Clear Lake Watershed Storm Water Improvement Project (Phase 2)

Final Report

Watershed Name: Clear Lake Watershed

Grant Agreement Number: 7003-001

Soil and Water Conservation District: Hancock

Reporting Period: January, 2008 – June, 2010

Date Report Prepared: June 7, 2010

Name and Title of Reporting Individual: David Knoll - CLEAR Project Coordinator

Practices and Activities:

A total of seven storm water outlet sites were investigated to determine the most cost effective BMP at each site, which met the grant application goal of seven sites. Storm water BMPs were installed at all seven of the outlet sites, which exceeded the application goal of four sites. In addition to the practices that were installed, all activities were completed as stated in the grant agreement. Meetings took place throughout the length of the project to keep partners on task. More than twenty presentations were given to local community groups regarding lake restoration efforts that included information on the storm water improvements. Several newspaper articles mentioned the storm water improvements, including a feature in the Globe Gazette. All reporting required by WIRB was submitted in a timely manner.

Practice or Activity	Unit	Approved Application Goal	Accomplishments	Percent Completion
Storm water BMP Investigation	Outlet sites	7	7	100%
Storm water BMP Installation	Outlet sites	4	7	175%

Table 1. Practice Implementation

Financial Accountability:

A total of seven storm water improvements were investigated and installed. After the investigations were completed, the project was advertised and the construction was awarded to the low bidder. The total cost to investigate and install the seven improvements was \$445,984. Thus, each site averaged about \$60,000. The total cost was greater than had been anticipated in the grant application because 3 additional sites were installed. This resulted in a cost share ratio of 35% WIRB and 65% partner funding. Therefore, the WIRB funding dollars leveraged even greater amounts of partner funding than was expected and allowed for more storm water improvements to be completed. A total of four funding partners participated in the program, consisting of local, state, and federal agencies. All WIRB funding was fully expended.

Funding Source	Approved	Total Funds	Difference	
	Application	Expended	(\$ cash)	
	Budget (\$ cash)	(\$ cash)		
WIRB	154,000	154,000	0	
City of Clear	152,000	130,210	21,790	
Lake				
City of Ventura	2,000	21,425	(19,425)	
EPA 319	0	93,584	(93,584)	
Hanson	0	46,766	(46,766)	
Foundation				
Totals	308,000	445,985	(137,985)	

Table 2. Total Project Funding

Watershed Improvement Fund contribution: Approved application budget: 50% Actual: 35% Line item expenditures were identical to the grant agreement as all funds approved were expended for their intended purposes.

Grant Agreement Budget Line Item	Total Funds Approved (\$)	Total Funds Expended (\$)	Available Funds (\$)
Storm Water	14,000	14,000	0
Investigation			
Storm Water BMP	140,000	140,000	0
Installation			
Totals	154,000	154,000	0

Table 3. WIRB Expenditures

The WIRB grant application stated that a storm water improvement would be considered cost effective if there was an estimated 5 lbs of phosphorus removal for each \$50,000 expended. Of the seven sites installed, four of the sites met this requirement while three did not. The three sites that did not meet the requirement were very close to the cost effective ratio, and they also consisted of sites that were deemed high priority, so it was determined to move forward with installation. In general, outlet sites with a drainage area of 5 acres or more were considered high priority. This is due to the fact that previous water sampling completed during the Clear Lake Storm Water Management Plan (2000) showed a strong correlation between the drainage area size and the amount of pollutant loading at the outlet site.

Environmental Accountability:

The three primary contaminants that the storm water improvements were designed to reduce were phosphorus, bacteria and suspended solids. Although there were no specific goals listed in the application for contaminant reductions, it was mentioned that the BMPs were expected to remove about 80% of Total Suspended Solids (TSS), 67% of Total Phosphorus (TP) and up to 97% of coliform bacteria from storm water runoff in the drainage area they treated. No water monitoring was conducted on the improvements that were installed due to the fact that previous monitoring of similar storm water improvements in the Clear Lake watershed could be utilized to determine the expected results of the environmental benefits the new practices had.

Table 4 below shows that the estimated removal rates for the storm water improvement projects installed did meet the expected goals of removal for TSS and TP. As a result of the improvements, nearly 10 tons of sediment and over 38 pounds of phosphorus are being kept out of Clear Lake annually. No bacteria reduction was achieved as previous monitoring has shown that grit collection chambers without infiltration trenches provide little to no reduction in bacteria. The site locations did not allow for the installation of infiltration trenches. Other pollutants such as hydrocarbons are also removed by the installed practices, but a lack of data does not allow us to make estimates on the amounts removed.

Reduction amounts for TSS and TP were estimated using a combination of data from water monitoring of storm water runoff and storm water BMPs that previously took place in the Clear Lake watershed. The studies used to determine the amounts of contaminants in storm water runoff were the Clear Lake Storm Water Management Plan (2000), The Clear Lake Diagnostic

and Feasibility Study (2001), and the Infiltration Trench Assessment Report for Clear Lake City Beach (2003). These studies included: a one rain event snap shot sampling at all 68 outlet sites; a one season, ten rain event, sampling at one outlet site; and a two season, roughly 20 rain event, sampling at about 40 outlet sites. These studies indicated that TSS loading typically ranged from about 250 to 350 lbs/acre/year and TP typically ranged from 0.5 to 0.75 lbs/acre/year depending on the land use of the drainage area. Engineers determined the drainage area size and land use for each outlet investigated and then applied the most likely corresponding TSS and TP loading rate. Reduction amounts for TSS and TP were then determined by using data collected during the Infiltration Trench Assessment Report for Clear Lake City Beach (2003), and also by certified reduction rates from the manufacturers of the grit collection chambers. This data was combined with hydrological data that determined what percentage of the annual rain events would be captured by the storm water improvement. The final result was a reduction rate that was generally in the 80% range for TSS and 70% range for TP.

Site Number	Drainage Area	BMP Type	Est. Annual TSS	Est. Annual TSS	Est. Annual Tot P	Est. Annual Tot P
Tumber	Alta		Removal	Removal	Removal	Removal
			lbs.	%	lbs.	%
B2A	9.8	Grit Chamber	1,992	80	3.9	68
B3	8.5	Grit Chamber	1,730	80	3.4	68
B4	29.8	Grit Chamber	6,056	80	11.8	68
B7	15.0	Grit Chamber	3,048	80	5.9	68
D1	12.3	Grit Chamber	3,297	80	6.0	68
D2	6.6	Grit Chamber	1,770	80	3.2	68
N6	13.2	Grit Chamber	2,788	80	4.5	68
TOTAL	95.2		20,681	80	38.7	68

Table 4. Contaminant Removal Estimates

Program Accountability:

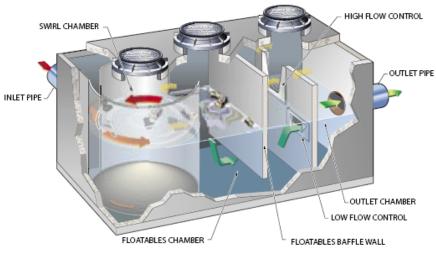
The storm water improvement project was only one part of a large scale lake restoration effort at Clear Lake. Lake restoration work has focused on making improvements in watershed developed areas, watershed agricultural areas, Ventura Marsh, and Clear Lake. Several activities took place to move lake restoration forward during the time of this WIRB grant. These activities included wetland restoration, shoreline stabilization, rough fish removal, lake dredging, and the initiation of the Ventura Marsh restoration project.

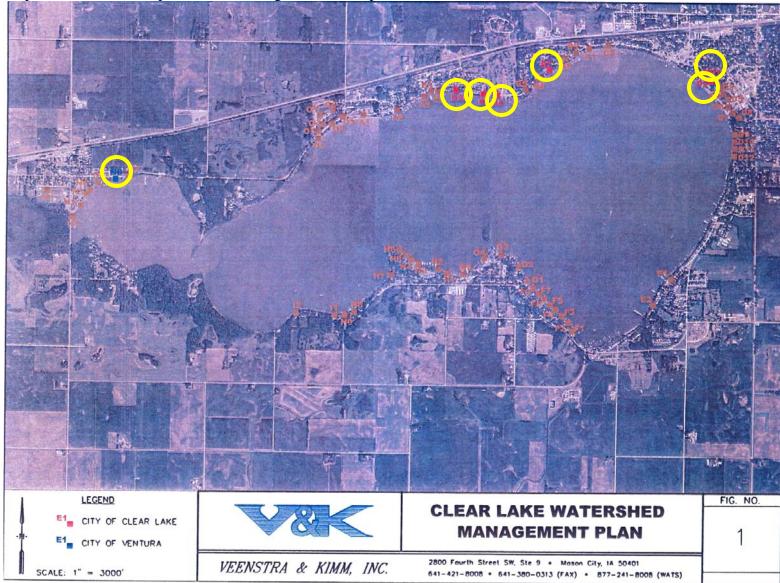
The project was able to be completed within the original three year grant agreement. It was completed six months earlier than anticipated as favorable weather conditions allowed construction to take place on time.

This project could certainly be replicated by other communities. The main piece of background information that needs to be in place is a ranking of storm water outlets around the lake for pollutant loading amounts. This will allow a community to target the most critical areas, which WIRB is more likely to fund. With this data and hopefully a WIRB grant in hand, the next step is to perform engineering and design work on the outlets to determine the most cost effective treatment alternative at each outlet site. In our case, we utilized a private engineering firm as

city and county engineers did not have experience with this type of work. After engineering is completed and cost estimates are determined, the city council or board of supervisors can determine which practices at which outlets to collect bids on. All aspects of the bidding procedure were performed by the engineering firm. The low bids were accepted and the improvements moved into the construction phase. The engineering firm continued to be retained to oversee construction, payments, and process the construction close out information. This was beneficial in making sure the project was completed as designed.

A limitation to the WIRB process is requiring a final report to be submitted prior to the release of the final 10% of funding. This makes it very difficult to fully complete the project when significant funding is not available to the applicant. It also makes it difficult to complete the final report because the project is not actually finalized since not all funds have been made available for expenditure. WIRB may want to consider implementing a draft final report policy due a few months prior to the project end date so funds can be released at that time if the draft report is satisfactory. A revised final report can then be submitted after the project is completed.


Practice Installation Pictures:


Grit Collection Chamber Installation

Grit Collection Chamber Installation

Grit Collection Chamber Diagram

Map of Storm Water Improvement Investigations and Implementation

Circles indicate location of storm water outlet sites that BMPs were investigated and installed.