# 2014 IOWA FISH TISSUE MONITORING PROGRAM SUMMARY OF ANALYSES

Prepared by:

Water Quality Monitoring and Assessment Section Water Quality Bureau Environmental Services Division Iowa Department of Natural Resources

April 2015

| Table of Contents    |
|----------------------|
| ntroduction2         |
| tatus Monitoring2    |
| ollow-up Monitoring2 |
| rend Monitoring      |
| urtle Monitoring     |
| andom Monitoring     |
| 014 IFTMP Results4   |
| eferences11          |

# List of Tables:

| Table | Title                                                                  |
|-------|------------------------------------------------------------------------|
| 1     | IFTMP trend site locations and sampling history                        |
| 2     | 2014 IFTMP status site mercury sampling results from predatory fish    |
| 3     | 2014 IFTMP follow-up site mercury sampling results from predatory fish |
| 4     | 2014 IFTMP status site sampling results from bottom feeding fish       |
| 5     | 2014 IFTMP follow-up site sampling results from bottom feeding fish    |
| 6     | 2014 IFTMP trend site sampling results from bottom feeding fish        |

# List of Figures:

| Figure | Title                                                                               |
|--------|-------------------------------------------------------------------------------------|
| 1      | 2014 IFTMP status and follow-up site mercury sampling results from predatory fish 8 |
| 2      | 2014 IFTMP status site sampling results from bottom feeding fish                    |
| 3      | 2014 IFTMP trend site sampling results from bottom feeding fish 10                  |

# List of Appendices:

| Appendix | Title                                                                               |
|----------|-------------------------------------------------------------------------------------|
| А        | Summary of contaminants and criteria for the Iowa fish tissue monitoring program 12 |
| В        | Complete list of the 2014 IFTMP sampling sites 13                                   |
| С        | Sampling species table: common and scientific names and species codes               |
| D        | Full 2014 IFTMP predator fish sampling results 15                                   |
| E        | Full 2014 IFTMP bottom feeding fish sampling results                                |

#### Introduction:

To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the State Hygienic Laboratory (SHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. From 1983 to 2014, this monitoring effort was known as the Regional Ambient Fish Tissue Monitoring Program (RAFT). Beginning in 2015, the only statewide fish contaminant-monitoring program in Iowa was changed to the Iowa Fish Tissue Monitoring Program (IFTMP). The IFTMP is administered by IDNR and the analyses are completed at the SHL. Historically, the data generated from the IFTMP have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans (see IDNR 2006). The IFTMP incorporates five different types of monitoring sites: 1) status, 2) follow-up, 3) trend, 4) turtle, and 5) random.

#### Status monitoring:

The majority of IFTMP sites are sampled to determine whether the waterbodies meet the "fish consumption" portion of the fishable goal of the federal Clean Water Act. In other words, these sites are used to screen for contamination problems and to determine the water quality "status" of the waterbodies. Analyses for a variety of pesticides, other toxic organic compounds, and metals are conducted on samples of omnivorous bottom-dwelling fish and carnivorous predator fish. Most status sites on rivers and lakes have either never been sampled or have not been sampled within the last five years (rivers) or 10 years (lakes). Staff of the IDNR divisions of Environmental Services and Conservation and Recreation collaborate to select the status sites. Status monitoring occurs on most types of Iowa waterbodies (interior rivers, border rivers, and manmade and natural lakes) in both rural and urban areas. Lakes and river reaches known to support considerable recreational fishing receive highest priority, but IDNR attempts to sample all lakes and river reaches designated in the *Iowa Water Quality Standards* for recreational fishing. Approximately one-third to one-half of IFTMP status sites are located on lakes; the remaining sites are either located on interior rivers or located on the border rivers (Mississippi, Missouri or Big Sioux rivers).

#### Follow-up Monitoring:

If the level of a contaminant in a fish tissue sample exceeds IDPH/IDNR advisory trigger levels and/or IDNR levels of concern (Appendix A; IDPH 2007), the IFTMP conducts follow-up monitoring to better define the levels of contaminants. For example, if status monitoring shows that contaminant levels in fish from a waterbody exceed IDPH/IDNR advisory trigger levels, additional samples will be collected as part of follow-up monitoring for the next year's IFTMP. If follow-up monitoring confirms that levels of contamination exceed the advisory trigger levels for protection of human health, a fish consumption advisory is issued. For more information on consumption advisories see the IDNR IFTMP website: <a href="http://www.iowadnr.gov/portals/idnr/uploads/fish/fish\_consumption\_advisories.pdf">http://www.iowadnr.gov/portals/idnr/uploads/fish/fish\_consumption\_advisories.pdf</a>. If needed, IDNR Fisheries Bureau will conduct follow-up monitoring separately from the IFTMP to verify high levels of contaminants or to better delineate lengths of river consumption advisories. These follow-up samples are collected before the annual IFTMP sampling and are also analyzed at SHL.

#### Trend monitoring:

In 1994 U.S. EPA Region VII in cooperation with the Region VII states (Iowa, Kansas, Missouri, and Nebraska), identified sites that would be monitored at regular intervals to determine trends in levels of contamination. One composite sample of three to five Common Carp from each site is submitted for whole-fish analysis. Whole-fish samples are more likely to contain detectable levels of most contaminants than are fillet samples (edible portions) or tissue plugs. Examination of the trend monitoring results may help identify temporal changes in contaminant concentrations and may expose new contaminants entering the food chain. From 1996-2005, half of the trend sites were sampled on odd years and the other half were sampled in even years. From 2006-2014, due to a change in old RAFT program design (U.S. EPA 2006), all 10 trend sites were sampled every other year. The following ten sites are current IFTMP trend sites:

|        |                                         |           | #       | First Sample | Last Sample |
|--------|-----------------------------------------|-----------|---------|--------------|-------------|
| Site # | IFTMP Trend Site Name                   | County    | Samples | Date         | Date        |
| 172    | Des Moines River at Des Moines          | Polk      | 10      | 8/17/1995    | 7/31/2014   |
| 173    | Des Moines River NNW of Keosauqua       | Van Buren | 10      | 8/24/1994    | 8/8/2014    |
| 169    | Iowa River E of Wapello                 | Louisa    | 10      | 9/14/1995    | 9/8/2014    |
| 177    | Little Sioux River S of Washta          | Ida       | 11      | 8/9/1994     | 8/12/2014   |
| 175    | Maquoketa River NE of Maquoketa         | Jackson   | 11      | 7/18/1995    | 8/25/2014   |
| 174    | Mississippi River at Lansing            | Allamakee | 11      | 8/16/1995    | 8/21/2014   |
| 170    | Mississippi River at Linwood            | Scott     | 9       | 8/4/1994     | 8/1/2014    |
| 143    | Mississippi River downstream of Dubuque | Dubuque   | 11      | 9/15/1994    | 8/18/2014   |
| 171    | Skunk River NE of Wever                 | Lee       | 9       | 9/5/1997     | 9/8/2014    |
| 176    | Wapsipinicon River SSE of Grand Mound   | Scott     | 9       | 9/15/1994    | 9/25/2014   |

Table 1. IFTMP trend site locations and sampling history.

# Turtle Monitoring:

In 2009, IDNR fisheries biologists collected snapping turtles from nine Iowa lakes as part of the IFTMP to better define contaminant levels in Iowa turtle populations. This monitoring used the left front shoulder muscle tissue from two or three turtles for the composite sample that was submitted for analysis following the same protocol used for fish. The turtle monitoring continued in 2010 at four Iowa lakes and has since been suspended.

#### **Random Monitoring:**

In 2006, based on recommendations in U.S. EPA's RAFT workplan (U.S. EPA 2006), Iowa began sampling random sites across the state as part of an effort to determine the current level of contaminants in fish tissue on a statewide basis. The 2006 sampling sites were selected from a previous random sampling project and data were collected only from large interior rivers. In 2007, the sampling sites were selected from a random list of smaller public lakes and ponds. Due to the fact that EPA Region VII discontinued the RAFT program in 2014, the future of random sampling for Iowa fish contaminants is uncertain.

#### 2014 IFTMP Results:

The 2014 IFTMP involved the collection of 105 samples from 31 waterbodies. The high number of samples reflects the switch from fillet predator samples to tissue plug predator samples where the samples are individually analyzed and not composited. The use of tissue plugs allows the Hg concentration in individual fish be compared to length data and theoretically, the fish can be released thus increasing mortality rates of sampled fish. In June through October 2014, IDNR fisheries biologists collected, processed and prepared the IFTMP samples. These activities were conducted according to procedures described in the workplan for the IFTMP (IDNR 2014). Once frozen, samples were transported or shipped to the Ankeny office of the SHL. All fish tissue samples were analyzed at SHL facilities. Samples were analyzed for a variety of contaminants, including pesticides, other toxic organic compounds, and toxic metals (Appendix A). IDNR received results of all sample analyses in April 2015.

Trend monitoring in 2014 included the collection of 10 fish samples from 10 sites with all 10 of those samples collected from Common Carp.

Status monitoring in 2014 included the collection of 35 fish samples from seven sites with 29 of those samples collected from predatory fish and six samples collected from bottom feeding fish.

Follow-up monitoring in 2014 included the collection of 57 fish samples from 17 sites with 53 of those samples collected from predatory fish and four samples collected from bottom feeding fish.

The 2014 IFTMP monitoring results for the primary contaminants of concern (chlordane, DDE, dieldrin mercury and PCBs) are summarized in Tables 2-6 and in Figures 1-3. In addition, Appendices D and E contain all the sampling data generated by the 2014 IFTMP.

The vast majority of contaminant levels in the 2014 IFTMP samples were low or not detected (Tables 2-6; Figures 1-3; Appendices D and E). Any contaminant results over, or near, their respective evaluation criteria (Appendix A) are currently being addressed by the IDNR Fisheries bureau with the assistance of the IDNR Water Quality Monitoring and Assessment section and the Iowa Department of Public Health. If contaminant levels were over their respective criteria for the first time in 2014, follow-up monitoring will be conducted in 2015. If contaminant levels were over their respective criteria for the ir respective criteria for the second time in 2014, a fish consumption advisory will be issued in 2015.

Table 2. Summary of 2014 IFTMP Mercury (Hg) status site sampling results from predatory fish. All samples were tissue plugs and Hg results are in mg/kg (or ppm). See Appendix C for explanation of species codes.

| Site |                                   |           |            | Species | #    | Hg    | Hg    | Hg    | Hg     |
|------|-----------------------------------|-----------|------------|---------|------|-------|-------|-------|--------|
| #    | IFTMP Site Name                   | County    | Date       | Code    | Fish | AVE   | STDEV | MAX   | MIN    |
| 45   | Mississippi River E of Bettendorf | Scott     | 9/11/2014  | WHB     | 5    | 0.186 | 0.047 | 0.240 | 0.130  |
| 103  | Lake Cornelia NE of Clarion       | Wright    | 6/23/2014  | LMB     | 4    | 0.075 | 0.050 | 0.150 | < 0.05 |
| 137  | Middle River SW of Winterset      | Madison   | 7/23/2014  | FCF     | 5    | 0.068 | 0.040 | 0.140 | < 0.05 |
| 200  | Silver Lake near Lake Park        | Dickinson | 10/24/2014 | WAE     | 5    | 0.064 | 0.019 | 0.090 | <0.05  |
| 311  | Lake Sugema                       | Van Buren | 8/8/2014   | LMB     | 5    | 0.084 | 0.033 | 0.120 | < 0.05 |
| 351  | Cherry Lake at Tama               | Tama      | 7/28/2014  | LMB     | 5    | 0.050 | 0.000 | 0.050 | < 0.05 |

Table 3. Summary of 2014 IFTMP Mercury (Hg) follow-up site sampling results from predatory fish. All samples were tissue plugs and Hg results are in mg/kg (or ppm). See Appendix C for explanation of species codes.

| Site |                                            |               |           | Species | #    | Hg    | Hg    | Hg    | Hg     |
|------|--------------------------------------------|---------------|-----------|---------|------|-------|-------|-------|--------|
| #    | IFTMP Site Name                            | County        | Date      | Code    | Fish | AVE   | STDEV | MAX   | MIN    |
| 61   | Cedar River at Midway                      | Floyd         | 9/22/2014 | SMB     | 4    | 0.270 | 0.147 | 0.350 | <0.05  |
| 82   | North Raccoon River downstream of Sac City | Sac           | 8/4/2014  | SMB     | 3    | 0.160 | 0.105 | 0.260 | <0.05  |
| 102  | Mississippi River downstream of Burlington | Des Moines    | 9/4/2014  | LMB     | 5    | 0.130 | 0.179 | 0.450 | <0.05  |
| 104  | Upper Iowa River at Decorah                | Winneshiek    | 9/6/2014  | SMB     | 3    | 0.247 | 0.134 | 0.400 | 0.150  |
| 114  | Missouri River at Council Bluffs           | Pottawattamie | 9/21/2014 | FCF     | 3    | 0.090 | 0.069 | 0.170 | <0.05  |
| 162  | Yellow Smoke Lake                          | Crawford      | 8/4/2014  | LMB     | 5    | 0.194 | 0.093 | 0.290 | <0.05  |
| 202  | Turkey River E of Clermont                 | Fayette       | 9/9/2014  | SMB     | 4    | 0.215 | 0.192 | 0.410 | < 0.05 |
| 203  | Volga River near Volga Recreation Area     | Fayette       | 8/29/2014 | SMB     | 3    | 0.287 | 0.136 | 0.430 | 0.160  |
| 206  | Mississippi River at Marquette/McGregor    | Clayton       | 8/27/2014 | LMB     | 5    | 0.050 | 0.000 | 0.050 | <0.05  |
| 269  | Meadow Lake                                | Adair         | 8/8/2014  | LMB     | 5    | 0.050 | 0.000 | 0.050 | <0.05  |
| 270  | Pollmiller Park Lake                       | Lee           | 9/8/2014  | LMB     | 4    | 0.333 | 0.065 | 0.420 | 0.270  |
| 289  | Cold Springs Lake                          | Cass          | 8/8/2014  | LMB     | 5    | 0.160 | 0.108 | 0.270 | < 0.05 |
| 340  | West Osceola                               | Clarke        | 7/1/2014  | LMB     | 4    | 0.145 | 0.112 | 0.300 | < 0.05 |

Table 4. Summary of 2014 IFTMP status site sampling for contaminants of concern in bottom-feeding fish. All fish samples were composited fillets and results are in mg/kg (or ppm). See Appendix C for explanation of species codes.

| Site<br>#        | IFTMP Site Name                                                    | County    | Date      | Species<br>Code | #<br>Fish | technical<br>chlordane | DDE   | dieldrin | Sum<br>PCBs <sup>1</sup> | Hq <sup>2</sup> |
|------------------|--------------------------------------------------------------------|-----------|-----------|-----------------|-----------|------------------------|-------|----------|--------------------------|-----------------|
| 45               | Mississippi River E of Bettendorf                                  | Scott     | 9/11/2014 | CAP             | 3         | 0.03                   | 0.008 | 0.007    | < 0.06                   | 0.07            |
| 103              | Lake Cornelia NE of Clarion                                        | Wright    | 6/23/2014 | CCF             | 4         | <0.05                  | 0.01  | < 0.005  | < 0.06                   | 0.04            |
| 137              | Middle River SW of Winterset                                       | Madison   | 7/23/2014 | CCF             | 5         | <0.05                  | 0.02  | 0.008    | <0.06                    | 0.08            |
| 200              | Silver Lake near Lake Park                                         | Dickinson | 7/28/2014 | CCF             | 5         | <0.1                   | 0.006 | < 0.01   | < 0.06                   | 0.03            |
| 311              | Lake Sugema                                                        | Van Buren | 8/14/2014 | CCF             | 3         | <0.02                  | 0.009 | < 0.005  | <0.06                    | 0.06            |
| 351              | Cherry Lake at Tama                                                | Tama      | 7/28/2014 | CCF             | 4         | < 0.02                 | 0.01  | < 0.01   | < 0.06                   | 0.04            |
| <sup>1</sup> sun | <sup>1</sup> sum PCBs = Aroclor 1248 + Aroclor 1254 + Aroclor 1260 |           |           |                 |           |                        |       |          |                          |                 |
| <sup>2</sup> Hg  | = mercury                                                          |           |           |                 |           |                        |       |          |                          |                 |

Table 5. Summary of 2014 IFTMP follow-up site sampling for contaminants of concern in bottom-feeding fish. All fish samples were composited fillets and results are in mg/kg (or ppm). See Appendix C for explanation of species codes.

| Site<br>#        | IFTMP Site Name                                                    | County | Date      | Species<br>Code | #<br>Fish | technical<br>chlordane | DDE   | dieldrin | Sum<br>PCBs <sup>1</sup> | Hg <sup>2</sup> |
|------------------|--------------------------------------------------------------------|--------|-----------|-----------------|-----------|------------------------|-------|----------|--------------------------|-----------------|
| 45               | Mississippi River E of Bettendorf                                  | Scott  | 9/11/2014 | CAP             | 3         | <0.02                  | 0.02  | < 0.02   | 0.42                     | 0.11            |
| 124              | Cedar Lake at Cedar Rapids                                         | Linn   | 7/31/2014 | CCF             | 3         | 0.07                   | 0.05  | 0.01     | <0.06                    | NA              |
| 152              | Mississippi River upstream of Princeton                            | Scott  | 9/17/2014 | CAP             | 5         | 0.03                   | 0.007 | < 0.005  | <0.06                    | 0.18            |
| 170              | Mississippi River at Linwood                                       | Scott  | 8/1/2014  | CAP             | 5         | <0.1                   | 0.01  | 0.009    | <0.06                    | <0.05           |
| <sup>1</sup> sun | <sup>1</sup> sum PCBs = Aroclor 1248 + Aroclor 1254 + Aroclor 1260 |        |           |                 |           |                        |       |          |                          |                 |
| <sup>2</sup> Hg  | = mercury                                                          |        |           |                 |           |                        |       |          |                          |                 |

Table 6. Summary of 2014 IFTMP trend site sampling for contaminants of concern in bottom-feeding fish. All samples were composited whole fish Common Carp and results are in mg/kg (or ppm). See Appendix C for explanation of species codes.

| Site             |                                             |            |           | Species | #    | technical |        |          | Sum               |                 |
|------------------|---------------------------------------------|------------|-----------|---------|------|-----------|--------|----------|-------------------|-----------------|
| #                | IFTMP Site Name                             | County     | Date      | Code    | Fish | chlordane | DDE    | dieldrin | PCBs <sup>1</sup> | Hg <sup>2</sup> |
| 11               | Skunk River at Augusta                      | Des Moines | 9/8/2014  | CAP     | 3    | <0.05     | 0.07   | 0.03     | <0.24             | 0.12            |
| 32               | Iowa River at Wapello                       | Louisa     | 9/8/2014  | CAP     | 3    | 0.12      | 0.1    | 0.06     | <0.24             | 0.11            |
| 143              | Mississippi River downstream of Dubuque     | Dubuque    | 8/18/2014 | CAP     | 5    | 0.08      | 0.006  | 0.005    | <0.24             | 0.05            |
| 170              | Mississippi River at Linwood                | Scott      | 8/1/2014  | CAP     | 4    | 0.11      | 0.02   | 0.02     | <0.24             | 0.09            |
| 172              | Des Moines River at Des Moines              | Polk       | 7/31/2014 | CAP     | 5    | <0.1      | 0.22   | < 0.02   | < 0.39            | 0.05            |
| 173              | Des Moines River NNW of Keosauqua           | Van Buren  | 8/8/2014  | CAP     | 4    | <0.1      | < 0.01 | <0.02    | <0.39             | 0.04            |
| 174              | Mississippi River at Lansing                | Allamakee  | 8/21/2014 | CAP     | 5    | <0.2      | < 0.01 | < 0.05   | <0.75             | 0.07            |
| 175              | Maquoketa River NE of Maquoketa             | Jackson    | 8/25/2014 | CAP     | 5    | <0.06     | < 0.01 | < 0.02   | <0.24             | 0.06            |
| 176              | Wapsipinicon River SSE of Grand Mound       | Scott      | 9/25/2014 | CAP     | 3    | 0.11      | 0.06   | 0.02     | <0.24             | 0.1             |
| 177              | Little Sioux River S of Washta              | Cherokee   | 8/12/2014 | CAP     | 5    | <0.06     | 0.02   | 0.02     | <0.24             | 0.05            |
| <sup>1</sup> sun | n PCBs = Aroclor 1248 + Aroclor 1254 + Aroc | or 1260    |           |         |      |           |        |          |                   |                 |
| <sup>2</sup> Hg  | = mercury                                   |            |           |         |      |           |        |          |                   |                 |



Figure 1. 2014 IFTMP mercury status and follow-up sample results for predatory fish. All samples were tissue plugs and results are in mg/kg (or ppm). All of the values above the 0.3 mg/kg evaluation criterion (Appendix A) have been, or will be, addressed by IDNR through the issuance or continuation of consumption advisories and/or with follow-up monitoring. See Appendix B for the full list of 2014 IFTMP sites.



Figure 2. 2014 IFTMP status and follow-up sample results for bottom feeding fish. All samples were composited fillet samples from Common Carp or Channel Catfish and results are in mg/kg (or ppm). Solid black lines indicate the evaluation criteria for chlordane, mercury and PCBs (Appendix A). All samples above the the corresponding criteria have, or will be, addressed by IDNR through the issuance or continuation of consumption advisories or with follow-up monitoring. See Appendix B for the full list of 2014 IFTMP sites. \*PCBs = Aroclor 1248 + Aroclor 1254 + Aroclor 1260.



Figure 3. 2014 IFTMP trend site sample results (in mg/kg or ppm). All samples were composited whole Common Carp. Solid black lines indicate the evaluation criteria for chlordane, mercury and PCBs (Appendix A). See Appendix B for the full list of the 2014 IFTMP sites. \*PCBs = Aroclor 1248 + Aroclor 1254 + Aroclor 1260; Due to the analytical methods used for PCBs, detection levels of the three Aroclors ranged from <0.02 to <0.25 mg/kg. Thus, for a given sample, the sum of the detection levels for the three Aroclors to determine the "total PCB" concentration can appear to be well above the 1 meal/week advisory trigger level of 0.2 mg/kg. IDNR will address this laboratory analysis issue in the future.

#### **References:**

- IDNR. 2006. Fish tissue monitoring in Iowa. Water Fact Sheet 2006-5. Geological and Water Survey, Iowa Department of Natural Resources. 4 pgs (<u>ftp://ftp.igsb.uiowa.edu/igspubs/pdf/WFS-2006-05.pdf</u>).
- IDNR. 2014. Sampling Procedures for the Iowa DNR Fish Tissue Monitoring Program (IFTMP). Water Quality Bureau, Environmental Services Division, Iowa Department of Natural Resources. 16 pp.
- IDPH. 2007. Fish consumption advisory protocol in Iowa. Iowa Department of Public Health. 8 pgs.
- U.S. EPA. 2006. EPA Region 7 Regional Ambient Fish Tissue Monitoring Program (RAFTMP) program rationale, design and implementation plans for 2006 2010. Environmental Services Division, U.S. Environmental Protection Agency Region 7 and the Region 7 Fish Tissue Monitoring Workgroup. 24 pgs.

# Appendix A

|   |                   | SHL current lowest |                     | IDNR/IDPH         |
|---|-------------------|--------------------|---------------------|-------------------|
|   |                   | detection levels   | IDNR/IDPH advisory  | advisory meal     |
| # | contaminant       | (ppm)              | trigger level (ppm) | allowance         |
|   | chlordono         |                    | 0 to 0.6            | unrestricted      |
| 1 | tochnical         | 0.02               | >0.6 to <5.0        | one meal per week |
|   | lechnical         |                    | <u>&gt;</u> 5.0     | do not eat        |
|   |                   |                    | 0 to 0.3            | unrestricted      |
| 2 | mercury           | 0.05               | >0.3 to <1.0        | one meal per week |
|   |                   |                    | <u>&gt;</u> 1.0     | do not eat        |
| 3 | PCB, Aroclor 1248 | 0.02               | sum = 0 to 0.2      | unrestricted      |
| 4 | PCB, Aroclor 1254 | 0.02               | sum >0.2 to <2.0    | one meal per week |
| 5 | PCB, Aroclor 1260 | 0.02               | sum 2.0 and over    | do not eat        |
| 6 | dieldrin          | 0.01               |                     |                   |
| 7 | DDE, 4,4'-        | 0.01               |                     |                   |

Summary of contaminants and respective evaluation criteria for IFTMP fish tissue samples.

# Appendix B

Complete list of the 2014 IFTMP sampling sites.

|      |                                            |               |           | NAD 83  | NAD 83   |
|------|--------------------------------------------|---------------|-----------|---------|----------|
| Site |                                            |               | Waterbody | UTM     | UTM      |
| #    | IFTMP Site Name                            | County        | Туре      | Easting | Northing |
| 11   | Skunk River at Augusta                     | Des Moines    | River     | 645598  | 4512760  |
| 32   | Iowa River at Wapello                      | Louisa        | River     | 652490  | 4560365  |
| 45   | Mississippi River E of Bettendorf          | Scott         | River     | 712281  | 4600952  |
| 61   | Cedar River at Midway                      | Floyd         | River     | 532404  | 4761558  |
| 82   | North Raccoon River downstream of Sac City | Sac           | River     | 336414  | 4689468  |
| 102  | Mississippi River downstream of Burlington | Des Moines    | River     | 660460  | 4514715  |
| 103  | Lake Cornelia NE of Clarion                | Wright        | Lake      | 443942  | 4737462  |
| 104  | Upper Iowa River at Decorah                | Winneshiek    | River     | 598939  | 4795981  |
| 114  | Missouri River at Council Bluffs           | Pottawattamie | River     | 260105  | 4563658  |
| 124  | Cedar Lake at Cedar Rapids                 | Linn          | Lake      | 610148  | 4649488  |
| 137  | Middle River SW of Winterset               | Madison       | River     | 410581  | 4572581  |
| 143  | Mississippi River downstream of Dubuque    | Dubuque       | River     | 693895  | 4704454  |
| 152  | Mississippi River upstream of Princeton    | Scott         | River     | 722205  | 4620705  |
| 162  | Yellow Smoke Lake                          | Crawford      | Lake      | 308012  | 4655516  |
| 170  | Mississippi River at Linwood               | Scott         | River     | 693597  | 4592635  |
| 172  | Des Moines River at Des Moines             | Polk          | River     | 453378  | 4602302  |
| 173  | Des Moines River NNW of Keosauqua          | Van Buren     | River     | 586394  | 4512736  |
| 174  | Mississippi River at Lansing               | Allamakee     | River     | 644332  | 4803301  |
| 175  | Maquoketa River NE of Maquoketa            | Jackson       | River     | 696090  | 4661531  |
| 176  | Wapsipinicon River SSE of Grand Mound      | Scott         | River     | 693096  | 4625653  |
| 177  | Little Sioux River S of Washta             | Cherokee      | River     | 275661  | 4716430  |
| 200  | Silver Lake near Lake Park                 | Dickinson     | Lake      | 310987  | 4812771  |
| 202  | Turkey River E of Clermont                 | Fayette       | River     | 610647  | 4757895  |
| 203  | Volga River near Volga Recreation Area     | Fayette       | River     | 600275  | 4744517  |
| 206  | Mississippi River at Marquette/McGregor    | Clayton       | River     | 648683  | 4766651  |
| 269  | Meadow Lake                                | Adair         | Lake      | 379691  | 4582747  |
| 270  | Pollmiller Park Lake                       | Lee           | Lake      | 632103  | 4508044  |
| 289  | Cold Springs Lake                          | Cass          | Lake      | 325327  | 4573509  |
| 311  | Lake Sugema                                | Van Buren     | Lake      | 584033  | 4504662  |
| 340  | West Osceola                               | Clarke        | Lake      | 432355  | 4543125  |
| 351  | Cherry Lake at Tama                        | Tama          | Lake      | 534498  | 4645542  |

# Appendix C

| Species Code | Common Name          | Scientific Name          |
|--------------|----------------------|--------------------------|
| BGB          | Bigmouth Buffalo     | Ictiobus cyprinellus     |
| BKB          | Black Buffalo        | Ictiobus niger           |
| BLB          | Black Bullhead       | Ameiurus melas           |
| BLC          | Black Crappie        | Pomoxis nigromaculatus   |
| BLG          | Bluegill             | Lepomis macrochirus      |
| BRT          | Brown Trout          | Salmo trutta             |
| CCF          | Channel Catfish      | Ictalurus punctatus      |
| CAP          | Common Carp          | Cyprinus carpio          |
| FCF          | Flathead Catfish     | Pylodictis olivaris      |
| FRD          | Freshwater Drum      | Aplodinotus grunniens    |
| GOR          | Golden Redhorse      | Moxostoma erythrurum     |
| LMB          | Largemouth Bass      | Micropterus salmoides    |
| NHS          | Northern Hog Sucker  | Hypentelium nigricans    |
| NOP          | Northern Pike        | Esox lucius              |
| PAH          | Paddlefish           | Polyodon spathula        |
| ULL          | Quillback Carpsucker | Carpiodes cyprinus       |
| RBT          | Rainbow Trout        | Oncorhynchus mykiss      |
| RVC          | River Carpsucker     | Carpiodes carpio         |
| SAR          | Sauger               | Sander canadensis        |
| SHR          | Shorthead Redhorse   | Moxostoma macrolepidotum |
| SHG          | Shortnose Gar        | Lepisosteus platostomus  |
| SMB          | Smallmouth Bass      | Micropterus dolomieu     |
| SAB          | Smallmouth Buffalo   | Ictiobus bubalus         |
| SNAP         | Snapping Turtle      | Chelydra serpentina      |
| SOFT         | Softshell Turtle     | Apalone spp.             |
| WAE          | Walleye              | Sander vitreus           |
| WHB          | White Bass           | Morone chrysops          |
| WHC          | White Crappie        | Pomoxis annularis        |
| WHS          | White Sucker         | Catostomus commersonii   |
| YLB          | Yellow Bass          | Morone mississippiensis  |
| YEB          | Yellow Bullhead      | Ameiurus natalis         |
| YEP          | Yellow Perch         | Perca flavescens         |

Fish and turtle species table that includes: species codes, common and scientific names.

#### Appendix D

Complete listing of the 2014 IFTMP predator fish sampling results. See Appendix B for a list of 2014 IFTMP site numbers and Appendix C for a list of fish names and species codes.

| Sample |        |     | Species |         |             | Total Length |            | Mercury |  |  |
|--------|--------|-----|---------|---------|-------------|--------------|------------|---------|--|--|
| #      | Site # | Lab | Code    | Biopart | Sample Type | (cm)         | Weight (g) | (mg/kg) |  |  |
| 1557   | 351    | SHL | LMB     | plug    | status      | 37.9         | 840        | < 0.05  |  |  |
| 1558   | 351    | SHL | LMB     | plug    | status      | 35.6         | 654        | < 0.05  |  |  |
| 1559   | 351    | SHL | LMB     | plug    | status      | 36.8         | 763        | < 0.05  |  |  |
| 1560   | 351    | SHL | LMB     | plug    | status      | 40.4         | 804        | < 0.05  |  |  |
| 1561   | 351    | SHL | LMB     | plug    | status      | 36.8         | 763        | < 0.05  |  |  |
| 1562   | 103    | SHL | LMB     | plug    | status      | 35.4         | 645        | < 0.05  |  |  |
| 1563   | 103    | SHL | LMB     | plug    | status      | 32.2         | 465        | < 0.05  |  |  |
| 1564   | 103    | SHL | LMB     | plug    | status      | 34.1         | 595        | 0.15    |  |  |
| 1565   | 103    | SHL | LMB     | plug    | status      | 38.2         | 675        | < 0.05  |  |  |
| 1566   | 311    | SHL | LMB     | plug    | status      | 27.9         | 275        | 0.11    |  |  |
| 1567   | 311    | SHL | LMB     | plug    | status      | 27.6         | 260        | 0.12    |  |  |
| 1568   | 311    | SHL | LMB     | plug    | status      | 28.7         | 315        | < 0.05  |  |  |
| 1569   | 311    | SHL | LMB     | plug    | status      | 25.6         | 210        | < 0.05  |  |  |
| 1570   | 311    | SHL | LMB     | plug    | status      | 25.6         | 200        | 0.09    |  |  |
| 1571   | 137    | SHL | FCF     | plug    | status      | 64.8         | 3062       | < 0.05  |  |  |
| 1572   | 137    | SHL | FCF     | plug    | status      | 78.7         | 6291       | < 0.05  |  |  |
| 1573   | 137    | SHL | FCF     | plug    | status      | 83.3         | 7602       | 0.14    |  |  |
| 1574   | 137    | SHL | FCF     | plug    | status      | 71.1         | 4051       | < 0.05  |  |  |
| 1575   | 137    | SHL | FCF     | plug    | status      | 78.2         | 5262       | < 0.05  |  |  |
| 1576   | 45     | SHL | WHB     | plug    | status      | 34.1         | 486        | 0.17    |  |  |
| 1577   | 45     | SHL | WHB     | plug    | status      | 33.7         | 456        | 0.24    |  |  |
| 1578   | 45     | SHL | WHB     | plug    | status      | 35.4         | 514        | 0.23    |  |  |
| 1579   | 45     | SHL | WHB     | plug    | status      | 36.1         | 615        | 0.13    |  |  |
| 1580   | 45     | SHL | WHB     | plug    | status      | 33.5         | 496        | 0.16    |  |  |
| 1581   | 200    | SHL | WAE     | plug    | status      | 44.5         | 1009.2     | 0.08    |  |  |
| 1582   | 200    | SHL | WAE     | plug    | status      | 49.8         | 1424.3     | 0.09    |  |  |
| 1583   | 200    | SHL | WAE     | plug    | status      | 42.4         | 834.6      | <0.05   |  |  |
| 1584   | 200    | SHL | WAE     | plug    | status      | 45.2         | 988.8      | < 0.05  |  |  |
| 1585   | 200    | SHL | WAE     | plug    | status      | 46           | 1143.1     | < 0.05  |  |  |
| 1592   | 114    | SHL | FCF     | plug    | follow-up   | 44.4         | 900        | < 0.05  |  |  |
| 1593   | 114    | SHL | FCF     | plug    | follow-up   | 39.6         | 660        | < 0.05  |  |  |
| 1594   | 114    | SHL | FCF     | plug    | follow-up   | 44.2         | 660        | 0.17    |  |  |
| 1595   | 104    | SHL | SMB     | plug    | follow-up   | 28.4         | 303        | 0.19    |  |  |
| 1596   | 104    | SHL | SMB     | plug    | follow-up   | 35.3         | 537        | 0.4     |  |  |
| 1597   | 104    | SHL | SMB     | plug    | follow-up   | 29           | 336        | 0.15    |  |  |
| 1598   | 289    | SHL | LMB     | plug    | follow-up   | 33.3         | 486        | < 0.05  |  |  |
| 1599   | 289    | SHL | LMB     | plug    | follow-up   | 34           | 484        | 0.27    |  |  |
| 1600   | 289    | SHL | LMB     | plug    | follow-up   | 34.3         | 479        | 0.26    |  |  |
| 1601   | 289    | SHL | LMB     | plug    | follow-up   | 33           | 485        | < 0.05  |  |  |
| 1602   | 289    | SHL | LMB     | plug    | follow-up   | 33.8         | 456        | 0.17    |  |  |
| 1603   | 269    | SHL | LMB     | plug    | follow-up   | 33.8         | 532        | < 0.05  |  |  |
| 1604   | 269    | SHL | LMB     | plug    | followup    | 33.8         | 538        | < 0.05  |  |  |
| 1605   | 269    | SHL | LMB     | plug    | followup    | 33.3         | 474        | < 0.05  |  |  |
| 1606   | 269    | SHL | LMB     | plug    | followup    | 33.8         | 529        | < 0.05  |  |  |

# Appendix D, continued.

Complete listing of the 2014 IFTMP predator fish sampling results, continued.

| Sample | Site |     | Species |         | Sample    | Length | Weight | Mercury |  |  |
|--------|------|-----|---------|---------|-----------|--------|--------|---------|--|--|
| #      | #    | Lab | Code    | Biopart | Type      | (cm)   | (g)    | (mg/kg) |  |  |
| 1607   | 269  | SHL | LMB     | plug    | follow-up | 33.8   | 505    | < 0.05  |  |  |
| 1608   | 206  | SHL | LMB     | plug    | follow-up | 30.7   | 414    | <0.05   |  |  |
| 1609   | 206  | SHL | LMB     | plug    | follow-up | 28.4   | 378    | < 0.05  |  |  |
| 1610   | 206  | SHL | LMB     | plug    | follow-up | 29.1   | 288    | < 0.05  |  |  |
| 1611   | 206  | SHL | LMB     | plug    | follow-up | 32.8   | 487    | < 0.05  |  |  |
| 1612   | 206  | SHL | LMB     | plug    | follow-up | 29     | 335    | < 0.05  |  |  |
| 1613   | 102  | SHL | LMB     | plug    | follow-up | 43.8   | 1373   | 0.45    |  |  |
| 1614   | 102  | SHL | LMB     | plug    | follow-up | 37.3   | 780    | <0.05   |  |  |
| 1615   | 102  | SHL | LMB     | plug    | follow-up | 37     | 723    | < 0.05  |  |  |
| 1616   | 102  | SHL | LMB     | plug    | follow-up | 46.3   | 1520   | <0.05   |  |  |
| 1617   | 102  | SHL | LMB     | plug    | follow-up | 38.1   | 864    | <0.05   |  |  |
| 1618   | 82   | SHL | SMB     | plug    | follow-up | 36.3   | 713    | 0.26    |  |  |
| 1619   | 82   | SHL | SMB     | plug    | follow-up | 42.7   | 1137   | 0.17    |  |  |
| 1620   | 82   | SHL | SMB     | plug    | follow-up | 34.5   | 677    | < 0.05  |  |  |
| 1621   | 270  | SHL | LMB     | plug    | follow-up | 32.2   | 433    | 0.27    |  |  |
| 1622   | 270  | SHL | LMB     | plug    | follow-up | 35     | 567    | 0.42    |  |  |
| 1623   | 270  | SHL | LMB     | plug    | follow-up | 30.6   | 386    | 0.34    |  |  |
| 1624   | 270  | SHL | LMB     | plug    | follow-up | 30.1   | 331    | 0.3     |  |  |
| 1625   | 340  | SHL | LMB     | plug    | follow-up | 44.2   | 1279   | 0.15    |  |  |
| 1626   | 340  | SHL | LMB     | plug    | follow-up | 41.4   | 748    | < 0.05  |  |  |
| 1627   | 340  | SHL | LMB     | plug    | follow-up | 46.7   | 1805   | 0.3     |  |  |
| 1628   | 340  | SHL | LMB     | plug    | follow-up | 41.4   | 812    | 0.08    |  |  |
| 1629   | 162  | SHL | LMB     | plug    | follow-up | 38.9   | 910    | 0.24    |  |  |
| 1630   | 162  | SHL | LMB     | plug    | follow-up | 37.8   | 740    | 0.23    |  |  |
| 1631   | 162  | SHL | LMB     | plug    | follow-up | 40.4   | 926    | 0.29    |  |  |
| 1632   | 162  | SHL | LMB     | plug    | follow-up | 40.1   | 988    | <0.05   |  |  |
| 1633   | 162  | SHL | LMB     | plug    | follow-up | 39.9   | 877    | 0.16    |  |  |
| 1634   | 61   | SHL | SMB     | plug    | follow-up | 39.1   | 763    | 0.35    |  |  |
| 1635   | 61   | SHL | SMB     | plug    | follow-up | 38.4   | 703    | 0.33    |  |  |
| 1636   | 61   | SHL | SMB     | plug    | follow-up | 36.1   | 667    | 0.35    |  |  |
| 1637   | 61   | SHL | SMB     | plug    | follow-up | 26.9   | 245    | < 0.05  |  |  |
| 1638   | 202  | SHL | SMB     | plug    | follow-up | 41.7   | 677    | 0.35    |  |  |
| 1639   | 202  | SHL | SMB     | plug    | follow-up | 25.9   | 215    | < 0.05  |  |  |
| 1640   | 202  | SHL | SMB     | plug    | follow-up | 24.4   | 175    | < 0.05  |  |  |
| 1641   | 202  | SHL | SMB     | plug    | follow-up | 45.2   | 671    | 0.41    |  |  |
| 1642   | 203  | SHL | SMB     | plug    | follow-up | 34.5   | 505    | 0.43    |  |  |
| 1643   | 203  | SHL | SMB     | plug    | follow-up | 38.9   | 780    | 0.27    |  |  |
| 1644   | 203  | SHL | SMB     | plug    | follow-up | 28.4   | 278    | 0.16    |  |  |

#### Appendix E

Complete listing of the 2014 IAFTMP bottom-feeding fish sampling results (in mg/kg). See Appendix B for a list of 2014 IFTMP site descriptions and Appendix C for a list of fish names and species codes. All samples were analyzed as a composite of tissue from three to five fish.

| Sample<br>#                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Site<br># | Lab | Species<br>Code | Bio-<br>part | Sample<br>Type | Chlordane,<br>Technical | DDE    | Dieldrin | Mercury | PCB,<br>Aroclor<br>1248 | PCB,<br>Aroclor<br>1254 | PCB,<br>Aroclor<br>1260 | *Total<br>PCBs<br>(sum<br>Aroclors) | Mean<br>Total<br>Length<br>(cm) | Mean<br>Weight<br>(g) | # of<br>Fish in<br>Sample |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----|-----------------|--------------|----------------|-------------------------|--------|----------|---------|-------------------------|-------------------------|-------------------------|-------------------------------------|---------------------------------|-----------------------|---------------------------|
| 1547                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 172       | SHL | CAP             | whole        | trend          | <0.1                    | 0.22   | <0.02    | 0.05    | <0.13                   | <0.13                   | <0.13                   | <0.39                               | 45.9                            | 1383                  | 5                         |
| 1548                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 173       | SHL | CAP             | whole        | trend          | <0.1                    | < 0.01 | < 0.02   | 0.04    | < 0.13                  | < 0.13                  | < 0.13                  | < 0.39                              | 55.3                            | 2221                  | 4                         |
| 1549                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32        | SHL | CAP             | whole        | trend          | 0.12                    | 0.1    | 0.06     | 0.11    | < 0.08                  | < 0.08                  | <0.08                   | <0.24                               | 59.4                            | 2946                  | 3                         |
| 1550                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 177       | SHL | CAP             | whole        | trend          | <0.06                   | 0.02   | 0.02     | 0.05    | < 0.08                  | < 0.08                  | <0.08                   | <0.24                               | 46.8                            | 1426                  | 5                         |
| 1551                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 175       | SHL | CAP             | whole        | trend          | < 0.06                  | < 0.01 | <0.02    | 0.06    | < 0.08                  | < 0.08                  | <0.08                   | <0.24                               | 46.8                            | 1329.6                | 5                         |
| 1552                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 174       | SHL | CAP             | whole        | trend          | <0.2                    | < 0.01 | < 0.05   | 0.07    | < 0.25                  | < 0.25                  | <0.25                   | <0.75                               | 57.8                            | 2648                  | 5                         |
| 1553                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 143       | SHL | CAP             | whole        | trend          | 0.08                    | 0.006  | 0.005    | 0.05    | < 0.08                  | < 0.08                  | <0.08                   | <0.24                               | 51.3                            | 1947.2                | 5                         |
| 1554                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 170       | SHL | CAP             | whole        | trend          | 0.11                    | 0.02   | 0.02     | 0.09    | < 0.08                  | < 0.08                  | <0.08                   | <0.24                               | 46.8                            | 1401                  | 4                         |
| 1555                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11        | SHL | CAP             | whole        | trend          | <0.05                   | 0.07   | 0.03     | 0.12    | < 0.08                  | < 0.08                  | <0.08                   | <0.24                               | 61.3                            | 3204                  | 3                         |
| 1556                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 176       | SHL | CAP             | whole        | trend          | 0.11                    | 0.06   | 0.02     | 0.1     | < 0.08                  | < 0.08                  | <0.08                   | <0.24                               | 55.4                            | 2422                  | 3                         |
| 1586                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 351       | SHL | CCF             | fillet       | status         | < 0.02                  | 0.01   | < 0.01   | 0.04    | < 0.02                  | < 0.02                  | < 0.02                  | < 0.06                              | 46                              | 915                   | 4                         |
| 1587                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 103       | SHL | CCF             | fillet       | status         | <0.05                   | 0.01   | <0.005   | 0.04    | < 0.02                  | < 0.02                  | < 0.02                  | < 0.06                              | 44.8                            | 756                   | 4                         |
| 1588                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 311       | SHL | CCF             | fillet       | status         | <0.02                   | 0.009  | < 0.005  | 0.06    | < 0.02                  | < 0.02                  | < 0.02                  | < 0.06                              | 56                              | 2090                  | 3                         |
| 1589                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 137       | SHL | CCF             | fillet       | status         | <0.05                   | 0.02   | 0.008    | 0.08    | < 0.02                  | < 0.02                  | < 0.02                  | < 0.06                              | 56.4                            | 1627                  | 5                         |
| 1590                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200       | SHL | CCF             | fillet       | status         | < 0.1                   | 0.006  | < 0.01   | 0.03    | < 0.02                  | < 0.02                  | < 0.02                  | < 0.06                              | 45                              | 948.9                 | 5                         |
| 1591                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45        | SHL | CAP             | fillet       | status         | 0.03                    | 0.008  | 0.007    | 0.07    | < 0.02                  | < 0.02                  | < 0.02                  | < 0.06                              | 48.4                            | 1986                  | 3                         |
| 1645                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 152       | SHL | CAP             | fillet       | followup       | 0.03                    | 0.007  | <0.005   | 0.18    | < 0.02                  | < 0.02                  | <0.02                   | <0.06                               | 67.9                            | 4912                  | 5                         |
| 1646                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45        | SHL | CAP             | fillet       | followup       | <0.02                   | 0.02   | <0.02    | 0.11    | < 0.02                  | 0.38                    | < 0.02                  | 0.42                                | 67.8                            | 4769                  | 3                         |
| 1647                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 170       | SHL | CAP             | fillet       | followup       | <0.1                    | 0.01   | 0.009    | < 0.05  | < 0.02                  | < 0.02                  | < 0.02                  | <0.06                               | 66.9                            | 4055                  | 5                         |
| 1648                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 124       | SHL | CCF             | fillet       | followup       | 0.07                    | 0.05   | 0.01     | NA      | < 0.02                  | < 0.02                  | < 0.02                  | <0.06                               | 44.2                            | 772                   | 3                         |
| *Total PCBs = Aroclor 1248 + Aroclor 1254 + Aroclor 1260; Due to the analytical methods used for PCBs, detection levels of the three Aroclors ranged from <0.02 to <0.25 mg/kg. Thus, for a given sample, the sum of the detection levels for the three Aroclors to determine the "total PCB" concentration can appear to be well above the 1 meal/week advisory trigger level of 0.2 mg/kg. IDNR will address this laboratory analysis issue in the future. |           |     |                 |              |                |                         |        |          |         |                         |                         |                         |                                     |                                 |                       |                           |