
Safety Analysis of Low-Volume Rural Roads in Iowa

Final Report December 2010

IOWA STATE UNIVERSITY

Sponsored by

the Iowa Department of Transportation (InTrans Project 07-309)

About the Institute for Transportation

The mission of the Institute for Transportation (InTrans) at Iowa State University is to develop and implement innovative methods, materials, and technologies for improving transportation efficiency, safety, reliability, and sustainability while improving the learning environment of students, faculty, and staff in transportation-related fields.

Iowa State University Disclaimer Notice

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. The opinions, findings and conclusions expressed in this publication are those of the authors and not necessarily those of the sponsors.

The sponsors assume no liability for the contents or use of the information contained in this document. This report does not constitute a standard, specification, or regulation.

The sponsors do not endorse products or manufacturers. Trademarks or manufacturers' names appear in this report only because they are considered essential to the objective of the document.

Iowa State University Non-discrimination Statement

Iowa State University does not discriminate on the basis of race, color, age, religion, national origin, sexual orientation, gender identity, sex, marital status, disability, or status as a U.S. veteran. Inquiries can be directed to the Director of Equal Opportunity and Diversity, (515) 294-7612.

Iowa Department of Transportation Statements

Federal and state laws prohibit employment and/or public accommodation discrimination on the basis of age, color, creed, disability, gender identity, national origin, pregnancy, race, religion, sex, sexual orientation or veteran's status. If you believe you have been discriminated against, please contact the Iowa Civil Rights Commission at 800-457-4416 or Iowa Department of Transportation's affirmative action officer. If you need accommodations because of a disability to access the Iowa Department of Transportation's services, contact the agency's affirmative action officer at 800-262-0003.

The preparation of this (report, document, etc.) was financed in part through funds provided by the Iowa Department of Transportation through its "Agreement for the Management of Research Conducted by Iowa State University for the Iowa Department of Transportation," and its amendments.

The opinions, findings, and conclusions expressed in this publication are those of the authors and not necessarily those of the Iowa Department of Transportation.

Technical Report Documentation Page

11. Trans. Project 07-309 1. Storthunku Keesinin Ku. 5. Report Date 2. Title and Subtite 5. Report Date December 2010 6. Author(s) 6. Performing Organization Code 7. Author(s) 8. Performing Organization Code 9. Performing Organization Report No. InTrans Project 07-309 9. Performing Organization Name and Address InTrans Project 07-309 10. Work Unit No. (TRAIS) Intrans Project 07-309 12. Sponsoring Organization Name and Address 10. Work Unit No. (TRAIS) 13. Support Organization Name and Address 11. Contract or Grant No. 13. Support Organization Name and Address 11. Contract or Grant No. 13. Support Organization Name and Address 13. Type of Report and Period Covered 10w Bepartment of Transportation Office of Triffs and Safety 800 Lincoln Way 4. Ames, IA 50010 14. Sponsoring Agency Code 15. Supplementary Notes Visit www.intrans.istate.dud for color PDF files of this and other research reports. 16. Abstract 10. Odd agencies: Grant transportation injury crashes. 15. study was underfake to examine these crashes, identify major contributing causes, and develop low-cost strategies for reducing the incidence of these crashes. Iowa's extensity we crash and roadway system databases were utilize	1. Report No.	2. Government Accession No.	3. Recipient's Catalog	No			
4. Title and Subtitle S. Report Date Safety Analysis of Low-Volume Rural Roads in Iowa December 2010 6. Performing Organization Code Image: Code Code Code Code Code Code Code Code	-	2. Government Accession 10.	5. Recipient's Catalog	110.			
Safety Analysis of Low-Volume Rural Roads in Iowa December 2010 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. In Trans Project 07-309 9. Performing Organization Name and Address Institute for Transportation lows Mate Linversity 2711 South Loop Drive, Suite 4700 Ames, IA S001-8664 10. Work Unit No. (TRAIS) 11. Contract or Grant No. Transportation lows Asta Linversity 2711 South Loop Drive, Suite 4700 Ames, IA S001-8664 13. Type of Report and Period Covered Final 13. Supplementary Notes Visit www.intrans.instate.du for color PDF files of this and other research reports. 14. Sponsoring Agency Code 16. Abstract Institute of Iransportation Oracle agencies. Given that Cowar is a lower-population state, most of this mileage is located in rural areas that exhibit low traffic cola agencies. Given that Cowar is a lower-population state, most of this mileage is located in rural areas that exhibit low traffic volumes of less than 400 vehicles per day. However, these low-volume rural roads also account for about half of all recorded traffic crashes in lowa, including a high percentage of fatul and major injury crashes. The results of this study allowed the drawing of conclusions as to compared or unique areas that exhibit low traffic volumes of less than 400 vehicles per day. However, these low-volume rural roads also account for about half of all recorded traffic crashes in lowa, including a high percentage of fatul and major injury crashes. This study was undertake no texamine these crashes, identify major contributing causes, and develop low-cost strategies for reducing the incidence of these crashes. Iowa's exten							
6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Reginald R. Souleyrette, Mehmet Caputcu, Thomas J. McDonald, Robert B. In Trans Project 07-309 Sperty: Zachary N. Hans, and Dan Cook In Trans Project 07-309 9. Performing Organization Name and Address In Trans Project 07-309 Institute for Transportation In South Op Drive, Suite 4700 Ames, IA S0010-8664 11. Contract or Grant No. 12. Spansoring Organization Name and Address In Support Organization Name and Address Iowa Department of Transportation In Supplementary Nets 15. Supplementary Nets 14. Sponsoring Ageney Code Visit www.intrans.iastate edu for color PDF files of this and other research reports. 14. Sponsoring Ageney Code 10.wa features an extensive surface transportation system, with more than 110.000 miles of roadway, most of which is under the jurisdiction of local ageneics. Given that Iowa is a lower-population state, most of this mileage is located in rural areas that exhibit low traffic volumes of less than adv vehicles per day. However, these low-volume rural roads also account for about half of all recorded traffic crashes in lowa, including a high percentage of fatal and major injury crashes. This study was undertaken to examine these crashes, identify major contributing causes, and develop low-cost strategies for reducing the incidence of these crashes. Jowa's catensive crash and roadway system databases were uilized to obtain incedd dat			5. Report Date				
7. Author(s) Reginal R. Souleyrette, Mehmet Caputeu, Thomas J. McDonald, Robert B. B. Performing Organization Report No. Sperry, Zachary N. Hans, and Dan Cook In Trans Project 07-309 9. Performing Organization Name and Address In Trans Project 07-309 Institute for Transportation In Trans Project 07-309 Jown State University 11. Contract or Grant No. 2711 South Loop Drive, Suite 4700 In Contract or Grant No. Ames, LA S0010 In Supplementary Notes 10: Oppartmentary Notes In Sponsoring Agency Code Visit www.intrans.iastate.edu for color PDF files of this and other research reports. Is Sponsoring Agency Code Iowa Colard agencies. Given that Iowa is a lower-population state, most of this mileage is located in rural areas that exhibit Iow traffic values of less than 400 vehicles per day. However, these low-volume rural roads also a count for about half of all recorded traffic crashes in Iowa, including a high percentage of fatal and major injury crashes. This study was undertaken to examine these crashes, identify major contributing causes, and develop low-cost strategies for reducing the incidence of these crashes. Iowa's extensive crash and roadway system databases were utilized to obtain needed data. Using descriptive statistics, a test of proportions, and crash modeling, various classes of rural secondary roads were compared to is similar state of Iowa cont intraftic crashes on low-volume rural roads, as drawn to unapteed to using lar stating to Iowa secondary roads were compared to usimilar state of Io	Safety Analysis of Low-Volume Rural Ro	oads in Iowa	December 2010				
Reginal R. Souleyrette, Mehmet Caputcu, Thomas J. McDonald, Robert B. Sperty, Zachary N. Hans, and Dan Cool In Trans Project 07-309 Sperty, Zachary N. Hans, and Dan Cool 10. Work Unit No. (TRAIS) Institute for Transportation low a State University 2711 South Loop Drive, Suite 4700 Ames, LA S0010-8664 11. Contract or Grant No. 12. Sponsoring Organization Name and Address low Department of Transportation Office of Traffic and Safety 800 Lincoln Way Ames, LA S0010 13. Type of Report and Period Covered Final 14. Sponsoring Agency Code 14. Sponsoring Agency Code 15. Supplementary Nots 14. Sponsoring Agency Code 16. Abstract Iowa a state cdu for color PDF files of this and other research reports. 16. Abstract Iowa a negative surface transportation system, with more than 110,000 miles of roadway, most of which is under the jurisdiction of local agencies. Given thal Iowa is a lower-population state, most of this mileage is located in rural areas that exhibit low traffic evalues of these transhes, Iowa's extensive erash and roadway system databases were utilized to obtain needed data. Using descriptive statistics, a test of proportions, and erash modeling, various classes of rural secondary roads were compared to similar state of lowa controlled roads in crash frequency. Severity, density, and rate for numerous selected factors that could contribute to erashes. This study was undertaken to examine these crashes, identify major contributing factors for crashes on low-volume rural roads, both paved and unpaved. Due to identified higher erash statistics			6. Performing Organiz	ation Code			
Reginal R. Souleyrette, Mehmet Caputcu, Thomas J. McDonald, Robert B. Sperty, Zachary N. Hans, and Dan Cool In Trans Project 07-309 Sperty, Zachary N. Hans, and Dan Cool 10. Work Uait No. (TRAIS) Institute for Transportation low a State University 2711 South Loop Drive, Suite 4700 Ames, LA S0010-8664 11. Contract or Grant No. 12. Sponsoring Organization Name and Address low Department of Transportation Office of Traffic and Safety 800 Lincoln Way Ames, LA S0010 13. Type of Report and Period Covered Final 14. Sponsoring Agency Code 14. Sponsoring Agency Code 15. Supplementary Notes 14. Sponsoring Agency Code 16. Abstract Iowa log and the construction is a lower-population state, most of this mileage is located in rural areas that exhibit low traffic routes of local agencies. Given thal 10m is a lower-population state, most of this mileage is located in rural areas that exhibit low traffic routes of less than 400 vehicles per day. However, these low-volume rural roads also account for about half of all recorded traffic erashes in lowa, including a high percentage of fatal and major injury crashes. This study was undertaken to examine these crashes, identify major contributing causes, and develop low-cost strategies for reducing the incidence of these crashes. Howa's extensive earish and roadway system databases were utilized to obtain needed data. Using descriptive statistics, a test of proportions, and crash modeling, various classes of rural secondary roads were compared to similar state of lowa controlled roads in crash frequency, severity, density, auratous classes of rural secondary							
Sperry, Zachary N. Hans, and Dan Cook II. Work Unit No. (TRAIS) 9. Performing Organization Name and Address II. Contract or Grant No. Institute for Transportation II. Contract or Grant No. Office of Traffic and Safety II. Contract or Grant No. 800 Lincoln Way II. Sponsoring Agency Code Manes, IA S0010 II. Sponsoring Agency Code 15. Supplementary Notes II. Sponsoring Agency Code Visit www.intrans.iastate.edu for color PDF files of this and other research reports. II. Shortact Iowa features an extensive surface transportation system, with more than 110,000 miles of roadway, most of which is under the jurisdiction of local agencies. Given that Iowa is a lower-population state, most of this mileage is located in rural areas that exhibit Iow traffic orabous of less than 400 vehicles per day. However, these low-volume rural roads also account for about half of all recorded traffic crashes in Iowa, including a high percentage of fatal and major injury crashes. This study was undertaken to examine these crashes, identify major contributing causes, and develop low-cost strategies for reducing the incidence of these crashes. Iowa's extensive crash and roadway system databases were cultized to obtain needed data. Using descriptive statistics, a test of propertions, and crash modelling, various classes of rural secondary roads with traffic orashes on low-volume rural roads, both paved and unpaved. Due to identified higher crash statistics, particular interest was drawn to unpaved rural roads with traffic orashes. The results of this study al	7. Author(s)		8. Performing Organiz	ation Report No.			
9. Performing Organization Name and Address Institute for Transportation Iowa State University 2711 South Loop Drive, Suite 4700 Ames, IA South-8664 10. Work Unit No. (TRAIS) 11. Contract or Grant No. 11. Contract or Grant No. 12. Sponsoring Organization Name and Address Iowa Department of Transportation Office of Traffic and Safety 800 Lincoln Way Ames, IA S0010 13. Type of Report and Period Covered Final IS. Supplementary Notes Visit www.intrans.iastate.edu for color PDF files of this and other research reports. 14. Sponsoring Agency Code 15. Supplementary Notes Visit www.intrans.iastate.edu for color PDF files of this and other research reports. 16. Abstract Iowa features an extensive surface transportation system, with more than 110,000 miles of roadway, most of which is under the jurisdiction of local agencics. Given that Iowa is a lower-population state, most of this mileage is located in rural areas that exhibit low traffic roabes in Iowa, including a high percentage of fatal and major injury crashes. This study was undertaken to examine these crashes, identify major contributing causes, and develop low-cost strategies for reducing the incidence of these crashes. Iowa's extensive crash at roadway system databases were utilized to obtain needed data. Using descriptive statistics, a test of proportions, and crash modelling, various classes of rural secondary roads were compared to is ander state of Iowa controlled roads in crash frequency, severity, density, and rate for numerous selected factors that could contribute to crashes. The results of this study allowed the drawing of conclusions as to common contributing factors for crashes on low-volume rural		ı, Thomas J. McDonald, Robert B.	InTrans Project 07-309				
Institute for Transportation low a State University 2711 South Loop Drive, Suite 4700 Ames, IA 50010-8664 11. Contract or Grant No. 12. Sponsoring Organization Name and Address Low Department of Transportation Office of Traffic and Safety 300 Lincoln Way Ames, IA 50010 13. Type of Report and Period Covered Final 14. Sponsoring Agency Code 14. Sponsoring Agency Code 15. Supplementary Notes Visit www.intrans.iastate.edu for color PDF files of this and other research reports. 14. Sponsoring Agency Code 16. Abstract 10. Abstract 10. Abstract 10. Outria agencies. Given that Iowa is a lower-population state, most of this mileage is located in rural areas that exhibit low traffic volume rural roads also account for about half of all recorded traffic crashes in Iowa, including a high percentage of fatal and major injury crashes. This study was undertaken to examine these crashes, identify major contributing causes, and develop low-cost strategies for reducing the incidence of these crashe. Iowa's extensive crash and roadway system databases were utilized to obtain needed data. Using descriptive statistics, a tot of proportions, and crash modeling, various classes of rural secondary roads were compared to similar state of Iowa controlled roads in crash frequency, severity, density, and rate for numerous selected factors that could contribute to crashes. The results of this study allowed the drawing of conclusions as to common contributing factors for crashes on low-volume rural roads, both paved and unpaved. Due to identified higher crash statistics, particular interest was drawn to unpaved road so included. Because of the isolated nature of traffic crashes on low-volume roads, a system							
Iowa Sate University 2711 South Loop Drive, Suite 4700 Ames, IA 50010-8664 11. Contract or Grant No. 12. Sponsoring Organization Name and Address Iowa Department of Transportation Office of Traffic and Safety 800 Lincoln Way Ames, IA 50010 13. Type of Report and Period Covered Final 15. Supplementary Notes Visit www.intrans.iastate.edu for color PDF files of this and other research reports. 14. Sponsoring Agency Code 16. Abstract Iowa features an extensive surface transportation system, with more than 110,000 miles of roadway, most of which is under the jurisdiction of local agencies. Given that Iowa is a lower-population state, most of this mileage is located in rural areas that exhibit Iow traffic roashes in Iowa, including a high percentage of fatal and major injury crashes. This study was undertaken to examine these crashes, identify major contributing causes, and develop low-cost strategies for reducing the incidence of these crashes. Iowa's extensive crash and roadway system databases were utilized to obtain needed data. Using descriptive statistics, a test of proportions, and crash modeling, various classes of rural secondary roads were compared to similar state of Iowa controlled roads in crash frequency, severity, density, and rate for numerous selected factors that could contribute to crashes. The results of this study allowed the drawing of conclusions as to common contributing factors for crashes on low-volume rural roads, both paved and unpaved. Due to identified higher crash statistics, particular interest was drawn to unpaved rural roads, both paved and unpaved. Due to identified higher crash statistics, particular interest was drawn to unpaved rural roads, both paved and unpaved. Due to identified higher crash statistics, particular intere		Address	10. Work Unit No. (TR	AIS)			
2711 South Loop Drive, Suite 4700 In Contract of Grani No. Ames, IA 50010-8664 II. Sponsoring Organization Name and Address III. Sponsoring Agency Code Iowa Department of Transportation Office of Traffic and Safety III. Sponsoring Agency Code III. Sponsoring Agency Code Sons Jack State Interface III. Sponsoring Agency Code III. Sponsoring Agency Code Is Supplementary Notes Visit www.intrans iastate.edu for color PDF files of this and other research reports. III. Contract of oradway, most of which is under the jurisdiction of local agencies. Given that I lowa is a lower-population state, most of this mileage is located in rural areas that exhibit low traffic volumes of less than 400 vehicles per day. However, these low-volume rural roads also account for about half of all recorded traffic crashes in lowa, including a high percentage of fatal and major injury crashes. This study was undertaken to examine these crashes, identify major contributing causes, and develop low-cost strategies for reducing the incidence of these crashes. Iowa's extensive crashan aroadway system to rural roads also account for about half of all recorded contribute to crashes. The results of this study allowed the drawing of conclusions as to common contributing factors for crashes on low-volume rural roads, both paved and unpaved. Due to identified higher crash statistics, particular interest was drawn to unpaved rural roads with traffic volumes greater than 100 vehicles per day. Recommendations for addressing these crashes on low-volume ruads, a systemic or mass action approach to safety mitigation are also included. Because of the isolated nature of traffic c							
Ames, IA 50010-8664 13. Type of Report and Period Covered Iowa Department of Transportation Office of Traffic and Safety 800 Lincoln Way Ames, IA 50010 14. Sponsoring Agency Code 15. Supplementary Notes 14. Sponsoring Agency Code Visit www.intrans.iastate.edu for color PDF files of this and other research reports. 16. Abstract 16. Abstract 10000 miles of roadway, most of which is under the jurisdiction of local agencies. Given that lowa is a lower-population state, most of this mileage is located in rural areas that exhibit low traffic roashes in lowa, including a high percentage of fatal and major injury crashes. This study was undertaken to examine these crashes, identify major contributing causes, and develop low-cost strategies for reducing the incidence of these crashes. Iowa's extensive crash and roadway system databases were utilized to obtain needed data. Using descriptive statistics, a test of proportions, and crash modeling, various classes of rural secondary reads were compared to similar state of lowa controlled roads in crash frequency, severity, density, and rate for numerous selected factors that could contribute to crashes. The results of this study allowed the drawing of conclusions as to common contributing factors for crashes on low-volume rural roads, both paved and unpaved. Due to identified higher crash statistics, particular interest was drawn to unpaved rural roads with traffic volumes greater than 100 vehicles per day. Recommendations for addressing these crashes into avortonis mitigation are also included. Because of the isolated nature of traffic crashes on low-volume road as a systernic or mass action approach to safety mitigation was recommended			11. Contract or Grant	No.			
12. Sponsoring Organization Name and Address 13. Type of Report and Period Covered Iowa Department of Transportation Final 14. Sponsoring Agency Code Status 14. Sponsoring Agency Code 15. Supplementary Notes 14. Sponsoring Agency Code Visit www.intrans iastate.edu for color PDF files of this and other research reports. 16. Abstract Iowa features an extensive surface transportation system, with more than 110,000 miles of roadway, most of which is under the jurisdiction of local agencies. Given that Iowa is a lower-population state, most of this mileage is located in rural areas that exhibit low traffic volumes of less than 400 vehicles per day. However, these low-volume rural roads also account for about half of all recorded traffic crashes in Iowa, including a high percentage of fatal and major injury crashes. This study was undertaken to examine these crashes, identify major contributing causes, and develop low-cost strategies for reducing the incidence of these crashes. Iowa's extensive crash and roadway system databases were utilized to obtain needed data. Using descriptive statistics, a test of proportions, and crash modeling, various classes of rural secondary roads were compared to similar state of Iowa contribute to crashes. The results of this study allowed the drawing of conclusions as to common contributing factors for crashes on low-volume rural roads, both paved and unpaved. Due to identified higher crash statistics, particular interest was drawn to unpaved rural areas the included. Because of the isolated nature of traffic crashes on low-volume road as asystemic or mass action approach to safety mitigation was recommended for a							
Iowa Department of Transportation Office of Traffic and Safety 800 Lincoln Way Ames, IA 50010 Final 14. Sponsoring Agency Code 7. Supplementary Notes Visit www.intrans iastate.edu for color PDF files of this and other research reports. 16. Abstract Iowa features an extensive surface transportation system, with more than 110,000 miles of roadway, most of which is under the jurisdiction of local agencies. Given that Iowa is a lower-population state, most of this mileage is located in rural areas that exhibit Iow traffic volumes of less than 400 vchicles per day. However, these Iow-volumer rural roads also account for about half of all recorded traffic crashes in Iowa, including a high percentage of fatal and major injury crashes. This study was undertaken to examine these crashes, identify major contributing causes, and develop low-cost strategies for reducing the incidence of these crashes. Iowa's extensive crash and roadway system dtabases were utilized to obtain needed data. Using descriptive statistics, at est of proportions, and crash modeling, various classes of rural secondary troads were compared to similar state of Iowa controlled roads in crash frequency, severity, density, and rate for numerous selected factors that could contribute to crashes. The results of this study allowed the drawing of conclusions as to common contributing factors for crashes on low-volume rural roads, both paved and unpaved. Due to identified higher crash statistics, particular interest was drawn to unpaved rural roads with traffic volumes greater than 100 vehicles per day. Recommendiations for addressing these crashes with low-cost mitigation are also included. Because of the isolated nature of traffic crashes on low-volume rural astery—trual road		Address	13. Type of Report and	Period Covered			
Office of Traffic and Safety 800 Lincoln Way Ames, IA 50010 14. Sponsoring Agency Code 15. Supplementary Notes Visit www intrans iastate edu for color PDF files of this and other research reports. 14. Sponsoring Agency Code 16. Abstract Iowa features an extensive surface transportation system, with more than 110,000 miles of roadway, most of which is under the jurisdiction of local agencies. Given that Iowa is a lower-population state, most of this mileage is located in rural areas that exhibit Iow traffic crashes in Iowa, including a high percentage of fatal and major injury crashes. This study was undertaken to examine these crashes, identify major contributing causes, and develop low-cost strategies for reducing the incidence of these crashes. Iowa's extensive crash and roadway system databases were utilized to obtain needed data. Using descriptive statistics, a test of proportions, and crash modeling, various classes of rural secondary roads were compared to similar state of Iowa controlled roads in crash frequency, severity, density, and rate for numerous selected factors that could contribute to crashes. The results of this study allowed the drawing of conclusions as to common contributing factors for crashes on low-volume rural roads, both paved and unpaved. Due to identified higher crash statistics, particular interest was drawn to unpaved rural roads with traffic volumes greater than 100 vehicles per day. Recommendations for addressing these crashes with low-cost mitigation are also included. Because of the isolated nature of traffic crashes on low-volume roads, a systemic or mass action approach to safety mitigation was recommended for an identified subset of the entire system. In addition, future development of a reliable crash prediction model is described. 18. Distribution St							
1300 Lincoln Way 1 15. Supplementary Notes Visit www.intrans.iastate.edu for color PDF files of this and other research reports. 16. Abstract Iowa features an extensive surface transportation system, with more than 110,000 miles of roadway, most of which is under the jurisdiction of local agencies. Given that Iowa is a lower-population state, most of this mileage is located in rural areas that exhibit Iow traffic volumes of least than 400 vehicles per day. However, these low-volume rural roads also account for about half of all recorded traffic crashes in Iowa, including a high percentage of fatal and major injury crashes. This study was undertaken to examine these crashes, identify major contributing causes, and develop low-cost strategies for reducing the incidence of these crashes. Iowa's extensive crash and roadway system databases were utilized to obtain needed data. Using descriptive statistics, a test of proportions, and crash modeling, various classes of rural secondary roads were compared to similar state of Iowa controlled roads in crash frequency, severity, density, and rate for numerous selected factors that could contribute to crashes. The results of this study allowed the drawing of conclusions as to common contributing factors for crashes on low-volume rural roads, both paved and unpaved. Due to identified higher crash statistics, particular interest was drawn to unpaved rural roads with traffic volumes greater than 100 vehicles per day. Recommendations for addressing these crashes with low-cost mitigation are also included. Because of the isolated nature of traffic crashes on low-volume roads, a systemic or mass action approach to safety mitigation was recommended for an identified subset of the entire system. In addition, future development of a reliable crash prediction model is descri	Office of Traffic and Safety		14 Sponsoring Agency	Code			
15. Supplementary Notes Visit www.intrans.iastate.edu for color PDF files of this and other research reports. 16. Abstract Iowa features an extensive surface transportation system, with more than 110,000 miles of roadway, most of which is under the jurisdiction of local agencies. Given that Iowa is a lower-population state, most of this mileage is located in rural areas that exhibit low traffic volumes of less than 400 vehicles per day. However, these low-volume rural roads also account for about half of all recorded traffic crashes in lowa, including a high percentage of fatal and major injury crashes. This study was undertaken to examine these crashes, identify major contributing causes, and develop low-cost strategies for reducing the incidence of these crashes. Iowa's extensive crash and roadway system databases were compared to similar state of Iowa controlled roads in crash frequency, severity, density, and rate for numerous selected factors that could contribute to crashes. The results of this study allowed the drawing of conclusions as to common contributing factors for crashes on low-volume rural roads, both paved and unpaved. Due to identified higher crash statistics, particular interest was drawn to unpaved rural roads with traffic volumes greater than 100 vehicles per day. Recommendations for addressing these crashes with low-cost mitigation are also included. Because of the isolated nature of traffic crashes on low-volume roads, asystemic or mass action approach to safety mitigation was recommended for an identified subset of the entire system. In addition, future development of a reliable crash prediction model is described. 17. Key Words 18. Distribution Statement crash mitigation—cra			14. Sponsoring regency	Couc			
Visit www.intrans.iastate.edu for color PDF files of this and other research reports. 16. Abstract Iowa features an extensive surface transportation system, with more than 110,000 miles of roadway, most of which is under the jurisdiction of local agencies. Given that Iowa is a lower-population state, most of this mileage is located in rural areas that exhibit low traffic volumes of less than 400 vehicles per day. However, these low-volume rural roads also account for about half of all recorded traffic crashes in Iowa, including a high percentage of fatal and major injury crashes. This study was undertaken to examine these crashes, identify major contributing causes, and develop low-cost strategies for reducing the incidence of these crashes. Iowa's extensive crash and roadway system databases were utilized to obtain needed data. Using descriptive statistics, a test of proportions, and crash modeling, various classes of rural secondary roads were compared to similar state of Iowa controlled roads in crash frequency, severity, density, and rate for numerous selected factors that could contribute to crashes. The results of this study allowed the drawing of conclusions as to common contributing factors for crashes on low-volume rural roads, both paved and unpaved. Due to identified higher crash statistics, particular interest was drawn to unpaved rural roads with traffic volumes greater than 100 vehicles per day. Recommendations for addressing these crashes with low-cost mitigation are also included. Because of the isolated nature of traffic crashes on low-volume roads, a systemic or mass action approach to safety mitigation was recommended for an identified subset of the entire system. In addition, future development of a reliable crash prediction model is described. 17. Key Words crash model—fatal and major injury c							
16. Abstract Iowa features an extensive surface transportation system, with more than 110,000 miles of roadway, most of which is under the jurisdiction of local agencies. Given that lowa is a lower-population state, most of this mileage is located in rural areas that exhibit low traffic volumes of less than 400 vehicles per day. However, these low-volume rural roads also account for about half of all recorded traffic crashes in lowa, including a high percentage of fatal and major injury crashes. This study was undertaken to examine these crashes, identify major contributing causes, and develop low-cost strategies for reducing the incidence of these crashes. Iowa's extensive crash and roadway system databases were utilized to obtain needed data. Using descriptive statistics, a test of proportions, and crash modeling, various classes of rural secondary roads were compared to similar state of Iowa controlled roads in crash frequency, severity, density, and rate for numerous selected factors that could contribute to crashes. The results of this study allowed the drawing of conclusions as to common contributing factors for crashes on low-volume rural roads, both paved and unpaved. Due to identified higher crash statistics, particular interest was drawn to unpaved rural roads with traffic volumes greater than 100 vehicles per day. Recommendations for addressing these crashes with low-cost mitigation are also included. Because of the isolated nature of traffic crashes on low-volume roads, a systemic or mass action approach to safety mitigation was recommended for an identified subset of the entire system. In addition, future development of a reliable crash prediction model is described. 17. Key Words 18. Distribution Statement crash mitigation—crash model—fatal and major injury crashes—low-volume rorad saf							
Iowa features an extensive surface transportation system, with more than 110,000 miles of roadway, most of which is under the jurisdiction of local agencies. Given that Iowa is a lower-population state, most of this mileage is located in rural areas that exhibit low traffic volumes of less than 400 vehicles per day. However, these low-volume rural roads also account for about half of all recorded traffic crashes in Iowa, including a high percentage of fatal and major injury crashes. This study was undertaken to examine these crashes, identify major contributing causes, and develop low-cost strategies for reducing the incidence of these crashes. Iowa's extensive erash and roadway system databases were utilized to obtain needed data. Using descriptive statistics, a test of proportions, and crash modeling, various classes of rural secondary roads were compared to similar state of Iowa controlled roads in crash frequency, severity, density, and rate for numerous selected factors that could contribute to crashes. The results of this study allowed the drawing of conclusions as to common contributing factors for crashes on low-volume rural roads, both paved and unpaved. Due to identified higher crash statistics, particular interest was drawn to unpaved rural roads with traffic volumes greater than 100 vehicles per day. Recommendations for addressing these crashes with low-cost mitigation are also included. Because of the isolated nature of traffic crashes on low-volume roads, a systemic or mass action approach to safety mitigation was recommended for an identified subset of the entire system. In addition, future development of a reliable crash prediction model is described. 17. Key Words Image in a major injury crashes—low-volume road safety—rural road safety—unpaved road safety Image in the entire system in addition, future development of a reliable crash		OF files of this and other research reports.					
jurisdiction of local agencies. Given that lowa is a lower-population state, most of this mileage is located in rural areas that exhibit low traffic volumes of less than 400 vehicles per day. However, these low-volume rural roads also account for about half of all recorded traffic crashes in lowa, including a high percentage of fatal and major injury crashes. This study was undertaken to examine these crashes, identify major contributing causes, and develop low-cost strategies for reducing the incidence of these crashes. Iowa's extensive crash and roadway system databases were utilized to obtain needed data. Using descriptive statistics, a test of proportions, and crash modeling, various classes of rural secondary roads were compared to similar state of lowa controlled roads in crash frequency, severity, density, and rate for numerous selected factors that could contribute to crashes. The results of this study allowed the drawing of conclusions as to common contributing factors for crashes on low-volume rural roads, both paved and unpaved. Due to identified higher crash statistics, particular interest was drawn to unpaved rural roads with traffic volumes greater than 100 vehicles per day. Recommendations for addressing these crashes with low-cost mitigation are also included. Because of the isolated nature of traffic crashes on low-volume roads, a systemic or mass action approach to safety mitigation was recommended for an identified subset of the entire system. In addition, future development of a reliable crash prediction model is described. 17. Key Words Its. Distribution Statement crash mitigation—crash model—fatal and major injury crashes—low-volume road safety—tural road safety—unpaved road safety Its. No. of Pages 22. Price 19. Security Classification (of this							
traffic volumes of less than 400 vehicles per day. However, these low-volume rural roads also account for about half of all recorded traffic crashes in Iowa, including a high percentage of fatal and major injury crashes. This study was undertaken to examine these crashes, identify major contributing causes, and develop low-cost strategies for reducing the incidence of these crashes. Iowa's extensive crash and roadway system databases were utilized to obtain needed data. Using descriptive statistics, a test of proportions, and crash modeling, various classes of rural secondary roads were compared to similar state of Iowa controlled roads in crash frequency, severity, density, and rate for numerous selected factors that could contribute to crashes. The results of this study allowed the drawing of conclusions as to common contributing factors for crashes on low-volume rural roads, both paved and unpaved. Due to identified higher crash statistics, particular interest was drawn to unpaved rural roads with traffic volumes greater than 100 vehicles per day. Recommendations for addressing these crashes with low-cost mitigation was recommended for an identified subset of the entire system. In addition, future development of a reliable crash prediction model is described. 17. Key Words Is. Distribution Statement crash mitigation—crash model—fatal and major injury crashes—low-volume road a safety—rural road safety—unpaved road safety No restrictions. 19. Security Classification (of this report) 20. Security Classification (of this page) 21. No. of Pages 22. Price							
traffic crashes in Iowa, including a high percentage of fatal and major injury crashes. This study was undertaken to examine these crashes, identify major contributing causes, and develop low-cost strategies for reducing the incidence of these crashes. Iowa's extensive crash and roadway system databases were utilized to obtain needed data. Using descriptive statistics, a test of proportions, and crash modeling, various classes of rural secondary roads were compared to similar state of Iowa controlled roads in crash frequency, severity, density, and rate for numerous selected factors that could contribute to crashes. The results of this study allowed the drawing of conclusions as to common contributing factors for crashes on low-volume rural roads, both paved and unpaved. Due to identified higher crash statistics, particular interest was drawn to unpaved rural roads with traffic volumes greater than 100 vehicles per day. Recommendations for addressing these crashes with low-cost mitigation are also included. Because of the isolated nature of traffic crashes on low-volume roads, a systemic or mass action approach to safety mitigation was recommended for an identified subset of the entire system. In addition, future development of a reliable crash prediction model is described. 17. Key Words 18. Distribution Statement crash mitigation—crash model—fatal and major injury crashes—low-volume road safety—tural road safety—unpaved road safety No restrictions. 19. Security Classification (of this page) 20. Security Classification (of this page) 21. No. of Pages 22. Price							
This study was undertaken to examine these crashes, identify major contributing causes, and develop low-cost strategies for reducing the incidence of these crashes. Iowa's extensive crash and roadway system databases were utilized to obtain needed data. Using descriptive statistics, a test of proportions, and crash modeling, various classes of rural secondary roads were compared to similar state of Iowa controlled roads in crash frequency, severity, density, and rate for numerous selected factors that could contribute to crashes. The results of this study allowed the drawing of conclusions as to common contributing factors for crashes on low-volume rural roads, both paved and unpaved. Due to identified higher crash statistics, particular interest was drawn to unpaved rural roads with traffic volumes greater than 100 vehicles per day. Recommendations for addressing these crashes with low-cost mitigation are also included. Because of the isolated nature of traffic crashes on low-volume roads, a systemic or mass action approach to safety mitigation was recommended for an identified subset of the entire system. In addition, future development of a reliable crash prediction model is described. 17. Key Words 18. Distribution Statement crash mitigation—crash model—fatal and major injury crashes—low-volume road safety—rural road safety—unpaved road safety 11. No. of Pages 19. Security Classification (of this page) 20. Security Classification (of this page) 21. No. of Pages 22. Price				at han of an recorded			
incidence of these crashes. Iowa's extensive crash and roadway system databases were utilized to obtain needed data. Using descriptive statistics, a test of proportions, and crash modeling, various classes of rural secondary roads were compared to similar state of Iowa controlled roads in crash frequency, severity, density, and rate for numerous selected factors that could contribute to crashes. The results of this study allowed the drawing of conclusions as to common contributing factors for crashes on low-volume rural roads, both paved and unpaved. Due to identified higher crash statistics, particular interest was drawn to unpaved rural roads with traffic volumes greater than 100 vehicles per day. Recommendations for addressing these crashes with low-cost mitigation are also included. Because of the isolated nature of traffic crashes on low-volume roads, a systemic or mass action approach to safety mitigation was recommended for an identified subset of the entire system. In addition, future development of a reliable crash prediction model is described. 17. Key Words 18. Distribution Statement crash mitigation—crash model—fatal and major injury crashes—low-volume road safety—rural road safety—unpaved road safety No restrictions. 19. Security Classification (of this report) 20. Security Classification (of this page) 21. No. of Pages 22. Price							
statistics, a test of proportions, and crash modeling, various classes of rural secondary roads were compared to similar state of Iowa controlled roads in crash frequency, severity, density, and rate for numerous selected factors that could contribute to crashes. The results of this study allowed the drawing of conclusions as to common contributing factors for crashes on low-volume rural roads, both paved and unpaved. Due to identified higher crash statistics, particular interest was drawn to unpaved rural roads with traffic volumes greater than 100 vehicles per day. Recommendations for addressing these crashes with low-cost mitigation are also included. Because of the isolated nature of traffic crashes on low-volume roads, a systemic or mass action approach to safety mitigation was recommended for an identified subset of the entire system. In addition, future development of a reliable crash prediction model is described. 17. Key Words Is. Distribution Statement crash mitigation—crash model—fatal and major injury crashes—low-volume road safety—rural road safety—unpaved road safety. No restrictions. 19. Security Classification (of this report) 20. Security Classification (of this page) 21. No. of Pages 22. Price							
controlled roads in crash frequency, severity, density, and rate for numerous selected factors that could contribute to crashes. The results of this study allowed the drawing of conclusions as to common contributing factors for crashes on low-volume rural roads, both paved and unpaved. Due to identified higher crash statistics, particular interest was drawn to unpaved rural roads with traffic volumes greater than 100 vehicles per day. Recommendations for addressing these crashes with low-cost mitigation are also included. Because of the isolated nature of traffic crashes on low-volume roads, a systemic or mass action approach to safety mitigation was recommended for an identified subset of the entire system. In addition, future development of a reliable crash prediction model is described. 17. Key Words 18. Distribution Statement crash mitigation—crash model—fatal and major injury crashes—low-volume road safety—rural road safety—unpaved road safety 18. Distribution Statement No restrictions. 19. Security Classification (of this report) 20. Security Classification (of this page) 21. No. of Pages							
The results of this study allowed the drawing of conclusions as to common contributing factors for crashes on low-volume rural roads, both paved and unpaved. Due to identified higher crash statistics, particular interest was drawn to unpaved rural roads with traffic volumes greater than 100 vehicles per day. Recommendations for addressing these crashes with low-cost mitigation are also included. Because of the isolated nature of traffic crashes on low-volume roads, a systemic or mass action approach to safety mitigation was recommended for an identified subset of the entire system. In addition, future development of a reliable crash prediction model is described. 17. Key Words I8. Distribution Statement crash mitigation—crash model—fatal and major injury crashes—low-volume road safety—rural road safety—unpaved road safety 18. Distribution Statement 19. Security Classification (of this report) 20. Security Classification (of this page) 21. No. of Pages 22. Price							
both paved and unpaved. Due to identified higher crash statistics, particular interest was drawn to unpaved rural roads with traffic volumes greater than 100 vehicles per day. Recommendations for addressing these crashes with low-cost mitigation are also included. Because of the isolated nature of traffic crashes on low-volume roads, a systemic or mass action approach to safety mitigation was recommended for an identified subset of the entire system. In addition, future development of a reliable crash prediction model is described. 17. Key Words I8. Distribution Statement crash mitigation—crash model—fatal and major injury crashes—low-volume road safety—rural road safety—unpaved road safety No restrictions. 19. Security Classification (of this report) 20. Security Classification (of this page) 21. No. of Pages 22. Price							
volumes greater than 100 vehicles per day. Recommendations for addressing these crashes with low-cost mitigation are also included. Because of the isolated nature of traffic crashes on low-volume roads, a systemic or mass action approach to safety mitigation was recommended for an identified subset of the entire system. In addition, future development of a reliable crash prediction model is described. 17. Key Words I8. Distribution Statement crash mitigation—crash model—fatal and major injury crashes—low-volume road safety—rural road safety—unpaved road safety I8. Distribution Statement No restrictions. No restrictions. 19. Security Classification (of this report) 20. Security Classification (of this page) 21. No. of Pages 22. Price							
Because of the isolated nature of traffic crashes on low-volume roads, a systemic or mass action approach to safety mitigation was recommended for an identified subset of the entire system. In addition, future development of a reliable crash prediction model is described. 17. Key Words 18. Distribution Statement crash mitigation—crash model—fatal and major injury crashes—low-volume road safety—rural road safety—unpaved road safety No restrictions. 19. Security Classification (of this report) 20. Security Classification (of this page) 21. No. of Pages 22. Price							
recommended for an identified subset of the entire system. In addition, future development of a reliable crash prediction model is described. 17. Key Words I8. Distribution Statement crash mitigation—crash model—fatal and major injury crashes—low-volume road safety—rural road safety—unpaved road safety No restrictions. 19. Security Classification (of this report) 20. Security Classification (of this page) 21. No. of Pages 22. Price							
17. Key Words 18. Distribution Statement crash mitigation—crash model—fatal and major injury crashes—low-volume road safety—rural road safety—unpaved road safety No restrictions. 19. Security Classification (of this report) 20. Security Classification (of this page) 21. No. of Pages 22. Price							
crash mitigation—crash model—fatal and major injury crashes—low-volume road safety—rural road safety—unpaved road safety No restrictions. 19. Security Classification (of this report) 20. Security Classification (of this page) 21. No. of Pages 22. Price	described.						
crash mitigation—crash model—fatal and major injury crashes—low-volume road safety—rural road safety—unpaved road safety No restrictions. 19. Security Classification (of this report) 20. Security Classification (of this page) 21. No. of Pages 22. Price							
crash mitigation—crash model—fatal and major injury crashes—low-volume road safety—rural road safety—unpaved road safety No restrictions. 19. Security Classification (of this report) 20. Security Classification (of this page) 21. No. of Pages 22. Price							
crash mitigation—crash model—fatal and major injury crashes—low-volume road safety—rural road safety—unpaved road safety No restrictions. 19. Security Classification (of this report) 20. Security Classification (of this page) 21. No. of Pages 22. Price							
crash mitigation—crash model—fatal and major injury crashes—low-volume road safety—rural road safety—unpaved road safety No restrictions. 19. Security Classification (of this report) 20. Security Classification (of this page) 21. No. of Pages 22. Price							
crash mitigation—crash model—fatal and major injury crashes—low-volume road safety—rural road safety—unpaved road safety No restrictions. 19. Security Classification (of this report) 20. Security Classification (of this page) 21. No. of Pages 22. Price							
safety—rural road safety—unpaved road safety 20. Security Classification (of this report) 21. No. of Pages 22. Price	17. Key Words		18. Distribution Statem	ient			
19. Security Classification (of this report)20. Security Classification (of this page)21. No. of Pages22. Price			No restrictions.				
report) page)		-	21. No. of Pages	22. Price			
	•	-					
	Unclassified.	Unclassified.	120	NA			

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

Safety Analysis of Low-Volume Rural Roads in Iowa

Final Report December 2010

Principal Investigator

Reginald R. Souleyrette Gerald and Audrey Olson Professor of Civil Engineering Institute for Transportation, Iowa State University

Graduate Assistant Mehmet Caputcu Institute for Transportation, Iowa State University

Collaborators Thomas J. McDonald Research Engineer Institute for Transportation, Iowa State University

Robert B. Sperry Research Engineer Institute for Transportation, Iowa State University

Zachary N. Hans Research Engineer Institute for Transportation, Iowa State University

Preparation of this report was financed in part from funds provided by the Iowa Department of Transportation through its research management agreement with the Institute for Transportation (InTrans Project 07-309)

> A report from Institute for Transportation Iowa State University 2711 South Loop Drive, Suite 4700 Ames, IA 50010-8664 Phone: 515-294-8103 Fax: 515-294-0467 www.intrans.iastate.edu

TABLE OF CONTENTS

ACK	XNOWLEDGMENTS	IX
1.	INTRODUCTION AND PROBLEM IDENTIFICATION	1
	Background	2
	Survey of County Engineers	9
2.	PREVIOUS WORK	10
	Low-Volume Road Safety Problems	10
	Low-Volume Road Safety Solutions	
	2006 CHSP Local Roads Team Strategy Plan	
	Rural Local Road Trends Urban Local Road Trends	
	General Trend Observations	
	Proposed Strategies	
	Recommended Programs and Projects	30
3.	METHODOLOGY	32
	1. Descriptive Statistics and Statistical Tests	32
	Test of Proportions	
	2. Crash Model Development	34
4.	ANALYSIS AND RESULTS	36
	Statewide Descriptive Statistics and Statistical Tests	36
	Descriptive Statistics	
	Test of Proportions Results	
_		
5.	SUPPLEMENTAL ANALYSES	
	Younger Drivers	
	Crashes Involving Agricultural Equipment Crash Level Model	
	Three-Leg Intersections	
6.	CONCLUSIONS AND RECOMMENDATIONS	
	Conclusions	
	Recommendations	
7.	REFERENCES	51
APP	ENDIX 1. HISTORICAL SUMMARY OF RURAL CRASH AND FATALITY RATE	S53
APP	ENDIX 2. SUMMARY OF COUNTY ENGINEERS SURVEY	55
APP	ENDIX 3. DETAILED STUDY OF CRASH RECORDS AND FIELD CONDITIONS	61
	Selection of Candidate Counties for Detailed Study	
	Selected Counties.	
	Selection of Candidate Sites and Routes for Detailed Study	61

Road Segment Selection	62
Intersection Selection	
Field and Detailed Evaluation	65
Field Visits and Imaging	66
Video and Photo Processing	
Video Evaluation	
APPENDIX 4. PRELIMINARY CHARACTERISTICS OF INTEREST FOR SITE VISITS (DESIRED DATA FOR CRASH SITE REVIEW)	69
APPENDIX 5. SAMPLE TABLE SHOWING THE TEST OF PROPORTIONS RESULTS (0-100 UNPAVED SECONDARY VS. TWO-LANE PRIMARY)	71
APPENDIX 6. SUMMARY OF RESULTS FROM TEST OF PROPORTIONS ON SEVEN COMPARISON PAIRS	77
APPENDIX 7. COMPARISON DATA FOR VARIOUS ROAD CLASSES	83
APPENDIX 8. LIMDEP MODEL	.101
Variables	.101
County Data	
Limdep Output	

LIST OF FIGURES

Figure 1. Percent distribution of roadway characteristics of undivided two-lane rural roads	
in Iowa by road category	2
Figure 2. Trends in safety performance of undivided two-lane rural roads in Iowa, by road	
category and average annual daily traffic	5
Figure 3. Historical trend of fatal crash rates on Iowa rural roads	6
Figure 4. Historical trend of fatal and injury crash rates on Iowa rural roads	7
Figure 5. Historical trend of total crash rates on Iowa rural roads	7
Figure 6. Thematic maps showing crash frequency, density, and rate by county	8
Figure 7. Unpaved roads > 100 AADT	50
Figure 8. Site visit map for Winneshiek County	62
Figure 9. Sample "AADT-consistent" corridor	63
Figure 10. Map marking style for segments	64
Figure 11. Map marking style for intersections	65
Figure 12. Screen snapshot of the resources used in the evaluation procedure	67

LIST OF TABLES

Table 1. Nationwide summary of fatality rate and density on rural local roads by state	3
Table 2. Characteristics of rural undivided two-lane roads in Iowa 2001-2007 total	4
Table 3. Geometric features of undivided two-lane rural roads in Iowa by centerline miles	
and percent distribution	4
Table 4. Summary of accident types and characteristics for low-volume road sites	11
Table 5. Wyoming injury crash rates for selected unpaved road sections vs. all roads	13
Table 6. Speed data based on road types	14
Table 7. Speed data under different weather conditions	14
Table 8. Percentage of crashes on gravel roads for different speed limits and crash severities .	14
Table 9. Categories of the variables for crashes on gravel roads	
Table 10. Characteristics of gravel road crashes in Kansas (1996-2005)	16
Table 11. A proposed approach for functional classification of rural local roads	20
Table 12. Serious single-vehicle run-off road and multiple-vehicle cross centerline crashes	22
Table 13. Iowa rural local roads – serious crashes by age 2001-2005	23
Table 14. Iowa rural local roads – serious crashes by time of day 2001-2005	24
Table 15. Iowa rural local roads serious crashes – driver contributing circumstances	
2001-2005	25
Table 16. Iowa urban local roads serious crashes – driver contributing circumstances	
2001-2005	
Table 17. Iowa urban local roads – serious crashes by time of day 2001-2005	
Table 18. Iowa urban local roads – serious crashes by age 2001-2005	
Table 19. Data sources utilized in the study	
Table 20. Partial summary of descriptive statistics for two-lane rural Iowa roads	
Table 21. Road category comparison	38
Table 22. Highest relative differences (>3.0) in crash proportions, low-volume	
(0-400 AADT) rural roads compared to primary two-lane rural roads 2001-2008	39
Table 23. Highest absolute differences in crash proportions (>10%), secondary low-volume	
(0-400 AADT) rural roads compared to primary two-lane rural roads 2001-2008	40
Table 24. Highest relative differences (>3.0), secondary unpaved ($>= 100 \text{ AADT}$)	
rural roads compared to primary two-lane rural roads 2001-2008	41
Table 25. Highest absolute differences (>10%), secondary unpaved (>100 AADT)	
rural roads compared to primary two-lane rural roads 2001-2008	42

ACKNOWLEDGMENTS

The content of this report reflects the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. The opinions, findings, and conclusions expressed in this publication are those of the authors and not necessarily those of the sponsors.

The sponsors assume no liability for the content or use of the information contained in this document. This report does not constitute a standard, specification, or regulation.

This project was supported by the Iowa Department of Transportation (DOT) Office of Traffic and Safety using Traffic Safety Improvement Program funds.

The authors wish to thank the following individuals for their contributions to this report:

- Project advisory committee members:
 - Bill Belzer, Henry County
 - LeRoy Bergmann, Local Systems-Iowa DOT
 - Lee Bjerke, Winneshiek County
 - Jim George, Dallas County
 - Troy Jerman, Traffic Safety-Iowa DOT
 - Darren Moon, Story County
 - o Michael Pawlovich, Traffic Safety-Iowa DOT
- Professor Nadia Gkritza of the Center for Transportation Research and Education (CTRE)

1. INTRODUCTION AND PROBLEM IDENTIFICATION

Each year in the United States, about 40,000 people lose their lives in highway crashes. Many of these fatal crashes occur on high-speed, higher-volume roads. It is on these roads that most efforts have been targeted, particularly by the engineering and enforcement communities. Also, most previous crash mitigation strategies have targeted high-crash locations or "black spots." Naturally, because vehicular traffic, or exposure, is the greatest predictor of a road's crash performance, it has been logical to focus on higher-volume roads and intersections that, statistically speaking, have many more crashes than their lower-volume road (LVR) counterparts. These higher-volume roads were, and, in some cases, still are, the greatest "sites with promise" for improvement.

The focus of this study is a crash analysis of low-volume roads in Iowa. Low-volume roads are defined as roads located in rural areas with daily traffic volumes of less than or equal to 400 vehicles per day (vpd). Low-volume roads are typically undivided, two-lane roads, either paved or unpaved. As the vast majority of state-owned and maintained (primary) rural roads in Iowa have daily volumes greater than 400 vpd, primary roads are not considered to be low-volume roads in this study. LVRs in Iowa and in similar rural states experience a greater proportion of the total statewide number of severe crashes than do Rural LVRs in more populous states.

During a seven-year period (2001–2007), more than 6,000 fatal and major injury crashes were observed on undivided, two-lane rural roads in Iowa. More than 4,000 of these crashes occurred on local roads, while less than 2,000 took place on primary roads. Half of the rural local road crashes were on facilities with 400 vpd or less traffic. Local roads in Iowa comprise the majority of the rural surface transportation system, or about 90,000 miles of roads, of which almost 80% are unpaved (source: Iowa Department of Transportation (DOT) Office of Transportation Data). Most of these roads experience very low traffic volumes. Because of the roads' low volumes, fewer crashes can be expected at given low-volume road locations. As a result, the traditional "black spot" approach to addressing safety problems on these low-volume roads is not as cost-effective as on other roads. "Chasing fatals" can be the outcome of deploying such a strategy. Due to the random nature of low-volume road crashes, a more systematic or mass-action approach is necessary.

While much work has been done to identify safety problems and develop mitigation strategies for higher-volume roads, less effort has gone toward rural LVR safety issues, especially in Iowa. However, interest in rural LVR safety is increasing nationally. Iowa is in a unique position to study rural LVR safety, primarily due to the state's detailed crash and roadway feature databases.

Therefore, this project was proposed to investigate low-volume rural road safety in Iowa, identify safety concerns, and propose safety mitigation strategies to address the identified problems. The study focused on both paved and unpaved low-volume local roads (or secondary roads) and compares the safety performance of these types of roads to each other and to the statemaintained, paved, two-lane roads that carry mostly higher volumes and generally benefit from a more consistent maintenance and traffic control policy. While the study focuses only on Iowa, results are extensible to other states and regions.

Historically, most of the attention paid to safety improvements has been directed toward highervolume roadways. However, current crash data reveal that more than half of all fatal and serious injury crashes on Iowa's local rural roads occur on facilities with less than 400 vpd. More information is needed to identify potential problem areas on these low-volume roads and devise mitigation strategies to address this serious public safety concern.

This project addressed the problem of rural low-volume road safety by initiating an in-depth database investigation of the history of total and serious crashes on very low-volume rural roads, paved and unpaved, over the most current years on record. Contributing cause, driver characteristics, and crash location were characterized to identify any areas of commonality among these crashes. Statistical tests (tests of proportions) were applied to identify the unique safety concerns on rural low-volume roads. Site-specific conditions were evaluated from video and still photography, and individual crash records and narratives were reviewed. Finally, a crash-based model was developed to investigate key causal factors.

Background

Iowa is among the most rural states in the United States. It has the ninth largest network of rural local roads and the fifteenth highest fatality rate, as shown in Table 1. (Note: The Federal Highway Administration (FHWA) uses a different definition of local road than is used in this report, and, as such, numbers from this table are used to compare states only). The table also shows that some other Midwestern states demonstrate similarly high rankings and large rural local roads networks.

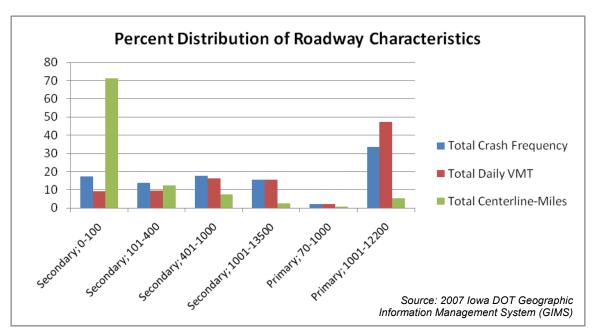


Figure 1. Percent distribution of roadway characteristics of undivided two-lane rural roads in Iowa by road category

	Number of	Travel	Length	Rate	Rank by	Density	Rank by
State	Fatalities	(MVMT)	(miles)	(Fatality/MVMT)	Rate	(Fatality/Miles)	Density
Grand Total	4,263	133,378	2,046,806	0.032	19	0.002	23
U.S. Total	4,219	133,282	2,044,508	0.032	20	0.002	24
Texas	346	7,043	148,526	0.049	8	0.002	19
Kansas	64	1,642	87,448	0.039	14	0.001	42
Missouri	113	3,766	76,898	0.030	24	0.001	34
Minnesota	65	2,813	76,442	0.023	33	0.001	41
Illinois	109	4,020	72,940	0.027	29	0.001	32
Oklahoma	127	2,757	67,548	0.046	10	0.002	26
North Dakota	28	923	67,514	0.030	23	0.000	48
Wisconsin	98	3,613	64,570	0.027	28	0.002	31
lowa	59	1,552	64,394	0.038	15	0.001	39
Arkansas	101	1,947	62,682	0.052	6	0.002	30
Nebraska	35	1,089	59,634	0.032	18	0.001	45
Ohio	174	6,012	57,236	0.029	26	0.003	9
Michigan	110	2,360	56,976	0.047	9	0.002	25
South Dakota	32	510	56,062	0.063	4	0.001	46
Pennsylvania	151	7,291	54,350	0.021	36	0.003	12
Georgia	109	7,225	52,301	0.015	42	0.002	22
California	117	2,814	51,451	0.042	12	0.002	21
North Carolina	302	5,067	51,366	0.060	5	0.006	4
Alabama	133	6,679	49,859	0.020	38	0.003	14
Indiana	151	3,338	49,162	0.045	11	0.003	8
Tennessee	79	3,223	48,355	0.025	31	0.002	29
Colorado	32	1,543	47,726	0.021	35	0.001	43
Montana	53	1,026	47,531	0.052	7	0.001	37
Kentucky	107	3,429	46,166	0.031	21	0.002	20
New York	167	4,646	44,513	0.036	17	0.004	7
New Mexico	21	3,538	44,164	0.006	48	0.000	47
Mississippi	7	6,684	43,569	0.001	50	0.000	50
Washington	36	1,157	42,011	0.031	22	0.001	40
Louisiana	102	2,685	34,027	0.038	16	0.003	10
Virginia	85	3,181	33,213	0.027	30	0.003	16
South Carolina	0	2,310	31,986	0.000	53	0.000	53
Oregon	35	1,699	30,219	0.021	37	0.001	36
Idaho	19	2,274	29,060	0.008	46	0.001	44
Arizona	69	3,983	27,819	0.017	39	0.002	17
Florida	707	6,641	26,735	0.106	2	0.026	1
Utah	29	1,009	23,049	0.029	27	0.001	35
West Virginia	52	1,309	21,855	0.040	13	0.002	18
Nevada	0	487	19,615	0.000	51	0.000	51
Maine	32	1,454	12,267	0.022	34	0.003	15
Wyoming	11	726	10,546	0.015	41	0.001	38
Maryland	49	1,668	9,225	0.029	25	0.005	6
Vermont	16	1,295	8,743	0.012	44	0.002	27
New Hampshire	14	572	7,693	0.024	32	0.002	28
Alaska	3	511	7,670	0.006	49	0.000	49
Massachusetts	8	688	5,384	0.012	45	0.001	33
New Jersey	15	1,014	5,287	0.015	43	0.003	11
Connecticut	12	781	4,363	0.015	40	0.003	13
Delaware	28	425	2,304	0.066	3	0.012	3
Puerto Rico	44	96	2,298	0.458	1	0.019	2
Hawaii	7	840	1,191	0.008	47	0.006	5
Rhode Island	0	23	863	0.000	52	0.000	52

Table 1. Nationwide summary of fatality rate and density on rural local roads by state

Source: Adapted from Highway Statistics developed by the FHWA 2006

Figure 1, Table 2, and Table 3present information on various characteristics of undivided twolane rural roads in Iowa. As shown in Table 2, the crash rate per 100 million vehicle miles traveled (100MVMT) is disproportionately high for the lowest-volume secondary roads being investigated. As shown graphically in Figure 1, the reason for the extremely low crash density is clearly based on the vast mileage of the low-volume system.

Road Category (Road System; AADT Range)	Weighted Average of ADT	Total Crash Frequency		Total Daily VMT	%	Total Centerline- Miles	%	Crash Rate (per 100M VMT)	Crash Density (crash per 100 miles)
Secondary; 0-100	37	16,510	17	2,519,000	9	67,963	71	257	24
Secondary; 101-400	220	13,105	14	2,588,000	10	11,766	12	198	111
Secondary; 401-1000	630	16,684	18	4,443,000	16	7,053	7	147	237
Secondary; 1001-13500	1,700	14,784	16	4,217,000	15	2,547	3	137	580
Primary; 70-1000	770	1,995	2	583,600	2	761	1	134	262
Primary; 1001-12200	2,500	32,045	34	12,880,000	47	5,202	5	97	616

Table 2. Characteristics of rural undivided two-lane roads in Iowa 2001-2007 total

Source: 2001-2007 Iowa DOT Crash Database and 2007 GIMS

Table 3. Geometric features of undivided two-lane rural roads in Iowa by centerline miles and percent distribution

Road Syst AADT Ran		Seconda 0-10		Second 101-4		Second 401-1(Second 1001-13		Prima 70-10		Prima 1001-12		Grand Total		Second 0-40	
		Length	%	Length	%	Length	%	Length	%	Length	%	Length	%	Length	%	Length	%
Grand	Total:	67,963	71	11,766	12	7,053	7	2,547	3	761	1	5,202	5	95,291		79,729	
Surface	Paved	1,063	2	7,421	63	6,986	99	2,537	100	761	100	5,202	100	23,970	25	8,484	11
Туре	Unpaved	66,900	98	4,345	37	66	1	10						71,321	75	71,245	89
Surface	>= 24 ft	35,070	52	4,372	37	1,382	20	1,047	41	417	55	4,532	87	46,821	49	39,442	49
Width	< 24 feet	32,893	48	7,394	63	5,670	80	1,500	59	344	45	669	13	48,470	51	40,286	51
Shoulder	Yes	63,044	93	11,720	100	7,027	100	2,534	99	760	100	5,186	100	90,271	95	74,764	94
Shoulder	No	4,919	7	45		26		13	1	1		16		5,020	5	4,965	6
	Flat	20,878	31	3,996	34	2,626	37	940	37	290	38	2,219	43	30,948	32	24,873	31
Tonnoin	Rolling	43,351	64	7,046	60	4,090	58	1,501	59	420	55	2,819	54	59,228	62	50,397	63
Terrain	Hilly	3,344	5	722	6	336	5	107	4	51	7	164	3	4,723	5	4,066	5
	N/A	390	1	2										392		392	0

Source: 2001-2007 Iowa DOT GIMS

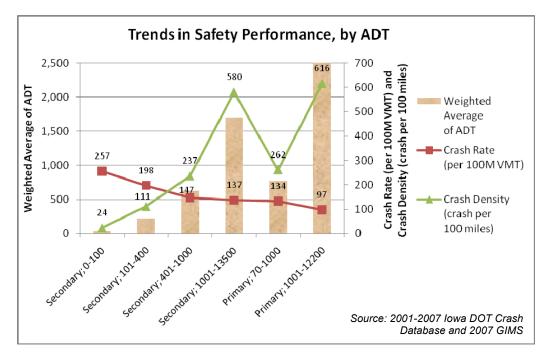


Figure 2. Trends in safety performance of undivided two-lane rural roads in Iowa, by road category and average annual daily traffic

As shown in Figure 2, the crash *density* of secondary roads with traffic volumes greater than 1,000 vehicles per day (VPD) is similar to that of state highways with the same volumes, although the crash *rate* for the secondary roads is nearly one and a half times that of primary roads. The road characteristics in Table 3 provide a partial explanation, as early design standards for secondary roads were not as high as those used for paving primary highways.

Figures 3 through 5 summarize historical trends for fatal, fatal and injury, and total crash rates on roads belonging to three rural jurisdictional classes.

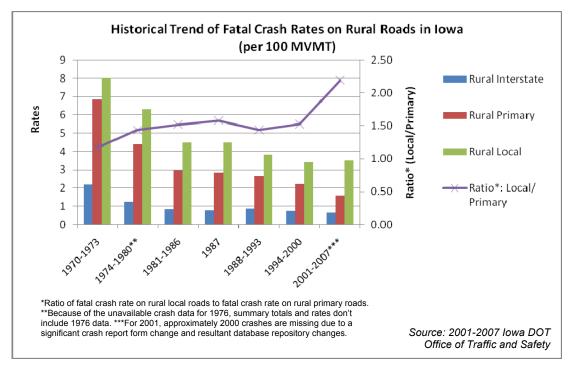


Figure 3. Historical trend of fatal crash rates on Iowa rural roads

Figure 3 shows a significant increase in the ratio of local to primary crash rates in the past few years. Figure 4 and Figure 5 show a similar increasing trend, although to a lesser degree. These trends may be explained partially by the success of improvements made to the primary system. Potentially contributing to the trend was the transfer of more than 850 miles of rural roads from state to local jurisdiction beginning in 2005. While lower in volume, compared to other primary roads, these "TJed" roads carry greater average daily traffic than most local roads in Iowa (See Appendix 1. *Historical Summary of Rural Crash and Fatality Rates* for details).

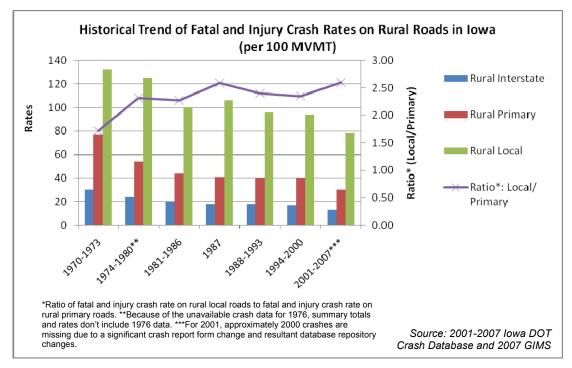


Figure 4. Historical trend of fatal and injury crash rates on Iowa rural roads

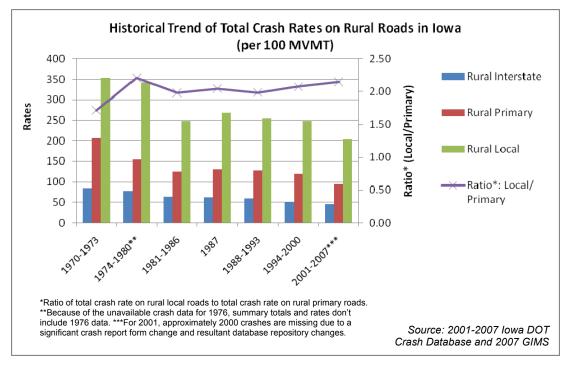


Figure 5. Historical trend of total crash rates on Iowa rural roads

Figure 6 illustrates low-volume (<400 VPD) road crash frequency, density, and rate, by county, for all crashes (top) and serious or fatal and major injury crashes (bottom). Relative crash risk in each county is represented by a color. (Black represents the highest 5% risk group, red the next

10% highest, yellow the next 20%, light green the next 25%, and dark green the lowest 40%.) Five years of crash data (2002-2006) are depicted. Crashes at intersections with primary roads and other secondary roads carrying higher (>400 VPD) volumes were excluded.

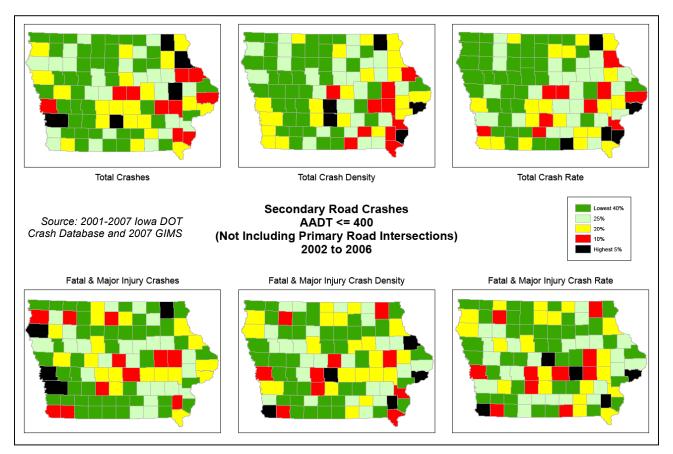


Figure 6. Thematic maps showing crash frequency, density, and rate by county

Survey of County Engineers

An informal survey of county engineers was conducted during by the Institute for Transportation (InTrans) County Traffic Safety Liaison to assess initial perceptions of the major causes of crashes on low-volume roads. The survey also included questions about the county's utilization of DOT safety programs and assistance. Engineers were asked about county policies and practices with respect to signing, maintenance, traffic operations, safety awareness, and training.

Full responses were received from 73 counties:

- 16% of counties have stops or yields at all railroad crossings (90% of Iowa's counties have railroad crossings)
- 52% of counties have control at all rural intersections
- 20% of counties do not use Iowa's crash mapping analysis tool (CMAT) in their offices
- All counties have safety brochures and pamphlets on best practices in their office libraries
- 29% of counties have not been active in the past few years in DOT safety programs, nor have county representatives attended fall safety seminars
- Most counties have Roadside Safety Programs in existence to remove obstructions from the clear zones; several degrees of activity were noted, with most counties being reactive to new placements
- Only 8% of counties have no existing sign inventory, and all are working on developing one (or improving the one they do have) to ease the burden of future record keeping for sign retroreflectivity

After the commencement of this project, 41 surveys were conducted. For these, the number of responses indicating perceptions of various crash causes for low-volume roads included:

- Distractions/ inattention 19
- Young/inexperience 12
- Alcohol/drugs 11
- Speed 10
- Road geometry 9
- Farm related 7

More complete survey details are presented in Appendix 2. *Summary of County Engineers Survey*.

2. PREVIOUS WORK

Low-volume roads are defined in the 2003 Manual on Uniform Traffic Control Devices (MUTCD) Part-5 as follows:

Standard: A low-volume road shall be defined for this Part of the Manual as follows:

- A. A low-volume road shall be a facility lying outside of built-up areas of Cities, towns, and communities, and it shall have a traffic volume of less than 400 AADT.
- B. A low-volume road shall not be a freeway, expressway, interchange ramp, freeway service road, or a road on a designated State highway system. In terms of highway classification, it shall be a variation of a conventional road or a special purpose road as defined in Section 2A.01.
- C. A low-volume road shall be classified as either paved or unpaved. (p. 5A-1)

The manual supplements the above definition with the following:

Support: Low-volume roads typically include farm-to-market, recreational, resource management and development, and local roads.

Guidance: The needs of unfamiliar road users for occasional, recreational, and commercial transportation purposes should be considered. (p. 5A-1)

To better understand the safety issues and possible mitigation strategies for roads of this classification, a review of low-volume rural road literature was conducted. Relevant studies about safety problems and improvement solutions are presented in the following two subsections.

Low-Volume Road Safety Problems

The Rural Transportation Initiative of the United States Department of Transportation (USDOT 2006) has reported that factors, such as rural terrain, faster -vehicle speeds, relatively high alcohol involvement, and relatively long emergency response times, make rural road crashes more likely than urban crashes to result in fatalities.

Additionally, crash rates have been found to be higher on low-volume roads than on other roads. In a study on a sample of nearly 5,000 miles of paved two-lane rural roads in seven states (Alabama, Michigan, Montana, North Carolina, Utah, Washington, and West Virginia), Zegeer et al. (1994) computed a crash rate of 3.5 per million vehicle miles (MVM) on low-volume roads (defined in the study as roads with ≤2,000 average daily traffic [ADT]), versus a crash rate of 2.4 per MVM on all high-volume roads. Zegeer et al. determined that fixed object crashes, rollover crashes, and other run-off-road crashes were more frequent on the lower-volume roads. However, these roads were found to experience fewer multi-vehicle crashes, including rear-end, angle, and turning collisions (SeeTable 4).

	Primary Da Low-Volu		Cross-S Datab	
Accident Type	Number	Percent		Percent
	of	of Total	Number of	of Total
	Accidents	Accidents	Accidents	Accidents
Total	14,888	100.0	62,676	100.0
Property Damage Only	8,973	60.3	38,857	62.0
Injury	5,632	37.8	22,944	36.6
Fatal	283	1.9	875	1.4
Injuries*	8,768	N/A	37,321	N/A
Fatalities*	328	N/A	1,068	N/A
Daylight	8,050	54.1	37,402	59.7
Dawn/Dusk	820	5.5	2,888	4.6
Dark with Lights	160	1.1	2,770	4.4
Dark without Lights	5,809	39.0	19,496	31.1
Light Unknown	49	0.3	120	0.2
Dry	10,306	69.2	41,957	66.9
Wet	2,442	16.4	13,487	21.5
Snow/Ice	1,952	13.1	6,657	10.6
Unknown Pavement	188	1.3	575	0.9
Run-Off-Road - Fixed Object	4,017	27.0	12,091	19.3
Run-Off-Road - Rollover	1,999	13.4	4,245	6.8
Run-Off-Road - Other	2,287	15.4	2,840	4.5
Head-On	475	3.2	2,113	3.4
Opposite Direction Sideswipe	642	4.3	2,997	4.8
Same Direction Sideswipe	330	2.2	2,288	3.7
Rear-End	893	6.0	12,420	19.8
Parking/Backing	264	1.8	1,155	1.8
Ped/Bike Moped	117	0.8	655	1.0
Angle & Turning	1,773	11.9	14,730	23.5
Train	20	0.1	47	0.1
Animal Other or Unknown	1,404	9.4	5,212	8.3
	667	4.5	1,883	3.0
* The data for these variables re injured or killed, and not the nu			eople	

Table 4. Summary of accident types and characteristics for low-volume road sites

Source: Zegeer et al. 1994

N/A = Not applicable.

This was to be expected due to the lower traffic volumes, which offered less of a chance that two vehicles would be in the same place at the same time. However, it should be noted that the Zegeer et al. study defined low-volume as less than 2,000 VPD. In Iowa, many primary roads fall

into this category, and 2,000 VPD is not considered to be particularly low-volume in some states. The present study defines low-volume as less than 400 VPD, which is a volume consistent with the 2003 MUTCD definition.

Zegeer et al. (1994) also investigated the relationship between roadway width and crash occurrence on low-volume ($\leq 2,000$) rural roads. Estimation results of covariance models showed that the significant estimators of "related accidents," which were defined as single-vehicle and opposite-direction crashes, included lane and shoulder width (or total roadway width), roadside hazard rating and roadside recovery distance, number of driveways per mile, terrain, and state. Roads with relatively wider shoulders or lanes demonstrated lower "related accident" rates, while shoulders being paved or unpaved made no statistically-significant difference. However, narrow, unpaved roads, 20 ft wide or less, demonstrated lower rates, perhaps because of reduced vehicle speeds.

One of the findings of Zegeer et al. was that no significant difference was observed between the crash rates on paved and unpaved roads with 250 VPD or less. Above a daily traffic of 250 VPD, paved roads were found to be significantly safer than unpaved (dirt and gravel) roads. Therefore, the authors recommended that unpaved rural roads with traffic volumes higher than 250 VPD be paved.

Additionally, some studies have found that crash severity is relatively high on low-volume roads. Caldwell and Wilson (1997) compared the injury crash rates on unpaved county road sections in Albany County, Wyoming, to injury crash rates on all roads in the state. Injury risk on county roads was determined to be more than five times higher than on all roads (See Table 5). However, this report was based on a very small sample of road sections and crashes.

These low-volume road safety problems have been recognized by driver education instructors. The National Education Center for Agricultural Safety (2008) conducted a survey in which driver education teachers were asked about their experience, observations, and opinions on a variety of topics related to rural road driving. 87% of the teachers spent one or more class periods teaching about the hazards of driving on rural roads. 98% indicated that their students had an opportunity to drive on rural roads during their behind-the-wheel training time. The teachers consider the highest risk to young drivers to be caused by the following factors (in order of decreasing importance): 1. Speed, 2. Cell phone usage, 3. Passengers 4. Loose gravel surface, and 5. Impaired nighttime driving.

Interestingly, 89% of the surveyed teachers supported the need for a new optional module with additional materials focusing on rural roadway safety. Several instructors also indicated that there should be a requirement to drive on rural roads, especially gravel, during the behind-the-wheel time. However, some noted that their cars were leased and therefore driving students were not able to drive on gravel roads.

		Daily		Number		Injury
	Number	No.	Road	of Days		Crash Rate
Roadway	of	Veh.	Section	in Study	VMT	per
Section	Injury	(Sept.	Length	(3 yr. 3	(Vehicle Miles	1,000,000
or System	Crashes	1995)	(miles)	mo.)	Traveled)	VMT
Albany Co. #234 (0-1.6 miles)	2	158	1.6	1186	299,821	6.67
Albany Co. #234 (1.6-10 miles)	1	35	8.4	1186	348,684	2.87
Albany Co. #47 (0 - 8 miles)	3	108	8	1186	1,024,704	2.93
Albany Co. #61 (0-15 miles)	3	73	15	11 8 6	1,298,670	2.31
Four Albany Co. Sections Combined	• t _i 9, 1				2,971,879	3.03
1992-1993 All Wyoming	7121				12,969,000,000	0.55

 Table 5. Wyoming injury crash rates for selected unpaved road sections vs. all roads

Source: Caldwell and Wilson 1997

Low-volume rural roads can also be hazardous due to the variety of vehicle types that use them. While not specifically examining low-volume roads, Madsen (2008) presented a summary of farm equipment crashes on upper Midwest roads at the 2008 Midwest Rural Agricultural Safety and Health (MRASH) forum. Using the information available in the Fatality Analysis Reporting System (FARS) database, Madsen summarized five years of recent crash history from nine Midwest states (Illinois, Iowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota, South Dakota, and Wisconsin). He emphasized two hazardous situations: rear-end crashes over a crest vertical curve, and broadside/sideswipe crashes where a farm vehicle driver attempted to make a left turn without noticing a vehicle that was attempting to pass. Madsen concluded that 75% of the injured persons and 60% of those killed in these types of crashes were occupants of the non-farm vehicles. The lack of retroreflective signs and taillights on slow-moving vehicles was identified as a major contributing factor for farm equipment crashes.

Vehicle speeds can also present safety concerns on low-volume roads. In a study on speed limits on gravel roads in Kansas, Liu and Dissanayake (2007) collected speed data, performed a survey of county agencies, and statistically analyzed crash data for gravel roads. The authors recorded the speed and type of 7,175 vehicles under normal weather conditions and the speed of 373 vehicles under bad weather conditions on gravel county and township roads in the state. Table 6 and Table 7 show the mean and 85th percentile speeds by road type and weather condition.

	Road type	Road Width (ft)	Total Volume Observed (vehs)	Heavy Vehicle (%)	ADT (vehs/ day)	Mean Speed (mph)	Pace (mph)	% in Pace	85th Speed (mph)	% of Vehicles > 55 mph
	County	24.2	3,787	19.9	55.5	41.7	37-46	45.5	51.1	9.2
	Township	20.8	3,388	18.7	66	36	31-40	47.4	43.9	8.4
-	Combined	22.4	7,175	19.3	61	38.7	34-43	46.4	47.3	5.2

Table 6. Speed data based on road types

Source: Liu and Dissanayake 2007

Table 7. Speed data under different weather conditions

Weather	Mean Speed (mph)	Pace (mph)	% in Pace	85th Speed (mph)	% of Vehicles > 55 mph
Snow (snowpacked)	36	26-35	55.6	46	0
Rain	33	31-40	38.6	43	0
Fog*	35	N/A	N/A	N/A	0
Clear	38.7	34-43	46.4	47.3	5.2

Source: Liu and Dissanayake 2007

Liu and Dissanayake also considered whether lower speed limits would help decrease severe crashes on these roads. Contrary to what a majority of county road professionals believed, the results shown in Table 8 exhibited no statistical evidence supporting the hypothesis that lowering the speed limit from 55 mph to 45 or 50 mph would improve road safety performance. Lack of posting and enforcement (too expensive for many counties) was given as a possible reason for the lack of correlation between speed policy and safety performance.

Table 8. Percentage of crashes on gravel roads for different speed limits and crash severities

Speed limit			Crash severity			
(mph)	Fatal	Disabled	Non-incapacitating	Possible Injured	Not Injured	Total
30	0.0%	1.4%	10.7%	10.3%	77.5%	100%
35	0.6%	3.2%	16.3%	9.8%	70.1%	100%
40	0.0%	3.9%	11.7%	13.6%	70.9%	100%
45	1.2%	6.6%	12.6%	8.9%	70.7%	100%
50	1.5%	2.3%	18.8%	15.0%	62.4%	100%
55	1.3%	3.5%	16.9%	11.5%	66.8%	100%

Source: Liu and Dissanayake 2007

To determine relationships between crash severity on gravel roads and twelve variables (Table 9), Liu and Dissanayake applied contingency table analysis testing. Each variable, including speed limit, was found to be related to crash severity. However, all but one of these variables (gender) was also found to be correlated with speed limit.

Variables	Categories
Speed limit	30 mph, 35 mph, 40 mph, 45 mph, 50 mph, and 55 mph.
Crash severity	Fatal, Disabled, Non_incapacitating, Possible injured, and Not injured.
Accident class	Non-collision, Overturned, Collision with other vehicle, Animal, and Fixed Object.
Contributing circumstances	Driver, Environment, Road, and Vehicle.
Collision with other vehicles	Head on, Rear end, Angle-side impact, Sideswipe, and Backed-into.
Collision with fixed object	Utility devices, Fence/gate, Ditch, Embankment, and Tree.
Driver age group	Old (65 years), Middle (>25&<65 years), and Young (25 years).
Driver factor	Too fast for conditions, Inattention, Under the influence of alcohol,
	Avoidance/Evasive action, Fail to yield the right of way, and Exceeding posted speed limit.
Driver gender	Female and male.
Light condition	Daylight, Dawn, Dusk, and Dark.
Road characteristics	Straight and Curve.
Surface condition	Dry, Wet, Snow/Slush, Ice/Snowpacked, and Mud/Dirt/Sand.
Weather condition No adverse conditions, Rain, Snow, Fog/Smoke, and Strong Wind.	

Table 9. Categories of the variables for crashes on gravel roads

Source: Kansas Accident Records System (KARS), Kansas Department of Transportation (KDOT) 2007

In a subsequent study, Liu and Dissanayake (2008) developed logistic regression models to identify factors affecting the severity of injury crashes on gravel roads in Kansas. The results revealed that failure to use safety equipment, driver ejection, alcohol involvement, failure to yield right-of-way, inattentive driving, driving too fast for conditions or exceeding speed limit, older driver involvement, and ruts/potholes on surfaces increased the probability of a more severe crash occurring. The authors also found a correlation between higher crash severity and crashes involving an overturned vehicle, head-on collisions, and collisions with fixed objects. A breakdown of crashes in their sample by various characteristics is shown inTable 10.

Local policy may also affect low-volume road crashes. Souleyrette et al. (2005) conducted a study to establish guidelines for removing unnecessary traffic control devices at low-volume rural intersections. The study's survey of county engineers revealed much variation among the policies Iowa counties adopted and procedures they utilized to establish stop control at low-volume rural intersections. Sight distance and crash history were found to be the main criteria that a majority of county engineers used for installing stop control.

The study also concluded that, above a threshold daily entering vehicle (DEV) value of 150 vehicles, uncontrolled intersections tended to have higher crash rates than intersections with two-way stop control. No statistically significant difference was observed below the threshold.

There appeared to be no direct relation between the fraction of stop-controlled intersections and crash rate in a given jurisdiction.

			Crash Severity					
Factors		Fatal	Incapac- itating	Non- Incapaci- tating	Possible	PDO	Total	Percent
	Good weather	252	658	3,038	1,891	11,003	16,842	90.4%
Enviro-	Adverse weather	13	39	266	184	1,291	1,793	9.6%
nment	Dark/Unlit	97	251	1,267	663	5,014	7,292	39.1%
	Day/Light	168	446	2,037	1,412	7,280	11,343	60.9%
	Off roadway	60	115	612	310	1,281	2,378	12.8%
	Ruts	5	30	135	81	250	501	2.7%
Road	Slippery	26	82	460	327	2,498	3,393	18.2%
	Straight& Level	166	356	1,744	1,108	7,171	10,545	56.6%
	Curve/Grade	99	341	1,560	967	5,123	8,090	43.4%
	Alcohol involved	81	147	467	176	546	1,417	7.6%
	Old driver involved	44	67	288	215	1,451	2,065	11.1%
	Young driver					-	-	
	involved	132	405	2,082	1,280	5,988	9,887	53.1%
	Male driver involved	168	411	1,865	1,029	7,535	11,008	59.1%
	Safety equipment not			,	, -	,	,	
	used	36	224	1,761	1,367	10,168	13,556	72.7%
	Driver Ejected	142	145	190	37	22	536	2.9%
Driver	Failed to yield right-							
Driver	of-way	46	95	262	178	766	1,347	7.2%
	Disregarded traffic						-,	
	control devices	17	36	110	58	191	412	2.2%
	Exceeded speed limit	15	49	153	80	206	503	2.7%
	Too fast for							
	conditions	116	331	1,567	864	2,965	5,843	31.4%
	Inattention	133	317	1,408	908	3,700	6,466	34.7%
	Avoidance/evasive			,		,	,	
	action	13	33	310	193	752	1,301	7.0%
	Pedestrian involved	1	3	20	12	2	38	0.2%
	Two-vehicle	79	188	539	390	2,509	3,705	19.9%
	Overturned	97	170	916	546	1,404	3,133	16.8%
Crash Type	Vehicle-animal	1	7	44	48	3,450	3,550	19.1%
	Vehicle-fixed-object	86	318	1,717	1,050	4,431	7,602	40.8%
	Head-on	8	38	81	36	159	322	1.7%
	Rear-end	4	14	62	62	353	495	2.7%
	Angle-side	49	120	328	240	1,245	1,982	10.6%
	Sidewipe	1	4	37	42	417	501	2.7%
	Back-into	0	0	3	4	292	299	1.6%

 Table 10. Characteristics of gravel road crashes in Kansas (1996-2005)

Source: Liu and Dissanayake 2008

Souleyrette et al. drew several conclusions for both stop-controlled and uncontrolled ultra-low-volume (<150 DEV) unpaved intersections. One conclusion was that broadside/right angle crashes were the most prominent multi-vehicle crash types. The major contributing circumstance

at these intersections was failure to yield the right-of-way, though this was not because drivers ignored the STOP sign but because they tended to misjudge gaps and proceeded into the path of oncoming vehicles. Older driver involvement in crashes was underrepresented, perhaps because older drivers either drive with more caution at these intersections or avoid these types of intersections. In contrast, younger driver involvement was somewhat overrepresented at these intersections.

However, other studies have found older drivers to experience more severe injuries. Khattak et al. (2002) estimated an ordered probit model to isolate the factors that contribute to more severe injuries to older drivers (age 65 and older) involved in crashes. Modeling results revealed that the severity of crashes involving older drivers was correlated to the involvement of farm vehicles, more so than for other vehicle types. The model also indicated more severe injuries to older drivers in rural areas, where dark and unlit conditions were found to contribute to injury severity. The authors suggested that older drivers should be made aware of the aforementioned risks when they consider a reduction in their driving.

The following common safety problems for low-volume roads were identified in the *Guide to* Safety Features for Local Roads and Streets (FHWA and NHI 1992):

- Narrow lanes and inadequate shoulders (or no shoulder)
- Sharp horizontal and/or vertical curves
- Inadequate passing, stopping, and horizontal sight distance
- Narrow bridges
- Limited right-of-way
- Inadequate sight distances at intersections
- Frequent roadside obstacles
- Lack of clear roadside recovery area
- Inadequate signing , markings, and delineation

Literature was also reviewed in reference to the identification of high-crash locations on local rural roads. Russell et al. (1996) reported that one or more of the following measures can be applied to identify high-accident locations: accident number, accident severity, accident rate, number rate, severity rate, number quality control, and/or rate quality control. Russell et al. pointed to the actual number of accidents as the basic measure. To account for the severity of crashes, the authors suggested the equivalent property damage only (EPDO) number, which is produced by assigning weights to each severity level.

Ksaibati and Evans (2008) assigned crashes to single-mile strips of roadway in Wyoming and stored the crash data associated with each road segment in an Excel spreadsheet. The authors considered 10 potential procedures for identifying high-risk locations (which were very similar to the measures suggested by Russell et al.):

- 1. Total number of crashes (based on 10 years)
- 2. Total number of crashes/mile (based on 10 years)
- 3. Fatal and injury crashes/mile (based on 10 years)

- 4. EPDO method (based on 10 years)
- 5. Total number of crashes/mile (based on three-year moving average)
- 6. Fatal and injury crashes/mile (based on three-year moving average)
- 7. Total crash rate (based on 10 years)
- 8. Fatal and injury crash rate (based on 10 years)
- 9. Total crash rate (based on three-year moving average)
- 10. Fatal and injury crash rate (based on three-year moving average)

Ksaibati and Evans ranked the road segments by each of these measures and observed only a minor shift in the ranking of the high-risk locations. For the identification process, the authors utilized the ranking by actual number of crashes on respective one-mile segments. They also considered an EPDO method. However, they did not use this method, because fatal crashes were too limited in number, and, therefore, the EPDO method could skew the analysis.

In their report, Ksaibati and Evans provided a sample table that shows the ranking of sections from Laramie County, Wyoming. There were repeated crash frequencies of up to nine crashes per one -mile segment in the county. In a separate study, Zegeer et al. (1994) similarly chose sections with a minimum length of one mile to ensure stability of crash rates by avoiding over/underrepresentation due to too-short of segments. Moreover, Russell et al. emphasized that choosing road segments with low numbers of crashes might provide too many locations to analyze.

To demonstrate the severity weighting, Russell et al. presented an example in which fatal and all injury crashes were considered equivalent to six personal damage only (PDO) crashes.

Low-Volume Road Safety Solutions

Several studies have been conducted to explore mitigation strategies for low-volume roads. The MUTCD provides the following basic recommendations on prioritizing traffic control devices (p. 5A-1):

Support: It is possible, in many cases, to provide essential information to road users on low-volume roads with a limited number of traffic control devices. The focus might be on devices that:

- A. Warn of conditions not normally encountered;
- B. Prohibit unsafe movements; or
- C. Provide minimal destination guidance.

As with other roads, the application of traffic control devices on low-volume roads is based on engineering judgment or studies.

A guide prepared by Russell et al. (1996) for personnel at Local Technical Assistance Program (LTAP) centers in Kansas suggests specific mitigation strategies. The main focus of the report was on specific safety problems and deficiencies on low-volume roads. The researchers

presented basic common solutions from the available literature at the time. They provided design criteria for roadway geometric features, including cross-section elements, clear-zone roadside obstacles, and safe drainage features. Other topics in the guide included the influence of road surface on safety, surface and drainage conditions with respect to safety, sight distance issues, access control, and some principles of good operating practice with emphasis given to driver expectancy, positive guidance, and consistency issues. The report included practical tools for county engineers, such as establishing a maintenance check and sign inventory system, a complaint system, and information deficiency checklists. Guidelines on process-based problem identification and low-cost safety improvements were also provided.

Caldwell and Wilson (1997) similarly conducted research to develop a safety improvement program (SIP) tailored specifically for low-volume unpaved rural roads. The project employed a modified Delphi procedure to obtain input from unpaved road experts and other professionals representing federal and local agencies (FHWA, Wyoming DOT (WYDOT), Wyoming Association of County Engineers and Road Superintendents, Wyoming County Commissioners Association, and regional universities). Crash data and road user assessments were examined to identify safety needs on these roads. The resulting program consisted of the following five steps:

- 1. System-wide prioritization of unpaved roads
- 2. Identification of safety improvements on individual road sections
- 3. Prioritization of safety improvements
- 4. Scheduling and implementing safety improvements
- 5. Program evaluation and update process

Caldwell and Wilson concluded that limitations with local funding and staff must be taken into account before developing an SIP for unpaved roads. The authors also recommended that changes in policies and practices should be considered to evaluate and prioritize unpaved road safety needs.

In addition, Tate and Wilson (1998) conducted research to design a road safety audit (RSA) program specifically for rural local roads. A modified Delphi procedure was used to survey a focus group of experts (county road superintendents and county engineers) from the states in FHWA Region VIII. The members in the group represented the FHWA, Bureau of Land Management, WYDOT, LTAPs, and selected counties. Rural local roads were classified into the following four groups: rural primary, rural secondary, rural local, and rural low-volume local. Tate and Wilson concluded the following:

- Functional classification of rural local roads must be established to structure the safety needs identification process and incremental improvements.
- Most local jurisdictions do not have an adequate safety needs identification process.
- Development of a safety needs identification process for rural roads must account for limited local resources.
- The rural local road safety survey indicated a region-wide belief that an RSA program is justified and useful for rural local jurisdictions as a safety needs identification process.

• Pilot studies demonstrated that RSAs are a simple, yet beneficial, method for evaluating safety needs.

More recently, NCHRP Synthesis 321 (2003), *Roadway Safety Tools for Local Agencies: A Synthesis of Highway Practice*, introduced reactive and proactive safety tools. In the report, two proactive safety tools utilizing an independent team approach to address safety concerns on local roads were defined: the RSA and the road safety audit review (RSAR). The report described the steps in planning an RSAR program and provided a functional classification of rural roads (See Table 11). The RSA was defined as an advanced and systematic process that can be modified for an agency's specific organizational culture and safety priorities. The following were listed as the steps of an RSA:

- Select the road safety audit team
- Provide the relevant data and documentation
- Hold a kickoff meeting
- Assess the data and documents
- Inspect the site
- Discuss audit safety issues with the designer or internal client
- Write the RSA report
- Hold a completion meeting
- Respond to the report
- Implement agreed-on changes
- Share lessons learned

Table 11. A proposed approach for functional classification of rural local roads

Rural Major	Rural	Rural	Rural Major	Rural
High Speed	Minor	Local	Medium Speed	Low-Volume Local
Serves larger towns and other traffic generators not served by higher functional classification systems and serves more important intracounty travel corridors. Typically • Paved surfaces • Traffic volumes up to 400 vpd • Operating speed 40–65 mph • Limited intersections and accesses	Accumulates traffic from local roads, brings all developed areas within reasonable distances of collector roads, provides service to the remaining smaller communities, and links the locally important traffic generators within their rural region. Typically • Unpaved surfaces but some may be paved • Traffic volumes 250–400 vpd • Operating speed 30–60 mph	Provides access to land adjacent to the higher functional classification network and serves travel into isolated areas over relatively short distances. Typically • Unpaved surfaces • Traffic volumes 100–250 vpd • Operating speed 20–45 mph	Serves smaller towns and other traffic generators not served by higher functional classification systems, links these places with nearby cities and larger towns or with higher systems, and serves more important intracounty travel corridors. Links to rural major and collector classifications. Typically • Paved surfaces but some may be unpaved • Traffic volumes up to 400 vpd • Operating speed 30–45 mph • Frequent accesses	 Provides access to adjacent land and serves travel over relatively short distances. Typically Unimproved surfaces and some may be considered improved, but unpaved Traffic volumes 0–100 vpd Operating speed variable

Notes: vpd = vehicles per day. [Source: Local RSAR training materials developed by Eugene M. Wilson, 2001 (see Appendix I).]

Source: Roadway Safety Tools for Local Agencies - A Synthesis of Highway Practice, NCHRP Synthesis 321, 2003

The report provided a sample RSAR report of rural local roads from an undisclosed county in the form of an "RSAR Tool Kit." Reactive analysis tools discussed in the report covered a broad compilation of key points identified in several important publications. The reactive safety tools approach was supplemented by a checklist for before-and-after analysis decisions and by suggestions for local agencies to consider in applying basic reactive safety tools. The report included a summary table that integrates the safety tools presented and enables local agencies to readily reach the desired solutions. Both a rural and an urban example of developing local safety improvement programs were briefly explained.

In addition to offering mitigation strategies, NCHRP Synthesis 321 presented common types of crashes, possible contributing factors, and potential countermeasures. Russell et al. (1996) also included general countermeasures for crash patterns and their probable causes.

Proposed mitigation strategies have been shown to have benefits. The *Low-Cost Local Roads Safety Solutions* (2006) publication of the American Traffic Safety Services Association reports that sign and pavement marking improvements result in a 42% reduction in crashes, yielding benefit-cost ratios of 159:1 to 299:1. The publication also points out that studies have determined reductions in run-off-road crashes of up to 31% after deployment of post-mounted chevrons.

However, Russell et al. (1996) have emphasized that operational control devices cannot always compensate for inappropriate road geometry. Use of signs, signals, and markings should be minimized by designing a road to the highest standards possible. Russell et al. provided tables displaying decision sight distance values for speed intervals, radii, and superelevation limit values for different design speeds, maximum grades, and design control values for vertical curves to support this approach. Detailed guidelines for determining advisory safe speeds and checking superelevation at horizontal curves by means of a ball bank indicator were also included in the report.

Addressing the links between maintenance problems and safety concerns on low-volume roads, Zegeer et al. (1994) noted that these links may be over-emphasized due to the fact that a vast majority of low-volume roads are unpaved. The report provided recommendations on designing roadway width with special consideration given to safety and maintenance.

2006 CHSP Local Roads Team Strategy Plan

In 2006, Iowa developed its first Comprehensive Highway Safety Plan (CHSP). Teams were developed to address many safety areas of importance to the state. Among these was a Local Roads team. The team met and reviewed crash data from the Iowa DOT. Following are the trends identified from these data (for rural and urban areas).

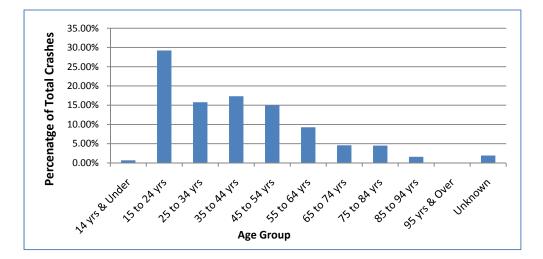
Rural Local Road Trends

Inspection of Iowa crash data for local rural roads indicates a significant number of fatal and serious injury crashes occur on very low-volume roads (<400 vpd), with many of them unpaved.¹ Tables 12 through 15 summarize various characteristics of these crashes for Iowa.

The CHSP Local Roads Team identified several crash issues as being noteworthy for rural local roads in Iowa. For example:

- Single-vehicle run-off road
- Multi-vehicle cross centerline/cross median
- Driver's age 15 to 24 years
- Time-of-day
- Driver contributing circumstances:
 - Lost control
 - Driving too fast
 - Ran stop sign
 - Failure to yield right of way (FTYROW)

Table 12. Serious single-vehicle run-off road and multiple-vehicle cross centerline crashes SVROR & MVCCCM Fatal & Major Injury Crashes on County Roads (2001-2005)


		(-)		
	Rural Secondary			
AADT	Unpaved			
0-49	338	(42.30%)		
50-99	240	(30.04%)		
100-149	106	(13.27%)		
150-199	50	(6.26%)		
200-299	47	(5.88%)		
300-449	15	(1.88%)		
450 +	3	(0.38%)		
Total	799	(100.00%)		

15)					
Rural Secondary					
Paved					
83	(6.36%)				
190	(14.55%)				
228	(17.46%)				
190	(14.55%)				
141	(10.80%)				
119	(9.11%)				
80	(6.13%)				
51	(3.91%)				
40	(3.06%)				
41	(3.14%)				
48	(3.68%)				
20	(1.53%)				
24	(1.84%)				
19	(1.45%)				
7	(0.54%)				
8	(0.61%)				
13	(1.00%)				
4	(0.31%)				
1306	(100.00%)				
	Pa 83 190 228 190 141 119 80 51 40 41 48 20 24 19 7 8 13 4				

¹ Of the 90,000 miles of secondary roads in Iowa, more than 80,000 miles have traffic volumes of less than 400 vpd. About 48,000 miles have daily traffic volumes less than 50. In addition, almost 72,000 miles of very low-volume (<400 vpd) roads are unpaved.

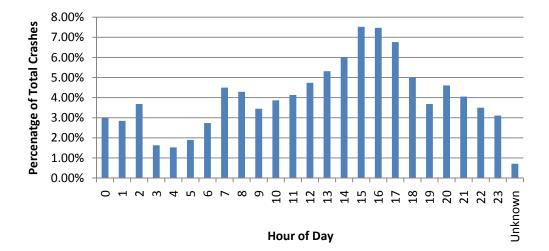

Driver Age	# Drivers
14 yrs & Under	38
15 to 24 yrs	1612
25 to 34 yrs	870
35 to 44 yrs	956
45 to 54 yrs	829
55 to 64 yrs	511
65 to 74 yrs	253
75 to 84 yrs	249
85 to 94 yrs	88
95 yrs & Over	4
Unknown	106
Total	5516

Table 13. Iowa rural local roads – serious crashes by age 2001-2005

Hour of Day	# of Crashes
0	114
1	108
2	140
2 3 4 5 6	62
4	58
5	72
	104
7	171
8	163
9	131
10	147
11	157
12	180
13	202
14	228
15	286
16	284
17	257
18	190
19	140
20	175
21	154
22	133
23	118
Unknown	27
Total	3801

Table 14. Iowa rural	local roads –	serious crashes	by time of	day 2001-2005

Driver Contributing Circumstance	# Drivers
Ran traffic signal	25
Ran stop sign	276
Exceeded authorized speed	184
Driving too fast for conditions	315
Made improper turn	40
Traveling wrong way or on wrong side of road	74
Crossed centerline	280
Lost Control	1243
Followed too close	40
Swerved to avoid: vehicle/object/non-motorist/or animal in roadway	155
Over correcting/over steering	44
Operating vehicle in an erratic/reckless/careless/negligent/aggressive manner	68
FTYROW: From stop sign	309
FTYROW: From yield sign	41
FTYROW: Making left turn	91
FTYROW: From driveway	15
FTYROW: From parked position	9
FTYROW: To pedestrian	5
FTYROW: At uncontrolled intersection	79
FTYROW: Other	72
Inattentive/distracted by: Passenger	5
Inattentive/distracted by: Use of phone or other device	9
Inattentive/distracted by: Fallen object	5
Inattentive/distracted by: Fatigued/asleep	35
Other: Vision obstructed	49
Other: Improper action	158
Other: No improper action	1441
Unknown	449
Total	5516

Table 15. Iowa rural local roads serious crashes – driver contributing circumstances 2001-2005

On *rural* local roads, there were 594 (15.6%) alcohol-related² fatal and major injury crashes from 2001 to 2005.

Urban Local Road Trends

By comparison, on urban streets, most fatal and serious injury crashes occur at intersections. Tables 16, 17, and 18 summarize various characteristics of these crashes in Iowa.

The Iowa CHSP Local Roads Team identified several crash issues as being noteworthy for urban local roads in Iowa. For example:

² Alcohol-related defined as at least one driver per crash either refusing alcohol test or BAC > 0.00

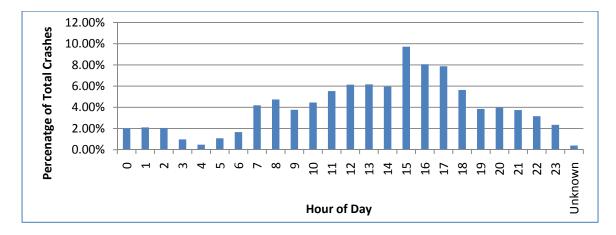
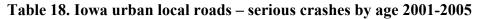

- Driver contributing circumstances:
 - Ran traffic signal
 - Ran stop sign
 - FTYROW
 - Excessive speed
- Driver's age 15 to 24 years
- Time-of-Day

Table 16. Iowa urban local roads serious crashes – driver contributing circumstances 2001-2005


Driver Contributing Circumstance	# Drivers
Ran traffic signal	409
Ran stop sign	229
Exceeded authorized speed	197
Driving too fast for conditions	191
Made improper turn	86
Traveling wrong way or on wrong side of road	55
Crossed centerline	84
Lost Control	397
Followed too close	136
Swerved to avoid: vehicle/object/non-motorist/or animal in roadway	51
Over correcting/over steering	9
Operating vehicle in an erratic/reckless/careless/negligent/aggressive	
manner	74
FTYROW: From stop sign	349
FTYROW: From yield sign	33
FTYROW: Making left turn	373
FTYROW: Making right turn on red signal	7
FTYROW: From driveway	50
FTYROW: From parked position	21
FTYROW: To pedestrian	65
FTYROW: At uncontrolled intersection	58
FTYROW: Other	104
Inattentive/distracted by: Passenger	9
Inattentive/distracted by: Use of phone or other device	10
Inattentive/distracted by: Fallen object	5
Inattentive/distracted by: Fatigued/asleep	21
Other: Vision obstructed	52
Other improper action	289
Other: No improper action	3123
Unknown	363
Total	6850

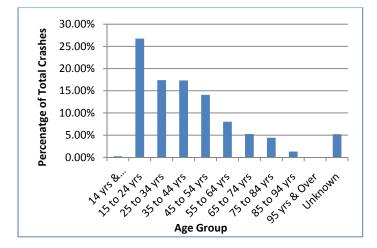

Hour of Day	# of Crashes	Hour of Day	# of Crashes
0	76	13	234
1	80	14	226
2	78	15	369
3	37	16	306
4	18	17	299
5	41	18	214
6	63	19	146
7	159	20	151
8	180	21	142
9	143	22	120
10	169	23	89
11	210	Unknown	15
12	233	Total	3798

Table 17. Iowa urban local roads – serious crashes by time of day 2001-2005

Driver's Age	# Drivers
14 yrs & Under	16
15 to 24 yrs	1833
25 to 34 yrs	1192
35 to 44 yrs	1187
45 to 54 yrs	964
55 to 64 yrs	549
65 to 74 yrs	359
75 to 84 yrs	303
85 to 94 yrs	89
95 yrs & Over	1
Unknown	357
Total	6850

On *urban* local roads, there were 325 (8.6%) alcohol-related fatal and major injury crashes from 2001 to 2005.

General Trend Observations

The highest numbers of serious crashes occur in daylight hours, for both urban and rural local roads. Alcohol-related serious crashes are almost twice as common in rural areas than in urban areas. Serious crashes are distributed somewhat evenly for driver ages 15-45 in urban areas, but younger drivers, 15-24, are more commonly involved in rural locations.

The 2006 Iowa CHSP Local Roads team identified the following general goals and specific objectives for improving local road safety.

General Goals:

- Effectively share crash data and interpretation with local agencies
- Promote cooperation between disciplines in local agencies:
 - Engineering
 - Enforcement
 - Educators
 - Emergency responders
- Develop strategies for improving safety on lower-volume rural roads and at urban intersections
- Reduce fatalities and serious injuries by 10% on local roads and streets over the next 10 years

Specific Objectives:

- Promote and support efforts to provide crash data and interpretation assistance to local agencies by the Iowa DOT and/or Center for Transportation Research and Education (CTRE), possibly as an enhancement to the 3R program.
- Assist in development of and support efforts in building multi-disciplinary teams at the local level to consider and address perceived traffic safety concerns.
- Identify and provide educational outreach on the most cost-effective measures to mitigate identified traffic safety concerns on local rural roads and city streets, emphasizing an all-discipline approach. Communication through existing professional organizations, such as the Iowa County Engineers Association and American Public Works Association, should be emphasized.
- Study and identify feasible methods of improving response times for emergency responders in rural areas.

Proposed Strategies

The 2006 Iowa CHSP Local Roads team proposed the following strategies for addressing local road safety issues, listed in order of team preference. Tier One Strategies, shown in **boldface**, are expected to yield the most significant results and work to change the culture of safety. Tier Two Strategies, in normal print, also present potential opportunities to improve safety on local roads and streets.

1. Undertake an in-depth study of fatal and serious injury crashes on very low-volume rural roads, examining where and when these incidents occur and who is involved.

2. Study and promote the use of paved shoulders and "rumble stripes" on paved local rural roads to reduce run-off-road crashes and promote more visible, longer-lived edge line markings, particularly at potentially higher risk locations, such as curves.

3. Provide GIS-based crash data to local agencies and planning organizations on cyclical basis to identify locations of potential concern.

4. Support programs of concentrated enforcement on low-volume rural roads and highcrash intersections with initiatives such as "Safety Zones."

5. Provide support and analysis information for enhanced enforcement efforts at urban intersections, such as automated enforcement.

6. Support and provide instructional materials for driver educators through class materials, teaching aids, and pertinent crash information, with particular emphasis for driving on unpaved rural roads, seat belt use, speed, and alcohol consumption.

7. Urge local rural agencies to examine very low-volume roads for possible needed safety improvements that can be accomplished at low cost, such as signing upgrades.

8. Promote a reduction in the statutory speed limit on unpaved rural roads from 55 mph to 50 mph, day and night.

9. Encourage local agencies to employ public information efforts to advise of safety initiatives and to acquaint drivers with potential safety concerns, such as red light running and high speed travel on unpaved surfaces.

10. Work with local agencies to establish and support multi-disciplinary traffic safety teams similar to the successful Citizen Awareness on Roadway Safety (CARS) group in the Quad Cities.

11. Establish communication network with emergency responders in local areas to determine feasible methods of improving response times to serious crash sites.

Recommended Programs and Projects

Finally, the Local Roads team recommends the following programs and projects to support interdisciplinary efforts to improve local road safety in Iowa:

1. Complete a research study of serious crashes on very low-volume roads which will provide an excellent reference for identifying mitigation steps with a high benefit probability and also provide a resource for outreach and educational efforts.

2. Document efforts to promote effective use of paved shoulders and/or "rumble stripes" and record miles of implementation on an annual basis.

3. Crash data for serious crashes should be provided to larger cities and metropolitan planning agencies, followed by data for speed-, alcohol-, seat belt-, etc.-related crashes to enforcement agencies, and rural-related crash data to counties and regional planning agencies. This distribution should be repeated on a three-year cycle.

4. Develop and support a program for concentrated enforcement on low-volume rural roads and problem intersections similar to the successful effort on primary roads. An annual report of accomplishment should be prepared.

5. Web-based information of successful enforcement efforts at urban intersections should be provided to include research studies, cities with programs, etc. Documentation of crash analyses and advice provided should be maintained.

6. In addition to a web-based reference, driver educators should be provided with class handouts, training aids, and pertinent crash data. Volume and content of materials provided should be documented annually.

7. Develop and present training for local agencies to inspect and identify potential safety concerns on very low-volume roads and select low-cost but proven mitigation measures.

8. Provide crash analysis support for reduced speed limits on unpaved roads and build support for this legislative initiative with agencies having a vested interest, such as law enforcement, schools, and engineers.

9. Advice, support, and pertinent information should be offered to local agencies for public information initiatives regarding local roads safety issues. Documentation of information provided should be maintained.

10. Expand the number of communities with multi-disciplinary safety teams across the state and provide support as needed.

11. Establish communication network with emergency responders to share concerns and identify impediments for decreasing response time in rural areas.

3. METHODOLOGY

This project consisted of three principal tasks: statewide statistical assessment, statistical modeling, and site-specific field review. Unfortunately, while the site-specific field review consumed significant project resources of time and effort, only one meaningful conclusion could be drawn from the analysis (See subsection titled *Three-Leg Intersections* in Section 5. *Supplemental Analyses*). Further work is recommended to follow this study as discussed in the Section 6. *Conclusions and Recommendations*. Details of the site-specific field review may be found in Appendix 3. *Detailed Study of Crash Records and Field Conditions* and Appendix 4. *Preliminary Characteristics of Interest for Site Visits (Desired Data for Crash Site Review)*.

The methodologies followed for the statistical assessment and modeling tasks are given below.

1. Descriptive Statistics and Statistical Tests

Descriptive statistics for seven years of available crash data (2001-2007, later updated to 2008), were prepared for rural low-volume (≤400 ADT) secondary road crashes, as well as for all other two-lane rural road crashes for comparison purposes. The descriptive statistics included a broad range of both crash- and driver/vehicle-level attributes. Iowa DOT Geographic Information Management Systems (GIMS) roadway data were integrated with crash data for analysis. System-wide crash data were utilized to investigate trends in frequency, rate, and severity with respect to the various crash characteristics and general road types.

Descriptive statistics were developed for low-volume and other road categories on 22 major crash characteristic categories. The categories are comprised of some 240 crash characteristic values, each describing the specific conditions present during a given crash. Appendix 5. Sample Table Showing the Test of Proportions Results (0-100 Unpaved Secondary vs. Two-Lane Primary) lists the 240 crash characteristics examined, and is followed by Appendix 6. Summary of Results from Test of Proportions . The 22 major crash characteristic categories are:

- 1. Crash Severity
- 2. Crash TYPE
- 3. Manner of Crash/Collision
- 4. Speed/Weather-Surface Relation
- 5. Light Conditions
- 6. Younger and Older Driver Involvement
- 7. Drug/Alcohol Involvement
- 8. Terrain
- 9. Farm Vehicle Involvement
- 10. Month
- 11. Day
- 12. Hour
- 13. Location of First Harmful Event
- 14. First Harmful Event
- 15. Major Cause

- 16. Drug or Alcohol Related
- 17. Environment Contributing Circumstances
- 18. Weather Conditions
- 19. Light Conditions
- 20. Surface Conditions
- 21. Roadway Contributing Circumstances
- 22. Type of Roadway/Junction/Feature

Test of Proportions

Distribution of low-volume rural secondary road crashes were compared to that of rural primary roads to find the main factors that increase risk for low-volume roads as compared to primary two-lane roads. A test of proportions was employed to determine various crash characteristics which were overrepresented on different low-volume road categories. The comparison group was primary road crashes.

The proportion of various characteristics of crashes on roads of different jurisdictions, traffic volume ranges, and surface types were computed. These proportions were then statistically tested to determine if differences between pairs of proportions were statistically significant. Given adequate sample sizes and assumptions of independence of the proportions, the z-statistic for a standard Normal random variable was utilized for the test. The following steps describe this procedure.

1. The null hypothesis was defined as "the difference between two proportions being tested is zero," or, H_0 : $p_1 = p_2$ and, H_1 : $p_1 \neq p_2$

Where p_1 represents the first proportion being tested and p_2 represents the second proportion.

- 2. The level of confidence was selected as 95%; consequently, the significance level was 0.05.
- 3. The differences between sample proportions $(|p_1 p_2|)$ were computed.
- 4. Weighted average of the two sample proportions were computed using the formula:

$$p = \frac{n_1 p_1 + n_2 p_2}{n_1 + n_2}$$

where n_1 and n_2 are the respective number of observations sampled from the two populations.

5. Estimated standard error of the difference between proportions was computed by:

$$s_{p_1-p_2} = \sqrt{\frac{p(1-p)}{n_1} + \frac{p(1-p)}{n_2}}$$

6. The Z-statistic was computed by the standard formula:

$$z = \frac{|p_1 - p_2|}{s_{p_1 - p_2}}$$

- 7. The probability value (p-value) was then computed.
- 8. The probability computed in Step 7 is compared to the significance level stated in Step 2. A probability value which is equal or less than the significance level of 0.05 would mean that the difference tested is significant. When the difference is significant, the null hypothesis "the two population proportions are equal, or not different" is rejected.

A test of proportions for all 240 crash characteristic values was performed comparing various groups of low-volume roads to other (primary) two-lane roads. The results point to the types of crashes that are particularly problematic for low-volume roads. These characteristics were also used to develop a crash-based statistical model.

2. Crash Model Development

The objective of this task was to create a system-level model for secondary, low-volume road crashes. This model isolated crash, driver and/or roadway variables that are the best predictors of the severity of low-volume road crashes.

A number of disparate data sets were integrated at many stages of the study. Table 19 provides a summary of the sources utilized to gather these data.

Type of Data	Source/Database	Uses
Crash locations and attributes	Iowa DOT/Iowa Traffic Safety Data Service (2001- 2007, 2008)	 Descriptive statistics of crash-, vehicle/driver-, and occupant/injury- level crash characteristics Road and environmental circumstances
Road shape lines and attributes	Iowa DOT Geographic Information Management System (GIMS) Data (2007, 2008)	 Roadway geometric characteristics Average annual daily traffic (AADT) on road sections Terrain information
Aerial images	USDA National Agriculture Imagery Program orthophotos for Iowa (2006 and 2007)	• Crash site evaluation (contribution to locate crashes)
Road images	Videos and photos (2008-2009)	Crash site evaluation
Water stream shape lines	Iowa Geological Survey (NRGIS) Library	• Crash site visits (contribution to locate crashes)
Railroad shape lines	Iowa Geological Survey (NRGIS) Library	• Crash site visits (contribution to locate crashes)
Census	US Census Bureau web site	• Demographic features of the rural population in Iowa

Table 19. Data sources utilized in the study

AADT and road system type were the two basic criteria utilized in setting up groups of roads. State-wide GIMS road data provided both of these data fields. Three thresholds of daily volume and two types of jurisdictional road systems were used to categorize roads and assign crashes to them, respectively. AADT values were also used in the process to determine candidate crash sites to review and evaluate. The main resource for traffic volumes was the GIMS road database, which is maintained and updated by the Iowa DOT Office of Transportation Data (http://www.dot.iowa.gov).

To find the most significant factors of all crashes on rural roads with 400 vpd or less between 2001 and 2007, an ordered probit model was estimated. The model was based on crashes rather than locations, so application is limited to the identification of important contributing factors to low-volume roads in general, rather than the identification of high-crash locations. A location-based model is the subject of a follow-up study of low-volume roads in Iowa.

The Nlogit 4.0 extension of the LIMDEP software was utilized for building the model. The dependent variable was selected as crash severity and a 90% confidence level was used for determining relevant independent variables. Three severity levels were considered: fatal and major injury (serious), minor or possible injury, and property damage only crashes. The model was designed to predict the marginal effects of independent variables on each of the three crash severity levels.

4. ANALYSIS AND RESULTS

Statewide Descriptive Statistics and Statistical Tests

To compare the performance of rural low-volume roads to other selected road types, a statewide analysis was performed. Low-volume rural roads, the majority of which are unpaved, perform differently than state-owned primary highways, which have higher volumes and more-advanced design features. To identify the main factors that influence crash risk on low-volume roads, a test of proportions was employed to determine various crash characteristics that might be overrepresented for different categories of low-volume roads.

Descriptive Statistics

Descriptive statistics were developed for all undivided two-lane rural roads in Iowa (See Table 20 for a sample, and Appendix 7. for all results.) Proportions of various crash characteristics were computed for low-volume rural secondary road crash types of various road volume/surface-type categories and compared to those of rural two-lane rural primary (Iowa DOT) roads. This also facilitated a test of proportions analysis. *Note: In* Table 20 and Appendix 7, orange and blue grouping lines indicate the same crashes broken out into different categories. Some rows are shaded for ease of reading.

VARIOUS CHARACTERISTICS OF O	CRASH	ES ON	TWO-LANE	RU	RAL R	OADS BY JU	JRISDI	CTION, VO	LUME
State of Iowa (2001-2007)									
						SECONDARY	0-100		
Road System			Sec	onda	iry	Seconda	ry	Seconda	ry
AADTRange			0	-100		0-100	-	0-100	
Surface Type			Un	pave	d	Paved		All	
Total Crashes			16.	040	-	470	-	16,510	-
Total Daily VMT			2,447		-	72,080	-	2,519,000	
Total Centerline-Miles				,900	-	1,063	-	67,963	-
Weighted Average of ADT				37	-	68	-	37	-
Crash Rate (per 100M VMT)				257	-	255	-	257	-
Crash Density				0.24	-	0.44	-	0.24	-
CRASH SEVERITY			Frequ	ency	%	Frequency	%	Frequency	%
Fatal				235	1.5%	9	1.9%	244	1.5%
Major Injury				933	5.8%	29	6.2%	962	5.8%
Minor Injury			2	,750	17.1%	65	13.8%	2,815	17.1%
Possible/Unknown			2	,929	18.3%	68	14.5%	2,997	18.2%
Property Damage Only			9	,193	57.3%	299	63.6%	9,492	57.5%
CRASH TYPE									
MV (No Ani/Obj on Road) 🛛 🗧			2	,940	18.3%	104	22.1%	3,044	18.4%
SV ROR (No Ani/Obj on Road)			9	,121	56.9%	199	42.3%	9,320	56.5%
SV Other (No Ani/Obj on Road)		\leftarrow		507	3.2%	24	5.1%	531	3.2%
SV ROR (Ani/Obj on Road)				984	6.1%	22	4.7%	1,006	6.1%
SV Other (Ani/Obj on Road)				35	0.2%		0.0%	35	0.2%
Hit Animal			2	,453	15.3%	121	25.7%	2,574	15.6%
MANNER OF CRASH/COLLISION									
MV Head-on				378	2.4%	8	1.7%	386	2.3%
MV Read-end				524	3.3%	29	6.2%	553	
MV Oncoming left turn				206	1.3%	5	1.1%	211	1.3%
MV Broadside			1	,007	6.3%	27	5.7%	1,034	
MV Sideswipe-Same Dir.				217	1.4%	17	3.6%	234	1.4%
MV Sideswipe-Oppos. Dir.				391	2.4%	12	2.6%	403	
MV Other				217	1.4%	6	1.3%	223	
SV Coll. with Fixed Obj.					25.2%		23.0%		25.2%
SV Overturn/Rollover		\leftarrow			20.8%		12.3%		20.5%
SV Collw/FixObj+Over/Roll			2		16.0%		9.1%		15.9%
SV Other				691		36			4.4%
Hit Animal			2	,453	15.3%	121	25.7%	2,574	15.6%
SPEED/WEATHER-SURFACE RELATION									
Speed Rel			6	,894	43.0%	159	33.8%	7,053	42.7%
Weather-Surface Rel			1	,143	7.1%	31	6.6%		7.19
Speed&Weather-Surface Rel			1	,619	10.1%	38	8.1%	1,657	10.09
Other/Unknown			6	,384	39.8%	242	51.5%	6,626	40.19

Table 20. Partial summary of descriptive statistics for two-lane rural Iowa roads

Test of Proportions

To identify crash characteristics that are overrepresented on rural low-volume roads, 10 secondary road categories were compared as shown in Table 21. A sample sheet documenting the procedure and a summary of results of the 10 comparisons can be seen in Appendix 5. *Sample Table Showing the Test of Proportions Results (0-100 Unpaved Secondary vs. Two-Lane Primary)* and Appendix 6. *Summary of Results from Test of Proportions*. Differences in proportions of crashes for 240 crash characteristics were evaluated for statistical significance.

	GROUPS BEING COMPARED			COMPARISON GROUP			
Comparison Pairs	Road System (Jurisdiction)	AADT Range	Surface Type	Road System (Jurisdiction)	AADT Range	Surface Type	
1	Secondary	0-100	Unpaved	All undivided two-lane rural primary road			
2	Secondary	0-100	Paved				
3	Secondary	100-400	Unpaved				
4	Secondary	100-400	Paved	(All are paved)			
5	Secondary	0-400	Unpaved				
6	Secondary	0-400	Paved				
7	Secondary	0-400	All				
8	Secondary	0-100	Unpaved	Secondary	100-400	Unpaved	
9	Secondary	0-100	Paved	Secondary	100-400	Paved	
10	Secondary	0-400	Unpaved	Secondary	0-400	Paved	

Table 21. Road category comparison

Results

The preliminary analysis of 2001-2007 data yielded results which may be seen in Appendix 6. *Summary of Results from Test of Proportions* and Appendix 7. . However during the course of the project, 2008 crash data became available and analysis for the following two selected road classes were updated and compared to data for two-lane rural primary roads:

- All secondary low-volume roads 0-400 AADT (paved and unpaved), and
- Unpaved secondary roads with volumes greater than or equal to 100 AADT

The first of these two road classes was chosen for analysis as it represents the target group of roads (low-volume rural roads). However, due to the significant mileage of this class of road in Iowa and the lack of statistically significant high crash locations, a subset of roads was identified for potential application of mass action (systemic) programs. These are represented by the second group, unpaved with traffic volumes greater that 100 vpd.

The following two tables compare historical crash data for 0-400 vpd rural roads to similar rural Iowa DOT (primary) roads. Table 22. Highest relative differences (>3.0) in crash proportions, low-volume (0-400 AADT) rural roads summarizes the results of the test of proportions for this group. These results show only the factors or characteristics for which the proportion of crashes on low-volume roads was significantly higher (statistically) than the corresponding proportion of similar crashes on primary roads. These factors may be considered those that most differentiate the safety performance of low-volume rural roads from primary two-lane roads.

CRASH TYPE/FACTOR	Secondary rural LVR Frequency (32,361 total crashes)	Secondary rural LVR percent	Primary 2-lane Frequency (35,175 total crashes)	Primary 2-lane percent	Relative difference in proportion (secondary ÷ primary)
Sand/mud/dirt/oil/gravel	7,732	23.9%	97	0.3%	86.6
Farm vehicle only	125	0.4%	6	0.0%	22.6
Ruts/holes/bumps	340	1.1%	23	0.1%	16.1
Collision with: Railway vehicle/train	107	0.3%	10	0.0%	11.6
Ran off road - straight	539	1.7%	57	0.2%	10.3
Flat	9,115	28.2%	1,066	3.0%	9.3
Physical obstruction	1,045	3.2%	183	0.5%	6.2
FTYROW: At uncontrolled intersection	590	1.8%	133	0.4%	4.8
SV ROR (Ani/Obj on Road)*	926	2.9%	243	0.7%	4.1
SV CollwFixObj+Over/Roll*	4,196	13.0%	1,172	3.3%	3.9
Gore	167	0.5%	49	0.1%	3.7
Collision with fixed object: Ditch/embankment	7,224	22.3%	2,162	6.1%	3.6
Age 14 or below involved	299	0.9%	94	0.3%	3.5
Shoulders (none/low/soft/high)	342	1.1%	109	0.3%	3.4
Intersection: Y - intersection	275	0.8%	89	0.3%	3.4
Non-collision events: Overturn/rollover	7,247	22.4%	2,362	6.7%	3.3
SV Overturn/Rollover*	5,650	17.5%	1,895	5.4%	3.2
Roadside	4,695	14.5%	1,601	4.6%	3.2

Table 22. Highest relative differences (>3.0) in crash proportions, low-volume (0-400AADT) rural roads compared to primary two-lane rural roads 2001-2008

Table 23 shows where selected crash types or factors for secondary rural LVR roads are largest in absolute terms compared to primary two-lane roads. These factors may be considered the most problematic aspects of low-volume rural roads.

CRASH TYPE/FACTOR	Secondary rural LVR Frequency (32,361 total crashes)	Secondary rural LVR percent	Primary 2-lane Frequency (35,175 total crashes)	Primary 2-lane percent	% Absolute difference in proportion (secondary – primary)
SV ROR (No Ani/Obj on	14.015	40.00/	F 612	16.0%	27.4%
Road)*	14,015	43.3%	5,613	10.0%	27.4%
Rolling	20,331	62.8%	12,847	36.5%	26.3%
Flat	9,115	28.2%	1,066	3.0%	25.1%
Sand/mud/dirt/oil/gravel	7,732	23.9%	97	0.3%	23.6%
Speed Rel	12,168	37.6%	6,284	17.9%	19.7%
Collision with fixed object: Ditch/ embankment	7,224	22.3%	2,162	6.1%	16.2%
Non-collision events: Overturn/rollover	7,247	22.4%	2,362	6.7%	15.7%
SV Coll. with Fixed Obj.*	7,220	22.3%	3,424	9.7%	12.6%
Ages 15-19 involved	9,856	30.5%	6,456	18.4%	12.1%
SV Overturn/Rollover*	5,650	17.5%	1,895	5.4%	12.1%
Dark - roadway not lighted	10,523	32.5%	7,390	21.0%	11.5%
Roadside	4,695	14.5%	1,601	4.6%	10.0%

Table 23. Highest absolute differences in crash proportions (>10%), secondary low-volume
(0-400 AADT) rural roads compared to primary two-lane rural roads 2001-2008

The next two tables summarize the results of the test of proportions for the second group (unpaved rural roads with AADT >100 AADT). Again, these results show only the factors or characteristics for which the proportion on the unpaved low-volume roads was significantly higher (statistically) than the corresponding proportion of crashes on primary roads.

Table 24 indicates where crash types or factors for unpaved roads are largest relative to primary two-lane roads. These factors may be considered those that most differentiate the safety performance of unpaved >100 ADT rural roads from primary two-lane roads.

	Secondary rural unpaved >=100 Frequency (6,736 total	Secondary rural unpaved >=100	Primary 2-lane Frequency (35,175 total	Primary 2-lane	Relative difference in proportion (secondary ÷
CRASH TYPE/FACTOR	crashes)	percent	crashes)	Frequency	primary)
Sand/mud/dirt/oil/gravel	2,066	30.7%	97	0.3%	111.2
Ruts/holes/bumps	145	2.2%	23	0.1%	32.9
Farm vehicle only	21	0.3%	6	0.0%	18.3
Collision with: Railway					
vehicle/train	23	0.3%	10	0.0%	12.0
Ran off road - straight	101	1.5%	57	0.2%	9.3
Flat	1,762	26.2%	1,066	3.0%	8.6
Physical obstruction	170	2.5%	183	0.5%	4.9
Gore	45	0.7%	49	0.1%	4.8
SV					
CollwFixObj+Over/Roll*	1,033	15.3%	1,172	3.3%	4.6
Collision with fixed					
object:					
Ditch/embankment	1,702	25.3%	2,162	6.1%	4.1
SV ROR (Ani/Obj on	101	2.00/	242	0.70/	
Road)*	191	2.8%	243	0.7%	4.1
Age 14 or below involved	68	1.0%	94	0.3%	3.8
Collision with fixed					
object: Tree	188	2.8%	263	0.7%	3.7
Non-collision events:					
Overturn/rollover	1,680	24.9%	2,362	6.7%	3.7
Intersection: Y - intersection	62	0.9%	89	0.3%	3.6
SV Overturn/Rollover*	1,274	18.9%	1,895	5.4%	3.5
Roadside	1,072	15.9%	1,601	4.6%	3.5
Other (explain in	_, <i>3</i> , _		_,		0.0
narrative)	294	4.4%	479	1.4%	3.2
Shoulders					
(none/low/soft/high)	66	1.0%	109	0.3%	3.2
FTYROW: At			1		
uncontrolled					
intersection	80	1.2%	133	0.4%	3.1

Table 24. Highest relative differences (>3.0), secondary unpaved (>= 100 AADT) rural
roads compared to primary two-lane rural roads 2001-2008

Table 25 indicates those crash types or factors for unpaved roads >100ADT that are largest in absolute terms compared to primary two-lane roads. These factors may be considered the most problematic for unpaved >100 ADT rural roads.

	Secondary rural LVR Frequency (32,361 total	Secondary rural LVR	Primary 2-lane Frequency (35,175 total	Primary 2-lane	% Absolute difference in proportion (secondary –
CRASH TYPE/FACTOR	crashes)	percent	crashes)	percent	primary)
SV ROR (No Ani/Obj on					
Road)*	3,230	48.0%	5,613	16.0%	32.0%
Sand/mud/dirt/oil/gravel	2,066	30.7%	97	0.3%	30.4%
Rolling	4,207	62.5%	12,847	36.5%	25.9%
Speed Rel	2,932	43.5%	6,284	17.9%	25.7%
Flat	1,762	26.2%	1,066	3.0%	23.1%
Collision with fixed object:					
Ditch/embankment	1,702	25.3%	2,162	6.1%	19.1%
Non-collision events:					
Overturn/rollover	1,680	24.9%	2,362	6.7%	18.2%
Ages 15-19 involved	2,389	35.5%	6,456	18.4%	17.1%
SV Coll. with Fixed Obj.*	1,657	24.6%	3,424	9.7%	14.9%
None apparent	4,092	60.7%	16,579	47.1%	13.6%
SV Overturn/Rollover*	1,274	18.9%	1,895	5.4%	13.5%
Non-intersection: No special					
feature	4,169	61.9%	17,017	48.4%	13.5%
SV CollwFixObj+Over/Roll*	1,033	15.3%	1,172	3.3%	12.0%
Clear	3,586	53.2%	14,565	41.4%	11.8%
Roadside	1,072	15.9%	1,601	4.6%	11.4%
Dark - roadway not lighted	2,130	31.6%	7,390	21.0%	10.6%
Swerving/Evasive Action	1,200	17.8%	2,553	7.3%	10.6%

Table 25. Highest absolute differences (>10%), secondary unpaved (> 100 AADT) rural roads compared to primary two-lane rural roads 2001-2008

5. SUPPLEMENTAL ANALYSES

Younger Drivers

Time-of-day and day-of-week analysis for young driver crashes requires a more intensive system of data manipulation than was used in the previous combinations. Results indicate a higher proportion of young driver crashes occurring in the 3 p.m. to 5 p.m. time period on school days when compared to the proportion of crashes for middle-aged drivers. Also, young drivers were more likely to be involved in crashes between 9 p.m. and midnight throughout the week. Both of these results may reflect times when young drivers are proportionally more likely to be driving than their adult counterparts. Assessing the significance of these data is difficult due to the lack of exposure data for driver age (e.g., when persons of various ages drive).

Based on these findings in relation to the expected risk factors, two mitigation strategies could be considered. Both options relate to young driver education: increase the emphasis on providing young drivers with practical experience driving on unpaved roads and focus on the dangers of excessive speed. In addition, sharing of crash data involving younger drivers may be beneficial. Young drivers need more supervised practice driving on unpaved roads to learn the differences of vehicle control and handling between paved and unpaved surfaces. Additionally, young drivers who have relatively strong thrill-seeking motivations will often drive faster than road conditions or their own capabilities can support. In light of these facts, young drivers need to be instructed how to avoid and/or recover from loss of control incidents on both paved and unpaved roads.

Crashes Involving Agricultural Equipment

In rural Iowa conflicts with slow moving agricultural equipment can be a potential hazard for drivers of automobiles and pickups, especially during planting and harvesting seasons. During the study period of 2001 through 2007, a 682 crashes were recorded on the secondary road system in Iowa with 242 of these on unpaved roads. Two-lane primary roads recorded an additional 270 farm vehicle crashes with other motorized vehicles. In addition, 141 crashes involving only farm equipment occurred on secondary roads and 12 of this crash type were reported on two-lane primary roads. When compared to the total number of crashes of all types during this period on all two-lane rural roads (95,123), the percentage involving farm equipment seems quite low, but the frequency of these crashes is not insignificant.

It is interesting to compare farm equipment crashes by traffic volume on the secondary road system. For secondary roads with traffic volumes less than 100 vpd, 202 farm equipment collisions occurred with other vehicles with 196 of these on unpaved roads. But when examining higher volume secondary roads, more of these crashes are observed. For example, secondary roads with 401-1000 vpd exhibited 243 farm equipment crashes with other vehicles and for secondary roads with 101-13,500 vpd, 480 farm vehicle crashes with other vehicles were noted. Clearly traffic volume is a distinct predictor for this type of crash as with other crashes.

From a strictly frequency of occurrence standpoint, it would appear that it is much more probable that a farm equipment crash may occur on a higher volume secondary road than any other road class in this study, including primary roads. In addition to higher traffic volumes and speed, other factors may include narrow shoulders and inadequate sight distance in many locations. Drivers and farm equipment operators alike would be advised to pay additional attention to safe operating procedures and driving techniques during higher times of exposure such as those that occur during planting and harvesting seasons.

Crash Level Model

To supplement the test of proportions analysis and to account for the effect of multiple causal factors and explanatory variables, a crash-level statistical model was developed. For low-volume rural roads (400 vpd or less, excluding intersections with roads carrying any higher traffic) the following factors were found to increase the severity of crashes:

- 1. Paved surfaces
- 2. Spring/summer months (April through September)
- 3. Weekends
- 4. Fixed objects struck
- 5. Overturn/rollover crashes are more severe
- 6. Multi-vehicle broadside collisions are more severe
- 7. Impaired driving, including both alcohol and/or drug involvement
- 8. Daytime
- 9. Speeding
- 10. Younger (\leq 19) and older (\geq 65) driver involvement
- 11. Counties with lower total rural populations and less VMT per capita
- 12. Counties with positive traffic control at intersections (information was available for 73 of the 99 counties)

The following factors were found *not* to increase the severity of crashes

- 1. Animal collisions
- 2. Weather, environment, and surface-related factors

While a crash-level model is useful in identifying and verifying the effect of variables on crash severity, it is not able to identify specific locations of potential problems. For that, a road- or segment-based model is required. Development of a segment-based model is the subject of a follow-on project currently being conducted at InTrans. See Appendix 8. *limdep Model* for full details about the development of the segment-level model.

Three-Leg Intersections

Crashes were identified as being intersection-related based on the ROADTYPE information from the Iowa crash database. Selected crashes were then reviewed using data from crash narratives and diagrams, aerial imagery, and the crash database to determine any relationship between the intersections and local features for each crash.

An initial assessment of crash and road files of three-leg intersections for the study area counties suggested that these intersection types were overrepresented in the crash data. However, no consistent relationship between crashes and intersection configuration was concluded.

In the five-county study area, for the years reviewed, 85 serious crashes occurred at T or Y intersections. Of those, 44 crashes occurred at locations for which video or still images were available for review. Of those, 25 or 57% of crashes were determined to have no causal factor related to the intersection. While intersection locations were found to vary in geometry, signage, and apparent maintenance level, problems suggesting the need for systemic corrective actions at three-leg intersections could not be identified.

6. CONCLUSIONS AND RECOMMENDATIONS

The purpose of this study was to perform an in-depth analysis of crash history for a specific class of roadway in Iowa, rural roads with traffic volumes of 400 vehicles per day (vpd) or less, and from those data, devise and recommend mitigation to improve safety on those roadways. Note that almost the entire low-volume network is under the jurisdiction of local agencies in Iowa.

The study divided rural roads into several classes by traffic volume and surface type for the purpose of comparing safety performance among classes and with Iowa DOT-controlled two-lane primary roads. The classes of low-volume local agency roads include 0-100 vpd *paved and unpaved*, 0-100 vpd *all*,101-400 vpd *paved and unpaved*, 0-400 *paved and unpaved*, and *all* local rural roads with traffic volumes of 0-400. The DOT primary comparison roads ranged in traffic volume of 70-12,200 vpd and are all paved.

Conclusions

From the tables in Appendices 5 and 6, it can be seen (and is no surprise) that crash frequency is strongly related to traffic volume. But other factors are also in play, such as type of surface. Unpaved roads exhibit higher crash rates than paved roads. However rural paved roads in Iowa are almost always designed and constructed to higher standards than unpaved roads, exhibiting a wider roadway, shoulders and right-of-way, flatter slopes, and more forgiving clear zones. All of these factors improve safety performance.

In addition to the relationships described above, the study conducted other comparisons of performance using about 100 attributes of Iowa's extensive crash data base. Crash data from the years of 2001 through 2007 were analyzed. Many of the findings could be concluded as intuitive and others confirmed details that have been opined; however, several potentially beneficial aspects for rural road safety were determined. Comparing the frequency of several crash attributes in each local road class to those in the primary road group and testing for statistical significance using a test of proportions, we found:

- 1. In crash severity, almost all local road classes exhibit a higher frequency of injury crashes than primary roads.
- 2. Single vehicle, run-off-road crashes occur at a higher frequency on local roads, lower for multi-vehicle events, although multi-vehicle broadside crashes occurred more often on local roads.
- 3. Animal-related crash frequencies were lower on local roads than primary roads.
- 4. Speed-related crash frequency was higher for all classes of local roads but lower for weather-related crashes.

- 5. Younger driver involvement in local road crashes was higher for most local road classes but older driver crash frequency was lower.
- 6. Impaired driving crashes occurred more frequently on local roads than on primary roads.
- 7. As might be expected, crashes in rolling or hilly terrain were more frequent on local roads, but less on flat terrain.
- 8. When farm vehicles were involved, crash frequency was higher on local roads than primary roads.
- 9. Local road crashes occurred at a higher frequency in the summer and fall but lower in winter months. Also local roads crashes had a higher frequency on weekends but lower during the week than primary roads.
- 10. In general, local road crashes were more frequent during nighttime hours and higher on unpaved roads during the day in general, but all classes of local road crashes were lower from about 5 p.m. to 9 p.m. and from 4 a.m. to 7 a.m.
- 11. Non-collision crashes involving a roll-over or overturn showed a higher frequency for all local road classes, especially on unpaved roads.
- 12. On local roads, collisions with fixed objects involved culverts, ditch/embankment, trees, or poles indicated a higher frequency of occurrence on local roads, but lower than primary for guard rail collisions.
- 13. Major cause of crashes on local roads was higher than primary roads for failure to yield at uncontrolled intersections and driveways. Too fast for conditions and swerving or evasive action also showed a higher frequency on local roads, but left turn crashes, following too close, and crossed centerline crashes had a lower frequency on local roads.
- 14. In general, lower-volume roads exhibited less contribution to crashes from adverse weather or undesirable pavement surface conditions than did primary roads. However, roadway contributing circumstances such as ruts/holes/bumps showed a higher frequency as did deficient traffic control devices on local roads, although the latter category was quite low in occurrence. Shoulder conditions also contributed to local road crashes at a higher frequency than on primary roads.
- 15. Finally, crashes on local roads occurred at a higher frequency at bridges, railroad crossings, farm or residence driveways, as well as T or Y configuration intersections but at a lower frequency at four-way intersections.

In addition to the comparison in performance between local road classes and primary roads, a comparison between LVR classes was also performed using both crash rates and crash densities (See Appendix 7). In general, when comparing crash rates, higher values are found for unpaved local roads, regardless of traffic volume. This can be found for single-vehicle run-off-road crashes as well as multi-vehicle broadside, speed related, younger driver involvement, impaired driving, rolling or hilly terrain, farm vehicles, overturn/rollover, collisions with culverts, trees, and poles, uncontrolled intersections, swerving or evasive action, overcorrecting/oversteering, lost control, weather or road surface related, non-intersection crashes, bridges, farm/residence driveways, and almost all configurations of intersections. However, this finding was not always true when comparing very low-volume (<100 ADT) paved roads to unpaved, possibly impacted by the very low mileage on paved roads in this category.

An exception to the above findings can be seen with animal crashes. Crash rates for animal crashes are almost always higher for paved roads than unpaved.

As can be expected, crash densities varied with traffic volumes in general but not always in direct relation. For very low-volume classes, less than 100 vpd, higher crash densities were observed on paved roads versus unpaved; however, the weighted traffic volume is also higher (almost double) on those paved roads (See Appendix 7 *Comparison Data for Various Road Classes*).

In contrast, the opposite finding was exhibited for unpaved local roads with a traffic volume of 101-400 vpd. Almost all crash categories displayed a higher crash density on unpaved roads within this traffic range than with paved roads carrying similar or even higher volumes. Some of these differences were substantial ,such as younger driver involvement, speed related, and vehicle control related crashes. An exception was found with animal crashes, where paved roads displayed a higher density than unpaved.

When local roads with a traffic volume range of 0-400 vpd were examined, paved roads again mostly displayed higher densities for most crash categories than unpaved.

When comparing all seven classes of low-volume local roads as defined by this study, the 101-400 vpd traffic volume, unpaved class stands out in all three measures utilized, crash frequency, rate, and density with most crash categories displaying higher values (in some cases substantially higher). About 4,300 miles of this road class exist in Iowa divided among 99 counties, so concentration on needed safety improvements on these roads may pay beneficial results. Unpaved roads with even higher traffic volumes do not display similar results, but the very low mileage in these volume classes undoubtedly impact those results.

Finally, while little was learned from the field visits conducted in this study, the approach and findings are reported in Appendices 3 and 4 and may be of some use to future researchers conducting a more extensive field assessment.

Recommendations

The findings from this study confirmed several commonly held assumptions regarding younger driver involvement, speed related, and impaired driving on local roads, especially unpaved roads. But the findings also allow several recommendations to be made based on the results and conclusions discussed previously.

Low-volume rural roads exhibit differing crash history characteristics from two-lane rural primary roads. The findings of this study should permit local agencies to rank mitigating action in the most cost effective manner.

County engineers, law enforcement, and educators should consider safety needs on unpaved local roads with traffic volumes of 101-400 AADT on a priority basis with other road classes, while not ignoring the concerns on those other roads. If even higher volume unpaved roads exist in a jurisdiction, examination of crash history for those roads would be beneficial. By considering safety needs on these relatively limited mileage roads, agencies can achieve the most beneficial results for employing low-cost safety improvements such as signing upgrades, better road edge delineation, higher maintenance levels, and spot improvements. To facilitate identification of these roads, a tiled PDF map of >100 AADT unpaved local roads is available from the ITSDS (www.itsds.iastate.edu) at the Institute for Transportation (InTrans), as shown in Figure 7.

Based on the results of this study, law enforcement agencies should direct appropriate surveillance to local roads where the highest level of driver infraction crashes are found, such as impaired or speed-related incidents.

A similar recommendation could be made for driver educators. Younger drivers could benefit from instruction for driving on unpaved surfaces, particularly related to speed and vehicle control issues. It is also recommended that additional research be undertaken to determine and develop specific educational tools and materials for younger drivers, such as videos and demonstrations.

Due to the random nature of crashes on low-volume rural roads, a systemic approach to crash mitigation has the potential for an effective and efficient benefit. Using the results from this study, major common crash contributing factors can be determined and mitigative steps taken without relying on the development of a crash history. Examples might include improved signing at shorter radii horizontal curves, delineation of roadsides, education of younger drivers to address unique safety concerns on unpaved roads, and focused enforcement for undesirable driver behavior, such as speeding and/or impaired driving.

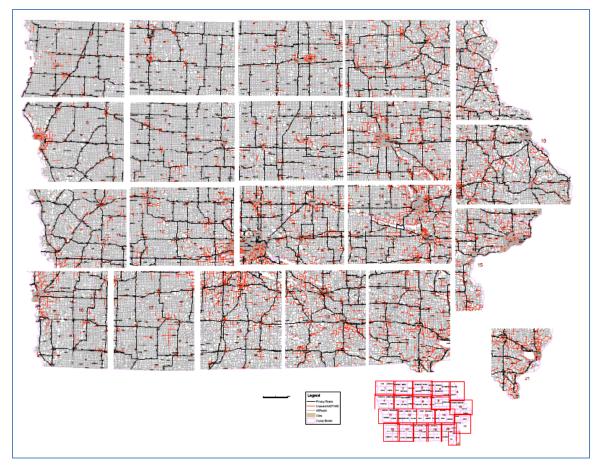


Figure 7. Unpaved roads > 100 AADT

For particularly problematic roadway sections or spot locations, road safety audits can be an effective means to identify safety needs. Local officials can arrange for audits or assessments of identified sections by contacting the Institute for Transportation at Iowa State University.

More information regarding recent crash history in specific locations or jurisdictions should be sought through resources such as the Crash Mapping Analysis Tool, CMAT, Safety Analysis, Visualization, and Exploration Resource (SAVER), the Crash Analysis web site: http://www.iowadot.gov/crashanalysis/ or_Iowa Traffic Safety Data Service (ITSDS) at InTrans.

It is recommended that average operational speed on unpaved roads be studied for the potential effectiveness of reduced statutory speed limits.

Additional research should be considered to develop a reliable road segment or system-based crash prediction tool for low-volume rural roads.

7. REFERENCES

- 1. American Traffic Safety Services Association, *Low Cost Local Roads Safety Solutions*, 2006.
- 2. Caldwell, R. C., Wilson, E. M., *A Safety Improvement Program for Rural Unpaved Roads*. MPC Report No. 97-70. January 1997.
- 3. FHWA and NHI, Guide to Safety Features for Local Roads and Streets. 1992.
- 4. Iowa Department of Transportation, Office of Traffic and Safety, Engineering Bureau, Highway Division, *Historical Summary of Travel, Crashes, Fatalities, and Rates (1970-2007) - State of Iowa*. Updated on October 8, 2008.
- 5. Khattak, A. J., Pawlovich, M. D., Souleyrette, R. R., and Hallmark, S. L., *Factors Related to More Severe Older Driver Traffic Crash Injuries*. Journal of Transportation Engineering, May-June 2002.
- 6. Ksaibati, K. and Evans, B., *Wyoming Rural Roads Safety Program*. TRB 88th Annual Meeting, Washington, DC, November 2008.
- 7. Liu, L. and Dissanayake, S., *Speed Limit-Related Issues on Gravel Roads*. Kansas State University, August 2007.
- 8. Liu, L. and Dissanayake, S., *Examination of Factors Affecting Crash Severity on Gravel Roads*. Kansas State University, November 17, 2008.
- 9. Madsen, M., *Farm Equipment Crashes on Upper Midwest Roads*. Midwest Rural Agricultural Safety and Health Forum (MRASH), 2008.
- Manual Uniform Traffic Control Devices for Streets and Highways (MUTCD), Part 5: Traffic Control Devices for Low-Volume Roads. FHWA, United States Department of Transportation, 2003 Edition.
- 11. Neenan, D., *Driver Education Survey Results on Rural Roadway Driving* The National Education Center for Agricultural Safety. Midwest Rural Agricultural Safety and Health Forum (MRASH), 2008.
- 12. Roadway Safety Tools for Local Agencies -A Synthesis of Highway Practice, NCHRP Synthesis 321. 2003.
- 13. Russell, E. R., Smith, B. L., and Brondell, W., *Traffic Safety Assessment Guide*. Kansas State University, Civil Engineering Department, April 1996.
- Souleyrette, R., Tenges, R., McDonald, T., and Maze, T., *Guidelines for Removal of Traffic Control Devices in Rural Areas*. Iowa Highway Research Board, Project TR-527, Oct 2005.

- 15. Tate III, J., Wilson, E., *Adapting Road Safety Audits to Local Rural Roads*. MPC Report No. 98-96B. October 1998.
- United States Department of Transportation Rural Transportation Initiative. May 23, 2006. http://www.communityinvestmentnetwork.org/nc/single-news-item-states/article/us-department-of-transportation-rural-transportation-initiative/terrain %2C%20faster%20speeds/?tx_ttnews[backPid]=782&cHash=e4906f03c4, Last reviewed: June 27, 2009.
- 17. Zegeer, C. V., Stewart, R., Council, F., Neuman, T. R., Accident Relationship of Roadway Width on Low-Volume Roads. TRR 1445, 1994.
- 18. Zegeer, C. V., Stewart, R., Council, F., Neuman, T.R., Roadway Widths for Low-Traffic-Volume Roads (NCHRP Report 362). 1994.

APPENDIX 1. HISTORICAL SUMMARY OF RURAL CRASH AND FATALITY RATES

By Jurisdiction, State of Iowa (per 100MVMT)

		R	ural Int	erstate		Rural Primary			Rural Local						Rural Total					
				Fatal +				Fatal +				Fatal +							Fatal +	
			Fatal	Injury	Total		Fatal	Injury	Total		Fatal	Injury	Total	Ratio*:	Ratio**:	Ratio***:		Fatal	Injury	Tota
	Changes in Legislation, Regulations,	Fatality		Crash		Fatality	Crash		Crash		Crash	Crash	Crash	Local/	Local/	Local/	Fatality	Crash	Crash	Crash
Years	and Technology	Rate	Rate	Rate	Rate	Rate	Rate	Rate	Rate	Rate	Rate	Rate	Rate	Primary	Primary	Primary	Rate	Rate	Rate	Rate
1970-1973	~Minimum Property Damage Threshhold: \$100 ~Speed Limits: Interstate, 75 MPH Day/65 MPH Night - Primary, 70 MPH Day/60 MPH	1.76	2.18	30	84	5.35	6.85	77	206	6.69	8	132	353	1.17	1.71	1.71	5.07	6.32	84	225
	Night																			
1974-1980 ****	"January 1, 1974 - Maximum Speed Limit Lowered to 55 MPH on all Road Systems "July 1, 1975 - Property Damage Threshhold Raised to \$250	1.03	1.24	24	78	3.55	4.4	54	155	5.53	6.31	125	342	1.43	2.31	2.21	3.64	4.35	69	195
1981-1986	~July 1, 1981 - Property Damage Threshhold Raised to \$500 ~July 1, 1982 - OWI Administrative License Revocation ~July 1, 1984 - Child Restraint Law	0.65	0.82	20	64	2.48	2.96	44	125	3.96	4.5	100	248	1.52	2.27	1.98	2.55	2.98	56	151
1987	~January 1, 1987 - Iowa Seat Belt Law ~May 12, 1987 - Rural Interstate Speed Limit Raised to 65 MPH	0.71	0.78	18	62	2.51	2.84	41	131	3.91	4.49	106	268	1.58	2.59	2.05	2.49	2.83	54	154
1988-1993	~December 28, 1987 - Rural Non-Interstate Freeway Speed Limits Raised to 65 MPH	0.72	0.86	18	60	2.17	2.66	40	128	3.41	3.82	96	254	1.44	2.40	1.98	2.16	2.53	50	147
1994-2000	~Beginning in 1996 Speed Limits on Selected Sections of Rural Four-Lane Divided Expressways Raised to 65 MPH ~July 1, 1997 - Property Damage Threshhold Raised to \$1,000	0.58	0.73	17	51	1.84	2.23	40	120	3.07	3.4	94	249	1.52	2.35	2.08	1.84	2.15	49	137
2001-2007 *****	[~] January 1, 2001 - New Crash Report Form [~] July 1, 2002 - Driver Reporting Requirements Changed - No Driver Report Required if Officer On Scene and Reported [~] July 1, 2005 - Rural Interstate Speed Limits Raised to 70 MPH [~] April 15, 2007 - Database Changed from DBF to SQL	0.5	0.65	13	45	1.38	1.6	30	95	3.15	3.51	78	204	2.19	2.60	2.15	1.46	1.67	35	103

** Ratio of fatal and injury crash rate on rural local roads to fatal and injury crash rate on rural primary roads.

*** Ratio of total crash rate on rural local roads to total crash rate on rural primary roads.

**** Because of the unavailable crash data for 1976, these summary totals and ratesdo not include 1976 data.

***** For 2001, due to a significant crash report form change and resultant databaserepository changes, an unknown number of crashes are missing (approximately 2000?).

Source: lowa DOT Office of Traffic and Safety

Questions:	Stop signs at all railroad crossings?	at all intersections?		Crash Mapping Analysis Tool (CMAT) user?	Has/uses Traffic Studies Manual?	Uses the Low Cost Safety Improvement guide?	
Choices:	Yes,No	Yes,No	Yes,No	Yes,No	Have/Like, Maybe, No	Have/Like, Maybe, No	Liked the idea, Sht. Contrib., Yes (Has)
Adair	N	N	N	N	L	Н	L
Adams	N	Y	Y	Y	L	Н	L
Allamakee	N	Y	Y	Y	Y	Y	Y
Appanoose							
Audubon	N	Y	Y	N	Н	Н	L
Benton	Y	Y	Y	Y	Н	Н	Y
Blackhaw k							
Boone	N	N	Y	Y	Н	U	S
Bremer							
Buchanan							
Buena Vista							
Butler							
Calhoun	N	N	Y	Y	Y	Y	Y
Carroll	N	N	Y	Y	Н	Н	Н
Cass	N	N	N	N	Н	Н	L
Cedar	N	Y	08	Y	Н	Н	Y
Cerro Gordo	N	N	Y	Y	Н	Н	S
Cherokee	Y	N	N	N	Н	М	Y
Chickasaw	N	N	Y	Y	Y	Y	Y
Clarke	Y	Y	N	N	Н	Н	L
Clay							
Clayton	N	Y	Y	Y	Н	М	Y
Clinton	N	N	Y	Y	Н	Н	S
Craw ford							
Dallas	Y	N	Y	Y	Y	Y	Y
Davis	None	Y	N	N	N	N	L
Decatur	N	Y	Y	N	Н	Н	L
Delaw are							
Des Moines							
Dickinson	N	N	N	Y	Н	Н	Y
Dubuque	N	Y	Y	Y	Н	Н	Y
Emmet							
Fayette							
Floyd	N	N	Y	Y	Y	Y	Y
Franklin							
Fremont	N	Y	Y	Y	Н	М	L
Greene	N	Y	Y	Y	Н	Н	L
Grundy	N	N	Y	Y	Н	Н	S
Guthrie	N	N	N	N	Y	M	Y
Hamilton	Y	Y	Y	N	L	Н	L
Hancock							
Hardin	N	N	N	N	L	Н	L
Harrison							
Henry	N	N	Y	Y	М	Н	L
How ard							
Humboldt	N	N	Y	Y	Н	Н	Y
lda							ļ
low a	N	N	8	Y	Н	Н	Н
Jackson							
Jasper	Y	Y	Y	Y	L	Н	L

APPENDIX 2. SUMMARY OF COUNTY ENGINEERS SURVEY

Questions:	DOT T&S user?	safety seminars?	Road Safety Audits (RSAs)	Roadside safety obstructions	Has a sign inventory?	Sign inventory type	
Choices:	Yes, No		Liked the idea, Requested/ing, Not interested	Yes, Holding, No	Yes, Starting, Unknown, Changed/ing, No	Paper;Custom, CartSign, ArcV, SimpSign, None	
Adair	N	N	L	Н	U		
Adams	Y	S	L	Н	Y	Р	
Allamakee	N	N	L	Н	Y	CS	
Appanoose							
Audubon	N	N	L	Н	Y	CU	
Benton	N	Y	N	Н	N		
Blackhaw k							
Boone	N	S	L	Y	N		
Bremer				ļ			
Buchanan	_↓↓						
Buena Vista							
Butler							
Calhoun		S	L	Н	Y	P	
Carroll		Y	L	Н	Y	CS	
Cass	<u> </u>	N	L	Н	U,		
Cedar	N	S	L	Н	S	CS	
Cerro Gordo	Y	N	L	Н	Y	С	
Cherokee	N	S	L	N	Y	Р	
Chickasaw	N	N	L	Н	Y	SS	
Clarke	N	S	L	Н	U		
Clay	71						
Clayton	N	N	L	Н	Y	AV	
Clinton	N	S	L	Н	CHG	Р	
Craw ford		X	N	Ň	N N		
Dallas		Y	N	Y	Y	CS	
Davis	N	N	N	N	N	N	
Decatur	N	S	L	Н	S	N	
Delaw are	┫┛						
Des Moines	┥						
Dickinson	- Y	N	L	Н	Y	С	
Dubuque	NN	N	L	Н	Y	CS	
Emmet	┦┟────						
Fayette	74						
Floyd	- N	N	L	Н	Y	SS	
Franklin	74						
Fremont	- <u>N</u>	N	L	н	Y	С	
Greene	- <u>N</u>	S	L	Н	Y	С	
Grundy	- N	N	L	Н	U		
Guthrie	- <u>N</u>	N	N	Н	Y	CS	
Hamilton	- Y	S	L	Н	Y	С	
Hancock	┦┟───						
Hardin	- N	N	L	Н	U		
Harrison	┥┟────						
Henry	- N	N	N	Н	Y	SS	
How ard	┥┟────				-		
Humboldt	- <u>N</u>	N	N	Н	S	SS	
Ida	┥┟────						
low a	- <u>N</u>	S	L	Н	Y	Р	
Jackson	┥ <u>↓</u>						
laenar	- Y	S	L	H	Y	С	

Questions:	Conducts night retroreflectivit y surveys?	How frequently?	Has own retroreflectometer ?	Initial perceptions of county engineers on traffic safety concerns
Choices:	Yes, Usually, No	Annually, Biennially, Sometimes	Yes,No	
Adair	U		N	
Adams	Y	S	N	
Allamakee	N		N	Curves ;Speed
Appanoose	┨ <u></u>			
Audubon	N		N	
Benton	N		N	inattention, young drivers,
Blackhaw k			N	
Boone	Y	В	N	Alcohol,inexperience
Bremer	_↓ 			
Buchanan	-↓{			
Buena Vista				
Butler	N N		N	Alcohol, Inexperience, older drivers
Calhoun		S	N	Animals, Alcohol & inattention
Carroll Cass			N	
Cedar			N	Speeding
Cerro Gordo	Y	А	N	Inattention of drivers
Cherokee	Y	A	N	Speed, overwidth vehicles, weeds
Chickasaw	Y	В	N	Sight distances
Clarke	N		N	
Clay	+1			
Clayton	N		N	Speed; Animals
Clinton	- N		Y	Animal;driver related-distraction
Craw ford	┥			
Dallas	Y	A	Y	Steering committee member
Davis	NN		N	Cell phones, drinking, in experience, speed
Decatur	<u> </u>		N	
Delaw are	┥			
Des Moines	┫			
Dickinson	- Y	A	N	Inattention
Dubuque	N		N	Curves
Emmet	┨┥────			
Fayette]	В	N	Sight distances
Floyd	_ <u> </u> †'	D	IN	
Franklin	<u> Т ү</u>	S	N	
Fremont		A	N	Speed , inattention
Greene			N	
Grundy		S	N	Not paying attention, alcohol
Guthrie		S	N	
Hamilton				
Hancock	- N		N	
Hardin				
Harrison	- Y	A	N	
Henry How ard	4			
Humboldt	N		N	Alcohol, Animals, w eather
Ida	4			
low a	N		N	Blind hills & intersections
Jackson	- <u> </u>			
Jachor	N		Y	

Questions:	Stop signs at all railroad crossings?		to up-to-date crash data?	Crash Mapping Analysis Tool (CMAT) user?	Has/uses Traffic Studies Manual?	Uses the Low Cost Safety Improvement guide?	Uses the Best Practices guide?
Choices:	Yes,No	Yes,No	Yes,No	Yes,No	Have/Like, Maybe, No	Have/Like, Maybe, No	Liked the idea, Sht. Contrib., Yes (Has)
Jefferson	Y	N	N	N	N	N	L
Johnson	N	N	8	Y	Н	Н	Y
Jones	N	Y	Y	Y	Y	Y	Y
Keokuk	N	Y	Y	N	Н	Н	L
Kossuth							
Lee	N	N	Y	Y	Н	Н	S
Linn	N	N	Y	Y	Y	Y	Y
Louisa	N	N	Y	Y	N	Y	L
Lucas	N	Y	N	N	М	Н	L
Lyon	N	N	Y	Y	Н	Н	Y
Madison	N	Y	Y	Y	Н	Н	L
Mahaska	N	Y	Y	Y	M	М	Y
Marion	Y	Y	Y	Y	Н	Н	S
Marshall	N	N	Y	Y	Н	Н	S
Mills	N	Y	N	N	L	Н	L
Mitchell							
Monona	N	V	V	V			6
Monroe	N	Y Y	Y	Y	Н	Н	S
Montgomery Muscatine	N	Y N	N Y	N Y	H H	H H	L
O'Brien	N	N	Y Y	f Y	Н	Н	L
Osceola	N	N	Y	Y	Н	H	L
Page	IN	IN	T	I	П	П	L
Palo Alto							
Plymouth	N	N	Y	Y	Н	Н	L
Pocahontas			•				
Polk	Y	Y	Y	Y	Н	Н	L
Pottaw attamie	N	Ý	Y	Ŷ	L	H	L
Pow eshiek	Y	Y	Y	Y	Н	Н	L
Ringgold	None	Y	Y	N	Н	Н	L
Sac	N	Y	Y	Y	Н	Н	Y
Scott	Y	N	Y	Y	Н	Н	L
Shelby	N	Y	N	N	Н	Н	L
Sioux	N	N	Y	Y	Н	Н	S
Story	N	Ν	Y	Y	Н	Н	S
Tama	Ν	Y	Y	Y	Н	Н	Y
Taylor	N	Y	N	N	М	Н	L
Union	N	N	N	N	Н	Н	L
Van Buren	N	Y	Y	Y	Н	Н	S
Wapello	N	Y	Y	Y	Н	М	Y
Warren	N	Y	Y	Y	Н	Н	L
Washington	Y	Y	Y	Y	Н	Н	L
Wayne	N	Y	Y	Y	M	Н	L
Webster	N	N	Y	Y	L	Н	L
Winnebago							
Winneshiek	N	N	Y	Y	Н	H	Y
Woodbury	N	Y	Y	Y	Н	Н	Y
Worth	1		1	1	1		

Questions:	lowa Traffic Safety Data Service user?	DOT T&S user?	Has attended safety seminars?	Road Safety Audits (RSAs)	Roadside safety obstructions	Has a sign inventory?	Sign inventory type
Choices:	Yes, No	Yes,No	Yes, Some, No	Liked the idea, Requested/ing, Not interested	Yes, Holding, No	Yes, Starting, Unknown, Changed/ing, No	Paper;Custom, CartSign, ArcV, SimpSign, None
Jefferson	N	N	N	N	N	Y	С
Johnson	N	Ν	S	L	Y	S	SS
Jones	Y	Y	Y	N	Н	Y	CS
Keokuk	N	N	N	N	Н	N	
Kossuth							
Lee	Y	Y	Y	L	Н	U	
Linn	Y	Y	Y	N		U	С
Louisa	Y	Y	Y	R	Н	Y	CS
Lucas	N	Y	S	L	Н	Y	С
Lyon	N	N	S	L	Н	Y	SS
Madison	T	N	S	L	Н	U	
Mahaska	N	N	N		H	Y	C
Marion	N	N Y	S	L R	Y	Y	CU
Marshall Mills	Y N	ř Y	S		Y H	U	CU
Mitchell	N	Ť	N	L	п	Y	ŵ
Monona							
Monroe	Y	Y	S	L	Н	U	
Montgomery	N	T N	S	L	Н	U Y	С
Muscatine	N	N	N	L	H	Y	CU
O'Brien	N	N	S	L	H	Y	SS
Osceola	N	N	S	L	H	Y	P
Page							
Palo Alto							
Plymouth	N	N	S	L	Н	Y	Р
Pocahontas						-	
Polk	<u> </u>	Y	S	L	Н		
Pottaw attamie	N	Y	S	L	Н	U	
Pow eshiek	N	N	Y	L	Н	Y	Р
Ringgold	T	N	N	L	Н	S	SS
Sac	N	N	S	L	Н	Y	Р
Scott	U	Y	N	Y	Н	Y	CU
Shelby	N	Ν	N	L	Н	Y	Р
Sioux	N	N	N	L	Н	Y	С
Story	Y	Y	S	L	Y	Y	SS
Tama	N	N	Y	L	Y	Y	CS
Taylor	N	N	S	L	Н	U	
Union	N	N	N	L	Н	Y	SS
Van Buren	N	N	N	L	Н	Y	Р
Wapello	N	N	S	L	Н	Y	CS
Warren	N	Y	S	L	Н	Y	CU
Washington	Y	Y	Y	R	Н	Y	SS
Wayne	N	N	N	L	Н	N	
Webster	Y	N	S	L	Н	Y	С
Winnebago		L					
Winneshiek	N	N	S	L	Н	Y	SS
Woodbury	N	Y	Ν	L	Н	Ν	
Worth							
Wright	Y	Y	S	L	Н	Y	Р

Questions:	Conducts night retroreflectivit y surveys?		Hasown retroreflectometer ?	Initial perceptions of county engineers on traffic safety concerns
Choices:	Yes, Usually, No	Annually, Biennially, Sometimes	Yes, No	
Jefferson	N	Α	N	Inexperience, speed, inattention
Johnson	Y	А	Y	Sight distance; access location
Jones	Y	Α	N	inexperienced drivers, large farm equip, alcohol
Keokuk	N		Ν	sight distance;foggy;4 w ay Int; road conditions
Kossuth				
Lee	Y	В	N	Visibility, animals, cell phones
Linn	N		N	driver inexperience, inattention, alcohol
Louisa	N	S	Ν	youth, inattention
Lucas	N		Ν	
Lyon	N		Ν	
Madison	N		Ν	
Mahaska	Y	S	Ν	
Marion	N		В	
Marshall	Y	S	Ν	Inexperience, alcohol, cell phones, visibility
Mills	N		Y	
Mitchell	_			
Monona	_			
Monroe	Y	В	N	
Montgomery	N		Y	
Muscatine	N		Ν	speed- "lost urbanites" per David @ Washington Co
O'Brien	Y	Α	Ν	Distration Speed younger
Osceola	Y	Α	Ν	Distraction - ROR
Page				
Palo Alto				
Plymouth	Y	A	N	inexperienced drivers, speed animals
Pocahontas	_			
Polk	Y	Α	N	
Pottaw attamie	Y	Α	N	
Pow eshiek	Y	Α	N	Speed; falling asleep;poor seat belts usage
Ringgold	N		N	
Sac	N		N	Farm related (getting around); youger drivers don't understand yield to the right
Scott	N	Α	Y	Unfamiliarity w / road; distractions
Shelby	N		N	
Sioux	N		N	
Story	Y	Α	N	distractions, alcohol
Tama	Y	А	N	late night crashes - falling asleep;drunkenness
Taylor	N		Ν	
Union	N		N	
Van Buren	N		N	
Wapello	Y	А	N	speed, alcohol, animals
Warren	N		N	
Washington	N		N	alcohol,distractions,inexperience
Wayne	N		N	
Webster	Y	A	N	
Winnebago				
Winneshiek	N		N	Terrain; Older drivers; College and tourism - Unfamiliar
Woodbury	N		N	Driver inexperience; Inattention to signs;Snow and Ice
Worth				
Wright	Y	Α	Ν	

APPENDIX 3. DETAILED STUDY OF CRASH RECORDS AND FIELD CONDITIONS

Selection of Candidate Counties for Detailed Study

Five candidate counties were selected based on the assessment of a combination of risk measures, including rural low-volume (<400 VPD) road crash frequency (number of crashes per unit of time), density (crashes per length of roadway segment), and rate (crashes per vehicle mile traveled). Rural population trends, some other demographic features of the counties, terrain, land use, and local knowledge and experience were also taken into consideration.

Selected Counties

Five candidate counties were selected for further in-depth analysis based on the aforementioned factors. The five counties and the reasons they were selected are as follows:

- Story County, for a relatively high fatal and major injury crash rate and especially for the county's proximity to the research center, which allowed preliminary field reviews and videotaping to be more efficiently conducted. The preliminary site visits were performed early to develop a final methodology for field data gathering before visits to the sites in the more distant counties.
- Dallas County, for the highest growth rate in rural neighborhoods, population, and corresponding traffic volumes. Potential novice drivers in the area were considered as a group representing related crash factors.
- Winneshiek County, for a relatively higher number of crashes.
- Ringgold County, for its relatively lower population density and traffic volumes. This county reflects the crash characteristics specific to a county where less maintenance is expected to take place due to a lower population and accordingly limited funds.
- Henry County, for its relatively high crash rate and density.

Selection of Candidate Sites and Routes for Detailed Study

Candidate sites within the five counties identified in the previous step were selected for more detailed analysis. Several criteria were employed to identify preliminary sites, including crash distribution (frequency, density, and rate), crash type(s), and roadway characteristics.

Large-format maps for each of the five selected counties were used in the site selection process. The maps displayed all low-volume rural secondary road crashes that occurred between 2001 and 2007, inclusive. Crashes were represented by severity and "stacked" where they were so close as to obscure one another. Low-volume sections of interest (\leq 400 AADT) were mapped thematically. Railroads and streams were added to the maps after a pilot study of Story County indicated that they may contribute to the location of crashes. Similarly, urban areas and towns

were also indicated and labeled. A sample working map of Winneshiek County used for the preliminary identification of candidate sites can be seen in Figure 8.

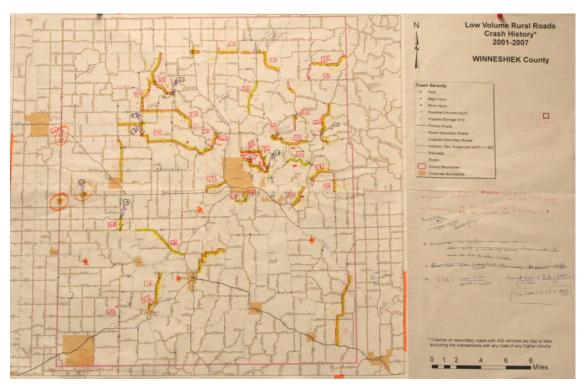


Figure 8. Site visit map for Winneshiek County

The following steps describe the crash analysis-based selection process for refinement of candidate sites.

Road Segment Selection

Because county roads in Iowa have relatively few crashes per mile, the methods identified in previous studies required some modifications to be used in this study. These modifications included considering longer road segments and measuring the safety performance of road segments and intersections separately. As the rural local road network in Iowa has chiefly been designed on grids of one mile in the north-south and east-west directions, the use of a GIS process to systematically select high-crash locations was somewhat complicated. Because crashes on low-volume rural roads in Iowa are generally random, analysis segment of more than one mile were created.

When considering crashes on particular road segments, intersection crashes were excluded. The following steps describe the selection process for high-crash segments:

1. Maps were thoroughly scanned for segments where a relatively high number of crashes had accumulated.

- 2. Special consideration was given to each of these possible situations:
 - a. Relatively high number of crashes per mile
 - b. Relatively more severe crashes
 - c. Fatal (and major injury crashes in some sites) crashes.
- 3. Locations were noted where a segment could be extended to adjacent roads with similar AADT (+/- 10%) (See Figure 9).

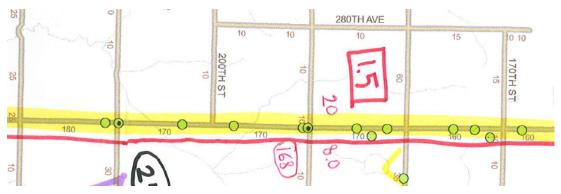


Figure 9. Sample "AADT-consistent" corridor

- 4. Crashes within sections were counted using the equivalent property damage only (EPDO) method of accounting. Next, equivalent crash (EC) numbers (for the seven-year analysis period) were computed. Intersection crashes were not included in the segment analysis.
- 5. The length of the identified corridor was measured.
- 6. If the section was extended to cover adjacent segments with similar AADT, the approximate weighted average of the AADT values was computed.
- 7. The above steps were repeated for all sections of interest.
- 8. A crash rate was computed for each of the sections:

$$Crash Rate (Segment) = \frac{Crashes \times 10^8}{AADT \times 365 \times Years \times Length}$$

9. A number of segments were selected for detailed analysis based on crash rates. Consideration was given to the period of time allocated to visit each of the counties (See Figure 10).



Figure 10. Map marking style for segments

Intersection Selection

The following steps describe the selection process for high-crash intersections:

- 1. Maps were thoroughly scanned for intersections where multiple crashes had been recorded.
- 2. The number of crashes located at intersections was adjusted to Equivalent Property Only Damage crashes. This adjusted number of crashes is referred to as "Equivalent Crashes" or "EC."
- 3. The above steps were repeated for all intersections of interest.
- 4. An empirical crash rate was computed for each of the intersections.

 $Empirical \ Crash \ Rate \ (Intersection)(per \ 100 \ entering \ EC) = \frac{EC \times 100}{\left(\frac{AADT}{2}\right) * 365 * \# \ Years}$

5. A number of intersections (and sections) beginning from the highest ECR were selected, with consideration given to the period of time allocated to visit each of the counties. (See Figure 11).

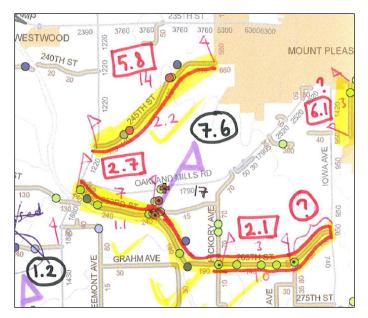


Figure 11. Map marking style for intersections

Field and Detailed Evaluation

Sites and routes identified in previous steps were visited for videotaping and/or photographing. Supplemental information about the environment of crash locations that may not be available in the crash and road databases was obtained. During the visits, characteristics of some sites with potential risk factors were documented for consideration in the succeeding analyses. These video records and photographs were reviewed in an attempt to better understand potential causes of particular crashes. The supplemental data gathered in this task were also intended to be integrated with the existing data for a descriptive statistical analysis of selected crash sites. During the process, it was observed that deriving crash attributes using this method would consume more time and effort than estimated and give potentially biased results due to subjectivity. Therefore, the research team decided to use video clips and photos for evaluating only the top crash factors determined in the descriptive statistical analysis.

An in-depth analysis of the characteristics of crashes at the candidate sites was conducted, and inferences were documented. A primary objective of this task was to identify common site characteristics that may have impacted safety performance. Special consideration was given to the five to 10 highest risk factors determined in the test of proportions analysis. Video records and photographs obtained in the site visits were tied with statewide aerial imagery available through geographic information systems (GIS) tools. Crash-, driver/vehicle-, and injury-level attributes of each crash were also inspected. Simultaneous review of individual crash reports, focusing on narratives and diagrams, was a key component of this analysis. A comprehensive listing of the preliminary characteristics of interest can be seen in Appendix 4. *Preliminary Characteristics of Interest for Site Visits (Desired Data for Crash Site Review)*.

Field Visits and Imaging

Visiting the actual site of a crash helps supplement and confirm the information in the database. For this reason, visits to selected crash sites were conducted to videotape and photograph individual crash locations for subsequent evaluation. Travel routes between sites were determined using the maps prepared previously.

For a comprehensive field evaluation, information may be integrated from as many sources as available. These sources can include detailed crash and roadway databases, aerial imagery (to help locate crash sites), and narratives and diagrams from the original crash reports. For a thorough analysis of candidate crash sites, two procedures were considered:

- Each crash site of interest is visited, and each site and its surroundings are inspected to identify general safety deficiencies. The aforementioned sources of information associated with each particular crash are reviewed to understand the underlying factors. This procedure would require having all these resources readily available in the research vehicle, and stopping at each site would be time consuming. Furthermore, it would be difficult to summarize the common characteristics found at the sites of particular crash types and then draw conclusions.
- 2. Crash sites of interest are visited rapidly by videotaping and/or photographing, as appropriate and necessary. These visual media are subsequently processed and organized into easily accessible and reviewable sections. Because all types of information are gathered on a single computer and all the available sources can be accessed instantly and simultaneously, this type of evaluation is much easier to perform. For instance, the aerial imagery; the crash database with crash-, driver/vehicle-, and injury-level information; the videos; the photos; the narratives; and the crash diagrams can be tied together to get a full understanding of the crash's background.

The second procedure was chosen. Therefore, the evaluation of crash sites took place in the office rather than in the field. Resources (including aerial imagery, the crash database with crash, driver/vehicle, and injury-level information, videos, photos, narratives; and crash diagrams) were reviewed simultaneously using dual computer monitors. Figure 12 illustrates the working environment during the crash site evaluation process.

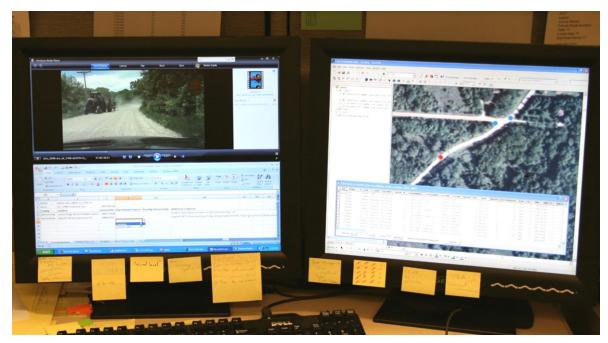


Figure 12. Screen snapshot of the resources used in the evaluation procedure

A hard disc camcorder and a still-photo camera were used to capture the video and images of the crash sites. The camcorder was mounted inside the windshield of the vehicle used for site visits and was tested for image quality, zoom level, and voice capturing level. The videotaping method was tested and improved in Story County due to that site's proximity to the research center.

For most sites, roadway sections were videotaped while intersections were photographed from different directions. However, both techniques were applied in some cases. Video records covered only one direction of the road section, but signs for the opposite direction were narrated by voice to the camcorder.

Video and Photo Processing

The videos and photos were transferred to a computer and stored after each visit. Video editing software was used to trim the records into reviewable and easily accessible clips. A consistent format was used to label the video clip files. The label included, in order, the name of the county, the name of the road videotaped, the direction of travel, and the intersecting roads at the start and end points. For example, a road in Story County was labeled "story_100th-st_eb_590th-ave_600th-ave." Most video clips covered more than one crash location.

Photos were labeled using the names of the intersecting roads or special features in the vicinity. For example, "story_int_19th-st+260th-st(south-of-Nevada)_eb" includes, in order, the name of the county, the type of site (intersection), names of intersecting roads, special features (in brackets), and the direction of the view.

Video Evaluation

Video evaluation of crash locations can be useful to assess location-based potential contributing factors and to validate or supplement crash reports and the crash database. Site factors that may be examined in videos may include sight distance, visibility of signage, and visual clutter.

In this study, video analysis was used to assess three-leg intersections that have experienced crash problems. Video of the selected intersections was evaluated, paying special attention to sight distance, clutter (distractions) or obstructions, presence and location of appropriate signage, and grade changes.

APPENDIX 4. PRELIMINARY CHARACTERISTICS OF INTEREST FOR SITE VISITS (DESIRED DATA FOR CRASH SITE REVIEW)

- 1. Location: intersection-distance; Section, Township, Range; coordinates (GPS), etc.
- 2. Any restricted speed limits, (< 55 mph)
- 3. Traffic control in place and general condition; signs, chevrons, delineators, etc.
- 4. Surface type and general condition
- 5. If paved
 - a. Lane width
 - b. Shoulder type & width
 - c. Pavement marking condition, centerline and edge lines

If unpaved

- d. Top width
- e. Washboarding
- f. Loose rock
- g. Windrows
- 6. Approx. lane cross slope
- 7. General terrain
 - a. Flat
 - b. Gently rolling
 - c. Severely rolling(hilly)
- 8. Curvature
 - a. Vertical
 - b. Horizontal (measurement or approximation of degree?)
- 9. Roadside conditions
 - a. Approximate width (66 feet, other)
 - b. Ditches; V, flat bottom, etc.
 - c. Fore and back slopes, approx. % and height of fill or cut
 - d. Obstructions in ROW: trees, utility poles, etc. or near ROW, (buildings, etc.)
- 10. Structures, if any
 - a. Large culverts (+6 feet opening)
 - b. Bridges
 - i. Clearance width
 - ii. Handrail type and condition
 - iii. Guardrail type and condition
- 11. Pictures, electronic
- 12. Any unusual features in area
 - a. farmsteads
 - b. livestock facilities
 - c. etc
- 14. Sight distance restrictions, especially for intersections

APPENDIX 5. SAMPLE TABLE SHOWING THE TEST OF PROPORTIONS RESULTS (0-100 UNPAVED SECONDARY VS. TWO-LANE PRIMARY)

VARIOUS CHARACTERISTICS OF CRASHES ON		AL ROA	DS BY ROAD	SYSTEM,	VOLUME RA	NGE, AI	ND SUF	RFACE T	YPE
Statistical Comparison of Proportions									
State of Iowa (2001-2007)									
Top 20 highlighted in each column									
			Comparisor	n Group	Notes:				
Road System:	Second	ary	Primary	ALL	- Level of Cor	nfidence: 9	5 %		
AADT Range:	0-10	D	70-122	00	- p-values sm	aller than (0.000001	are displa	yed as
Surface Type:	Unpav	ed	All Pav	ed	"0.000001". - Ratio of pro	oortions, r	anking o	fratios.	
Total Crashes	16,040	-	34,040	-	difference bet	ween prop	ortions,	and ranki	
Total Daily VMT	2,447,000	-	13,460,000	-	differences ar value <= 0.05	. ,			•
Total Centerline-Miles	66,900	-	5,963	-	volume road of			In the low	/61-
Weighted Average of ADT	37	-	2,300	-	- The total nur				
Crash Rate (per 100M VMT)	257	-	99	-	under 'Crash Crash/Collisio				
Crash Density (crash per mile)	0.24	-	5.71	-	rule also appli	-			
							Rank:		Rank:
CRASH SEVERITY	Frequency	%	Frequency	%	P-Value	Ratio	Ratio	Diff.	Diff.
Fatal	235	1.5%	563	1.7%					
Major Injury	933	5.8%	1,410	4.1%	0.000001	1.40	68	1.7%	44
Minor Injury	2,750	17.1%	3,433	10.1%	0.000001	1.70	50	7.1%	20
Possible/Unknown	2,929	18.3%	5,142	15.1%	0.000001	1.21	85	3.2%	31
Property Damage Only	9,193	57.3%	23,492	69.0%					
CRASH TYPE	Frequency	%	Frequency	%					
MV (No Ani/Obj on Road)**	2,940	18.3%	9,539	28.0%					
SV ROR (No Ani/Obj on Road)*	9,121	56.9%	7,366		0.000001	2.63	29	35.2%	1
SV Other (No Ani/Obj on Road)*	507	3.2%	1,460	4.3%					
SV ROR (Ani/Obj on Road)*	984	6.1%	491	1.4%	0.000001	4.25	12	4.7%	24
SV Other (Ani/Obj on Road)*	35	0.2%	109	0.3%					
Hit Animal	2,453	15.3%	15,075	44.3%					
MANNER OF CRASH/COLLISION	Frequency	%	Frequency	%					
MV Head-on**	378	2.4%	855	2.5%					
MV Read-end**	524	3.3%	3,211	9.4%					
MV Oncoming left turn**	206	1.3%	692	2.0%					
MV Broadside**	1,007	6.3%	1,896	5.6%	0.001555	1.13	94	0.7%	68
MV Sideswipe-Same Dir.**	217	1.4%	1,377	4.0%					
MV Sideswipe-Oppos. Dir.**	391	2.4%	1,035	3.0%					
MV Other **	217	1.4%	473	1.4%					
SV Coll. with Fixed Obj.*	4,050	25.2%	3,841	11.3%	0.000001	2.24	36	14.0%	10
SV Overturn/Rollover*	3,332	20.8%	2,279	6.7%	0.000001	3.10	19	14.1%	9
SV CollwFixObj+Over/Roll*		16.0%			0.000001	3.60		11.6%	
SV Other*	691	4.3%	1,787	5.2%					
Hit Animal	2,453	15.3%	15,075	44.3%					
SPEED/WEATHER-SURFACE RELATION	Frequency	%	Frequency	%				·	
Speed Rel	6,894	43.0%	4,991	14.7%	0.000001	2.93	23	28.3%	3
Weather/Surface Rel	1,143								
Speed&Weather/Surface Rel	1,619	10.1%		11.0%					
Other/Unknown		39.8%		65.4%					
								r	
LIGHT CONDITIONS	Frequency	%	Frequency	%					
Day		48.8%		37.9%	0.000001	1.29	75	10.9%	15
Dark, dusk or dawn		40.9%		36.9%	0.000001	1.11			
Other/Unknown		10.3%		25.3%	-	1	1		1

YOUNGER AND OLDER DRIVER INVOLVEMENT	Frequency	%	Frequency	%				•	
Age 14 or below involved	205	1.3%	102	0.3%	0.000001	4.27	11	1.0%	60
Ages 15-19 involved	5,499	34.3%	5,234	15.4%	0.000001	2.23	37	18.9%	5
Age 65 or above involved	865	5.4%		12.8%					
Other/Unknown	9,471	59.0%	24,330	71.5%					
DRUG/ALCOHOL INVOLVEMENT	Frequency	%	Frequency	%				•	
Impaired	1,329	8.3%	1,444	4.2%	0.000001	1.95	47	4.0%	26
Unimpaired	14,711	91.7%	32,596	95.8%					
TERRAIN	Frequency	%	Frequency	%					
Flat	4,407	27.5%	13,266	39.0%					
Rolling	10,438	65.1%	19,117	56.2%	0.000001	1.16	89	8.9%	18
Hilly	1,173	7.3%	1,657	4.9%	0.000001	1.50	62	2.4%	40
Other/Unknown	22	0.1%							
FARM VEHICLE INVOLVEMENT	Frequency	%	Frequency	%					
Farm vehicle and other	196	1.2%	270	0.8%	0.000003	1.54	56	0.4%	81
Farm vehicle only	83	0.5%	12	0.0%	0.000001	14.68	3	0.5%	77
No farm vehicle	15,761	98.3%	33,758	99.2%					
MISCELLANEOUS									
Month									
January	1,231	7.7%	2,992	8.8%					
February	930	5.8%	2,508	7.4%					
March	877	5.5%	2,388	7.0%					
April	981	6.1%	2,072	6.1%				0 = 1/	
May	1,202	7.5%	2,324	6.8%	0.006523	1.10	98	0.7%	70
June	1,398	8.7%	2,572	7.6%	0.000007	1.15	91	1.2%	53
July	1,517	9.5%	2,313	6.8%	0.000001	1.39	69	2.7%	37
August	1,410 1.477	8.8% 9.2%	1,970	5.8% 6.5%	0.000001	1.52 1.41	59 66	3.0%	33 36
September October	,		2,218 3,308		0.000001	1.41	00	2.7%	30
October Navambar	1,638			9.7%					
November December	1,749 1,630	10.9% 10.2%	5,174 4,201	15.2% 12.3%					
Day	1,030	10.2%	4,201	12.5%					
Sunday	2,568	16.0%	1 168	13.1%	0.000001	1.22	83	2.9%	34
Monday	1	13.1%		13.4%	0.00001	1.22	05	2.370	54
Tuesday	1,918		,	13.2%					
Wednesday	2,007	12.5%		13.3%					
Thursday	2,007	12.7%		13.8%					
Friday	2,037	15.2%		17.1%					
Saturday	2,437	18.5%	,	15.9%	0.000001	1.16	88	2.6%	38

Hour									
Midnight	626	3.9%	834	2.5%	0.000001	1.59	54	1.5%	49
1	515	3.2%	660	1.9%	0.000001	1.66	51	1.3%	50
2	441	2.7%	567	1.7%	0.000001	1.65	52	1.1%	57
3	296	1.8%	418	1.2%	0.000001	1.50	61	0.6%	73
4	227	1.4%	549	1.6%					
5	337	2.1%	1,283	3.8%					
6	480	3.0%	1,901	5.6%					
7	661	4.1%	1,680	4.9%					
8	614	3.8%	1,187	3.5%					
9	435	2.7%	992	2.9%					
10	527	3.3%	994	2.9%	0.026178	1.13	95	0.4%	87
11	541	3.4%	1,023	3.0%	0.027364	1.12	96	0.4%	86
12	585	3.6%	1,087	3.2%	0.008344	1.14	93	0.5%	79
13	686	4.3%	1,182	3.5%	0.000009	1.23	81	0.8%	66
14	724	4.5%	1,345	4.0%	0.003166	1.14	92	0.6%	75
15	941	5.9%	1,692	5.0%	0.000028	1.18	87	0.9%	64
16	977	6.1%	1,656	4.9%	0.000001	1.25	78	1.2%	51
17	1,021	6.4%	2,994	8.8%					
18	1,091	6.8%	2,856	8.4%					
19	880	5.5%	2,222	6.5%					
20	845	5.3%	1,949	5.7%					
21	855	5.3%	2,249	6.6%					
22	802	5.0%	1,397	4.1%	0.000005	1.22	84	0.9%	63
23	739	4.6%	1,047	3.1%	0.000001	1.50	64	1.5%	48
Unknown	194	1.2%	276	0.8%					
Location of First Harmful Event									
On roadway	9,400	58.6%	21,205	62.3%					
Shoulder	1,291	8.0%	1,985	5.8%	0.000001	1.38	71	2.2%	41
Median	20	0.1%	36	0.1%					
Roadside	2,793		1,953	5.7%	0.000001	3.03	20	11.7%	13
Gore	76	0.5%	45	0.1%	0.000001	3.58	14	0.3%	90
Outside trafficway	907	5.7%	651	1.9%	0.000001	2.96	22	3.7%	29
Unknown	1,553	9.7%	8,165	24.0%					
First Harmful Event								-	
Non-collision events: Overturn/rollover	4,209	26.2%	2,860	8.4%	0.000001	3.12	18	17.8%	6
Non-collision events: Jackknife	30	0.2%	151	0.4%					
Non-collision events: Other non-collision (explain in narrative)	458	2.9%	648	1.9%	0.000001	1.50	63	1.0%	62
Collision with: Non-motorist (see non-motorist type)	23	0.1%	67	0.2%					
Collision with: Vehicle in traffic	2,320		8,105						
Collision with: Vehicle in/from other roadway	426	2.7%	845	2.5%					
Collision with: Parked motor vehicle	145	0.9%	127	0.4%	0.000001	2.42		0.5%	76
Collision with: Railway vehicle/train	65			0.0%	0.000001	8.62	5	0.4%	88
Collision with: Animal	2,403		1	43.9%				-	
Collision with: Other non-fixed object (explain in narrative)	164	1.0%	351	1.0%				0.004	
Collision with fixed object: Bridge/bridge rail/overpass	259	1.6%	260	0.8%	0.000001	2.11	39	0.9%	65
Collision with fixed object: Underpass/structure support	4	0.0%	4	0.0%	0.000001	2.52	22	0.6%	70
Collision with fixed object: Culvert	170		143	0.4%	0.000001	2.52	33	7	72
Collision with fixed object: Ditch/embankment	3,879	24.2%	2,613	7.7%	0.000001	3.15	17	16.5%	/
Collision with fixed object: Curb/island/raised median	3		19	0.1%				-	
Collision with fixed object: Guardrail	32	0.2%	222	0.7%					
Collision with fixed object: Concrete barrier (median or right side)	3		6	0.0%	0.000001	2 20	10	1.60/	10
Collision with fixed object: Tree	372	2.3%	241	0.7%	0.000001	3.28	16	1.6%	46
Collision with fixed object: Poles (utility, light, etc.)	291	1.8%	396	1.2%	0.000001	1.56	55	0.7%	71
Collision with fixed object: Sign post	70	0.4%	238	0.7%					
Collision with fixed object: Mailbox	52	0.3%	80	0.2%					
Collision with fixed object: Impact attenuator	1		4	0.0%	0.000000	1 50	~ ~ ~	0.50/	70
Collision with fixed object: Other fixed object (explain in narrative)	225	1.4%	319	0.9%	0.000003	1.50	65	0.5%	78
Miscellaneous events: Fire/explosion	8		6	0.0%	0.043985	2.83	27	0.0%	98
Miscellaneous events: Immersion	2	0.0%	2	0.0%		<u>├</u>		┝──┤	
Miscellaneous events: Hit and run	1	0.0%	4 0 0-	4.000	-	┝──┤			
Unknown	425	2.6%	1,367	4.0%					

Major Cause									
Animal	2,526	15.7%	15,362	45.1%					
Ran Traffic Signal	24	0.1%	75	0.2%					
Ran Stop Sign	277	1.7%	569	1.7%					
Crossed centerline	397	2.5%	1,413	4.2%					
FTYROW: At uncontrolled intersection	480	3.0%	164	0.5%	0.000001	6.21	7	2.5%	39
FTYROW: Making right turn on red signal	1	0.0%	1	0.0%					
FTYROW: From stop sign	148	0.9%	1,147	3.4%					
FTYROW: From yield sign	26	0.2%	12	0.0%	0.000002	4.60	9	0.1%	95
FTYROW: Making left turn	98	0.6%	446	1.3%					
FTYROW: From driveway	177	1.1%	142	0.4%	0.000001	2.65	28	0.7%	69
FTYROW: From parked position	28	0.2%	88	0.3%					
FTYROW: To pedestrian	2	0.0%	6	0.0%					
FTYROW: Other (explain in narrative)	262	1.6%	589	1.7%					
Traveling wrong way or on wrong side of road	184	1.1%	195	0.6%	0.000001	2.00	46	0.6%	74
Driving too fast for conditions	1,897	11.8%	1,561	4.6%	0.000001	2.58	31	7.2%	19
Exceeded authorized speed	183	1.1%	243	0.7%	0.000001	1.60	53	0.4%	82
Made improper turn	85	0.5%	262	0.8%					
Followed too close	127	0.8%	980	2.9%					
Disregarded RR Signal	4	0.0%	7	0.0%					
Disregarded Warning Sign	12	0.1%	12	0.0%					
Operating vehicle in an erratic/reckless/careless/negligent/aggressive manner	358	2.2%	347	1.0%	0.000001	2.19	38	1.2%	52
Swerving/Evasive Action	2,870	17.9%	2,883	8.5%	0.000001	2.11	40	9.4%	17
Over correcting/over steering	427	2.7%	384	1.1%	0.000001	2.36	35	1.5%	47
Downhill runaway	26	0.2%	19	0.1%	0.000213	2.90	25	0.1%	96
Equipment failure	67	0.4%	157	0.5%					
Ran off road - right	2,067	12.9%	2,092	6.1%	0.000001	2.10	41	6.7%	21
Ran off road - straight	311	1.9%	81	0.2%	0.000001	8.15	6	1.7%	43
Ran off road - left	1,289	8.0%	1,078	3.2%	0.000001	2.54	32	4.9%	23
Lost Control	436	2.7%	677	2.0%	0.000001	1.37	72	0.7%	67
Inattentive/distracted by: Passenger	6	0.0%	32	0.1%					
Inattentive/distracted by: Use of phone or other device	7	0.0%	53	0.2%					
Inattentive/distracted by: Fallen object	8	0.0%	24	0.1%					
Inattentive/distracted by: Fatigued/asleep	19	0.1%	63	0.2%					
Other (explain in narrative): Vision obstructed	134	0.8%	141	0.4%	0.000001	2.02	44	0.4%	83
Oversized Load/Vehicle	2	0.0%	7	0.0%					
Cargo/equipment loss or shift	4	0.0%	55	0.2%					
Other (explain in narrative): Other improper action	165	1.0%	692	2.0%					
Other (explain in narrative): No improper action	267	1.7%	578	1.7%					
Unknown	639	4.0%	1,403	4.1%					
Drug or Alcohol Related								_	
Drug-related	73	0.5%	141	0.4%					
Alcohol-related (under 0.08)	121	0.8%	123	0.4%	0.000001	2.09	42	0.4%	84
Alcohol-related (0.08 or over)	689	4.3%	728	2.1%	0.000001	2.01	45	2.2%	42
Drug- and alcohol-related (under 0.08)	14	0.1%	9	0.0%	0.003026	3.30	15	0.1%	97
Drug- and alcohol-related (0.08 or over)	23	0.1%	35	0.1%					
Refused	124	0.8%	174	0.5%	0.000377	1.51	60	0.3%	91
A driver indicated as under the influence of alcohol/drugs/medications	285	1.8%	234	0.7%	0.000001	2.58	30	1.1%	56
Not drug- or alcohol-related	14,711	91.7%	32,596	95.8%					

Environment Contributing Circumstances									
None apparent	9,046	56.4%	12,487	36.7%	0.000001	1.54	57	19.7%	4
Weather conditions	762	4.8%	3,421	10.0%					
Physical obstruction	699	4.4%	149	0.4%	0.000001	9.96	4	3.9%	28
Pedestrian action	16	0.1%	26	0.1%					
Glare	131	0.8%	211	0.6%	0.012568	1.32	74	0.2%	92
Animal in roadway	1,510	9.4%	4,404	12.9%					
Previous accident	7	0.0%	49	0.1%					
Other (explain in narrative)	722	4.5%	507	1.5%	0.000001	3.02	21	3.0%	32
Unknown	3,147	19.6%	12,786						
Weather Conditions									
Clear	8,720	54.4%	13,598	39.9%	0.000001	1.36	73	14.4%	8
Partly cloudy	2,500	15.6%	3,760	11.0%	0.000001	1.41	67	4.5%	25
Cloudy	1,336	8.3%	2,447	7.2%	0.000007	1.16	90	1.1%	54
Fog/smoke	204	1.3%	491	1.4%					
Mist	175	1.1%	521	1.5%					
Rain	397	2.5%	1,001	2.9%					
Sleet/hail/freezing rain	93	0.6%	475	1.4%					
Snow	346	2.2%	2,040	6.0%					
Severe winds	115	0.7%	234	0.7%					
Blowing sand/soil/dirt/snow	143	0.9%	560	1.6%					
Other (explain in narrative)	17	0.1%	34	0.1%					
Unknown	1,994	12.4%	8,879	26.1%					
Light Conditions - More Detail									
Daylight	7,829	48.8%	12,891	37.9%	0.000001	1.29	75	10.9%	15
Dusk	506	3.2%	1,035	3.0%					
Dawn	299	1.9%	1,074	3.2%					
Dark - roadway lighted	173	1.1%	729	2.1%					
Dark - roadway not lighted	5,516	34.4%	9,553	28.1%	0.000001	1.23	82	6.3%	22
Dark - unknown roadway lighting	65	0.4%	161	0.5%					
Unknown	1,652	10.3%	8,597	25.3%					
Surface Conditions									
Dry	6,382	39.8%	18,421	54.1%					
Wet	582	3.6%	2,300	6.8%					
Ice	851	5.3%	1,833	5.4%					
Snow	655	4.1%	1,604	4.7%					
Slush	98	0.6%	372	1.1%					
Sand/mud/dirt/oil/gravel	5,411	33.7%	200	0.6%	0.000001	57.42	1	33.1%	2
Water (standing/moving)	14	0.1%	24	0.1%					
Other (explain in narrative)	127	0.8%	150	0.4%	0.000001	1.80	49	0.4%	89
Unknown	1,920	12.0%	9,136	26.8%					
Roadway Contributing Circumstances								_	
None apparent	9,980	62.2%	16,816	49.4%	0.000001	1.26		12.8%	11
Road surface condition	2,133	13.3%	3,263	9.6%	0.000001	1.39	70	3.7%	30
Debris	37	0.2%	80	0.2%					
Ruts/holes/bumps	181	1.1%	25	0.1%	0.000001	15.36	2	1.1%	59
Work Zone (construction/maintenance/utility)	44	0.3%	168	0.5%					
Worn/travel-polished surface	5	0.0%	7	0.0%					
Obstruction in roadway	70	0.4%	112	0.3%					
Traffic control device inoperative/missing/obscured	32	0.2%	11	0.0%	0.000001	6.17	8	0.2%	94
Shoulders (none/low/soft/high)	230	1.4%	113	0.3%	0.000001	4.32	10	1.1%	55
Non-highway work	37	0.2%	53	0.2%					
Non-contact vehicle	153	1.0%	262	0.8%	0.033886	1.24	80	0.2%	93
Unknown	3,138	19.6%	13,130	38.6%					

Type of Roadway/Junction/Feature									
Non-intersection: No special feature	10,026	62.5%	17,132	50.3%	0.000001	1.24	79	12.2%	12
Non-intersection: Bridge/overpass/underpass	499	3.1%	692	2.0%	0.000001	1.53	58	1.1%	58
Non-intersection: Railroad crossing	109	0.7%	79	0.2%	0.000001	2.93	24	0.4%	80
Non-intersection: Business drive	31	0.2%	402	1.2%					
Non-intersection: Farm/residential drive	889	5.5%	907	2.7%	0.000001	2.08	43	2.9%	35
Non-intersection: Alley intersection	7	0.0%	16	0.0%					
Non-intersection: Crossover in median	5	0.0%	9	0.0%					
Non-intersection: Other non-intersection (explain in narrative)	398	2.5%	296	0.9%	0.000001	2.85	26	1.6%	45
Intersection: Four-way intersection	1,016	6.3%	3,251	9.6%					
Intersection: T - intersection	989	6.2%	1,766	5.2%	0.000008	1.19	86	1.0%	61
Intersection: Y - intersection	130	0.8%	150	0.4%	0.000001	1.84	48	0.4%	85
Intersection: Five-leg or more	4	0.0%	15	0.0%					
Intersection: Offset four-way intersection	12	0.1%	62	0.2%					
Intersection: Intersection with ramp	1	0.0%	11	0.0%					
Intersection: On-ramp merge area	6	0.0%	4	0.0%					
Intersection: Off-ramp diverge area	1	0.0%	6	0.0%					
Intersection: On-ramp	1	0.0%							
Intersection: Off-ramp	2	0.0%	12	0.0%					
Intersection: With bike/pedestrian path	4	0.0%	2	0.0%					
Intersection: Other intersection (explain in narrative)	209	1.3%	387	1.1%					
Unknown	1,701	10.6%	8,841	26.0%					

APPENDIX 6. SUMMARY OF RESULTS FROM TEST OF PROPORTIONS ON SEVEN COMPARISON PAIRS

Note: Ratio is the proportion of crashes in the low-volume road category divided by the proportion of crashes for rural primary two-lane (only statistically significant differences shown); these ratios are ranked and the top 20 for each LVR category is shaded in pink. Similarly, the differences in proportions are ranked (the second column in each LVR category). The cons. column lists consitency of findings. Where all seven secondary road types for that item are in the top 20, cons. is 7 and is highlighted in pink.

VARIOUS CHARACTERISTICS OF CRASHES ON UN		D RUR/	AL ROA	DS BY	ROAD	SYSTEM	1. VOLI	JME RA	ANGE.	AND SI	JRFACE	ТҮРЕ				
Statistical Comparison of Proportions							1									
State of Iowa (2001-2007)																
Top 20 highlighted in each column															Comp	arison
															Gr	oup
Road System:	Seco	ndary	Seco	ndary	Seco	ndary	Seco	ndary	Seco	ndary	Seco	ndary	Seco	ndary	Prima	ry-ALL
AADT Range:	0-1	100	0-1	100	101	-400	101	-400	0-4	100	0-4	100	0-4	100	70-1	2200
Surface Type:	Unp	aved	Pav	ved	Unp	aved	Pa	ved	Unp	aved	Pa	ved	A	AII	All P	Paved
Total Crashes	1	16,040		470		5,502		7,603	1	21,542		8,073	1	29,615		34,040
Total Daily VMT	2,44	47,000	7	72,080	67	77,000	1,93	11,000	3,12	24,000	1,98	33,000	5,10	07,000	13,40	60,000
Total Centerline-Miles	e	56,900		1,063		4,345		7,421		71,245		8,484		79,729		5,963
Weighted Average of ADT		37		68		160		260		44		230		64		2,300
Crash Rate (per 100M VMT)		257		255		318		156		270		159		227		99
Crash Density (crash per mile)		0		0		1		1		0		0.95		0		6
	Rank:	Rank:	Rank:	Rank:	Rank:	Rank:	Rank:	Rank:	Rank:	Rank:	Rank:	Rank:	Rank:	Rank:		
CRASH SEVERITY	Ratio	Diff.	Ratio	Diff.	Ratio	Diff.	Ratio	Diff.	Ratio	Diff.	Ratio	Diff.	Ratio	Diff.	Cons.	
Fatal																
Major Injury	68	44	42	40	78	59	56	34	74	48	56	34	68	43	7	
Minor Injury	50	20	46	21	54	20	61	20	51	20	59	20	52	20	7	
Possible/Unknown	85	31		L	75	26		L	82	29		ļ	87	31	4	
Property Damage Only																
CRASH TYPE																
MV (No Ani/Obj on Road)**																
SV ROR (No Ani/Obj on Road)*	29	1	30	1	26	1	25	1	28	1	25	1	29	1	7	
SV Other (No Ani/Obj on Road)*																
SV ROR (Ani/Obj on Road)*	12	24	10	23	13	28	10	27	11	24	10	26	10	26	7	
SV Other (Ani/Obj on Road)*							46	84							1	
Hit Animal																
	_															
MANNER OF CRASH/COLLISION													-			1
MV Head-on** MV Read-end**																
MV Oncoming left turn** MV Broadside**	94	68			86	64			98	67			98	83	4	
MV Sideswipe-Same Dir.**	94	68			86	64			98	67			98	83	4	
MV Sideswipe-Same Dir.** MV Sideswipe-Oppos. Dir.**																
MV Sides wipe-Oppost Dif.**																
SV Coll. with Fixed Obj.*	36	10	28	4	36	8	26		36	9	27	1	34	8	7	
SV Cont with Fixed Obj. SV Overturn/Rollover*	19	9	31	15	23	12	30	4	19	10	30	13	20	10	7	
SV CollwFixObj+Over/Roll*	13	14	27	17	12	12	15	11	19	10	17	12	14	13	7	
SV Other*	15	14	44	29	12	15	74	54	14	12	69	47	14	13	3	
Hit Animal			44	25			/4	54			09	47			5	
SPEED/WEATHER-SURFACE RELATION																
Speed Rel	23	3	19	2	18	3	41	3	22	3	36	2	22	3	7	1
Weather/Surface Rel																1
Speed&Weather/Surface Rel	1	l –			Ī						İ 👘		İ 👘		İ 👘	1
Other/Unknown																1
LIGHT CONDITIONS																
Day	75	15			72	10			77	15			78	15	4	
Dark, dusk or dawn	97	27	51	12	91	44	71	6	102	31	70	6	93	24	7	
Other/Unknown	1			L				L				L		L		
YOUNGER AND OLDER DRIVER INVOLVEMENT																
Age 14 or below involved	11	60	5	48	11	65			10	61	L		13	65	5	
Ages 15-19 involved	37	5	37	9	35	5	54	7	35	5	54	7	38	5	7	
Age 65 or above involved		I			I	<u> </u>					I		I		I	
Other/Unknown	1	1									I		I		I	

DRUG/ALCOHOL INVOLVEMENT															
Impaired	47	26	33	24	41	27	31	21	47	26	31	22	43	25	7
Unimpaired															
TERRAIN															
Flat															
Rolling	89	18			87	19	89	14	94	18	84	16	90	17	6
Hilly	62	40			44	24	32	19	54	33	34	21	50	29	6
Other/Unknown															
FARM VEHICLE INVOLVEMENT															
Farm vehicle and other	56	81					47	70	69	90	46	69	66	85	5
Farm vehicle only	3	77			3	86	5	90	3	82	5	85	3	86	6
No farm vehicle															
MISCELLANEOUS															
Month															
January															
February															
March															
April							76	51			77	53			2
May	98	70			88	62	73	38	100	68	74	40	91	63	6
June	91	53			84	54	87	56	93	55		-	89	55	5
ylly	69	37	40	20	69	34	81	50	71	36	75	41	71	38	7
August	59	33			61	33	58	30	62	34	58	32	61	32	6
September	66	36			68	35	80	52	70	35	76	48	69	39	6
October							83	41			80	43	99	71	3
November							05	-11			00	-13	55	/1	5
December															
Day															
Sunday	83	34			89	56	72	25	90	38	72	25	86	36	6
Monday		54			05	50	/2	25	50	50	72	25	00	50	0
Tuesday															
Wednesday															
Thursday															
Friday															
Saturday	88	38			90	53	90	48	97	39	85	50	92	41	6
Hour	00	50			50	55	50	40	57	35	05	50	52	41	0
Midnight	54	49			59	55	70	67	57	51	68	64	60	50	6
1	51	50	26	37	67	68	52	53	56	56	50	49	54	52	7
2	52	57	20	57	50	52	39	42	50	57	41	49	48	51	6
3	61	73			58	70	40	55	61	72	40	55	57	66	6
4	01	75			50	70	40	55	01	12	40	55	57	00	0
5															
6 7							79	58							1
8							79	20	101	88			97	88	2
9									101	ðð			97	ðð	2
	05	07													1
10 11	95 96	87 86							99	84					2
11 12	96									84 79					
	1 1	79							96				0.4	70	2
13	81	66			0.2	74			89	71 73			94	79	3
14	92	75			83	71			95				0.5	70	3
15	87	64			76	46			86	59			95	72	4
16	78	51			65	38			79	50			85	58	4
17															
18	I														
19															
20															
21							85	59							1
22	84	63					64	39	88	65	63	39	77	59	5
23	64	48			64	49	55	40	64	49	55	38	62	47	6
Unknown															1

Location of First Harmful Event															
On roadway															
Shoulder	71	41	41	25	71	39	36	18	73	42	37	18	65	35	7
Median															
Roadside	20	13	22	13	21	15	22	9	20	13	23	10	18	12	7
Gore	14	90			8	81	9	80	13	86	8	77	12	87	6
Outside trafficway	22	29	21	31	22	29	17	26	23	28	19	28	19	28	7
Unknown															
First Harmful Event															
Non-collision events: Overturn/rollover	18	6	34	14	20	6	28	5	17	6	28	5	17	7	7
Non-collision events: Jackknife															
Non-collision events: Other non-collision (explain in narrative)	63	62	35	44	63	63	63	63	63	63	57	57	64	61	7
Collision with: Non-motorist (see non-motorist type)															
Collision with: Vehicle in traffic															
Collision with: Vehicle in/from other roadway															
Collision with: Parked motor vehicle	34	76	3	30	40	82	23	73	34	76	14	68	32	74	7
Collision with: Railway vehicle/train	5	88			6	87	4	86	5	91	3	80	6	90	6
Collision with: Animal															
Collision with: Other non-fixed object (explain in narrative)			20	43											1
Collision with fixed object: Bridge/bridge rail/overpass	39	65			48	73	49	72	43	66	52	70	46	67	6
Collision with fixed object: Underpass/structure support															
Collision with fixed object: Culvert	33	72			46	84	33	77	33	75	32	72	33	73	6
Collision with fixed object: Ditch/embankment	17	7	24	10	16	7	13	2	16	7	16	3	16	6	7
Collision with fixed object: Curb/island/raised median															
Collision with fixed object: Guardrail															
Collision with fixed object: Concrete barrier (median or right side)															
Collision with fixed object: Tree	16	46	6	38	14	42	24	57	15	43	20	56	15	45	7
Collision with fixed object: Poles (utility, light, etc.)	55	71	16	39	51	66	57	71	55	69	53	66	55	69	7
Collision with fixed object: Sign post															
Collision with fixed object: Mailbox					45	88	43	87	60	98	43	82	58	93	5
Collision with fixed object: Impact attenuator															
Collision with fixed object: Other fixed object (explain in narrative)	65	78			66	83	38	62	65	80	39	59	59	75	6
Miscellaneous events: Fire/explosion	27	98													1
Miscellaneous events: Immersion															
Miscellaneous events: Hit and run															
Unknown															

Weather Conditions Clear Partly cloudy Cloudy Fog/smoke Mist Rain Sleet/hail/freezing rain Snow Severe winds Blowing sand/soil/dirt/snow Other (explain in narrative) Unknown Light Conditions - More Detail Daylight Dusk	73 67 90	8 25 54	48 45	8 18	70 74 79	9 31 43	82 75 78 65	15 32 46 74	75 72 92	<mark>8</mark> 25 52	79 71 78	15 31 52	74 70 88	<mark>9</mark> 27 49	7 7 6
Partly cloudy Cloudy Fog/smoke Mist Rain Sleet/hail/freezing rain Snow Severe winds Blowing sand/soil/dirt/snow Other (explain in narrative) Unknown Light Conditions - More Detail Daylight	67 90	25		-	74	31	75 78 65	32 46 74	72	25	71	31	70	27	, 7 6
Cloudy Fog/smoke Mist Rain Sleet/hail/freezing rain Snow Severe winds Blowing sand/soil/dirt/snow Other (explain in narrative) Unknown Light Conditions - More Detail Daylight	90			10		-	78 65	46 74							6
Fog/smoke Mist Rain Sleet/hail/freezing rain Snow Severe winds Blowing sand/soil/dirt/snow Other (explain in narrative) Unknown Light Conditions - More Detail Daylight						+3	65	74	52	52	/0	52	0	75	
Mist Rain Sleet/hail/freezing rain Snow Severe winds Blowing sand/soil/dirt/snow Other (explain in narrative) Unknown Light Conditions - More Detail Daylight															1
Rain Sleet/hail/freezing rain Snow Severe winds Blowing sand/soil/dirt/snow Other (explain in narrative) Unknown Light Conditions - More Detail Daylight							68	75			65	71			2
Sleet/hail/freezing rain Snow Severe winds Blowing sand/soil/dirt/snow Other (explain in narrative) Unknown Light Conditions - More Detail Daylight							00	75			05	/1			2
Snow Severe winds Blowing sand/soil/dirt/snow Other (explain in narrative) Unknown Light Conditions - More Detail Daylight															
Severe winds Blowing sand/soil/dirt/snow Other (explain in narrative) Unknown Light Conditions - More Detail Daylight															
Blowing sand/soil/dirt/snow Other (explain in narrative) Unknown Light Conditions - More Detail Daylight															
Other (explain in narrative) Unknown Light Conditions - More Detail Daylight															
Unknown Light Conditions - More Detail Daylight															
Light Conditions - More Detail Daylight															
Daylight															
	75	15			72	10			77	15			78	15	1
Dusk	75	15			12	10	60	44	//	15	61	51	/0	15	4
Dawn							60	44			01	51			2
Dawn			20	25											1
Dark - roadway lighted	82	22	29 47	35 11	85	25	60	8	87	22	67	9	81	21	1
Dark - roadway not lighted	82	22	47	11	85	25	69	ŏ	٥/	22	67	9	Δī	21	/
Dark - unknown roadway lighting															
Unknown															
Surface Conditions							0.1	20			0.0	20			~
Dry							91	29			86	29			2
Wet	<u> </u>				~ ~ ~							~-			-
					81	58	66	37			66	37	96	76	4
Snow															
Slush															
Sand/mud/dirt/oil/gravel															
Water (standing/moving)															
Other (explain in narrative)	49	89			42	80	34	76	49	85	35	73	47	84	6
Unknown															
Roadway Contributing Circumstances				-											_
None apparent	77	11	49	6	80	14	88	16	81	11	82	14	80	11	7
Road surface condition	70	30			60	22			68	27			72	30	4
Debris															
Ruts/holes/bumps	2	59			2	40	6	85	2	53	7	81	2	57	6
Work Zone (construction/maintenance/utility)			14	47											1
Worn/travel-polished surface															
Obstruction in roadway							42	83			43	79	73	96	3
Traffic control device inoperative/missing/obscured	8	94			9	90	8	91	8	96	9	86	7	95	6
Shoulders (none/low/soft/high)	10	55	11	51	17	69	11	66	12	60	11	65	11	60	7
Non-highway work									59	100			53	98	2
Non-contact vehicle	80	93							85	95					2
Unknown															
Type of Roadway/Junction/Feature															
Non-intersection: No special feature	79	12	50	7	82	17	86	13	84	14	81	11	83	14	7
Non-intersection: Bridge/overpass/underpass	58	58			77	79	62	60	66	62	62	60	67	62	6
Non-intersection: Railroad crossing	24	80			31	85	20	81	25	83	21	78	25	82	6
Non-intersection: Business drive															
Non-intersection: Farm/residential drive	43	35	18	22	52	41	21	23	46	37	22	23	40	34	7
Non-intersection: Alley intersection															
Non-intersection: Crossover in median															
Non-intersection: Other non-intersection (explain in narrative)	26	45	8	36	30	51	16	43	26	46	15	42	21	46	7
Intersection: Four-way intersection															
Intersection: T - intersection	86	61			53	30			76	44			82	54	4
Intersection: Y - intersection	48	85	15	49	24	67	51	82	41	77	45	76	42	78	7
Intersection: Five-leg or more															
Intersection: Offset four-way intersection															
Intersection: Intersection with ramp															
Intersection: On-ramp merge area															
Intersection: Off-ramp diverge area															
Intersection: On-ramp															
Intersection: Off-ramp															
Intersection: With bike/pedestrian path															
Intersection: Other intersection (explain in narrative)			17	41	62	78			83	93			84	92	4
Unknown														-	

Major Cause															
Animal															
Ran Traffic Signal															
Ran Stop Sign					55	60	44	47	91	92	48	54	76	77	5
Crossed centerline															
FTYROW: At uncontrolled intersection	7	39	13	46	10	50	48	79	7	41	42	74	8	42	7
FTYROW: Making right turn on red signal															
FTYROW: From stop sign															
FTYROW: From yield sign	9	95			7	89	3	88	9	97	3	83	9	94	6
FTYROW: Making left turn	-														
FTYROW: From driveway	28	69	4	34	28	72	14	64	29	70	12	58	26	68	7
FTYROW: From parked position															
FTYROW: To pedestrian															
FTYROW: Other (explain in narrative)															
Traveling wrong way or on wrong side of road	46	74			43	75			45	74			49	81	4
Driving too fast for conditions	31	19	36	26	19	18	50	28	27	19	51	27	31	19	7
Exceeded authorized speed	53	82	9	42	47	74	7	36	52	78	6	35	39	64	7
Made improper turn															
Followed too close															
Disregarded RR Signal															
Disregarded Warning Sign									38	102					1
Operating vehicle in an erratic/reckless/careless/negligent/aggressive manner	38	52	12	33	32	47	53	69	37	54	47	62	37	53	7
Swerving/Evasive Action	40	17	38	16	38	16	67	31	40	17	64	30	45	18	7
Over correcting/over steering	35	47			34	45	45	61	32	47	49	61	35	48	6
Downhill runaway	25	96			27	91			24	99			23	97	4
Equipment failure															
Ran off road - right	41	21	39	19	49	23	37	17	44	21	38	17	44	22	7
Ran off road - straight	6	43	2	28	4	48	2	49	6	45	2	44	4	44	7
Ran off road - left	32	23	32	27	25	21	29	24	30	23	29	24	30	23	7
Lost Control	72	67			57	57			67	64			75	70	4
Inattentive/distracted by: Passenger															
Inattentive/distracted by: Use of phone or other device															
Inattentive/distracted by: Fallen object															
Inattentive/distracted by: Fatigued/asleep															ĺ .
Other (explain in narrative): Vision obstructed	44	83							48	87			51	91	3
Oversized Load/Vehicle															
Cargo/equipment loss or shift															
Other (explain in narrative): Other improper action															
Other (explain in narrative): No improper action															
Unknown															
Drug or Alcohol Related															
Drug-related															
Alcohol-related (under 0.08)	42	84			29	76	35	78	39	81	33	75	36	80	6
Alcohol-related (0.08 or over)	45	42	25	32	37	36	27	33	42	40	26	33	41	40	7
Drug- and alcohol-related (under 0.08)	15	97							21	101			27	99	3
Drug- and alcohol-related (0.08 or over)							18	89			24	84			2
Refused	60	91			39	77			53	89			56	89	4
A driver indicated as under the influence of alcohol/drugs/medications	30	56	23	50	33	61	12	45	31	58	13	46	28	56	7
Not drug- or alcohol-related															
Environment Contributing Circumstances															
None apparent	57	4	43	3	56	4	77	10	58	4	73	8	63	4	7
Weather conditions															
Physical obstruction	4	28	7	45	5	37	19	68	4	30	18	63	5	33	7
Pedestrian action															
Glare	74	92							80	94					2
Animal in roadway							84	35			83	36			2
Previous accident															<u> </u>
Other (explain in narrative)	21	32			15	32	59	65	18	32	60	67	24	37	6
Unknown															

APPENDIX 7. COMPARISON DATA FOR VARIOUS ROAD CLASSES

Note: The % columns total to 100% for each crash type heading (severity, type, manner, etc.). Orange and blue grouping lines indicate the same crashes broken out into different categories. Some rows are shaded for ease of reading. Frequencies are seven-year totals.

State of Iowa (2001-2007)													
				SECONDARY	0-100			 		SECONDARY 1	01-400		
Road System		Seconda	ry	Seconda	ry	Seconda	iry	Seconda	ry	Seconda	ry	Seconda	iry
AADT Range		0-100		0-100		0-100		101-40	0	101-40	0	101-40	0
Surface Type		Unpave	d	Paved		All		Unpave	d	Paved		All	_
Total Crashes		16,040	-	470	-	16,510	-	5,502	-	7,603	-	13,105	-
Total Daily VMT		2,447,000	-	72,080	-	2,519,000	-	677,000	-	1,911,000	-	2,588,000	-
Total Centerline-Miles		66,900	-	1,063	-	67,963	-	4,345	-	7,421	-	11,766	-
Weighted Average of ADT		37		68	-	37	-	160	-	260	-	220	-
Crash Rate (per 100M VMT)		257	-	255	-	257	-	318	-	156	-	198	-
Crash Density		0.24	-	0.44	-	0.24	-	1.27	-	1.02	-	1.11	-
CRASH SEVERITY		Frequency	%	Frequency	%	Frequency	%	Frequency	%	Frequency	%	Frequency	
Fatal		235	_	9	1.9%	244	1.5%	57	1.0%	120	1.6%	177	1.4
Major Injury		933	5.8%	29	6.2%	962	5.8%	287	5.2%	424	5.6%	711	5.4
Minor Injury		2,750	17.1%	65	13.8%	2,815	17.1%	911	16.6%	1,014	13.3%	1,925	14.7
Possible/Unknown		2,929	18.3%	68	14.5%	2,997	18.2%	1,084	19.7%	1,201	15.8%	2,285	17.4
Property Damage Only		9,193	57.3%	299	63.6%	9,492	57.5%	3,163	57.5%	4,844	63.7%	8,007	61.1
CRASH TYPE													
MV (No Ani/Obj on Road) 🛛 🗧 🗲		2,940	18.3%	104	22.1%	3,044	18.4%	1,068	19.4%	1,118	14.7%	2,186	16.7
SV ROR (No Ani/Obj on Road)		9,121	56.9%	199	42.3%	9,320	56.5%	3,156	57.4%	2,973	39.1%	6,129	46.8
SV Other (No Ani/Obj on Road)	←	507	3.2%	24		531	3.2%	175	3.2%	358	4.7%	533	
SV ROR (Ani/Obj on Road)		984	6.1%	22	4.7%	1,006	6.1%	295	5.4%	272	3.6%	567	4.3
CV Orbert (ArtifObiler Dentil)		35	0.2%		0.0%	35	0.2%	9	0.2%	37	0.5%	46	0.49
SV Other (Ani/Obj on Road)			15.3%		25.7%		15.6%	799		2,845		3,644	27.8

MANNER OF CRASH/COLLISION		1											
MV Head-on		378	2.4%	8	1.7%	386	2.3%	119	2.2%	66	0.9%	185	1.4%
MV Read-end		524	3.3%	29	6.2%	553	3.3%	212	3.9%	235	3.1%	447	3.4%
MV Oncoming left turn		206	1.3%	5	1.1%	211	1.3%	108	2.0%	93	1.2%	201	1.5%
MV Broadside	€	1,007	6.3%	27	5.7%	1,034	6.3%	353	6.4%	371	4.9%	724	5.5%
MV Sideswipe-Same Dir.		217	1.4%	17	3.6%	234	1.4%	84	1.5%	173	2.3%	257	2.0%
MV Sideswipe-Oppos. Dir.		391	2.4%	12	2.6%	403	2.4%	130	2.4%	103	1.4%	233	1.8%
MV Other		217	1.4%	6	1.3%	223	1.4%	62	1.1%	77	1.0%	139	1.19
SV Coll. with Fixed Obj.		4,050	25.2%	108	23.0%	4,158	25.2%	1,437	26.1%	1,538	20.2%	2,975	22.7%
SV Overturn/Rollover	Ł	3,332	20.8%	58	12.3%	3,390	20.5%	1,055	19.2%	900	11.8%	1,955	14.9%
SV Collw/FixObj+Over/Roll		2,574	16.0%	43	9.1%	2,617	15.9%	914	16.6%	738	9.7%	1,652	12.6%
SV Other		691	4.3%	36	7.7%	727	4.4%	229	4.2%	464	6.1%	693	5.3%
Hit Animal		2,453	15.3%	121	25.7%	2,574	15.6%	799	14.5%	2,845	37.4%	3,644	27.8%
SPEED/WEATHER-SURFACE RELATIO	N												
Speed Rel		6,894	43.0%	159	33.8%	7,053	42.7%	2,491	45.3%	1,802	23.7%	4,293	32.8%
Weather-Surface Rel		1,143	7.1%	31	6.6%	1,174	7.1%	373	6.8%	645	8.5%	1,018	7.8%
Speed&Weather-Surface Rel		1,619	10.1%	38	8.1%	1,657	10.0%	623	11.3%	871	11.5%	1,494	11.4%
Other/Unknown		6,384	39.8%	242	51.5%	6,626	40.1%	2,015	36.6%	4,285	56.4%	6,300	48.1%
LIGHT CONDITIONS													
Day		7,829	48.8%	195	41.5%	8,024	48.6%	2,784	50.6%	2,811	37.0%	5,595	42.7%
Dark, dusk or dawn		6,559	40.9%	206	43.8%	6,765	41.0%	2,125	38.6%	3,292	43.3%	5,417	41.3%
Other/Unknown		1,652	10.3%	69	14.7%	1,721	10.4%	593	10.8%	1,500	19.7%	2,093	16.0%
YOUNGER AND OLDER DRIVER INVO	LVEMENT												
Age 14 or below involved		205	1.3%	6	1.3%	211	1.3%	63	1.1%	27	0.4%	90	0.7%
Ages 15-19 involved		5,499	34.3%	119	25.3%	5,618	34.0%	1,983	36.0%	1,620	21.3%	3,603	27.5%
Age 65 or above involved		865	5.4%	38	8.1%	903	5.5%	246	4.5%	595	7.8%	841	6.49
Other/Unknown		9,471	59.0%	307	65.3%	9,778	59.2%	3,210	58.3%	5,361	70.5%	8,571	65.49
DRUG/ALCOHOL INVOLVEMENT													
Impaired		1,329	8.3%	35	7.4%	1,364	8.3%	482	8.8%	565	7.4%	1,047	8.0%
Unimpaired		14,711	91.7%	435	92.6%	15,146	91.7%	5,020	91.2%	7,038	92.6%	12,058	92.0%

TERRAIN												
Flat	4,407	27.5%	180	38.3%	4,587	27.8%	1,453	26.4%	2,329	30.6%	3,782	28.99
Rolling	10,438	65.1%	272	57.9%	10,710	64.9%	3,521	64.0%	4,636	61.0%	8,157	62.29
Hilly	1,173	7.3%	18	3.8%	1,191	7.2%	528	9.6%	638	8.4%	1,166	8.99
Other/Unknown	22	0.1%		0.0%	22	0.1%	1	0.0%		0.0%		0.09
FARM VEHICLE INVOLVEMENT										s		
Farm vehicle and other	196	1.2%	6	1.3%	202	1.2%	46	0.8%	91	1.2%	137	1.09
Farm vehicle only	83	0.5%	1	0.2%	84	0.5%	17	0.3%	9	0.1%	26	0.29
No farm vehicle	15,761	98.3%	463	98.5%	16,224	98.3%	5,439	98.9%	7,503	98.7%	12,942	98.89

State of Iowa (2001-2007)												
		SE	CONDARY 40	1-1000		ł		SEC	CONDARY 100	1-13500		
Road System	Seconda	ry	Seconda	ry	Seconda	ry	Seconda	ry	Seconda	ry	Seconda	ry
AADT Range	401-100	00	401-100	0	401-100	0	1001-135	00	1001-135	500	1001-135	00
Surface Type	Unpave	d	Paved		All		Unpave	d	Paved		All	
Total Crashes	158	-	16,526	-	16,684	-	25	1370	14,759	-	14,784	•
Total Daily VMT	36,610		4,407,000		4,443,000		20,930		4,196,000	-	4,217,000	
Total Centerline-Miles	66		6,986		7,053	2.00	10	196	2,537		2,547	100
Weighted Average of ADT	550	2	630	-	630	14	2,000	121	1,700	-	1,700	1.20
Crash Rate (per 100M VMT)	169		147	•	147		47	100	138	-	137	1.000
Crash Density	2.39	-	2.37	-	2.37	141	2.41		5.82	-	5.80	
CRASH SEVERITY	Frequency	96	Frequency	%	Frequency	96	Frequency	96	Frequency	%	Frequency	9
Fatal	1	0.6%	275	1.796	276	1.7%		0.0%	219	1.5%	219	1.59
Major Injury	8	5.1%	885	5.4%	893	5.4%	1	0.0%	709	4.8%	709	4.89
Minor Injury	38	24.1%	2,169	13.1%	2,207	13.2%	1	4.0%	1,721	11.7%	1,722	11.69
Possible/Unknown	33	20.9%	2,452	14.8%	2,485	14.9%	6	24.0%	2,459	16.7%	2,465	16.79
					10,823	64.9%	18	72.0%	9,651	65.4%	9,669	65.49
Property Damage Only	78	49.4%	10,745	65.0%	10,825	04.370						
CRASH TYPE												_
CRASH TYPE	41	25.9%	2,732	16.5%	2,773	16.6%	8	32.0%	3,786		3,794	25.79
CRASH TYPE MV (No Ani/Obj on Road) SV ROR (No Ani/Obj on Road)	41	25.9% 58.9%	2,732 6,207	16.5% 37.6%	2,773	16.6% 37.8%		40.0%	4,844	32.8%	4,854	32.89
CRASH TYPE MV (No Ani/Obj on Road) SV ROR (No Ani/Obj on Road) SV Other (No Ani/Obj on Road)	41	25.9% 58.9% 3.8%	2,732 6,207 739	16.5% 37.6% 4.5%	2,773 6,300 745	16.6% 37.8% 4.5%	8	40.0% 4.0%	4,844	32.8% 4.4%	4,854 653	32.89
SV ROR (No Ani/Obj on Road) SV Other (No Ani/Obj on Road) SV ROR (Ani/Obj on Road)	41	25.9% 58.9% 3.8% 2.5%	2,732 6,207 739 471	16.5% 37.6% 4.5% 2.9%	2,773 6,300 745 475	16.6% 37.8% 4.5% 2.8%	8	40.0% 4.0% 8.0%	4,844 652 312	32.8% 4.4% 2.1%	4,854 653 314	32.89 4.49 2.19
CRASH TYPE MV (No Ani/Obj on Road) SV ROR (No Ani/Obj on Road) SV Other (No Ani/Obj on Road)	41 93 6	25.9% 58.9% 3.8%	2,732 6,207 739 471 58	16.5% 37.6% 4.5%	2,773 6,300 745	16.6% 37.8% 4.5% 2.8% 0.3%	8 10 1	40.0% 4.0%	4,844	32.8% 4.4% 2.1% 0.3%	4,854 653 314 42	32.89

MANNER OF CRASH/COLLISION													
MV Head-on			3 1.9%	204	1.2%	207	1.2%	1	4.0%	266	1.8%	267	1.89
MV Read-end			7 4.4%	637	3.9%	644	3.9%	4	16.0%	1,148	7.8%	1,152	7.8%
MV Oncoming left turn			4 2.5%	254	1.5%	258	1.5%		0.0%	318	2.2%	318	2.2%
MV Broadside	L	1	5 9.5%	780	4.7%	795	4.8%	2	8.0%	1,027	7.0%	1,029	7.09
MV Sideswipe-Same Dir.			4 2.5%	423	2.6%	427	2.6%		0.0%	471	3.2%	471	3.29
MV Sideswipe-Oppos. Dir.			6 3.8%	258	1.6%	264	1.6%	1	4.0%	332	2.2%	333	2.39
MV Other			2 1.3%	176	1.1%	178	1.1%		0.0%	224	1.5%	224	1.59
SV Coll. with Fixed Obj.		4	5 28.5%	3,224	19.5%	3,269	19.6%	7	28.0%	2,578	17.5%	2,585	17.59
SV Overturn/Rollover		₹ 3	2 20.3%	1,838	11.1%	1,870	11.2%	4	16.0%	1,367	9.3%	1,371	9.39
SV Collw/FixObj+Over/Roll		1	9 12.0%	1,450	8.8%	1,469	8.8%	1	4.0%	1,123	7.6%	1,124	7.6%
SV Other			7 4.4%	963	5.8%	970	5.8%	1	4.096	782	5.3%	783	5.39
Hit Animal		1	4 8.9%	6,319	38.2%	6,333	38.0%	4	16.0%	5,123	34.7%	5,127	34.7%
SPEED/WEATHER-SURFACE RELATION													
Speed Rel		7	8 49.4%	3,383	20.5%	3,461	20.7%	11	44.0%	2,736	18.5%	2,747	18.6%
Weather-Surface Rel		1	2 7.6%	1,354	8.2%	1,366	8.2%	1	4.0%	1,329	9.0%	1,330	9.09
Speed&Weather-Surface Rel		1	5 10.1%	2,323	14.1%	2,339	14.0%	1	4.0%	2,362	16.0%	2,363	16.0%
Other/Unknown		5	2 32.9%	9,466	57.3%	9,518	57.0%	12	48.0%	8,332	56.5%	8,344	56.4%
LIGHT CONDITIONS													
Day		9	7 61.4%	6,082	36.8%	6,179	37.0%	12	48.0%	5,917	40.1%	5,929	40.1%
Dark, dusk or dawn		4	5 28.5%	6,679	40.4%	6,724	40.3%	9	36.0%	5,379	36.4%	5,388	36.4%
Other/Unknown		1	5 10.1%	3,765	22.8%	3,781	22.7%	4	16.0%	3,463	23.5%	3,467	23.5%
YOUNGER AND OLDER DRIVER INVOLV	EMENT												
Age 14 or below involved		8	3 1.9%	59	0.4%	62	0.4%		0.0%	49	0.3%	49	0.3%
Ages 15-19 involved		5	9 37.3%	3,234	19.6%	3,293	19.7%	7	28.0%	3,034	20.6%	3,041	20.6%
Age 65 or above involved		1	0 6.3%	1,332	8.1%	1,342	8.0%	1	4.0%	1,264	8.6%	1,265	8.6%
Other/Unknown		8	6 54.4%	11,901	72.0%	11,987	71.8%	17	68.0%	10,412	70.5%	10,429	70.5%
DRUG/ALCOHOL INVOLVEMENT													
Impaired		1	3 8.2%	1,085	6.6%	1,098	6.6%	1	4.0%	964	6.5%	965	6.5%
Unimpaired		14	5 91.8%	15,441	93 496	15,586	93.4%	24	96.0%	13,795	93 596	13,819	

TERRAIN												
Flat	39	24.7%	5,218	31.6%	5,257	31.5%	5	20.0%	4,897	33.2%	4,902	33.29
Rolling	85	53.8%	10,061	60.9%	10,146	60.8%	18	72.0%	9,018	61.1%	9,036	61.19
Hilly	34	21.5%	1,247	7.5%	1,281	7.7%	2	8.0%	844	5.7%	846	5.7%
Other/Unknown		0.0%		0.0%		0.0%		0.0%	-	0.0%		0.09
FARM VEHICLE INVOLVEMENT		_										
Farm vehicle and other		0.0%	243	1.5%	243	1.5%		0.0%	100	0.7%	100	0.7%
Farm vehicle only		0.0%	24	0.1%	24	0.1%		0.0%	7	0.0%	7	0.0%
No farm vehicle	158	100.0%	16,259	98.4%	16,417	98.4%	25	100.0%	14,652	99.3%	14,677	99.3%

State of Iowa (2001-2007)						_						
			SECONDARY	0-400		-		S	ECONDARY 10	1-13500		
Road System	Seconda	ry	Seconda	iry	Seconda	ry	Seconda	ry	Seconda	ry	Seconda	ry
AADTRange	0-400		0-400		0-400		101-135	00	101-135	00	101-1350	00
Surface Type	 Unpave	d	Paved	1	All		Unpave	d	Paved		All	
Total Crashes	21,542		8,073	-	29,615		5,685		38,888	-	44,573	
Total Daily VMT	3,124,000		1,983,000		5,107,000	14	734,540		10,514,000	•	11,248,000	-
Total Centerline-Miles	71,245	- 3	8,484		79,729	191	4,421		16,944		21,365	
Weighted Average of ADT	44	1.1	230	- ¥ 1.	64	161	170	1 22	620	12	530	1
Crash Rate (per 100M VMT)	270		159		227	100	303	1.00	145	-	155	-
Crash Density	0.30		0.95	0	0.37	1.000	1.29	(24)	2.30	-	2.09	
CRASH SEVERITY	Frequency	%	Frequency	%	Frequency	%	Frequency	%	Frequency	%	Frequency	9
Fatal	292	1.4%	129	1.6%	421	1.496	58	1.0%	614	1.6%	672	1.59
	1,220	5.7%	453	5.6%	1,673	5.6%	295	5.2%	2,018	5.2%	2,313	5.29
Major Injury				470 494	4 740	16.0%	950	16.7%	4 904	12.6%	5,854	13.19
	3,661	17.0%	1,079	13.4%	4,740	A			4,504			
Major Injury Minor Injury Possible/Unknown		17.0% 18.6%	1,079			17.8%	1,123	19.8%	6,112		7,235	16.29
Minor Injury		18.6%	1,269			17.8%	1,123			15.7%	7,235 28,499	
Minor Injury Possible/Unknown	4,013	18.6%	1,269 5,143	15.7% 63.7%	5,282 17,499	17.8% 59.1%	1,123	19.8%	6,112	15.7%		
Minor Injury Possible/Unknown Property Damage Only CRASH TYPE MV (No Ani/Obj on Road)	 4,013 12,356 4,008	18.6% 57.4% 18.6%	1,269 5,143 1,222	15.7% 63.7% 15.1%	5,282 17,499 5,230	17.8% 59.1% 17.7%	1,123 3,259 1,117	19.8% 57.3% 19.6%	6,112 25,240 7,636	15.7% 64.9% 19.6%	28,499	63.99
Minor Injury Possible/Unknown Property Damage Only CRASH TYPE MV (No Ani/Obj on Road)	4,013 12,356	18.6% 57.4% 18.6% 57.0%	1,269 5,143 1,222 3,172	15.7% 63.7% 15.1% 39.3%	5,282 17,499 5,230	17.8% 59.1% 17.7% 52.2%	1,123 3,259 1,117 3,259	19.8% 57.3% 19.6% 57.3%	6,112 25,240	15.7% 64.9% 19.6% 36.1%	28,499	63.99 19.69 38.89
Minor Injury Possible/Unknown Property Damage Only CRASH TYPE	4,013 12,356 4,008	18.6% 57.4% 18.6% 57.0% 3.2%	1,269 5,143 1,222 3,172 382	15.7% 63.7% 15.1% 39.3% 4.7%	5,282 17,499 5,230	17.8% 59.1% 17.7% 52.2% 3.6%	1,123 3,259 1,117 3,259 182	19.8% 57.3% 19.6%	6,112 25,240 7,636	15.7% 64.9% 19.6% 36.1% 4.5%	28,499	63.99 19.69 38.89 4.39
Minor Injury Possible/Unknown Property Damage Only CRASH TYPE MV (No Ani/Obj on Road) SV ROR (No Ani/Obj on Road)	4,013 12,356 4,008 12,277	18.6% 57.4% 18.6% 57.0%	1,269 5,143 1,222 3,172 382 294	15.7% 63.7% 15.1% 39.3%	5,282 17,499 5,230 15,449	17.8% 59.1% 17.7% 52.2%	1,123 3,259 1,117 3,259	19.8% 57.3% 19.6% 57.3% 3.2% 5.3%	6,112 25,240 7,636 14,024	15.7% 64.9% 19.6% 36.1%	28,499 8,753 17,283	63.99 19.69 38.89
Minor Injury Possible/Unknown Property Damage Only CRASH TYPE MV (No Ani/Obj on Road) SV ROR (No Ani/Obj on Road) SV Other (No Ani/Obj on Road)	4,013 12,356 4,008 12,277 682	18.6% 57.4% 18.6% 57.0% 3.2%	1,269 5,143 1,222 3,172 382	15.7% 63.7% 15.1% 39.3% 4.7%	5,282 17,499 5,230 15,449 1,064	17.8% 59.1% 17.7% 52.2% 3.6%	1,123 3,259 1,117 3,259 182	19.8% 57.3% 19.6% 57.3% 3.2%	6,112 25,240 7,636 14,024 1,749	15.7% 64.9% 19.6% 36.1% 4.5%	28,499 8,753 17,283 1,931	63.99 19.69 38.89 4.39

MANNER OF CRASH/COLLISION													
MV Head-on		497	2.3%	74	0.9%	571	1.9%	123	2.2%	536	1.4%	659	1.5%
MV Read-end		736	3.496	264	3.3%	1,000	3.4%	223	3.9%	2,020	5.2%	2,243	5.0%
MV Oncoming left turn		314	1.5%	98	1.2%	412	1.4%	112	2.0%	665	1.7%	777	1.7%
MV Broadside	L	1,360	6.3%	398	4.9%	1,758	5.9%	370	6.5%	2,178	5.6%	2,548	5.7%
MV Sideswipe-Same Dir.		301	1.496	190	2.4%	491	1.7%	88	1.5%	1,067	2.7%	1,155	2.6%
MV Sideswipe-Oppos. Dir.		521	2.496	115	1.4%	636	2.1%	137	2.4%	693	1.8%	830	1.9%
MV Other		279	1.3%	83	1.0%	362	1.2%	64	1.1%	477	1.2%	541	1.2%
SV Coll. with Fixed Obj.		5,487	25.5%	1,646	20.4%	7,133	24.1%	1,489	26.2%	7,340	18.9%	8,829	19.8%
SV Overturn/Rollover	 	4,387	20.4%	958	11.9%	5,345	18.0%	1,091	19.2%	4,105	10.6%	5,196	11.7%
SV Collw/FixObj+Over/Roll		3,488	16.2%	781	9.7%	4,269	14.4%	934	16.4%	3,311	8.5%	4,245	9.5%
SV Other		920	4.3%	500	6.2%	1,420	4.8%	237	4.2%	2,209	5.7%	2,446	5.5%
Hit Animal		3,252	15.1%	2,966	36.7%	6,218	21.0%	817	14.4%	14,287	36.7%	15,104	33.9%
SPEED/WEATHER-SURFACE RELATIO	IN												
Speed Rel		9,385	43.6%	1,961	24.3%	11,346	38.3%	2,580	45.4%	7,921	20.4%	10,501	23.6%
Weather-Surface Rel		1,516	7.0%	676	8.4%	2,192	7.4%	386	6.8%	3,328	8.6%	3,714	8.3%
Speed&Weather-Surface Rel		2,242	10.4%	909	11.3%	3,151	10.6%	640	11.3%	5,556	14.3%	6,196	13.9%
Other/Unknown		8,399	39.0%	4,527	56.1%	12,926	43.6%	2,079	36.6%	22,083	56.8%	24,162	54.2%
LIGHT CONDITIONS													
Day		10,613	49.3%	3,006	37.2%	13,619	46.0%	2,893	50.9%	14,810	38.1%	17,703	39.7%
Dark, dusk or dawn		8,684	40.3%	3,498	43.3%	12,182	41.1%	2,179	38.3%	15,350	39.5%	17,529	39.3%
Other/Unknown		2,245	10.4%	1,569	19.4%	3,814	12.9%	613	10.8%	8,728	22.4%	9,341	21.0%
YOUNGER AND OLDER DRIVER INVO	LVEMENT												
Age 14 or below involved		268	1.2%	33	0.4%	301	1.0%	66	1.2%	135	0.3%	201	0.5%
Ages 15-19 involved		7,482	34.7%	1,739	21.5%	9,221	31.1%	2,049	36.0%	7,888	20.3%	9,937	22.3%
Age 65 or above involved		1,111	5.2%	633	7.8%	1,744	5.9%	257	4.5%	3,191	8.2%	3,448	7.7%
Other/Unknown		12,681	58.9%	5,668	70.2%	18,349	62.0%	3,313	58.3%	27,674	71.2%	30,987	69.5%
DRUG/ALCOHOL INVOLVEMENT													
Impaired		1,811	8.4%	600	7.4%	2,411	8.1%	496	8.7%	2,614	6.7%	3,110	7.0%
Unimpaired		19,731	91.6%	7,473	92.6%	27,204	91.9%	5.189	91.3%	36,274	93.3%	41,463	93.0%

TERRAIN											
Flat	5,860	27.2%	2,509	31.1%	8,369	28.3%	1,497	26.3%	12,444	32.0%	13,941
Rolling	13,959	64.8%	4,908	60.8%	18,867	63.7%	3,624	63.7%	23,715	61.0%	27,339
Hilly	1,701	7.9%	656	8.1%	2,357	8.0%	564	9.9%	2,729	7.0%	3,293
Other/Unknown	22	0.1%	0	0.0%	22	0.1%	0	0.0%	0	0.0%	0
FARM VEHICLE INVOLVEMENT											
Farm vehicle and other	242	1.1%	97	1.2%	339	1.1%	46	0.8%	434	1.1%	480
Farm vehicle only	100	0.5%	10	0.1%	110	0.4%	17	0.3%	40	0.1%	57
No farm vehicle	21,200	98.4%	7,966	98.7%	29,166	98.5%	5,622	98.9%	38,414	98.8%	44,036

State of Iowa (2001-2007)												
		SE	CONDARY 40	1-13500					SECONDARY	0-1000		
Road System	Second	ary	Seconda	iry	Seconda	ry i	Seconda	ny I	Seconda	ry	Seconda	Ŋ
AADT Range	401-13	500	401-135	00	401-135	00	0-1000		0-1000)	0-1000	
Surface Type	Unpav	ed	Paved		All		Unpave	d	Paved		All	
Total Crashes	183	-	31,285	-	31,468	-	21,700	-	24,599	-	46,299	-
Total Daily VMT	57,540	140	8,603,000		8,661,000		3,160,000	- 1	6,390,000	-	9,550,000	*
Total Centerline-Miles	76		9,523	-	9,600		71,311	-	15,471	-	86,781	
Weighted Average of ADT	750		900		900		44	*	410	-	110	*
Crash Rate (per 100M VMT)	124	104	142	1042	142	- 12 - L	269		151	1000	190	- 2
Crash Density	2.39		3.29		3.28		0.30	•	1.59	200	0.53	
CRASH SEVERITY	Frequence		Frequency		Frequency	%	Frequency	%	Frequency	%	Frequency	
Fatal	1 1	0.5%	494	1.6%	495	1.6%	293	1.4%	404	1.6%	697	1.59
Fatal Major Injury		0.5%	494 1,594	1.6%	495 1,602	1.6%	293 1,228	1.4% 5.7%	404 1,338	1.6%	697 2,566	9 1.59 5.59
Fatal Major Injury Minor Injury		0.5% 4.4% 21.3%	494 1,594 3,890	1.6% 5.1% 12.4%	495 1,602 3,929	1.6% 5.1% 12.5%	293 1,228 3,699	1.4% 5.7% 17.0%	404 1,338 3,248	1.6% 5.4% 13.2%	697 2,566 6,947	1.59 5.59 15.09
Fatal Major Injury		0.5% 4.4% 21.3% 21.3%	494 1,594	1.6% 5.1% 12.4% 15.7%	495 1,602	1.6% 5.1% 12.5% 15.7%	293 1,228	1.4% 5.7% 17.0% 18.6%	404 1,338	1.6% 5.4% 13.2% 15.1%	697 2,566 6,947 7,767	1.59 5.59 15.09 16.89
Fatal Major Injury Minor Injury Possible/Unknown	35	0.5% 4.4% 21.3% 21.3%	494 1,594 3,890 4,911	1.6% 5.1% 12.4% 15.7%	495 1,602 3,929 4,950	1.6% 5.1% 12.5% 15.7%	293 1,228 3,699 4,046	1.4% 5.7% 17.0% 18.6%	404 1,338 3,248 3,721	1.6% 5.4% 13.2% 15.1%	697 2,566 6,947 7,767	1.59 5.59 15.09 16.89
Fatal Major Injury Minor Injury Possible/Unknown Property Damage Only CRASH TYPE	35	0.5% 4.4% 21.3% 21.3% 52.5%	494 1,594 3,890 4,911	1.6% 5.1% 12.4% 15.7% 65.2%	495 1,602 3,929 4,950	1.6% 5.1% 12.5% 15.7% 65.1%	293 1,228 3,699 4,046	1.4% 5.7% 17.0% 18.6% 57.3%	404 1,338 3,248 3,721	1.6% 5.4% 13.2% 15.1% 64.6%	697 2,566 6,947 7,767	1.59 5.59 15.09 16.89
Fatal Major Injury Minor Injury Possible/Unknown Property Damage Only CRASH TYPE MV (No Ani/Obj on Road)	35 35 96 45	0.5% 4.4% 21.3% 21.3% 52.5% 26.8%	494 1,594 3,890 4,911 20,396	1.6% 5.1% 12.4% 15.7% 65.2% 20.8% 35.3%	495 1,602 3,929 4,950 20,492	1.6% 5.1% 12.5% 15.7% 65.1% 20.9% 35.4%	293 1,228 3,699 4,046 12,434	1.4% 5.7% 17.0% 18.6% 57.3%	404 1,338 3,248 3,721 15,888	1.6% 5.4% 13.2% 15.1% 64.6% 16.1%	697 2,566 6,947 7,767 28,322	1.59 5.59 15.09 16.89 61.29 17.39 47.09
Fatal Major Injury Minor Injury Possible/Unknown Property Damage Only CRASH TYPE	39	0.5% 4.4% 21.3% 52.5% 26.8% 56.3% 3.8%	494 1,594 3,890 4,911 20,396 6,518 11,051 1,391	1.6% 5.1% 12.4% 15.7% 65.2% 20.8% 35.3% 4.4%	495 1,602 3,929 4,950 20,492 6,567 11,154 1,398	1.6% 5.1% 12.5% 15.7% 65.1% 20.9% 35.4% 4.4%	293 1,228 3,699 4,046 12,434 4,049 12,370 688	1.4% 5.7% 17.0% 18.6% 57.3% 18.7% 57.0% 3.2%	404 1,338 3,248 3,721 15,888 3,954 9,379 1,121	1.6% 5.4% 13.2% 15.1% 64.6% 16.1% 38.1% 4.6%	697 2,566 6,947 7,767 28,322 8,003 21,749 1,809	1.59 5.59 15.09 16.89 61.29 17.39 47.09 3.99
Fatal Major Injury Minor Injury Possible/Unknown Property Damage Only CRASH TYPE MV (No Ani/Obj on Road) SV ROR (No Ani/Obj on Road)	35 35 96 45	0.5% 4.4% 21.3% 52.5% 26.8% 56.3% 3.8% 3.3%	494 1,594 3,890 4,911 20,396 6,518 11,051 1,391 783	1.6% 5.1% 12.4% 15.7% 65.2% 20.8% 35.3% 4.4% 2.5%	495 1,602 3,929 4,950 20,492 6,567 11,154 1,398 789	1.6% 5.1% 12.5% 65.1% 20.9% 35.4% 4.4% 2.5%	293 1,228 3,699 4,046 12,434 4,049 12,370 688 1,283	1.4% 5.7% 17.0% 18.6% 57.3% 18.7% 57.0% 3.2% 5.9%	404 1,338 3,248 3,721 15,888 3,954 9,379 1,121 765	1.6% 5.4% 13.2% 15.1% 64.6% 16.1% 38.1% 4.6% 3.1%	697 2,566 6,947 7,767 28,322 8,003 21,749 1,809 2,048	1.59 5.59 15.09 16.89 61.29 17.39 47.09 3.99 4.49
Fatal Major Injury Minor Injury Possible/Unknown Property Damage Only CRASH TYPE MV (No Ani/Obj on Road) SV ROR (No Ani/Obj on Road) SV Other (No Ani/Obj on Road)		0.5% 4.4% 21.3% 52.5% 26.8% 56.3% 3.8% 3.3% 0.0%	494 1,594 3,890 4,911 20,396 6,518 11,051 1,391	1.6% 5.1% 12.4% 15.7% 65.2% 20.8% 35.3% 4.4% 2.5% 0.3%	495 1,602 3,929 4,950 20,492 6,567 11,154 1,398	1.6% 5.1% 12.5% 65.1% 20.9% 35.4% 4.4% 2.5% 0.3%	293 1,228 3,699 4,046 12,434 4,049 12,370 688	1.4% 5.7% 17.0% 18.6% 57.3% 18.7% 57.0% 3.2% 5.9% 0.2%	404 1,338 3,248 3,721 15,888 3,954 9,379 1,121	1.6% 5.4% 13.2% 15.1% 64.6% 16.1% 38.1% 4.6% 3.1% 0.4%	697 2,566 6,947 7,767 28,322 8,003 21,749 1,809 2,048 139	1.59 5.59 15.09 16.89 61.29 17.39 47.09 3.99

MANNER OF CRASH/COLLISION													
MV Head-on		4	2.2%	470	1.5%	474	1.5%	500	2.3%	278	1.1%	778	1.79
MV Read-end		11	6.0%	1,785	5.7%	1,796	5.7%	743	3.4%	901	3.7%	1,644	3.69
MV Oncoming left turn		4	2.2%	572	1.8%	576	1.8%	318	1.5%	352	1.4%	670	1.49
MV Broadside	4	17	9.3%	1,807	5.8%	1,824	5.8%	1,375	6.3%	1,178	4.8%	2,553	5.59
MV Sideswipe-Same Dir.		4	2.2%	894	2.9%	898	2.9%	305	1.4%	613	2.5%	918	2.09
MV Sideswipe-Oppos. Dir.		7	3.8%	590	1.9%	597	1.9%	527	2.4%	373	1.5%	900	1.99
MV Other		2	1.1%	400	1.3%	402	1.3%	281	1.3%	259	1.1%	540	1.29
SV Coll. with Fixed Obj.		52	28.4%	5,802	18.5%	5,854	18.6%	5,532	25.5%	4,870	19.8%	10,402	22.5%
SV Overturn/Rollover		36	19.7%	3,205	10.2%	3,241	10.3%	4,419	20.4%	2,796	11.4%	7,215	15.69
SV Collw/FixObj+Over/Roll		20	10.9%	2,573	8.2%	2,593	8.2%	3,507	16.2%	2,231	9.1%	5,738	12.49
SV Other		8	4.4%	1,745	5.6%	1,753	5.6%	927	4.3%	1,463	5.9%	2,390	5.2%
Hit Animal	,	18	9.8%	11,442	36.6%	11,460	36.4%	3,266	15.1%	9,285	37.7%	12,551	27.1%
SPEED/WEATHER-SURFACE RELATION	V												
Speed Rel	>	89	48.6%	6,119	19.6%	6,208	19.7%	9,463	43.6%	5,344	21.7%	14,807	32.0%
Weather-Surface Rel	į	13	7.1%	2,683	8.6%	2,696	8.6%	1,528	7.0%	2,030	8.3%	3,558	7.79
Speed&Weather-Surface Rel	1	17	9.3%	4,685	15.0%	4,702	14.9%	2,258	10.4%	3,232	13.1%	5,490	11.99
Other/Unknown	ò	64	35.0%	17,798	56.9%	17,862	56.8%	8,451	38.9%	13,993	56.9%	22,444	48.59
LIGHT CONDITIONS													
Day	\$	109	59.6%	11,999	38.4%	12,108	38.5%	10,710	49.4%	9,088	36.9%	19,798	42.89
Dark, dusk or dawn	1	54	29.5%	12,058	38.5%	12,112	38.5%	8,729	40.2%	10,177	41.4%	18,906	40.89
Other/Unknown	>	20	10.9%	7,228	23.1%	7,248	23.0%	2,261	10.4%	5,334	21.7%	7,595	16.49
YOUNGER AND OLDER DRIVER INVOL	VEMENT												
Age 14 or below involved	i i i i i i i i i i i i i i i i i i i	3	1.6%	108	0.3%	111	0.4%	271	1.2%	92	0.4%	363	0.89
Ages 15-19 involved		66	36.1%	6,268	20.0%	6,334	20.1%	7,541	34.8%	4,973	20.2%	12,514	27.09
Age 65 or above involved)	11	6.0%	2,596	8.3%	2,607	8.3%	1,121	5.2%	1,965	8.0%	3,086	6.79
Other/Unknown	3	103	56.3%	22,313	71.3%	22,416	71.2%	12,767	58.8%	17,569	71.4%	30,336	65.59
DRUG/ALCOHOL INVOLVEMENT													
Impaired	1	14	7.7%	2,049	6.5%	2,063	6.6%	1,824	8.4%	1,685	6.8%	3,509	7.69
Unimpaired		169	92.3%	29,236		29,405	93.4%	19,876	91.6%	22,914	93.2%	42,790	92.49

TERRAIN												
Flat	13,941	31.3%	44	24.0%	10,115	32.3%	10,159	32.3%	5,899	27.2%	7,727	31.4%
Rolling	27,339	61.3%	103	56.3%	19,079	61.0%	19,182	61.0%	14,044	64.7%	14,969	60.9%
Hilly	3,293	7.4%	36	19.7%	2,091	6.7%	2,127	6.8%	1,735	8.0%	1,903	7.7%
Other/Unknown	0	0.0%	0	0.0%	0	0.0%	0	0.0%	22	0.1%	0	0.0%
FARM VEHICLE INVOLVEMENT												
Farm vehicle and other	480	1.1%	0	0.0%	343	1.1%	343	1.1%	242	1.1%	340	1.4%
Farm vehicle only	57	0.1%	0	0.0%	31	0.1%	31	0.1%	100	0.5%	34	0.1%
No farm vehicle	44,036	98.8%	183	100.0%	30,911	98.8%	31,094	98.8%	21,358	98.4%	24,225	98.5%

State of Iowa (2001-2007)												
			SECONDARY O	-13500					PRIMAR	Y		
Road System	Seconda	ry	Seconda	ry	Secondary	ALL	Primary	1	Priman	Y	Primary-	ALL
AADT Range	0-1350	0	0-1350	0	0-1350	0	70-100	D	1001-122	200	70-1220	00
Surface Type	Unpave	d	Paved		All		All Pave	d	All Pave	d	All Pave	d
Total Crashes	21,725	-	39,358	-	61,083	-	1,995	-	32,045		34,040	-
Total Daily VMT	3,181,000	-	10,590,000	-	13,770,000	1.40	583,600	-	12,880,000		13,460,000	
Total Centerline-Miles	71,321		18,007		89,328		761	-	5,202	-	5,963	
Weighted Average of ADT	45	-	590	-	150		770	-	2,500		2,300	
Crash Rate (per 100M VMT)	267	-	146		174		134	-	97		99	
Crash Density	0.30	•	2.19	1.00	0.68		2.62		6.16		5.71	
	 Frequency	%	Frequency		Frequency	%	Frequency	%	Frequency		Frequency	-
Fatal	 293	1.3%	623	1.6%	916	1.5%	28	1.4%	535	1.7%	563	1.7%
Fatal Major Injury	293 1,228	1.3% 5.7%	623 2,047	1.6% 5.2%	916 3,275	1.5%	28 80	1.4%	535 1,330	1.7% 4.2%	563 1,410	1.7% 4.1%
CRASH SEVERITY Fatal Major Injury Minor Injury Possible/Unknown	293 1,228 3,700	1.3% 5.7% 17.0%	623 2,047 4,969	1.6% 5.2% 12.6%	916 3,275 8,669	1.5% 5.4% 14.2%	28 80 189	1.4% 4.0% 9.5%	535 1,330 3,244	1.7% 4.2% 10.1%	563 1,410 3,433	1.7% 4.1% 10.1%
Fatal Major Injury	293 1,228	1.3% 5.7% 17.0% 18.7%	623 2,047	1.6% 5.2% 12.6% 15.7%	916 3,275	1.5% 5.4% 14.2% 16.8%	28 80 189 301	1.4%	535 1,330	1.7% 4.2% 10.1% 15.1%	563 1,410	1.7% 4.1% 10.1% 15.1%
Fatal Major Injury Minor Injury Possible/Unknown	293 1,228 3,700 4,052	1.3% 5.7% 17.0% 18.7%	623 2,047 4,969 6,180	1.6% 5.2% 12.6% 15.7%	916 3,275 8,669 10,232	1.5% 5.4% 14.2% 16.8%	28 80 189 301	1.4% 4.0% 9.5% 15.1%	535 1,330 3,244 4,841	1.7% 4.2% 10.1% 15.1%	563 1,410 3,433 5,142	1.7% 4.1% 10.1% 15.1%
Fatal Major Injury Minor Injury Possible/Unknown Property Damage Only CRASH TYPE	 293 1,228 3,700 4,052 12,452	1.3% 5.7% 17.0% 18.7%	623 2,047 4,969 6,180 25,539	1.6% 5.2% 12.6% 15.7%	916 3,275 8,669 10,232	1.5% 5.4% 14.2% 16.8% 62.2%	28 80 189 301 1,397	1.4% 4.0% 9.5% 15.1%	535 1,330 3,244 4,841	1.7% 4.2% 10.1% 15.1% 68.9%	563 1,410 3,433 5,142 23,492	1.7% 4.1% 10.1% 15.1%
Fatal Major Injury Minor Injury Possible/Unknown Property Damage Only CRASH TYPE MV (No Ani/Obj on Road)	 293 1,228 3,700 4,052 12,452	1.3% 5.7% 17.0% 18.7% 57.3%	623 2,047 4,969 6,180 25,539	1.6% 5.2% 12.6% 15.7% 64.9%	916 3,275 8,669 10,232 37,991	1.5% 5.4% 14.2% 16.8% 62.2%	28 80 189 301 1,397	1.4% 4.0% 9.5% 15.1% 70.0%	535 1,330 3,244 4,841 22,095	1.7% 4.2% 10.1% 15.1% 68.9% 28.8%	563 1,410 3,433 5,142 23,492 9,539	1.7% 4.1% 10.1% 15.1% 69.0%
Fatal Major Injury Minor Injury Possible/Unknown Property Damage Only CRASH TYPE MV (No Ani/Obj on Road) SV ROR (No Ani/Obj on Road)	293 1,228 3,700 4,052 12,452 4,057	1.3% 5.7% 17.0% 18.7% 57.3%	623 2,047 4,969 6,180 25,539 7,740	1.6% 5.2% 12.6% 15.7% 64.9%	916 3,275 8,669 10,232 37,991 11,797	1.5% 5.4% 14.2% 16.8% 62.2%	28 80 189 301 1,397 308	1.4% 4.0% 9.5% 15.1% 70.0% 15.4%	535 1,330 3,244 4,841 22,095 9,231	1.7% 4.2% 10.1% 15.1% 68.9% 28.8% 21.3%	563 1,410 3,433 5,142 23,492 9,539	1.7% 4.1% 10.1% 15.1% 69.0% 28.0% 21.6%
Fatal Major Injury Minor Injury Possible/Unknown Property Damage Only CRASH TYPE	293 1,228 3,700 4,052 12,452 4,057 12,380	1.3% 5.7% 17.0% 18.7% 57.3% 18.7% 57.0% 3.2%	623 2,047 4,969 6,180 25,539 7,740 14,223	1.6% 5.2% 12.6% 15.7% 64.9% 19.7% 36.1%	916 3,275 8,669 10,232 37,991 11,797 26,603	1.5% 5.4% 14.2% 16.8% 62.2% 19.3% 43.6% 4.0%	28 80 189 301 1,397 308 527	1.4% 4.0% 9.5% 15.1% 70.0% 15.4% 26.4%	535 1,330 3,244 4,841 22,095 9,231 6,839	1.7% 4.2% 10.1% 15.1% 68.9% 28.8% 21.3% 4.3%	563 1,410 3,433 5,142 23,492 9,539 7,366	1.7% 4.1% 10.1% 15.1% 69.0% 28.0% 21.6%
Fatal Major Injury Minor Injury Possible/Unknown Property Damage Only CRASH TYPE MV (No Ani/Obj on Road) SV ROR (No Ani/Obj on Road) SV Other (No Ani/Obj on Road)	293 1,228 3,700 4,052 12,452 4,057 12,380 689	1.3% 5.7% 17.0% 18.7% 57.3% 18.7% 57.0% 3.2%	623 2,047 4,969 6,180 25,539 7,740 14,223 1,773	1.6% 5.2% 12.6% 15.7% 64.9% 19.7% 36.1% 4.5%	916 3,275 8,669 10,232 37,991 11,797 26,603 2,462	1.5% 5.4% 14.2% 16.8% 62.2% 19.3% 43.6% 4.0%	28 80 189 301 1,397 308 527 87	1.4% 4.0% 9.5% 15.1% 70.0% 15.4% 26.4% 4.4%	535 1,330 3,244 4,841 22,095 9,231 6,839 1,373	1.7% 4.2% 10.1% 15.1% 68.9% 28.8% 21.3% 4.3%	563 1,410 3,433 5,142 23,492 9,539 7,366 1,460	1.7% 4.1% 10.1% 15.1% 69.0% 28.0% 21.6% 4.3% 1.4%

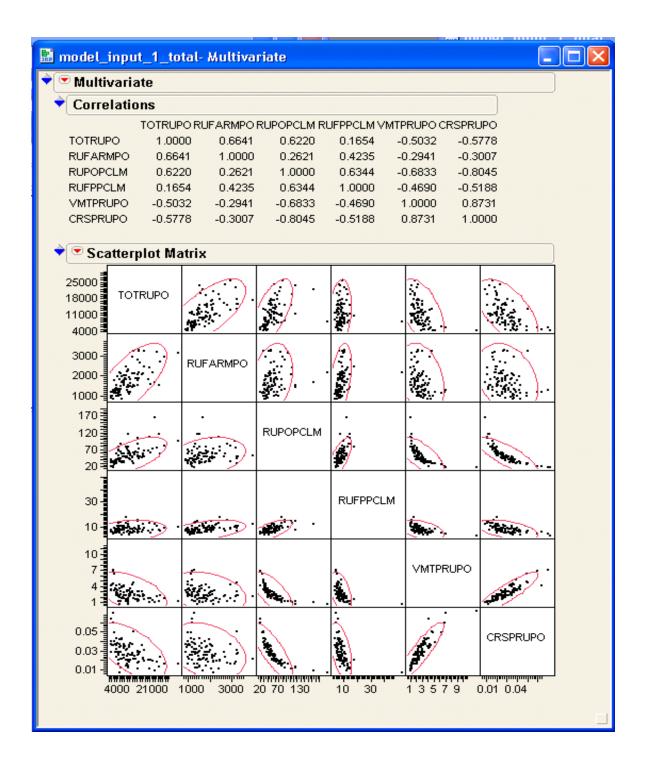
MANNER OF CRASH/COLLISION													
MV Head-on		501	2.3%	544	1.4%	1,045	1.7%	14	0.7%	841	2.6%	855	2.5%
MV Read-end		747	3.4%	2,049	5.2%	2,796	4.6%	67	3.4%	3,144	9.8%	3,211	9.4%
MV Oncoming left turn		318	1.5%	670	1.7%	988	1.6%	29	1.5%	663	2.1%	692	2.0%
MV Broadside	<	1,377	6.3%	2,205	5.6%	3,582	5.9%	85	4.3%	1,811	5.7%	1,896	5.6%
MV Sideswipe-Same Dir.		305	1.4%	1,084	2.8%	1,389	2.3%	58	2.9%	1,319	4.1%	1,377	4.0%
MV Sideswipe-Oppos. Dir.		528	2.4%	705	1.8%	1,233	2.0%	30	1.5%	1,005	3.1%	1,035	3.0%
MV Other		281	1.3%	483	1.2%	764	1.3%	25	1.3%	448	1.4%	473	1.4%
SV Coll. with Fixed Obj.	7	5,539	25.5%	7,448	18.9%	12,987	21.3%	273	13.7%	3,568	11.1%	3,841	11.3%
SV Overturn/Rollover	-	4,423	20.4%	4,163	10.6%	8,586	14.1%	185	9.3%	2,094	6.5%	2,279	6.7%
SV Collw/FixObj+Over/Roll		3,508	16.1%	3,354	8.5%	6,862	11.2%	109	5.5%	1,410	4.4%	1,519	4.5%
SV Other		928	4.3%	2,245	5.7%	3,173	5.2%	114	5.7%	1,673	5.2%	1,787	5.2%
Hit Animal		3,270	15.1%	14,408	36.6%	17,678	28.9%	1,006	50.4%	14,069	43.9%	15,075	44.3%
SPEED/WEATHER-SURFACE RELATIO	N												
Speed Rel 9,474			43.6%	8,080	20.5%	17,554	28.7%	341	17.1%	4,650	14.5%	4,991	14.7%
Weather-Surface Rel 1,529		7.0%	3,359	8.5%	4,888	8.0%	162	8.1%	2,891	9.0%	3,053	9.0%	
Speed&Weather-Surface Rel 2,259			10.4%	5,594	14.2%	7,853	12.9%	151	7.6%	3,588	11.2%	3,739	11.0%
Other/Unknown 8,463			39.0%	22,325	56.7%	30,788	50.4%	1,341	67.2%	20,916	65.3%	22,257	65.4%
LIGHT CONDITIONS													
Day 10,722			49.4%	15,005	38.1%	25,727	42.1%	636	31.9%	12,255	38.2%	12,891	37.9%
Dark, dusk or dawn 8,738		40.2%	15,556	39.5%	24,294	39.8%	825	41.4%	11,727	36.6%	12,552	36.9%	
Other/Unknown 2,265			10.4%	8,797	22.4%	11,062	18.1%	534	26.8%	8,063	25.2%	8,597	25.3%
YOUNGER AND OLDER DRIVER INVO	LVEMENT												
Age 14 or below involved 271			1.2%	141	0.4%	412	0.7%	3	0.2%	99	0.3%	102	0.3%
Ages 15-19 involved 7,548			34.7%	8,007	20.3%	15,555	25.5%	275	13.8%	4,959	15.5%	5,234	15.49
Age 65 or above involved 1,122			5.2%	3,229	8.2%	4,351	7.1%	245	12.3%	4,129	12.9%	4,374	12.89
Other/Unknown 12,784			58.8%	27,981	71.1%	40,765	66.7%	1,472	73.8%	22,858	71.3%	24,330	71.59
DRUG/ALCOHOL INVOLVEMENT													
Impaired 1,825			8.4%	2,649	6.7%	4,474	7.3%	93	4.7%	1,351	4.2%	1,444	4.29
Unimpaired		19,900	91.6%	36,709		56,609		1,902	95.3%	30,694		32,596	

TERRAIN												
Flat	5,904	27.2%	12,624	32.1%	18,528	30.3%	633	31.7%	12,633	39.4%	13,266	39.0%
Rolling	14,062	64.7%	23,987	60.9%	38,049	62.3%	1,161	58.2%	17,956	56.0%	19,117	56.2%
Hilly	1,737	8.0%	2,747	7.0%	4,484	7.3%	201	10.1%	1,456	4.5%	1,657	4.9%
Other/Unknown	22	0.1%	0	0.0%	22	0.0%		0.0%		0.0%	0	0.096
FARM VEHICLE INVOLVEMENT												
Farm vehicle and other	242	1.1%	440	1.1%	682	1.1%	24	1.2%	246	0.8%	270	0.8%
Farm vehicle only	100	0.5%	41	0.1%	141	0.2%	1	0.1%	11	0.0%	12	0.096
No farm vehicle	21,383	98.4%	38,877	98.8%	60,260	98.7%	1,970	98.7%	31,788	99.2%	33,758	99.2%

ALL			
0.075			
ALL		Road System	
0-1350	0	AADT Range	
All		Surface Type	
95,123		Total Crashes	
7,230,000		Total Daily VMT	
95,291	3	Total Centerline-Miles	
290	1	Weighted Average of ADT	
137	12	Crash Rate (per 100M VMT)	
1.00	t.	Crash Density	
requency	96	CRASH SEVERITY	
Frequency	%	CRASH SEVERITY	
1,479	1.6%	Fatal	
1,479 4,685	1.6% 4.9%	Fatal Major Injury	
1,479 4,685 12,102	1.6% 4.9% 12.7%	Fatal Major Injury Minor Injury	
1,479 4,685 12,102 15,374	1.6% 4.9% 12.7% 16.2%	Fatal Major Injury Minor Injury Possible/Unknown	
1,479 4,685 12,102 15,374	1.6% 4.9% 12.7% 16.2%	Fatal Major Injury Minor Injury	
1,479 4,685 12,102 15,374	1.6% 4.9% 12.7% 16.2%	Fatal Major Injury Minor Injury Possible/Unknown	
1,479 4,685 12,102 15,374 61,483	1.6% 4.9% 12.7% 16.2% 64.6%	Fatal Major Injury Minor Injury Possible/Unknown Property Damage Only	
1,479 4,685 12,102 15,374 61,483 21,336	1.6% 4.9% 12.7% 16.2% 64.6% 22.4%	Fatal Major Injury Minor Injury Possible/Unknown Property Damage Only CRASH TYPE	
1,479 4,685 12,102 15,374 61,483 21,336	1.6% 4.9% 12.7% 64.6% 22.4% 35.7%	Fatal Major Injury Minor Injury Possible/Unknown Property Damage Only CRASH TYPE MV (No Ani/Obj on Road)	
1,479 4,685 12,102 15,374 61,483 21,336 33,969	1.6% 4.9% 12.7% 64.6% 22.4% 35.7% 4.1%	Fatal Major Injury Minor Injury Possible/Unknown Property Damage Only CRASH TYPE MV (No Ani/Obj on Road) SV ROR (No Ani/Obj on Road)	
1,479 4,685 12,102 15,374 61,483 21,336 33,969 3,922 2,853 290	1.6% 4.9% 12.7% 64.6% 22.4% 35.7% 4.1% 3.0% 0.3%	Fatal Major Injury Minor Injury Possible/Unknown Property Damage Only CRASH TYPE MV (No Ani/Obj on Road) SV ROR (No Ani/Obj on Road) SV Other (No Ani/Obj on Road)	

		MANNER OF CRASH/COLLISION	
1,900	2.0%	MV Head-on	
6,007	6.3%	MV Read-end	
1,680	1.8%	MV Oncoming left turn	
5,478	5.8%	MV Broadside	
2,766	2.9%	MV Sideswipe-Same Dir.	
2,268	2.4%	MV Sideswipe-Oppos. Dir.	
1,237	1.3%	MV Other	
16,828	17.7%	SV Coll. with Fixed Obj.	
10,865	11.4%	SV Overturn/Rollover	
8,381	8.8%	SV Collw/FixObj+Over/Roll	
4,960	5.2%	SV Other	
32,753	34.4%	Hit Animal	
		SPEED/WEATHER-SURFACE RELATION	
		Speed Rel	
7,941		Weather-Surface Rel	
		Speed&Weather-Surface Rel	
53,045	55.8%	Other/Unknown	
		LIGHT CONDITIONS	
38,618	40.6%	Day	
36,846	38.7%	Dark, dusk or dawn	
19,659	20.7%	Other/Unknown	
		YOUNGER AND OLDER DRIVER INVOLVEMENT	
514	0.5%	Age 14 or below involved	
20,789		Ages 15-19 involved	
8,725		Age 65 or above involved	
65,095		Other/Unknown	
		DRUG/ALCOHOL INVOLVEMENT	
5,918	6.2%	Impaired	
		Unimpaired	

		TERRAIN
31,794	33.4%	Flat
57,166	60.1%	Rolling
6,141	6.5%	Hilly
22	0.0%	Other/Unknown
		FARM VEHICLE INVOLVEMENT
952	1.0%	Farm vehicle and other
153	0.2%	Farm vehicle only
94,018	98.8%	No farm vehicle


APPENDIX 8. LIMDEP MODEL

Variables

			The factor "increasing" the probability of a more severe crash:
Х3	SRFCTYPE_	-	Paved surface
Х9	FLATTRRN	-	Flat terrain
X10	RLLGTRRN	-	Rolling terrain
X11	HLLYTRRN	-	Hilly terrain
X15	SUMMER	-	Months April, May, June, July, Aug, Sep
X16	WEEKEND	-	Saturday and Sunday
X19	NIGHT	+	(Not the hours 10pm-3am)
X31	COLFIXOB	-	Collision with fixed object
X32	HITANIML	+	Non-animal crashes
X33	OVERROLL	-	Overturn and/or rollover crashes
X34	MVBRDSID	-	Multi-vehicle broadside collisions
X35	IMPAIRED	-	Impaired driving
X36	ENVCOCIR_	+	(No apparent environmental contribution)
X37	DARK	+	Daytime
X39	SPEEDREL	-	Speed
X40	WESURREL	+	(No apparent weather or surface contribution)
X41	YOUNGINV	-	Younger driver (?19) involvement
X42	OLDERINV	-	Older driver (?65) involvement
X43	TOTRUPO	+	Less total rural population
X47	VMTPRUPO	+	Less VMT per rural population
X50	CONATINT	-	Existence of traffic controls at intersections throughout the county
X55	CRSHORDT		
Num. Obsrv.	16942		
Iterations	34		
Num. Var.	22		
L.L.F.	-14828.75		
R.L.L.F.	-15802.50		
Ro-sqrd	0.0616200		
Corr. Ro-sqrd	0.0602278		
Chi-sqrd	1947.508		

TRIAL	1	2	3	4	5	6	7	8	9	10	11	(7)12	13	14	(7)15	7	
X1	CRSHDENS_																
X2	CRSHRATE_																
X3	SRFCTYPE_	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
X4	SRFCWDTH	+	+	+	+	+	+										
X5	SHLDR																
X6	SHLDRTYP	+															
X7	SHLDRWDH																
X8	NUMCRSHS																
X9	FLATTRRN	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
X10	RLLGTRRN	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
X11	HLLYTRRN	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
X12	AADT_	+	+	+													
X13	LANLNGTH																
X14	DAILYVMT_																
X15	SUMMER	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
X16	WEEKEND	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
X17	AMPEAK	+	+	+													
X18	PMPEAK	+	+	+	+	+											
X19	NIGHT	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
X20	FHEVONRD	+	+														
X21	CRASHSEV																
X22	FATALITY																
X23	INJURY																
X24	MAJORINJ																
X25	MINORINJ																
X26	POSSINJ																
X27	UNKWNINJ																
X28	FATMAJIN																
X29	PROPDMG_																
X30	MULTIVEH	+	+														
X31	COLFIXOB	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
X32	HITANIML	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
X33	OVERROLL	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
X34	MVBRDSID	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
X35	IMPAIRED	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

X36	ENVCOCIR_	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
X37	DARK	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
X38	INTRSCTN	+	+	+	+												
X39	SPEEDREL	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
X40	WESURREL	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
X41	YOUNGINV	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
X42	OLDERINV	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
X43	TOTRUPO	+	+	+	+	+	+	+				+	+	+	+	+	+
X44	RUFARMPO								+								
X45	RUPOPCLM									+							
X46	RUFPPCLM										+	+					
X47	VMTPRUPO	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+
X48	CRSPRUPO															+	
X49	KAPRUPO																
X50	CONATINT	+	+	+	+	+	+	+	+	+	+	+				+	+
X51	RETROSUR												+				
X52	CRSHDATA													+			
X53	STOPRAIL														+		
X54	DRIVEWAY	+	+	+	+												
X55	CRSHORDT	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
X56	CRSHORDS																
	Num. Obsrv.	16942	16942	16942	16942	16942	16942	16942	16942	16942	16942	16942	16936	15996	16546	16942	16942
	Iterations	51	51	50	40	36	38	34	36	87	95	37	35	36	35	36	34
	Num. Var.	31	30	28	26	24	23	22	22	22	22	23	22	22	22	22	22
	L.L.F.	- 14824.72	- 14824.72	- 14824.83	- 14827.04	- 14827.22	- 14827.85	- 14828.75	- 14833.23	- 14830.24	- 14830.37	- 14828.25	- 14834.67	14037.25	- 14548.31	- 14832.41	-14828.75
	R.L.L.F.	- 15802.50	- 15802.50	- 15802.50	- 15802.50	- 15802.50	- 15802.50	- 15802.50	- 15802.50	- 15802.50	- 15802.50	- 15802.50	- 15766.20	- 14966.31	- 15507.57	- 15802.50	-15802.50
	Ro-sqrd	0.0619	0.0619	0.0619	0.0617	0.0617	0.0617	0.0616	0.0613	0.0615	0.0615	0.0617	0.0591	0.0621	0.0619	0.0614	0.0616
	Corr. Ro-sqrd	0.0599	0.0600	0.0601	0.0601	0.0602	0.0602	0.0602	0.0599	0.0601	0.0601	0.0602	0.0577	0.0606	0.0604	0.0600	0.0602
	Chi-sqrd	1955.56	1955.56	1955.34	1950.92	1950.57	949.297	1947.50	1938.53	1944.51	1944.25	1948.50	1863.06	1858.12	1918.50	1940.17	1947.508

County Data

COUN TYNO	TOT RUPO	RUFA RMPO	RUPO PCLM	RUFP PCLM	VMTP RUPO	CRSP RUPO	KAP RUPO	CONA TINT	RETR OSUR	CRSH DATA	STOP RAIL
1	8243	1341	41.09	6.68	2.01	0.0289	0.0015	0	1	0	0
2	4482	948	38.69	8.18	2.82	0.0341	0.0011	1	1	1	0
3	10543	2021	47.90	9.18	2.37	0.0304	0.0012	1	0	1	0
4	8141	1304	34.95	5.60	3.53	0.0425	0.0031	9999	9999	9999	9999
5	6830	1375	40.43	8.14	2.39	0.0316	0.0028	1	0	1	0
6	17817	2456	65.76	9.06	1.61	0.0189	0.0021	1	0	1	1
7	19825	2424	107.15	13.10	1.09	0.0111	0.0007	9999	9999	9999	9999
8	13591	1536	61.10	6.90	1.70	0.0210	0.0015	0	1	1	0
9	15807	2144	72.88	9.89	1.46	0.0180	0.0009	9999	9999	9999	9999
10	15283	2784	86.36	15.73	1.16	0.0172	0.0014	9999	9999	9999	9999
11	9730	1603	32.95	5.43	4.15	0.0331	0.0021	9999	9999	9999	9999
12	15305	2080	105.43	14.33	1.15	0.0115	0.0012	9999	9999	9999	9999
13	11115	1435	73.15	9.44	1.58	0.0166	0.0022	0	0	1	0
14	11513	2306	59.36	11.89	1.69	0.0194	0.0013	0	1	1	0
15	7801	1274	77.85	12.71	1.24	0.0167	0.0018	0	0	0	0
16	15178	1763	50.34	5.85	2.23	0.0289	0.0012	1	0	9999	0
17	9888	1509	36.14	5.52	4.00	0.0351	0.0023	0	1	1	0
18	8051	1833	35.00	7.97	4.30	0.0334	0.0026	0	1	0	1
19	9729	1745	57.31	10.28	2.31	0.0222	0.0019	0	1	1	0
20	4758	1210	21.94	5.58	4.07	0.0633	0.0034	1	0	0	1
21	6383	1344	30.84	6.49	3.63	0.0367	0.0044	9999	9999	9999	9999
22	17812	3236	50.13	9.11	2.37	0.0308	0.0012	1	0	1	0
23	16020	2627	49.85	8.18	2.10	0.0284	0.0019	0	0	1	0
24	9790	2012	35.90	7.38	2.88	0.0368	0.0027	9999	9999	9999	9999
25	19271	1798	68.04	6.35	1.71	0.0209	0.0016	0	1	1	1
26	8541	2093	43.53	10.67	2.58	0.0350	0.0025	1	0	0	9999
27	8689	1059	63.72	7.77	2.48	0.0213	0.0022	1	0	1	0
28	13028	2951	35.96	8.15	4.29	0.0369	0.0015	9999	9999	9999	9999
29	12068	1085	43.59	3.92	3.25	0.0355	0.0015	9999	9999	9999	9999
30	4956	894	40.74	7.35	3.18	0.0282	0.0020	0	1	0	0
31	22926	3188	76.87	10.69	2.17	0.0186	0.0011	1	0	1	0
32	4440	813	16.67	3.05	12.36	0.0721	0.0027	9999	9999	9999	9999
33	15552	3274	50.64	10.66	2.25	0.0273	0.0013	9999	9999	9999	9999
34	9440	1711	50.82	9.21	2.01	0.0255	0.0012	0	1	1	0
35	7097	1543	29.83	6.49	3.44	0.0426	0.0010	9999	9999	9999	9999
36	8010	1035	38.87	5.02	3.61	0.0373	0.0041	1	1	1	0
37	5921	1124	26.04	4.94	6.27	0.0495	0.0046	1	1	1	0
38	12369	1456	52.89	6.23	2.41	0.0205	0.0015	0	0	1	0
39	11353	1164	66.35	6.80	1.33	0.0205	0.0017	0	0	0	0

40	8550	1463	43.85	7.50	2.98	0.0282	0.0022	1	1	1	1
41	8986	1670	58.40	10.85	1.85	0.0213	0.0032	9999	9999	9999	9999
42	13983	1459	55.53	5.79	2.24	0.0247	0.0013	0	0	0	0
43	12503	1612	40.91	5.27	3.63	0.0378	0.0029	9999	9999	9999	9999
44	12035	1205	44.60	4.47	2.51	0.0343	0.0027	0	1	1	0
45	6237	1761	33.16	9.36	3.25	0.0396	0.0024	9999	9999	9999	9999
46	5322	1010	32.43	6.15	4.30	0.0357	0.0028	0	0	1	0
47	7837	1068	42.72	5.82	2.40	0.0260	0.0019	9999	9999	9999	9999
48	15671	1864	50.97	6.06	2.29	0.0284	0.0015	0	0	9999	0
49	10794	2441	78.12	17.67	1.59	0.0205	0.0019	9999	9999	9999	9999
50	20928	2180	73.63	7.67	1.39	0.0191	0.0016	1	0	1	1
51	6830	1150	33.53	5.65	4.16	0.0436	0.0028	0	0	0	1
52	25825	2924	82.64	9.36	1.76	0.0165	0.0011	0	1	9999	0
53	11310	2244	57.11	11.33	1.81	0.0269	0.0021	1	1	1	0
54	11400	1443	116.03	14.69	0.66	0.0119	0.0018	1	0	1	0
55	11265	2186	45.77	8.88	3.16	0.0244	0.0025	9999	9999	9999	9999
56	15370	1530	51.69	5.15	3.13	0.0295	0.0020	0	1	1	0
57	31262	3146	95.16	9.58	1.28	0.0160	0.0009	0	0	1	0
58	12183	1185	57.65	5.61	2.81	0.0252	0.0015	0	0	1	0
59	5001	894	37.80	6.76	3.19	0.0372	0.0024	1	0	0	0
60	11763	1906	62.52	10.13	2.18	0.0180	0.0008	0	0	1	0
61	9161	1944	34.92	7.41	3.76	0.0421	0.0044	1	0	1	0
62	10234	1884	50.26	9.25	2.36	0.0350	0.0018	1	1	1	0
63	15198	1873	62.06	7.65	1.54	0.0254	0.0012	1	0	1	1
64	13189	1443	47.04	5.15	2.82	0.0281	0.0014	0	1	1	0
65	8972	866	33.26	3.21	3.94	0.0431	0.0025	1	0	0	0
66	7494	1954	41.63	10.86	2.69	0.0288	0.0028	9999	9999	9999	9999
67	7308	1301	40.14	7.15	3.25	0.0380	0.0025	9999	9999	9999	9999
68	4503	987	28.40	6.22	4.89	0.0495	0.0033	1	1	1	0
69	5680	871	34.55	5.30	4.53	0.0361	0.0023	1	0	0	0
70	12179	1816	56.82	8.47	2.37	0.0254	0.0016	0	0	1	0
71	10543	1800	78.20	13.35	1.20	0.0139	0.0023	0	1	1	0
72	4258	1192	29.85	8.36	5.17	0.0385	0.0012	0	1	1	0
73	5778	1301	19.15	4.31	7.01	0.0694	0.0069	9999	9999	9999	9999
74	6547	1238	39.36	7.44	3.37	0.0287	0.0029	9999	9999	9999	9999
75	15831	3208	42.95	8.70	3.02	0.0271	0.0032	0	1	1	0
76	8662	1336	87.93	13.56	1.31	0.0125	0.0013	9999	9999	9999	9999
77	21736	1677	163.66	12.63	1.06	0.0092	0.0008	1	1	1	1
78	23801	2682	57.97	6.53	2.40	0.0233	0.0018	1	1	1	0
79	9700	1788	49.01	9.03	1.70	0.0252	0.0035	1	1	1	1
80	5469	1169	20.55	4.39	6.79	0.0592	0.0031	1	0	1	9999
81	11529	1534	78.83	10.49	1.12	0.0145	0.0021	1	0	1	0
82	23559	1536	116.06	7.57	1.18	0.0128	0.0009	0	0	1	1

83 84	8144 17201 20113	2140 3966	202.46 52.61	53.20	0.62	0.0066	0.0007	1	0	0	0
84		3966	E2 61								
	20112		52.01	12.13	2.14	0.0210	0.0021	0	0	1	0
85	20115	1594	62.18	4.93	1.79	0.0206	0.0015	0	1	1	0
86	13102	2107	50.63	8.14	3.02	0.0260	0.0011	1	1	1	0
87	6958	971	38.78	5.41	2.92	0.0358	0.0020	1	0	0	0
88	4831	990	33.30	6.82	3.45	0.0404	0.0037	0	0	0	0
89	7809	1339	51.65	8.86	2.20	0.0269	0.0010	1	0	1	0
90	10905	1303	50.03	5.98	2.98	0.0313	0.0018	1	1	1	0
91	16858	2059	47.09	5.75	3.03	0.0361	0.0016	1	0	1	0
92	13880	2095	60.58	9.14	2.48	0.0244	0.0015	1	0	1	1
93	6730	993	57.72	8.52	2.53	0.0233	0.0021	1	0	1	0
94	14543	1865	63.19	8.10	1.64	0.0218	0.0016	0	1	1	0
95	7804	987	70.62	8.93	2.09	0.0167	0.0024	9999	9999	9999	9999
96	13701	3216	29.79	6.99	4.65	0.0507	0.0026	0	0	1	0
97	17176	2130	58.02	7.19	2.56	0.0229	0.0013	1	0	1	0
98	7909	1212	67.15	10.29	2.10	0.0206	0.0019	9999	9999	9999	9999
99	8295	1168	43.87	6.18	2.17	0.0291	0.0019	1	1	0	0

Limdep Output

Line search does not improve fn. Exit iterations. Status=3 Check derivatives (with ;OUTPUT=3). This may be a solution if several iterations have been computed, not if only one.

Error 806: (The log likelihood is flat at the current estimates.)

Ordered Probability Model Maximum Likelihood Estimates Model estimated: Aug 25, 2009 at 03:42:45PM. Dependent variable X55 Weighting variable None Number of observations 16942 Iterations completed 34 Log likelihood function -14828.75 Number of parameters 24 Info. Criterion: AIC = 1.75336 Finite Sample: AIC = 1.75337 Info. Criterion: BIC = 1.76433 Info. Criterion:HQIC = 1.75698 Restricted log likelihood -15802.50 McFadden Pseudo R-squared .0616202 Chi squared 1947.508 Degrees of freedom 21 Prob[ChiSqd > value] = .000000 Underlying probabilities based on Normal
Ordered Probability Model Cell frequencies for outcomes Y Count Freq Y Count Freq Y Count Freq 0 43.002 1 1435.084 2 6741.397 3 8723.514

. +-----+

Variable	Coefficient	Standard Error	b/St.Er.	P[Z >z]	Mean of X
+	++ +Index function	for probability	+	++	+
Constant		.58250690	10.078	.0000	
Х3	12024630	.02241116	-5.365	.0000	.22665565
Х9	-1.97323771	.57906332	-3.408	.0007	.24135285
X10	-1.96505205	.57889248	-3.395	.0007	.67046394
X11	-1.78939521	.57947013	-3.088	.0020	.08747491
X15	10993743	.01929299	-5.698	.0000	.51174596
X16	03873581	.01956040	-1.980	.0477	.33160194
X19	.08403488	.02852121	2.946	.0032	.18622359
X31	09105320	.02078142	-4.381	.0000	.45502302
X32	.53941032	.04408067	12.237	.0000	.08853736
X33	17820311	.02078692	-8.573	.0000	.38614095
X34	28390287	.03890489	-7.297	.0000	.07201039
X35	61787974	.03131171	-19.733	.0000	.09868965
X36	.04403534	.02233710	1.971	.0487	.30893637
X37	.07936555	.02322816	3.417	.0006	.44174242
X39	12859173	.02250844	-5.713	.0000	.59910282
X40	.19794681	.02508203	7.892	.0000	.20623303
X41	03616464	.01945617	-1.859	.0631	.36140951
X42	00053713	.356204D-04	-15.079	.0000	37.7330303
X43	.598189D-05	.183741D-05	3.256	.0011	13521.4125
X47	.03662743	.00988500	3.705	.0002	2.63381871
X50	07149960	.01855369	-3.854	.0001	.50076732
	+Threshold param	neters for index			
Mu(1)	2.38039631	.01492415	159.500	.0000	
Mu(2)	3.78842872	.01494155	253.550	.0000	

Summary	y of Marg	ginal H	Effects	s for	Ordered	Proba	ability	v Model	(prob	it)	ļ
Variable	Y=00) Y=	=01	Y=02	Y=03	Y	=04	Y=05	Y=06	Y	Z=07
*X3 *X9 *X10 *X11 *X15 *X16 *X19 *X31 *X32 *X33 *X34 *X35 *X36 *X37 *X39 *X39 *X40 *X41 X42 X43 X47 *X50	.0000 .0102 .0008 .0145 .0000 .0000 .0000 .0000 .0001 .0001 .0005 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000		363 116 080 - 156 056 115 - 120 - 120 - 1220 - 1220 - 1220 - 1220 - 1220 - 1259 - 052 - 052 - 001 - 052 -	0300 1255 4307 0036 0282 0099 0220 0233 1506 0449 0645 1145 0114 0204 0332 0526 0092 0001 0000 0094 0183							+
Cross tabulation of predictions. Row is actual, column is predicted. Model = Probit . Prediction is number of the most probable cell.											
Actual	Row Sum	0	1	2	3	4	5	6	7	8	9
	43 1435 6741 8723	37 2 2 0	6 0 1 0	0 682 2386 1719	751 4352				+		-++
Col Sum ++	16942	41	7	+ 4787 +	12107 ++	0	0 ++	0 	0	C) 0 ·++

The estimation equation for crash severity was as follows:

Z = 5.8704 – 0.1202 X3(SRFCTYPE) – 1.9732 X9(FLATTRRN) ...

The thresholds for outputs of crash severity levels:

y = 1 (fatal or serious injury crash)

y = 2 (minor or possible injury crash)

y = 3 (property damage only crash)

Z ≤ 2.38039631 2.38039631 < Z ≤ 3.78842872 Z > 3.78842872