corresponding displacement magnitudes were 

chronological listed on spreadsheets. 
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The measured data from the dynamic-load testing was used to create a stress-history table 

for each of the girder specimens. These tables contain the theoretical and experimental static and 

dynamic stress-range data for each specimen that were obtained from the strain-burst readings, which 

were recorded prior to and after fatigue-life history events. These events included changes in the 

loading parameters or the discovery of a fatigue fracture. Tables B.1 to B. 7 in Appendix B list the 

stress-history data for the seven girder specimens. Additional information about the fractures or 

testing events that occurred for the girder specimens is given in Appendix A. 

Prior to the fatigue testing of a girder specimen, static loads were applied to a specimen to 

verify strain linearity and to compare the measured midspan deflection to theoretical values. Graphs 

of the longitudinal bending strain distribution across the depth of a girder cross section and of the 

midspan displacement for each of the test specimens are presented in Ref. 27. The strain distribution 

graphs revealed that a slightly nonlinear strain variation occurred throughout the depth of the long 

girder specimens, while the short girder specimens exhibited an essentially linear strain distribution. 

The nonlinear behavior for the long girder specimens was attributed to the close proximity of the 

original, I-shaped, intermediate diaphragm connection and the new, horizontal, web plate 

attachments to the vertical alignment of the strain gauges at the instrumented 1irder cross section, 

as shown in Fig. 2.11. 

3.2. Category E Weld Detail Fractures 

3.2.1. Original midspan bottom flange splice 

Each of the four long girder specimens had an ori~al, midspan, bottom flange plate splice. 

Recall that these weldments were made in a fabrication shop prior to the erection of the bridge. The 

welds at the splice were smooth and without visible imperfections. The fatigue testing of these 
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specimens induced fractures in the bottom flange plate adjacent to the splice in the two, long, 

exterior girder spedmens .. Both fractures occurred through the base metal near the toe of the weld. 

Figure 3.3 shows the fatigue fracture that occurred near the bottom flange splice in the long, 

exterior specimen no. 2 after about 1.06-million load applications. The crack "a" shown in Fig. 3.3a 

did not extend into the web plate of the specimen. This fatigue fracture propagated over 8 in. across 

the bottom surface of the bottom flange plate as illustrated by crack "b" in Fig. 3.3b. According to 

the detail category descriptions given by the Aluminum Association [8], only the tip of this weld is 

considered to be a Category E detail. The portion of the fillet weld that is parallel to the longitudinal 

flexural stress direction is classified as a Category B detail, and the portion of the fillet weld that is 

neither parallel nor perpendicular to the flexural stres~ direction could be considered to be between 

a Category B and a Category E detail. 

Figure 3.4 is a photograph of the underside of the bottom flange for this long girder specimen 

at the original, bottom flange splice. The fatigue crack, marked by the black line, extended across 

the bottom flange width to the hash marks shown at the ends of the black line. The failure started 

near the apex of the curved edge on the transition plate and propagated in two opposite directions. 

Figure 3.5 is a photograph of a cut-away view of the interior surface of this same fatigue fracture 

through the bottom flange plate. The curved portion above the flange plate is the edge of the 

transition plate. The apex of this transition plate is in vertical alignment with the girder web plate. 

A close examination of the central region of the fracture surface did not reveal any flaws. The other 

long, exterior girder specimen experienced an essentially identical fatigue fracture after about 8.64-

million load applications. 

Although the midspan, bottom flange splices on all of the long girder specimens were similar 

in quality and geometry, fatigue fractures did not occur at the bottom flange splice on the long, 
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Figure 3.4. Photograph of the fatigue fracture at the original bottom flange splice 
in the long exterior girder specimen no. 2 
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Figure 3.5. Photograph of the fatigue surface at the original bottom flange splice 
in the long exterior girder specimen no. 2 
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interior girder specimens due to the existence of the original, I-shaped, diaphragm connection that 

was located on the web plate at a height of 5 in. above the bottom flange splice. A fatigue :fracture 

at the diaphragm weldments in the long, interior girder specimens occurred before a fatigue :fracture 

developed at the original, midspan, bottom flange splice. The failure at the diaphragm connection 

prevented further testing of these specimens. The dimensions of the fatigue fractures and their 

location in the base or weld metals that occurred at the original, midspan, bottom flange splice in the 

long, exterior girder specimens are listed in Table 3.1. 

Table 3.1. Original midspan bottom flange splice fatigue fractures 

Long exterior Crack length Crack length Weld metal Base metal 
girder· along bottom in web (in.) fracture. fracture 

specimen flange (in.) 

No. I 11.00 3.38 No Yes 

No.2 8.25 -- No Yes 

3.2.2. Original I-shaped diaphragm connections 

As di.scussed in Chapter 2, each of the long girder specimens contained an original, 

intermediate diaphragm, connection. All of the welds between the girder webs and the diaphragm 

elements had been performed in a fabrication _shop, and they appeared to be good quality welds. The 

exterior girders in the original bridge had I-shaped diaphragms welded directly to the inside face of 

.. the web plate, as shown in Fig. 3.6b. The portion of this weld that was across the tip of the 

diaphragm, bottom flange plate was a Category E weld detail. The interior girders in the original 

bridge had bracket assemblies whose flange plates passed through slots that were cut in the girder 

web plate, as shown in Fig. 3.7a. For the slotted web plate, the portion of the weld that was across 

the thickness of the lower diaphragm plate produced a greater stress riser condition than that which 
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existed at the same location in the exterior girder specimens. The presence of the girder web plate 

slot caused this detail to be extremely susceptible to a fatigue fracture. This type of a weld detail has 

not been addressed by the Aluminum Assodation design specifications [8]. 

Three of the four long girder specimens experienced a fatigue fracture at the original," !­

shaped, diaphragm connection. The fracture in the long, exterior girder specimen no. 1 occurred 

after the bottom flange plate and a portion of the girder web plate were removed in an attempt to 

induce a fatigue fracture at one of the new, horizontal, web plate attachments. Figure 3.6 shows the 

extent of fatigue crack that developed at the diaphragm location. The fracture occurred through the 

web plate, base metal at the toe of the weld near the diaphragm, bottom flange tip that was closest 

to the ,new, horizontal, web plate attachment. This fracture occurred after an initial application of 

8,641,400 load cycles at a nominal-stress range of about 2.5 ksi, an additional application of 818,600 

load cycles at a nominal-stress range of about 5.7 ksi, and a further application of 132,500 load 

cycles with a nominal-stress range of about 8. 7 ksi. Due to the similarity betWeen the geometric 

conditions associated with this fatigue fracture and those corresponding to the new, horizontal, web 

plate attachments, the diaphragm fracture data for this specimen was included with the data obtained 

for the new, horizontal, web plate attachments. 

Both of the long, interior girder specimens experienced a fatigue fracture in the girder web 

plate near the diaphragm, lower flange tip that was closest to the new, horizontal, web plate 

attachment. The extent of the fatigue crack in the long, interior specimen no. 1 is shown in Fig. 3.7. 

In an attempt to prevent further propagation of the initial fatigue fracture that developed after 

approximately 2-million load applications, holes "a" and "b" were drilled below and above, 

respectively, the ends of the :inltial crack. Due to the location of the fracture, steel reinforcement 

plates could not be used to strengthen the web plate. After the application of 7 .3-million load cycles, 
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a downward propagation of the fatigue rnl.cture occurred. Hole "c" was drilled in an attempt to arrest 

further crack propagation in this direction. After 8.1-million cycles, the fatigue crack extended 

upwards from hole "b". Hole "d" was drilled at the end of this crack extension to permit additional 

testing of the specimen. However, additional load cycles caused the crack to propagate downward 

through the bottom flange plate of the specimen and upwards in the web plate. Further repairs on 

the specimen were not attempted. Therefore, neither the original, midspan, bottom flange splice nor 

the new, horizontal, web plate attachments on the long, interior girder specimen no. 1 experienced 

a fatigue :fracture. Since the geometrical configuration of the diaphragm connection detail involving 

the slotted web plate did not match the Category E detail provisions specified by the Aluminum 

Association [8], this fatigue fracture data was not applied in this study. The dimensions and location 

with respect to the base or weld metals for the fatigue fractures that occurred at the original, I-

shaped, diaphragm connections for the long girder specimens are listed in Table 3.2. 

Table 3.2. Original I-shaped diaphragm connection fatigue fractures 

Crack length Crack length . 
above center of below center of 

connection connection 
flange plate flange plate Weld metal Base metal 

Specimen (in.) (in.) fracture :fracture 

Long exterior 5.25 2.50 No ·Yes 
girder no. 1 

Long interior 2.12 1.62 Yes No 
girder no. I 

Long interior 2.00 2.25 Yes No 
girder no. 2 



68 

3.2.3. New bottom flange cover plates 

The majority of the fatigue fractures occurred at the new, bottom flange, cover plates. These 

cover plates were welded at locations outside of the constant-moment regions for the specimens. 

'(he appearance of the welds on all specimens was generally consistent; however, they were not as 

smooth as the original fillet welds that were deposited during the original fabrication of the bridge 

girders. Some undercutting of the cover plates occurred at the comers of these plates. In addition, 

the termination point of one weld length and the start of another weld length was often noticeable. 

The fillet welds that attached the flange cover plates· to the girder bottom flange plate involved a 

Category B weld detail along the flange length, which was parallel to the direction of the 

longitudinal stress flow, and a Category E weld detail along the ends of the plates, which were 

perpendicular to the direction of the longitudinal stress flow in the flange. 

Figure 3.8 shows the extent of the fatigue fracture that occurred at the toe of the weld for the 

new, bottom flange, cover plate no. 2 on the short, exterior girder specimen no. 1. This fatigue 

fracture was developed after approximately 940,000 load applications at a nominal-stress range of 

4.85 ksi. The crack extended approximately 8 in. across the bottom flange plate and propagated 

about 1 in. up into the web plate of the specimen. This type of flange failure was typical for all of 

the specimens that experienced a fatigue fracture near a bottom flange, cover plate. All of these 

failures occurred in the heat-affe.cted zone in the flange base metal and were adjacent to the toe of 

the fillet weld. The dimensions and locations with respect to the base or weld metals for the fatigue 

fractures that occurred near the new, bottom flange, cover plates for all of the test specimens are 

listed in Table 3.3. A total of 10 fatigue fractures developed at these details. 

After the fatigue tests were completeq, the portions of the girder specimens that contained 

fractures were removed for closer visual examinations. Figure 3.9 is a photograph of the fatigue 
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girder specimen no. 1: (a) Partial elevation; (b) Underside of the bottom flange 
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Figure 3.9. Photograph of the fatigue fracture at the new bottom flange cover 
plate no. 2 on the short exterior girder specimen no. 1 
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Table 3.3. New bottom flange cover-plate fatigue fractures 

Crack length 
across Weld Base 

Cover bottom Crack length metal metal 
Specimen plate flange (in.) in web (in.) fracture fracture 

Long exterior No. 2 8.00 1.50 No Yes 
girder no. 1 No.2 7.00 0.50 No Yes 

Long exterior 
girder no. 2 No. 2 6.75 0.38 No Yes 

Long interior 
girder no. 1 No. 2 10.19 --- No Yes 

Long interior 
girder no. 2 No. 2 6.38 --- No Yes 

Short exterior No. 1 9.00 1.25 No Yes 
girder no. 1 No. 2 8.00 1.00 No Yes 

Short interior No. 2 6.50 0.50 No Yes 
girder no. 1 No. 1 10.00 2.75 No Yes 

Short interior 
girder no. 2 No.2 7.00 0.50 No Yes 

crack that developed along the toe of the fillet weld between the new, bottom flange, cover plate no. 

2 and the bottom flange of the short, exterior girder specimen no. 1. The partial holes shown in the 

photograph were used to attach a steel reinforcing plate to the specimen after this flange failure had 

occurred, to permit additional testing of another weld detail. This flange fracture was carefully cut 

open to expose the interior fracture surfaces. Figure 3.10 is a photograph of the two surfaces along 

the plane of the fracture. The upper I-shaped portion contains the flange cover plate and the cover 

plate weld. The lower I -shaped portion was rotated 180 ° about a horizontal axis so that the left 

flange tips on both T-shapes are essentially in vertical alignment. A visual examination of the 

fracture surfaces revealed that the fatigue fracture may have propagated from an overlap in the weld 
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Figure 3 .10. Photograph of the fracture surface at the new bottom flange cover 
plate no. 2 on the short exterior girder specimen no. 1 
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metal near the end of the cover plate. This type of discontinuity in the weld metal represents an 

interior flaw that could permit the development of a premature fatigue fracture. 

The fatigue fractures near the new, bottom flange, cover plates occurred prior to the 

formation of the fatigue fractures near the original, midspan, bottom flange splices in three of the 

four long girder specimens. The nominal-stress range at the Category E portion of the new, bottom 

flange, cover plate welds was about 88% of the nominal-stress range at the Category E portion of 

the midspan, bottom flange splice. A comparison of the appearance of the weld along the edge of 

the new cover plates to that for the original, flange splice revealed that the new weldments were of · 

poorer visual quality that the original weldments. These conditions may have permitted stress raisers 

to be present on the surface and in the interior of the cover plate welds. As mentioned in Chapter 

2, the obvious surface flaws were treated by grinding or rewelding prior to testing, but since fatigue 

fractures can develop at interior and exterior flaws, such treatments might not have been sufficient 

to prevent a premature fatigue fracture. 

For the short, interior girder specimen no. 1, the fatigue fractures that developed in the girder 

bottom flange plate adjacent to the ·weld at both cover plates occurred after· 10-million cycles of load 

application. Several stress-range levels were involved during the testing of this specimen. Initially, 

a nominal-stress range of 2.3 ksi was induced at the cover plate welds that were closest to the 

midspan, for about 11-million load cycles. Since a fatigue crack had not developed at any point in 

the specimen, the nominal-stress range was increased to 2. 7 ksi at the critical location on the cover . 

plate weld. After about another 0.85-million load cycles were applied at this stress level, a fatigue 

fracture developed at the bottom flange, cover plate no. 2. After a steel reinforcing plate was bolted 

to the bottom flange to strengthen the girder at cover plate no. 2, the fatigue loading at the 2. 7 ksi 

nominal-stress level continued until about 16-million load cycles had been applied to the specimen. 
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To induce a fatigue fracture at the bottom flange, cover plate no. 1, the nominal-stress ratio was 

increased to 5.0 ksi at the critical section~ and the cyclic loading resumed. At about 16.5-million­

load cycles, the bottom flange of the girder experienced a fatigue fracture_ at cover plate no. I. Since 

this specimen was subjected to variable-amplitude loading, the data from these Category E weld 

detail fractures were not included in the analysis of data from the constant-amplitude, loading 

conditions. -

3.2.4. New horizontal web plate attachments 

The diaphragm connection fatigue fractures in the long, interior girder specimens prevented 

the fatigue testing of the new, horizontal, web plate attachments in these specimens. Therefore, only 

the two, long, exterior girder specimens provided fatigue strengths for these weldments. Fatigue 

fractures occurred at the new, horizontal, web plate attachments on the long, exterior girder 

specimens prior to the formation of fractures at the intermediate diaphragm connections, even though 

the nominal-stress range at the web attachments were only about 79% of the stress range that existed 

at the critical section location for the diaphragm connections. The fillet weld along the ends of the 

new, horizontal, web plate attachments was a Category E weld detail, while fillet welds along the 

length of the plate attachments was a Category C weld detail, For.these· Category E weld details, the 

quality of the new fillet welds. for the web plate attachments must not have been as high as that for 

the original fillet welds at the intermediate diaphragm connection. Figure 3.11 shows the 

geometrical configuration and reference dimensions "a", "b", "c", and "d" for the fatigue cracks that 

developed at the new, horizontal, web plate attachments on the long, exterior girder specimen no. 

I. A crack occurred at each end of these plate attachments. Table 3.4 lists the fatigue crack length 

dimensions above and below the midthickness of the new plate attachment and the location of the 

fractures with respect to the base or weld metals. 



Reinforced concrete 

deck segment (typ.) 
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New horizontal web 
plate attachment (typ.) 
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Welded I-shaped 
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Figure 3.11. Fatigue fracture at the new horizontal web plate attachment no. 1 on the long 

exterior girder specimen no. 2: (a) Front elevation; (b) Back elevation 
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Table 3.4. New horizontal web plate attachment fatigue :fractures 

Long Crack Crack 
exterior Plate dimensions (in.) Weld. Base dimensions (in.) Weld Base 
girder no. metal metal metal metal 

specimen "a" "b" :fracture :fracture "c" "d'~ :fracture fracture 

No.1 1 0.50 0.50 Yes Yes --- --- --- ---
No. I 2 1.25 1.50 Yes Yes 2.25 2.31 Yes Yes 

No.2 1 4.00 4.75 ·Yes Yes --- --- --- ---
No.2 2 3.75 4.31 Yes No 1.00 1.75 Yes No 

Figures 3.12 and 3.13 are photographs of the front and back faces, respectively, of the web 

plate on long, exterior girder specimen no. 2, that show the fatigue failures at the new, horizontal, 

web attachments no. 1. These photographs show the web plate attachment orientated in the vertical 

direction. A visual examination of this fatigue fracture revealed that the crack originated at a point 

of surface porosity in the weld metal. As discussed in Chapter 2, the web plate attachments were 

first tack-weld at their ends to the girder web plate before the longitudinal fillet welds were deposited 

along the plate lengths. Surface porosity is a weld defect that greatly reduces the fatigue life of a 

weldment [24,32,50]. The fatigue fracture shown in Fig. 3.13 passes through the weld metal, while 

that same fracture shown in Fig. 3 .12 passes through the base metal along the toe of the fillet weld. 

Except for the new, horizontal, web plate attachment no. 2 in long, exterior girder specimen no. 2, 

the web plate attachments were accidentally misaligned by approximately 114 in. along the length 

of the specimens. Therefore, a fatigue :fracture could propagate through the weld metal on one face 

of the web plate and through the base metal on the other face of the web plate. 



77 

Figure 3.12. Photograph of the fatigue fracture at the new horixontal web plate attachment no. 1 
on the front face of the long exterior girder specimen no. 2 
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Figure 3.13. Photograph of the fatigue fracture at the new horizontal web plate attachment no. 1 
on the back face of the long exterior girder specimen no. 2 
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3.3. Weldments Not Tested for Fatigue Strength 

The scope of this study was limited to the evaluation of fatigue fractures that developed at 

fillet-welded, Category E details. However, each specimen contained other weld details that were 

not classified as Category · E details. The fatigue strength of these other details could not be 

evaluated due to the positions of these weldments on the test specimens and due to the damage that 

each specimen experienced after a fracture developed at a Category E detail. Each of the short girder 

specimens had four, fillet-welded, partial-height, vertical web stiffeners that qualified as a Category 

C detail. The load magnitudes, which were applied to the test specimens to induce a fatigue fracture 

at these web stiffeners, caused the previously developed fatigue fracture at a bottom flange, cover 

plate to experience crack propagation, regardless of the measures that were implemented to prevent 

their growth. 

The longitudinal welds along the sides of the new, bottom flange cover plates on all of the 

specimens and the welds along the horseshoe-shaped transition plate at the original, midspan, bottom 

flange splice that were parallel to the flange tips of the long girder specimens involved Category B 

details. Fracture fractures at these fillet welds could not be induced due to the large load magnitudes 

that would have been required to obtain the proper stress range and due to the location of the steel 

reinforcement plates that were required to strengthen the girder when a nearby Category E weld had 

previously failed. 

Even some of the Category E weld details on the test specimens could not be evaluated for 

their fatigue strength. In these instances, crack propagation from a previous fatigue fracture 

prevented additional testing of a specimen. For example, after the original, midspan, bottom flange 

splice and the new, bottom flange, cover plate no. 2 on the long, exterior girder specimen no. 1 had 

experienced fatigue fractures, attempts to induce a fatigue fracture at the new, bottom flange, cover 
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plate no. 1 resulted in the rapid propagation of the fatigue fracture at cover plate no. 2. Attempts to 

reinforce this girder specimen at cover plate no. 2 were unsuccessful. The dynamic testing of this 

specimen to induce a fatigue fracture at cover plate no. 1 was terminated after the fatigue fracture 

at cover plate no. 2 had vertically propagated over 8 in. into the girder web plate. 

3.4. Fatigue Fractures at Holes 

During the fatigue testing, several fatigue fractures occurred at locations that were not 

adjacent to a weld. All of these fractures propagated from holes that were drilled in a specimen to 

allow for the attachment of the steel reinforcement plates, to provide bracing mechanisms, or to 

provide a crack arrester at the end of a fatigue_fracture in the web plate of a specimen. The drilling 

procedure can produce small nicks and scars around the perimeter surface of a hole. The holes that 

were drilled through the bottom flange plate of a specimen were made with a magnetic drill that was 

anchored to a steel plate, which in turn was clamped to the specimen. As long as the core bit for the 

magnetic drill was sharp, the drilling produced very smooth holes. The holes that were drilled 

through the web plate of a specimen were made with a hand-held power drill. These holes were 

often rough. The perimeter surface of these holes were smoothed-out by using a round steel file and 

sand paper; however, the quality of these holes was not as good as that made with the magnetic drill. 

When fatigue fractures propagated from holes, these cracks usually occurred in the web plate of a 

specimen. The damage caused by the fractures in a girder web plate often reduced the cross section 

of the specimen to an extent that required the termination of the testing for that specimen. In some 

instances, high-load magnitudes caused a fatigue crack to qevelop at a bolt hole that was used to 

attach a steel reinforcement plate to the bottom flange plate of a specimen. The fatigue fractures that 

developed at holes are described in Appendix A. 
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3.5. Section Properties and Bending Strains 

3.5.1. Neutral axis and moment of inertia 

The experimental, longitudinal bending strains were used to calculate the experimental, 

neutral-axis location, yen, that was measured from the underside of the bottom flange plate of a girder 

and the experimental, moment of inertia, lex' with respect to the neutral axis (x-axis) for the girder 

specimens. Two strain gauges that were in vertical alignment and within the constant-moment 

region of a test specimen were selected to provide the measured bending strains. The section 

properties were evaluated as 

ezy1 - e1y2 
= 

ez - e1 
(Eq. 3.1) 

(Eq. 3.2) 

where, e 1 and e2 = measured bending strains at the strain. gauges that were located at heights y 1 and 

y2, respectively, from the bottom of the girder, M =calculated girder bending moment at the gauge 

positions that was induced by the hydraulic actuators, and E =the modulus of elasticity for the 5083-

Hl 13 aluminum alloy, which equals 10,300 ksi. Load and strain values were,obtained from a 

dynamic-burst reading of the instrumentation that was taken early in the dynamic-load testing of 

each specimen. All of the strains were used with their respective loads to compute the neutral-axis 

positions and moment of inertia values for a single-burst reading. A statistical analysis was 

performed on these section properties to determine average Yen and lex-values that were based on the 

experimental strains for each specimen. A theoretical, neutral-axis location, Yin' and moment of 
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inertia, Itx, for each girder specimen were determined from the geometrical proportions and the 

material composition of the individual girder sections by applying engineering mechanics principles. 

Since the long girder specimens were composite flexural members, the concrete and longitudinal 

reinforcing bars in a cross section were transformed into an equivalent amount of 5083-Hl 13 

aluminum alloy. Table 3.5 lists the theoretical and experimental section properties for the test 

specimens. For the long girder specimens, the magnitudes of the theoretical and experimental 

section properties were in relatively good agreement.. However, for some of the short girder 

specimens, significant differences existed between the theoretical and experimental section 

properties. 

Table 3.5. ·Section properties for the test specimens 

Ytn Yen Di ff. Iix lex Di ff. 
-

(in.4
) (in.4

) (%) Specimen (in.) (in.) (%) 

Long exterior 31.5 31.3 0.6 17,850 18,100 1.4 
girder no. 1 

Long exterior 31.5 30.8 2.2 ) 7,850 17,450 2.2 
girder no. 2 

Long interior 34.0 32.7 3.8 24,520 24,800 1.1 
girder no. 1 

Long interior 34.0 33.7 0.8 24,520 25,170 2.7 
girder no. 2 

Short exterior 17.8 18.0 1.4 7,070 7,430 5.1 
girderno. 1 

Short interior 17.6 17.3 1.4' 9,010 8,980 0.4 
girder no. 1 

Short interior 17.6 16.2 7.7 9,010 8,690 3.6 
girder no. 2 
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3.5.2. Strain ranges 

Table 3.6 lists the load range; Yen' and lex-values; an~ the theoretical and experimental strain 

ranges at the top surface of the bottom flange plate at the end of a bottom flange, cover plate and 

near the midspan, within the constant-moment region, and the percent difference between these two 

strain ranges for each specimen. These analytical values were computed by applying engineering 

mechanics principles, and the experimental strain ranges were determined from the specific strain­

gauge measurements. The measured strains were recorded at least 100,000 load cycles before any 

fatigue fracture had been detected. A comparison of the experimental and theoretical strain ranges· 

for the long girder specimens shows that the experimental strain data related well to the values 

predicted by theory. A comparison of the experimental and theoretical strain ranges for the short. 

girder specimens consistently showed a significant discrepancy between the predicted and measured 

strain ranges for the bottom flange, cover plate data, while the strain range differences associated 

with the gauges that were near the midspan of the specimen were small. 

3.6. SN-Relationships 

3.6.1. Specimen fatigue strengths 

The dynamic loading of a specimen either caused or did not cause a fatigue fracture to 

develop at a particular weldment. Table 3.7 lists the Category E weld details that developed fatigue 

fractures in the test specimens during the dynamic loading, the number of load cycles that were 

applied to cause the fracture, and the nominal and experimental-stress ranges associated with a 

particular fracture. The experimental stress.;.range for a fatigue fracture was determined from an 

evaluation of the strains that were measured over the duration of a particular load range near the 

weldment. Table 3.8 lists the Category E weld details that did not experience a fatiglie fracture after 



Table 3.6. Theoretical and experimental strain ranges for the test specimens 

Load 
Specimen range Yen lex Strain range at cover platea Strain range near midspana 

(kips) (in.) (in.4
) 

Theoretical Experimental Difference Theoretical Experimental Difference 
(microstrain) (microstrain) (%) (microstrain) ( microstrain) (%) 

Long exterior 17.5 31.5 17,850 273 255 6 302 290 4 
girder no. 1 

. Long exterior 21.8 31.5 17,850 339 33.0 3 376 390 4 
girder no. 2 

Long interior 25.2 34.0 24,520 305 283 7 338 342 1 
girder no. 1 

Long interior 25.2 34.0 24,520 305 305 < 1 338 325 4 
girder no. 2 

Short exterior 36.1 17.8 7,070 459 380 17 543 491 10 
girder no. I 

Short interior 22.2 17.6 9,010 215 145 33 255 235 8 
girder no. I 

Short interior 27.2 17.6 9,010 264 200 24 313 288 8 
. girder no. 2 

astrain at the top surface of the bottom flange plate. 
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being tested at a particular load range for at least 5-million lo~d cycles. The short, interior girder 

" specimen no. 1 was the only test specimen that did not experience a fatigue fracture at a Category 

E weld detail. 

The information given in Tables 3.7 and 3.8 was used to develop two stress-range versus 

load-cycle relationships (SN-relationships) for the girder specimens. The first SN-relationship that 

involved the nominal-stress ranges is shown in Fig. 3.14, and the second SN-relationship that 

involved the experimental-stress ranges is shown in Fig. 3.15. As discussed in Chapter 2, nominal 

SN-curves are normally used to present fatigue strength relationships. The stress-range and load-

' 
cycle data points were plotted on graphs that have logarithmic scales for both axes_ The original, 

bottom flange, splice fractures are shown as solid squares; the new, bottom flange, cover plate 

fractures are shown as solid circles; and the new, horizontal, web plate fractures are shown as solid 

diamonds in these figures. The Category E weld details that did not experience a fatigue fracture 

are shown in Figs. 3.14 and 3.15 as hollow circles with an arrow pointing towards the right, 

indicating that any potential fatigue fracture for these weld details may occur at a number of load 

cycles greater than that shown by the data point. 

The data for the specimens that experienced a constant-amplitude, cyclic-load,. fatigue 

fracture were statistically analyzed to establish the least-squares-regression line and the lower-

bound-strength line shown in Figs. 3.14 and 3.15. A least-squares:..regression line, which represents 

a 50% chance of survival against a fatigue fracture, was obtained by applying a least-squares-linear 

regression analysis using the Power Regression Method [13] to the fracture data points. A lower-

bound-strength line, which is two standard deviations below the least-squares regression line, 

represents a 95% confidence that 97.5% of the fatigue fractures will occur at stress ranges equal to 
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Table 3.7. Category E weldments with fatigue fractures 

Load Nominal Experimental 
cycles stress range stress range 

Specimen Detail (millions) (ksi) (ksi) 

Long exterior girder Midspan flange splice 0.64 4.59 4.59 
no. 1 Cover-plate no. 2a 1.98 2.98 2.74 

Cover-plate no. 2b 1.46 3.07 ---
Horizontal web no. 2 0.13 7.01 6.60 
Horizontal web no. 1 0.14 6.93 6.30 
I-shaped diaphragm 0.13 8.69 9.18 

Long exterior girder Midspan flange splice 1.06 4.00 4.09 
no.2 Cover-plate no. 2 1.31 3.53 3.53 

Horizontal web no. 2 0.18 6.25 5.48 
Horizontal web no. 1 . 0.18 6.15 5.33 

Long interior girder Cover-plate no. 2 1.99 3.09 2.72 
no. 1 

Long interior girder Cover-plate no. 2 1.59 2.98 2.85 
no.2 

Short exterior girder Cover-plate no. 1 0.58 4.85 4.04 
no. 1 Cover-plate no. 2 0.94 4.85 3.93 

Short interior girder Cover-plate no. 1 
' 

9.62 2.80 2.45 
no.2 

aFailure 7.58 ft from roller support bFailure 3.58 ft fro~ roller support 

Table 3.8. Category E weldments without.fatigue fractures 

Load Nominal Experimental 
cycles stress range stress range 

Specimen Detail (millions) (ksi) (ksi) 

Long exterior girder Midspan flange splice 8.00 3.20 3.25 
no. 1 Cover-plate no. 1 8.00 1.66 ---

Long interior girder Midspan flange splice 8.10 3.60 3.45 
no. 1 Cover plate no. 1 8.10 2.02 ---

Horizontal web no. I 8.10 1.33 1.23 
Horizontal web no. 2 8.10 2.25 1.90 

Short interior girder Cover-plate no. 1 11.00 2.30 1.80 
no. 1 Cover plate no. 2 5.47 2.70 2.25 

Short interior girder Cover-plate no. 2 10.55 2.80 2.15 
no~2 
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or greater than the stress-range levels associated with this line. None of the SN-data points for the 

fatigue fractures experienced by the test specimens in this research occurred beneath the lower-

bound-strength line. 

The heavy dashed line shown in Figs. 3.14 and 3.15 represents the nominal-stress range, 

fatigue resistance of a member that was developed for the AASHTO-LRFD Specifications [12]. 

This constant-amplitude, cyclic-load, strength line is given by 

(AF) = - 1 
:'.'.:. .!. (AF) ( 

C l Cz 

n N 2 th 
(Eq. 3.3) 

where, (AF)n =nominal-stress-range fatigue resistan~e, C 1 and C 2 are linear-regression-analysis 

constants associated with a particular weld detail category (for Category E detail weldments: C1 = 

36:0 x 108 and C2 = 0.237), N =number of constant-amplitude load-cycles, and (AF)th =constant-

amplitude fatigue threshold. For Category E detail weldments, (AF)th = 2.0 ksi at IO-million load 

·cycles. Figure 3.14 shows that the least-squares-regression line nearly coincides with the AASHTO-

LRFD specification line. The experimental-stress-range, least-squares-regression lirie shown in Fig. 

3 .15 is lower than the AASHTO-LRFD specification line. 

The solid line shown in Figs. 3.14 and 3.15 represents the allowable-stress range for 

Category E weldments that was developed by the Aluminum Association [8]. This SN-relationship 

applies to constant-amplitude, fatigue loading and is defined by 

S = AN-llm 
rd (Eq. 3.4) 

with srd 2'.: sra, where s rd = allowable, fatigue strength, stress range; s ra = induced, service-level, 

nominal-stress range at the weldment; A= stress-range (y-axis) intercept at N = 1; N =number of 
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constant-amplitude, load cycles; and m = absolute value of the slope of the linear-regression line. 

For Category E weld details, A= 160 ksi and m = 3.45 ksi. A constant-amplitude threshold is 

assumed to exist 5-million load cycles. The Aluminum Association's SN-curve was established at 

two standard deviations below the least-squares, linear-regression line drawn through the fatigue-

fracture data points for the mostly small-size specimens used for their.study. The fatigue strength 

for each of the Category E weld details that experienced a fracture in the ISU research corresponded 

to strengths greater than the allowable-stress-range limit specified by the Aluminum Association. 

3.6.2. SN-curve comparisons 

The least-squares, linear-regression lines that were developed from this study and from an 

investigation of only large-size, Category E weld details (cover-plate fatigue fractures) by Erickson 

and Kosteas [19] are shown in Fig. 3.16. In their comparison oflarge and small-size specimens 

involving transverse, fillet-welds, Erickson and Kosteas noticed a significant reduction in the fatigue 

strength as the size of the weldment increased. Each linear-regression line corresponds to fatigue 

tests that were conducted at a specific stress ratio, R. Although some researchers [21,24,34] note 

that the stress ratio does not have a significant influence on the fatigue life of a structural steel 

weldment, Erickson and Kosteas [19] and Tomlinson and Wood [55] have stated that the stress ratio 

affects fatigue life of aluminum weldments. The influence of the stress ratio on fatigue life has not 

been included in 1994 edition of the Aluminum Association [8] fatigue provisions. 
1 

Figure 3.16 shows that the linear-regression line for R = -1.0 (full-strain reversal) is 

significantly higher than the linear-regression lines for R = 0.05 and R = 0.1. When a full:-strain 

reversal exists, the stress range required to induce a fatigue fracture at a weldment for a specific 

number of load cycles is larger than that for any other stress ratio. This fact can be explained by 

realizing that fatigue damage occurs from repetitive tensile strains and that for a full-stress reversal, 
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the compressive portion of the stress range is the same as that for the tensile portion. Therefore, the 

peak-tensile strain for a negative stress-ratio condition is lower than that for a positive stress-ratio 

condition. Figure 3 .16. shows that the least-squares, linear-regression line for this study, in which 

R = 0.05, is close to the least-squares, linear-regression line by Erickson and Kosteas [19] with R 

= 0.1. The use of similar specimens, weld details, and loading methods attributed to the 

development of similar SN-curves. The small difference in the two positive stress ratios that existed 

between the two test programs should not have significantly alter the fatigue behavior of a specimen. 

In an attempt to investigate the effects of the size of Category E weld details on their fatigue 

fracture strength, the fracture results from the ISU, full-size specimens with R = 0.05 were combined 

with the fracture results from the tests by Erickson ~d Kosteas for their full-size weldrnents with 

R = 0.1 and -1.0. These data points were statistically analyzed through a least-squares, linear­

regression analysis to obtain a single, linear-regression line for full-size weldrnents that does not 

consider the influence of the stress-ratio on the fatigue strength of a specimen. This regression line 

is shown as the solid line in Fig. 3.17. A data set of fatigue fractures for mostly small-sized, 

Category E weld details was gathered by representatives of the Aluminum Association· from the 

fatigue test programs of other researchers. These fatigue fractures involved both small-size and full­

size weldrnents; however, the vast majority of those previous tests were conducted using small-size 

specimens. A linear-regression analysis of these fatigue fracture, SN-data points produced the 

linear-regression line that is shown as the dotted line in Fig. 3.17. The regression line for tlie mostly 

small-size weldrnents was above the regression line for the full-size weldrnents; therefore, the scale 

of an aluminum weldrnent initially appears to have an influence on the fatigue strength of a structural 

meTI:tber. However, these results are not conclusive because the effect of different stress ratios on 

fatigue strength has not been eliminated. Both regression lines shown in Fig. 3.17 involved a 
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mixture of test specimens with different stress ratios. One conclusion can be made from an 

observation of Fig. 3 .17. The slopes of the two linear-regression lines are essentially equal. 

Additional research involving the fatigue strength of Category E weld details should be conducted 

to isolate the independent effects of the size of a weldment and the stress ratio. 

The European Recommendations for Aluminum Alloy Structures (ERAAS) Fatigue Design 

[20] developed by the European Convention for Constructional Steelwork (ECCS) are similar to the 

most recent Aluminum Association fatigue provisions [8]. The ECCS structural detail with an F3-

Classification is designated as a Category E weld detail by the Aluminum Association. The SN­

curve for the ECCS-F3-Classification is also defined by Eq. (3.4), where for an F3-Classification, 

A= 574.9 MPa (83.4 ksi) and m = 4.32 MPa (also 4.32 ksi). A constant-amplitude, nominal-stress­

range threshold of 16.2 MPa (2.35 ksi) is assumed to exist at 5-million load cycles. Figure 3.18 

shows that the SN-curves for ECCS and the Aluminum Association are similar. The database that 

was used to generate the ERAAS fatigue design curve was not the same as that used to produce the 

Aluminum Association fatigue provisions, although there is some test data that was included in both 

databases. The Aluminum Association SN-curve is more conservative than the ECCS SN-curve. 

Figure 3.18 also shows the linear-regression, lower-bound, strength line that was established· 

at two standard deviations below the least-squares, linear-regression line for the Category E weld 

details tested in the ISU research. This lower-bound, strength line is slightly above and nearly 

parallel to the sloping portion of the Aluminum Association SN-curve, and it crosses the ECCS SN­

curve at approximately 700,000 cycles. The fatigue testing conducted during this ISU study did not 

establish an endurance limit due to the lack of a sufficient number of weld fractures beyond 5-

million load cycles. Although slight differences occured between the lower-bound strength line 
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generated from this ISU study and the Aluminum. Association and ECCS SN-curves, the differences 

are believed to be attributed to the different fatigue-strength data sets that were used to establish the 

individual SN-curves. 
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CHAPTER 4. EPILOGUE 

4.1. Summary 

The use of aluminum in engineering structures has increased significantly in the past 50 

years. Because aluminum alloys possess a natural resistance to corrosion, have yield strengths 

comparable to commonly used steels such as A36 and A572 Grade 42, and have weights about one­

third that of steel, aluminum has become a viable structural material. Since aluminum alloys can 

be welded; bolted or riveted; and are available in cast, extruded, forged, rolled, and sheet forms, 

aluminum alloys are as commercially versatile as structural steel. The development of aluminum 

structural design speCifications began in the 1940's and continues to evolve worldwide. Recent 

improvements to aluminum design specifications have addres.sed the fatigue behavior of weldments. 

In 1994, the Aluminum Association published the sixth edition of the Specifications for 

Aluminum Structures [8] that established weld detail categories, which linked the geometry and type 

ofweldmentto the fatigue life of the structural member. However, a significant portion of this data 

has been obtained from the fatigue testing of small-size specimens. The relevance of data obtained 

from small-size specimens compared to data obtained from full-size Specimens has been questioned. 

Research [19] has shown that full-size aluminum weldments tend to experience fatigue fractures with . 

the application of fewer load cycles·than small-size specimens of a similar geometry. Fatigue testing 

of full-size aluminum weldments commonly used in structural applications is essential in order to 

justify or improve the specification criteria for fatigue design of aluminum structures. Since there 

is a scarcity of large, welded aluminum structures, and since the cost of fabricating and testing 

specimens is formidable, few opportunities exist to study the behavior of such components. 

Several years ago, engineers from the Iowa Department of Transportation and from the Polle 

County Engineer's office determined that the 86th Street (Clive Road) overpass oflnterstate 80 (I-
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80) near Des Moines, Iowa would be redesigned as an interchange. The original overpass was a 

four-span continuous, welded, I-shaped, aluminum girder bridge that was erected in 1959. The 

removal of the aluminum girder bridge provided a unique opportunity to perform a static-load test 

of an aluminum girder bridge and to obtain full-size, aluminum girder section for fatigue testing. 

In 1993, and prior to the removal of the bridge, static-load field tests of the bridge were 

performed by researchers at Iowa State University (ISU). The discussion and results of these tests 

were reported by Abendroth, Sanders, and Mahadevan [1,2]. The bridge performance had been 

excellent throughout its 35 years of service. 

Eight, approximately 43-ft long, aluminum girder sections were salvaged when the Clive 

Road Bridge was disassembled. The four girder sections in each 41-ft long end span of the bridge 

were removed intact. A portion of the nominally 8-in. thick, reinforced concrete, deck section 

remained attached with shear connectors to the girders. Four of these girders were used for the 

constant-amplitude, fatigue testing of this study and the other four girders were saved for possible 

future, variable-amplitude, fatigue testing. Each of the girders that were tested during this research 

program were cut into two sections. One section, which was approximately 26-ft long, was cut from 

the end of the girder that was closest to the original bridge-pier location. The remaining section, 

which was approximately 15-ft long, was the portion of the girder that was closest to the original 

bridge-abutment location. 

The girders had been fabricated from 5083-Hl 13 aluminum alloy plates.· This aluminum 

l 

alloy is favorably suited for use in large, welded, structural applications based on the mechani'cal and 

chemical properties of this alloy. The four long girder specimens had an unusual, existing, bottom · 

flange, splice detail that included a transition plate. These specimens also had an existing; I-shaped, 

diaphragm that was connected near their midlength to the web plate. The bottom flange splice, weld 
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detail on all of the long girder speciiri'.e:hs and the diaphragm c6nh~ction on the long, exterior girder 

specimens involved Category E weld details, as classified by the Aluminum Association 
" 

· specifications [8]. The diaphragm connection on the long, interior girder specimens included a 

slotted-web plate detail.. This diaphragm connection did not correspond to any of the weld detail 

categories specified by the Aluminum Association; however, the effect of the slots in the web plate 

made this· detail more susceptible to a fatigue fracture than a conventional Category E weld detail. 

The ends of the four, short girder specimens had existing, welded connections that were part of the 

original bridge fabrication. Along the lengths of these specimens, there were not any existing, weld 

plate attachments from the original bridge construction. 

New 5083-H321 aluminum alloy plates were fillet welded to the girder specimens by a 

welder, who was certified to weld aluminum. All welds were performed by the Gas Metal Arc 

Welding procedure, and they were visually inspected for defects by an American Welding Society 

Certified Welding Inspector. The methods and parameters used to weld the new plates were 

developed to closely approximate the conditions used in the original welding. 

All of the test specimens had two, new, cover plates welded to their bottom flange. Each of 

the long girder specimens also had two, new pairs of short, horizontal plates welded to their web 

plate. Each of the short girder specimens also had two new pairs of short, vertical, web stiffener 

plates welded to their web and bottom flange plates. The transverse fillet welds for the bottom 

flange, cover plates and the fillet weld across the ends of the horizontal, web plate attachments were 

Category E weld details. The fillet welds between the vertical, web stiffener plates and the girder 

bottom flange plate were Category C weld details. These welded attachments reflect the type of 

connections used in girder construction for which fatigue data is needed. 
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Loads were applied to the specimens by a pair of 55-kip capacity actuators.· The long 

specimens were supported directly by the test frame, and the load actuators were symmetrically 

positioned at 4 ft on center over these specimens. The short specimens were supported on fabricated 

abutments, and the load actuators were symmetrically positioned at 3 ft on center over these test 

specimens. The portion of the reinforced concrete slab that was attached to the top flange of the 

girders was removed froin the short girder sp~cimens in order to reduce the amount ofload that was 

required to induce the desired stress ranges at the toes of the critical weldments on these specimens. 

The long girder specimens retained a portion of the original bridge deck. 

Instrumentation consisted of electrical-resistance, strain gauges; direct-current,. displacement 

transducers (DCDTs); dial gauges; and load cells. For each specimen a vertical line of strain gauges 

was positioned in the constant-moment region to observe the strain profile in a cross section of the 

girder: Strain gauges were also positioned close to the fillet welds that were expected to experience 

a fatigue fracture during the cyclic loading. These strain gauges were used to observe changes in 

the longitudinal bending strains prior to the full development of a fatigue fracture at these locations. 

The DCDTs and dial gauges measured the vertical and lateral motions at the supports and at the 

midspan of a specimen. When the loads were applied to a specimen, the slightly warped aluminum 

flange and web plates, which may have been caused by the original welding of the girders and/or the 

removal of the girders from the bridge structure, induced small lateral displacements and support 

motion for a specimen. 

The voltage outputs of the instrumentation could be measured during the static or dynamic­

load tests on a specimen. Each instrumentation device was monitored 300 times per second during 

a.burst reading. These readings were initiated either manually or automatically at a set-time interval. 
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The experimental measurements were acquired by a data acquisition system and organized by a 
' , I ' ,-

computer program to obtain the minimum and maximum magnitudes for the measurements . 

. ·: -~ 

The minimum and maximum loadS that were applied to a girder specimen 'were established 

after selecting a desired nominal-stress range at a specific fillet-welded connection. A large stress 

range would induce a rapid formation of a fatigue fracture, while a very small stress range might not 

induce a fatigue fracture before I 0-million load cycles had been applied. To assist in ·the 

determination of a proper stress range, the fatigue provisions of the Aluminum Association 

specifications [8] and the aluminum fatigue provisions of the AASHTO-LRFD specifications [12] 

were reviewed. The weld detail that was most susceptible to a fatigue fracture was determined by 

its stress category designation and its position on the particular test specimen. 

Loads were applied to a specimen at a frequency of between 1.0 and 5.0 hertz. Large loads 

and the corresponding specimen deflections produced large, hydraulic oil flow rates through the 

actuator servo-valves, which produced the slower load frequencies. During the testing of each 

specimen, a log book was used to record all events significant to ·the experimental, fatigue-life 

history and stress history of a specimen. The fatigue-life history for a specimen included changes 

that were made to the specimen or testing apparatus, changes. that were made in the load magnitudes 

or frequency, or the occurrence of a fatigue fracture. _pie stress history of a specimen included the 

record of the theoretical (nominal) and experimental (measured) stress ranges at each of the weld 

details. 

After a fatigue_ fractlire developed in a specimen, the dimensions of the fracture were 

recorded and instrumentation measurements for a static-load test that involved the load magnitudes 

which caused the fracture were taken to note any changes in the static load-behavior of the specimen. 

If a fatigue fracture occurred in the bottom flange plate of a specimen, the girder was reinforced by 
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attaching a steel plate that spliced together the two sides of the fractured flange plate. If a fatigue 

fracture in a bottom flange plate extended upwards into the web plate or if a fracture only occurred 

within the web plate, holes were drilled at the tips of the fracture in an attempt to arrest further crack 

propagation at those locations. After a girder was reinforced at a fatigue fracture location, the next 

aluminum weldment that was considered to be most susceptible to a fatigue fracture on the same test 

specimen was tested at another specific stress range. This testing procedure continued until a girder 

specimen could no longer be reinforced or until further testing was not practical. 

The strain gauge measurements obtained during the dynamic loading of a specimen were 

used to calculate the experimental stress-ranges that were induced at the fillet-welded details. The 

experimental stress-range and number ofload cycles that produce a fatigue fracture establish a data 

point for the fatigue strength behavior of a Category E weld detail. Similar fatigue fracture data 

points were established for a nominal stress-range and the number of load cycles associated with a 

fatigue fracture. The nominal stress-range at a fracture point was computed by applying basic 

engineering mechanics principles. The nominal and experimental fracture data points were 

independently analyzed by applying linear-regression techniques to establish a least-squares, linear­

regression line of stress-range versus load-cycle behavior (SN-curve) for Category E fatigue 

fractures. A lower-bound-strength line for the fatigue strength of Category E weld details was 

established at two standard deviations below the regression line for both the nominal and 

experimental fat~gue test results. The nominal, linear-regression line was compared to fatigue 

fracture results of similar small and full-size Category E weld details of previous researchers. The 

nominal and experimental, linear-regression and the lower-bound-strength lines were compared to 

the fatigue provisions specified by AASHTO-LRFD specifications [12] and the Aluminum 
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Association specification [8], which were formulated from t~st results that involved many more 
".r • ' 

small-size specimens than full-size specimens. 

4.2. Conclusions 

The following conclusions were based on the fatigue strength results obtained from the seven 

girder specimens tested in this ISU study, results and analyses of similar test programs, and available 

fatigue design provisions from the AASHTO-LRFD specifications [12] and Aluminum Association 

specifications [8]: 

1. The nominal, least-squares, linear-regression, SN-relationship established in this ISU study for 

the full-size, Category E aluminum weldments that involved a stress ratio, R, equal to 0.05 were 

similar to that same relationship developed by Erickson and Kosteas when R was equal to 0.10. 

2. When the influence of the stress ratio was neglected, full-size, Category E aluminuni weldments 

may experience fatigue fractures at a lower stress range than similar, small-size, aluminum 

weldments. 

3. All of the Category E fatigue fractures that developed in the girder specimens for this ISU study 

satisfied the allowable stress-range versus load-cycle relationship specified by the fatigue 

provisions of the Aluminum Association. 

4. The least-squares, linear-regression, SN-relationship for the fracture data from this ISU study 

essentially matched the nominal-strength, SN-curve for Category E aluminum weldments given_ 

in the AASHTO-LRFD specification. 
I 

5. The SN-curve for the Category ~ details specified by the Aluminum Association is slightly, more 

conservative than the SN-curve for the F3-structural details specified by the European 

Convention for Construction Steelworks (ECCS). A Category E weld detail as defined by the 

Aluminum Association is the same as an F3-structural detail as defined by ECCS. The lower-
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bound, strength line developed from fatigue data gathered in this ISU study related better to the 

SN-curve from the Aluminum Association than to the SN-curve from ECCS. 

6. A constant-amplitude, endurance limit for Category E details could not be established for the 

specimens tested in this ISU study'. An insufficient number of fatigue fractures occurred beyond 

5-million load cycles. However,.since a significant number of the weldments in this ISU study 

experienced over 5-million load cycles without developing a fatigue fracture, an endurance limit 

probably exists. 

7. Except for the fillet welds associated with the new, horizontal~ plate attachments on the web plate 

of the long girder specimens, the transverse fillet-welded connections that experienced a fatigue 

fracture always failed in the base metal adjacent to the toe of the weld.· The fatigue fractures at 

the edge of the horizontal plates passed through the web plate base metal on one side of the web 

plate and through the weld metal on the other side of the web plate, since these horizontal plates 

were accidentally misaligned along the length of the girder. 

4.3. Recommendations 

The following recommendations were formulated after evaluating the fatigue strength results 

of this ISU study, reviewing the available literature concerning fatigue testing of aluminum alloy 

weldments, and studying the fatigue provisions in the AASHTO-LRFD specifications [12] and 

Aluminum Association specifica~ions [8]: 

1. Additional constant-amplitude, fatigue testing of Category E, transverse, fillet-weld details needs 

to be conducted to establish the fatigue strength relationship between small-size and full-size 

weldments. 
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2. Investigations that address the use of different stress ratios for full-size, aluminum weldments 
" . , ' ·, ' . . 

need to be performed to establish the effect that the stress ratio has on the fatigue life of a welded 

connection. 

3. Constant-amplitude, fatigue testing of commonly used welded and bolted aluminum connection 

configurations, involving detail Categories A through F, for which there is a lack of full-size 

specimen test data needs to be conducted. These tests will provide some confirmation regarding 

the adequacy of the current specification, SN-relationships that were established from testing 

mostly small-size specimens. These additional tests should be designed to determine whether 

an endurance limit exists for each detail category. 

4. More variable-amplitude, fatigue testing offull-siZe, aluminum specimens with commonly used 

welded and bolted connections, involving all detail categories, is essential to confirm or modify 

current specification provisions for this type of loading. 
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APPENDIX A. TEST SPECIMEN FATIGUE LIFE HISTORY 

This appendix contains a chronological synopsis of the events that occurred during the 

fatigue testing of the girder specimens. Events such as changes in the load parameters, discovery 

of fatigue fractures, or other occurrences that might have influenced the specimen response are 

presented. Tables A.1 through A.7 list the number of load cycles and date (month/day/year) 

associated with each event for the seven girder specimens. Details concerning the theoretical and 

experimental stress ranges at specific locations of interest on the girder specimens are presented in 

AppendixB. 
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Table A. l. Life history of the long exterior girder specimen no. 1 

Cycles Date Event 

0 03/21/95 Girder was placed and braced in the test frame, and the 
instrumentation was attached. 

'· 93,999 05105195 Initial constant-amplitude load cycling and development of the 
testing methodology ends. 

94,000 05105195 Final constant-amplitude load cycling initiated. 
Loading: 3 .2 ksi nominal stress range at original bottom flange 
splice. 
Maximum Load: 18.54 kips. 
Minimum Load: 0.93 kips. 
Load Frequency: 4.0 hertz. 

1,977,540 05/11/95 Base metal fatigue fracture occurred across the bottom flange 
plate at the new bottom flange cover plate no. 2 at the end 
that was closest to the midspan (inside end). 

Steel repair plate fastened to bottom flange plate to reinforce 
girder and stop crack propagation (Fig. 2.15). 

1,983,500 05125195 Repairs completed and dynamic load testing continued with the 
same load parameters that were selected to induce a fatigue 
fracture at the original bottom flange splice detail. 

8,000,000 06/12/95 Increased the load parameters in an attempt to induce a 
fatigue fracture at the original bottom flange splice detail. 

Loading: 4.5 ksi nominal stress range at the original bottom 
flange splice detail. 

Maximum Load: 26.07 kips. 
Minimum Load: 1.30 kips. 
Load Frequency: 4.0 hertz. 

8,641,400 06/14/95 Base metal fatigue fracture occurred across the bottom flange 
plate at the apex of the transition plate for the original 
bottom flange splice. 

Removed initial bottom flange steel repair plate and attached a 
different steel repair plate to reinforce the girder at both 
fracture locations in an attempt to induce a fatigue fracture 
at the new flange cover plate no. 1 (Fig. 2.16). 



Cycles 

8,641,400 

8,809,000 

8,814,900 

8,814,900 

9,460,100 
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Tabl~A.l. (Cont'd)' 
.~ .,:. J._ 

., 
-~ : , Event Date 

06123195 Dynamic load testing resumed. 
Loading: 4.0 ksi nominal stress range at the inside end of the 

new bottom flange cover plate no. I. 
Maximum Load: 42.66 kips. 
Minimum Load: 2.13 kips. 
Load Frequency: 1.0 hertz. 

06125195 Existing fatigue crack at the inside end of the new bottom 
flange cover plate no. 2 propagated into the web plate of the 
girder. 

Testing stopped to arrest this crack by drilling a hol~ in the web 
plate above the crack tip. 

06126195 Testing stopped to reinforce the test frame by welding bearing 
stiffeners to the web of each diaphragm that supported an 
actuator to prevent twisting of the bottom flange plates for 
the diaphragms in the test frame. 

07/04/95 Resumed load cycling; however, changed load parameter. 
Load frequency increased to 2.0 hertz. 

07 II 0195 Base metal fatigue fracture occurred across the bottom flange 
plate at the new bottom flange cover plate no. 2 at the end 
that was closest to the support (outside end). 

Previous fatigue crack at the inside end of the new bottom 
flange cover plate no. 2 propagated further up in the web 
plate. 

Drilled a new hole in the web plate above this crack to arrest 
crack growth. 

Abandoned efforts to induce a fatigue failure at the new 
bottom flange cover plate no. 1. 

A chop-saw was used to remove the girder bottom flange and 
the bottom 3 in. of the girder web plate between the load 
points of the specimen in an attempt to induce a fatigue 
failure ~t the new horizontal web plate attachments (Fig. 
2.19). 
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Table.A.I. (Cont'd) 

Cycles Date Event 

9,460,100 07/10/95 Drilled holes at the tips of cracks that were propagating into 
(Cont'd) the web of the girder at the new bottom flange cover plate 

no. 2 and at the original bottom flange splice. 
Drilled holes at the intersection of the chop-saw cuts to reduce 

the stress concentrations at these locations (Fig. 2.19). 
Attached double angle web plate guide along the length of the 

specimen at the bottom of the reduced cross section to 
prevent lateral buckling in the web plate (Fig. 2.18). 

9,460,100 07/20/95 Dynamic load testing resumed in an attempt to induce a fatigue 
fracture at the new horizontal web plate attachments. 

Loading: 7.0 ksi nominal stress range at new horizontal web 
plate attachments. 

Maximum Load: 21.13 kips. 
Minimum Load: 1.06 kips. 
Load Frequency: 4.0 hertz. 

9,470,700 07/20/95 Testing stopped due to contact of the ends of the double angle 
bracing member with the bottom flange of the specimen. 

Double angle brace cut at each end to eliminate contact with the 
girder bottom flange plate beyond the cut section. 

Existing fatigue crack at the inside end of the new bottom 
flange cover plate no. 2 propagated further up into the web 
plate. 

Drilled a hole to act as a crackartester at the new crack tip. 
Double angle fabricated ~d fastened to the web plate to splice 

across the fracture at this location (Fig. 2.17). 

9,470,700 07/24/95 Resume dynamic load testing with the same load parameters. 

9,487,500 07/24/95 Fatigue crack formed at a burr mark in the drill hole at the 
intersection point of the chop-saw cuts at the end of the. 
flange removal area that was adjacent to the new bottom 
flange cover plate no. 2. 

Fabricated and attached by using the turn-of-the-nut method, a 
double angle web plate splice to strengthen the girder (Fig. 
2.17). 

Resumed dynamic load testing with the same load parameters. 
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Table A. I. (Cont'd) 

Cycles Date ,, Event :r.-

9,592,600 07/26/95 Fatigue crack developed through the base metal of the web 
plate at each end of the new horizontal web plate attachment 
no.2. 

Fatigue crack developed through the base metal of the web 
plate at the bottom flange tip of the original I-shaped 
diaphragm that was just above the apex point on the 
transition plate for the original bottom flange splice. This 
crack propagated to the bottom of the web plate within the 
region of the removed girder bottom flange. 

Resumed dynamic load testing with the same load parameters. 

9,597,600 07/26/95 An additional 5,000 load cycles were applied to the girder to 
observe crack propagation. 

Fatigue crack observed in the far face of the web plate at both 
ends of the new horizontal web plate attachment no. 1. 

Resumed dynamic load testing with the same load parameters. 

9,600,000 07/26/95 An additional 2,400 load cycles were applied to the specimen. 
The fatigue crack at the original I-shaped diaphragm 

propagated rapidly. 
The fatigue cracks in the. far face of the web plate at the new 

horizontal web plate attachment no. 1 propagated. 
End of fatigue testing. 
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Table A.2. Life history of the long exterior girder specimen no. 2 

Cycles Date Event 

0 08/12/95 Girder was placed and braced in test frame, and the 
instrurri.entation was attached. 

0 08/16/95 Constant amplitude load cycling initiated. 
Loading: 4.0 ksi nominal stress range at original bottom flange 

splice. 
Maximum Load: 23 .14 kips. 
Minimum Load: 1.16 kips. 
Load Frequency: 4.0 hertz. 

1,064,400 08/20/95 Base metal fatigue fracture occurred across the bottom flange 
plate at the apex of the transition plate for the original 
bottom flange splice. 

Steel splice plate fastened to the bottom flange to reinforce 
girder and stop crack propagation (Fig. 2.15). 

1,064,400 08/23/95 Repairs completed and dynamic load testing continues with the 
same load parameters in an attempt to induce a fatigue 
failure at the new bottom flange cover plate no. 2. 

1,306,600 08/24/95 Base metal fatigue fracture occurred across the bottom flange 
plate at the new bottom flange cover plate no. 2 at the end 
that was closest to the.midspan. 

A chop-saw was used to remove the girder bottom flange and 
bottom 2-1/2 in. of the girder web plate between the load 
points of the speciinen in an attempt to induce a fatigue 
fracttire at the new horizontal web plate attachments (Fig. 
2.19). 

Drilled holes at the intersection of the chop-saw cuts to reduce 
the stress concentrations at these locations (Fig. 2.19). 

Attached double angle web plate guide along the length of the 
specimen at the bottom of the reduced cross section to 
prevent lateral buckling of the web plate (Fig. 2.18). 
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·Table A.2. (Cont'dL. 

Cycles Date Event 
t'• 

1,306,600 08/28/95 Change IOad parameters in an attempt to induce a fatigue failure 
at the new horizontal web plate attachments. 

Loading: 6.25 ksi nominal stress range at the new horizontal 
web plate attachment no. 2. 

Maximum Load: 18.73 kips. 
Minimum Load: 0.94 kips. 
Load Frequency: 4.0 hertz. 

1,432,100 08/29/95 Fatigue fracture occurred at the chop-saw intersection point that 
was closest to the new bottom flange cover plate no. 2. 

Attached double angle web plate splice using the turn-of-nut 
method, at each cut intersection point to prevent further 
crack propagation at these locations (Fig. 2.17). 

Dynamic load testing resumed with the same load parameters. 

1,491,300 08/29/95 Fatigue fracture occurred at the new horizontal web plate 
attachment nos. 1 and 2 and at the chop-saw intersection 
point that was closest to the new bottom flange cover plate 
no. 1. Each fatigue fracture occurred in the base metal 
adjacent to the welds. 

End of fatigue testing. 
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Table A.3. Life history of the long interior girder specimen no. 1 

Cycles Date Event 

0 10/17/95 Girder wa.S placed and braced in test frame, and the 
· instrumentation was attached. . 

0 10/30/95 Constant-amplitude load cycling initiated. 
Loading: 3.6 ksi nominal stress range at the original bottom 

flange splice. 
Maximum Load: 26.56 kips. 
Minimum Load: 1.32 kips. 
Load Frequency: 4.0 hertz. 

4,900 10/30/95 Testing stopped due to specimen instability. 
Adjusted supports and recommenced dynamic load testing with 

' the same load parameters. 

1,995,000 11105/95 Fatigue fracture occurred through the weld metal at the bottom 
flange tip of the original I-shaped diaphragm that was just 
above the apex point on the transition plate for the original 
bottom flange splice. These girder web plate cracks 
extended above and below the diaphragm bottom flange 
plate. 

Drilled holes in the web plate above and below the crack tips to 
stop crack propagation. 

Base metal fatigue fracture occurred across the bottom flange 
plate at the new bottom flange cover plate no. 2 at the end 
that was closest to the midspan. 

Steel splice plate fastened to the bottom flange to reinforce the 
girder and stop crack propagation (Fig. 2.15). 

Dynamic load testing resumed with the same load parameters. 

5,581,400 11/21/95 Testing stopped due to displacement interlock limit violation. 
No new fatigue cracks were detected, nor were prior cracks 

propagating. 
Dynamic loading resumed with the same load parameters .. 

5,918,600 11/22/95 Testing stopped again due to displacement interlock limit 
violation. No new fatigue cracks were detected. 

Dynamic load testing resumed with the same load parameters .. 
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'· ,.: · 'rable A.3. (Cont'd) 

Cycles Date "Event 
.'• ·. ~ 

6,439,500 11/25/95 Fatigue fracture detected at a bolt hole that was drilled through 
the girder bottom flange plate to attach the steel splice plate 
at the new bottom flange cover plate no. 2. 

Girder was reinforced by shifting the steel splice plate 12 in. 
towards the midspan. Additional bolt holes were drilled 
through the girder bottom flange plate to accomniodate the 
new position of the splice plate, so that the two fatigue 
cracks were located between the ends of the splice plate. 

6,439,500 11/29/95 Dynamic load testing resumed. 

6,519,100 11/29/95 Load frequency reduced to 3.5 hertz. 

7,357,000 12/08/95 The fatigue fracture at the original I-shaped diaphragm 
connection propagated downward from hole that served as a 
crack arrester. 

Drilled a new hole in the web plate below the crack tip. 
Load frequency reduced to 3.0 hertz. 

8,103,900 12/11/95 Loading parameters were changed to induce a fatigue 
fracture at the original bottom flange splice. 

Loading: 4. 0 ksi nominal stress range at the original bottom 
flange splice 

Maximum Load: 29.51 kips. 
Minimum Load: 1.4 7 kips. 
Load Frequency: 3.0 hertz. 

8,115,000 12/11/95 Fatigue crack at the original I-shaped diaphragm connection 
propagated upward in the web plate. 

Hole drilled in the web plate at crack tip to stop further 
propagation. 

Dynamic load testing resumed with the same load parameters. 
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Table A.3. (Cont'd) 

Cycles Date Event 

8,575,400 12114/95 Fracture at the original I-shaped diaphragm connection 
propagated downward into the continuous longitudinal fillet 
weld that connected the web plate to the bottom flange plate 
of the girder. Could not drill a hole to stop further 
propagation of this fracture. 

Dynamic load testing resumed with the same load parameters. 

8,708,400 12115/95 Fatigue crack at the original I-shaped diaphragm connection 
propagated into the bottom flange plate of the specimen. 

End of fatigue testing. 



------------------

'.:.;; . 

123 

Table A.4. Life history of the long interior girder specimen no. 2 

Cycles Date Event 

0 091--195 Girder wa5 placed and braced in test frame, and the 
instrumentation was attached. 

0 09/13/95 Constant-amplitude load cycling initiated. 
Loading: 3 .6 ksi nominal stress range at original bottom flange 

splice. 
Maximum Load: 26.56 kips. 
Minimum Load: 1.32 kips. 
Load Frequency: 4.0 hertz. 

1,585,900 09/13/95 Base metal fatigue fracture occurred across the bottom flange 
plate ~t the new bottom flange cover plate no. 2 at the end 
that was closest to the midspan. 

Steel repair plate fastened to the bottom flange to reinforce the 
girder and stop crack propagation (Fig. 2.15). 

Dynamic load testing resumed with the same load parameters. 

1,784,300 09120195 Fatigue crack occurred through the weld metal at the bottom 
-

flange tip of the original I-shaped diaphragm that was just 
above the apex of the transition plate for the original bottom 
flange splice. These girder web plate cracks extended above 
and below the diaphragm flange plate. 

Drilled holes in the web plate above and below the crack tips to 
stop crack propagation. 

Dynamic load testing resumed with the same load parameters. 

2,829,300 09125195 Fatigue crack at the original I-shaped diaphragm connection 
propagated upwards in the girder web plate. 

Drilled hole above the extended crack tip to stop crack 
propagation. 

Dynamic load testing resumed with the same load parameters. 

4,454,000 10/04/95 Fatigue crack at the original I-shaped diaphragm connection 
propagated upwards and downwards in the web plate. The 
bottom crack tip approached the continuous longitudinal 
fillet weld between the girder web and flange plates. 

Drilled hole above the upper crack tip in the web plate. Could 
not drill a hole at the lo~er crack tip. 

Dynamic load testing resumed with the same load parameters. 

5,096,200 10/06/95 Fatigue crack at the original I-shaped diaphragm connection 
propagated downward into the bottom flange plate of the 
girder. 

End of fatigue testing. 
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Table A.5. Life history of the short exterior girder specimen no. 1 

Cycles Date Event 

0 01/10/96 Girder prepared for testing: shear studs removed from the top 
flange plate along the central portion of the span and 
concrete load pads were cast on the top flange of the girder . 
at the load points. 

Girder was placed and braced in the test frame, and the 
instrumentation was attached. 

0 01/30/96 Incremental loading performed for preliminary static-strain 
distribution in specimen. 

Girder top flange and web plates experienced twisting damage 
due to instability of a hydraulic actuator on the specimen. 

0 02/07/96 Girder repaired by personnel from the Iowa Department of 
Transportation. A· combination of heat treatment and 
mechanica~ bending techniques were used to straighten the 
girder top flange and web plate. 

0 02/15/96 Actuator brace fabricated and welded into position to laterally 
brace the hydraulic rams to the test frame. 

0 02/16/96 Constant-amplitude load cycling began. 
Loading: 5.6 ksi nominal stress range at the new midspan 

vertical web stiffeners. 
Maximum Load: 38.02 kips. 
Minimum Load: 1.09 kips. 
Load Frequency: 3.0 hertz. 
Out-of-plane girder web plate bending detected. 
Testing stopped. 
Steel web plate stiffener and bearing brace bolted to web of 

girder directly under the load points (Fig. 2.20). 

1,400 02/19/96 Dynamic load testing resumed with the same load parameters. 

583,200 02/22/96 Base metal fatigue fracture occurred across the bottom flange 
plate at the new bottom flange cover plate no. I at the end 
that was closest to the midspan. 

Attached a steel splice plate to the bottom flange to strengthen 
the girder (Fig. 2.15). 

Hole drilled at the crack tip of the portion of this fracture which 
propagated up into the web plate. 

Dynamic load esting resumed with the same load parameters. 



125 
. ·,\,··~ .... 

· .. : ·.Table A.5. (Cont'd) ,. 

Cycles Date L •, Event 

938,800 02/24/96 Base metal fatigue fractufe occurred across the bottom flange 
plate ~t the new bottom flange cover plate no. 2 at the end 
that was closest to the midspan. 

Attached a steel splice plate to the bottom flange to strengthen 
the girder (Fig. 2.15). 

Fatigue crack at the new bottom flange cover plate no. 1 
propagated upwards in the web plate of the specimen. 

Hole drilled above the crack tip to stop further crack 
propagation. 

Dynamic load testing resumed with the same load parameters. 

2,202,400 02129196 Fatigue fracture occurred in the bottom flange plate at a bolt 
hole that was used to attach the steel splice plate at the new 
bottom flange cover plate no. 2. The bolt hole was on the 
far side of the girder and was the one closest to the midspan. 

Steel splice plate was repositioned to clear this fracture and the 
previous fatigue fracture at the new bottom flange cover 
plate no. 2. 

2,202,400 03105196 Dynamic load testing resumed with the same load parameters. 

2,733,200 03109196 Fatigue fracture occurred in the bottom flange plate at a bolt 
hole that was used to attach the steel splice plate at the new 
bottom flange cover plate no. 1. The bolt hole was c:in the 
near side of the girder and was the one closest to the 
midspan. 

End of fatigue testing. 
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Table A.6. Life history of the short interior girder specimen no. 1 

Cycles Date Event 

0 03/12/96 Girder prepared for testing: shear studs removed from the top 
flange plate along the central portion of the span and . 
concrete load pads were cast on the top flange of the girder 
at the load points. 

Girder was placed and braced in the test frame, and the 
instrumentation was attached. 

0 03/14/96 Constant-amplitude load cycling initiated. 
Loading: 2.3 ksi nominal stress range at the new bottom flange 

cover plates at the end that was closest to the midspan. 
Maximum Load: 23.23 kips. 
Minimum Load: 1.16 kips. 
Load Frequency: 4.0 hertz. 

61,000 03/14/96 Dynamic load testing stopped due to eccentric loading of the 
specimen. Realigned the specimen. 

. 61,000 03/17/96 Steel web plate stiffener and bearing brace bolted to the web of 
the girder directly under the load points (Fig. 2.20). 

Resumed dynamic load testing with the same load parameters. 

405,100 03/20/96 Increased the load frequency to 4.5 Hertz. 

. 820,000 03/21/96 Dynamic load testing stopped to realign the specimen. 
Increased the load frequency to 5.0 hertz. 

11,000,000 04/16/96 Increased the load parameters in an attempt to induce a fatigue 
fracture at the new bottom flange cover plates. 

Loading: 2. 7 ksi nominal stress range at the new bottom flange 
cover plates. 

Maximum Load: 27.27 kips. 
Minimum Load: 1.36 kips. 
Loading Frequency: 3.5 hertz. 

11,294,000 04/17/96 Increased the load frequency to 4.5 hertz. 
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Table A.6. (Cont'd) 

Cycles Date Event 

11,850,900 04/19/96 Base metal fatigue fracture occurred across the bottom flange 
plate at the new bottom flange cover plate no. 2 at the end 
that was closest to the midspan. 

Attached a steel repair splice plate to the bottom flange to 
strengthen the girder (Fig. 2.20). 

Hole drilled at the crack tip that had propagated up into the web 
plate. 

Testing continued with the same load parameters to induce a 
fracture at the new bottom flange cover plate no. 2. 

14,385,200 04126196 Increased the load frequency to 5.0 hertz. 

16,021,700 05102196 Increased the load parameters. 
Loading: 5.0 ksi nominal stress range at the new bottom flange 

cover plate no. 2. 
Maximum Load: 50.5 kips. 
Minimum Load: 2.53 kips. 
Load Frequency: 2.75 hertz. 

16,197,600 05103196 Reduced the load frequency to 2.5 hertz. 

16,467,600 05104196 Base metal fatigue fracture occurred across the bottom flange 
plate at the new bottom flange cover plate no. 1 at the end 
that was closest to the midspan. 

End of fatigue testing. 
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Table A.7. Life history of the short interior girder specimen no. 2 

Cycles Date Event 

0 051--196 Girder prepared for testing: shear studs removed from the top 
flange plate along the central portion of the span and 
concrete load pads were cast on the.top flange of the girder 
at the load points. 

Girder was placed and braced in test frame, and the 
instrumentation was attached. · 

Attached web stiffener and bearing brace under the load points 
(Fig. 2.20). 

0 05/20/96 Constant-amplitude load cycling initiated. 
Loading: 2.8. ksi nominal stress range at the new bottom flange 

cover plates at the ends that were closest to the midspan. 
Maximum Load: 28.28 kips. 
Minimum Load: 1.41 kips. 
Load Frequency: 4.5 hertz. 

4,100 05/20/96 Dynamic testing stopped to realign the girder supports. 

4,100 . 05/21/96 Dynamic load testing resumed with the same load parameters . 

773,400 05/22/96 Decreased the load frequency to 4.4 hertz. 

985;800 05/23/96 Base metal fatigue crack occurred in the web plate below the 
bottom diaphragm connection plate ·at the roller support 
reaction point for the girder specimen. 

Drilled holes in the web pfate at the crack tips to stop crack 
propagation. 

Fabricated web plate stiffeners with bearing brace from double 
angles to prevent the web plate from rocking lateral (similar 
to Fig. 2.20). 

Wedged wooden blocks under the bottom diaphragm 
connection plate to aid in laterally restraining cracked web 
plate at the girder reaction point. 

985,800 05/24/96 Resumed dynamic loading with the same loading 
parameters. 
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'· " Table A.7. (Cont'd)·<·,"· 

Cycles Date Event 
·:1 

9,615,900 06/17/96 Base metal fatigue :fracture occurred across the bottom flange 
plate at the new bottom flange cover plate no. 1 at the end 
that was closest to the midspan. 

Attached a steel splice plate to the bottom flange to strengthen 
the girder (Fig. 2.15). 

Resumed testing at the same load parameters, except the 
load frequency was reduced to 4.0 hertz. 

10,545,100 06/19/96 Increased the load parameters to induce a fatigue fracture 
at the new bottom flange cover plate no. 2 at the end that 
was closest to the midspan. 

Loading: 3.1 ksi nominal stress range at the new bottom flange 
cover plate at the end that was closest to the midspan. 

Maximum Load: 31.3 kips. 
Minimum Load: 1.54 kips. 

·-
Load Frequency: 4.0 hertz. 

13,597,500 06/27/96 Fatigue crack in the portion of the web plate just above the 
roller support for the girder propagated further into the 
bottom flange and web plates. 

14,002,000 07101196 End of fatigue testing. 
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APPENDIX B. TEST SPECIMEN STRESS HISTORY DATA 

This appendix contains the load and stress range data for the girder specimens. Tables B.l 

through B.7 list the theoretical static, experimental dynamic, and experimental static stress ranges 

at fatigue fracture locations; corresponding _load parameters; and number of load cycles when a 

particular event occurred during the fatigue testing ·of the seven girder specimens. The events 

included changes in the magnitudes or cyclic frequency, initiation or propagation of a fatigue 

fracture, or addition of reinforcement plates or bracing devices on a specimen. 



Table B. l. Stress-range data for the long exterior girder specimen no. 1 

Cycle Load Stress range 

range max. mm. freq. sourced fail le fail 2r fail 3g fail 4 fail 5h fail 6i fail 7j 
(kips) (kips) (kips) (hz) (ksi) (ksi) (ksi) (ksi) (ksi) (ksi) (ksi) 

0 17.61 18.54 0.93 --- T 2.98 3.20 1.34 1.61 1.91 2.47 1.02 
lsia 17.61 18.54 0.93 4.0 D 2.74 3.11 --- --- 1.48 --- 0.93 
lsta 17.61 18.54 0.93 --- s 2.81 3.25 --- --- 1.66 --- 1.00 
lastb 17.61 18.54 0.93 4.0 D 4.10 3.11 --- --- 1.48 --- 0.93 
lastb 17.61 18.54 0.93 --- s 3.06 3.15 --- --- 1.29 --- 0.99 

1,977,500 17.61 18.54 0.93 --- T --- 3.20 1.34 1.61 1.91 2.47 1.02 
lsta 17.61 18.54 0.93 4.0 D --- 3.30 --- --- 1.17 --- 0.97 
lsta 17.61 18.54 0.93 --- s --- 3.28 --- --- 1.15 --- 1.00 
lastb 17.61 18.54 0.93 4.0 D --- 3.33 --- --- 1.06 --- 0.97 
lastb 17.61 18.54 0.93 --- s --- 3.29 --- --- 1.15 --- 0.96 

8,000,000 24.77 26.07 1.30 --- T --- 4.50 1.88 2.27 2.69 3.47 1.44 
lsta 24.77 26.07 1.30 4.0 D --- 4.59 --- --- 1.54 --- 1.37 
lsta 24.77 26.07 1.30 --- s --- 4.53 --- --- 1.55 --- 1.29 
lastb 24.77 26.07 1.30 4.0 D --- 5.98 --- --- 1.70 --- 1.37 
lastb 24.77 26.07 1.30 --- s --- 5.82 --- --- 1.89 --- 1.40 

8,641,400 40.53 42.66 2.13 --- T --- --- 3.07 3.71 4.40 5.68 2.36 
lsta 40.53 42.66 2.13 1.0 D --- --- --- --- --- 1.87 
lse 40.53 42.66 2.13 --- s --- --- --- --- --- --- 1.86 
lastb 40.53 42.66 2.13 1.0 D --- --- --- --- --- --- 1.92 
lasth 40.53 42.66 2.13 --- s --- --- --- --- --- --- . 1.89 



Table B.l. (Cont'd) 

Cycle Load Stress range 

range max. mm. freq. sourced fail le fail 2r fail 3g fail 4 fail 5h fail 6i fail 7j 
(kips) (kips) (kips) (hz) (ksi) (ksi) (ksi) (ksi) (ksi) (ksi) (ksi) 

8,814,900 40.53 42.66 2.13 --- T --- --- 3.07 3.71 4.40 5.68 2.36 
lsta 40.53 42.66 2.13 2.0 D --- --- --- --- --- --- 1.77 
lsta 40.53 42.66 2.13 --- s --- --- --- --- --- --- 1.81 
lastb 40.53 42.66 2.13 2.0 D --- --- --- --- --- --- 1.89 
las th 40.53 42.66 2.13 --- s --- --- --- --- --- --- 1.87 

9,460,000 20.07 21.13 1.06 --- T --- --- --- 8.81 7.01 8.69 6.93 
lse 20.07 21.13 1.06 4.0 D --- --- --- --- 6.41 8.91 5.78 
lsta 20.07 21.13 1.06 --- s --- --- --- --- 6.49 8.62 6.13 
las th 20.07 21.13 1.06 4.0 D --- --- --- --- 6.60 9.18 6.31 
lastb 20.07 21.13 1.06 --- s --- --- --- --- 6.17 8.49 5.93 

9,487,500 20.07 21.13 1.06 --- T --- --- --- k 7.01 8.69 6.93 
lse 20.07 21.13 1.06 4.0 D --- --- --- --- 6.60 9.18 6.31 
lsta 20.07 21.13 1.06 --- s --- --- --- --- 5.03 8.80 . 6.11 
lastb 20.07 21.13 1.06 4.0 D --- --- --- --- 6.60 9.18 6.31 
lastb 20.07 21.13 1.06 --- s --- --- --- --- --- --- 6.08 



. Table B.1. (Cont'd) 

Cycle Load Stress range 

range max. mm. freq. sourced. fail le fail 2r fail 3g fail 4 fail 5h fail 6i fail 7j 

(kips) (kips) (kips) (hz) (ksi) (ksi) (ksi) (ksi) (ksi) (ksi) (ksi) 

9,592,600. 20.07 21.13 1.06 --- T ---- --- --- --- --- 8.69 6.93 
onlyc 20.07 21.13 1.06 4.0 D --- --- --- --- --- --- 6.51 
onlyc 20.07 21.13 1.06 --- s --- --- --- --- --- --- 6.10 

9,600,000 End of Testing 

aReading taken.just after listed cycle number roriginal bottom flange splice 
bReading taken just before next cycle number gOutside end of new bottom flange cover plate no. 2 
cReading taken just before the testing ended hNew horizontal web plate attachment no. 2 
dT = Theoretical static, D = Experimental dynamic, iOriginal diaphragm connection 

S = Experimental static jNew horizontal web plate attachment no. 1 
e.Jnside end of new bottom flange cover plate no. 2 kChop-saw intersection near cover plate no. 1 



Table B.2. Stress-range data for the long exterior girder specimen no. 2 

Cycle Load Stress range 

range max. mm. freq. sourced fail le fail 2r fail 3 fail 48 fail 5h fail 6 
(kips) ·(kips) (kips) (hz) (ksi) (ksi) (ksi) (ksi) (ksi) (ksi) 

0 21.98 23.14 1.16 --- T 4.00 3.53 3.19 1.32 2.32 1.89 
lsta · 21.98 23.14 1.16 4.0 D 4.09 3.46 --- 1.11 1.86 ---
lsta 21.98 23.14 1.16 --- s 4.50 3.87 --- 0.96 1.92 ---

lastb 21.98 23.14 1.16 4.0 D 4.33 3.62 --- 1.15 2.03 ---
lastb 21_.98 23.14 1.16 --- s 3.51 3.29 --- 1.26 2.67 ---

1,064,400 21.98 23.14 1.16 --- T --- 3.53 3.19 1.32 2.32 1.89 
lsta 21.98 23.14 1.16 4.0 D --- 3.62 --- 1.11 1.23 ---
lsta 21.98 23.14 1.16 --- s --- 3.40 --- 1.15 1.22 --- __ ,:_ 

lastb 21.98 23.14 1.16 4.0 D --- 3.75 --- 1.14 1.13 ---
lastb 21.98 23.14 1.16 --- s --- 3.80 --- 1.05 1.26 ---

1,306,600 17.79 18.73 0.94 --- T --- --- 8.02 6.15 6.25 8.09 
lsta 17.79 18.73 . 0.94 4.0 D --- --- --- 5.35 5.33 ---
I sin 17.79 18.73 0.94 --- s --- --- --- 5.74 5.02 ---
lastb 17.79 18.73 0.94 4.0 D --- --- --- 5.48 5.33 ---
lastb 17.79 18.73 0.94 --- ·s --- --- --- 5.50 5.13 ---



Table B.2. (Cont'd) 

Cycle Load Stress range 

range max. mm. freq. sourced fail le fail 2r fail 3 fail 4g fail 5h fail 6 
(kips) (kips) (kips) (hz) (ksi) (ksi) (ksi) (ksi) (ksi) (ksi) 

1,432,100 40.53 42.66 2.13 --- T --- --- I 6.15 6.25 8.09 
lsta 40.53 42.66 2.13 4.0 D --- --- --- 5.54 5.27 ---
lsta 40.53 42.66 2.13 --- s --- --- --- 5.54 -5.27 ---

lastb,c 40.53 42.66 2.13 4.0 D --- --- --- 6.19 5.88 ---
lastb,c 40.53 42.66 2.13 --- . s --- --- --- 5.74 5.10 J 

---
1,491,300 End of Testing 

aReading taken just.after listed cycle number rlnside end of new bottom flange cover plate no. 2 
bReading taken just before next cycle number gNew horizontal web plate attachment no. 1 
cReading taken just before the testing ended hNew horizontal web plate attachment no. 2 
dT = Theoretical static, D = Experimental dynamic, iChop-saw intersection near cover plate no. 2 

S = Experimental static · jChop-saw intersection near cover plate no. 1 
eoriginal bottom flange plate splice 
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Table B.3. Stress-range data for the long interior girder specimen no. 1 

Cycle Load Stress Range 
' 

range max. mm. freq. sourced fail le fail 2r fail 3 
(kips) (kips) (kips)., (hz) (ksi) (ksi) (ksi) 

0 25.23 26.56 1.33 --- T 2.88 3.09 3.60 
lsta 25.23 26.56 1.33 4.0 D 2.24 2.72 ---
lsta 25.23 26.56 1.33 --- s --- --- ---
lastb 25.23 26.56 1.33 4.0 D 5.02 3.42 ---
lastb 25.23 26.56 1.33 --- s --- --- ---

1,995,000 25.23 26.56 1.33 --- T --- --- 3.60 
lsr 25.23 26.56 1.33 4.0 D --- --- ---
lsta 25.23 26.56 1.33 --- s --- --- ---

lastb 25.23 26.56 1.33 4.0 D --- --- ----
lastb 25.23 26.56 1.33 --- s --- --- ---

6,439,500 25.23 26.56 1.33 --- T --- --- CT 

"' 
lsta 25.23 26.56 1.33 4.0 D --- --- ---

lsr 25.23 26.56 1.33 --- s --- --- ---
lastb 25.23 26.56 1.33 4.0 D --- --- ---
lastb 25.23 26.56 1.33 --- s --- --- ---

6,519,100. 25.23 26.56 1.33 --- T --- --- ---
lsta 25.23 26.56 1.33 3.5 D --- --- ---
lsta 25.23 26.56 1.33 --- s --- --- ---
lastb 25.23 26.56 1.33 3.5 D --- --- ---
lastb 25.23 26.56 1.33 --- s --- --- ---

7,357,000 25.23 26.56 1.33 --- T --- --- ---
lsta 25.23 26.56 1.33 3.0 D --- --- ---
lsr 25.23 26.56 1.33 --- s --- --- ---
lastb 25.23 26.56 1.33 3.0 D --- --- ---
lastb 25.23 26.56 1.33 --- s --- --- ---
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Table B.3. (Cont'd) 

Cycle Load Stress range 

range max. min. freq. sourced fail le fail 2r fail 3 
(kips) (kips) (kips) (hz) (ksi) (ksi) (ksi) 

8,103,900 28.03 29.51 1.48 --- T --- --- ---
lst1 28.03 29.51 1.48 3.0 D --- --- ---
lst1 28.03 29.51 1.48 --- s --- --- ---

· lastb,c 28.03 29.51 1.48 3.0 D --- --- ---
lastb,c 28.03 29.51 1.48 --- s --- --- ---

8,708,400 End of Testing 

aReading taken just after listed cycle number eoriginal diaphragm connection 
bReading taken just before next cycle number 1ln,side end of new flange cover plate no. 2 
cReading taken just before the testing ended gBurr defect in steel repair plate bolt hole 
dT = Theoretical static, D = Experimental dynamic, 

S = Experimental static 
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Table B.4. Stress-range data for the long interior girder specimen no. 2 

Cycle Load Stress range 

range max. mm. freq. sourced fail le fail 2r· 
(kips) (kips) (kips) (hz) (ksi) (ksi) 

0 17)61 18.54 0.93 --- T 2.98 3.20 
lse 17.61 18.54 0.93 4.0 D 2.74 3.11 
lsta 17.61 18.54 0.93 --- s 2.81 3.25 
lasth 17.61 18.54 0.93 4.0 D 4.10 3.11 
lasth 17.61 18.54 0.93 --- s 3.06 3.15 

1,585,900 17.61 18.54 0.93 --- T --- 3.20 
lsta 17.61 18.54 0.93 4.0 D --- 3.30 
lse 17.61 18.54 0.93 --- s --- 3.28 
lasth 17.61 18.54 0.93 4.0 D --- 3.33 
las th 17.61 18.54 0.93 --- s --- 3.29 

1,600,800 24.77' 26.07 1.30 --- T --- 4.50 
lse 24.77 26.07 1.30 4.0 D --- 4.59 
lsta 24.77 26.07 1.30 --- s --- 4.53 
lastb 24.77 26.07 1.30 4.0 D --- 5.98 
lasth 24.77 26.07 1.30 --- s --- 5.82 

1,783,700 40.53 42.66 2.13 --- T --- ---
lsta 40.53 42.66 2.13 1.0 D --- ---
lse 40.53 42.66 2.13 --- s --- ---

lastb,c 40.53 42.66 2.13 1.0 D --- ---
lasth,c 40.53 42.66 2.13 --- s --- ---

5,096,200 End of Testing 

aReading taken just after listed cycle number dT = Theoretical static, D = Experimental dynamic, 
bReading taken just before next cycle number S = Experiment static 
0Reading taken just before the testing ended elnside end of new flange cover plate no. 2 

roriginal diaphragm connection 
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Table B.5. Stress-range data for the short exterior girder specimen no. 1 

Cycle Load Stress range 

range max. mm. freq. sourced fail le fail 2r fail 3 fail 4 
(kips) (kips) (kips) (hz) (ksi) (ksi) (ksi) (ksi) 

0 36.12 38.02 1.90 --- T 4.85 4.85 --- ---
lsta 36.12 38.02 1.90 3.0 D 3.91 3.90 --- ---
1 sfl 36.12 38.02 1.90 --- s 3.91 4.70 --- ---
lasth 36.12 38.02 1.90 3.0 D 4.43 3.76 --- ---
las th 36.12 38.02 1.90 --- s 4.37 3.29 --- ---

583,200 36.12 38.02 1.90 --- T --- 4.85 -- --- ---
1 sfl 36.12 38.02 1.90 3.0 D --- 3.79 --- ---
lsta 36.12 38.02 L90 --- s --- 3.84 --- ---
lastb 36.12 38.02 1.90 3.0 D --- 4.00 --- ---
lastb 36.12 38.02 1.90 --- s --- 4.44 --- ---

938,800 36.12 38.02 1.90 --- T --- --- --- ---
lsta 36.12 38.02 1.90 3.0 D --- --- --- ---
lsta 36.12 38.02 1.90 --- s --- --- --- ---
lastb 36.12 38.02 1.90 3.0 D --- --- --- ---
las th 36.12 38.02 1.90 --- s --- --- --- ---

2,020,400 36.12 38.02 1.90 --- T --- --- g ---
lsta 36.12 38.02 1.90 3.0 D --- --- --- ---
lsta 36.12 38.02 1.90 --- s --- --- --- ---
lastb 36.12 38.02 1.90 3.0 D --- --- --- ---
lastb 36.12 38.02 1.90 --- s --- --- --- ---

2,733,200 End of Testing 

aReading taken just after listed cycle number elnside end of new flange cover plate no. 2 
bReading taken just before next cycle number flnside end of new east cover plate no. 1 
cReading taken just before the testing ended g,hBurr defect in bolt hole 
dT = Theoretical static, D = Experimental dynamic, 

S = Experimental static 
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Table B.6. Stress-range data for the short interior girder specimen no. 1 

Cycle Load , Stress range . 

range max. mm. freq. sourced fail le fail 2r 
(kips) (kips) (kips) (hz) (ksi) (ksi) 

0 22.07 23.23 1.16 --- T 2.30 2.30 
lsta 22.07 23.23 1.16 4.0 D 1.52 1.81 
lsta 22.07 23.23 1.16 --- s 1.11 1.22 
lastb 22.07 23.23 1.16 4.0 D 1.49 1.81 
lastb 22.07 23.23 1.16 --- s 1.26 1.86 

405,100 22.07 23.23 1.16 --- T 2.30 2.30 
lsta 22.07 23.23 1.16 4.5 D 1.51 1.82 
lsta 22.07' 23.23 1.16 --- s --- ---
las th 22.07 23.23 1.16 4.5 D 1.45 1.82 
las th 22.07 23.23 1.16 --- s --- ----

820,000 22.07 23.23 1.16 --- T 2.30 2.30 
lsta 22.07 23.23 1.16 5.0 D 1.52 1.81 
lsf 22.07 23.23 1.16 --- s --- ---
lastb 22.07 23.23 1.16 5.0 ' D 1.36 1.81 
lastb 22.07 23.23 1.16 --- s --- ---

11,000,000 25.91 27.27 1.36 --- T 2.70 2.70 
·lsf 25.91 27.27' 1.36 3.5 D 1.32 2.12 
lsta 25.91 27.27 1.36 --- s 2.29 2.48 
lastb 25.91 27.27 1.36 3.5 D 1.36 2.93 
lastb 25.91 27.27 1.36 --- s 2.29 2.48 

11,294,000 25.91 27.27 1.36 --- T 2.70 2.70 
lsta 25.91 27.27 1.36 4.5 D 1.25 2.15 
lsta 25.91 27.27 1.36 --- s --- ---
las th 25.91 27.27 1.36 4.5 D --- 2.93 
lastb 25.91 27.27 1.36 --- s --- ---

11,850,900 25.91 27.27 1.36 --- T --- 2.70 
lsf 25.91 27.27 1.36 4.5 D --- 2.25 
lsf 25.91 27.27 1.36 --- s --- 2.18 
lastb 25.91 27.27 1.36 4.5 D --- 2.15 

. lasth 25.91 27.27 1.36 --- s --- 2.09 
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Table B.6. (Cont'd) 

Cycle Load Str~ss range 

range max. mm. freq. sourced fail le fail 2r 
(kips) (kips) (kips) (hz) (ksi) (ksi) 

14,385,200 25.91 27.27 1.36 --- T --- 2.70 
lsta 25.91 27.27 1.36 5.0 D --- 2.17 
lsta 25.91 27.27 1.36 --- s --- ---
lastb 25.91 27.27 1.36 5.0 D --- 2.18 
lastb 25.91 27.27 1.36 --- s --- ---

16,021,700 47.97 50.50 2.53 --- T --- 5.00 
lsta 47.97 50.50 2.53 2.8 D --- 4.05 
lsta 47.97 so.so· 2.53 --- s --- 4.45 
lastb 47.97 50.50 2.53 2.8 D --- 4.32 
lastb 47.97 50.50 2.53 --- s --- ---

16,197,600 47.97 50.50 2.53 --- T --- 5.00 
lsta 47.97 50.50 2.53 2.5 D --- 4.89 
lsta 47.97 50.50 2.53 --- s --- ---
lastb 47.97 50.50 2.53 2.5 D --- ---
lastb 47.97 50.50 2.53 --- s --- ·---

16,467,600 End of Testing· 

aReading taken just after listed cycle number dT = Theoretical static, D = Experimental dynamic 
"bReading taken just before next cycle number S = Experimental static 
cReading taken just before the testing ended elnside end of new bottom flange cover plate no. 2 

fJnside end of new bottom flange cover plate no. 1 
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Table B. 7. Stress-range data for the short interior girder specimen no. 2 

Cycle : Load . ' Stress range 

range max. mm. freq. sourced fail le 
(kips) (kips) 

; 
(kips) (hz) (ksi) 

0 27.19 28.55 1.36 --- T 2.80 
1 sf' 27.19 28.55 1.36 4.5 D 2.22 
lse 27.19 28.55 1.36 --- s 2.20 
lastb 27.19 28.55 1.36 4.5 D 1.23 
lastb 27.19 28.55 1.36 --- s 2.17 

773,400 27.19 28.55 l.36 --- T 2.80 
lsta 27.19 28.55 1.36 4.4 D 2.27 
lsf' 27.19 28.55 1.36 --- s 2.33 
lastb 27.19 28.55 1.36 4.4 D 2.28 
lastb 27.19 28.55 1.36 --- s 2.33 -

985,800 27.19 28.55 1.36 . --- T 2.80 
lsta 27.19 28.55 1.36 4.4 D 2.31 
lsta 27.19 28.55 1.36 --- s 2.44 
lastb 27.19 28.55 1.36 4.4 D 2.84 
lastb 27.19 28.55 1.36 --- s 2.57 

9,615,900 . 27.19 28.55 1.36 --- T ---
lsta 27.19 28.55 1.36 4.0 D ---
lsta 27.19 28.55 1.36 --- s ---
lastb 27.19 28.55 1.36 4.0 D ---
lastb '27.19 28.55 1.36 --- s ---

10,545,100 29.76 31.30 1.54 --- T ---
lsf' 29.76 31.30 1.54 4.0 D ---
lsf' 29.76 31.30 1.54 --- s ---
lastb 29.76 31.30 1.54 4.0 D ---
lastb 29.76 31.30 1.54 --- s ---

13,597,500 29.76 31.30 1.54 --- T ---
lsta 29.76 31.30 1.54 3.0 D ---
lsta 29.76 31.30 1.54 --- s ---
lastb 29.76 31.30 1.54 3.0 D ---
lastb 29.76 31.30 1.54 --- s ---

14,002,000 End of Testing 

aReading taken just after listed cycle number dT = Theoretical static, D = Experimental dynamic, 
bReading taken just before next cycle number S = Experimental static 
cReading taken just before the testing ended ernside end of new bottom flange cover plate no. 1 




