TRENDS IN IOWA WILDLIFE POPULATIONS AND HARVEST 2009

Iowa Department of Natural Resources Richard Leopold, Director

September 2010

TRENDS IN IOWA WILDLIFE POPULATIONS AND HARVEST 2009

Compiled by:

Peter Fritzell

Chapters Prepared by:

Tom Litchfield
Todd Gosselink
Ron Andrews
Guy Zenner
Todd Bogenschutz
Pat Schlarbaum
Pat Schlarbaum
Pat Schlarbaum
Bruce Ehresman
Ron Andrews
Ron Andrews
Ron Andrews
Ron Andrews
Ron Andrews
Ron Andrews \& David Hoffman
Stephanie Shepherd
Steve Roberts
Todd Gosselink \&
Steve Roberts

White-tailed Deer
Wild Turkeys
Furbearers
Waterfowl
Upland Wildlife
Peregrine Falcon
Osprey
Sandhill Crane
Bald Eagle
River Otter
Bobcat
Mountain Lion
Black Bear
Gray Wolf
Trumpeter Swan
Greater Prairie Chicken
Bowhunter Observation Survey
Ruffed Grouse Survey

CONSERVATION \& RECREATION DIVISION

September 2010
Iowa Department of Natural Resources
RICHARD LEOPOLD, Director

TABLE OF CONTENTS

(Sections were submitted as PDF documents by authors. Page numbering provided here indicates the page in the compiled digital file. Numbering that appears within the file exists if authors chose to number their individual sections separately.)

WHITE-TAILED DEER

Historical perspective .. 9
2009 Hunting Season Results ... 10
Population surveys .. 15
Outlook for 2010 .. 16
Figures .. 18
Tables.... .. 24
WILD TURKEYS
Historical perspective ... 37
Spring harvest survey ... 38
Youth Turkey Season.. 39
Fall harvest survey ... 39
Brood survey .. 42
Figures ... 45
Tables .. 50
FURBEARERS
Historical perspective and current season results .. 63
Tables .. 70
Figures .. 77
WATERFOWL
Duck breeding populations ... 79
Giant Canada Goose Populations ... 79
Waterfowl harvests.. 80
Waterfowl seasons .. 81
Waterfowl banding ... 81
Figures ... 82
Tables .. 84

UPLAND WILDLIFE

Historical summary of populations and harvest .. 101
2009-10 Small Game Harvest Survey... 106
Tables ... 108
Figures ... 123

WILDLIFE RESTORATION - 2009-2010 activities

Peregrine Falcon Restoration 133
River Otter Restoration 151
Greater Prairie Chicken Restoration 165
Trumpeter Swan Restoration 177
Osprey Restoration 185
Sandhill Crane Status in Iowa 195
Bald Eagle Restoration 199
Bobcats Status in Iowa 207
Mountain Lion Status in Iowa 217
Black Bear Status in Iowa 223
Gray Wolf Status in Iowa 227
PRIOR RESTORATIONS - without 2009-2010 activities
Ruffed Grouse

\qquad
(Archived in 2002, http://www.iowadnr.gov/wildlife/)

\qquadWild Turkeys(Archived in 2002, http://www.iowadnr.gov/wildlife/)
\qquadCanada Geese
\qquad (Archived in 2001, http://www.iowadnr.gov/wildlife/) \qquad

APPENDICES

Bowhunter Observation Survey 233
Ruffed Grouse Observation Survey. 245

WHITE-TAILED DEER

Historical Perspective

White-tailed deer (Odocoileus virginianus) were reported to be quite abundant when European settlers arrived in Iowa in the early 1800's. Although the clearing and cultivating of land for agriculture may have initially improved the suitability of the landscape for deer, uncontrolled exploitation for food and hides rapidly reduced deer numbers. By 1880 deer were rarely sighted in much of the state and in 1898 the deer season was legally closed. By this time deer had been virtually eliminated from all parts of the state.

Re-establishment of deer into the state can be traced to escapes and releases from captive herds and translocation and natural immigration from deer herds in surrounding states. A conservative estimate of the population in 1936 placed statewide numbers at between 500 and 700 animals. This small herd grew steadily. By 1950 deer were reported in most counties and the statewide estimate topped 10,000 . Concentrations in some areas were beginning to cause problems by damaging agricultural crops in addition to some complaints concerning deer/vehicle collisions. In response to these problems the first modern deer season was held in December of 1953 and 4,000 deer were killed. The harvest in 1996 exceeded 100,000 for the first time ever.

Although deer are frequently associated with forested areas, they are very adaptable and will utilize many different types of habitat as long as the area provides adequate cover. Examples of these types of areas include brushy draws and fence lines, marshes, and grassy areas like those provided by the
federal Conservation Reserve Program (CRP). Standing corn also provides ideal habitat for part of the year since it provides food, cover and easy travel lanes. Urban environments can also prove to be good habitat for deer, especially if there are green belts, parks or other natural spaces nearby.

Deer utilize almost all plants for food at one time or another during the year. Deer feeding habits can best be described as being widely selective as deer will sample many plants while feeding but often utilize a single, palatable source of food for the majority of their diet. Preferred foods also change through the year in response to changing metabolic demands and forage availability.

The whitetail's ability to thrive in Iowa is likely the result of an abundant, reliable food source and a winter climate where snow depths rarely exceed 12 " for a prolonged length of time. These factors combine to allow deer to come through the "winter bottleneck" in excellent condition. The excellent nutrition also enables deer to have high reproductive rates. Many does in Iowa give birth to a single fawn at one year of age and 2 fawns each subsequent year. Deer in the wild can maintain these high reproductive rates until they are past 10 years of age. Past research in Iowa has found that 8 to 12% of adult does have 3 fawns.

Another reason that deer do so well in Iowa is that they are very mobile. Although many deer never move far from the area where they were born, a significant number (10-20\% on average) leave and travel to new areas before establishing a core area. These core areas may change seasonally with deer shifting
between wintering areas and fawning areas. These movements allow deer to fill voids left open due to deaths and changing habitat. Thus deer easily pioneer into new areas when habitat is suitable. The highest rates of movement occur during 2 periods of the year. The first is in the spring when does move to their fawning areas. Many of the previous year's fawns are forced to find areas of their own at this time. The second period is in the fall during the breeding season. The breeding season or rut begins in mid-October and runs through mid-January, although the peak of activity occurs in mid-November.

Careful management of deer populations by man has also played an important role in allowing deer numbers to return to the levels enjoyed today. Management consists primarily of regulating the doe harvest since hunting provides the major source of mortality for deer in modern day Iowa. Unchecked, Iowa's deer herd could grow at a rate of 20% to 40% each year. At this rate, deer numbers would double in as few as 3 years. With Iowa's agricultural crops providing abundant food, densities could exceed 100 or more deer per square mile in year-round deer habitat before natural regulatory mechanisms would begin to affect deer health and slow the rate of growth. Deer numbers this high would cause severe economic hardship to Iowa's landowners as well as alter the natural vegetative community. Maintaining a deer population in balance with the differing and often competing wants and needs of the people in the state is a difficult task and hunting is the only viable management option to achieve this goal.

2009-2010 Hunting Season Results

This hunting season represented the fourth year of mandatory harvest reporting
in Iowa. Hunters were required to report their harvest by calling in the information, reporting it online at the Department's web site, or by reporting the harvest through the ELSI system at a license dealer. The reported kill for the 2009-2010 season was 136,504 (Table 1.1) which is about 4% lower than in 2008 (Table 1.2). Both of these figures represent the known minimum harvest for 2009 and 2008. The hunting season of 2005 represents the record harvest year for Iowa under the former harvest estimation system. The considerations of utilizing a new harvest reporting system and its compatibility with the former system were discussed in detail in the 2006/07 annual deer report.

In 2005 and prior years, a total harvest estimate was calculated and reported based on a postseason postcard survey, this survey was felt to overestimate the actual harvest. Caution should be used when comparing the reported harvest and license success rates for this year to the harvest estimates and hunter success rates from years prior to 2006 since the techniques used to record/estimate the harvest are very different (please see the 2006 logbook report).

Antlerless deer represented 64\% of the 2009 harvest and about 52% of the total harvest was comprised of does (Table 1.3). Both proportions represented a change of less than 0.5% when compared to the 2008 season. Fourteen percent of the reported doe kill occurred during the November and January antlerless seasons. The reported number of antlered deer in the harvest was 4% lower than in 2008 and represented 36% of the 2009 harvest (shed-antlered bucks are included in this statistic). There were 2,235 shed-antlered bucks reported which represented 3.4% of the total buck harvest (includes button bucks) or 4.5% of the "antlered" buck harvest (since shed-antlered bucks, by
definition, carried antlers at some point during the deer season).

Information (registration numbers, age and sex, county of kill, etc.) was collected from about 2,350 deer checked in the field and at lockers during chronic wasting disease (CWD) surveillance and hunter contacts to determine what proportion of successful hunters reported their deer. Examination of this data indicated that 89.7% of the harvested deer that were encountered in the field were reported. This was a decrease of 1.8% from the reporting rate observed during the 2008 seasons. There is likely a bias in the above rate since all of these situations require the hunter to take the deer to a locker or have contact with a DNR official or someone in an official capacity. People in these situations may be more likely to report their deer than would someone who hadn't talked with a DNR official or someone who doesn't take their deer to a locker. Recent deer hunter surveys indicate that about $1 / 3$ of Iowa's deer hunters completely process their deer themselves. However, gathering data from these individuals is problematic since there is no way to gather the data without someone from, or working with, the DNR contacting them. In final analyses, making some allowance for the potential bias, it was estimated that about 84.5% of the deer harvested in 2009/10 were properly reported.

Figure 1.1 compares the harvest reporting (a known minimum harvest level) system with the post-season postcard survey harvest estimates conducted prior to the 2006 hunting season. The figure displays what past harvests might have looked like using the calculated relationship between the two systems (the "actual" harvest levels).

Utilizing the reporting information, an estimate of the number of
antlered bucks, does, and button bucks killed in 2009 can be made. In Figure 1.2, estimates from 1985-2005 have been constructed on the assumption that the relationship between the reported harvest and the post-season mail survey were consistent through time and that 90% of the harvest was reported (2006 compliance data). Harvest estimates from 2006-2009 were calculated from annual harvest reporting rates as described previously. The 2009 estimate is based on an estimated 84.5% reporting rate as discussed earlier.

There was very little change in license sales in 2009 with 622 fewer deer licenses being issued (643 more antlerless licenses and 1,265 fewer either-sex licenses) for the 2009/10 deer season compared to 2008 (Table 1.4). Antlerless licenses made up about 43% of the deer licenses issued during the 2009/10 deer season. The number of paid licenses decreased by 30 while the number of landowner/tenant licenses decreased by 592.

The season framework did not change from 2008 (Table 1.5), however 17 fewer counties were open to the November and January antlerless seasons. These county closures occurred in east-central and northeastern Iowa (Figure 1.3). This was the $14^{\text {th }}$ year for the special January season and the $5^{\text {th }}$ year for the November Antlerless season. Centerfire rifles could be used during the entire January Antlerless season in the 21 southernmost counties (Figure 1.3). Landowners could get 1 free either-sex license and 2 free antlerless licenses in addition to the regular tags a deer hunter could legally obtain. Seventyseven counties had additional antlerless licenses available. Twenty-two counties in northern and central Iowa had no antlerless quotas (Figure 1.3). Hunters in all seasons could obtain an unlimited number of
antlerless licenses but were limited to the purchase of one antlerless license prior to 15 September. Antlerless licenses were restricted to a specific county and season.

About 3,075 deer were taken during special management hunts in urban areas and in state and county parks (Table 1.6). Approximately 3,200 deer were reported by hunters using special antlerless depredation licenses that were allotted to landowners who were experiencing crop damage problems. Authorization numbers are issued to the landowner who can then distribute them to hunters who use them to purchase a depredation license.

Only 3 of the top 10 counties for total kill were in the northeast portion of the state in 2009 with the remainder being in southern and central Iowa. Clayton was again the top county for total reported kill with 6,029 deer or about 7.7 deer harvested per square mile (Tables $1.7 \& 1.3$). Van Buren County had the highest kill density at 9.3 deer harvested per square mile. Grundy County had the lowest kill with a reported 88 deer or about 0.2 deer per square mile.

Tissue samples were gathered and tested from 3,752 wild deer for CWD surveillance purposes. The majority of the samples were obtained during the shotgun seasons with concentrated efforts in northeastern Iowa as the disease is neighboring wild deer populations in Illinois and Wisconsin. No evidence of CWD was detected in any of the tissue samples. Since 2003, Iowa has tested almost 34,000 tissue samples from wild deer and no CWD has been detected to date.

Shotgun Season

The reported kill during the shotgun seasons was about 6% lower than the reported harvest for 2008 (Table 1.1). Looking at just the data from the mandatory
reporting system (2006-2009), the shotgun harvest has declined for the last 3 years. A severe winter storm impacted the end of the Shotgun 1 season, while the Shotgun 2 season harvest was higher than it was in 2008. Portions of southern, northeastern, and east-central Iowa had areas of unharvested corn fields throughout both seasons.

Antlered bucks made up about 37\% of the total kill, while does made up 51% of the kill. Button bucks made up about 12% of the reported harvest and shed-antlered bucks accounted for less than 1%. However, the number of shed-antlered bucks harvested during the shotgun seasons (391 reported) represented 17% of the total number of shed-antlered bucks reported during the 2009/10 season.

There were 84,960 paid resident licenses sold for the first season and 34,346 deer were reported killed, while 64,686 paid resident licenses resulted in 24,455 deer reported during the second season. The reported success rate for first season hunters was 40% while second season license holders reported 38\% success.

Does made up a slightly higher proportion of the first season harvest when compared to antlered bucks at 47% and 42%, respectively. During the second season, does made up the majority of the harvest at 54\%. Antlerless deer made up 58% of the reported kill during the first season and 67% of the kill during the second season.

The reported deer kill (Figure 1.4) was highest in eastern and southern Iowa during both seasons as would be expected due to deer densities and hunting opportunities.

Does made up less than 50% of the kill in most counties during the first season (Figure 1.5). However, does made up over 50% of the harvest in 61 counties during the
second season (49 counties in 2008).
Assuming that any biases in reporting are consistent between counties (which is what the data suggests), some generalizations can be made regarding harvest distribution (Tables 1.7 and 1.3). Current regulations continue to be effective in allowing more deer to be taken in southern and eastern Iowa (Figure 1.6). The deer seasons and antlerless quota allocations for 2009 also maintained higher levels of doe harvest in the targeted areas of the state (Figure 1.7) as does make up over 50% of the harvest in the vast majority of these counties.

January Antlerless Season

For 2009/10 license year, there were 42 counties open for the January antlerless season (59 counties in 2008/09, Figure 1.3). All licenses issued for this season were for antlerless deer only. The season was the same length for all counties (11-31 January) but centerfire rifles could be used during the entire season in designated southern counties. A total of 26,439 licenses were issued, which is 8% less than the previous year with 35% of them being reported as filled (Table 1.1). In addition to fewer counties being open to the season, some of the decrease in license sales was due to the delayed license purchasing date (15 December) established for the 2009/10 season. This allowed county quotas to be filled (or be closer to filling) prior to being made available for the January season.

About 9,350 antlerless deer were reported during the season (does not include harvest from depredation licenses) which was an 8% decrease from the reported kill in January 2009. The reported kill during this season accounted for 7.3% of the statewide total kill and does harvested during the January antlerless season represented over 10% of the total doe
harvest.
However, the impact in many counties was much greater. The harvest represented 33% of the reported county kill and 46% of the doe kill in Decatur County for example. In most southern Iowa counties the harvest represented from 15$25 \%$ of the total reported harvest and from $18-33 \%$ of the total doe harvest for the county (Figure 1.8). Hunters reported that 74% of the deer taken were does and about 15% were buck fawns.

Shed-antlered bucks made up 10.6% of the reported harvest for the January antlerless season (1052 animals) which is higher than normal. The season accounted for 47% of the total number of shed-antlered bucks reported during the 2009/10 season.

November Antlerless Season

This season was initiated during the 2005 hunting season. The season runs for 3 days beginning the Friday after Thanksgiving. The licenses for this season did not go on sale until 15 November. The reason for the delay was to only have this season in those counties where the county antlerless license quota had not filled. The season was potentially open in 42 counties, 17 fewer than in 2008

About 10,000 licenses were issued (a 20% decrease from 2008) and hunters reported killing about 3,000 deer during this season (a 23% decrease from 2008). Seventy-seven percent of the deer killed were does. The kill during this season increased the total harvest by about 2% and the doe kill by about 3.5% statewide (Table 1.1).

Again, the harvest was directed towards counties in northeastern, southern, and central Iowa where the impact was greater. Although delaying the purchase date of these licenses lessens the impact of
this hunt somewhat; most counties had reported doe harvests that represented from $3-9 \%$ of the total reported doe harvest for the county.

Archery
The reported harvest for 2009 was about 24,500 deer which was 6% greater than the reported harvest in 2008 (Table 1.1). The number of licenses issued increased by 6% over the previous year to 93,853 . Hunters reported that 31% of the antlerless licenses were used to tag a deer and the overall reported success rate was 26%, the same as in 2008.

Fifty-eight percent of the deer taken by archers were male and 51% were antlered bucks (includes shed-antlered bucks, Table 1.8). During the archery season, 117 shed-antlered bucks were reported which represented 5% of the total number of shed-antlered bucks reported in 2009.

Muzzleloader

The reported kill during the early muzzleloader season was 4,495 (a 4\% increase from 2008) and license sales were up by 5\% (Table 1.1). About 34\% of the licenses purchased were reported to have been used to tag a deer. Bucks made up 55% of the kill, with antlered bucks making up about 46% of the total (Table 1.9).

The reported kill during the late muzzleloader season was 10,131 (Table 1.1) which represented a decrease of 7% from the 2008 reported harvest. Fifty-five percent of the deer reported were does and 33% of the deer killed during the late muzzleloader season were antlered bucks (includes shed-antlered bucks). During the late muzzleloader season, 586 shed-antlered bucks were reported in the kill which represents about 6% of the harvest for the
season and about 26% of the total number of shed-antlered bucks reported in 2009/10.

Nonresidents

Of the 6,005 any-deer licenses issued, 2,998 or 50% went to hunters during the shotgun seasons, 2,103 or 35% to bowhunters, 897 or 15% to late season muzzleloader hunters, and 7 were drawn by disabled nonresidents. All of these nonresident hunters also received an antlerless-only license (6,005 licenses) as part of their any-deer license package.

The reported success rates for the any-deer licenses were 49% for the shotgun licenses, 42% for the late muzzleloader licenses, and 44% for the archery licenses. Only 4% of the deer tagged by nonresidents with any-deer licenses were does (Iowa residents 28% does on any-deer licenses). The reported success rates for the antlerless-only licenses held by these hunters were 37% for the shotgun licenses, 30% for the late muzzleloader licenses, and 19\% for the archery licenses.

An additional 2,545 Optional Antlerless-only licenses were issued to nonresidents. Of these, 2,280 went to shotgun hunters, 231 went to hunters participating in the holiday season (12/24 $1 / 2 / 10$), and 34 licenses were purchased for the January Antlerless season. The reported success rates for the optional antlerless licenses were 37% for the shotgun seasons, 39% for the holiday antlerless season, and 62% during the January season.

Collectively, the success rate for all the nonresident antlerless licenses issued during the shotgun seasons was 37%.

In total, nonresidents reported harvesting about 2,800 antlered bucks, 2,500 does, and 300 button bucks. The reported success rate for all licenses was 38% and the overall harvest consisted of 45\% does.

Special Youth \& Disabled Hunter Season

The total number of licenses issued $(9,508)$ for this special season was 8% higher than in 2008 (Table 1.1). About 300 of the licenses were issued to disabled hunters which was a 20% increase over 2008. Youth season hunters who did not take a deer during the Youth deer hunting season were able to use the deer hunting license and unused tag during the early or late muzzleloader seasons or one of the two shotgun seasons. Also, an any-deer license purchased by either a Youth or Disabled season hunter did not count towards the maximum number of any-deer licenses allowed in Iowa.

The reported success rate was 37% with 3,549 deer registered with the harvest reporting system (a 4% increase over 2008). About 50% of the deer reported were antlerless and the reported harvest consisted of 40% does.

Special Deer Management Zones

Special management hunts were conducted at 60 locations in 2009-2010 and about 3,075 deer were reported (Table 1.6). These hunts are designed to meet the management needs of areas such as state and county parks and urban areas that are not suitable to be opened to general regulations. Almost all deer taken were antlerless and deer tagged did not count against a hunter's regular license purchases or bag limit. Most hunts were very successful in removing deer in these problem areas.

An additional 6,663 licenses and permits were issued to hunters/landowners in depredation situations which resulted in the reported harvest of 3,187 deer. This is a 3% increase in the depredation harvest over 2008/09.

Population Surveys

Three techniques have traditionally been used to monitor deer population trends in Iowa. These are 1) aerial surveys conducted in January - March after the deer seasons are complete, 2) spotlight surveys conducted in April, and 3) a record of the number of deer killed on Iowa's rural highways throughout the year. All of these surveys correlate well with the reported harvest over the last 15 years and appear to provide reliable long-term trend indices. However, none of these surveys can be considered absolutely reliable predictors of annual changes in the population because of high variability in the survey conditions.

Deer populations for the state as a whole are declining after displaying strong growth for almost a decade (Figure 1.9). This is due to the dramatically increased harvest pressure that has been applied to the female segment of the herds beginning with the 2003 hunting season.

The aerial surveys conducted after the 2009/10 hunting season (Jan-Mar 2010) showed no change from the previous year (Table 1.10). Conditions for these surveys were excellent compared to 2009 as Iowa experienced fairly severe winter weather conditions that provided good snow cover for the surveys and concentrated deer. In all, 336 survey transects/areas were monitored throughout the state, a 39% increase over 2009 when snow cover limited the amount of surveys that could be completed.

The number of deer killed on rural highways increased by about 23% in 2009. The estimated number of vehicle miles driven also increased in 2009 when compared to 2008 so the adjusted road kill (kills per billion miles - KBM) increased by 21% overall. However, the trend of road kills (KBM) has been slowly declining as
the deer population declines, but the relationship between these two variables has never been directly linear.

The number of deer counted per 25 mile route in the spotlight surveys decreased by about 25% in 2010. The new spotlight routes were also utilized this year in the analyses. This survey consists of 199 transects distributed among all counties for a total survey mileage of about 4,750 miles; more than double the transect length of the traditional spotlight survey. The new routes were initiated in 2006 and the trends displayed are similar to the old routes (est. 1978) but display less variability overall.

The bowhunter observation data, which began to be collected during the 2004 season, was also incorporated in the 2010 analyses. This survey represents over 100,000 hours of observation distributed throughout the state and is conducted voluntarily by Iowa archers. The tactics used during this season (stand hunting) make it useful for gathering observational data.

While both of these surveys (new spotlight routes and bowhunter) are relatively "young" as far as their trend history is concerned, their value will increase as more annual data is gathered.

Utilizing the mathematical relationships described earlier to plot estimated harvests and harvest structures from 1985-2009, the data was utilized in the population model and the resulting "best fit" simulation indicates a declining deer population statewide (Figure 1.9). The model suggests that about a 12% decline in the population occurred as a result of the 2009/10 harvests in conjunction with other mortality factors. The model has its best correlations with the spotlight surveys, components of the road kill survey, and portions of the bowhunter survey.

Hunters will see some changes in the 2010/2011 deer seasons, but fewer than last season. Deer hunting regulations will again allow all hunters to take deer of either-sex in both shotgun and muzzleloader seasons in all counties.

Antlerless quota reductions were implemented 14 counties in north-central, northeastern, and central Iowa. The number of counties in Iowa without an antlerless quota will increase from 22 to 27 counties.

Antlerless quotas were increased in 8 counties in south-central and west-central Iowa. The statewide antlerless license quota for $2010 / 11$ is 132,900 which is 1,300 more than the quota total of 2009/10.

Hunters again will be allowed to obtain antlerless licenses in every season. The limit on the number of licenses a hunter can obtain is one until 15 September, and unlimited from that date on until the quota is filled. The objective of these regulations is to bring deer numbers back to the mid-tolate 1990s levels in the targeted areas.

The 2009/10 winter weather conditions were more severe than average with Iowa recording one of its highest snowfalls. Deer herds did well considering the conditions with scattered losses being reported in northern and western Iowa and isolated areas in central and southern counties (usually associated with localized high deer densities).

The spring and summer have been much wetter than normal with June 2010 being the wettest recorded for Iowa and the second wettest month on record. High rainfall and flooding will affect crop production in low-lying fields and has impacted production on upland areas as well in portions of the state. Changes in natural forage and crop field distribution due to the excessive rainfall will likely affect deer distribution to some extent.

Figure 1.1. A comparison of the post-season harvest estimates from 1985-2005 (the top line) with the reported harvests from 2006-09 (the bottom line). The dotted line would be the "actual" harvest based on annual reporting compliance estimates (2006-09) and on 2006 reporting rates (90\%) for the years prior to 2006 (the first year of mandatory reporting).

Figure 1.2. An estimate of the number of antlered bucks, does, and button bucks killed in 2009 if 84.5% of the actual harvest were reported. The estimates from 1985-2005 assume the relationship between the reported harvest and the post-season mail survey would have been consistent in the past and were constructed using the 90% reporting rate estimate that was calculated for the 2006 hunting season (the first year of mandatory reporting).

Figure 1.3. The number of paid resident antlerless-only license available in 2009/10 in each county. The shaded counties were open for the November and January antlerlessonly seasons and centerfire rifles were legal during the January antlerless season in the dark shade counties.

Figure 1.4. The average number of deer killed per square mile in each county based upon the reported harvest during the 2009 shotgun seasons. The kill by hunters with free landowner/tenant licenses was not included since their licenses were valid for both seasons.

Season 1

Season 2

Figure 1.5. The proportion of the reported harvest by hunters with paid licenses that were does during the 2009 shotgun seasons. The kill by hunters with free landowner/tenant licenses are not included since their licenses are valid for both seasons.

Season 1

Season 2

Figure 1.6. The average number of deer killed per square mile in each county during the 2009/10 deer season using the reported harvest.

Figure 1.7. The proportion of the reported harvest that were does in each county during the 2009/10 deer season.

Figure 1.8. The proportion of the total reported doe harvest in each county that were killed during the 2010 January Antlerless deer season.

Figure 1.9. A comparison of the results from the statewide population simulation with deer population trend surveys. This simulation uses the 2009 harvest from the reporting system and a reporting rate of 84.5%.
500,000
200,000

Table 1.1 A summary of the number of licenses issued, the number of deer harvested, and success rates for the 2009-2010 season.

Season		License Type	Licenses Issued	Number of Hunters ${ }^{\text {c }}$	Harvest ${ }^{\text {a }}$		Success Rate ${ }^{e}$
REGULAR GUN							
Season 1	Paid	Either-sex	61,034	61,034	23,182		38\%
		Antlerless	23,926	14,418	11,164		47\%
Season 2		Either-sex	44,597	44,597	15,080		34\%
		Antlerless	20,089	11,780	9,375		47\%
	Nonresident	Both	8,266	5,268	3,454		42\%
		Total	157,912 (-1\%) ${ }^{\text {a }}$	137,097	62,255	(-7\%)	39\%
Season 1 \& Landowner		Either-sex	24,200	24,199	6,719		28\%
		Antlerless	16,997	14,159	5,911		35\%
		Total	41,197 (-2\%)	38,358	12,630	(-1\%)	31\%
GUN SEASON TOTAL			199,109 (-1\%)	175,455	74,885	(-6\%)	38\%
MUZZLELOADER							
Early	Paid	Either-sex	7,499	7,499	2,633	(NC)	
		Antlerless	1,930	1,452	892	(+6\%)	
	Landowner	Both	3,654	3,511	970	(+10\%)	
		Total	13,083 (+5\%)	12,462	4,495	(+4\%)	34\%
Late	Paid	Either-sex	18,820	18,820	4,319	(-6\%)	
		Antlerless	13,812	9,276	4,155	(-8\%)	
	Landowner Nonresident	Both	4,982	4,656	1,008	(-12\%)	
		Both	1,794	897	649	(-3\%)	
		Total	39,408 (+3\%)	33,649	10,131	(-7\%)	26\%
MUZZLELOADER TOTAL			52,491 (+3\%)	46,111	14,626	(-4\%)	28\%
NOVEMBER ANTLERLESS SEASON							
		Antlerless	8,539	6,810	2,655		31\%
Landowner		Antlerless	1,483	1,397	325		22\%
		Total	10,022 (-20\%)	8,207	2,980	(-23\%)	30\%
JANUARY ANTLERLESS SEASON							
	Paid	Antlerless	19,176	11,099	8,080		42\%
Landowner		Antlerless	7,263	6,699	1,257		17\%
		Total	26,439 (-11\%)	17,798	9,337	(-8\%)	35\%
YOUTH	Paid	Both	9,018	8,584	3,394		38\%
	Landowner	Both	188	164	46		24\%
	Disabled	Both	302	221	109		36\%
		Total	9,508 (+8\%)	8,969	3,549	(+4\%)	37\%
ARCHERY	Paid	Either-sex	52,257	52,257	11,875		23\%
		Antlerless	29,061	18,114	8,943		31\%
	Landowner Nonresident	Both	8,328	6,414	2,354		28\%
		Both	4,206	2,103	1,335		32\%
		Total	93,852 (+6\%)	78,888	24,507	(+6\%)	26\%
TOTAL 6			405,547 (NC)	341,127	136,504	(-4\%)	
${ }^{a}$ - the numbers in parentheses are the percent change from 2007-2008, NC $=<0.5 \%$ ${ }^{b}$ - total include licenses and kill from hunts in special deer management zones and depredation licenses ${ }^{c}$ - number of individuals with licenses, not comparable to estimates prior to 2006 hunting season ${ }^{d}$ - reported kill, not comparable to estimates prior to the 2006 hunting season ${ }^{e}$ - licenses reported successfully filled, not comparable to estimates prior to 2006 hunting season							

Table 1.2. Historical data on deer harvest by license type (1987-present). Grand Total includes IAAP harvest, special management unit hunts, nonresidents and youth.

Year	Regular Gun			Muzzleloader			Archery	Grand Total*
	Paid	Landowner	Total	Early	Late	Total		
1987	53,230	10,270	63,500	1,509	1,027	2,536	9,722	75,758
1988	66,757	13,298	80,055	1,835	1,294	3,129	9,897	93,756
1989	67,606	12,963	80,569	2,619	3,715	6,334	11,857	99,712
1990	69,101	9,095	78,196	2,81	5,884	8,703	10,146	98,002
1991	56,811	11,575	68,386	3,120	2,766	5,886	8,807	83,635
1992	50,822	10,453	61,275	3,316	3,231	6,564	14	77,684
1993	52,624	8,354	60,978	2,219	2,883	5,102	9,291	76,430
1994	59,054	8,735	67,789	2,610	3,196	5,806	12,040	87,231
1995	65,206	7,917	73,123	2,831	3,408	6,363	13,372	97,256
1996	71,577	10,896	82,473	2,895	4,558	7,453	12,314	107,632
1997	77,169	10,588	87,757	4,062	5,508	9,570	14,313	118,404
1998	73,165	9,989	83,154	4,448	5,343	9,791	12,302	112,608
1999	74,362	12,966	87,328	5,277	5,329	10,606	15,266	121,635
2000	77,743	13,189	90,932	4,585	5,936	10,521	17,727	126,535
2001	82,721	14,801	97,522	4,593	7,320	11,913	18,798	136,655
2002	77,940	18,932	96,872	5,091	7,772	12,863	20,703	140,490
2003	96,757	25,353	122,110	6,155	12,049	18,204	26,486	182,856
2004	97,830	26,333	124,163	6,818	13,550	20,368	30,025	194,512
2005	96,110	27,988	124,098	7,209	13,930	21,139	32,986	211,451
2006	76,218	14,956	91,174	5,431	8,698	14,129	22,008	150,552
2007	67,175	13,862	81,037	4,462	10,530	14,992	22,240	146,214
2008	63,330	12,762	76,092	4,342	10,254	14,596	21,793	142,194
2009	58,801	12,630	71,431	4,495	9,482	13,977	23,172	136,504

*Harvest estimates from 2005 and prior are not comparable to subsequent years.

Table 1.3. Total reported deer kill by county during the 2009-2010 deer season.

County	Antlered Bucks	Does	Button Bucks	Shedantlered Bucks	Total	Percent of kill		Kill/ Sq. Mile
						Does	Antlered Bucks ${ }^{\text {a }}$	
Adair	392	515	126	11	1,044	49.3\%	38.6\%	1.83
Adams	446	735	160	36	1,377	53.4\%	35.0\%	3.23
Allamakee	1461	2024	331	50	3,866	52.4\%	39.1\%	6.08
Appanoose	855	1519	290	79	2,743	55.4\%	34.1\%	5.24
Audubon	171	90	21	4	286	31.5\%	61.2\%	0.64
Benton	416	637	148	13	1,214	52.5\%	35.3\%	1.69
Black Hawk	279	335	100	6	720	46.5\%	39.6\%	1.27
Boone	465	546	116	19	1,146	47.6\%	42.2\%	2.00
Bremer	399	667	190	23	1,279	52.2\%	33.0\%	2.91
Buchanan	320	400	97	5	822	48.7\%	39.5\%	1.45
Buena Vista	143	117	25	2	287	40.8\%	50.5\%	0.50
Butler	392	488	106	7	993	49.1\%	40.2\%	1.71
Calhoun	90	56	6	2	154	36.4\%	59.7\%	0.27
Carroll	170	117	31	3	321	36.4\%	53.9\%	0.56
Cass	369	391	65	4	829	47.2\%	45.0\%	1.48
Cedar	597	988	238	24	1,847	53.5\%	33.6\%	3.16
Cerro Gordo	254	185	43	8	490	37.8\%	53.5\%	0.85

Table 1.3 (cont.). Total reported deer kill by county during the 2009-2010 deer season.

County	Antlered Bucks	Does	Button Bucks	Shedantlered Bucks	Total	Percent of kill		$\begin{gathered} \text { Kill/ } \\ \text { Sq. Mile } \\ \hline \end{gathered}$
						Does	Antlered Bucks ${ }^{\text {a }}$	
Cherokee	279	287	65	4	635	45.2\%	44.6\%	1.11
Chickasaw	412	539	174	13	1,138	47.4\%	37.3\%	2.25
Clarke	603	875	186	29	1,693	51.7\%	37.3\%	3.95
Clay	255	203	47	8	513	39.6\%	51.3\%	0.90
Clayton	1984	3332	637	76	6,029	55.3\%	34.2\%	7.74
Clinton	558	871	243	13	1,685	51.7\%	33.9\%	2.43
Crawford	284	276	71	7	638	43.3\%	45.6\%	0.89
Dallas	508	729	175	28	1,440	50.6\%	37.2\%	2.41
Davis	814	1818	403	101	3,136	58.0\%	29.2\%	6.16
Decatur	757	1458	257	71	2,543	57.3\%	32.6\%	4.80
Delaware	635	1032	278	26	1,971	52.4\%	33.5\%	3.45
Des Moines	486	855	153	24	1,518	56.3\%	33.6\%	3.72
Dickinson	117	114	21	6	258	44.2\%	47.7\%	0.68
Dubuque	861	1294	301	12	2,468	52.4\%	35.4\%	4.03
Emmet	138	90	20	3	251	35.9\%	56.2\%	0.64
Fayette	757	1391	275	28	2,451	56.8\%	32.0\%	3.37
Floyd	336	396	112	9	853	46.4\%	40.4\%	1.70
Franklin	199	201	52	1	453	44.4\%	44.2\%	0.77
Fremont	435	596	119	51	1,201	49.6\%	40.5\%	2.29
Greene	220	240	48	6	514	46.7\%	44.0\%	0.90
Grundy	52	30	6	0	88	34.1\%	59.1\%	0.18
Guthrie	758	1112	300	38	2,208	50.4\%	36.1\%	3.70
Hamilton	196	164	36	7	403	40.7\%	50.4\%	0.70
Hancock	131	121	24	3	279	43.4\%	48.0\%	0.49
Hardin	351	416	77	10	854	48.7\%	42.3\%	1.49
Harrison	606	786	148	14	1,554	50.6\%	39.9\%	2.23
Henry	522	792	208	20	1,542	51.4\%	35.1\%	3.50
Howard	291	494	98	9	892	55.4\%	33.6\%	1.89
Humboldt	129	116	15	4	264	43.9\%	50.4\%	0.61
Ida	104	62	16	2	184	33.7\%	57.6\%	0.43
lowa	654	1063	191	23	1,931	55.0\%	35.1\%	3.31
Jackson	1111	1713	407	20	3,251	52.7\%	34.8\%	5.05
Jasper	531	862	216	25	1,634	52.8\%	34.0\%	2.23
Jefferson	499	991	182	29	1,701	58.3\%	31.0\%	3.90
Johnson	801	1416	285	24	2,526	56.1\%	32.7\%	4.08
Jones	789	1289	276	23	2,377	54.2\%	34.2\%	4.06
Keokuk	551	872	178	21	1,622	53.8\%	35.3\%	2.80
Kossuth	213	166	39	8	426	39.0\%	51.9\%	0.44
Lee	697	1191	253	28	2,169	54.9\%	33.4\%	4.12
Linn	768	1421	315	33	2,537	56.0\%	31.6\%	3.54
Louisa	462	802	173	9	1,446	55.5\%	32.6\%	3.59
Lucas	784	1184	310	48	2,326	50.9\%	35.8\%	5.36
Lyon	176	136	33	0	345	39.4\%	51.0\%	0.59
Madison	909	1405	319	26	2,659	52.8\%	35.2\%	4.71
Mahaska	480	660	136	11	1,287	51.3\%	38.2\%	2.25
Marion	769	1183	259	35	2,246	52.7\%	35.8\%	3.96
Marshall	384	529	110	17	1,040	50.9\%	38.6\%	1.81

Table 1.3 (cont.). Total reported deer kill by county during the 2009-2010 deer season.

County	Antlered Bucks	Does	Button Bucks	Shedantlered Bucks	Total	Percent of kill		$\begin{gathered} \text { Kill/ } \\ \text { Sq. Mile } \\ \hline \end{gathered}$
						Does	Antlered Bucks ${ }^{\text {a }}$	
Mills	446	567	122	37	1,172	48.4\%	41.2\%	2.62
Mitchell	366	508	112	13	999	50.9\%	37.9\%	2.14
Monona	545	707	137	13	1,402	50.4\%	39.8\%	2.01
Monroe	724	1319	274	72	2,389	55.2\%	33.3\%	5.49
Montgomery	412	638	141	51	1,242	51.4\%	37.3\%	2.94
Muscatine	536	920	244	20	1,720	53.5\%	32.3\%	3.88
O'Brien	157	122	35	5	319	38.2\%	50.8\%	0.55
Osceola	89	64	14	0	167	38.3\%	53.3\%	0.42
Page	550	778	158	53	1,539	50.6\%	39.2\%	2.88
Palo Alto	204	131	26	4	365	35.9\%	57.0\%	0.65
Plymouth	277	179	36	2	494	36.2\%	56.5\%	0.57
Pocahontas	94	42	6	1	143	29.4\%	66.4\%	0.25
Polk	376	801	200	21	1,398	57.3\%	28.4\%	2.35
Pottawattamie	662	893	181	25	1,761	50.7\%	39.0\%	1.83
Poweshiek	348	425	114	10	897	47.4\%	39.9\%	1.52
Ringgold	572	849	207	41	1,669	50.9\%	36.7\%	3.10
Sac	177	116	27	3	323	35.9\%	55.7\%	0.56
Scott	334	684	154	18	1,190	57.5\%	29.6\%	2.62
Shelby	189	155	32	3	379	40.9\%	50.7\%	0.65
Sioux	152	152	45	4	353	43.1\%	44.2\%	0.46
Story	247	288	72	18	625	46.1\%	42.4\%	1.10
Tama	622	874	215	19	1,730	50.5\%	37.1\%	2.40
Taylor	762	1449	281	87	2,579	56.2\%	32.9\%	4.88
Union	419	683	174	31	1,307	52.3\%	34.4\%	3.08
Van Buren	1152	2716	527	146	4,541	59.8\%	28.6\%	9.32
Wapello	527	958	185	34	1,704	56.2\%	32.9\%	3.90
Warren	1135	1539	384	34	3,092	49.8\%	37.8\%	5.41
Washington	678	1301	282	37	2,298	56.6\%	31.1\%	4.05
Wayne	780	1247	275	75	2,377	52.5\%	36.0\%	4.47
Webster	380	372	74	4	830	44.8\%	46.3\%	1.16
Winnebago	127	84	28	5	244	34.4\%	54.1\%	0.61
Winneshiek	882	1303	240	27	2,452	53.1\%	37.1\%	3.56
Woodbury	537	726	195	17	1,475	49.2\%	37.6\%	1.69
Worth	157	147	41	2	347	42.4\%	45.8\%	0.87
Wright	187	153	41	4	385	39.7\%	49.6\%	0.67
Total	47,377	71,273	15,619	2,235	136,504	52.2\%	36.3\%	2.44

[^0]Table 1.4. Historical data on deer license issue by license type (1987 - present). Grand Totals include special IAAP licenses (1985-1990), 4074 special late season AS licenses for zone 6 (1985), nonresidents, special management unit hunts and special youth licenses.

Year	Regular Gun			Muzzleloader				Grand Total
	Paid	Landown	Total	Early	Late	Total	Archery	
1987	91,804	26,780	118,584	3,091	2,710	5,801	28,910	153,295
1988	101,338	28,002	129,340	3,565	3,618	7,183	30,020	166,543
1989	107,171	33,798	140,969	5,995	12,201	18,196	34,745	194,611
1990	106,781	27,106	133,887	6,602	15,949	22,551	35,217	192,551
1991	100,587	30,834	131,421	7,064	11,458	18,522	33,359	184,041
1992	100,461	30,084	130,545	8,280	10,978	19,315	34,165	186,436
1993	96,577	21,887	118,464	7,306	8,926	16,232	30,938	168,017
1994	102,773	22,809	125,582	8,113	9,737	17,850	34,222	180,525
1995	101,053	18,157	119,210	7,193	8,059	15,463	34,434	177,441
1996	106,746	28,080	134,826	8,806	11,820	20,626	36,351	202,834
1997	109,169	24,423	133,592	8,979	15,049	24,028	37,106	211,118
1998	114,358	25,960	140,318	9,504	12,721	22,225	39,506	223,419
1999	113,695	31,196	144,891	10,246	13,260	23,506	43,687	233,690
2000	113,728	32,116	145,844	10,279	15,242	25,521	44,658	229,800
2001	128,041	38,820	166,861	10,037	18,751	28,788	52,002	265,939
2002	118,973	42,989	161,962	9,807	19,479	29,286	51,534	265,185
2003	136,810	52,148	188,958	11,907	23,905	35,812	60,320	322,096
2004	147,797	53,682	201,479	13,125	29,237	42,362	67,393	353,172
2005	143,856	58,248	202,104	13,693	30,717	44,410	73,518	391,864
2006	149,650	40,831	190,481	12,664	32,492	45,156	76,358	377,525
2007	147,424	41,460	188,884	12,558	34,832	47,390	79,991	389,163
2008	150,642	42,186	192,828	12,498	36,611	49,109	84,615	406,169
2009	149,646	41,197	190,843	13,083	37,614	50,697	89,646	405,547

Table 1.5. The dates, hours and zones for shotgun, archery and muzzleloader seasons (1987-present).

Year	Zones	Shotgun		Archery		Muzzleloader	
		Dates	Hours	Dates	Hours	Dates	Hours
1987	1-10e	Dec 5-9	Sunrise to	Oct 1-Dec 4 \&	$1 / 2 \mathrm{hr}$ before	Oct 10-18	$1 / 2 \mathrm{hr}$ before
1987	1-10	Dec 12-20	Sunset	Dec 21-Jan 10	sunrise to	Dec 21-Jan 10	sunrise to
1988	1-10	Dec 3-7	${ }^{\prime}$	Oct 1-Dec 2 \&	$1 / 2 \mathrm{hr}$ after	Oct 15-23	$1 / 2 \mathrm{hr}$ after
1988	1-10	Dec 10-18	"	Dec 19-Jan 10	sunset	Dec 19-Jan 10	sunset
1989	1-10	Dec 2-6	"	Oct 1-Dec 1 \&	"	Oct 14-Oct 22	"
1989	1-10	Dec 9-17	"	Dec 18-Jan 10		Dec 18-Jan 10	"
1990	1-10	Dec 1-5	"	Oct 1-Nov 30 \&	"	Oct 13- Oct 21	"
1990	1-10	Dec 8-16	"	Dec 17-Jan 10		Dec 17-Jan 10	"
1991	1-10	Dec 7-11	"	Oct 1-Dec 6 \&	"	Oct 12- Oct 20	"
1991	1-10	Dec 14-22	"	Dec 23-Jan 10		Dec 23-Jan 10	*
1992	1-10	Dec 5-9	"	Oct 1-Dec 4\&	"	Oct 10-Oct 18	"
1992	1-10	Dec 12-20	"	Dec 21-Jan 10		Dec 21-Jan 10	"
1993	2	Dec 4-8	"	Oct 1-Dec 3\&	"	Oct 9-Oct 17	"
1993	2	Dec 11-19	"	Dec 20-Jan 10		Dec 20-Jan 10	"
1994	Statewide	Dec 3-7	"	Oct 1-Dec 2\&	"	Oct 15-Oct 23	"
1994	Statewide	Dec 10-18	"	Dec 19-Jan 10		Dec 19-Jan 10	"
1995	Statewide f	Dec 2-6	"	Oct 1-Dec 1\&	"	Oct 14-Oct 22	"
1995	Statewide	Dec 9-17	"	Dec 18-Jan 10		Dec 18-Jan 10	"
1996	Statewide g	Dec 7-11	"	Oct 1-Dec 6\&	"	Oct 12-Oct 20	"
1996	Statewide	Dec 14-22	"	Dec 23-Jan 10		Dec 23-Jan 10	"
1997	Statewide h	Dec 6-10	"	Oct 1-Dec 5\&	"	Oct 11-Oct 18	"
1997	Statewide	Dec 13-21	"	Dec 22-Jan 10		Dec 22-Jan 10	"
1998	Statewide h	Dec 5-9	"	Oct 1-Dec 4\&	"	Oct 17-Oct 25	"
1998	Statewide	Dec 12-20	"	Dec 21-Jan 10		Dec 21-Jan 10	"
1999	Statewide h	Dec 4-8	"	Oct 1-Dec 3\&	"	Oct 16-Oct 24	"
1999	Statewide	Dec 11-19	"	Dec 20-Jan 10		Dec 20-Jan 10	"
2000	Statewide I	Dec 2-6	"	Oct 1-Dec 1\&	"	Oct 14-Oct 22	"
2000	Statewide	Dec 9-17	"	Dec 18-Jan 10		Dec 18-Jan 10	"
2001	Statewide h	Dec 1-5	"	Oct 1-Nov 30 \&	"	Oct 13- Oct 21	"
2001	Statewide	Dec 8-16	"	Dec 17-Jan 10		Dec 17-Jan 10	"
2002	Statewide h	Dec 7-11	$1 / 2 \mathrm{hr}$ before	Oct 1-Dec 6 \&	"	Oct 12- Oct 20	"
2002	Statewide	Dec 14-22	sunrise to	Dec 23-Jan 10		Dec 23-Jan 10	"
2003	Statewide h	Dec 6-10	$1 / 2 \mathrm{hr}$ after	Oct 1-Dec 5 \&	"	Oct 11- Oct 19	"
2003	Statewide	Dec 13-21	sunset	Dec 22-Jan 10		Dec 22-Jan 10	"
2004	Statewide h	Dec 4-8	$1 / 2 \mathrm{hr}$ after	Oct 1-Dec 3 \&	"	Oct 16- Oct 24	"
2004	Statewide	Dec 11-19	sunset	Dec 20-Jan 10		Dec 20-Jan 10	"
2005	Statewide h	Dec 3-7	$1 / 2 \mathrm{hr}$ after	Oct 1-Dec 2 \&	"	Oct 15- Oct 23	"
2005	Statewide	Dec 10-18	sunset	Dec 19-Jan 10		Dec 19-Jan 10	"
2006	Statewide h	Dec 2-6	"	Oct 1-Dec 1 \&	"	Oct 14- Oct 22	"
2006	Statewide	Dec 9-17	"	Dec 18-Jan 10		Dec 18-Jan 10	"
2007	Statewide h	Dec 1-5	"	Oct 1-Nov 30 \&	"	Oct 13- Oct 21	"
2007	Statewide	Dec 8-16	"	Dec 17-Jan 10		Dec 17-Jan 10	"
2008	Statewide h	Dec 6-10	"	Oct 1-Dec 5 \&	"	Oct 11- Oct 19	"
2008	Statewide	Dec 13-21	"	Dec 22-Jan 10		Dec 22-Jan 10	"
2009	Statewide h	Dec 5-9	"	Oct 1-Dec 4 \&	"	Oct 17- Oct 25	"
2009	Statewide	Dec 12-20	"	Dec 21-Jan 10		Dec 21-Jan 10	"

e - Unlimited bucks-only statewide in all following years
f-34 counties were any-sex during 1st season and 74 were bucks only during first 7 days of the 2 nd season
g-35 counties were any-sex during 1st season and 26 were bucks only during the first 5 days of the 2 nd season
h - all counties were any-sex during both seasons
i-17 counties were buck-only during first 3 days of first season

Table 1.6. Results from controlled hunts in the special deer management zones for 2009-2010.

		\# ANTLERLESS		
AREA	WEAPON	LICENSES	SOLD	HARVEST
Amana Colonies	Archery \& Firearm	1000	369	246
Ames (City)	Archery	100	22	11
Ames (Perimeter)	Archery \& Firearm	100	29	13
Backbone State Park	Firearms	200	151	87
Bellevue State Park (Archery)	Archery \& Firearm	100	27	8
Bettendorf \& Riverdale (City)	Archery	300	153	89
Cedar Rapids (City)	Archery	700	455	254
Clinton (City)	Archery	300	72	33
Coralville (City)**	Archery	400	272	107
Council Bluffs (City)	Archery	200	187	93
Creston (City)	Archery	50	0	0
Davenport (City)	Archery	500	398	190
Denison (City)	Archery	50	36	21
Desoto NWR	Firearms	220	124	22
Dubuque (City)	Archery	400	174	82
Dubuque (County)	Archery \& Firearm	500	31	9
Elk Rock State Park	Archery	50	37	17
Geode State Park	Archery	200	45	14
Green Valley State Park	Firearms	60	60	37
Iowa Army Ammunition Plant	Archery \& Firearm	950	538	245
IAAP (Perimeter)	Archery \& Firearm	400	42	18
Iowa Falls (City)	Archery	50	37	28
Iowa Lake County Park	Archery \& Firearm	200	93	38
Jefferson County Park	Archery	100	5	3
Johnson County	Archery \& Firearm	750	280	126
Jones County Central Park	Archery	50	25	9
Kent Park	Archery \& Firearm	160	131	59
Knoxville (City)	Archery	50	14	10
Lacey-Keosauqua State Park	Archery	150	28	19
Lake Ahquabi	Firearms	30	6	1
Lake Darling	Firearms	Cancelled -	Construction	
Lake Keomah	Archery	50	32	17
Lake Macbride	Archery	150	109	67
Lake Manawa	Archery	50	50	23
Lake of Three Fires	Firearms	45	35	29
Lake Panorama	Archery \& Firearm	230	147	58
Lake Wapello	Firearms	200	62	16
Ledges State Park	Firearms	50	18	9
Linn County	Archery \& Firearm	750	213	63
Maquoketa Caves	Archery \& Firearm	25	15	10
Marshalltown (City \& Perimeter)	Archery \& Firearm	175	80	35
Muscatine (City)	Archery	200	90	44
Ottumwa (City)	Archery	300	124	61
Palisades Kepler State Park	Archery	100	19	10
Pella (City \& Perimeter)	Archery \& Firearm	150	9	4
Pikes Peak/McGregor (City)	Archery	150	28	16
Pine Lake State Park	Archery	50	26	5
Polk-Dallas Archery Zone	Archery	1200	947	444
Polk-Dallas Rural Zone	Archery \& Firearm	400	65	20
Reichelt Area	Firearms	40	29	16
Roberts Creek County Park	Archery	30	24	17
Rock Creek State Park	Archery	50	50	24
Scott County Park	Firearms	75	71	21
Smith Wildlife Area	Firearms	9	6	3
Springbrook State Park	Firearms	135	86	44
Squaw Creek Park	Archery	100	86	31
Viking Lake State Park	Firearms	50	50	28
Wapsi Environmental Center	Firearms	20	19	7
Waterloo-Cedar Falls (City)	Archery	290	184	50
Washatee	Archery \& Firearm	100	34	9
Wildcat Den State Park	Archery	50	21	8
Depredation \& Shooting Permits	Archery \& Firearm	18,916	6,663	3,187
TOTALS		32,460	13,233	6,265

Table 1.7. Reported deer and ranking for each season by county for total kill during the 2009-2010 deer season.

County	Harvest							Rank						
	PaidShotgun	Paid Muzzle.		$\begin{gathered} \hline \text { Paid } \\ \text { Archery } \\ \hline \end{gathered}$	Paid Youth	$\begin{aligned} & \text { Non- } \\ & \text { resident } \end{aligned}$	Total	Shotgun	Muzzleloader		Archery	Youth	Non-resident	Total
		Early	Late						Early	Late				
Clayton	2995	180	297	787	150	183	6029	1	1	1	1	1	9	1
Van Buren	1474	90	237	469	93	367	4541	4	4	3	7	2	1	2
Allamakee	1867	122	181	518	83	320	3866	2	2	10	5	5	3	3
Jackson	1687	93	171	468	73	108	3251	3	3	12	8	8	16	4
Davis	1030	63	159	362	45	196	3136	13	12	16	15	24	7	5
Warren	1281	87	199	715	93	67	3092	6	5	6	2	3	24	6
Appanoose	937	59	213	368	55	255	2743	17	16	4	14	15	5	7
Madison	1072	62	173	480	60	112	2659	11	13	11	6	13	13	8
Taylor	860	27	109	200	23	345	2579	24	59	29	44	67	2	9
Decatur	694	32	121	305	42	198	2543	35	47	27	27	31	6	10
Linn	837	72	202	606	80	23	2537	25	9	5	3	6	58	11
Johnson	1040	75	157	547	52	37	2526	12	7	17	4	18	43	12
Dubuque	1404	86	76	331	90	43	2468	5	6	47	20	4	39	13
Winneshiek	1249	60	125	340	56	96	2452	8	15	25	18	14	17	14
Fayette	1273	68	161	357	40	50	2451	7	11	15	16	33	32	15
Monroe	806	34	183	328	41	188	2389	27	44	8	22	32	8	16
Jones	1188	49	131	395	66	60	2377	9	24	24	11	9	27	17
Wayne	727	41	167	256	48	268	2377	32	34	13	37	21	4	18
Lucas	880	48	192	325	43	128	2326	21	26	7	24	29	11	19
Washington	994	31	238	321	47	50	2298	15	49	2	25	23	33	20
Marion	1087	74	164	388	61	40	2246	10	8	14	12	11	40	21
Guthrie	982	39	103	380	51	118	2208	16	37	32	13	19	12	22
Lee	997	49	79	299	54	48	2169	14	25	42	28	16	34	23
Delaware	891	60	152	276	75	20	1971	20	14	18	33	7	63	24
lowa	867	44	134	263	60	46	1931	22	32	23	34	12	36	25
Cedar	919	55	148	307	37	25	1847	18	18	20	26	36	54	26
Pottawattamie	658	53	151	404	43	47	1761	39	22	19	10	30	35	27
Tama	790	70	182	239	50	56	1730	28	10	9	40	20	30	28
Muscatine	860	33	145	357	28	16	1720	23	46	21	17	52	69	29
Wapello	566	26	89	282	30	56	1704	45	60	38	31	50	31	30
Jefferson	761	15	94	174	23	94	1701	30	75	35	49	63	18	31
Clarke	642	29	74	259	39	64	1693	40	52	49	36	34	25	32
Clinton	836	55	119	326	30	26	1685	26	19	28	23	48	52	33
Ringgold	687	45	64	128	27	111	1669	37	31	57	63	54	14	34
Jasper	771	39	138	291	47	26	1634	29	38	22	29	22	53	35
Keokuk	904	36	124	158	32	62	1622	19	41	26	52	44	26	36
Harrison	678	46	105	279	28	80	1554	38	28	31	32	51	21	37
Henry	688	50	54	200	30	68	1542	36	23	62	43	49	23	38
Page	589	27	71	157	23	109	1539	43	58	53	54	65	15	39
Des Moines	535	23	66	204	23	39	1518	48	62	56	42	61	42	40
Woodbury	708	26	74	423	45	20	1475	33	61	51	9	25	64	41
Louisa	758	23	102	193	34	16	1446	31	64	33	46	38	68	42
Dallas	610	53	73	334	43	15	1440	42	21	52	19	28	71	43
Monona	618	27	101	248	33	154	1402	41	57	34	39	42	10	44
Polk	426	28	39	329	25	16	1398	57	56	71	21	55	70	45
Adams	534	35	82	109	8	88	1377	49	42	41	68	93	20	46
Union	586	9	61	135	18	59	1307	44	88	58	61	76	29	47
Mahaska	702	28	92	165	31	35	1287	34	54	36	51	47	48	48
Bremer	491	45	84	262	62	7	1279	52	30	39	35	10	84	49
Montgomery	484	5	107	120	17	60	1242	54	91	30	65	77	28	50
Benton	540	53	76	251	43	21	1214	47	20	46	38	27	62	51
Fremont	365	20	90	171	21	90	1201	66	69	37	50	71	19	52
Scott	340	30	68	284	28	5	1190	68	51	55	30	53	90	53
Mills	388	46	69	214	23	40	1172	63	29	54	41	64	41	54
Boone	430	56	78	196	44	36	1146	56	17	44	45	26	45	55
Chickasaw	552	35	59	174	53	35	1138	46	43	59	48	17	46	56
Adair	493	20	77	135	19	43	1044	51	67	45	60	74	38	57
Marshall	516	42	84	140	37	27	1040	50	33	40	58	37	51	58
Mitchell	399	40	79	109	34	45	999	61	36	43	69	39	37	59

Table 1.7 (cont.). Reported deer and ranking for each season by county for total kill during the 2009-2010 deer season.

County	Harvest							Rank						
		Paid Muzzle.		PaidArchery	Paid Youth	Nonresident	Total		Muzzleloader		Archery	Youth	Nonresident	Total
	Shotgun	Early	Late					Shotgun	Early	Late				
Butler	486	40	58	133	37	22	993	53	35	60	62	35	59	60
Poweshiek	465	23	76	158	32	17	897	55	65	48	53	45	66	61
Howard	409	30	55	145	31	24	892	60	50	61	57	46	55	62
Hardin	367	38	74	136	24	23	854	65	39	50	59	59	57	63
Floyd	418	36	47	113	24	32	853	59	40	66	67	58	50	64
Webster	378	47	28	150	33	37	830	64	27	80	56	43	44	65
Cass	418	16	49	105	16	73	829	58	72	64	70	78	22	66
Buchanan	396	33	47	153	33	8	822	62	45	65	55	41	81	67
Black Hawk	325	31	39	126	24	8	720	69	48	70	64	57	80	68
Crawford	351	11	42	64	12	22	638	67	82	67	77	83	60	69
Cherokee	293	10	30	87	23	32	635	70	83	79	73	60	49	70
Story	213	29	51	184	25	8	625	76	53	63	47	56	83	71
Greene	255	14	31	66	12	17	514	71	76	77	76	85	65	72
Clay	218	20	31	88	19	35	513	75	68	76	72	75	47	73
Plymouth	181	28	37	116	34	8	494	81	55	72	66	40	82	74
Cerro Gordo	181	22	33	99	21	3	490	80	66	73	71	70	93	75
Franklin	239	23	26	46	23	16	453	72	63	82	86	62	67	76
Kossuth	221	10	40	75	11	12	426	74	84	68	74	90	76	77
Hamilton	178	15	32	63	11	14	403	83	73	75	78	88	72	78
Wright	238	6	25	50	12	6	385	73	90	84	84	87	88	79
Shelby	180	5	40	75	9	9	379	82	92	69	75	92	79	80
Palo Alto	187	9	25	49	12	14	365	79	86	83	85	86	74	81
Sioux	192	9	23	53	23	1	353	77	87	86	82	66	97	82
Worth	164	12	31	63	14	13	347	85	81	78	79	81	75	83
Lyon	169	19	20	35	22	14	345	84	70	88	94	68	73	84
Sac	188	6	21	38	21	3	323	78	89	87	92	72	94	85
Carroll	163	12	14	53	14	6	321	86	79	94	81	79	85	86
O'Brien	127	18	17	41	22	10	319	91	71	91	89	69	78	87
Buena Vista	110	13	15	41	13	11	287	93	78	92	88	82	77	88
Audubon	133	3	19	39	8	21	286	89	97	89	90	94	61	89
Hancock	135	15	17	42	11	6	279	88	74	90	87	89	86	90
Humboldt	144	4	9	38	9	6	264	87	94	96	91	91	87	91
Dickinson	104	12	32	52	20	0	258	94	80	74	83	73	98	92
Emmet	133	4	23	37	12	23	251	90	93	85	93	84	56	93
Winnebago	115	14	28	55	5	5	244	92	77	81	80	97	91	94
Ida	92	4	14	22	8	5	184	96	95	95	97	95	89	95
Osceola	77	9	15	27	14	2	167	98	85	93	96	80	95	96
Calhoun	79	1	7	27	2	4	154	97	99	98	95	99	92	97
Pocahontas	96	4	2	17	5	1	143	95	96	99	98	96	96	98
Grundy	40	2	8	16	4	0	88	99	98	97	99	98	99	99
Total	58,801	3,525	8,474	20,818	3,394	5,628	136,504							

Table 1.8. A summary of archery season dates, hours, success rates and other information (1985-present).

Year	Dates	Hours	Percent Bucks in Harvest	Success Rate	Mean Days/Hunter	General Comments
1985	Oct 12-Dec 6	1/2 hr before	68	26	15	\$ 20 fee.
1986	Oct 11-Dec 5	sunrise to	72	38	17	Limit 1/Bow and 1/Gun
1987	 Dec 21-Jan 10	$1 / 2 \mathrm{hr}$ after sunset	68	35		Added late season.
1988	Oct 1-Dec 2 \& Dec 19-Jan 10		71	35	16	
1989	Oct 1-Dec 1 \& Dec 18-Jan 10	"	73	36	20	Bonus 2nd tag for antlerless deer statewide
1990	Oct 1-Nov 30 \& Dec 17-Jan 10	"	65	32	19	Bonus tag for antlerless early or anysex late,statewide
1991	Oct 1-Dec 6 \& Dec 23-Jan 10	"	73	28	17	Bonus tag for antlerless deer available only in zones $3 \mathrm{a}, 4 \mathrm{a}, 5 \mathrm{a}$ and 6 . $\$ 25$ fee.
1992	Oct 1-Dec 4 \& Dec 21 -Jan 10	"	69	28	15	Bonus tag for antlerless deer available only in bonus antlerless zone if no gun tag.
1993	Oct 1-Dec 3 \& Dec 20-Jan 10	"	73	32	17	Bonus tag for antlerless deer available only in bonus antlerless zone if no gun tag.
1994	Oct 1-Dec 2\& Dec 19-Jan 10	"	77	37	16	Bonus tag for antlerless deer available only in bonus antlerless zone if no gun tag.
1995	Oct 1-Dec 1\& Dec 18-Jan 10	"	76	39	17	Bonus tag for antlerless deer available only in bonus antlerless zone if no gun tag.
1996	Oct 1-Dec 6\& Dec 23-Jan 10	"	78	37	16	Bonus tag for antlerless deer available only in bonus antlerless zone if no gun tag.
1997	Oct 1-Dec 5\& Dec 22-Jan 10	"	71	42	17	Bonus tag for antlerless deer available only in bonus antlerless zone. Could get firearm license also.
1998	Oct 1-Dec 4\& Dec 21-Jan 10	"	76	34	15	Bonus tag for antlerless deer available only in bonus antlerless zone. Could get firearm license also.
1999	Oct 1-Dec 3\& Dec 20-Jan 10	"	79	37	16	Bonus tag for antlerless deer available only in bonus antlerless zone. Could get firearm license also.
2000	 Dec 18-Jan 10	"	80	44	17	Bonus tag for antlerless deer available only in bonus antlerless zone. Could get firearm license also.
2001	 Dec 17-Jan 10	"	75	37	17	Bonus tag for antlerless deer available in every county. Could get firearm license also.
2002	Oct 1-Dec 6 \& Dec 23-Jan 10	"	66	39	17	Bonus tag for antlerless deer available in every county. Could get firearm license also.
2003	Oct 1-Dec 5 \& Dec 22-Jan 10	"	54	44	18	Bonus tag for antlerless deer available in every county. Could get firearm license also.
2004	Oct 1-Dec 3 \& Dec 20-Jan 10	"	54	46	18	Bonus tag for antlerless deer available in every county. Could get firearm license also.
2005	 Dec 19-Jan 10	"	54	53	17	Bonus tag for antlerless deer available in every county. Could get firearm license also.
2006	Oct 1-Dec 1 \& Dec 18-Jan 10	"	57	$29^{\text {a }}$	NA	Tags for antlerless deer available in 79 counties. Could get firearm license also.
2007	 Dec 17-Jan 10	"	59	28	NA	Tags for antlerless deer available in 77 counties. Could get firearm license also.
2008	 Dec 22-Jan 10	"	58	26	NA	Tags for antlerless deer available in 77 counties. Could get firearm license also.
2009	Oct 1-Dec 4 \& Dec 21-Jan 10	"	58	26	NA	Tags for antlerless deer available in 77 counties. Could get firearm license also.

[^1]Table 1.9. A summary of muzzleloader season dates, hours, success rates and other information (1984 - present).

Year	Dates	Hours	Percent Bucks in Harvest	$\begin{gathered} \hline \hline \text { Success } \\ \text { Rate } \\ \hline \end{gathered}$	Mean Days/Hunter	General Comments
1984	Dec 15-21	Sunrise to Sunset	45	22	6	1500 A-S Quota. \$15 fee.
1985	Dec 21-27	"	44	34	4	2000 A-S Quota. \$20 fee.
1986	Oct 11-17	1/2 hr before	100	17	4	2500 B-O Quota.
	Dec 20-Jan 4	sunrise to	43	40	6	Unlimited A-S Quota.
1987	Oct 10-18	1/2 hr after	55	52	8	3000 A-S Quota
	Dec 21-Jan 10	sunset	46	42	6	Unlimited A-S Quota.
1988	Oct 15-23	"	55	55	4	3500 A-S Quota
	Dec 19-Jan 10	"	41	39	6	Unlimited A-S Quota.
1989	Oct 14-22	"	55	49	5	5000 A-S Quota
	Dec 18-Jan 10	"	28	39	9	Unlimited A-S Quota. Could hunt during shotgun \& late muzzleloader seasons.
1990	Oct 13-21	"	53	46	5	5000 A-S Quota
	Dec 17 -Jan 10	"	50	45	8	Could hunt shotgun \& late muzzleloader season.
1991	Oct 12-20	"	54	47	5	5000 A-S Quota
	Dec $23-J a n 10$	"	40	33	8	Could hunt shotgun \& late muzzleloader season, but all 2nd tags valid for antlerless only in zones 3a,4a,5a\&6.
1992	Oct 10-18	"	60	45	4	7500 Anysex license quota.
	Dec 21-Jan 10	"	40	36	8	All second licenses antlerless, Zones 4a,5a\&6.
1993	Oct 9-17	"	71	34	5	7500 license quota, 65 counties buck-only.
	Dec 20-Jan 10	"	46	39	8	Antlerless in 14 counties, 35 counties buck-only.
1994	Oct 15-23	"	78	36	5	7500 license quota, 67 counties buck-only.
	Dec 19-Jan 10	"	52	39	8	Antlerless in 14 counties, 35 counties buck-only.
1995	Oct 14-22	"	73	43	5	7500 license quota, 69 counties buck-only.
	Dec 18-Jan 10	"	55	46	8	No antlerless tags, 29 counties modified buck-only.
1996	Oct 12-20	"	75	39	5	7500 license quota, 64 counties buck-only.
	Dec 23-Jan 10	"	49	46	7	Antlerless in $151 / 2$ counties, 26 modified buck-only.
1997	Oct 11-19	"	55	62	4	7500 license quota, no counties buck only
	Dec 22-Jan 10	"	44	52	7	Antlerless in $191 / 2$ counties, no counties buck-only.
1998	Oct 17-25	"	64	52	5	7500 license quota, no counties buck only
	Dec 21-Jan 10	"	54	50	7	Antlerless in 20 counties, no counties buck-only.
1999	Oct 16-24	"	60	57	4	7500 license quota, no counties buck only
	Dec 20-Jan 10	"	52	46	7	Antlerless in 21 counties, no counties buck-only.
2000	Oct 14-22	"	60	53	4	7500 license quota, 16 counties modified buck only
	Dec 18-Jan 10	"	50	47	7	Antlerless in 21 counties, no counties buck-only.
2001	Oct 13-21	"	54	53	4	7500 license quota, no counties buck only
	Dec 17-Jan 10	"	52	44	8	Antlerless in all counties, no counties buck-only.
2002	Oct 12- Oct 20	"	65	56	4	7500 license quota, no counties buck only
	Dec 23-Jan 10	"	41	46	6	Antlerless in all counties, no counties buck-only.
2003	Oct 11- Oct 19	"	54	55	4	7500 license quota, no counties buck only
	Dec 22-Jan 10	"	37	51	6	Antlerless in all counties, no counties buck-only.
2004	Oct 16- Oct 24	"	55	58	5	7500 license quota, no counties buck only
	Dec 20-Jan 10	"	37	48	6	Antlerless in all counties, no counties buck-only.
2005	Oct 15- Oct 23	"	53	58	4	7500 license quota, no counties buck only
	Dec 19-Jan 10	"	32	54	6	Antlerless in all counties, no counties buck-only.
2006	Oct 14-22	"	55	43^{a}	NA	7500 license quota, no counties buck only
	Dec 18-Jan 10	"	41	27	NA	Antlerless in 79 counties, no counties buck-only.
2007	Oct 13-21	"	55	35	NA	7500 license quota, no counties buck only
	Dec 17-Jan 10	"	44	30	NA	Antlerless in 77 counties, no counties buck-only.
2008	Oct 11-19	"	53	35	NA	7500 license quota, no counties buck only
	Dec 22-Jan 10	"	43	28	NA	Antlerless in 77 counties, no counties buck-only.
2009	Oct 17-25	"	55	34	NA	7500 license quota, no counties buck only
	Dec 21-Jan 10	"	45	26	NA	Antlerless in 77 counties, no counties buck-only.

Table 1.10. The results of the deer population surveys (1976 - present).

Year	Spotlight Survey		Aerial Survey		$\begin{gathered} \text { Traffic } \\ \text { Kill } \\ \hline \end{gathered}$	Traffic Kill Per Billion Vehicle Mi	
	Mean Count	Percent Change	Weighted Count*	Percent Change		Number	Percent Change
1976	-				2,537	225	-1\%
1977	-	-			2,929	252	12\%
1978	6.9	-			2,872	241	-4\%
1979	6.8	-1\%			3,005	259	7\%
1980	7.1	4\%	-	-	3,743	335	29\%
1981	5.9	-17\%			4,164	365	9\%
1982	12.0	103\%	-	-	4,805	412	13\%
1983	13.3	11\%	5,903	-	5,335	448	9\%
1984	16.4	23\%	6,387	8\%	6,177	500	12\%
1985	15.4	-6\%	7,607	19\%	5,925	495	-1\%
1986	18.5	20\%	9,790	29\%	7,225	593	20\%
1987	18.2	-2\%	-	-	8,440	678	14\%
1988	20.8	14\%	10,289	$5 \%^{\text {a }}$	9,248	707	4\%
1989	26.8	29\%	9,672	-6\%	8,914	655	-7\%
1990	24.0	-10\%	7,070	-27\%	8,799	607	-7\%
1991	23.0	-4\%	9,191	30\%	8,428	590	-3\%
1992	23.0	0\%	8,235	-10\%	9,135	616	4\%
1993	30.0	30\%	8,680	5\%	9,576	624	1\%
1994	25.8	-14\%	10,483	21\%	10,438	663	6\%
1995	35.3	37\%	10,877	4\%	11,167	699	5\%
1996	51.1	45\%	12,051	11\%	12,276	748	7\%
1997	51.1	0\%	13,902	15\%	13,148	778	4\%
1998	55.9	9\%	12,651	-9\%	12,427	714	-8\%
1999	59.9	7\%	14,928	18\%	11,366	637	-11\%
2000	57.2	-5\%	15,375	3\%	11,114	642	1\%
2001	81.4	42\%	15,793	3\%	14,243	799	24\%
2002	80.0	-2\%	13,107	-17\%	12,377	662	-17\%
2003	92.5	16\%	15,676	20\%	13,720	726	10\%
2004	101.1	9\%	18,028	15\%	15,361	803	11\%
2005	104.9	4\%	15,324	-15\%	14,364	760	-5\%
2006	101.8	-3\%	12,565	-18\%	14,940	783	3\%
2007	118.5	16\%	13,445	7\%	13,730	720	-8\%
2008	139.3	18\%	13,427	0\%	10,961	602	-16\%
2009	131.8	-5\%	13,528	1\%	13,518	726	21\%
2010	98.7	-25\%	13,591	0\%			
*adjusted for missing counts							
	to 1988						

WILD TURKEYS

Historical Perspective

History: Iowa's primitive oak-hickory forests covered nearly 7 million acres (2.8 million ha) during the original land survey in 1859 (Thornton and Morgan 1959). Settlers' records indicate turkeys were associated with most of this timber. Although turkeys may not have been as numerous in Iowa as in their primary range east of the Mississippi River, they were still plentiful (Peterson 1943). Unfortunately, wild turkeys were eliminated from Iowa by the early 1900's due to habitat loss and partly because of uncontrolled subsistence hunting (Little 1980).
Habitat: Only 2.6 million acres (1.1 million ha) of forest remained when the second land survey was completed in 1956, a reduction of 63% in a century, and perhaps 50% of the remaining forest was badly mismanaged through overgrazing (Thornton and Morgan 1959). In 1974, Iowa had 1.6 million acres of forestland, which made up 4.3% of the State's land area. Iowa's remnant forests now total 2.1 million acres (850,202 ha), just 5.7% of the State and only 30\% of pre-settlement forests (Leatherberry et al. 1990).

Forest types throughout Iowa are second or third growth oak-hickory on uplands and elm-ash-cottonwood on floodplains (Ostrom 1976). Oak types constitute 55% of all forest stands, with red oak - white oak - hickory (35% of all forests) dominant in all regions. Maplebasswood stands (10\%) are found on mesic sites and are climax in the northeast and central regions, but are replaced by white oak (10\%) and short, scrubby burr oak (10\%) in the southern and arid western regions, respectively. Aspen and other
northern hardwoods (1\%) are found occasionally in the Northeast. Statewide, 65% of all commercial stands are entering sawtimber and 20% are in poletimber (Leatherberry et al. 1990). Ninety-two percent of Iowa's forest land is privately owned, with nearly half of the remaining 8% in state ownership, 38% owned by other public agencies and 14% in park-refuges withdrawn from active management (Ostrom 1976, Leatherberry et al. 1990). Iowa has no national forests, parks or wildlife refuges devoted to forest land management.
Restoration: The Iowa Department of Natural Resources (IDNR) began experimenting with turkey restoration in 1920 using pen-reared birds. Releases were made over the next 18 years but all releases were uniform failures.

The first attempts at releasing transplanted wild turkeys were in the early 1960's. Rio Grande and Merriam's subspecies were released at several sites during the 1960's but ultimately their poor adaptation to Iowa’s oak-hickory forest led to population failures for both subspecies.

The first release of eastern wild turkeys was in 1966 in Lee County. The population response of these turkeys was phenomenal - survival of released birds, reproduction, and poult survival were all excellent. The success of this eastern subspecies stocking led to an additional stocking that also proved successful. By 1971 it was obvious that the Eastern subspecies was the turkey to use in future restoration attempts.

Since the initial 1965 release, 3,578 Eastern wild turkeys have been trapped and released at 259 sites at a stocking rate of
approximately 3 adult gobblers and 10 hens per site. Nearly all sites are considered successful; however the most recent stockings are still being evaluated. No sites are currently considered to be unsuccessful. Most sites were opened to hunting after populations were established, usually about 5 years post-stocking. Restorations by the IDNR during the last 2 decades have returned wild turkeys to about 95% of the remnant timber stands in the state. Restoration efforts ended in 2001 with the last release site occurring in Linn County.

Spring Harvest Survey

History: Spring bearded-turkey-only hunting seasons began in 1974. The objective of Iowa's spring season has been to maximize hunting opportunity while maintaining a quality hunting experience. Quality hunting is defined as the chance to hunt turkeys reasonably free of interference from other hunters. The primary method used to reduce interference is to control hunter densities through license quotas established for multiple zones and seasons.

Annual licenses issued, hunters, and harvest increased gradually from 1974-87 (Fig. 2.1). During 1988-99, there were dramatic increases in license issue and hunter numbers due to an unlimited license quota in the fourth season. The area open to spring turkey hunting in Iowa also increased dramatically from 2 small southern zones and 1 larger northeast zone in 1974 to the entire state during the 1999 spring season (Fig. 2.2, a and b). Hunter numbers and timber acres with huntable turkey populations have increased proportionally, allowing hunter densities to remain at <4 hunters $/ \mathrm{mi}^{2}$ of timber per season.
2010: Iowa's 37th modern spring hunting season recorded an estimated 10,889 turkeys harvested, with 49,551 licenses sold (Table 2.1 and 2.3). This was the $22^{\text {nd }}$ year the entire state was open to spring
turkey hunting (Table 2.11). The 38-day season (9 April through 16 May, 2010) was partitioned into 5 separate seasons: a 3-day youth-only season, and 4 regular seasons (4, 5,7 , and 19-day seasons). A decrease in the number $(2,671)$ of licenses were sold for the youth-only season with 174 fewer youth licenses sold (Fig. 2.8). The 4-season format, with unlimited license quota an unlimited license quota for all the periods, resulted in 47,549 resident shotgun licenses issued. An additional record number $(6,143)$ of archery-only licenses were issued. Archery-only licenses harvested 907 turkeys, resulting in a 14.8% success rate in 2010.

Twenty-one percent of the resident hunters were successful in harvesting a gobbler in 2010 (Table 2.4). Spring harvest success rates fluctuated around 20-30\% during the first 12 years (unweighted average $=25.1$ for 1974-85) but success increased each year during 1985-88 (Fig. 2.4). Declines observed in spring hunter success rates during 1983 and 1984 (Fig. 2.4) can be partially explained by poor brood production during the summers of 1982 (Fig. 2.10). Similarly, the decline in hunter success rates between 1988 and 1993 may be explained by 6 years of poor brood production starting in 1988. The success rates from 2002-2006 averaged 46.0\%.

The decrease in success rates beginning in 2007 and number of turkeys harvested is likely due the change in survey methods. In spring of 2007, mandatory harvest reporting required successful hunters to report turkey harvested. A follow-up post card survey for spring of 2007 revealed 74\% compliance rate, which equated to nearly 4,000 harvested turkeys that were not reported initially during the spring season. The major reasons for the non-reports were attributed to hunters forgetting to report (40\%), difficulty in reporting process (29\%), and unaware of the requirement (22\%).

This was the $21^{\text {st }}$ spring that nonresidents were allowed to hunt turkeys in Iowa. Quotas were filled in zone 4 (all seasons), zone 5 (seasons 2-4), zone 6 (season 4), zone 7 (season 4) and Zone 8 (season 4) in 2010, leaving 263 licenses available. Non-resident hunters harvested 826 wild turkeys (Tables 2.3). Nonresidents were more successful than residents in harvesting a spring gobbler (21% versus 41%, respectively) (Table 2.4).

Youth Turkey Season

Iowa's 5th youth spring turkey season has held in April 9-11, 2010. During the 3 day season, youth 15 and younger were allowed to participate with an accompanied licensed adult (adult licensed for one of the regular seasons). In 2005, the first year of the youth season, ages were limited to ages $12-15$. Starting in 2006, ages 15 and younger could participate in the youth season. A total of 2,671 youth purchased licenses for the season (Fig. 2.8). Youth season license sales decreased (174 fewer licenses sold) in 2010.

Since the inception of ELSI (Electronic Licensing System of Iowa) in 2001, hunter age and gender has been recorded. From 2001-2006, youth spring turkey hunters (age 15 and under) increased each year. Total licenses sold (all ages) also increased from 2001-2005, but decreased in 2007. In 2007 and 2008, youth hunter numbers decreased, increased in 2009, and decreased again in 2010. Similarly, the total number of licenses sold decreased in 2007 and 2008, a slight increase in 2009, and a decrease in 2010 (Fig. 2.8).

Fall Harvest Survey

History: Fall, any-sex turkey hunting was initiated in Iowa in 1981 to provide additional hunting recreation from the wild turkey resource. Because any-sex hunts are more controversial than male-only hunts and
potential exists for over-harvesting hens, carefully controlled fall hunts began in 1981 on an experimental basis. These hunts occurred in portions of southern Iowa, which had established, stable turkey populations. Fall turkey hunting has changed dramatically since the initial experimental 1981 season. The area encompassed by fall hunting zones has increased from 2 small zones in southern Iowa during 1981 to 9 zones in 2005 encompassing the entire state (Fig. 2.5, a and b). Fall zone boundaries in 1990 encompassed 9.7 times more area than in 1981, with 13.9 times more by 2005 (Table 2.12). Although zone boundaries did not change during 1991-1994, only zones 3 and 6 (northeast Iowa) had shotgun licenses available (residents only). The 5 remaining fall zones experienced 6 years of poor brood production and therefore did not have any licenses available. However in 1995, because of increased brood production in 1994, almost the entire state was opened to fall hunting. In 1999, the amount of land open to fall hunting increased slightly from 1998 with the addition of zone 8 (Fig. 2.5).

Results from a radio-telemetry study in southern Iowa and computer modeling of southern Iowa turkey mortality and hatching data suggest as much as 10% of the population could be removed during fall hunting without reducing long-term turkey populations. Past seasons' harvest have not approached this theoretical value. The present management objective is to increase fall hunting opportunities and harvest. A harvest of fall turkeys similar to the number of spring gobblers harvested is the present goal.

The number of fall licenses issued, hunter numbers and harvest increased steadily from 1981-89 (Fig. 2.6 and Tables 2.5-2.7).

As with spring seasons, fall turkey hunters have previously had exceptional
statewide success rates, averaging 51\% during 1981-89 (Table 2.8). However fall success rates have had considerable annual variation, ranging from $40-60 \%$ (Fig. 2.3). Fall license quotas generally surpassed applications from 1981-84 and license quotas filled in only one zone in 1985. With the expansion of 2 hunting zones in 1986 a large increase in applications occurred. This resulted in rejecting a number of permit applications. License quota was increased in 1987 and in 1988. After 2 application periods in fall 1988, 51 licenses remained. Therefore license quota remained unchanged in 1989 although the hunting zone area increased (Table 2.12). Because of the documented poor poult production in 1988 and 1989, license quota remained unchanged for 1990. Fall 1990 hunting zones were expanded to distribute (and hopefully reduce) hunting pressure on flocks. Continued poor statewide brood production warranted dramatic reductions in fall harvest for 1991-1994. Only the northeast corner (Zones 3 \& 6) continued to have average brood production that allowed a fall shotgun season

Annual changes in hunter success, harvest and the age-sex composition of the fall harvest are at least partly explained by population events occurring in southern Iowa from 1981 to 1985. Excellent recruitment in the years of 1978 through 1980 produced very high turkey densities (100 wintering turkeys $/ \mathrm{mi}^{2}$ of forest on the southern Iowa Stephens Forest study area and region-wide densities of at least 40$50 / \mathrm{mi}^{2}$). A cool wet spring in 1981 led to essentially no recruitment just prior to the first fall season. A large carryover of adults from previous successful hatches meant that hunters had high success rates in the fall of 1981, but harvested almost no juvenile turkeys. A slightly better hatch in 1982, coupled with the reduction in available adult turkeys, led to proportionally more juveniles
in the bag in 1982, but the harvest and success rates were reduced. A good hatch in 1983 produced more juveniles in the bag and an increased harvest, suggesting populations were recovering from a 2 -year depression. Another good hatch in 1984 resulted in even more juveniles in the bag and again an increased harvest. Fall 1985 was similar to 1984. The greatest effect was felt in southern Iowa where spring weather was least favorable in both 1981 and 1982. Indications of over-harvest on popular public hunting areas were greatest in the years when few juveniles were present to buffer adult turkey harvest. Harvest rates of adult hens (> 2 years old), the most important age class reproductively, were greatest when few juveniles were produced and decreased to tolerable levels when recruitment was good.

A similar scenario developed during the recent 6 -year (1988-93) decline in poult production. Climatic factors, i.e., 2 years of drought followed by floods in 1990, 1991, and 1993, are assumed responsible for the reduced poult production observed over that time period. Likewise, harvest and hunting success declined over the same period, presumably as a result of the decrease in poult production. Fall harvest and hunting success rate increased in 1995 following a slight increase in poult production in 1994. Harvest and hunter success increased slightly again in 1996, 1997, 1998 and 1999, but decreased slightly in 2000 and 2001. However, fall harvest levels continue to be below the levels observed in the mid-1980’s.

2009: Wild turkey brood production in 2009 was lower in Iowa than the previous year, with fewer poults per hen and fewer hens with broods observed (Fig. 2.5). Fall turkey hunter success rates decreased slightly in 2009 from 2008 (Table 2.8), but still well below the 2005 and prior estimates. In fall of 2006, mandatory harvest reporting
required successful hunters to report turkey harvested, and many hunters likely did not report turkeys harvested. Prior to this, harvest totals were estimated using a postcard survey after the seasons were closed.

Since the IDNR's main objective for wild turkeys is to maintain populations in all suitable habitats and provide high quality recreational opportunity, a conservative fall turkey hunting season was established in 1992. Shotgun license quota was reduced from 7,600 licenses available in 1990 to only 1,530 in 1992, 1993, and 1994. An increase in poult production was observed in 1994, and shotgun license quota was increased in 1995 to 3,450 . Quotas were increased slightly again in 1996 to 3,850 , to 4,550 in 1997, to 5,650 in 1998, to 6,225 in 1999. In 1999, zone 8 was created in north central Iowa and zone 6 was reduced east to Highway 63. All other zone boundaries remained the same as in 1998, and all zones had licenses available. In 2009, quotas were decreased. All zones except zone 8 \& 9 decreased (zone 4 from 4,500 to 1,500, zone 5 from 700 to 650 , zone 6 from 3,000 to 1,400 , and zone 7 from 400 to 250). Shotgun/bow license issue (paid and free combined) decreased from 2008 to 9,526 for the 54 -day season that ran from 12 October through 4 December, 2009 (Table 2.12). Over 50% of the shotgun licenses were issued free to landowners, which was a 10% increase from 2007. An additional 1,808 archery-only licenses were issued for a season that ran from 1 October through 4 December, 2009 and 21 December, 2009 through 10 January, 2010. Estimated numbers of active hunters were undeterminable since there was no post card survey after the season (mandatory reporting eliminated the post card survey). Only 9.6% of hunters reported harvesting a turkey, which was a large decrease from 2005, likely due to the mandatory reporting and
low compliance rates (Table 2.8), but was similar to 2006-08 success rates. Hunter success rates varied from 9.1% in zone 9 to 22\% in Zone 8 (Table 2.8). Archery only licensed hunters reported a harvest of 103 turkeys in 2009 which decreased from 2008 archery-only license harvest. The 5.7\% success rate for 2009 archery only licenses was similar to the previous year's success rates for archery-only hunters (Table 2.8). Nonresidents have not been permitted to hunt fall turkeys in Iowa since 1990.

Discussion: Fall turkey hunting techniques are sufficiently different from spring hunting so that past experience with spring hunting seems to have little impact on success in the fall. If anything, reliance on camouflage, sitting still, and calling (the basic spring hunting method) may be less successful and less utilized than walking and flushing turkeys in the small woodlot situations which comprise the bulk of Iowa turkey habitat. Even though fall shotgun success rates are quite high, fall turkey hunting has not been popular. It doesn't seem to appeal to spring hunters and hunter numbers seem to be more related to zone size than anything else. Fall archery hunting has even fewer devotees.

In spite of these differences between spring and fall hunting, they have one important feature in common -- hunter concentrations on public hunting areas. Hunter densities are much greater on public hunting areas than on private lands. By the nature of fall hunting this has less impact on perceived interference between hunters than it does in spring hunting. Crowding leads to lower success rates on public areas and, on the largest most popular areas, there are some indications of excessive harvest over theoretically desirable levels. Any area that the IDNR intends to manage for quality spring hunting may have to be zoned separately in the fall.

Even in years of documented poor reproduction, hunters can still find turkeys due to Iowa's limited forest habitat and high turkey densities. Success rates are high for Iowa hunters when compared with surrounding states. Interference rates between hunters have not been documented in the fall since 1985. Interference rates have been lower during fall than in spring, which is probably due to the different techniques used for spring and fall hunting.

Fall turkey hunter densities on public areas (that were surveyed) have been nearly 50 times greater than the average hunter density for private land. Turkey harvest densities on 13 of 16 public areas surveyed equaled or exceeded the theoretical maximum allowable harvest of 2 turkeys $/ \mathrm{mi}^{2}$ of forest as determined from empirical population data gathered from Stephens State Forest (IDNR, unpubl. data). In 1986, only 4 counties sustained >4 hunters $/ \mathrm{mi}^{2}$ of forest, combined with turkey harvests of $>2 / \mathrm{mi}^{2}$ of forest. In 1987, with the large increase in licenses issued, 12 counties had both hunter densities >4, and turkey harvest $>2 / \mathrm{mi}^{2}$ of timber (out of 43 counties with reporting hunters). The high seasonal hunter densities were somewhat reduced by a 28 -day season during 1987. No more than 34% of the hunters and 39% of the eligible hunters (those who had not yet bagged a turkey) were afield on any day. The opening 2 days and 4 weekend days were the most popular hunting days. There were no evident relationships between daily hunting pressure and daily success rates. To reduce daily hunter densities, hunter interference rates and increase fall recreation days, the 1988 fall season was extended to 49 days (October 10 - November 27). However, a large increase in licenses issued in 1988 increased the number of counties exceeding allowable harvest and hunter density values to 16 (out of 53 counties with reported turkey harvest). Another record
license issue in 1989 resulted in 24 counties (of 49 counties with reported turkey harvest) exceeding >4 hunters, and >2 turkeys harvested $/ \mathrm{mi}^{2}$ of timber. Fewer licenses were issued in 1990 and correspondingly only 16 counties exceeded hunter and harvest rate maximums. Due to continued poor brood production, both hunter numbers and harvest was dramatically reduced during 1991-1993 and increased only slightly throughout 1994-2000, but decreased slightly in 2001. Unfortunately, the present management concern is how to maintain turkey numbers instead of the enviable situation of being concerned about hunter densities.
The record number of active hunters in 2005 (since 1989) may be related to this being the first season that turkey hunters where allowed to use dogs. Likely, pheasant hunters took this opportunity to harvest turkeys opportunistically while pheasant hunting. With mandatory reporting system (initiated in 2006), active hunters numbers are undeterminable.

Brood Survey

History: Information on annual variations in turkey productivity is needed to evaluate the status of turkey populations in various regions of the state. Because few reliable wild turkey census techniques have been developed, hunter success rates, turkey harvest levels, and age ratios of harvested birds are the best available indicators of relative turkey populations between hunting zones. Lewis (1975a, b) found significant correlations between both August poult:hen ratios, percent juveniles in the harvest, and total gobbler harvests in the subsequent spring in Missouri, suggesting that an index to productivity would be useful in establishing hunting regulations.

Compared to the more formalized census procedures used for more visible wildlife species, indices to eastern wild
turkey productivity are generally based on random observations of broods.

Methods: A list of cooperators has been established from IDNR personnel and rural residents living in selected portions of Iowa containing established turkey populations. All rural residents living in designated survey areas are sent a form to be returned if they are willing to participate in the survey. Each cooperator is sent return-addressed postcards which are completed and returned based on turkey broods sighted between 1 July and 31 August. Productivity indices are constructed from these returns.

Hanson (1988) compared the brood survey data with spring turkey harvest and data from a radio-telemetry study in southern Iowa. The poult: hen ratio (young/adult) was the variable that correlated best with the telemetry data. Results of additional analyses indicated that the brood survey did have some utility for forecasting turkey numbers available to the hunters in following springs. Additionally, Hanson concluded that in light of the correlations with harvest data the brood survey may also be useful for evaluating the status of turkey populations in various regions of the state. Survey statistics for 1976-2009 are summarized in Tables 2.9 and 2.10.
2009: Iowa's 2009 summer wild turkey brood survey showed a decrease in reproduction of turkeys throughout the state based on poults observed with a hen and percent of hens observed with broods (Tables 2.9 \& Table 2.10). In 2008, a new survey was developed that asked observers to also record toms seen, distinguishing them from hens. In previous years, observers were only asked to record hens observed. This may have influenced the percent of hens (Figure 2.10) observed with broods (i.e. observers may have recorded toms as turkeys/hens without broods in the
past). It is unlikely that all regions increased in the percent of hens observed with broods with the weather conditions of 2008 (extremely wet with severe flooding). Thus, any interpretation on the brood survey should be limited to poults per hen and turkeys per flock in 2008.

In 2009, the brood survey used new regions (Figure 2.5) to analyze the data. To allow comparisons between years, 2008 was also analyzed using the new regions (Tables 2.9 \& Table 2.10).

Statewide, the number of young observed per hen was 15.8% lower than last year (Table 2.9). Regionally, north-central was the only region that experienced an increase in young observed per hen from the 2008. Northeast Iowa had no change in young/hen from last year. Northwest and southeast Iowa appeared to be the hardest impacted regions of the state with a 35% 42% reduction in the number of young observed with hens (statistically different).

The number of hens with broods statewide also decreased 10\% (statistically different) in 2009 compared to 2008 (Table 2.10). All regions decreased except westcentral, north-central, and northeast (Table 2.10). In 2009, northwest Iowa experienced the greatest decline (33\%) with north-central the largest increase (8\%) compared to 2008).

The reduced reproduction rates were likely related to the amount of rainfall during June, which was the wettest month ever recorded in Iowa’ history. The previous June (2008) marked the $2^{\text {nd }}$ wettest June recorded in Iowa. June is the peak hatch period for turkey poults.

This year's brood survey indicated below average reproduction across the state, but the turkey populations in Iowa are still good, especially when compared to other regions of the U.S. Hunter harvest success rates remaining similar over the past few years.

Literature Cited

Hanson, G. A. 1988. Iowa's turkey brood survey as an index to productivity and a tool to forecast subsequent harvests. Pages 171-182 in Wildl. Res. and Sur. in Iowa, Annu. Perf. Rep., P.R. Proj No. W-115-R.

Leatherberry, E. C., S. M. Roussopoulos, and J. S. Spencer, Jr. 1990. An analysis of Iowa's forest resources, 1990. U.S.D.A. For. Serv. Resour. Bull. NC-142. 67pp.

Lewis, J. B. 1975a. Statewide wild turkey survey. Missouri Dep. Conserv. Study Completion Rep. P.R. Proj. No. W-12R-28. Job No. 1.
\qquad . 1975b. Evaluation of spring turkey seasons in Missouri. Proc. Natl. Wild Turkey Symposium 3:176-183.

Little, T. W., 1980. Wild turkey restoration in "marginal" Iowa habitats. Proc. Natl. Wild Turkey Symposium 4:45-60.

Ostrom, A. J. 1976. Forest statistics for Iowa, 1974. U.S.D.A. For. Serv. Resour. Bull. NC-33. 25pp.

Peterson, W. J. 1943. Come to the turkey valley. Palimpsest 24:358-359.
Thornton, P. L., and J. T. Morgan. 1959. The forest resources of Iowa. U.S.D.A. For. Serv. Central States For. Exp. Stn. Release 22. 46pp.

Figure 2.1 lowa spring turkey hunting statewide estimates, 1974-2010.
Active hunters unknown after 2006 due to survey changes.
Harvest estimation methods changed from mail surveys to mandatory reporting beginning 2007.

Figure 2.2 Spring turkey hunting zones, 1974 (Fig. a) and 2010 (Fig. b).
a

b

Figure 2.3 lowa turkey harvest statewide success rates for residents, 1974-2010. Sucsess estimation methods changed from mail surveys to mandatory reporting beginning Fall 2006.

Figure 2.4 lowa turkey brood survey statewide results, 1976-2008.

Figure 2.5 Iowa Summer Turkey Survey results, 2008-09.

Statewide			
	2008	2009	Change
Hens/brood	52.7%	47.4%	-10.1%
Poults/hen	1.9	1.6	-15.8%
Turk/report	5.8	5.9	1.7%
\# of Obs	2275	3655	

Figure 2.6 Fall turkey hunting zones, 1981 and the present.

Figure 2.7 lowa fall turkey hunting statewide estimates, 1981-2009.
Active hunters unknown after 2005 due to survey changes.
Sucsess estimation methods changed from mail surveys to mandatory reporting beginning 2006.

Figure 2.8 lowa spring turkey license issue, 2001-2010.

Table 2.1 Number of lowa spring turkey-hunting licenses issued by zone, 1974-present.
Archery-only licenses included in totals licenses (not in resident total). Free landowner licenses included in totals. Zone 5 was combined into Zone 4 in 1994. Zones 1-3 were combined into Zone 4 in 2007.

YEAR	ZONE					$\begin{aligned} & \hline \hline \text { BOW } \\ & \text { ONLY } \end{aligned}$	$\begin{gathered} \hline \hline \text { RESIDENT } \\ \text { TOTAL } \\ \hline \end{gathered}$	NONRESIDENT	TOTAL LICENSES
	1	2	3	4	5				
1974	105	113		82		-	300		
1975	168	184		248		-	600		
1976	143	273		558		-	974		
1977	235	276		494		-	1,005		
1978	280	323		1,212		-	1,815		
1979	195	298		2,662		-	3,155		
1980	195	225	357	3,227		-	4,004		
1981	195		420	4,374	67	-	5,056		
1982			297	6,592	135	-	7,024		
1983			300	7,231	165	-	7,696		
1984	259	416	325	9,849	277	-	11,126		
1985	259	449	320	9,379	277	-	10,684		
1986	273	493	339	11,032	356	-	12,493		
1987	289	507	357	11,828	404	-	13,385		
1988	268	471	324	16,438	632	-	18,133		
1989	268	505	338	20,091	736	-	21,938		
1990	261	500	322	25,331	1,030	-	27,444	184	28,658
1991	262	505	322	26,399	1,115	-	28,603	306	30,024
1992	260	487	320	28,220	1,083	-	30,370	445	31,898
1993	260	500	320	28,646	1,060	-	30,786	585	32,431
1994	262	508	324	30,714	-	-	31,808	602	32,410
1995	260	500	320	30,269	-	-	31,349	955	32,304
1996	260	487	302	35,740	-	-	36,789	1,124	37,913
1997	261	501	320	39,314	-	-	40,396	1,346	41,742
1998	260	500	320	39,783	-	-	40,863	2,005	42,868
1999	260	500	320	43,008	-	-	44,088	1,999	46,087
2000	257	392	242	55,290	-	-	56,181	2,013	58,194
2001	104	148	108	53,635	-	2,206	56,201	2,012	58,213
2002	121	207	158	51,940	-	2,491	54,917	1,944	56,861
2003	129	215	134	53,144	-	3,032	56,654	2,079	58,733
2004	132	191	128	53,404	-	3,469	57,324	2,133	59,457
2005	127	154	138	52,364	-	3,951	56,734	2,150	58,884
2006	235	315	238	49,113	-	4,739	54,640	2,245	56,885
2007	-	-	-	48,344	-	5,258	53,602	2,254	55,856
2008	-	-	-	46,822	-	5,596	52,418	2,258	54,676
2009	-	-	-	46,470	-	6,139	52,609	2,158	54,767
2010	-	-	-	41,406	-	6,143	47,549	2,002	49,551

Table 2.2 Number of estimated active lowa spring turkey hunters by zone 1974-present. Starting in 2007, the post card survey was discontinued and active hunters undeterminable. Archery-only licenses not surveyed.

YEAR	ZONE					RESIDENT NON-		TOTAL ACTIVE
	1	2	3	4	5	TOTAL	RESIDENT	
1974	92	99		92		283		
1975	149	168		223		540		
1976	124	237		484		845		
1977	202	251		435		888		
1978	255	289		1,078		1,622		
1979	174	272		2,381		2,827		
1980	176	213	307	2,909		3,605		
1981	176		379	3,956	61	4,572		
1982	493	447	270	4,911	123	6,244		
1983	447	441	263	5,523	161	6,835		
1984	233	371	260	8,676	243	9,783		
1985	232	403	292	8,395	249	9,571		
1986	232	445	308	9,581	319	10,885		
1987	236	440	327	10,283	355	11,641		
1988	246	429	298	14,152	547	15,672		
1989	225	442	319	15,193	588	16,767		
1990	231	456	301	21,085	862	22,935	174	23,109
1991	234	477	289	20,905	868	22,773	273	23,046
1992	200	351	213	24,321	919	26,004	418	26,422
1993	124	391	197	24,648	888	26,248	542	26,790
1994	157	365	217	26,561	-	27,300	527	27,827
1995	113	331	211	26,734	-	27,389	881	28,270
1996	178	331	169	31,591	-	32,269	1,057	33,326
1997	152	356	210	34,314	-	35,032	1,229	36,261
1998	174	395	226	35,759	-	36,554	1,858	38,412
1999	139	336	179	37,873	-	38,527	1,803	40,330
2000	183	287	159	46,705	-	47,334	1,841	49,175
2001	75	103	92	47,327	-	47,597	1,822	49,419
2002	70	136	93	46,685	-	47,116	1,796	48,912
2003	100	157	107	47,755	-	48,119	1,939	50,058
2004	76	172	87	48,507	-	48,842	2,004	50,846
2005	115	124	105	47,461	-	47,805	2,120	49,925
2006	113	200	142	47,599	-	48,054	2,166	50,220
2007	mates	tinued	-	-	-	-	-	-

Table 2.3 Number of estimated spring turkeys harvested by zone, 1974-present. Archery-only licenses not included from 1974-2006. Zone 5 was combined into Zone 4 in 1994. Zones 1-3 were combined into Zone 4 in 2007.
In 2007, survey methods changed from a post-mailing survey to mandatory reporting,
with an estimated 74% compliance rate.

	ZONE				RESIDENT			NON-	TOTAL
YEAR	1	2	3	4	5	BOW ONLY	TOTAL	RESIDENT	HARVEST
1974	41	31		30			102		
1975	29	41		69			139		
1976	38	37		119			194		
1977	60	53		102			215		
1978	54	72		240			366		
1979	55	41		592			688		
1980	50	43	35	860			988		
1981	49	40	58	1,267	25		1,439		
1982	75	112	48	1,411	39		1,685		
1983	76	113	38	1,469	33		1,729		
1984	32	83	40	2,015	51		2,221		
1985	29	138	67	2,831	62		3,127		
1986	49	183	75	3,570	97		3,974		
1987	83	198	114	4,667	147		5,209		
1988	79	151	86	6,493	250		7,059		
1989	49	133	42	6,264	211		6,699		
1990	48	148	106	7,452	363		8,117	74	8,191
1991	58	144	78	7,414	274		7,968	128	8,096
1992	37	71	31	9,348	255		9,742	151	9,893
1993	26	97	39	8,638	293		9,093	217	9,310
1994	57	81	32	10,428	-		10,598	229	10,827
1995	20	81	32	10,275	-		10,408	459	10,867
1996	49	77	36	13,078	-		13,240	544	13,784
1997	8	68	28	14,647	-		14,751	605	15,356
1998	15	73	46	15,676	-		15,810	938	16,748
1999	30	71	28	17,231	-		17,360	930	18,290
2000	37	60	24	20,759	-		20,880	970	21,850
2001	34	49	29	20,383	-		20,495	941	21,436
2002	39	68	17	20,538	-		20,662	1,061	21,723
2003	51	46	29	21,743	-		21,869	1,172	23,041
2004	30	65	31	24,254	-		24,380	1,224	25,604
2005	35	61	49	22,586	-		22,731	1,187	23,918
2006	42	88	48	20,863	-		21,041	1,195	22,236
2007	-	-	-	10,008	-	676	10,684	843	11,527
2008	-	-	-	9,643	-	788	10,431	898	11,329
2009	-	-	-	10,166	-	859	11,025	884	11,909
2010	-	-	-	9,156	-	907	10,063	826	10,889

Table 2.4 Estimated success rate of active lowa spring turkey hunters by zone, 1974present. Archery-only hunters not surveyed prior to 2007. In 2007, survey methods changed from a post-mailing survey to mandatory reporting.

YEAR	ZONE				RESIDENT			NON RESIDENT
	1	2	3	4	5	BOW ONLY	TOTAL	
1974	44.6	31.3		32.6			36.0	
1975	19.5	24.4		30.9			25.7	
1976	30.6	15.6		24.6			23.0	
1977	29.7	21.1		23.4			24.2	
1978	21.2	24.9		22.3			22.6	
1979	31.6	15.1		24.9			24.3	
1980	28.4	20.2	11.4	29.6			27.4	
1981	27.8		15.3	32.0	41.0		31.5	
1982	15.2	25.1	17.8	28.7	31.7		27.0	
1983	17.0	25.6	14.4	26.6	20.5		25.3	
1984	13.7	22.4	15.4	23.2	21.0		22.7	
1985	12.5	34.2	22.9	33.7	24.9		32.7	
1986	21.1	41.1	24.4	37.3	30.4		36.5	
1987	35.2	45.0	34.9	45.4	41.4		44.7	
1988	32.1	35.2	28.9	45.9	45.7		45.0	
1989	21.8	30.1	13.2	41.2	35.9		40.0	
1990	20.8	32.9	35.0	35.3	42.1		35.3	40.0
1991	24.9	30.7	27.8	35.6	31.1		35.1	45.0
1992	19.1	21.0	16.0	38.5	27.9		37.4	36.0
1993	21.2	24.8	19.7	35.0	32.9		34.6	40.0
1994	36.3	22.2	14.7	39.3	-		38.8	43.5
1995	17.7	24.5	15.1	38.7	-		38.0	52.1
1996	27.5	23.2	21.3	41.4	-		41.0	51.5
1997	5.3	19.1	13.3	42.7	-		42.1	49.2
1998	8.6	18.5	20.4	43.8	-		43.3	50.5
1999	21.6	21.1	15.6	45.5	-		45.1	51.6
2000	20.2	20.9	15.1	44.4	-		44.1	52.7
2001	45.3	47.6	31.5	43.1	-		43.1	51.6
2002	55.7	50.0	18.3	44.0	-		44.0	59.1
2003	51.0	29.2	27.1	45.5	-		45.4	60.4
2004	39.5	37.8	35.6	50.0	-		49.9	61.1
2005	30.4	49.2	46.7	47.6	-		47.5	56.0
2006	37.2	44.0	33.8	43.8	-		43.8	55.6
2007	-	-	-	20.7	-	12.9	20.7	37.4
2008	-	-	-	20.5	-	14.1	20.5	39.8
2009	-	-	-	21.9	-	14.0	21.0	41.0
2010	-	-	-	22.1	-	14.8	21.2	41.3

Table 2.5 Number of licenses issued to lowa fall turkey hunters by zone, 1981-present. In 1984 and 2001-present landowners were not broken-down by zone but do appear in the total. No non-resident licenses issued for fall turkey during 1991-present.

Zones 1-3 were eliminated in 2007.

Table 2.6 Number of estimated active turkey hunters in lowa fall turkey seasons by zone, 1981In 1984 and 2001-present landowners were not broken-down by zone but do appear in the total. No non-resident licenses issued for fall turkey during 1991-present.
Starting in fall of 2006, the post card survey was discontinued and active hunters undeterminable.

Table 2.7 Estimated harvest for lowa fall turkey hunting by zone, 1981-present. Same problem In 1984 and 2001-present, landowners were not broken-down by zone (UNK) but do appear in the total. No non-resident licenses issued for fall turkey during 1991-present.
Zones 1-3 were eliminated in 2007.
In 2006, survey methods changed from a post-mailing survey to mandatory reporting.

ZONE												$\begin{gathered} \hline \hline \text { RESIDENT } \\ \text { TOTAL } \\ \hline \end{gathered}$	NON-
YEAR	1	2	3	4	5	6	7	8	9	UNK	BOW		RESIDENT
1981				808							5	813	
1982				769							10	779	
1983				813							20	833	
1984				882	77	198					36	1,210	
1985				1,215	108	376					54	1,753	
1986	29	69		1,041	127	536	28				43	1,873	
1987	24	40	35	1,842	99	961	33				102	3,136	
1988	57	106	36	1,950	171	1,799	159				149	4,427	
1989	18	127	26	2,208	287	2,442	104				66	5,278	67
1990	0	33	39	2,052	190	2,084	135				41	4,574	14
1991			18			1,368					?	1,386	
1992			13			943					?	956	
1993			2			912					?	914	
1994			2			1,122					?	1,124	
1995	10	2	10	912	137	1,358	52				?	2,481	
1996	4	5	12	787	176	1,472	93				?	2,549	
1997	1	14	4	883	145	1,480	86				?	2,613	
1998	3	8	4	1,384	176	1,773	120				?	3,468	
1999	4	10	3	1,619	156	1,943	150	66		63	?	4,014	
2000	2	15	8	1,701	179	1,527	93	56		38	?	3,619	
2001	3	15	2	852	100	912	61	37		168	?	2,722	
2002	3	14	10	1,076	157	1,038	87	31		386	?	4,061	
2003	11	6	10	1,284	273	1,030	62	28		373	?	3,981	
2004	8	7	4	988	194	602	96	60		338	?	3,626	
2005	3	3	1	1,067	243	592	36	70	37	460	$?$	3,424	
2006	9	6	10	553	111	307	50	42	35	399	105	1,522	
2007	-	-	-	427	131	298	45	38	34	389	105	1,362	
2008	-	-	-	286	104	245	48	44	27	321	123	1,075	
2009	-	-	-	202	84	224	29	33	17	323	103	912	

Table 2.8 Success rate (to harvest 1 bird) of active lowa fall turkey hunters by zone, 1981-present. Bow hunters In 1984 and 2001-present landowners were not broken-down by zone but do appear in the total. No non-resident licenses issued for fall turkey during 1991-present. In 2006, survey methods changed from a post-mailing survey to mandatory reporting.

ZONE											RESIDENT NON	
YEAR	1	2	3	4	5	6	7	8	9	BOW	MEAN	RESIDENT
1974												
1975												
1976												
1977												
1978												
1979												
1980												
1981				47.3						3.7	47.3	
1982				42.6						3.5	42.6	
1983				49.3						4.7	49.3	
1984				50.0	41.6	37.4				7.6	48.2	
1985				63.7	43.2	53.8				12.2	59.5	
1986	32.6	41.1		53.3	50.6	52.3	41.2			8.0	51.5	
1987	31.6	29.2	38.0	62.1	37.5	56.5	37.9			13.9	57.0	
1988	57.0	52.2	39.6	54.5	40.9	56.7	63.9			14.0	54.8	
1989	22.6	68.1	32.5	47.2	49.1	53.4	28.0			7.9	49.3	48.0
1990	0.0	26.6	71.4	47.4	37.4	50.5	33.9			8.3	47.4	29.0
1991			53.2			44.7				?	44.8	
1992			62.2			39.9				?	40.1	
1993			16.7			42.3				?	42.1	
1994			17.0			48.1				?	47.9	
1995	33.3	18.2	30.3	46.9	66.3	49.6	20.2			?	47.4	
1996	28.6	35.7	75.0	45.6	53.9	48.5	47.6			?	47.7	
1997	4.8	77.8	36.4	56.2	43.2	44.9	39.4			?	47.8	
1998	27.3	29.7	36.4	52.0	52.2	50.1	40.4			?	50.3	
1999	18.1	35.5	14.6	59.2	45.1	52.8	49.9	40.7		?	54.4	
2000	18.2	57.7	34.1	51.3	50.5	42.1	30.2	32.9		?	45.9	
2001	16.1	73.7	20.0	46.4	45.3	50.4	39.3	55.7		?	44.8	
2002	27.3	56.0	39.7	55.2	59.0	52.0	55.6	52.7		?	49.4	
2003	84.3	55.6	65.9	47.3	71.0	52.1	42.8	44.8		?	46.5	
2004	50.0	30.0	13.6	39.2	53.0	36.9	31.3	49.5		?	37.1	
2005	10.7	21.1	8.3	39.5	56.8	43.8	13.8	53.9	30.2	?	39.6	
2006	18.0	20.7	20.0	20.1	22.2	19.6	14.0	28.0	17.5	6.6	12.7	
2007	-	-	-	18.4	19.9	19.3	12.9	25.3	17.0	6.1	13.3	
2008	-	-	-	14.9	16.8	17.8	13.8	29.3	13.5	7.0	10.5	
2009	-	-	-	13.5	15.0	17.4	11.6	22.0	9.1	5.7	9.6	

Table 2.9 lowa wild turkey brood survey results by region for birds/flock and young/adult, 1976-present.
Y/A=young per adult (italics) and B/F=birds per flock (≥ 4).

YEAR	NORTHEAST		SOUTHERN		CENTRAL		WESTERN		EAST-CENTRAL		NORTH-WEST		NORTH-CENTRAL		STATEWIDE	
	Y/A	B/F														
1976			4.2	10.4											4.2	10.4
1977			7.3	10.3											7.3	10.3
1978			7.5	10.7											7.5	10.7
1979			7.1	13.1											7.1	13.1
1980			7.1	13.3											7.1	13.3
1981	8.2	15.5	7.3	10.7											7.5	11.9
1982	6.1	12.6	6.2	9.3	7.1	9.5	6.6	9.5							6.3	10.5
1983	6.0	13.2	6.3	11.3	6.2	11.4	6.6	11.7	6.0	11.7					6.3	12.1
1984	6.6	12.9	7.4	11.5	4.6	10.6	6.9	12.6	6.8	10.9					6.8	11.9
1985	7.2	16.7	7.4	14.3	6.1	11.4	7.1	11.3	6.8	14.2					7.1	14.4
1986	7.0	14.1	6.2	11.8	6.6	11.7	5.7	9.3	6.8	12.5					6.6	12.4
1987	7.0	17.3	6.5	12.2	7.4	13.5	5.9	12.5	7.0	14.5					6.8	14.2
1988	5.0	17.1	5.6	10.1	5.3	11.3	4.6	12.6	6.5	14.3					5.4	13.6
1989	4.1	16.1	5.1	10.0	4.4	10.7	5.5	13.0	5.3	14.5					4.7	13.3
1990	5.1	15.8	4.9	9.0	2.7	7.9	6.0	12.2	4.9	11.9	7.7	11.3	6.6	8.3	5.1	12.8
1991	4.7	14.0	4.1	9.7	3.3	9.5	4.8	14.5	5.1	11.5	6.8	10.2	4.3	7.4	4.5	11.8
1992	4.9	11.8	4.3	9.4	3.0	9.1	6.0	10.2	4.5	11.9	3.0	4.0	10.0	11.0	4.6	10.9
1993	5.2	11.8	5.1	9.1	5.0	10.1	4.4	9.6	4.6	11.1	2.5	10.5	4.6	6.9	4.8	10.5
1994	5.3	13.1	5.1	11.6	4.1	10.0	5.1	16.9	4.9	11.5	5.1	11.0	6.2	11.6	5.1	12.3
1995	5.1	12.8	4.9	10.0	4.1	10.1	5.7	13.9	3.9	10.3	4.5	10.4	4.5	9.3	4.7	11.2
1996	4.6	10.4	4.5	9.9	3.9	9.4	4.4	11.2	4.5	10.4	3.1	11.1	4.4	8.9	4.4	10.2
1997	5.2	12.3	6.0	11.9	5.6	11.4	5.8	14.5	5.4	11.0	3.2	7.2	4.9	7.5	5.6	11.7
1998	5.1	11.9	5.3	10.0	5.9	9.8	4.6	10.0	4.5	11.6	4.0	11.9	4.4	10.5	4.9	10.9
1999	3.9	10.1	5.0	10.3	3.8	8.5	4.7	13.7	5.0	10.3	6.9	13.1	3.1	6.5	4.7	10.5
2000	4.9	10.5	5.3	10.5	3.8	8.2	5.1	12.2	5.3	11.1	6.1	17.4	3.8	6.7	5.2	10.9
2001	5.1	11.9	4.6	9.3	5.0	10.3	4.6	13.0	4.5	11.5	3.9	10.9	4.5	9.3	4.7	10.8
2002	4.9	10.8	5.6	10.7	5.4	9.6	5.1	11.7	5.5	12.0	5.9	13.0	5.6	13.6	5.4	11.3
2003	5.1	11.4	5.2	11.1	4.9	10.3	5.1	11.0	5.1	11.9	5.2	13.5	4.9	10.0	5.0	10.3
2004	4.3	8.7	4.7	9.3	3.8	8.1	5.0	14.3	4.3	8.7	5.0	11.5	4.2	8.3	4.5	9.6
2005	4.9	10.0	4.9	8.3	4.5	8.1	5.0	11.9	4.7	8.6	4.7	11.2	4.8	8.8	4.8	9.2
2006	4.8	9.4	4.7	8.8	4.3	8.0	4.5	11.3	5.9	8.9	4.7	9.8	4.7	9.3	4.8	9.4
2007	5.1	10.2	4.5	8.2	4.6	9.7	4.1	9.3	5.0	9.7	5.5	10.0	4.7	10.2	4.7	9.5
2008	4.5	9.5	4.5	8.7	4.8	8.4	4.3	9.6	4.1	8.0	4.5	9.3	3.9	7.8	4.3	8.7

A new survey was initiated in 2008, with new regions and survey cards. 2008 was analyzed with the old and new regions to allow comparisons between years. Bold indicates changes that are statistically different.

	SOUTHWEST		SOUTHCENTRAL		SOUTHEAST		WESTCENTRAL		CENTRAL		EAST-CENTRAL		NORTHWEST		NORTH-CENTRAL		NORTHEAST		STATEWIDE	
YEAR	Y/A	T/R	Y/A	T/R	YIA	T/R	Y/A	T/R	Y/A	T/R	Y/A	T/R	YIA	T/R	Y/A	T/R	Y/A	T/R	YIA	T/R
2008	1.9	5.9	2.1	6.4	1.7	4.5	1.9	6.6	1.9	5.3	1.9	5.6	2.6	7.0	1.5	5.0	1.9	5.5	1.9	5.8
2009	1.8	7.1	1.6	5.8	1.1	5.1	1.5	6.9	1.5	5.2	1.6	5.6	1.5	6.1	1.8	5.9	1.9	5.8	1.6	5.9

1	year \% change	-5.3	20.3	-23.8	-9.4	-35.3	13.3	-21.1	4.5	-21.1	-1.9	-15.8	0.0	-42.3	-12.9	20.0	$\mathbf{1 8 . 0}$	0.0	5.5	$\mathbf{- 1 5 . 8}$	1.7

Table 2.10 lowa wild turkey brood survey results by region for reports and percent hens with broods, 1976-
present. \#=total reports (italics) and \% hens with broods

YEAR	NORTHEAST		SOUTHERN		CENTRAL		WESTERN		EAST-CENTRAL		NORTHWEST		NORTH-CENTRAL		STATEWIDE	
	\#	\%	\#	\%	\#	\%	\#	\%	\#	\%	\#	\%	\#	\%	\#	\%
1976			78													
1977			98													
1978			77	80												
1979			170	80												
1980			142	57												
1981	65	65	194	57											259	61
1982	118	62	163	60	31	42	10	23							322	47
1983	117	75	148	69	34	67	40	57	77	46					416	65
1984	106	78	134	78	13	84	41	54	76	53					370	70
1985	133	81	229	82	42	94	47	57	165	65					616	76
1986	191	74	236	63	42	55	65	64	137	55					671	64
1987	266	77	353	61	79	78	70	72	138	71					906	69
1988	379	72	394	45	138	79	90	69	278	60					1,279	62
1989	364	72	408	54	92	38	137	46	303	54					1,304	57
1990	421	66	257	46	38	59	118	38	303	49	18	46	28	14	1,183	54
1991	368	57	418	47	78	40	105	46	346	55	22	46	9	35	1,346	51
1992	344	59	431	44	49	28	68	25	387	44	18	5	9	14	1,306	45
1993	265	48	290	45	37	67	75	47	330	47	12	64	28	44	1,037	48
1994	403	53	425	49	56	61	95	62	338	56	35	42	36	46	1,388	53
1995	325	57	385	35	175	28	146	40	319	53	24	58	28	80	1,403	44
1996	425	48	428	38	134	25	68	43	371	46	37	43	68	48	1,531	42
1997	310	59	589	67	67	64	141	60	356	51	27	28	82	39	1,572	58
1998	474	59	783	49	76	37	158	48	504	53	49	78	97	61	2,141	53
1999	411	52	805	60	62	54	188	60	517	49	45	57	86	35	2,114	54
2000	293	53	759	56	74	50	210	59	350	51	41	84	59	53	1,786	55
2001	429	67	803	41	73	47	228	44	486	39	61	65	105	38	2,185	46
2002	563	64	853	51	157	56	200	57	675	45	86	71	153	77	2,742	54
2003	1230	51	2930	39	344	49	581	52	1467	39	116	70	368	53	7,142	43
2004	735	46	1792	50	184	47	464	55	1005	44	75	59	262	49	4,517	48
2005	647	55	1457	50	316	58	627	62	823	58	144	72	447	57	4,564	56
2006	707	47	1503	40	279	48	820	42	828	40	165	46	460	56	4,879	42
2007	687	53	1492	37	301	55	675	38	909	54	157	56	538	55	4,833	46
2008	477	55	952	58	259	54	394	54	600	55	155	68	453	56	3,289	57

A new survey was initiated in 2008, with new regions and survey cards. 2008 was analyzed with the old and new regions to allow comparisons between years. Bold indicates changes that are statistically different.

YEAR	SOUTHWEST		SOUTHCENTRAL		SOUTHEAST		WESTCENTRAL		CENTRAL		EAST-CENTRAL		NORTHWEST		NORTH-CENTRAL		NORTHEAST		STATEWIDE	
	\#	\%	\#	\%	\#	\%	\#	\%	\#	\%	\#	\%	\#	\%	\#	\%	\#	\%	\#	\%
2008	120	60.9	353	58.3	247	47.7	238	48.3	145	48.7	358	50.0	134	62.0	303	50.2	377	48.1	2275	52.7
2009	302	51.4	470	46.8	467	39.4	329	48.8	213	46.6	648	48.3	135	41.3	403	54.1	688	50.8	3655	47.4

Table 2.11 lowa's Spring turkey hunting seasons, 1974-present.

BAG गOSSESSION				SEASON				SPLITS	SEASON LENGTH	ZONES	$\begin{aligned} & \hline \hline \text { \# SQ. } \\ & \text { MILES } \end{aligned}$	MAJOR RULE CHANGES
YEAR	LIMIT	LImit	Youth	1	2	3	4					
1974	1	1/LICENSE		04 MAY-10 MAY	11 MAY-19 MAY				16	3	5,682	\$ 10 FEE
1975	1	1/LICENSE		26 APR-02 MAY	03 MAY-09 MAY	10 MAY-18 MAY			23	3	2,749	THIRD SEASON AdDED
1976	1	1/LICENSE		24 APR-28 APR	29 APR-05 MAY	06 MAY -16 MAY			23	4	2,884	ne Iowa closed for restocking
1977	1	1/LICENSE		21 APR-27 APR	28 APR-04 MAY	05 MAY -15 MAY			25	4	3,200	
1978	1	1/LICENSE		20 APR-26 APR	27 APR-03 MAY	04 MAY -14 MAY			25	6	3,683	
1979	1	1/LICENSE		19 APR-25 APR	26 APR-02 MAY	$03 \mathrm{MAY}-13 \mathrm{MAY}$		ZONES 1-5	25			
				26 APR-02 MAY	$03 \mathrm{MAY}-09 \mathrm{MAY}$	$10 \mathrm{MAY}-20 \mathrm{MAY}$		ZONES 6-8	25	8	9,958	\$ 15, ne iowa re-opened
1980	1	1/LICENSE		24 APR-30 APR	01 MAY-07 MAY	08 MAY -18 MAY		ZONES 1-5	25			muzzleloader legal, w. Iowa open,
				17 APR-23 MAY	24 APR-30 MAY	01 MAY-11 MAY		ZONES 6-9	25	9	12,942	Stephens sf SPECIAL ZONE
1981	1	1/LICENSE		14 APR-20 APR	21 APR-28 APR	29 APR-10 MAY			27	9	21,873	YELLOW RIVER SF SPECIAL ZONE, 2ND CHOICE ON APP, 2 LICENSES AVAILABLE
1982	1	1/LICENSE		13 APR-19 APR	20 APR-27 APR	28 APR-09 MAY			27	8	21,506	
1983	1	1/LICENSE		12 APR-18 APR	19 APR-26 APR	27 APR-08 MAY			27	10	23,464	
1984	1	1/LICENSE		16 APR-19 APR	20 APR-24 APR	25 APR-01 MAY	$02 \mathrm{MAY}-13 \mathrm{MAY}$		28	12	25,172	AlL 3 SF SPECIAL ZONES, 4TH SEASON ADDED
1985	1	1/LICENSE		15 APR-18 APR	19 APR-23 APR	24 APR-30 APR	$01 \mathrm{MAY}-12 \mathrm{MAY}$		28	13	27,005	\$20 FEE, DECOYS LEGAL
1986	1	1/LICENSE		14 APR-17 APR	18 APR-22 APR	23 APR-29 APR	30 APR-11 MAY		28	15	39,211	Combo gun-bow license, free
												LANDOWNER PERMIT, ARCHERY-ONLY PERMIT
1987	1	1/LICENSE		13 APR-16-APR	17 APR-21 APR	22 APR-28 APR	29 APR-10 MAY		28	13	40,202	
1988	1	1/LICENSE		11 APR-14 APR	15 APR-19 APR	20 APR-26 APR	27 APR-08 MAY		28	11	44,112	UNLIMITED 4TH SEASON PERMITS,
												all day hunting
1989	1	1/LICENSE		10 APR-13 APR	14 APR-18 APR	19 APR-25 APR	26 APR-07 MAY		28	5	56,043	entire state open
1990	1	1/LICENSE		09 APR-12 APR	13 APR-17 APR	18 APR-24 APR	25 APR-06 MAY		28	5	56,043	nonresidents allowed
1991	1	1/LICENSE		15 APR-18 APR	19 APR-23 APR	24 APR-30 APR	01 MAY-12 MAY		28	5	56,043	
1992	1	1/LICENSE		13 APR-16 APR	17 APR-21 APR	22 APR-28 APR	29 APR-10 MAY		28	5	56,043	\$22 FEE
1993	1	1/LICENSE		12 APR-15 APR	16 APR-20 APR	21 APR-27 APR	28 APR-09 MAY		28	5	56,043	
1994	1	1/LICENSE		18 APR-21 APR	22 APR-26 APR	27 APR-03 MAY	$04 \mathrm{MAY}-15 \mathrm{MAY}$		28	4	56,043	
1995	1	1/LICENSE		17 APR-20 APR	21 APR-25 APR	26 APR-02 MAY	$03 \mathrm{MAY}-14 \mathrm{MAY}$		28	4	56,043	
1996	1	1/LICENSE		15 APR-18 APR	19 APR-23 APR	24 APR-30 APR	01 MAY-12 MAY		28	4	56,043	
1997	1	1/LICENSE		14 APR-17 APR	18 APR-22 APR	23 APR-29 APR	30 APR-11 MAY		28	4	56,043	
1998	1	1/LICENSE		13 APR-16 APR	17 APR-21 APR	22 APR-28 APR	29 APR-10 MAY		28	4	56,043	
1999	1	1/LICENSE		12 APR-15 APR	16 APR-20 APR	21 APR-27 APR	28 APR-9 MAY		28	4	56,043	\$22.50 FEE, ARCHERS ALLOWED 2 PERMITS
2000	1	1/LICENSE		17 APR-20 APR	21 APR-25 APR	26 APR-02 MAY	03 MAY -21 MAY		35	4	56,043	
2001	1	1/LICENSE		16 APR-19 APR	20 APR-24 APR	25 APR-1 MAY	02 MAY -20 MAY		35	4	56,043	
2002	1	1/LICENSE		15 APR-18 APR	19 APR-23 APR	24 APR-30 APR	01 MAY -19 MAY		35	4	56,043	\$23 FEE
2003	1	1/LICENSE		14 APR-17 APR	18 APR-22 APR	23 APR-29 APR	30 APR-18 MAY		35	4	56,043	
2004	1	1/LICENSE		12 APR-15 APR	16 APR-20 APR	21 APR-27 APR	28 APR-16 MAY		35	4	56,043	
2005	1	1/LICENSE	8 APR-10 APR	11 APR-14 APR	15 APR-19 APR	20 APR-26 APR	27 APR-15 MAY		38	4	56,043	Youth season added
2006	1	1/LICENSE	7 APR-9 APR	10 APR-13 APR	14 APR-18 APR	19 APR-25 APR	26 APR-14 MAY		38	4	56,043	NW IA ZONE ADDED FOR NONRESIDENTS
2007	1	1/LICENSE	13 APR-15 APR	16 APR-19 APR	20 APR-24 APR	25 APR-1 MAY	2 MAY-20 MAY		38	1	56,043	ZONES ELIMINATED
2008	1	1/LICENSE	11 APR-13 APR	14 APR-17 APR	18 APR-22 APR	23 APR-29 APR	30 APR-18 MAY		38	1	56,043	nonresidents allowed to hunt 2nd season
2009	1	1/LICENSE	10 APR-12 APR	13 APR-16 APR	17 APR-21 APR	22 APR-28 APR	29 APR-17 MAY		38	1	56,043	
2010	1	1/LICENSE	9 APR-11 APR	12 APR-15 APR	16 APR-20 APR	21 APR-27 APR	28 APR-16 MAY		38	1	56,043	

Table 2.12 lowa's Fall turkey gun hunting seasons, 1981-present. Archery only seasons same as deer seasons.

	BAG	POSSESSION		SEASON	\#	\# SQ.	
YEAR	LIMIT	LIMIT	SEASON	LENGTH	ZONES	MILES	MAJOR RULE CHANGES
1981	1	1/LICENSE	21 OCT-01 NOV	12	2	4,032	\$15 FEE
1982	1	1/LICENSE	19 OCT-31 OCT	13	2	5,254	1 GUN \& 1 BOW, UNLIMITED BOW PERMITS IN SPRING ZONES
1983	1	1/LICENSE	18 OCT-30 ОСT	13	2	5,254	HUNTER SAFETY REQUIRED IF BORN AFTER 1 JAN 1967
1984	1	1/LICENSE	16 OCT-28 OCT	13	3	13,685	DECOYS LEGAL; WESTERN, CENTRAL \& NE IOWA OPEN
1985	1	1/LICENSE	15 OCT-27 ОСT	13	3	13,685	\$20 FEE
1986	1	1/LICENSE	14 OCT-26 OCT	13	6	21,575	STEPHENS \& SHIMEK SF SPECIAL ZONES, STATEWIDE BOW SEASON
1987	1	1/LICENSE	12 OCT-08 NOV	28	7	21,575	2 LICENSES POSSIBLE, YELLOW RIVER SF SPECIAL ZONE
1988	1	1/LICENSE	10 OCT-27 NOV	49	7	25,402	
1989	1	1/LICENSE	09 OCT-26 NOV	49	7	29,610	NONRESIDENTS ALLOWED
1990	1	1/LICENSE	15 OCT-30 NOV	47	7	39,191	
1991	1	1/LICENSE	14 OCT-30 NOV	48	2 OF 7	9,060	LICENSES ISSUED FOR ZONES 3 \& 6 ONLY (NE IOWA), \$22 FEE
1992	1	1/LICENSE	17 OCT-29 NOV	44	2 OF 7	9,060	LICENSES ISSUED FOR ZONES 3 \& 6 ONLY (NE IOWA)
1993	1	1/LICENSE	11 OCT-28 NOV	49	2 OF 7	9,060	LICENSES ISSUED FOR ZONES 3 \& 6 ONLY (NE IOWA)
1994	1	1/LICENSE	10 OCT-30 NOV	52	2 OF 7	9,060	LICENSES ISSUED FOR ZONES 3 \& 6 ONLY (NE IOWA)
1995	1	1/LICENSE	16 OCT-30 NOV	46	7	39,191	
1996	1	1/LICENSE	14 OCT-30 NOV	48	7	39,191	
1997	1	1/LICENSE	13 OCT-30 NOV	49	7	39,191	
1998	1	1/LICENSE	12 OCT-30 NOV	50	7	39,191	
1999	1	1/LICENSE	11 OCT-30 NOV	51	8	44,056	ZONE 8 ADDED, \$22.50 FEE
2000	1	1/LICENSE	16 OCT-30 NOV	46	8	44,056	
2001	1	1/LICENSE	15 OCT-30 NOV	47	8	44,056	
2002	1	1/LICENSE	14 OCT-30 NOV	48	8	44,056	\$23 FEE
2003	1	1/LICENSE	13 OCT-5 DEC	54	8	44,056	
2004	1	1/LICENSE	11 OCT-3 DEC	54	8	44,056	
2005	1	1/LICENSE	10 OCT-2 DEC	54	9	56,043	NW IA ZONE ADDED, A 3rd LICENSE AVAILABLE, DOGS ALLOWED
2006	1	1/LICENSE	16 OCT-1 DEC	48	9	56,043	MANDATORY HARVEST REPORTING
2007	1	1/LICENSE	15 OCT-30 NOV	47	6	56,043	3 State forest zones eliminated
2008	1	1/LICENSE	13 OCT-5 DEC	54	6	56,043	
2009	1	1/LICENSE	12 OCT-4 DEC	54	6	56,043	

FURBEARERS

According to Iowa Code 109.97, every fur dealer must report the number of raw furs purchased from Iowa trappers and hunters by May 15 of each year. Table 3.1 shows the number of raw furs purchased from the 1977-78 season through the present. Earlier furbearer harvest information from 1930-31 thru 1976-77 is archived at http://www.iowadnr.com/wildlife/. Even though harvest and population trends cannot be equated, harvest information gives a retrospective view of the status of various fur populations not only historically, but from year to year as well.

For example, the muskrat harvest data shows, that while muskrat harvests are cyclic, the harvests of the 1930s are not much different from the 1960s, 1970s, and 1980s. Drought cycles and water level drawdowns on designated marshes, directly influence muskrat populations and consequently muskrat harvest. During the droughts of the 1930s, 1950s and most recently 1988-89 and 1989-90 muskrat harvests were substantially reduced. The drought followed by extremely high water from 1990 through 1996, plus the reduced fur market are the main reasons why the last 20 years of harvest are at the lowest levels since the 1960-61 season. During the 1993-94 season, a 32 percent increase in the muskrat harvest occurred, yet historically, the harvest was still low. The mere abundance of muskrats still allowed for this substantial increase in harvest. Because of the muskrat's prolific reproductive capability, populations responded quickly as adequate water conditions returned. In fact, 1993 brought modern day record muskrat populations back to the majority of Iowa's marshes. In

1997, after an extended high water period, "exploding" muskrat populations, and thus emergent vegetation disappeared due to muskrat vegetative "eat outs," and the muskrat population rapidly declined. In fact for the past $20+$ years, muskrat populations continue to be at modern day record low levels throughout most of the marsh country in the United States. The low populations of muskrats have now occurred over the past $21 / 2$ decades and natural resource professionals have no clue why their numbers remain at record low levels. Extended natural droughts and/or managed water level draw-downs should allow marshes to re-vegetate and muskrats should increase accordingly. We have not seen the right type of extended drought, so perhaps when the "right" drought does occur, muskrat populations will respond positively on marshes. Unfortunately many of the wetland areas do not have the capability of "artificial" draw-downs. Habitat changes and reduced water quality will likely keep muskrats on those marshes without draw down capability at low levels. For the best muskrat habitat conditions a marsh needs to be de-watered in the spring, kept relative dry through the summer, fall, and winter. Then the next spring the water must be kept low so that emergent vegetation can grow most of that summer. Water levels must be kept comparatively low the second winter and as the new growth occurs the next spring water levels can be gradually increased but not to the point that the water levels drown the growing vegetation. Muskrat populations will generally increase rapidly given the right vegetation and water conditions. The true test of the status of muskrat populations on marshes will
occur when/if vegetation does emerge. It will be interesting to see if muskrat population increases. Stream and river valley corridors will likely continue to have low muskrat populations because of deteriorating habit and declining water quality. If muskrat populations continue to remain low and we do not see positive upward cycles, I predict that they might become a species of special concern sometime in the future. Muskrats will most certainly be a species to watch closely and because of their close association with water, they could become a good environmental indicator of water quality.

Mink harvests were higher in the 1930s and 1940s then remained somewhat lower in the 1950s and 1960s with the 1986-87 harvest similar to the 1930s once again. Low numbers for both mink and muskrats in 1939, reflect the statewide season closure except for the Mississippi River. A similar situation occurred for muskrats in 1947. The 1989-90 through 1991-92 mink harvests were substantially reduced due to overall lower fur values and consequently less trapper effort. During 1994-95, mink harvest increased primarily because of the fact that fur value speculation increased trapping pressure on mink because muskrat populations were so low. Recent mink harvest trends generally show declines, likely due to overall reduced trapping effort that is occurring with muskrat trapping as the two species are often times trapped concurrently with on another. Deteriorating water quality may also be a part of the equation for reduced mink population and harvest trends.

Raccoons have been an interesting species with comparatively low harvests until 1967 and then noticeably increased harvests through 1986-87 when a record 390,800 raccoon were taken (Fig. 3.1). A
quarter million raccoons were harvested annually for 15 years (1973-1987) and yet the population remained very high. It is likely that the high raccoon harvests have kept raccoon disease problems, such as distemper, at low levels resulting in very healthy raccoon populations. For the past decade and a half, the raccoon harvest has leveled off at near 100,000 . This also is indicative of the suppressed raccoon fur values of the past several years. However, renewed interest and increasing pelt values were responsible for a slow increase in raccoon harvest in the late 1990s, with the 2001-02 harvest approaching 1.5 million raccoon pelts. The entire fur market, including raccoons, was substantially higher than it has been for several years due to extreme interest in fur fashion in China and other oriental countries.

Spotted skunks populations were actually higher than the Striped Skunk populations in the 1930s and 1940s. Spotted skunk (civet cat) harvest levels began to decline substantially before the season was closed in the mid-1970s. During the 1970s and1980s the DNR did not receive more than 1 or 2 spotted skunk reports year. Since 1992 the only recent spotted skunk report to the DNR was a roadkill in 2001 in Ringgold County. Spotted skunks are given complete protection and should at the very least, be considered a threatened, if not, an endangered species. Perhaps they should even be designated as extirpated from Iowa. Unfortunately spotted skunks over the entire continent appear to be declining.

Red fox harvests increased significantly from the mid-1960s, stabilizing between 12,000 and 20,000 fox pelts during the 1980s and 1990s. For the past 2 decades active fox dens, are a rarity compared to the 1970s and 1980s.

An outbreak of mange in the early 1980s and the suppressed fur market greatly reduced the fox population as well as the harvest during the past 20 seasons. Coyotes have also move into what once considered fox rich portions of the state and that, coupled with the persistent of mange will likely keep the red fox population suppressed for several years. Interestingly enough, both the red and gray fox harvest numbers, based one fur dealer reports, are at near modern day lows. Some agency personnel believe that red foxes in portions of the state are in ample numbers but that is certainly not the case over much of the traditional 1960s 1970s, north central, northeast portions of the state.

Gray fox still remain their own sort of secretive mystery but again based on fur dealer reports their number may be near record low levels.

Similar higher harvest trends occurred with coyotes, with harvest figures ranging between 6,000 and 12,000 pelts from the 1970s to the 1990s. Nearly 10,300 coyote pelts were purchased during the 1992-93 fur season. That is not a record coyote harvest, but is double the previous season. The 1994-95, 1995-96 and 1996-97 seasons showed a decrease in the coyote harvest, but the population remained high statewide. The late 1990s harvest remained stable to slightly declining. Coyote populations are prevalent throughout much of Iowa thru through 2010.

Beaver seasons were closed in the 1930s and early 1940s. During that period beaver were live captured and transplanted throughout the state to restore their statewide presence. The season reopened in the mid-1950s on a restricted basis and harvests has increased in the past decade to between 6,000 and 17,000 hides. About 50 percent fewer
beaver were purchased from Iowa dealers during the 1991-92 season, as compared to 1987-88 season. There has been a somewhat increasing beaver market for the past few years but the hard work and difficult weather conditions for trapping beaver, keep the beaver harvest relatively low. Increasing interest in beaver fur did bring some increase in pelts purchased in 1992, but that increase was supplemented by beaver hides that were kept frozen from previous years and dumped on the market in hopes of capitalizing on a higher beaver pelt values. The 1993 and 1994 beaver take decreased about 25 percent and it declined somewhat more in 1995. The beaver population is relatively high and they continue to generate many complaints from landowners over beaver flooding and backing water up into drainage tiles. Beaver will also utilize the ear corn and corn stalks for food and the dams they build.

Several factors need to be considered when reviewing these data. Water levels certainly affect the harvest of aquatic furbearers such as muskrats and beaver. Freeze-up and season opening dates also have some effect. Higher fur values usually mean higher harvest levels. Weather greatly impacts the harvest of many furbearing animals such as raccoon, fox, and coyotes. Mild weather and open winters are generally more favorable for all trappers and coon hunters. Fox and coyote hunters harvest more animals when cold, snowy weather exists. Very notable to the entire furbearer season in 20002001 was the fact that cold weather froze marshes earlier and record cold and snows made this season one of the most difficult ever for fur pursuing enthusiasts. Weather conditions did, in fact, reduce the harvest of most furbearer species in 2000-2001. During 2001-2002 season, weather conditions were nearly the opposite of the
previous winter. These warm, mild, and comparatively dry conditions were conducive to better harvests of several species. The 2002-2003 season started out very mild but turned much colder later in the season providing great opportunity for fur harvesters early in the season but the later colder weather slowed fur harvesting considerably. The weathers conditions of the 2006-2007 season provided greater and longer opportunity for trappers and coonhunters to pursue their query. The record snowy and extremely cold winter of 2009-2010 had to have some impact on reducing the harvest of most furbearer.

With the exception of the spotted skunk and perhaps weasel, these harvest data and other qualitative information indicate that most furbearers have adapted well to the changing environment that humans have created. We do however need to keep a closer watch on muskrat and both red and gray fox populations.

There appears to be a declining trend in the pelts harvested in nearly all species except for raccoon which tends to be the 'bread and butter' species for furharvesters. It will be interesting to see if the declining trends continue. As society changes and hunter and trapper recruitment declines, all fur harvests will likely show general declines.

Because of the squabbles and debates that occur between hunters and trappers over their "rightful share" of the resource, the DNR in 1975 began asking fur buyers to estimate the percent of foxes, coyotes and raccoons taken by hunters versus that taken by trappers. The DNR believes the information is helpful in determining the impact of hunters and trappers on furbearer populations and it also can be a measure of how weather impacts different types of furharvesters. The breakdown by year is shown in Table
3.2. Fox hunters historically have had greater impacts on the population in years when snow conditions make "spotting" foxes easier, while in mild open winters trappers do better. Because there were considerably more fox hunters than fox trappers, in years with more snowfall, hunters have a greater impact on the fox population than trappers. Fox hunter numbers have declined substantially as has the red fox population. An extensive outbreak of mange in foxes throughout the northern half of the state has greatly reduced fox numbers, and has also contributed to reduced fox harvest during the decade of the 1990s and the early 2000s.

Because of what appears to be greatly reduced numbers of both red fox and gray pelts being purchased at fur dealers, I believe that we need to be cautiously concerned about both species. We do not know what has caused the major reduction in the purchase of fox pelts but I truly do believe that it is in part a major reduction in both red and gray fox populations in recent years. Again being very speculative, perhaps it relates to a major disease problem or maybe even West Niles virus or something similar.
Mange continues to be a persistent and perhaps an impossible hurdle for fox populations to overcome. Hopefully the red and gray fox population will begin to increase in the near future on their own or that scientists can somehow get better information on what is actually happening with these 2 populations and in some way manage for increasing their numbers.

Mild open winters benefit both raccoon hunters and trappers, again because raccoon hunters outnumber raccoon trappers, they have the higher impact on the population. With the advent of the furharvester license, in 1986 it is likely that the demarcation between
hunter and trapper harvests will become less distinct as one license allows them to pursue both hunting and trapping.

Coyote hunters take substantially more coyotes than trappers, but this relates to the fact that there are considerably more coyote hunters than coyote trappers. Also, coyotes are certainly more difficult to trap than foxes and raccoons, thus there is generally lower percentage of coyotes trapped each year as compared to those hunted. This is supported by the information on Table 3.2.

In 1978 the Iowa DNR initiated a Raccoon and Deer Spotlight Survey in an effort to establish population trend index for raccoon and deer. Table 3.3 shows the results of the survey through the present. Based on the mean number of raccoons observed per route it appears that the raccoon population has fluctuated considerably (Fig. 3.2). Low harvests appear associated with increased raccoons observed per route the subsequent spring. The raccoon spotlight survey index of the 1990s has been the highest ever recorded since the survey began in 1978. Reduced raccoon harvest since 1987 is most likely the major reason for the record high population of recent years. Recent years have shown a stable to slightly declining trend in raccoon numbers according to the raccoon-deer spotlight survey. In 2005 there were 21.1 raccoons observed per raccoon spotlight survey while in 2004, 20.9 were observed. If the spotlight survey is a true indicator of population trends, then the raccoon population has been fairly stable, but at high levels for the past several years.

Raccoon pelt values still account for over 2/3's of the total value of furs purchased in Iowa (Table 3.4). A record harvest of 390,000 raccoons occurred during the 1986-87 season, but, by 1989-

90, over a quarter of a million less raccoons have been harvested. During the last 3 years of the 1990s, the raccoon market softened considerably and that reduced pressure on the raccoon population. However, since 2004, and particularly in 2005 and 2006, raccoon fur values are showing some significant increase. In 2007 and 2008 speculation that the fur market would be high, brought a few more furharvester out to pursue their quarry.

Historically, pelt prices of mink peaked in the mid-1940s and have fluctuated since then between about $\$ 10$ and $\$ 20$ (Fig. 3.4). Red fox prices peaked in the late 1970s at about $\$ 65$. Iowa's total fur value reached a record $\$ 15.5$ million in 1979. During the past 6 years between $\$ 1$ and $\$ 1.8$ million of fur pelts have been harvested. Historical season dates are presented in Table 3.5.
Iowa's, first ever, regulated river otter harvest season occurred in 2006-2007. A statewide quote of 400 animals was allowed with a 72 hour grace period after the quota was reached to reduce all otter trapping opportunities. The season bag limit per furharvester was 2. A total of 469 river otters were harvested in 13 days. Harvest information is shown in figures in the river otter logbook update.
Iowa's second river otter season regulation remained the same except the grace period was reduced to 48 hours. It did take about 10 days longer to reach the quota but most of that was attributed to early cold weather and the fact that the newness had probably worn off a little. The only change for Iowa's third river otter harvest season was to increase the statewide harvest quota to 500 animals. The $4^{\text {th }}$ river otter harvest season quota remained at 500 animals. Although there was some concern mentioned about the fact that some people thought that there
was a slower harvest of river otters occurring, the reality is that the river otter harvest per day was the same as the previous year at 23 otters taken per day until the 500 quota was reached. I would speculate that during the 2011 season there may be a liberalization of the 500 statewide quotas that will now have occurred for 3 consecutive years. Refined analysis of the status of the river otter population needs to occur. A more detailed river otter harvest breakdown appears in the river otter logbook report.

A very restrictive regulated bobcat harvest occurred during the 20072008 season. The first bobcat season occurred with very few problems. Harvest information on Iowa's first ever bobcat harvest (Hunting and Trapping) season is shown in figures in the bobcat logbook update. Our second season included an increase in the open zone quota to 200 and besides the lower 2 tiers of counties that will remain open, 4 counties along the Missouri River (Pottawattamie, Harrison, Monona, and Woodbury) will be open to bobcat hunting and trapping.

The open bobcat harvest zone and quota remained the same for the third regulated bobcat harvest season in 2009. The harvest remained the same with 21 bobcats per day for both years. The 2010 will allow for more counties to be open to bobcat hunting with a quota of 250 animals.

The European Union, EU (formerly called the European Economic Community, EEC) had threatened to discontinue the importation of furs from countries still allowing the use of leg-hold/foot-hold traps. This has been scheduled to go into effect on January 1, 1995, 1996, and again in 1997. Fortunately a compromise was reached when the U.S, embarked upon a best
management practice (BMPs) study of trapping systems to show the most effective, efficient and humane trapping systems in the United States.

In late 1997, an "understanding" was reached with the European Union, the United States and other countries involved. The European markets would remain open to the U.S. fur trade. Over the past several years the U.S. has been developing scientifically based best management practices (BMP's) for trapping animals with restraining/foothold traps. The Iowa Department of Natural Resources, in cooperation with 3 local trappers, was involved in testing 4 types of traps for raccoons in 1998. These were 1.5 coil spring with offset jaws, the \#11 long-spring, the \#11 long-spring with offset jaws, and the Tomahawk cage trap. Ohio, Wisconsin and Missouri did the same trap tests in their states. Most BMP studies are nearly completed and results are being periodically published. Iowa was to partake in a BMP effort to check the efficiency of $1 \frac{1}{2}$ coil spring and 110 Conibear traps for primarily mink and muskrat trapping, however extenuating circumstances did not allow this to happen to the needed desired extent that it should have so we were not a part of that trap testing effort

If the EU ever actually discontinued the importation of wild furs it could mean the collapse of the U.S. commercial fur harvest and trade, as we currently know it today. Oriental countries such Korea and China are developing a fur economy/trade, and that has helped increase fur values considerably. Currently the European countries account for over 75 percent of the U.S. fur market but the Oriental countries continue to take an increasing percentage of the total fur market. International trade, fur fashion trends,
tariff, and governmental politics will determine what ultimately happens.
.Some controversies have developed between the furharvester ranks and the Fur Resources Technical Committee of the International Association of Fish and Wildlife Agencies. Some of the most used traps of the past (particularly the $1 \frac{1}{2}$ coil spring trap) have not scored well under the BMP process, particularly for trapping raccoons. The self-mutilation of raccoons chewing their foot or leg when in certain foothold traps present challenges for trappers and the type of trapping systems they use. More information, research, and $11 / 2$ coil spring modification will have to occur before we can determine if the $11 / 2$ coil spring can be an appropriate trap for the BMPs for harvesting raccoons. Most BMPs are now available and are being distributed nationwide both in publish form and on the internet. Reception to that BMP has predominately been
favorable, drowning sets are not considered "humane" and that has been very frustrating for trappers as well as some professionals.

While the "understanding" with the European Union is not a binding agreement, it has been a victory for the continued legitimate use of the restraining/foot hold trap into the 21st century. Hopefully the BMP process will also help us improve restraining foothold traps to allow their continued use into the future. The BMP process is in the conclusive stages of its research efforts. The data collected has resulted in some very good information that will allow the most effective, efficient, and humane way to trap various species of animals. Only time will tell how well the trapping public, as well as the European fashion industry, and the other country concerned about fur being purchased by countries that allow the use of the foothold restraining trap will accept the results.

Table 3.1 Furbearer harvest in lowa listed by species (1930-present). Data for each year includes harvest for the winter of the succeeding year, eg. 1930 $=1930+1931$ (winter).

Year	Muskrat	Mink	Skunk	Raccoon	Civet	Red Fox	$\begin{gathered} \hline \text { Gray } \\ \text { Fox } \\ \hline \end{gathered}$	Opossum	Weasel	Coyote	Badger	Beaver
1977	257,237	13,037	3,588	264,367	7	22,831	1,640	36,186	36	12,011	1,900	3,432
1978	467,721	23,277	6,545	251,985		24,348	2,115	26,160	82	10,627	1,936	4,327
1979	741,403	31,270	10,022	308,277		17,629	3,093	10,978	122	7,745	3,274	12,498
1980	739,419	32,950	5,616	235,717		20,602	2,175	11,664	32	6,847	2,427	11,831
1981	521,945	28,455	1,913	291,227		22,385	1,710	18,730	16	9,860	1,946	5,705
1982	428,252	21,307	1,194	255,926		18,527	1,953	16,761	16	8,930	1,754	5,809
1983	464,793	22,245	1,152	261,875		21,257	1,185	16,179		9,636	1,298	8,563
1984	372,466	28,346	1,032	334,179		18,916	1,896	21,455		7,809	1,754	16,323
1985	254,412	17,116	1,861	270,805		16,346	1,114	16,296		7,858	975	14,931
1986	482,811	31,139	2,540	390,773		19,740	1,593	30,760		10,582	2,520	17,778
1987	515,611	27,712	1,198	307,587		19,666	1,091	27,623		10,348	1,642	13,509
1988	192,214	13,996	712	190,556		15,445	769	19,824		4,650	1,043	18,459
1989	73,415	8,293	245	118,653		13,359	374	8,114		4,073	468	8,706
1990	70,133	7,363	189	103,468		14,268	393	6,243		5,068	503	9,246
1991	91,206	8,469	211	110,342		15,463	429	7,411		5,213	572	8,943
1992	124,638	12,839	791	110,203		14,660	1,036	8,192		10,286	621	15,839
1993	163,842	13,946	643	118,463		12,986	836	6,243		7,313	571	11,788
1994	178,683	11,819	510	112,686		12,243	789	6,782		6,986	502	11,643
1995	158,241	20,392	786	118,136		14,136	948	9,781		8,462	614	10,678
1996	123,460	18,946	693	123,698		12,402	721	7,643		7,159	832	10,481
1997	113,621	16,832	649	149,492		12,896	768	6,012		6,992	796	11,122
1998	90,126	16,461	536	106,641		11,646	681	5,123		5,786	642	10,336
1999	86,998	15,931	528	101,233		11,968	631	4,649		5,231	597	10,108
2000	84,972	15,235	469	94,989		11,103	576	3,922		5,348	506	10,478
2001	78,867	14,162	398	143,206		12,349	529	3,361		6,702	487	11,287
2002	89.421	14,986	417	118,531		14,869	507	2,905		5,746	402	10,431
2003	54,919	10,711	842	177,315		10,608	365	6,184		8,178	912	8,591
2004	45,516	11,662	930	179,185		7,122	198	5,858		5,197	761	6,221
2005	79,328	13,162	793	163,746		8,587	219	5,916		7,381	606	8,698
2006	64,799	7,706	1434	156,379		2,013	20	2,254		4,258	704	5,675
2007	55,476	7,967	1256	143,271		2,143	178	2,673		4,513	536	5,303
2008	48,794	8,236	1,042	124,789		3,729	217	2,251		5,176	431	5,829
2009	44,436	6,905	388	115,349		1,792	13	1,261	56	2,501	454	3,431

Table 3.2 Percentage of foxes, raccoons and coyotes purchased from hunters and trappers determined from furbuyer reports (1975-present). Data for each year includes harvest from the succeeding year, eg. 1930=1930+1931(winter).

Year	Fox			Raccoon			Coyote		
	$\begin{gathered} \text { \% by } \\ \text { trapper } \end{gathered}$	$\begin{gathered} \text { \% by } \\ \text { hunter } \end{gathered}$	\% by unknown	$\begin{array}{r} \% \text { by } \\ \text { trapper } \end{array}$	$\begin{array}{r} \% \text { by } \\ \text { hunter } \end{array}$	\% by unknown	$\begin{array}{r} \% \text { by } \\ \text { trapper } \end{array}$	$\begin{array}{r} \hline \% \text { by } \\ \text { hunter } \end{array}$	$\begin{array}{r} \% \text { by } \\ \text { unknown } \end{array}$
1975	45	48	7	28	60	12	18	72	10
1976	55	41	4	28	66	6	28	68	4
1977	36	55	9	24	68	8	18	72	10
1978	37	58	5	31	61	8	17	74	9
1979	53	32	15	30	58	12	30	59	11
1980	66	29	5	33	60	7	33	60	7
1981	38	46	16	42	46	12	20	74	6
1982	47	45	8	35	53	12	25	69	6
1983	33	59	8	37	50	13	17	67	16
1984	49	31	20	33	41	26	26	60	14
1985	39	54	7	37	52	11	23	65	12
1986	59	35	6	46	49	5	34	62	4
1987	53	43	4	49	47	4	32	62	6
1988	58	34	8	49	46	5	30	67	3
1989	48	28	24	35	45	20	24	61	15
1990	43	46	11	38	55	7	28	66	6
1991	44	49	7	41	51	8	25	67	8
1992	40	52	8	45	50	5	36	54	6
1993	43	50	7	43	52	5	34	57	9
1994	39	55	6	44	46	10	33	59	8
1995	41	52	7	47	45	8	30	65	5
1996	44	48	8	48	48	4	32	58	10
1997	40	47	13	48	46	5	29	62	9
1998	46	48	6	46	47	5	33	63	4
1999	45	46	9	42	53	5	34	61	5
2000	34	58	8	38	46	16	31	58	11
2001	52	43	5	43	47	10	36	56	8
2002	56	38	6	48	42	10	32	59	9
2003	52	44	4	49	43	8	35	58	7
2004	49	45	6	43	49	8	32	60	8
2005	53	38	9	39	52	9	30	64	6
2006	51	45	4	49	47	4	34	58	8
2007	44	51	6	48	46	6	37	57	6
2008	40	55	5	44	48	8	35	59	6
2009	36	48	6	45	46	9	36	58	6
Average	46.2	45.5	8.3	40.6	50.4	8.9	29.1	62.7	8.0

Table 3.3
Results of the lowa raccoon spotlight survey with raccoon harvest and pelt price (1978-present). The spotlight sur' conducted in April each year. Harvest is from previous year.

Year	\# Routes	Raccoon harvest	Mean \# observed	$\begin{array}{r} \hline \text { Pelt } \\ \text { Prices } \end{array}$
1977	57	264,367	10.3	22.27
1978	83	251,985	11.2	31.18
1979	82	308,277	8.2	29.97
1980	85	235,717	8.9	21.47
1981	85	291,227	10.4	27.69
1982	84	255,926	12.8	16.54
1983	82	261,875	12.9	14.23
1984	84	334,179	11.5	18.94
1985	83	270,805	10.5	13.91
1986	80	390,773	11.3	18.22
1987	79	307,587	12.0	16.65
1988	83	190,556	14.8	7.96
1989	84	118,653	17.0	4.74
1990	86	103,468	16.7	4.62
1991	84	110,342	18.2	4.96
1992	82	110,203	21.5	5.36
1993	84	118,463	20.8	5.81
1994	89	112,686	21.1	6.89
1995	87	118,136	24.4	6.83
1996	89	123,698	23.5	8.26
1997	88	149,492	21.9	7.79
1998	88	106,641	23.3	7.21
1999	88	101,233	22.3	8.13
2000	88	94,989	24.3	9.26
2001	88	143,206	20.7	11.69
2002	88	118,531	21.1	12.16
2003	88	177,313	20.8	10.11
2004	88	179,185	21.1	9.62
2005	82	163,746	19.4	11.43
2006	84	156,379	22.1	10.18
2007	83	143,271	23.1	12.24
2008	81	124,789	24.3	9.23
2009	78	115,349	28.5	8.80
2010	81			

Table 3.4 Value of important furbearer species taken in lowa (1930-present). Data for each year includes harvest from the winter of the succeeding year, e.g. $1930=1930 \& 1931$ (winter).
(Year summaries prior to the first year given are archived at http://www.iowadnr.com/wildlife/)

	Mink		Muskrat		Raccoon		Red Fox		All Species
	Price	Value	Price	Value	Price	Value	Price	Value	Value
1977	12.44	162,180	4.77	1,227,020	22.27	5,887,453	49.53	1,130,819	8,871,156
1978	14.48	337,050	4.49	2,100,067	31.18	7,856,892	64.65	1,574,098	12,516,946
1979	19.04	595,380	5.64	4,181,512	29.97	9,239,061	48.71	858,708	15,499,322
1980	18.20	599,690	5.88	4,347,783	21.47	5,060,843	42.88	883,413	11,269,768
1981	17.99	511,905	3.84	2,004,268	27.69	8,064,075	46.29	1,036,201	12,021,854
1982	11.18	238,212	2.18	933,589	16.54	4,233,016	28.85	534,503	6,235,053
1983	16.03	356,481	2.30	1,152,686	14.23	3,726,481	33.16	704,882	6,180,169
1984	14.22	403,080	2.88	1,072,702	18.94	6,329,350	25.24	477,439	8,574,748
1985	11.76	201,274	1.89	480,838	14.34	3,883,343	16.70	272,978	5,163,651
1986	20.79	647,379	3.39	1,636,729	18.22	7,119,884	20.73	409,210	10,335,629
1987	20.76	575,301	3.32	1,711,828	16.65	5,121,323	18.07	355,365	8,097,250
1988	22.06	308,751	2.05	394,038	7.96	1,516,825	12.15	187,656	2,602,695
1989	16.34	138,890	1.02	76,500	4.74	568,800	9.70	135,800	1,018,622
1990	18.26	134,448	2.08	145,876	4.96	513,201	10.22	145,898	1,074,761
1991	15.49	131,184	1.96	178,764	5.36	591,433	9.63	148,909	1,198,863
1992	19.46	249,846	1.58	196,928	6.36	700,891	8.43	123,078	1,579,821
1993	16.78	234,014	1.83	299,831	5.81	688,270	8.98	116,614	1,388,729
1994	14.13	167,003	1.95	348,432	6.89	706,686	9.86	120,716	1,409,848
1995	18.01	367,259	1.78	281,670	6.83	808,371	8.76	123,831	1,745,504
1996	19.36	336,795	1.56	182,598	8.92	1,103,386	8.43	104,549	1,661,687
1997	17.86	302,303	1.51	171,568	7.79	1,169,643	7.04	90,788	1,729,199
1998	16.05	264,199	1.66	149,609	7.21	768,882	8.21	95,637	1,203,362
1999	19.16	255,583	1.55	134,847	8.13	823,024	9.68	115,850	1,329,304
2000	15.46	235,533	2.09	177,591	9.26	879,598	9.86	109,476	1,378,689
2001	17.23	244,011	2.43	191,647	11.69	1,674,078	10.86	134,110	2,168,918
2002	14.96	244,191	1.85	165.429	12.16	1,441,37	11.36	168,912	2,069,896
2003	10.51	112,573	2.06	113,133	10.11	1,792,655	19.16	203,441	2,589,802
2004	10.27	119,769	1.85	85,115	9.62	1,723,760	14.68	104,551	1,965,131
2005	12.03	158,339	6.15	487,867	11.43	1,871,612	12.81	109,999	2,827,822
2006	13.07	100,703	5.79	375,339	10.18	1,591,138.00	15.13	36,503	2,204,483
2007	14.76	116,876	3.08	170,886	12.34	1,442,250	13.55	29,038	1,757,223
2008	9.48	78,077	2.51	122,473	9.23	1,151,822	11.57	43,145	1,293,846
2009	8.22	56,760	3.97	176,411	8.80	1,015,071	10.04	17,992	1,095,999

Table 3.5 lowa's furbearer seasons (Year summaries prior to the first year given are archived at http://www.iowadnr.com/wildlife/)

Table 3.5 Iowa's furbearer seasons (Year summaries prior to the first year given are archived at http://www.iowadnr.com/wildlife/)

			TRAP	ING	HUN	ING
		OPENING				
		START	SEASON	DATES	SEASON	ATES
YEAR	SPECIES	TIME	OPENING	CLOSING	OPENING	CLOSING
2002-03	mi, mu, ra, we, sk, ba, op	8 a.m.	Nov 2	Jan 31		
	be	8 a.m.	Nov 2	Apr 15		
	rf, gr	8 a.m.	Nov 2	Jan 31		
	ra, op	8 a.m.			Nov 2	Jan 31
	wc	8 a.m.	Jun 15	Oct 31	Jun 15	Oct 31
	co	8 a.m.	Nov 2	Jan 31	cont open sea	
	spsk, bc, ot		cont closed se		cont closed s	
2003-2004	mi, mu, ra, we, sk, ba, op	8 a.m.	Nov 1	Jan 31		
	be	8 a.m.	Nov 1	Apr 15		
	rf, gr	8 a.m.	Nov 1	Jan 31		
	ra, op	8 a.m.			Nov 1	Jan 31
	wc	8 a.m.	Jun 15	Oct 31	Jun 15	Oct 31
	co	8 a.m.	Nov 1	Jan 31	cont open sea	
	spsk, bc, ot		cont closed se		cont closed s	
2004-2005	mi, mu, ra, we, sk, ba, op	8 a.m.	Nov 6	Jan 31		
	be	8 a.m.	Nov 6	Apr 15		
	rf, gr	8 a.m.	Nov 6	Jan 31	Nov 6	Jan 31
	ra, op	8 a.m.			Nov 6	Jan 31
	wc	8 a.m.	Jun 15	Oct 31	Jun 15	Oct 31
	co	8 a.m.	Nov 6	Jan 31	cont open sea	
	spsk, bc, ot		cont closed se		cont closed s	
2005-2006	mi, mu, ra, we, sk, ba, op	8 a.m.	Nov 5	Jan 31		
	be	8 a.m.	Nov 5	Apr 15		
	rf, gr	8 a.m.	Nov 5	Jan 31	Nov 5	Jan 31
	ra, op	8 a.m.			Nov 5	Jan 31
	wc	8 a.m.	Jun 15	Oct 31	Jun 15	Oct 31
	co	8 a.m.	Nov 5	Jan 31	cont open sea	
	spsk, bc, ot, gwo		cont closed se		cont closed s	
2006-2007	mi, mu, ra, we, sk, ba, op	8 a.m.	Nov 4	Jan 31		
	be	8 a.m.	Nov 4	Apr 15		
	rf, gr	8 a.m.	Nov 4	Jan 31	Nov 4	Jan 31
	ra, op	8 a.m.			Nov 4	Jan 31
	wc	8 a.m.	Jun 15	Oct 31	Jun 15	Oct 31
	co	8 a.m.	Nov 4	Jan 31	cont open sea	on
	ot *k	8 a.m.	Nov 4	Jan 31		
	spsk, bc, gwo		cont closed se	ason	cont closed s	son

Table 3.5 lowa's furbearer seasons

YEAR	SPECIES	OPENING START TIME	\qquad TRAPPING \qquad SEASON DATES		\square HUNTING SEASON DATES	
			OPENING	CLOSING	SEASON DATES	CLOSING
2007-2008	mi, mu, ra, we, sk, ba, op	8 a.m.	Nov 3	Jan 31		
	be	8 a.m.	Nov 3	Apr 01		
	rf, gr	8 a.m.	Nov 3	Jan 31	Nov 3	Jan 31
	ra, op	8 a.m.			Nov 3	Jan 31
	wc	8 a.m.	Jun 15	Oct 31	Jun 15	Oct 31
	co	8 a.m.	Nov 3	Jan 31	cont open season	
	ot *	8 a.m.	Nov 3	Jan 31		
	bc *m	8 a.m.	Nov 3	Jan 31	Nov 03 Jan 31 cont closed season	
	spsk, gwo		cont closed season			
2008-2009	mi, mu, ra, we, sk, ba, op	8 a.m.	Nov 1	Jan 31		
	be	8 a.m.	Nov 1	Apr 01		
	rf, gr	8 a.m.	Nov 1	Jan 31	Nov 1	Jan 31
	ra, op	8 a.m.			Nov 1	Jan 31
	wc	8 a.m.	Jun 15	Oct 31	Jun 15	Oct 31
	co	8 a.m.	Nov 1	Jan 31	cont open season	
	ot *n	8 a.m.	Nov 1	Jan 31		
	bc *m	8 a.m.	Nov 1	Jan 31	Nov 01 Jan 31 cont closed season	
	spsk, gwo		cont closed season			
2009-2010	mi, mu, ra, we, sk, ba, op	8 a.m.	Nov 7	Jan 31		
	be	8 a.m.	Nov 7	Apr 01		
	rf, gr	8 a.m.	Nov 7	Jan 31	Nov 7	Jan 31
	ra, op	8 a.m.			Nov 7	Jan 31
	wc	8 a.m.	Jun 15	Oct 31	Jun 15	Oct 31
	co	8 a.m.	Nov 7	Jan 31	cont open season	
	ot *n	8 a.m.	Nov 7	Jan 31		
	bc *m	8 a.m.	Nov 7	Jan 31	Nov 07	Jan 31
	spsk, gwo		cont closed season		cont closed season	

Saturday of October through February 15 in 1973 and 1974 and January 31 in 1975. Zone 2b is remainder of state.
*d) During 1971-72 through 1978-79 seasons except for beaver water sets were permitted only during the open mink and muskrat season.
*e) During 1974-75 through 1987-88 seasons a more restrictive beaver trapping season occurred on the Federal Upper Mississippi River Refuge north of Interstate 80.
*f) Weasel season was closed during 1976-77 season; reopened 1988-89 season.
*g) Spotted skunk season was continuous closed season from 1976-77 through the present.
*h) Bobcat season officially listed as closed in 1985-86 regulations, however, it was essentially protected in prior years.
${ }^{*}$) Permanent woodchuck hunting rule season dates of June 15 to October 31 established with 1976-77 season.
*j) First restricted coyote trapping season.
*k) First regulated river otter harvest (Trapping) season. Statewide Quota of 400 otters plus 72 hour grace period. Season bag 2/furharvester
*) Same regulations as last year only the grace period is reduced to48 hours.
*m) First ever regulated bobcat harvest (Hunting and Trapping) season. 150 quota in Open zone of the southern 2 tiers of counties only plus a 48 hour grace period.
Season bag limit of $1 /$ furharvester. CITES tags are required on both river otters and bobcats.
*n Third regul gulated otter harvest (trapp pping) season. Statewide quota of 500 otters plus 48 hour grace period. Season bag li of $2 / f u r h a r v e s t e r$. Cites tags are required
*o Second regulated bobcat harvest (Hunting and Trapping) season. 200 quota Open zone quota of the southern 2 tiers of counties plus the 4 counties immediately above them along the Missouri River only plus a 48 hour grace period. Season bag limit of $1 /$ furharvester. CITES tags are required on both river otters and bobcats.

Figure 3.1 Iowa raccoon \& red fox harvest, (1930 - present)

Figure 3.2 Relationship of the spotlight index and raccoon harvest.

Figure 3.3 Pelt price fluctuations of important lowa furbearers.

Figure 3.4 Pelt price fluctuations of mink and fox, and the value of lowa furs.

Waterfowl Management, Seasons, and Harvests in Iowa

Tables referenced in this document are separate Adobe Acrobat files. Figures referenced in this document follow the text.

Duck Breeding Populations

Breeding population estimates are made each year for 10 key species of ducks in the principal breeding areas of Alaska, Canada, and the northcentral United States (Table 4.1, Fig. 4.1). Surveys are conducted in May and early June by the U.S. Fish and Wildlife Service (USFWS), Canadian Wildlife Service, and provincial and state conservation agencies. Ducks are counted from fixed-wing aircraft on the same transects each year. Estimates of ducks and ponds seen from the air are corrected for visibility bias by conducting ground counts on a sample of transects. The estimates in Table 4.1 are not the entire continental breeding populations of these ducks; a portion of each population (potentially 20% for mallards) nests outside the surveyed areas.

Although numbers of breeding ducks have fluctuated substantially from year to year, trend analysis suggests that total duck numbers are stable. This stable trend, however, is the result of increasing numbers of some species (e.g., gadwall, green-winged teal, shovelers and blue-winged teal) and decreasing numbers of others (e.g., pintails and scaup). Despite the improvements in duck numbers in the 1990's, there are still concerns about the long-term loss of both wetland and upland habitat in the prairie pothole region and the long-term outlook for duck populations in the future.

Duck populations have fluctuated substantially over time. The drought of the 1980's pushed many populations to near record low levels. The resiliency of these birds, however, was dramatically illustrated when most populations rebounded after water returned to the prairies in the 1990's. Pintails and scaup were exceptions to this rule;
pintails because drought continued to plague their primary nesting areas in Alberta and scaup for reasons apparently related to nutritional deficiencies on migration habitats. Duck populations will continue to fluctuate in the future as the numbers of wetlands on the landscape in north-central North America rise and fall with the vagaries of the weather

Giant Canada Goose Population

Giant Canada geese nested throughout Iowa prior to Euro-American settlement, but were extirpated from most of the Midwest, including Iowa, by 1900. The giant Canada goose restoration program initiated by the Iowa Conservation Commission in 1964, the forerunner to the Iowa Dept. of Natural Resources (IADNR), has successfully restored this species to most of its former nesting range in Iowa (see Giant Canada Goose Restoration). The giant Canada goose population in Iowa exhibited steady growth during 1965-2004, but has been stable in recent years (Fig. 4.2). Each summer, biologists and technicians estimate the numbers of adult Canada geese and goslings in their wildlife units. To obtain a statistically valid estimate of this population, an aerial survey is also conducted each spring. The results of the aerial survey conducted during April 2010 indicated the population was $96,738 \quad(\pm 14,764) \quad(\pm 95 \% \quad$ Conf. Limit), somewhat lower but not statistically different from the 2009 estimate of $104,844(\pm 16,878)$. Prior to 2005, the population estimates made by wildlife biologists were nearly identical to the population estimates obtained from the aerial surveys. This indicates that the biologists' estimates accurately represented the growth rate and size of this population for most of the $20^{\text {th }}$ century.

Waterfowl Harvests

Waterfowl harvests and hunter activity in Iowa are estimated annually by the USFWS (Table 4.2). Harvest estimates are calculated by combining the results of 2 surveys: 1) a survey of randomly selected hunters from the Harvest Information Program (HIP), which is used to calculate the total number of waterfowl killed, and 2) a survey that solicits duck wings and goose tails, which is used to estimate the species composition of the harvest.

Iowa's duck harvests have fluctuated substantially since 1961. The lowest harvests of all ducks and mallards occurred in the early 1960's, years of low duck populations and restrictive hunting regulations. The highest duck harvest was in 1979, a year with good duck numbers and, perhaps more importantly, excellent habitat conditions in Iowa due to above normal rainfall in August and September. Duck harvests began to decline in 1985, bottoming out in 1988 and 1989. Reasons for reduced harvests included smaller breeding populations and fall flights, shorter seasons, reduced bag limits, fewer hunters, and poor local habitat conditions. Duck harvests have increased in recent years as a result of improvements in duck numbers, liberal hunting regulations, and increases in numbers of active hunters.

Iowa's Canada goose harvest was relatively constant during 1967-85, but began to increase in 1986 as a result of increasing numbers of local giant Canada geese (Table 4.2). Canada goose harvests increased substantially after 1988, but were dampened in 1993 when restrictive Canada goose hunting regulations were implemented to reduce the harvest of Eastern Prairie Population (EPP) Canada geese. EPP geese nest on the west coast of Hudson Bay and are one of the two principle migrant Canada goose populations that fly through Iowa (the
other consists of small Canada geese, commonly called "hutchies," that nest on Baffin Island in the Arctic). The combination of restrictive hunting regulations, receding floodwaters, and large-scale participation in the Farm Service Agency's 0/92 program, resulted in a substantial decrease in Iowa's Canada goose harvest in 1993. Canada goose harvests resumed their increasing trend in the mid 1990's, and recently peaked at 78,600 in 2005. The apparent drop in harvest in 1998 and 1999 may be more an artifact of how the estimates were calculated than an actual change in harvest. At that time, the USFWS was converting from the old waterfowl stamp survey methodology to the new Harvest Information Program (HIP) survey. Harvest numbers from 1999 to the present are HIP estimates. Despite the Canada goose season being lengthened from 70 to 90 days in 2006, Canada goose harvests have not increased in recent years. The declines in harvests in recent years likely reflect the poor goose production in Iowa during those years.

The snow goose harvest in Iowa has declined since the early 1970's, despite record high numbers of snow geese in the Flyway in the 1990's and 2000's. Declining harvests resulted from shifting snow goose migration patterns, later migrations, increased use of refuges, and large numbers of older geese in the population. By the mid 1990's, the midcontinent light goose population was severely damaging Arctic breeding habitats. To increase harvests of light geese, more liberal hunting regulations were implemented (liberal bag limits, 107-day seasons) and a conservation order was implemented in 1999 to permit taking light geese after March 10 and to allow for hunting beyond the 107-day limit imposed by the Migratory Bird Treaty with Canada and Mexico. The harvest during the conservation order period in Iowa has ranged from 8,200 to 32,000 during 19992010. During the 1998-2009 regular light
goose seasons, the harvest ranged from 0 to 15,000.

Waterfowl Seasons

Iowa waterfowl hunters have experienced a wide range of duck and goose seasons since the USFWS began regulating waterfowl hunting in 1918 (Tables 4.3 and 4.4). Nearly every conceivable season-date combination has been tried in the past 90 years. Duck hunting regulations are inherently complex because they involve many species. The general lack of consistency in regulations, however, has made interpretation of the effects of these regulations on duck harvests very difficult. Goose hunting regulations, on the other hand, have been less complex and more consistent. The relative secure goose breeding habitat, along with consistently conservative seasons and bag limits, have enabled goose populations to prosper. The growing giant Canada goose population, however, has complicated traditional Canada goose harvest management. It is particularly challenging to develop hunting regulations that will increase harvests of local giant Canada geese while limiting harvests of migrant geese from Arctic and sub-arctic regions.

Waterfowl Banding

Ducks and geese are captured and banded with leg bands to obtain information on survival rates, hunting mortality, migration patterns and timing, and the relationships of harvest areas to production areas. Banding is conducted at the request of the USFWS and the Mississippi Flyway Council (MFC). Both state and federal personnel band ducks in Iowa, but IADNR personnel band all the Canada geese and more than 95% of the wood ducks (Table 4.5). Over 250,000 ducks and geese have been banded by IADNR personnel since 1964.

The USFWS, in concert with the

MFC, determines banding priorities. In the 1960's emphasis was placed on banding bluewinged teal to evaluate special teal seasons. Winter mallard banding was conducted in the 1970's to supplement breeding grounds bandings and examine hen mortality during spring and summer. Wood duck bandings have been used to evaluate Iowa's September duck seasons. Wood duck banding is also important to measure the effects of hunting on wood duck populations because spring surveys of wood ducks are not conducted. The IADNR has consistently cooperated with USFWS and MFC banding programs and has one of the top wood duck banding programs in the nation, accounting for 10% of all wood ducks banded in N. Am. in the last 10 years.

Canada goose banding has increased with the growth of the local giant Canada goose population in Iowa. Migrant Canada geese have also been banded as part of cooperative projects with the MFC. Canada goose banding will be increasingly important as states and the USFWS attempt to assess the impacts of special harvest regulations on giant (resident) Canada goose populations, which have been increasing, and migrant Canada goose populations, which have been stable or decreasing.

Figure 4.1 Breeding populations of important ducks to lowa.

Source: USFWS

Figure 4.2 lowa's giant Canada goose population.

Source: Iowa DNR

Figure 4.3 Goose harvests \& duck stamp sales in lowa (1961 -present).

Source: USFWS

Figure 4.4 Duck harvests in lowa (1961 - present).

Source: USFWS

Table 4.1 Breeding population estimates for 10 species of ducks (in thousands) in the USFWS traditional survey region in N. America. (Source: USFWS)

YEAR	MALLARD	GAD- WALL	AMERICAN WIGEON	GREEN - WINGED TEAL	BLUE WINGED TEAL	NORTHERN SHOVELER	NORTHERN PINTAIL	REDHEAD	CANVAS BACK	SCAUP
1955	8,356	663	3,067	1,823	5,381	1,571	9,387	572	599	5,609
1956	9,842	783	3,118	1,480	4,763	1,630	9,897	755	696	5,734
1957	9,151	691	2,852	1,053	4,312	1,459	6,311	542	615	5,745
1958	10,994	454	2,421	1,326	5,165	1,187	5,552	443	742	5,286
1959	8,746	527	3,703	2,601	5,046	1,456	5,483	493	481	6,961
1960	7,164	721	2,937	1,390	4,185	1,743	5,414	495	600	4,826
1961	6,912	594	2,817	1,709	3,655	1,256	3,676	319	428	5,335
1962	5,139	846	1,882	700	2,940	1,183	3,395	503	354	5,240
1963	6,723	1,092	1,706	1,155	3,681	1,278	3,622	413	499	5,396
1964	5,740	825	2,495	1,505	3,961	1,608	3,013	527	649	5,058
1965	5,101	1,270	2,312	1,237	3,570	1,372	3,549	599	520	4,652
1966	6,680	1,672	2,282	1,580	3,718	2,103	4,764	713	658	4,432
1967	7,470	1,385	2,320	1,588	4,509	2,291	5,270	734	500	4,932
1968	7,019	1,947	2,282	1,405	3,459	1,646	3,470	493	561	4,360
1969	7,536	1,573	2,919	1,468	4,133	2,145	5,900	633	501	5,131
1970	9,960	1,606	3,447	2,171	4,858	2,220	6,369	624	578	5,634
1971	9,306	1,603	3,281	1,881	4,607	2,005	5,874	534	444	5,063
1972	9,255	1,621	3,172	1,895	4,277	2,441	7,018	551	426	7,932
1973	8,060	1,247	2,864	1,936	3,334	1,624	4,351	498	617	6,222
1974	6,681	1,592	2,665	1,840	4,968	2,006	6,583	627	504	5,720
1975	7,494	1,641	2,692	1,667	5,829	1,962	5,878	829	591	6,427
1976	7,894	1,245	2,476	1,536	4,747	1,756	5,475	668	610	5,779
1977	7,396	1,312	2,560	1,291	4,589	1,475	3,935	637	667	6,247
1978	7,353	1,561	3,286	2,194	4,471	1,978	5,106	738	369	5,936
1979	7,816	1,751	3,087	2,019	4,861	2,386	5,382	695	573	7,540
1980	7,570	1,391	3,558	1,994	4,884	1,902	4,514	753	727	6,314
1981	6,367	1,402	2,924	1,851	3,726	2,325	3,472	596	610	5,918
1982	6,254	1,637	2,440	1,543	3,657	2,141	3,709	617	510	5,468
1983	6,313	1,517	2,606	1,836	3,366	1,870	3,506	709	523	7,136
1984	5,247	1,532	2,987	1,361	3,956	1,620	2,969	673	520	6,909
1985	4,754	1,304	2,040	1,435	3,459	1,697	2,511	579	373	5,038
1986	6,836	1,540	1,732	1,682	4,463	2,118	2,737	560	437	5,204
1987	5,613	1,311	1,982	2,003	3,518	1,951	2,629	502	451	4,837
1988	6,331	1,349	2,194	2,058	3,975	1,680	2,011	441	436	4,684
1989	5,650	1,416	1,974	1,843	3,128	1,540	2,113	511	478	4,344
1990	5,452	1,672	1,860	1,790	2,776	1,759	2,257	481	539	4,294
1991	5,444	1,584	2,254	1,558	3,764	1,716	1,803	446	491	5,255
1992	5,976	2,033	2,208	1,773	4,333	1,954	2,098	596	482	4,639
1993	5,708	1,755	2,053	1,695	3,193	2,047	2,053	485	472	4,080
1994	6,980	2,318	2,382	2,108	4,616	2,912	2,972	654	526	4,529
1995	8,269	2,836	2,615	2,301	5,140	2,855	2,758	889	771	4,446
1996	7,941	2,984	2,273	2,459	6,416	3,449	2,736	834	849	4,250
1997	9,940	3,897	3,118	2,507	6,124	4,120	3,558	918	689	4,112
1998	9,640	3,742	2,858	2,087	6,399	3,183	2,521	1,005	686	3,472
1999	10,806	3,236	2,920	2,631	7,150	3,890	3,058	973	716	4,412

Table 4.1 - continued: Breeding population estimates for 10 species of ducks (in thousands) in the USFWS traditional survey region in N. America. (Source: USFWS)

YEAR	MALLARD	GADWALL	AMERICAN WIGEON	GREEN WINGED TEAL	BLUE WINGED TEAL	NORTHERN SHOVELER	NORTHERN PINTAIL	$\begin{aligned} & \text { RED- } \\ & \text { HEAD } \end{aligned}$	CANVAS - BACK	SCAUP
2000	9,470	3,158	2,733	3,194	7,431	3,521	2,908	926	707	4,026
2001	7,904	2,679	2,494	2,509	5,757	3,314	3,296	712	580	3,694
2002	7,504	2,235	2,334	2,334	4,207	2,138	1,790	565	487	3,524
2003	7,950	2,549	2,551	2,679	5,518	3,620	2,558	637	558	3,734
2004	7,425	2,590	1,981	2,461	4,073	2,810	2,185	605	617	3,807
2005	6,755	2,179	2,225	2,157	4,586	3,592	2,561	592	521	3,387
2006	7,277	2,825	2,171	2,587	5,860	3,680	3,386	916	691	3,247
2007	8,307	3,356	2,807	2,890	6,708	4,553	3,335	1,009	865	3,452
2008	7,724	2,728	2,487	2,980	6,640	3,508	2,613	1,056	489	3,738
2009	8,512	3,054	2,469	3,444	7,384	4,376	3,225	1,044	662	4,172
2010	8,430	2,977	2,425	3,476	6,329	4,057	3,509	1,064	585	4,244
Percent Change in 2010 from:										
2009	-1\%	-3\%	-2\%	1\%	-14\%	-7\%	9\%	2\%	-12\%	2\%
1955-09 Av.	13\%	67\%	-6\%	80\%	36\%	78\%	-12\%	63\%	3\%	-16\%
1955-10 Statistics										
Average	7,467	1,804	2,577	1,958	4,671	2,316	3,965	660	568	5,028
Maximum	10,994	3,897	3,703	3,476	7,431	4,553	9,897	1,064	865	7,932
Minimum	4,754	454	1,706	700	2,776	1,183	1,790	319	354	3,247
NAWMP-										
Goals	8,700	1,600	3,300	2,300	5,300	2,100	6,300	760	580	7,600
Percent Difference from Goal										
2010	-3\%	86\%	-27\%	51\%	19\%	93\%	-44\%	40\%	1\%	-44\%

Table 4.2 Waterfowl harvest and hunter activity estimates for lowa. Source is USFWS.
Data for 2001 to the present are based on the Harvest Information Program.

YEAR	DAYS AND HARVEST (1,000's)								FEDERAL DUCK STAMPS	AVE. SEASONAL DUCK BAG	$\begin{aligned} & \hline \text { ACTIVE } \\ & \text { ADULT } \\ & \text { HUNTERS } \\ & \hline \end{aligned}$
	MALLARD	wood DUCK	$\begin{gathered} \text { B-W } \\ \text { TEAL } \end{gathered}$	$\begin{gathered} \text { G-W } \\ \text { TEAL } \end{gathered}$	ALL DUCKS	CANADA GEESE	snow geese	DAYS HUNTED			
1961	88.5	6.8	0.5	16.3	139.4			230.4	41,147	3.9	33,500
1962	21.3	7.8	0.4	5.6	45.1	6.6	12.2	162.0	30,602	2.1	24,000
1963	43.0	29.0	27.9	14.9	139.2	7.2	10.4	228.2	37,166	4.7	29,700
1964	76.6	24.5	17.9	26.8	182.1	4.3	8.5	236.9	37,668	6.2	30,900
1965	79.8	15.4	43.8	22.3	174.6	6.6	26.3	271.6	39,941	6.0	34,000
1966	121.3	30.8	47.3	40.7	270.2	7.2	17.9	361.2	47,438	7.4	41,300
1967	124.9	12.4	43.3	38.4	229.4	12.4	16.8	394.6	52,269	6.6	44,300
1968	40.4	16.1	0.9	19.7	96.3	10.6	10.8	270.0	45,753	2.6	37,500
1969	89.9	21.1	53.3	22.3	183.7	15.5	43.2	397.3	54,807	5.1	47,500
1970	139.2	50.6	51.6	45.2	368.7	12.6	48.3	496.6	65,822	6.0	56,900
1971	160.9	59.3	49.6	26.6	376.2	10.4	46.1	536.5	68,401	6.3	58,700
1972	171.8	39.3	31.2	23.9	344.5	5.0	39.3	513.8	57,907	6.4	50,800
1973	99.9	31.0	18.5	18.1	211.9	11.6	32.5	401.1	57,196	3.9	48,700
1974	106.1	46.7	26.0	24.0	238.0	7.7	45.1	450.6	60,446	4.3	51,600
1975	117.4	57.5	51.0	38.6	313.6	13.5	41.2	446.1	58,791	5.9	49,700
1976	87.5	44.0	33.0	27.5	242.2	9.3	15.8	359.6	55,449	5.0	45,400
1977	138.7	37.9	17.0	38.7	280.0	7.8	29.1	407.3	57,143	5.3	46,200
1978	125.6	73.6	41.1	41.7	351.4	11.9	23.9	424.9	56,259	6.7	47,800
1979	183.3	77.8	69.2	38.0	441.0	10.0	43.2	496.7	49,845	9.5	44,400
1980	118.1	49.1	39.0	37.3	299.9	11.7	23.1	384.6	47,008	6.6	41,100
1981	130.2	54.3	34.6	27.7	301.1	10.2	23.1	371.5	41,648	7.9	35,900
1982	164.9	55.3	58.2	24.3	348.8	10.2	14.0	354.9	40,599	9.6	34,400
1983	115.2	47.3	74.0	27.8	324.2	11.5	16.5	310.4	40,381	8.5	34,000
1984	96.3	46.3	56.8	36.2	299.5	13.3	22.0	300.3	41,078	7.5	35,300
1985	62.0	37.4	41.5	22.6	199.8	10.4	8.5	241.4	33,304	6.8	27,900
1986	88.9	46.0	26.9	18.3	217.0	17.2	11.8	244.0	33,504	7.3	27,900
1987	64.8	36.1	14.2	20.1	161.1	15.1	3.6	207.0	30,248	6.0	25,500
1988	41.6	11.4	1.4	12.5	78.3	12.1	10.1	131.8	22,008	4.3	17,300
1989	32.2	17.0	2.9	17.9	87.8	20.2	4.4	127.5	21,686	4.7	16,600
1990	41.3	25.6	4.6	17.8	105.8	26.6	3.1	159.3	24,686	4.9	20,800
1991	63.1	39.4	6.6	13.3	154.2	29.3	8.1	196.7	24,989	6.8	21,400
1992	64.9	18.8	2.9	14.3	122.8	28.7	4.1	198.6	26,744	5.1	22,800
1993	52.7	22.2	4.1	7.9	100.9	17.3	9.5	176.5	25,640	4.7	21,092
1994	49.1	34.9	17.5	22.5	151.8	26.1	2.4	232.6	29,206	6.0	24,523
1995	86.1	49.2	38.9	23.7	242.3	48.0	4.6	280.2	30,282	8.2	25,792
1996	90.6	42.5	36.2	31.0	244.7	59.5	5.4	284.2	30,945	7.9	26,338
1997	71.2	52.1	54.5	32.7	272.0	52.2	15.2	338.3	36,062	8.3	30,737
1998	99.6	36.0	47.7	41.9	281.9	33.2	15.6	292.8	30,864	9.9	27,454
1999	55.9	35.8	41.9	17.4	176.7	33.0	12.5	271.9	32,419	7.2	27,024
2000	74.2	39.9	25.3	25.4	209.6	61.0	0.6	288.4	30,951	8.2	26,693
2001	117.2	45.5	49.3	29.7	296.4	58.1	5.2	203.5	32,090	11.9	25,000
2002	97.2	44.5	50.6	43.0	287.2	67.1	1.1	185.7	30,806	12.3	23,300
2003	101.7	38.6	30.1	29.4	248.9	55.5	14.4	187.1	30,206	11.0	22,500
2004	54.7	52.9	28.5	16.8	184.5	70.3	1.0	203.0	28,649	9.0	23,900
2005	77.9	38.1	39.0	21.2	205.2	78.6	0.6	128.9	26,943	11.8	20,800
2006	73.2	26.7	27.8	31.9	203.3	73.9	0.2	129.9	29,380	11.3	21,300
2007	72.7	34.2	40.3	39.5	232.8	64.6	0.3	151.4	26,531	11.4	23,700

Table 4.2 - continued: Waterfowl harvest and hunter activity estimates for lowa. Source is USFWS. Data for 2001-09 are based on the Harvest Information Program.

YEAR	DAYS AND HARVEST (1,000's)								$\begin{gathered} \text { FEDERAL } \\ \text { DUCK } \\ \text { STAMPS } \end{gathered}$	AVE. SEASONAL DUCK BAG	ACTIVE ADULT HUNTERS
	MALLARD	wood DUCK	$\begin{gathered} \text { B-W } \\ \text { TEAL } \end{gathered}$	$\begin{aligned} & \text { G-w } \\ & \text { TEAL } \end{aligned}$	ALL Ducks	CANADA GEESE	SNOW Geese	DAYS HUNTED			
2008	72.3	38.3	15.0	31.3	206.1	62.2	0.8	135.8	26,354	10.9	21,700
2009	45.3	45.1	35.5	22.5	181.5	62.0	0.0	130.3	Not avail.	10.3	19,500

Percent Change in 2009 From:											
2008	-37%	18%	137%	-28%	-12%	0%	-100%	-4%		-6%	-10%
1961-08 Avg.	-50%	21%	11%	-15%	-20%	134%	-100%	-55%		46%	-41%
1961-09 Statistics											
Average	89.6	37.6	32.0	26.3	225.6	27.3	15.7	284.4	39,151	7.1	32554.1
Maximum	183.3	77.8	74.0	45.2	441.0	78.6	48.3	536.5	68,401	12.3	58,700
Minimum	21.3	6.8	0.4	5.6	45.1	4.3	0.0	127.5	21,686	2.1	16,600

10-year Avg.											
$1961-70$	82.5	21.5	28.7	25.2	182.9	9.2	21.6	304.9	45,261	5.0	37,960
$1971-80$	130.9	51.6	37.6	31.4	309.9	9.9	33.9	442.1	56,845	6.0	48,440
$1981-90$	83.7	37.7	31.5	22.5	212.3	14.7	11.7	244.8	32,914	6.8	27,560
$1991-00$	70.7	37.1	27.6	23.0	195.7	38.8	7.8	256.0	29,810	7.2	25,385
$2001-09$	79.1	40.4	35.1	29.5	227.3	65.8	2.6	161.7	28,870	11.1	22,411

Table 4.3 Duck and coot seasons in lowa.

YEAR	SEASON LENGTH	SEASON DATES	SHOOTING HOURS	LIMITS		Additional Bag Limit Information
				DUCK BAG/POSS	$\overline{\text { COOT }}$	
STATEWIDE						
1917	227	Sep 1-Apr 15	Unknown	?	?	
1918	107	Sep 16 - Dec 31	SR to SS	25 / none	25 /none	
1919	107	Sep 16 - Dec 31	SR to SS	25 / none	25 /none	
1920	107	Sep 16 - Dec 31	SR to SS	$25 /$ none	25 /none	
1921	107	Sep 16 - Dec 31	SR to SS	25 / none	25 /none	
1922	107	Sep 16 - Dec 31	SR to SS	$25 /$ none	25 /none	
1923	107	Sep 16 - Dec 31	SR to SS	$25 /$ none	25 /none	
1924	107	Sep 16 - Dec 31	1/2 SR to SS	$15 / 50 \mathrm{WF}$	25 /none	WF = all waterfowl combined
1925	107	Sep 16 - Dec 31	1/2 SR to SS	$15 / 50 \mathrm{WF}$	25 /none	
1926	107	Sep 16 - Dec 31	1/2 SR to SS	$15 / 50 \mathrm{WF}$	25 /none	
1927	107	Sep 16 - Dec 31	1/2 SR to SS	$15 / 50 \mathrm{WF}$	25 /none	
1928	107	Sep 16 - Dec 31	1/2 SR to SS	$15 / 50 \mathrm{WF}$	25 /none	
1929	107	Sep 16 - Dec 31	1/2 SR to SS	$15 / 21$ DC	25 /none	DC = all ducks combined
1930	107	Sep 16 - Dec 31	1/2 SR to SS	$15 / 21$ DC	25 /none	
1931	30	Oct 20 - Nov 19	1/2 SR to SS	$15 / 21$ DC	25 /none	
1932	61	Oct 1 - Nov 30	1/2 SR to SS	$15 / 21$ *a	25 /none	*a) Closed season on Wd, Ru, \& Bu.
1933	61	Oct 1 - Nov 30	1/2 SR to SS	$12 / 24$ *a	25 /none	
1934	30	Oct $10-$ Nov 18	SR to SS	$12 / 24$ *a	25 /none	Live decoys limited to 25 . Season included 10 rest days.
1935	30	Oct 21 - Nov 19	7 AM to 4 PM	$10 / 10$ *a	15/15	Use of live decoys prohibited.
1936	30	Nov 1 - Nov 30	7 AM to 4 PM	$10 / 10$ *b	15/15	$\left.{ }^{*} \mathrm{~b}\right)$ Closed sea. on Wd, Cb, Rh, Ru, \& Bu.
1937	30	Oct 9 - Nov 7	7 AM to 4 PM	$10 / 10$ *b	$25 / 25$	
1938	45	Oct $15-$ Nov 28	7 AM to 4 PM	$10 / 20$ * c	$25 / 25$	*c) Only $1 \mathrm{Bu}, 1 \mathrm{Cb}, 1 \mathrm{Ru}$, and 1 Rh , \& no more than 3 in aggregate
1939	45	Oct $22-$ Dec 5	7 AM to 4 PM	$10 / 20$ * C	$25 / 25$	
1940	60	Oct 16 - Dec 14	SR to 4 PM	$10 / 20{ }^{*} \mathrm{c}$	$25 / 25$	
1941	60	Oct 16 - Dec 14	SR to 4 PM	$10 / 20$ *d	$25 / 25$	*d) Only 3 Rh or 3 Bu or 3 in aggregate \& only 1 Wd in poss at any time.
1942	70	Oct $15-$ Dec 23	SR to SS	$10 / 20$ *d	$25 / 25$	
1943	70	Sep $25-$ Dec 3	1/2 SR to SS	$10 / 20$ *d	$25 / 25$	
1944	80	Sep 20-Dec 8	1/2 SR to SS	$10 / 20$ *e	$25 / 25$	*e) Only 5 each or in comb.: Ma, Pt , or Wg \& only 1 Wd . 25 Am or Rm or comb.
1945	80	Sep 20-Dec 8	1/2 SR to SS	$10 / 20$ *	$25 / 25$	*f) Only 1 Wd in poss. at any time 25 Cm or Rm or comb.
1946	45	Oct $26-\operatorname{Dec} 9$	1/2 SR to 1/2 SS	7/14*f	$25 / 25$	
1947	30	Oct 21 - Nov 19	$1 / 2$ SR to 1 SS	4/8*f	15/15	
1948	30	Oct 29 - Nov 27	$1 / 2 \mathrm{SR}$ to 1 SS	4/8*f	15/15	
1949	40	Oct 21 - Nov 29	$1 / 2 \mathrm{SR}$ to 1 SS	$4 / 8$ *f	15/15	
1950	35	Oct $20-N o v 23$	$1 / 2$ SR to 1 SS	$4 / 8$ *f	15/15	
1951	45	Oct 12 - Nov 25	1/2 SR to 1 SS	4/8*f	$10 / 10$	
1952	55	Oct 8 - Dec 1	1/2 SR to 1 SS	$4 / 8$ *g	$10 / 10$	*g) Only 1 Wd in poss. at any time. 1 Hm or 25 Cm or Rm or comb.
1953	55	Oct 8 - Dec 1	1/2 SR to SS	$4 / 8$ *g	10 /10	

Table 4.3 continued: Duck and coot seasons in lowa.

YEAR	SEASON LENGTH	SEASON DATES	SHOOTING HOURS	LIMITS		Additional Bag Limit Information
				DUCK BAG/POSS	COOT BAG/POSS	
1954	55	Oct $15-$ Dec. 8	1/2 SR to 1 SS	4 / 8 *	10/10	*h) Closed sea. on Wd. 1 Hm or 25 Cm or Rm or comb.
1955	70	Oct 8 - Dec 16	1/2 SR to $1 / 2 \mathrm{SS}$	$4 / 8$ *	10/10	
1956	70	Oct 6 - Dec 14	1/2 SR to 1/2 SS	$4 / 8$ *h	$10 / 10$	
1957	70	Oct 5 - Dec 13	1/2 SR to SS	4/8*i	$10 / 10$	*i) Closed season on Wd. 5 mergansers, only 1 Hm .
1958	70	Oct 4 - Dec 12	1/2 SR to SS	$4 / 8$ *ii	10/10	*ii) Only 2 Cb or 2 Rh or 2 in comb. No Wd season. 5 merg. only 1 Hm .
1959	50	Oct $20-$ Dec 8	SR to SS	$3 / 6$ j	$3 / 6$	${ }^{*}$ j) Only $1 \mathrm{Wd}, 1 \mathrm{Cb}, 1 \mathrm{Rh}$, or 1 Ru. 5 mergansers, only 1 Hm .
1960	50	Oct 15-Dec 3	1/2 SR to SS	$3 / 6$ *	$8 / 12$	*k) Only 1 Wd. Closed sea. on Cb \& Rh. 5 mergansers, only 1 Hm .
1961	30	Oct 21 - Nov 19	SR to SS	2/4**	6/6	
1962	25	Oct 27 - Nov 20	SR to SS	$2 / 4$ *	$6 / 6$	${ }^{*}$) Only 1 Ma or Bd, 2 Wd . No Cb or Rh. 2 bonus Sc., 5 merg., only 1 Hm .
1963	35	Oct 5-13 Oct 26 - Nov 20	SR to SS	$4 / 8$ *m	$8 / 8$	*m) Only 2 Ma or Bd, 2 Wd . No Cb or Rh. 5 mergansers, only 1 Hm .
1964	35	Oct 3-4 Oct 24 - Nov 25	SR to SS	$4 / 8$ *	$10 / 20$	*n) Only 2 Ma or Bd, $2 \mathrm{Wd}, 2 \mathrm{Cb}$ or 2 Rh. 5 mergansers, only 1 Hm .
1965	40	Sep 11-19 (teal season) Oct 23 - Dec 1	$\begin{array}{r} \hline \text { SR to } S S \\ 1 / 2 \text { SR to } S S \\ \hline \end{array}$	4/8*0	$10 / 20$	*o) Only 1 Ma or Pt or Bd, $2 \mathrm{Wd}, 2 \mathrm{Cb}$ or Rh. 5 mergansers, only 1 Hm .
1966	45	Sep 17-25 (teal season) Oct 15 - Nov 28	$\begin{array}{r} \hline \text { SR to } S S \\ 1 / 2 S R \text { to } S S \\ \hline \end{array}$	$4 / 8$ *00	$10 / 20$	*oo) Only 2 Ma or Bd, $2 \mathrm{Wd}, 2 \mathrm{Cb}$. 5 mergansers, only 1 Hm .
1967	40	Sep 16-24 (teal season) Oct 21 - Nov 29	$\begin{array}{r} \hline \text { SR to } S S \\ 1 / 2 \text { SR to } S S \end{array}$	$4 / 8$ *p	$10 / 20$	${ }^{*} \mathrm{p}$) Only 2 Ma or Bd , 1 Wd , \& 1 Cb . 5 mergansers, only 1 Hm .
1968	30	Oct 26 - Nov 24	1/2 SR to SS	$3 / 6$ *q	$10 / 20$	*q) Only 1 Ma, 2 Bd, 2 Wd, 1 Cb or Rh. 5 mergansers, only 1 Hm .
1969	30	Sep 13-21 (teal season) Oct 25 - Nov 23	$\begin{array}{r} \hline S R \text { to } S S \\ 1 / 2 S R \text { to } S S \\ \hline \end{array}$	$4 / 8$ * r	$10 / 20$	*r) Only 2 Ma, 2 Bd, 2 Wd, 1 Cb or Rh. 5 mergansers, only 1 Hm .
1970	55	Oct 3 - Nov 26	SR to SS	PS *s	$15 / 30$	*s) $90 \mathrm{pt}=\mathrm{Hn} \mathrm{Ma}, \mathrm{Bd}, \mathrm{Wd}, \mathrm{Rh}, \mathrm{Cb}, \mathrm{Hm}$. $20 \mathrm{pt}=\mathrm{Dr}$ Ma, Hn Pt, Rn. $10 \mathrm{pt}=$ all other.
1971	50	Oct 2 - Nov 20	1/2 SR to SS	PS *t	$15 / 30$	$\left.{ }^{* t}\right) 100 \mathrm{pt}=\mathrm{Cb}, \mathrm{Rh} .90 \mathrm{pt}=\mathrm{Hn} \mathrm{Ma}, \mathrm{Bd}, \mathrm{Wd}, \mathrm{Hm}$. $20 \mathrm{pt=} \mathrm{Dr}$ Ma, Hn Pt, Rn. $10 \mathrm{pt}=$ all other.
1972	50	Oct 7-12 Oct 21 - Dec 3	SR to SS	PS *u	$15 / 30$	*u) 90 pt= Hn Ma, Bd, Wd, Hm. $20 \mathrm{pt}=\mathrm{Dr} \mathrm{Ma}, \mathrm{Hn} \mathrm{Pt}, \mathrm{Rn} .10 \mathrm{pt}=$ all other. Closed season on $\mathrm{Cb} \& \mathrm{Rh}$.
1973	45	Oct 6-10 Oct 20 - Nov 28	SR to SS	PS *V	$15 / 30$	*v) $100 \mathrm{pt}=\mathrm{Cb}, \mathrm{Rh} .90 \mathrm{pt}=\mathrm{Hn} \mathrm{Ma}, \mathrm{Wd}, \mathrm{Hm}$. $25 \mathrm{pt}=\mathrm{Dr} \mathrm{Ma}, \mathrm{Pt}, \mathrm{Bd}, \mathrm{Rn}$ \& all others. $15 \mathrm{pt}=\mathrm{Bt}$, Gt, Ga, Wg, Sh, Sc, Cm, Rm.
1974	45	Oct 5-12 Oct 26 - Dec 1	SR to SS	PS *w	15 /30	*w) $100 \mathrm{pt}=\mathrm{Cb}, \mathrm{Rh} .90 \mathrm{pt}=\mathrm{Hn} \mathrm{Ma}, \mathrm{Bd}, \mathrm{Wd}, \mathrm{Hm}$. $35 \mathrm{pt}=\mathrm{Dr}$ Ma, Rn, Md. $15 \mathrm{pt}=$ all others.
1975	45	Oct 4-11 Oct 25 - Nov 30	1/2 SR to SS	PS *x	$15 / 30$	$\left.{ }^{*} x\right) 100 \mathrm{pt}=\mathrm{Cb}, \mathrm{Rh} .90 \mathrm{pt}=\mathrm{Hn} \mathrm{Ma}, \mathrm{Bd}, \mathrm{Wd}, \mathrm{Hm}$. $35 \mathrm{pt}=\mathrm{Dr} \mathrm{Ma}, \mathrm{Rn}, \mathrm{Wg}$, \& all others. $10 \mathrm{pt}=\mathrm{Bwt}, \mathrm{Gwt}$, Ga, Pt, Sh, Sc.

Table 4.3 continued: Duck and coot seasons in lowa.

YEAR	SEASON LENGTH	SEASON DATES		SHOOTINGHOURS	LIMITS		Additional Bag Limit Information	
				DUCK BAG/POSS	COOT BAG/POSS			
1976	50	Oct 2-7 Oct 23 - Dec 5			1/2 SR to SS	PS *y	$15 / 30$	${ }^{*}$ y) $100 \mathrm{pt}=\mathrm{Cb} .70 \mathrm{pt}=\mathrm{Hn} \mathrm{Ma}, \mathrm{Bd}, \mathrm{Wd}, \mathrm{Rh}, \mathrm{Hm}$. $25 \mathrm{pt}=\mathrm{Dr} \mathrm{Ma}, \mathrm{Rn}, \mathrm{Wg}, \&$ all others. 10 pt= Bt, Gt, Ct, Ga, Pt, Sh, Sc, Cm, Rm.
1977	45	Oct 8-15 Oct 22 - Nov 27		SR to SS	PS *y	$15 / 30$		
1978	50	Oct 1-8 Oct 21-Dec 1		1/2 SR to SS	PS *z	$15 / 30$	$\begin{aligned} & \text { *z) } 100 \mathrm{pt=} \text { Cb. } 70 \mathrm{pt}=\mathrm{Hn} \mathrm{Ma,} \mathrm{Bd,} \mathrm{Wd,} \mathrm{Rh,} \mathrm{Hm.} \\ & 35 \mathrm{pt}=\mathrm{Dr} \text { Ma, Rn, \& all others. } \\ & 10 \mathrm{pt}=\mathrm{Bt}, \mathrm{Gt}, \mathrm{Ct}, \mathrm{Ga}, \mathrm{Wg}, \mathrm{Pt}, \mathrm{Sh}, \mathrm{Sc}, \mathrm{Cm}, \mathrm{Rm} . \end{aligned}$	
1979	50	Sep 22-26 Oct 20 - Dec 3		1/2 SR to SS	PS *aa	$15 / 30$	*aa) $100 \mathrm{pt}=\mathrm{Cb} .70 \mathrm{pt}=\mathrm{Hn} \mathrm{Ma}, \mathrm{Bd}, \mathrm{Wd}, \mathrm{Rh}, \mathrm{Hm}$. $25 \mathrm{pt}=\mathrm{Dr}$ Ma, Rn, \& all others. $10 \mathrm{pt}=\mathrm{Bt}, \mathrm{Gt}, \mathrm{Ct}, \mathrm{Ga}, \mathrm{Wg}, \mathrm{Pt}, \mathrm{Sh}, \mathrm{Sc}, \mathrm{Cm}, \mathrm{Rm}$.	
1980	50	Sep 20-24 Oct 18 - Dec 1		1/2 SR to SS	PS *aa	$15 / 30$		
1981	50	Sep 19-23 Oct 17 - Nov 30		1/2 SR to SS	PS *aa	$15 / 30$		
1982	50	Sep 18-22 Oct 23 - Dec 6		1/2 SR to SS	PS *aa	15 /30		
1983	50	NORTH ZONE Sep 17-21 Oct 15 - Nov 28	SOUTH ZONE Sep 17-21 Oct 22 - Dec 5	1/2 SR to SS	PS *ab	$15 / 30$	*ab) $100 \mathrm{pt}=\mathrm{Cb}, \mathrm{Bd} .70 \mathrm{pt}=\mathrm{Hn} \mathrm{Ma}, \mathrm{Wd}, \mathrm{Rh}, \mathrm{Hm}$. $25 \mathrm{pt}=\mathrm{Dr}$ Ma, Rn, \& all others. $10 \mathrm{pt}=\mathrm{Bt}, \mathrm{Gt}, \mathrm{Ct}, \mathrm{Ga}, \mathrm{Wg}, \mathrm{Pt}, \mathrm{Sh}, \mathrm{Sc}, \mathrm{Cm}, \mathrm{Rm}$.	
1984	50	Sep 22-26 Oct 20 - Dec 3	Sep 22-26 Oct 27 - Dec 10	1/2 SR to SS	PS *ab	$15 / 30$		
1985	40	Sep 21-23 Oct 19 - Nov 24	Sep 21-23 Oct 26 - Dec 1	1/2 SR to SS	PS *ac	$15 / 30$	*ac) $100 \mathrm{pt}=\mathrm{Hn} \mathrm{Ma}, \mathrm{Cb}, \mathrm{Bd} 70 \mathrm{pt}=$.Wd , Rh, Hm. $35 \mathrm{pt}=\mathrm{Dr} \mathrm{Ma}, \mathrm{Pt}, \mathrm{Rn}, \&$ all others. $20 \mathrm{pt}=\mathrm{Bt}, \mathrm{Gt}, \mathrm{Ct}, \mathrm{Ga}, \mathrm{Wg}$, Sh, Sc, Cm, Rm.	
1986	40	Sep 20-24 Oct 18 - Nov 21	Sep 20-22 Oct 25 - Nov 30	1/2 SR to SS	PS *ad	$15 / 30$	*ad) $100 \mathrm{pt}=\mathrm{Hn} \mathrm{Ma}, \mathrm{Bd} .70 \mathrm{pt}=\mathrm{Wd}$, Rh, Hm. $35 \mathrm{pt}=\mathrm{Dr} \mathrm{Ma}, \mathrm{Pt}, \mathrm{Rn}, \&$ all others. $20 \mathrm{pt}=\mathrm{Bt}, \mathrm{Gt}, \mathrm{Ct}, \mathrm{Ga}, \mathrm{Wg}$, Sh, Sc, Cm, Rm. Closed season on Cb.	
$\begin{gathered} 1987 \\ \left({ }^{*} \mathrm{SH}\right) \end{gathered}$	40	NORTH ZONE Sep 19-23 Oct 17 - Nov 20	SOUTH ZONE Sep 19-21 Oct 24 - Nov 29	1/2 SR to SS	PS *ad	$15 / 30$		
1988	30	Oct 8-9 Oct 22 - Nov 18	Oct 22-28 Nov 5-27	SR to SS	$3 / 6$ *ae	$15 / 30$	*ae) Only 2 Ma (1 Hn), 2 Wd, 1 Pt, 1 Rh, 1 Bd. 5 merg., only 1 Hm . Closed sea. on Cb.	
1989	30	Oct 7-8 Oct 21 - Nov 17	Oct 21-27 Nov 4-26	SR to SS	$3 / 6$ *ae	$15 / 30$		
1990	30	Oct 6-7 Oct 20 - Nov 16	$\begin{aligned} & \hline \text { Oct 20-26 } \\ & \text { Nov 3-25 } \\ & \hline \end{aligned}$	1/2 SR to SS	$3 / 6$ *ae	$15 / 30$		
1991	30	$\begin{aligned} & \text { Oct 5-6 } \\ & \text { Oct 19- Nov } 16 \\ & \hline \end{aligned}$	Oct 19-25 Nov 9 - Dec 1	1/2 SR to SS	$3 / 6$ *ae	$15 / 30$		
1992	30	Oct 10-13 Oct 24 - Nov 18	Oct 24-30 Nov 7-29	1/2 SR to SS	$3 / 6$ *ae	$15 / 30$		

Table 4.3 continued: Duck and coot seasons in lowa.

YEAR	SEASON LENGTH	SEASON DATES		LIMITS			Additional Bag Limit Information
				SHOOTING HOURS	DUCK BAG/POSS	COOT BAG/POSS	
1993	30	NORTH ZONE	SOUTH ZONE (2)				
		Oct 2-4	Oct 23-29	1/2 SR to SS	$3 / 6$ *ae	$15 / 30$	
		Oct 23 - Nov 18	Nov 6-28				
1994	40	Sept 17-19	Oct 1-3	1/2 SR to SS	$3 / 6$ *af	$15 / 30$	*af) Only $2 \mathrm{Ma}(1 \mathrm{Hm}), 2 \mathrm{Wd}, 1 \mathrm{Pt}, 1 \mathrm{Rh}, 1 \mathrm{Bd}, 1 \mathrm{Cb}$.
		Oct 15-Nov 20	Oct 22 - Nov 27				5 merg., only 1 Hm .
1995	50	Sept 23-27	Sept 23-25	1/2 SR to SS	$5 / 10$ *ag	15 /30	*ag) Only $4 \mathrm{Ma}(1 \mathrm{Hn}), 2 \mathrm{Wd}, 1 \mathrm{Pt}, 1 \mathrm{Rh}, 1 \mathrm{Bd}, 1 \mathrm{Cb}$.
		Oct 15 - Nov 28	Oct $21-$ Dec 6				5 merg., only 1 Hm .
1996	50	Sept 21-25	Sept 21-23	1/2 SR to SS	5/10 *ah	$15 / 30$	*ah) Only $4 \mathrm{Ma}(1 \mathrm{Hn}), 2 \mathrm{Wd}, 1 \mathrm{Pt}, 2 \mathrm{Rh}, 1 \mathrm{Bd}, 1 \mathrm{Cb}$ 5 merg., only 1 Hm .
		Oct 19-Dec 2	Oct 19- Dec 4				
	Youth Day	Oct 5	Oct 5	1/2 SR to SS	5/10 *ah		
1997	60	Sept 20-24	Sept 20-24	1/2 SR to SS	$6 / 12$ *ai	15 /30	*ai) Only $4 \mathrm{Ma}(2 \mathrm{Hn}), 2 \mathrm{Wd}, 3 \mathrm{Pt}, 2 \mathrm{Rh}, 1 \mathrm{Bd}, 1 \mathrm{Cb}$. 5 merg., only 1 Hm .
		Oct $11-\operatorname{Dec} 4$	Oct 18 - Dec 11				
	Youth Day	Sept 27	Sept 27	1/2 SR to SS	$6 / 12$ *ai	$15 / 30$	
$\begin{gathered} 1998 \\ \text { (*HIP) } \end{gathered}$	60	Sept 19-23	Sept 19-23	$1 / 2$ SR to SS	$6 / 12$ *aj	$15 / 30$	*aj) Only $4 \mathrm{Ma}(2 \mathrm{Hn}), 2 \mathrm{Wd}, 1 \mathrm{Pt}, 2 \mathrm{Rh}, 1 \mathrm{Bd}, 1 \mathrm{Cb}$. 5 merg., only 1 Hm .
		Oct 10-Dec 3	Oct 17 - Dec 10				
	Youth Day	Sept 26	Sept 26	1/2 SR to SS	$6 / 12$ *aj	$15 / 30$	
1999	60	Sept 18-22	Sept 18-22	1/2 SR to SS	$6 / 12$ *ak	$15 / 30$	*ak) Only 4 Ma (2 Hn), 2 Wd, 1 Pt, 2 Rh, 1 Bd, 1 Cb \& $3 \mathrm{Sc} . \quad 5$ merg., only 1 Hm .
		Oct 16-Dec 9	Oct $16-\operatorname{Dec} 9$				
	Youth Day	Oct 9	Oct 9	1/2 SR to SS	6/12 *ak	$15 / 30$	
2000	60	Sept 23-27	Sept 23-27	1/2 SR to SS	$6 / 12$ *ak	$15 / 30$	
		Oct 14-Dec 7	Oct 14- Dec 7				
	Youth Day	Oct 7-8	Oct 7-8	1/2 SR to SS	6/12 *ak	$15 / 30$	
2001	60	Sept 22-26	Sept 22-26	1/2 SR to SS	6/12 *ak	$15 / 30$	
		Oct 13-Dec 6	Oct 13-Dec 6				
	Canvasback Youth Day	Oct. 27 - Nov 15	Nov 17-Dec 6				
		Oct 6-7	Oct 6-7	1/2 SR to SS	$6 / 12$ *ak	$15 / 30$	
2002	60	Sept 21-25	Sept 21-23	$1 / 2$ SR to SS	$6 / 12$ *al	$15 / 30$	*al) Only 4 Ma (2 Hn), $2 \mathrm{Wd}, 1 \mathrm{Pt}, 2 \mathrm{Rh}, 1 \mathrm{Bd}$,
		Oct 12-Dec 5	Oct 19-Dec 14				\& 3 Sc .5 merg., only 1 Hm . Closed sea. on Cb
	Pintail	Sept 21-25	Sept 21-23				
		Oct $12-\mathrm{Nov} 5$	Oct $19-$ Nov 14				
	Youth Day	Oct 5-6	Oct 5-6	1/2 SR to SS	6/12 *al	$15 / 30$	
2003	60	Sept 20-24	Sept 20-22	1/2 SR to SS	6/12 *ak	$15 / 30$	*ak) Only $4 \mathrm{Ma}(2 \mathrm{Hn}), 2 \mathrm{Wd}, 1 \mathrm{Pt}, 2 \mathrm{Rh}, 1 \mathrm{Bd}, 1 \mathrm{Cb}$
		Oct 11-Dec 4	Oct 18 - Dec 13				\& 3 Sc . 5 merg., only 1 Hm .
	Pintail	Sept 20-24	Sept 20-22				
		Oct $11-\mathrm{Nov} 4$	Oct 18 - Nov 13				
	Canvasback Youth Day	Oct 18 - Nov 16	Oct $25-$ Nov 23				
		Oct 4-5	Oct 4-5	1/2 SR to SS	$6 / 12$ *ak	$15 / 30$	
2004	60	Sept 18-22	Sept 25-26	$1 / 2 \mathrm{SR}$ to SS	$6 / 12$ *ak	$15 / 30$	
		Oct 16-Dec 9	Oct 16-Dec 12				
	Pintail	Sept 18-22	Sept 25-26				
		Oct $16-\mathrm{Nov} 9$	Oct 16 - Nov 12				
	Canvasback Youth Day	Oct $23-$ Nov 21	Oct $23-$ Nov 21				
		Oct 2-3	Oct 9-10	1/2 SR to SS	$6 / 12$ *ak	15/30	

Table 4.3 continued: Duck and coot seasons in lowa.

Table 4.3 continued: Duck and coot seasons in lowa.

DUCK SPECIES: $\mathrm{Ma}=$ Mallard, $\mathrm{Wd}=$ Wood duck, $\mathrm{Bd}=$ Black duck, $\mathrm{Cb}=$ Canvasback, $\mathrm{Rh}=$ Redhead, $\mathrm{Ru}=$ Ruddy duck, $\mathrm{Bu}=\mathrm{Bufflehead}$,
$\mathrm{Pt}=$ Pintail, $\mathrm{Wg}=$ Wigeon, $\mathrm{Sc}=\mathrm{Scaup}, \mathrm{Rn}=$ Ring-necked duck $\mathrm{Bt}=$ Blue-winged teal, $\mathrm{Gt}=$ Green-winged teal,
$\mathrm{Ga}=$ Gadwall, $\mathrm{Sh}=$ Shoveler, $\mathrm{Ct}=$ Cinnamon teal, $\mathrm{Md}=$ Mottled duck, ($\mathrm{Hn}=\mathrm{Hen}, \mathrm{Dr}=$ Drake)
$\mathrm{Cm}=$ Common merganser, Rm = Red-breasted merganser, $\mathrm{Hm}=$ Hooded merganser
SHOOTING HOURS: SR to $S S=$ sunrise to sunset, $1 / 2 S R$ to $S S=1 / 2$ hour before sunrise to sunset, $1 / 2$ SR to $1 / 2 S S=1 / 2$ hour before sunrise to $1 / 2$ hour before sunset, $1 / 2$ SR to $1 S S=1 / 2$ hour before sunrise to 1 hour before sunset. Shooting hours began at 12:00 noon on opening day for hunting seasons 1931-33, 1947-54, \& 1959-63. lowa set daily shooting hours at sunrise or later during 27 of the 72 hunting seasons between 1918-89. Federal regulations set daily shooting hours at sunrise or later during 16 of the 90 hunting seasons(1918-2007).
LIMIT: BAG = Daily bag limit, POSS = Possession limit
POSS LIMIT = Twice the daily bag limit unless otherwise noted.
PS = Point System was used to determine the daily bag limit. The daily bag limit was obtained when the point value of the last duck taken, added to the point values of the previous ducks bagged, equaled or exceeded 100 points.
SPEC. REGULATIONS: Wood duck season was closed by Federal regulation from the 1918 through the 1940 season.
Canvasback and redhead seasons were closed on the Mississippi River from 1975 thru 1979.
Canvasback season was closed on the Mississippi River in 1980-82.
Canvasback season closed on Pools 9 \& 19 on the Mississippi River from 1983-85.
Canvasback season closed statewide 1936-37, 1960-63, 1972, 1986-93, 2002, 2008.
DUCK ZONE BOUNDARY (1) = a line running from the Nebraska-lowa border along $1-80$ to the lowa-lllinois border.
DUCK ZONE BOUNDARY (2) = a line running from the Nebraska-lowa border along State Hwy 175, east to State Hwy 37,
southeast to U.S. Hwy 59 , south to $\mathrm{I}-80$ and along I-80 to the lowa-Illinois border.
DUCK ZONE BOUNDARY (3) = a line running from the Nebraska-lowa border along State Hwy 175, east to State Hwy 37, southeast to State Hwy 183, northeast to State Hwy 141, east to U.S. Hwy 30, and along U.S. Hwy 30 to the lowa-Illinois border.
(*SH) Steel shot required statewide for hunting all migratory gamebirds except woodcock.

STEEL SHOT REGULATIONS HISTORY:

In 1977, no person could hunt waterfowl on all waters and a 150 yard zone thereto in Fremont and Mills Counties while possessing 12 gauge shotshells loaded with any shot other than steel. Drainage ditches, temporary sheet water and the Missouri River were exempt.
During 1978 \& 1979, no person could hunt waterfowl on all waters and a 150 yard zone thereto in Fremont and Mills Counties and on the Upper Mississippi Wildlife Refuge while possessing 12 gauge shotshells loaded with any shot other than steel. Drainage ditches, temporary sheet water, and the Missouri River in Mills and Fremont Counties were exempt. In 1980, Sweet Marsh in Bremer County, Big Marsh in Butler County, and the Princeton Area in Scott County, were added to the areas previously described in the steel shot regulations and the rule now applied to all shotgun gauges. In 1981, Green Island in Jackson County was added to the list of areas previously described where steel shot was required. During the 1982 through 1984 seasons, the previously described list of areas for steel shot remained the same. During the 1985 \& 1986 seasons, no person could hunt migratory game birds except woodcock on lands or waters under the jurisdiction of the State Conservation Commission, the U.S. Government, or any county conservation board, or on all waters and a 150 yard zone adjacent to these waters, including reservoirs, lakes, ponds, marshes, bayous, swamps, rivers, streams, and seasonally flooded areas of all types, while possessing shotshells loaded with shot other than steel shot. Temporary sheet water, farm ponds less than 2 acres in size, and streams with water less than 25 feet in width where the hunting was occuring were exempt. In addition, no person could hunt waterfowl in the zone bounded on the west by the Missouri River, on the south by I-680, on the east by I-29 and on the north by the Soldier River, while possessing any shotshells loaded with shot other than steel shot.
From 1987 to the present, no person could hunt migratory game birds except woodcock on all lands and waters within the State of lowa while possessing any shotshell loaded with shot other than steel shot, or copper or nickle coated steel shot. In 1998, nontoxic shot was required for any shotgun shooting (except turkey hunting) on most DNR managed wildlife areas in lowa's prairie pothole region that had waterfowl production potential.
(*HIP) First year migratory bird hunters in lowa registered (by phone) for the federal Harvest Information Program (HIP).

Table 4.4 Goose seasons in lowa.

YEAR	GOOSE SPECIES	SEASON LENGTH	SEASON DATES	SHOOTING HOURS	LIMIT BAG/POSS	Additional Bag Limit Information
STATEWIDE						
1917	$\mathrm{Ca} / \mathrm{Sn} / \mathrm{Wf}$	227	Sep 1 - Apr 15	Unknown	?	
1918	$\mathrm{Ca} / \mathrm{Sn} / \mathrm{Wf}$	107	Sep 16 - Dec 31	SR to SS	8 / none	
1919	$\mathrm{Ca} / \mathrm{Sn} / \mathrm{Wf}$	107	Sep 16 - Dec 31	SR to SS	8 / none	
1920	$\mathrm{Ca} / \mathrm{Sn} / \mathrm{Wf}$	107	Sep 16 - Dec 31	SR to SS	8 / none	
1921	$\mathrm{Ca} / \mathrm{Sn} / \mathrm{Wf}$	107	Sep 16 - Dec 31	SR to SS	$8 /$ none	
1922	$\mathrm{Ca} / \mathrm{Sn} / \mathrm{Wf}$	107	Sep 16 - Dec 31	SR to SS	8 / none	
1923	$\mathrm{Ca} / \mathrm{Sn} / \mathrm{Wf}$	107	Sep 16 - Dec 31	SR to SS	8 / none	
1924	$\mathrm{Ca} / \mathrm{Sn} / \mathrm{Wf}$	107	Sep 16 - Dec 31	$1 / 2 \mathrm{SR}$ to SS	$8 / 50 \mathrm{WF}$	WF = all waterfowl combined
1925	$\mathrm{Ca} / \mathrm{Sn} / \mathrm{Wf}$	107	Sep 16 - Dec 31	$1 / 2$ SR to SS	8/50 WF	
1926	$\mathrm{Ca} / \mathrm{Sn} / \mathrm{Wf}$	107	Sep 16 - Dec 31	1/2 SR to SS	8/50 WF	
1927	$\mathrm{Ca} / \mathrm{Sn} / \mathrm{Wf}$	107	Sep 16 - Dec 31	$1 / 2$ SR to SS	8/50 WF	
1928	$\mathrm{Ca} / \mathrm{Sn} / \mathrm{Wf}$	107	Sep 16 - Dec 31	1/2 SR to SS	8/50 WF	
1929	$\mathrm{Ca} / \mathrm{Sn} / \mathrm{Wf}$	107	Sep 16 - Dec 31	$1 / 2$ SR to SS	8/50 WF	
1930	$\mathrm{Ca} / \mathrm{Sn} / \mathrm{Wf}$	107	Sep 16 - Dec 31	1/2 SR to SS	$4 / 8$	
1931	$\mathrm{Ca} / \mathrm{Sn} / \mathrm{Wf}$	30	Oct $20-$ Nov 19	1/2 SR to SS	4/8	
1932	$\mathrm{Ca} / \mathrm{Sn} / \mathrm{Wf}$	61	Oct 1 - Nov 30	1/2 SR to SS	4/8	
1933	Ca/Sn/Wf	61	Oct 1 - Nov 30	$1 / 2 \mathrm{SR}$ to SS	4/8	
1934	$\mathrm{Ca} / \mathrm{Sn} / \mathrm{Wf}$	30	Oct $10-\mathrm{Nov} 18$	SR to SS	$4 / 8$	(included 10 rest days)
1935	$\mathrm{Ca} / \mathrm{Sn} / \mathrm{Wf}$	30	Oct 21 - Nov 19	7 AM to 4 PM	4/4	
1936	$\mathrm{Ca} / \mathrm{Sn} / \mathrm{Wf}$	30	Nov 1 - Nov 30	7 AM to 4 PM	4/4	
1937	$\mathrm{Ca} / \mathrm{Sn} / \mathrm{Wf}$	30	Oct 9 - Nov 7	7 AM to 4 PM	5/5	
1938	$\mathrm{Ca} / \mathrm{Sn} / \mathrm{Wf}$	45	Oct $15-$ Nov 28	7 AM to 4 PM	5/10	
1939	$\mathrm{Ca} / \mathrm{Sn} / \mathrm{Wf}$	45	Oct $22-$ Dec 5	7 AM to 4 PM	$4 / 8$	
1940	$\mathrm{Ca} / \mathrm{Sn} / \mathrm{Wf}$	60	Oct 16 - Dec 14	SR to 4 PM	$3 / 6$	
1941	$\mathrm{Ca} / \mathrm{Sn} / \mathrm{Wf}$	60	Oct 16 - Dec 14	SR to 4 PM	$3 / 6$	
1942	$\mathrm{Ca} / \mathrm{Sn} / \mathrm{Wf}$	70	Oct 15-Dec 23	SR to SS	2/4	
1943	$\mathrm{Ca} / \mathrm{Sn} / \mathrm{Wf}$	70	Sep $25-$ Dec 3	$1 / 2$ SR to SS	2/4	
1944	$\mathrm{Ca} / \mathrm{Sn} / \mathrm{Wf}$	80	Sep $20-$ Dec 8	$1 / 2 \mathrm{SR}$ to SS	2/4*a	*a) Sn goose poss. limit = 8 .
1945	$\mathrm{Ca} / \mathrm{Sn} / \mathrm{Wf}$	80	Sep $20-$ Dec 8	$1 / 2$ SR to SS	2/4*a	
1946	Ca/Sn/Wf	45	Oct $26-\operatorname{Dec} 9$	1/2 SR to 1/2 SS	4/4*b	*b) Closed Ca goose season.
1947	$\mathrm{Ca} / \mathrm{Sn} / \mathrm{Wf}$	30	Oct 21 - Nov 19	$1 / 2 \mathrm{SR}$ to 1 SS	$4 / 4$ * C	${ }^{*}$ c) Only 1 Ca or 1 Wf goose in bag.
1948	$\mathrm{Ca} / \mathrm{Sn} / \mathrm{Wf}$	30	Oct 29 - Nov 27	$1 / 2$ SR to 1 SS	$4 / 4$ * ${ }^{\text {c }}$	
1949	$\mathrm{Ca} / \mathrm{Sn} / \mathrm{Wf}$	40	Oct 21 - Nov 29	$1 / 2$ SR to 1 SS	4/4 * C	
1950	$\mathrm{Ca} / \mathrm{Sn} / \mathrm{Wf}$	35	Oct $20-$ Nov 23	$1 / 2$ SR to 1 SS	4/4* ${ }^{\text {c }}$	
1951	$\mathrm{Ca} / \mathrm{Sn} / \mathrm{Wf}$	45	Oct $12-$ Nov 25	$1 / 2$ SR to 1 SS	5/5*d	*d) Only 2 Ca or 2 Wf, or 1 Ca \& 1 Wf.
1952	$\mathrm{Ca} / \mathrm{Sn} / \mathrm{Wf}$	55	Oct 8 - Dec 1	$1 / 2 \mathrm{SR}$ to 1 SS	5/5*d	
1953	Ca/Sn/Wf	55	Oct 8 - Dec 1	1/2 SR to SS	5/5*d	
1954	$\mathrm{Ca} / \mathrm{Sn} / \mathrm{Wf}$	55	Oct $15-$ Dec 8	1/2 SR to 1 SS	5/5*d	
1955	$\mathrm{Ca} / \mathrm{Sn} / \mathrm{Wf}$	70	Oct 8 - Dec 16	1/2 SR to $1 / 2 \mathrm{SS}$	5/5*d	
1956	$\mathrm{Ca} / \mathrm{Sn} / \mathrm{Wf}$	70	Oct 6 - Dec 14	$1 / 2$ SR to $1 / 2 \mathrm{SS}$	5/5*d	
1957	$\mathrm{Ca} / \mathrm{Sn} / \mathrm{Wf}$	70	Oct 5-Dec 13	$1 / 2 \mathrm{SR}$ to SS	5/5*d	
1958	$\mathrm{Ca} / \mathrm{Sn} / \mathrm{Wf}$	70	Oct 4 - Dec 12	1/2 SR to SS	5/5*d	
1959	$\mathrm{Ca} / \mathrm{Sn} / \mathrm{Wf}$	70	Oct 7 - Dec 15	SR to SS	5/5*d	
1960	$\mathrm{Ca} / \mathrm{Sn} / \mathrm{Wf}$	70	Oct 8 - Dec 16	$1 / 2 \mathrm{SR}$ to SS	$5 / 5$ *d	
1961	$\mathrm{Ca} / \mathrm{Sn} / \mathrm{Wf}$	70	Oct 7 - Dec 15	SR to SS	5/5*d	
1962	$\mathrm{Ca} / \mathrm{Sn} / \mathrm{Wf}$	70	Oct 6 - Dec 14	SR to SS	5/5*d	

Table 4.4 continued: Goose seasons in lowa.

Table 4.4 continued: Goose seasons in lowa.

YEAR	$\begin{aligned} & \hline \hline \text { GOOSE } \\ & \text { SPECIES } \end{aligned}$	SEASON LENGTH	SEASON DATES		SHOOTING HOURS	LIMIT BAG/POSS	Additional Bag Limit Information
1991	$\mathrm{Ca} / \mathrm{Wf} / \mathrm{Br}$ Sn		MOST OF STATE SW ZONE(2)		1/2 SR to SS/1	$2 / 4$ j	
		70	Sep $28-$ Dec 6	Oct 12 - Dec 20			
		80	Sep 28 - Dec 16	Oct 12 - Dec 30		$7 / 14$ * ${ }^{\text {j }}$	
1992	$\mathrm{Ca} / \mathrm{Wf} / \mathrm{Br}$	70	Oct 3 - Dec 11	Oct 10 - Dec 18	1/2 SR to SS/1	$2 / 4{ }^{\text {* }}$	
	Sn	80	Oct 3 - Dec 21	Oct 10 - Dec 28		$7 / 14$ *	
1993	$\mathrm{Ca} / \mathrm{Wf} / \mathrm{Br}$Sn		NORTH ZONE ${ }^{(1)}$	SOUTH ZONE ${ }^{\text {(1) }}$	1/2 SR to SS	2/4 ${ }^{\text {j }}$	
		55	Oct 9 - Dec 2	Oct $23-$ Dec 16			
		80	Oct 9-Dec 27	Oct 23 - Jan 10, 1994		7/14 * ${ }^{\text {j }}$	
1994	$\mathrm{Ca} / \mathrm{W} f / \mathrm{Br}$	55	Oct 8 - Dec 1	Oct 22 - Dec 15	1/2 SR to SS	$2 / 4{ }^{\text {* }}$	
	Sn	102	Oct 1 - Dec 10	Oct 1-Jan 10, 1995		$7 / 14$ *	
1995	$\mathrm{Ca} / \mathrm{W} f / \mathrm{Br}$ Sn	70	Sep $30-$ Dec 8	Oct 14 - Dec 22	1/2 SR to SS	$\begin{gathered} 2 / 4 * k \\ 10 / 20 * k \end{gathered}$	*k) Bag lim. $=10 \mathrm{w} /$ only $2 \mathrm{Ca} \& 2 \mathrm{Wf}$. Pos lim. $=20 \mathrm{w} /$ only $4 \mathrm{Ca} \& 4 \mathrm{Wf}$.
		107	Sep $30-\mathrm{Jan} 10$	Oct 14 - Jan 10, 1996			
	Sn		None	Feb 24 - Mar 10, 1996 south of Interstate 80.			
1996	Ca	2	Sep 14-15	None	1/2 SR to SS	$2 / 4$ *	*) Bag lim. $=2 \mathrm{Ca}$. *m) Bag lim. $=2 \mathrm{Ca}, 2 \mathrm{Wf}, \& 2 \mathrm{Br}$. Pos lim. $=4 \mathrm{Ca}, 4 \mathrm{Wf}, \& 4 \mathrm{Br}$.
	$\mathrm{Ca} / \mathrm{W} / \mathrm{Br}$	70	Sep $28-$ Dec 6	Oct 5 - Oct 13	$1 / 2$ SR to SS	$2 / 4$ *m	
				$\text { Oct } 19 \text { - Dec } 18$			
	Sn	107	Oct 12-Jan 10, 1997		$1 / 2$ SR to SS	$10 / 30$	
			Feb 22 - Mar 9, 1997				
1997	Ca	2	Sep 13-14	None	1/2 SR to SS	2/4*1	
	$\mathrm{Ca} / \mathrm{W} / \mathrm{Br}$	70	Oct 4-Dec 12	Oct 4 - Oct 12	1/2 SR to SS	$2 / 4$ *m	
				Oct 18 - Dec 17			
	Sn/Ro	107	Oct	- Dec 31	$1 / 2$ SR to SS	$10 / 30$	
			Feb 21-Mar 10, 1998				
	Ca	2	Sep 12-13 ${ }^{\text {b }}$	None	1/2 SR to SS	2/4*	
(*HIP)	$\mathrm{Ca} / \mathrm{Wf} / \mathrm{Br}$	70	Oct 3-Dec 11	Oct 3-Oct 11	$1 / 2$ SR to SS	${ }^{\text {a }} 2 / 4$ *m	
				Oct 17-Dec 16			
	Sn/Ro	107	Oct	- Dec 31	$1 / 2 \mathrm{SR}$ to SS	$20 /$ none	
			Feb 20				
	Sn/Ro	${ }^{\text {c }}$ Cons. Or.	Feb 20-Mar 10, 1999			$20 /$ none	
1999	Ca	2	Sep 11-12 ${ }^{\text {b }}$	None	1/2 SR to SS	2/4**	
	$\mathrm{Ca} / \mathrm{W} / \mathrm{Br}$	70	Oct 2 - Dec 10	Oct 2 - Oct 10 Oct 16 - Dec 15	$1 / 2$ SR to SS	2/4*m	
	Sn/Ro	107	Oct	- Dec 26	$1 / 2$ SR to SS	20 /none	
			Feb 19 - Mar 10, 2000				
	Sn/Ro	${ }^{\text {c Cons. Or. }}$	March 11-April 16, 2000		1/2 SR to SS $1 / 2$	$20 /$ none	
2000	Ca	2	Sep 9-10 ${ }^{\text {b }}$	None	$1 / 2$ SR to SS	$2 / 4$ *	
	$\mathrm{Ca} / \mathrm{W} / \mathrm{Br}$	70	Sep 30-Dec 8	Sep $30-$ Oct 15Nov 4 - Dec 27	$1 / 2$ SR to SS	$2 / 4$ *m	
	Sn/Ro	$\begin{gathered} 107 \\ { }^{\text {c}} \text { Cons. Or. } \end{gathered}$	Sep 30 - Jan 14, 2001		$1 / 2$ SR to SS $1 / 2$ SR to SS $1 / 2$	20 /none	
	Sn/Ro		Feb 15 - April 15, 2001			20 /none	
2001	$\mathrm{Ca} / \mathrm{W} / \mathrm{Br}$	70	Sep 29-Dec 7	Sep 29 - Oct 21	$1 / 2 \mathrm{SR}$ to SS	$2 / 4 * m$	
				Nov 10 - Dec 26			
	Sn/Ro	$\begin{gathered} 107 \\ { }^{\mathrm{c} \text { Cons. Or. }} . \end{gathered}$	Sep 29 - Jan 13, 2002		$1 / 2$ SR to SS $1 / 2$ SR to SS $1 / 2$	20 /none 20 /none	
			Feb 2 -	oril 15, 2002			

Table 4.4 continued: Goose seasons in lowa.

Table 4.4 continued: Goose seasons in lowa.

YEAR	GOOSE SPECIES	SEASON LENGTH	SEASON DATES		SHOOTING HOURS	LIMIT BAG/POSS	Additional Bag Limit Information
2009			NORTH ZONE(3)	SOUTH ZONE(3)			
	Ca	15	Sep 1-15 in metro	ones ${ }^{\text {e }}$	1/2 SR to SS	$5 / 10$ *q	
	Ca \& Br	90	Sep 26 - Oct 4	Sep 26 - Oct 4	$1 / 2$ SR to SS	$2 / 4$ *p	
			Oct $10-$ Dec 13	Oct $17-$ Dec 13			
			Dec 19-Jan 3, '10	Dec 19-Jan 10, '10			
	Wf	72	Sep 26 - Dec 6	Sep 26 - Dec 6	$1 / 2$ SR to SS	$2 / 4$	
	Sn/Ro	107	Sep 26	an 10, 2010	$1 / 2$ SR to SS	20 /none	
	Sn/Ro	${ }^{\text {c }}$ Cons. Or.	Jan 11 -	pril 15, 2010	1/2 SR to SS $1 / 2$	20 /none	

GOOSE SPECIES: $\mathrm{Ca}=$ Canada goose, $\mathrm{Sn}=$ Snow goose, $\mathrm{Wf}=\mathrm{W}$ hite-fronted goose, $\mathrm{Br}=\mathrm{Brant}, \mathrm{Ro}=$ Ross's goose
SHOOTING HOURS: \quad SR to $S S=$ sunrise to sunset, $1 / 2$ SR to $S S=1 / 2$ hour before sunrise to sunset, $1 / 2$ SR to $1 / 2 S S=1 / 2$ hour before sunrise to $1 / 2$ hour before sunset, $1 / 2$ SR to $1 S S=1 / 2$ hour before sunrise to 1 hour before sunset. $1 / 2$ SR to $S S / 1=1 / 2$ hour before sunrise to sunset in all of state except SW Zone where shooting hours were 1/2 hour before sunrise to 1:00 PM until Dec. 1 in 1991 and until Nov. 29 in 1992, then $1 / 2$ hour before sunrise to sunset thereafter. $1 / 2$ SR to SS $1 / 2=1 / 2$ hour before sunrise to $1 / 2$ hour after sunset.
LIMIT: BAG = Daily bag limit, POSS = Possesion limit
SW ZONE(1) = that portion of the state south and west of a line running from the lowa-Missouri state line
along US Hwy 71 to state Hwy 92 and west on Hwy 92 to the Nebraska-lowa border.
SW ZONE(2) = that portion of the state south and west of a line running from the lowa-Missouri state line along U.S. Hwy 71
to I-80, west on I-80 to U.S. Hwy 59, north on U.S. Hwy 59 to State Hwy 37, then NW on Hwy 37 to State Hwy 175, and west on Hwy 175 to the Nebraska-lowa border.
GOOSE ZONE BOUNDARY (1) = a line running from the Nebraska-lowa border along state Hwy 175, southeast to
State Hwy 37, east to U.S. Hwy 59, south to I-80, and along I-80 to the lowa-Illinois border. This was the same boundary used to divide the north and south duck zones during 1993-2003.
GOOSE ZONE BOUNDARY (2) = a line running from the Nebraska-lowa border along state Hwy 20. This change
was made in the 2004 season and was maintained through the 2008 season.
GOOSE ZONE BOUNDARY (3) = a line running from the Nebraska-lowa border along State Hwy 175, east to State Hwy 37, southeast to State Hwy 183, northeast to State Hwy 141, east to U.S. Hwy 30, and along U.S. Hwy 30 to the lowa-Illinois border. The duck and goose zone bounaries were identical from from 1993-2003. The goose zone boundary was moved to Hwy 20 from 2004-2008. In 2009, the goose zone boundary was changed to match the duck zone boundary, i.e., along Hwy 30 .
(*SH) Steel shot required statewide for hunting all migratory gamebirds except woodcock.
See lowa's Duck and Coot Seasons for a complete history of steel shot regulations in lowa.
(*HIP) First year migratory bird hunters in lowa registered (by phone) for the federal Harvest Information Program (HIP).
SPECIAL REGULATIONS: Ross's goose season was closed by Federal regulation from 1942-61.
${ }^{\text {a }}$ The daily limit was 2 Canada geese through Oct. 31 and 1 thereafter except in the south zone where it was 2 after Nov. 30 .
${ }^{\text {b }}$ The special 2-day September Canada goose season was only open in the north zone west of Hwy 63.
${ }^{\text {c }}$ A conservation order was issued by the USFWS to permit the taking of light geese (snow + ross) after the regular season, including after March 10, the last day regular waterfowl seasons can be open.
Hunters could use electronic calls and unplugged shotguns and hunt until $1 / 2$ hour after sunset. Hunters had to be fully licensed to hunt waterfowl in lowa (no Fed. Mig. Bird stamp) and registered with HIP.
${ }^{\text {d }}$ The 15-day special Canada goose season was only open in the Des Moines and Cedar Rapids/lowa City zones.
${ }^{e}$ The 15-day special Canada goose season was only open in the Des Moines, Cedar Rapids/lowa City and Cedar Falls/W aterloo zones.

Table 4.5 Waterfowl banded in lowa. (Numbers include both state and federal bandings.)

Year	Canada Geese	Mallards	Wood Ducks	Bluewinged Teal	Trumpeter Swans	Other Waterfowl Species	Total Waterfowl	Mourning Doves
1964	51	440	488	6,046		273	7,298	0
1965	32	533	571	4,485		120	5,741	0
1966	61	504	564	3,836		172	5,137	0
1967	66	1,928	410	4,022		113	6,539	0
1968	91	1,809	315	3,716		63	5,994	0
1969	53	2,282	414	1,634		135	4,518	0
1970	143	2,368	935	2,649		236	6,331	0
1971	301	1,901	1,644	1,395		330	5,571	0
1972	148	672	1,381	1,000		127	3,328	0
1973	410	1,022	1,665	601		115	3,813	0
1974	268	522	1,333	638		34	2,795	0
1975	222	563	2,026	248		164	3,223	0
1976	544	3,165	1,620	334		19	5,682	0
1977	799	678	1,261	223		25	2,986	0
1978	633	4,418	1,765	1,022		98	7,936	0
1979	409	4,683	1,490	509		3	7,094	0
1980	775	2,175	1,302	1,880		85	6,217	0
1981	736	350	1,523	919		86	3,614	0
1982	975	99	2,747	26		1	3,848	0
1983	1,444	446	2,411	35		3	4,339	0
1984	1,293	110	2,489	38		6	3,936	0
1985	1,710	389	1,953	30		1	4,083	0
1986	1,847	383	2,623	18		3	4,874	0
1987	2,127	380	2,199	98		8	4,812	0
1988	2,421	349	2,115	37		2	4,924	0
1989	1,712	70	2,636	0		0	4,418	0
1990	1,556	13	1,908	64		0	3,541	0
1991	1,880	151	4,874	0		0	6,905	0
1992	2,043	392	3,776	0		13	6,224	0
1993	2,538	130	2,931	0		1	5,600	0
1994	3,737	146	3,631	0		0	7,514	0
1995	3,671	221	6,717	0		0	10,609	0
1996	3,809	263	4,188	0		0	8,260	0
1997	4,852	77	4,375	0		0	9,304	0
1998	4,462	292	4,837	0	58	0	9,649	0
1999	6,073	229	4,669	0	46	0	11,017	0
2000	2,971	133	2,380	0	90	0	5,574	0
2001	2,942	60	3,711	0	78	0	6,791	0
2002	3,479	338	3,146	207	68	0	7,238	0
2003	4,066	259	4,048	0	87	0	8,460	1987
2004	3,338	143	4,769	0	91	0	8,341	2326
2005	4,983	338	2,823	0	113	0	8,257	2079
2006	4,203	210	2,729	0	78	0	7,220	1000
2007	4,283	231	2,321	0	73	0	6,908	986
2008	3,288	157	2,402	100	69	0	6,016	1,699
2009	3,593	31	2,552	0	81	0	6,257	1,266
Totals	91,038	36,053	112,667	35,810	932	2,236	278,736	11,343
1999-2009								
Average	3,929	194	3,232	28	79	0	7,462	1,031

Table 4.6 Giant Canada goose production and populations in lowa.

YEAR	YOUNG PRODUCED	NESTING ADULTS	NONBREEDING ADULTS	TOTAL ADULTS	TOTAL GEESE	\% CHANGE FROM PREV. YEAR
1964	24	16	16	32	56	
1965	17	28	37	65	82	46\%
1966	66	44	34	78	144	76\%
1967	66	42	80	122	188	31\%
1968	114	66	100	166	280	49\%
1969	121	78	304	382	503	80\%
1970	348	228	288	516	864	72\%
1971	330	208	234	442	772	-11\%
1972	402	268	481	749	1,151	49\%
1973	590	404	399	803	1,393	21\%
1974	763	498	407	905	1,668	20\%
1975	961	602	356	958	1,919	15\%
1976	1,234	754	433	1,187	2,421	26\%
1977	1,401	914	596	1,510	2,911	20\%
1978	2,045	1,266	610	1,876	3,921	35\%
1979	2,459	1,588	884	2,472	4,931	26\%
1980	3,011	1,969	842	2,811	5,822	18\%
1981	3,636	2,238	912	3,150	6,786	17\%
1982	3,966	2,531	1,298	3,829	7,795	15\%
1983	5,235	3,177	1,486	4,663	9,898	27\%
1984	5,796	3,307	1,429	4,736	10,532	6\%
1985	6,742	3,791	2,155	5,946	12,688	20\%
1986	8,139	4,626	2,610	7,230	15,357	22\%
1987	9,418	5,480	2,748	8,228	17,646	15\%
1988	10,408	5,820	3,761	9,581	19,989	13\%
1989	8,249	4,875	4,993	9,868	18,117	-9\%
1990	8,432	5,291	6,168	11,459	19,891	10\%
1991	11,218	7,087	7,208	14,295	25,513	28\%
1992	16,406	8,931	9,108	18,039	34,445	35\%
1993	17,720	10,632	10,079	20,711	38,431	11\%
1994	24,732	13,312	12,726	26,038	50,770	32\%
1995	28,392	15,262	16,924	32,186	60,578	19\%
1996	29,266	16,699	22,030	38,729	67,995	12\%
1997	34,057	18,047	22,428	40,355	74,406	9\%
1998	36,443	18,794	24,066	42,720	79,157	6\%
1999	33,586	17,733	24,826	42,334	75,920	-4\%
2000	33,923	17,340	27,163	44,398	78,321	3\%
2001	30,264	17,996	27,337	45,246	75,510	-4\%
2002	36,071	19,751	30,971	50,674	86,745	15\%
2003	36,564	21,072	33,180	54,212	90,776	5\%
2004	39,992	22,042	34,990	56,992	96,984	7\%
2005	42,905	23,750	37,021	60,751	103,656	7\%
2006	42,040	23,734	36,715	60,425	102,465	-1\%
2007	37,452	24,590	40,206	64,782	102,234	0\%
2008	30,231	23,420	39,320	62,740	92,971	-9\%
2009	38,251	23,344	37,931	61,275	99,526	8\%
2010	40,940	23,380	41,898	65,278	106,218	7\%

UPLAND WILDLIFE

The Iowa Department of Natural Resources (IDNR) conducts 2 statewide surveys to monitor upland game populations in Iowa, the August Roadside survey and the Small Game Harvest survey.

August Roadside Survey is conducted each year by IDNR Enforcement and Wildlife Bureau personnel throughout the state of Iowa during the first half of August. The survey generates data from 21530 -mile routes on ring-necked pheasants, bobwhite quail, gray partridge, cottontail rabbits, and white-tailed jackrabbits. Counts are conducted on sunny, cool mornings with heavy dew. All comparisons are based on total routes run.

The small game harvest survey is a mail survey of Iowa small game hunters conducted following the small game hunting seasons. Each year a random sample of small game hunters (5\% of licensed hunters) are send a postcard and survey participants are asked where they hunted, which species they hunted, how many days they hunted, and how many of each species they harvested.

The data from these 2 surveys form the basis for historical information on upland game populations in Iowa and are summarized in the historical text and tables. Both surveys have been conducted annually
since 1962. The annual August roadside survey report can be found on the DNR's website at www.iowadnr.gov/wildlife/. The results of the annual small game harvest survey can be found at the end of this report.

HISTORICAL SUMMARY OF POPULATIONS AND HARVEST

Ring-necked Pheasant

The genus Phasianus or true pheasant is native to Southeast Asia. The ring-necked pheasant now found in Iowa has been classified as (Phasianus colchicus torquatus). This name suggests a cross between 2 of the true Asiatic pheasants. One the Rion Caucasian (Black-necked) pheasant (Phasianus colchicus colchicus) native to the area between the Black and Caspian Seas and the true Chinese ring-necked pheasant (Phasianus torquatus torquatus) found in eastern China and northwestern Indo-China.

The ring-necked pheasant was first successfully introduced into the United States in the Willamette Valley of Oregon by Owen Denny in 1882. Mr. Denny transported wild birds from China to the US to establish a population on his land. It is believed that the majority of the pheasant range in the US was stocked with birds from this original wild foundation or other birds from China.

Early records for Iowa are limited, but accounts suggest attempts were made to establish pheasants in Iowa as early as 1884, but the first recorded successful release was an accidental release following a wind storm of approximately 2,000 birds from the William Benton game farm in Cedar Falls. The source of Mr. Benton's birds is not
known with certainty, but reports say they were from a Washington State importer in Tacoma and thus very likely wild birds from China. The conservation department mentions pheasants for the first time in 1910. Early on eggs were purchased from breeders (wild or tame is unknown) and given to landowners to raise and release statewide, the 1910 biennial report indicates 6,000 eggs were distributed to applicants in 82 counties. Egg distribution met with poor success and the conservation department established a hatchery in 1913 and by 1914 mostly young birds were distributed (1,088 that year). Another 10,912 birds were distributed statewide from 1915-16. Records show all northwest counties received 200-800 bird plantings of pheasants between 1915-18, with a planting of 2,500 in Winnebago County.

In 1905, it was generally assumed that southern Iowa had better pheasant habitat than northern Iowa. The existence of this belief is supported by the fact that up until 1913 it was customary to make stockings in timber. It is interesting to note Iowa's pheasant populations reached their highest abundance in the Des Moines Lobe landform. The early success, 1920-40's, of pheasants in north central Iowa was undoubtedly due to the abundance of grassy habitats (tame and native hay, oats, flax, and prairie pothole wetlands) interspersed with weedy crop fields.

Pheasants did extremely well in northern Iowa with crop depredation reported in 1923, with the first open season in 1925. Policy changed in 1924-25 and wild birds and eggs were trapped and moved in an effort to establish populations in southern Iowa. Between 1925-1931 some 26,498 wild birds and 60,000 wild eggs were gathered from areas of undue abundance in northern Iowa and distributed to other regions, mostly southern Iowa. From 1927-30 and additional 10,211 birds and 31,372 eggs were distributed in southern Iowa counties. During, 1929-30 the average southern Iowa county received
over 500 birds. However, by 1936 the policy on stocking had changed:
" The old policy of stocking birds without paying attention to the environment has been discontinued ... for instance, during the past 20-25 years there have been thousands of pheasants released in southern Iowa and ... in except a few cases pheasants disappeared after two or three generations in most counties."

The state game farms were shut down in 1932, but following several bad weather years it was re-established in 1938. Populations recovered with good weather in the 1940's and stocking was greatly reduced, approximately 4,000 chicks and spent adults in 1943. The state game farm operated at the same level until 1961. Through the 1940-50's it became increasingly evident that pen raised birds were not contributing to wild pheasant numbers. In 1955 a new policy of trap and transfer of wild birds was started in southern Iowa. Increasing populations in Union and Adair counties were trapped (1,375 birds) and transplanted to Ringgold, Decatur, Wayne, Washington, and Appanoose counties. Also new wild birds were brought to the state game farm. These new "wild" birds were distributed to unoccupied range (Washington, Keokuk, Henry, Davis, VanBuren counties) thru 1973. The state game farm was closed in late 1970's and dismantled.

Iowa's first pheasant season was held October 20-22, 1925 in Kossuth, Humboldt, Winnebago, Hancock, Wright, Cerro Gordo, Franklin, Mitchell, Floyd, Butler, Grundy, Blackhawk and Bremer counties. The hunting season opened $1 / 2$ hour before sunrise and ended at noon with a bag limit of 3 cocks. It appears the decision to open counties to hunting in these early years was based largely on pheasant crop depredation complaints as annual pheasant censuses, predecessor to the August Roadside Survey, were not begun until 1935. Flush count records show 7 men flushed 850 pheasants in 5 hours in Hancock
county in 1931. By 1945 most of northern Iowa was open to hunting and by 1965 all of Iowa, except a few southeastern counties, was open to pheasant hunting. The entire state was opened to hunting in 1976. Historically (1930-50's), the NW, NC, and C regions had Iowa's highest pheasant densities (Fig. 5.1). However, intensified agriculture has led to a decline in pheasant populations since the 1960's (Fig. 5.2). Regionally, the greatest declines have occurred in the NC, C, and SW regions (Fig. 5.7). By the early 1970's southern Iowa had become the states premiere pheasant range.

Populations have declined following severe winter weather in 1964-65, 1966-67, 1978-79, 1981-82, 2000-01, 2007-08, and 2009-10 with recoveries occurring in years with milder winters (Table 5.1). While the number of broods sighted/30-mile route has also fluctuated with the severity of the winter (Fig. 5.3), the all-time lows recorded in 1983, 1984, 1993, 1999, 2001, 2008, and 2009 were the results of very cool and/or wet conditions during spring and early summer (Table 5.2; Fig. 5.3). Observed brood sizes have declined slightly since 1962, with the 2004 estimate of 4.1 chicks/brood the lowest ever recorded (Table 5.2; Fig. 5.3). Modest recoveries of all survey parameters occurred between 1984 and 1996 with the enrollment and seeding down of 2.2 million acres of row crops in the 10 -year federal Conservation Reserve program (CRP). Pheasant populations in historical ranges, northern and central regions, have rebound since the inception of CRP (Fig 5.7). Populations in the southern regions initially responded to CRP the same way northern and central populations did, but have declined since 1992. Declines in SW and SC regions, in particular, are likely related to wet weather during the nesting season, lack of habitat management on CRP acres and other land use changes. The pheasant season opens the last Saturday in October and runs through January $10^{\text {th }}$, statewide with a bag/possession limit of

3/12 roosters (Table 5.10). Shooting hours are 8 a.m. to $4: 30$ p.m. Iowa's first youth pheasant season was held during the 1997-98 hunting season. Youth hunting was allowed statewide for resident hunter's 15 years or younger whom a licensed adult accompanied. The youth pheasant season opens the weekend proceeding the regular season. Bag limit is 1 rooster/day with 2 in possession after the first day (Table 5.10).

Bobwhite Quail

Our native bobwhite was probably never very abundant on Iowa's virgin prairie; most populations were likely restricted to the prairie-timber edges of Iowa. Early settlement changed Iowa's landscape forever. At least initially these changes proved to be a boom to Iowa's quail population. Between 1860-90 settlers began carving up Iowa a $1 / 4$ section at a time, but early settlers lacked timber and wire to make fences, so they planted Osage hedges instead. Three to 6 miles of some of the finest quail cover ever grown in ever $1 / 4$ section, all within spitting distance of newly planted "weedy" grain fields. Quail populations exploded like never seen before or likely to be seen again. Quail could be found in every county, but these conditions could not last. By 1920 reports show quail populations beginning to decline as farming practices improved and hedgerows
were replaced with barbed wire fence. The 1931-32 winter quail survey reported population densities of 1 quail per 20-40+ acres in the northern third of the state, 1 quail/6-20 ac. in the central third and 1 quail/1-6 ac. in the southern third of the state. However, quail populations have declined steadily, both nationally and in Iowa since the 1930's. Large scale landscape changes and clean farming practices are considered the major factors in this decline. Since survey procedures were standardized in the early 1960's the mean number of quail/30 miles sighted on the August roadside survey has fluctuated over the years with significant declines occurring since 1977 (Fig. 5.6). This decline, along with the severe fluctuations in SW and SC Iowa in recent years, are related to losses in shrubby habitat and clean farming practices that have occurred since row-crop agriculture expanded in the mid 70's and early 80's (Fig. 5.8). Similar to pheasants, quail numbers have declined sharply following harsh winters in 1964-65, 1966-67, 1978-79, 1981-82, 2000-01, and 2007-08. (Fig. 5.8).

Quail have been hunted in Iowa since settlement. The first bag limit was set in 1878 at 25 birds/day, it was reduced to $15 /$ day in 1915. The season was closed in 1917 and a limited season reopened in 1933. Currently the season opens the last Saturday in October and runs through January $31^{\text {st }}$, statewide, with a bag/possession limit of $8 / 16$ birds. Shooting hours are 8 a.m. to 4:30 p.m. (Table 5.11).

Gray Partridge

Senator H.W. Grant of Waterloo made the first release of Hungarian or gray partridge in Iowa in Blackhawk county in 1902, but all 50 birds died. The first successful release of Huns in Iowa occurred in Palo Alto county in 1905. This release constitutes Iowa's first wild stock. Successful releases were made in Humboldt county in 1906, O’Brien in 1909, and in Kossuth in 1910. By 1914 most northern Iowa counties had received standardized releases of 20 pairs each. All releases, similar to pheasants, were made on leased timbered lands. Reports show many local farmers were surprised when the bird promptly moved to the nearest prairie upland. By 1932 it is estimated the state conservation commission had stocked 20,000+ partridge in Iowa. Most plantings were in northern Iowa, although a few were attempted in south central Iowa; all southern attempts failed. The birds gained their strongest hold in northwest Iowa in Osceola, O’Brien, Dickinson, and Clay counties and were generally present in most northern Iowa counties by 1940 .

While numbers of other upland game birds have decreased over time, the number of gray partridge sighted on roadside counts had been increasing until 1990 (Fig. 5.6). Not only had the mean number partridge per 30-
mile route increased statewide, but partridge populations had expanded their range from the NW and NC regions to all other regions of the state by 1986 (Fig. 5.9). While losses of woody cover and nesting cover have created less favorable conditions for pheasant and quail, partridge have been more adept at coping with row-crop expansion. The statewide increase in partridge numbers between 1983-89 can be attributed a drought during these years and improved nesting conditions on land enrolled in CRP. Following the drought populations have returned to levels seen prior to 1983 (Fig. 5.6). Huns were imported to this country from the arid, steppe region of southeastern Europe and northern Asia, and research has shown they do not reproduce well in this country during years with wet springs.

Iowa's first partridge season was held in 11 northwestern counties in 1937-39. Standardized hunting seasons were established in 1963. Partridge season opens the second Saturday in October and runs through January $31^{\text {st }}$, statewide, with a bag/possession limit of $8 / 16$ birds. Shooting hours are 8 a.m. to 4:30 p.m. (Table 5.12).

Eastern Cottontail
Little is known about the presettlement distribution of cottontail rabbits in Iowa. Cultivation by man no doubt favored rabbits
much the same way it favored quail at the turn of the century. Cottontails prefer habitats similar to quail, favoring shrubby-grassy edge habitats. Cottontails may have up to 6 litters a year in Iowa and reproduce best during warm moderately wet springs. Numbers of cottontail rabbits observed on the August roadside survey have fluctuated with changing land use and weather conditions (Fig. 5.6). Hunter interest has declined in recent years (Fig 5.12). Cottontails have been hunted in Iowa since settlers first arrived. The cottontail season was standardized in 1978 and opens the first Saturday in September and runs through February $28^{\text {th }}$, statewide, with a bag/possession limit of 10/20 rabbits. Shooting hours are sunrise to sunset (Table 5.13). The rule regarding the opening day of the cottontail season was changed in 1997 to open the 1997-98 season on Sept. 1st. This change in date allows inclusion of the Labor day weekend in all years.

White-tailed Jackrabbit

Before settlement white-tailed jackrabbits could be found everywhere in Iowa, except for a few southeastern counties. They appear in greatest abundance on the glaciated soils of the Des Moines Lobe and the Missouri Loess soils of northwestern Iowa. They are most at home on the wideopen expanses of prairie/wetland/pasture
habitat types, although moderate cultivation favors the species. Dry growing seasons appear conducive to jackrabbit abundance as population's decline in wet years. Jackrabbit counts have declined greatly over time, closely paralleling the losses of pasture, hay, and small grain acreage's. Because of this downward trend the bag/possession limit was reduced from 2/4 to $1 / 2$ following the 2005-06 hunting season.

Jacks have been hunted in Iowa since the time of settlement. Conservation officers reported hunters killing 180+ jacks on two circle hunts in Carroll and Buena Vista counties during the winter of 1960 . The jackrabbit season opens the last Saturday in October and runs through December $1^{\text {st }}$, statewide, with a bag/possession limit of $1 / 2$ rabbits. Shooting hours are sunrise to sunset (Table 5.13). Harvests have tended to decline (Fig. 5.6) with the decline in jackrabbit numbers and declining hunter interest.

A random survey of licensed hunters was conducted following the 2009 small game season to determine the size and distribution of Iowa's small game harvest. Survey questionnaires were mailed to 8,285 license holders. Survey participants were asked
which species they hunted, how many days they hunted, and how many of each species they harvested. Survey participants returned 3,592 usable questionnaires for a response rate of 43%. Based on these returns Iowa had 218,827 licensed hunters in 2009-10 and of these 89,227 indicated they hunted small game. This is an 11% decrease in small game hunters compared to the year before. By residency, the number of resident small game hunters decreased -10%, while the number nonresident small game hunters declined 16%. Pheasant were the most commonly reported species hunted by small game hunters (83\%), while cottontails where the second most sought after species with 29% of small game hunters indicating they hunted rabbits.

Nonresident small game hunter numbers fell from 16,662 in 2008 to 14,077 in 2009. Hunters from 43 different states visited Iowa last fall to pursue small game. Over 55% of Iowa's nonresident small game hunters came from 5 states, Minnesota, Wisconsin, Michigan, Illinois and Missouri, in that order. The typical small game hunter reported hunting 7.7 days last fall.

Ring-necked Pheasant - An estimated 74,017 pheasant hunters (34\% of licensed hunters, 83% of small game hunters) took to Iowa's fields last fall and harvested 271,126 roosters (Table 5.6 and 5.9). The number of pheasant hunters declined -14%, while total harvest declined -29\% compared to 2008 estimates. Roadside counts showed populations were down 12% compared to 2008, so the decline in hunters and harvest was expected. An estimated 13,309 nonresident hunters contributed to Iowa's total estimate of pheasant hunters (Table 5.7). Iowa's peak year for nonresident pheasant hunters was 1997 with 50,349. Resident hunter numbers decline -13\% while the number of nonresident pheasant hunters declined -18%. This year estimate of 74,017
pheasant hunters (65% below the historic average) sets a new all time low for pheasant hunter numbers in Iowa (Table 5.9).

Resident hunters hunted an average of 7 days last fall and harvested 4 birds during the season. Nonresident pheasant hunters averaged 4.5 days afield and harvested 4 birds for the season. Hunter success (harvest/day) was rather consistent throughout the entire season. Approximately 32\% of the total pheasant harvest occurred in the first 9 days of the 2009 season. Sixty-three percent of pheasant hunters reported hunting 5 days or less. Resident hunters accounted for 82% of the total pheasant harvest. In addition to the regular pheasant season, an estimated 1,818 adults took 3,304 youth pheasant hunters (under the age of 16) hunting during Iowa's special 2-day youth pheasant season. These young hunters harvested an estimated 533 roosters.

This year's harvest estimate is the lowest ever recorded for Iowa. The harvest estimate was -61% below the 10 -year average, and -77% below the historical average harvest of 1.2 million roosters (Table 5.6). This marks the third time Iowa's total pheasant harvest has fallen under 500,000 roosters (2001, 08, 09). Four consecutive winters with snowfall of 30 inches or more have decimated Iowa's pheasant numbers. Above normal rainfall in 2008 and cold temperatures in 2009 have also reduced nest success. This sequence of poor weather and declining CRP habitat has Iowa's pheasant numbers at all time lows. The record setting winter of 200910 does not bode well for any major recovery of Iowa's pheasant numbers this coming fall.

Bobwhite Quail - Approximately 10,179 quail hunters (5\% of licensed hunters, 11% of small game hunters) harvested 12,136 quail during the 2009 quail season (Tables 5.6 \& 5.9). Hunter numbers declined -27% and harvest declined -9% compared to 2008
estimates. Both hunter numbers and harvest are new all time lows for Iowa. Quail hunters averaged 7 days a field and harvested 1 bird for the season (Table 3). Twenty-seven percent of the quail harvest occurred in the first 9 days of the 2008 season (Table 4). Sixty percent of quail hunters hunted 5 days or less. Resident quail hunters accounted for 91% of the total quail harvest (Table 5.7). Roadside counts showed quail numbers had increased 45\% over 2008 estimates (Table 5.3).

Gray Partridge, Eastern Cottontail

 and White-tailed Jackrabbit - Hunter trends, season dates, and harvest for these species can be found in Tables (5.6, 5.9, 5.12, and 5.13) and Figures (5.6, 5.9, 5.10, and 5.12).

Table 5.1. Mean number of pheasants counted/30-mile route on the August roadside survey regionally and statewide (1962-present). Severe winter weather preceded the August counts in $1965,69,75,79,82,01 \& 08$. Abnormally wet weather occurred during 1974, $83,84,93,99,04 \& 08$ nesting seasons. Winter sex ratio and cock harvest data are statewide estimates. Sex ratio counts were done the year succeeding the year listed.

YEAR	NORTH WEST	NORTH CENTRAL	NORTH EAST	WEST CENTRAL	CENTRAL	EAST CENTRAL	SOUTH WEST	$\overline{\overline{\text { SOUTH }}}$ CENTRAL	SOUTH EAST	STATEWIDE	SEX ${ }^{\text {a }}$ RATIO	$\begin{gathered} \hline \text { COCK }^{\text {b }} \\ \text { HARVEST } \end{gathered}$
1962	84.7	95.5	85.3	85.0	74.6	32.3	44.4		12.8	65.9		
1963		200.4	40.8		60.3		200.4		19.8	52.6	2.9	66\%
1964	99.9	138.0		101.6	54.4	53.9	92.6	26.3	18.3	79.4	4.3	77\%
1965	46.0	67.5	47.8	64.7	36.2	43.9	97.6	44.6	22.8	49.9	3.2	69\%
1966	43.5	75.3	57.5	58.4	49.3	63.9	144.1	40.7	17.1	56.6	3.1	68\%
1967	31.0	56.8	57.2	42.4	53.2	58.6	108.3	38.8	21.1	49.1	4.2	76\%
1968	38.0	56.0	56.6	53.5	52.2	64.3	127.4	38.7	19.7	52.7	3.6	72\%
1969	18.8	44.7	62.5	42.2	57.6	57.2	77.9	44.2	25.2	45.5	3.5	71\%
1970	39.2	53.0	59.6	56.1	87.8	91.7	129.1	63.8	40.5	66.2	3.5	71\%
1971	34.6	45.2	49.0	66.2	82.6	104.3	101.6	49.7	48.4	62.0	3.6	72\%
1972	37.9	44.6	61.0	61.4	73.2	88.6	112.3	54.3	25.8	59.6	2.0	50\%
1973	47.0	56.9	65.4	66.3	88.7	103.5	72.4	54.3	30.2	65.8	3.7	73\%
1974	46.6	53.2	52.5	60.5	40.0	55.9	90.1	49.6	16.8	49.7	4.5	78\%
1975	10.5	28.7	52.3	34.3	43.2	64.3	51.0	45.4	27.4	38.8	4.8	79\%
1976	14.8	42.2	68.1	44.8	54.9	75.4	61.7	49.2	28.7	48.2	4.0	75\%
1977	26.9	44.2	86.7	56.9	50.8	78.5	75.1	44.3	24.4	51.7	3.6	72\%
1978	36.3	26.1	68.8	67.8	50.5	63.2	76.7	45.5	30.5	49.7	3.9	74\%
1979	40.1	29.6	44.8	49.4	39.2	39.6	80.9	51.5	21.8	42.4	3.5	71\%
1980	51.2	61.7	81.2	98.7	72.2	63.5	82.1	68.9	37.2	67.0	3.7	73\%
1981	66.4	53.5	83.6	92.9	57.8	72.9	97.1	57.8	35.2	65.9	3.4	71\%
1982	26.7	27.9	38.9	55.5	23.1	20.9	41.6	47.7	19.3	32.3	2.9	66\%
1983	9.6	12.8	21.7	21.6	13.3	25.3	42.6	51.1	27.5	23.7	2.9	66\%
1984	8.8	11.1	19.2	22.1	14.4	24.5	23.8	38.5	26.4	20.6	2.6	62\%
1985	21.6	28.0	36.4	40.0	32.7	26.0	59.2	72.6	42.0	38.9	2.1	52\%
1986	27.5	20.4	48.2	31.2	24.8	29.0	49.7	65.2	27.2	34.8	2.0	50\%
1987	40.2	36.8	59.7	61.4	41.1	33.2	58.5	64.2	39.0	46.8	2.9	66\%
1988	33.6	35.0	45.1	60.8	29.6	26.0	45.7	49.8	29.8	38.1	3.3	70\%
1989	25.3	36.5	52.1	69.9	57.1	35.3	38.6	40.0	39.0	43.2	2.9	66\%
1990	34.3	49.4	63.9	57.9	44.3	24.7	44.5	31.7	27.3	41.2	5.5	82\%
1991	37.3	45.3	48.8	77.6	41.6	33.3	61.2	49.4	41.6	46.8	Discontinued	
1992	24.4	50.5	30.5	44.0	42.1	37.8	29.4	23.6	34.2	35.8		
1993	15.8	21.4	15.2	55.2	23.8	25.0	34.3	24.0	28.1	25.9		
1994	45.0	74.1	33.3	83.3	55.6	67.8	47.3	46.0	56.7	56.9		
1995	26.0	63.2	37.6	44.7	54.3	54.3	43.7	27.8	43.2	44.6		
1996	54.7	61.8	29.5	45.2	49.8	59.4	29.8	19.5	28.2	43.4		
1997	46.1	62.0	41.2	37.3	54.7	47.4	31.7	28.8	41.3	44.8		
1998	74.2	56.7	43.1	33.9	49.6	53.9	18.1	15.7	41.7	44.6		
1999	42.7	33.6	21.6	19.5	37.9	36.0	17.5	12.9	27.0	29.1		
2000	60.6	33.3	14.9	29.0	50.3	37.0	25.5	19.3	22.0	34.3		
2001	22.4	16.0	6.2	8.4	22.0	19.0	12.0	7.3	4.6	13.9		
2002	47.0	42.9	13.6	32.0	49.9	32.0	15.7	11.7	22.6	31.7		
2003	81.2	67.3	20.7	36.1	61.2	35.6	29.3	21.8	28.2	44.9		
2004	54.4	34.4	19.0	21.5	35.6	24.4	24.9	19.6	24.4	29.7		
2005	63.5	42.3	25.3	32.0	49.9	25.9	28.9	12.6	23.5	35.1		
2006	48.3	36.1	18.4	23.7	36.8	20.4	20.3	9.0	20.0	27.0		
2007	41.3	35.0	20.1	26.0	36.2	25.0	12.8	5.6	19.8	25.8		
2008	49.4	25.4	9.1	21.2	18.6	7.4	5.7	4.4	5.3	17.5		
2009	35.5	16.6	2.6	23.5	19.1	9.3	10.0	4.8	10.1	15.4		
Statistics:												
10 Year Avg.	50.4	34.9	15.0	25.3	38.0	23.6	18.5	11.6	18.0	27.5		
Long-term Avg	40.7	48.9	42.9	49.3	46.8	46.2	58.9	36.8	27.6	43.4	3.4	69\%
Percent Change from:												
2008	-28.0	-34.6	-71.6	10.6	2.7	25.9	74.8	8.2	91.2	-12.4		
10 Year Avg.	-29.4	-52.4	-82.7	-7.3	-49.6	-60.7	-46.0	-59.0	-44.1	-44.2		
Long-term Avg	-12.6	-66.0	-94.0	-52.4	-59.2	-79.9	-83.0	-87.1	-63.4	-64.6		

[^2]Table 5.2. Mean number of broods counted/30-mile route and chicks/brood observed on the August roadside survey, (1962-present).

	NORTH WEST		NORTH CENTRAL		NORTH EAST		WEST CENTRAL		CENTRAL		EAST CENTRAL		SOUTH WEST		SOUTH CENTRAL		SOUTH EAST		STATEWIDE	
YEAR	BROODS PER 30 MI	CHICKS PER BROOD	broods PER 30 Ml	CHICKS PER BROOD	BROODS PER 30 MI	CHICKS PER BROOD	broods PER 30 MI	CHICKS PER BROOD	BROODS PER 30 MI	CHICKS PER BROOD	BROODS PER 30 MI	CHICKS PER BROOD	BROODS PER 30 MI	CHICKs PER BROOD	broods PER 30 MI	chicks PER BROOD	broods PER 30 MI	CHICKS PER BROOD	bROODS PER 30 MI	CHICKS PER BROOD
1962	10.1	5.1	11.5	5.7	10.1	6.3	9.6	7.7	8.0	7.5	4.2	5.4	5.5	5.8			1.0	7.3	7.7	6.3
1963	17.2		16.6		11.7	5.2	12.3		8.4	5.9	5.8		15.4	5.4	3.4		2.6	5.4	10.4	5.4
1964	12.1	5.2	17.0	6.1	22.7	7.3	13.0	5.8	7.3	5.3	6.5	6.2	12.1	6.4	3.1	8.7	1.8	6.3	9.8	6.1
1965	5.9	5.9	8.0	6.2	5.7	5.7	8.7	5.0	4.7	5.8	4.8	7.6	13.3	5.8	5.9	6.0	2.5	6.0	6.2	6.0
1966	5.5	5.6	9.2	5.9	7.7	4.5	8.1	5.9	6.2	6.4	7.7	6.3	19.0	6.3	5.1	6.2	1.8	7.4	7.2	6.0
1967	3.9	4.6	6.7	5.3	7.1	5.4	5.3	4.8	7.0	5.0	7.5	5.5	13.9	5.4	6.0	5.6	2.3	5.1	6.3	5.2
1968	5.2	5.1	6.4	6.2	6.3	6.3	7.3	5.1	7.1	5.8	8.5	5.6	16.8	5.8	5.5	5.9	2.3	6.4	6.8	5.8
1969	2.3	4.9	5.4	6.0	7.5	6.7	5.2	5.8	7.0	5.6	8.7	5.0	10.8	5.4	6.4	5.5	3.3	5.4	6.0	5.5
1970	5.4	5.9	7.0	5.7	7.7	6.1	7.4	5.7	12.3	5.9	11.7	6.2	18.0	6.4	8.8	5.9	4.6	6.4	8.8	6.0
1971	4.2	5.5	6.3	5.4	6.8	5.0	9.6	4.9	10.7	6.2	14.0	5.8	15.0	5.7	7.4	5.4	6.8	5.8	8.5	5.5
1972	5.2	5.3	5.9	5.7	8.6	5.4	8.1	5.0	9.8	5.9	11.2	6.0	15.1	6.1	7.7	5.7	3.8	4.8	8.0	5.6
1973	6.4	4.6	7.2	5.6	8.8	5.5	8.6	4.7	11.8	5.1	13.0	5.6	9.7	5.4	7.5	5.9	4.1	5.5	8.6	5.3
1974	6.7	4.6	7.3	4.8	6.9	5.5	8.5	5.0	5.4	4.7	8.3	4.4	12.1	5.4	7.8	5.0	2.2	5.2	7.0	4.9
1975	1.4	5.4	4.1	5.0	8.3	4.9	4.7	5.3	6.4	4.8	9.1	5.1	7.4	5.4	6.5	5.8	4.4	5.2	5.7	5.2
1976	2.3	5.1	6.0	5.1	9.7	5.1	6.3	5.2	8.9	4.6	11.3	5.3	9.7	5.2	7.8	5.4	3.9	4.9	7.2	5.1
1977	4.6	4.9	6.4	5.7	12.8	5.6	10.7	4.6	7.7	4.7	13.1	4.8	12.3	5.2	7.1	5.1	4.1	4.7	8.3	5.0
1978	5.9	5.2	3.5	5.4	9.1	5.4	9.9	5.0	6.9	5.4	8.8	5.5	11.1	5.5	7.4	5.5	4.0	5.8	7.1	5.4
1979	6.7	4.5	4.0	5.7	5.5	5.3	7.3	5.4	5.4	5.9	6.1	5.0	11.1	5.8	8.7	5.2	3.3	5.0	6.3	5.3
1980	8.1	4.9	9.4	5.2	12.1	5.2	16.6	4.9	11.3	5.0	9.9	4.8	13.5	4.5	11.6	5.3	5.8	5.2	10.7	5.0
1981	11.4	4.4	8.7	4.9	11.2	5.4	15.5	4.8	10.0	4.6	11.5	5.0	16.9	4.4	8.8	5.2	5.5	4.7	10.7	4.8
1982	4.4	4.3	4.1	5.3	6.2	4.9	8.9	4.7	3.6	5.6	3.0	4.5	6.9	4.3	6.8	5.4	2.9	4.2	5.0	4.9
1983	1.6	4.7	1.9	4.9	3.1	5.2	2.8	4.9	1.8	5.4	3.6	5.4	5.9	5.3	7.5	5.9	3.8	5.8	3.4	5.3
1984	1.3	5.9	1.5	5.7	2.8	5.3	3.5	5.2	2.3	5.0	3.6	5.1	3.6	4.4	5.8	5.2	4.1	4.8	3.1	5.2
1985	3.5	5.4	4.2	5.3	4.9	6.1	5.8	5.3	5.4	5.5	3.9	5.4	8.9	5.7	12.2	5.3	5.7	6.1	6.0	5.5
1986	3.9	5.9	2.9	5.0	7.1	5.5	5.6	3.8	4.1	4.7	4.9	4.4	8.1	4.9	10.3	5.3	3.8	4.9	5.4	5.0
1987	5.8	6.2	5.0	6.2	8.5	5.8	9.3	5.1	6.3	4.9	4.8	5.6	9.9	5.0	10.5	5.4	5.7	5.4	7.1	5.5
1988	5.3	5.1	5.0	5.6	5.8	6.6	9.7	5.1	4.0	6.1	3.5	5.8	7.8	4.9	8.5	4.9	4.3	5.5	5.7	5.5
1989	3.8	5.2	5.0	5.9	8.2	5.1	10.9	5.3	8.1	5.4	5.5	5.4	6.9	4.6	6.5	5.2	5.5	5.9	6.5	5.4
1990	5.2	5.0	6.9	5.4	9.6	5.4	9.8	4.5	6.6	4.9	3.9	4.7	7.3	4.9	5.8	4.4	4.1	5.2	6.4	4.9
1991	5.8	4.7	6.4	5.4	7.7	5.4	12.5	4.8	7.1	4.3	4.9	5.0	11.5	4.2	7.9	5.1	6.6	5.2	7.5	4.9
1992	4.3	4.0	7.1	5.6	4.6	4.9	6.9	4.4	6.8	4.4	5.7	5.2	5.1	4.1	4.2	3.9	5.6	4.7	5.7	4.6
1993	2.4	4.8	3.4	5.4	2.3	4.9	8.9	5.1	3.8	5.2	3.6	5.4	5.8	4.3	3.7	5.5	4.2	5.2	4.0	5.1
1994	7.5	4.6	11.2	5.5	5.7	4.5	14.2	4.5	9.4	4.8	10.0	5.4	8.9	4.1	6.8	5.4	8.7	5.4	9.1	5.0
1995	4.8	4.6	10.1	5.0	5.7	5.4	8.1	4.5	9.4	4.5	7.4	6.1	7.3	4.6	4.3	5.5	6.1	5.6	7.2	5.1
1996	9.1	4.6	9.6	5.0	4.8	4.5	7.4	4.6	8.5	4.9	8.9	5.6	5.6	4.0	3.7	3.7	4.0	4.8	7.1	4.7
1997	6.8	5.7	9.1	5.1	6.7	5.1	5.9	5.0	8.6	5.1	7.0	5.4	5.7	3.7	3.8	6.9	6.1	6.3	6.8	5.4
1998	14.1	4.2	9.6	4.7	6.7	5.4	6.1	4.7	8.3	4.6	8.8	5.2	4.3	3.2	2.7	4.3	6.3	5.1	7.7	4.6
1999	7.2	4.5	5.5	4.1	3.5	4.6	3.5	4.2	6.1	4.6	4.7	5.8	3.1	3.8	1.9	5.2	4.1	5.9	4.6	4.7
2000	11.3	4.7	5.5	4.9	2.4	4.7	4.7	5.3	8.8	4.2	5.7	5.2	4.4	4.3	3.5	3.7	3.3	5.2	5.8	4.7
2001	3.3	4.6	2.7	4.6	0.9	5.4	1.6	3.2	3.3	4.9	2.9	5.6	2.3	3.8	1.2	4.4	0.7	3.4	2.2	4.5
2002	7.4	5.1	7.8	5.0	2.4	4.7	5.3	4.8	7.9	5.0	4.5	5.9	3.5	3.4	1.8	5.5	3.6	5.5	5.2	5.1
2003	13.9	4.5	10.3	5.4	4.1	3.7	5.6	5.4	10.3	4.6	5.6	5.3	4.7	4.9	3.5	4.6	4.1	5.3	7.3	4.9
2004	9.5	4.1	6.0	4.0	2.7	4.5	4.1	3.4	6.2	4.1	3.5	5.0	4.8	3.7	3.4	4.4	4.6	4.2	5.2	4.1
2005	11.7	4.2	7.2	4.3	4.2	4.7	6.1	3.9	8.3	4.6	3.5	5.2	4.9	4.2	2.1	4.8	3.9	5.1	6.0	4.6
2006	7.7	4.8	7.1	4.1	3.4	4.0	4.7	4.0	6.6	4.3	4.0	4.1	4.1	3.9	1.4	4.5	3.1	5.1	4.8	4.3
2007	7.7	4.2	6.1	4.3	3.4	4.1	4.7	4.7	6.4	4.3	4.5	4.3	2.4	3.6	0.8	4.2	3.3	5.1	4.6	4.3
2008	8.6	4.6	4.0	4.2	1.5	3.4	2.9	4.9	2.7	4.4	1.1	5.0	0.8	3.5	0.7	4.3	0.8	3.9	2.7	4.4
2009	5.5	4.4	2.9	3.4	0.6	2.2	3.9	4.6	2.7	5.1	1.2	6.4	1.9	4.1	0.8	4.6	2.2	3.6	2.5	4.4
Statistics:																				
10 Year Avg.	8.7	4.5	6.0	4.4	2.6	4.2	4.4	4.4	6.3	4.5	3.6	5.2	3.4	3.9	1.9	4.5	3.0	4.6	4.6	4.5
Long-term Avg.	6.5	4.9	6.8	5.2	6.6	5.2	7.6	4.9	7.0	5.1	6.6	5.4	8.7	4.8	5.6	5.2	4.0	5.3	6.5	5.1
Percent Change from:																				
2008	-35.5	-4.3	-27.9	-19.1	-61.6	-34.3	32.5	-5.5	2.4	16.0	12.6	29.2	134.2	16.1	11.1	6.6	177.8	-8.6	-8.3	0.7
10 Year Avg.	-36.1	-3.6	-51.6	-22.9	-77.0	-46.8	-11.5	4.3	-56.6	12.7	-67.4	23.7	-42.4	3.0	-58.2	2.1	-26.7	-23.2	-45.8	-3.3

YEAR	QUAIL PER ROUTE										JACK- RABBITS STATEWIDE
	NORTH WEST	NORTH CENTRAL	NORTH EAST	WEST CENTRAL	CENTRAL	EAST CENTRAL	SOUTH WEST	SOUTH CENTRAL	SOUTH EAST	STATEWIDE	
1962	0.00	0.00	0.00	2.22	0.25	0.18	0.88		2.00	0.62	0.45
1963	0.00	0.29	0.08	0.50	0.47	0.13	0.54	5.58	3.20	1.12	0.41
1964	0.00	0.00	0.29	0.64	0.50	0.60	0.83	4.69	4.47	1.39	0.53
1965	0.81	0.04	0.32	0.28	0.25	0.81	2.08	6.76	8.27	2.21	0.35
1966	0.22	0.00	0.12	0.11	0.44	3.05	2.58	6.65	7.59	2.29	0.35
1967	0.38	0.00	0.16	0.56	0.20	1.81	2.17	5.48	8.09	2.10	0.60
1968	0.00	0.00	0.28	0.17	0.65	2.68	3.46	5.81	5.55	2.06	0.28
1969	0.00	0.00	0.00	0.06	1.68	3.00	6.83	8.58	5.40	2.60	0.31
1970	0.00	0.00	0.00	0.00	0.17	1.64	10.75	10.15	7.36	2.95	0.15
1971	0.00	0.00	0.00	0.06	0.52	1.35	11.42	6.82	6.79	2.64	0.35
1972	0.00	0.00	0.00	0.26	0.25	1.13	10.27	6.84	3.80	2.26	0.30
1973	0.00	0.00	0.00	0.21	1.24	1.29	13.31	6.58	5.55	2.54	0.20
1974	0.00	0.00	0.11	0.25	0.13	1.00	8.07	6.39	5.13	2.11	0.07
1975	0.00	0.00	0.00	2.00	0.30	0.92	7.64	3.78	5.64	1.98	0.11
1976	0.00	0.00	2.00	2.21	0.16	2.04	2.40	7.39	4.68	2.19	0.11
1977	0.00	0.00	0.41	0.21	0.68	1.55	5.40	12.63	3.96	2.69	0.08
1978	0.00	0.00	1.06	1.37	0.17	0.50	2.73	8.42	3.40	1.87	0.14
1979	0.04	0.00	0.88	0.00	0.35	0.32	2.75	2.00	0.30	0.66	0.16
1980	0.36	0.00	0.00	0.68	1.39	1.00	5.27	7.88	2.61	2.05	0.15
1981	0.40	0.00	1.00	0.21	0.10	1.64	7.00	11.84	2.43	2.60	0.31
1982	0.00	0.00	0.67	0.05	0.00	0.14	0.87	2.64	2.83	0.79	0.10
1983	0.08	0.08	0.28	0.16	0.50	0.57	1.64	7.32	1.87	1.44	0.05
1984	0.00	0.00	0.22	0.80	0.03	0.00	1.13	2.40	1.57	0.66	0.08
1985	0.00	0.00	1.44	0.00	0.10	0.00	1.27	6.24	3.30	1.37	0.07
1986	0.00	0.00	0.00	0.37	0.03	0.14	1.73	8.16	2.09	1.42	0.12
1987	0.00	0.00	0.33	0.47	0.00	0.74	3.93	14.52	4.17	2.70	0.12
1988	0.00	0.00	0.44	0.94	0.00	0.00	4.87	8.46	4.13	1.96	0.17
1989	0.04	0.00	0.33	1.06	0.10	0.70	6.07	7.67	3.17	1.91	0.22
1990	0.00	0.00	1.00	0.72	0.13	1.04	2.93	6.25	2.21	1.48	0.19
1991	0.08	0.00	0.47	0.72	0.13	0.52	3.13	5.54	2.33	1.34	0.07
1992	0.12	0.00	0.22	1.50	0.07	0.96	2.43	2.83	2.71	1.07	0.14
1993	0.00	0.00	0.37	0.50	0.03	0.78	5.07	2.13	1.61	0.96	0.03
1994	0.08	0.00	0.00	0.65	0.00	0.87	9.19	3.21	3.04	1.58	0.15
1995	0.08	0.00	0.63	0.17	0.06	0.86	2.53	5.54	3.22	1.37	0.06
1996	0.08	0.00	0.21	0.28	0.09	0.71	2.73	0.88	0.65	0.51	0.09
1997	0.00	0.00	0.00	0.00	0.07	1.24	4.27	2.25	0.50	0.77	0.10
1998	0.00	0.00	0.00	0.00	0.07	1.48	1.20	2.30	1.81	0.72	0.09
1999	0.00	0.00	0.05	0.00	0.00	0.13	1.07	2.50	1.50	0.57	0.06
2000	0.00	0.00	0.00	0.20	0.47	0.17	4.40	0.83	0.41	0.57	0.03
2001	0.00	0.00	0.00	0.00	0.09	0.76	1.31	0.50	0.32	0.29	0.05
2002	0.00	0.00	0.00	0.70	0.03	0.27	1.06	0.88	0.96	0.39	0.03
2003	0.00	0.00	0.00	0.00	0.22	0.14	3.27	3.92	1.36	0.89	0.03
2004	0.00	0.00	0.50	0.05	0.19	0.55	2.19	2.64	3.19	0.93	0.03
2005	0.00	0.00	0.00	0.09	0.53	0.00	1.71	2.52	1.64	0.69	0.02
2006	0.00	0.00	0.00	0.32	0.03	0.52	1.65	2.16	3.22	0.82	0.05
2007	0.04	0.00	0.00	0.78	0.00	1.40	0.63	1.52	3.30	0.81	0.02
$2008{ }^{\text {a }}$	0.00	0.00	0.00	0.13	0.00	0.00	2.00	1.04	1.26	0.45	0.00
2009	0.58	0.00	0.00	0.67	0.00	0.18	1.22	2.24	1.67	0.72	0.01
Statistics:											
10 Year Avg.	0.06	0.00	0.05	0.29	0.16	0.40	1.94	1.83	1.73	0.65	0.03
Long-term Avg.	0.07	0.01	0.29	0.49	0.27	0.86	3.79	5.18	3.26	1.46	0.16
Percent Change from:											
2008				413.1			-38.9	115.4	32.2	62.2	
10 Year Avg.	838.2		-100.0	127.3	-100.0	-54.5	-37.1	22.7	-3.8	10.3	-81.9
Long-term Avg.	720.1	-100.0	-100.0	37.3	-100.0	-78.9	-67.7	-56.7	-48.8	-50.6	-96.8

Table 5.4 Mean number of gray partridge counted/30-mile route on the August roadside survey, regionally and statewide, (1963-present).

YEAR	NORTH WEST	NORTH CENTRAL	NORTH EAST	WEST CENTRAL	CENTRAL	EAST CENTRAL	SOUTH WEST	SOUTH CENTRAL	SOUTH EAST	STATEWIDE
1962	6.27	0.82	0.00	1.00	0.08	0.00	0.00		0.00	1.13
1963	4.67	2.71	0.00	0.69	0.00	0.00	0.00	0.00	0.00	0.92
1964	4.93	2.11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.85
1965	2.38	1.52	0.00	0.11	0.00	0.00	0.00	0.00	0.00	0.48
1966	2.70	4.96	0.00	0.00	0.76	0.00	0.00	2.05	0.00	1.30
1967	3.33	1.13	0.00	1.11	0.20	0.00	0.00	0.00	0.00	0.66
1968	4.13	1.30	0.00	0.06	0.00	0.00	0.00	0.00	0.00	0.68
1969	1.25	1.14	0.00	0.17	0.32	0.00	0.00	0.00	0.00	0.38
1970	8.43	4.00	0.00	0.00	0.75	0.00	0.00	0.00	0.00	1.66
1971	7.09	3.55	0.00	0.29	0.00	0.00	0.00	0.00	0.00	1.44
1972	8.92	5.44	0.00	0.47	0.61	0.00	0.00	0.00	0.20	1.92
1973	6.57	7.08	0.22	0.32	0.52	0.00	0.00	0.00	0.00	1.87
1974	9.00	4.79	0.00	0.30	0.33	0.00	0.00	0.00	0.00	1.82
1975	8.50	6.73	0.00	0.00	0.19	0.00	0.00	0.00	0.00	1.98
1976	9.50	7.20	0.00	0.84	0.23	0.00	0.00	0.00	0.00	2.14
1977	22.04	13.88	0.00	1.58	0.55	0.00	0.00	0.00	0.00	4.70
1978	17.23	7.68	0.11	1.42	2.43	0.00	0.00	0.00	0.00	3.73
1979	20.28	19.32	0.18	1.58	2.90	0.77	0.00	0.00	0.00	5.59
1980	35.04	28.08	0.11	3.00	4.03	0.82	0.00	0.00	0.00	8.81
1981	31.44	23.60	1.78	5.00	4.19	0.32	0.00	0.00	0.00	8.08
1982	18.48	10.16	0.94	3.37	1.87	0.00	0.00	0.00	0.00	4.21
1983	8.04	8.88	0.72	1.84	1.87	0.65	0.00	0.00	0.00	2.65
1984	14.16	13.24	2.11	1.05	3.03	1.05	0.00	0.00	0.00	4.22
1985	26.84	25.23	8.06	10.68	9.26	1.18	0.00	0.00	0.00	9.75
1986	29.48	21.04	10.00	5.79	11.13	2.41	0.13	0.00	0.00	9.62
1987	36.88	35.08	10.56	17.00	20.32	3.17	0.00	0.00	0.61	14.93
1988	42.84	48.65	15.61	17.83	25.07	4.48	0.20	0.38	1.39	19.00
1989	36.54	31.82	14.39	12.06	37.48	0.96	2.07	0.38	0.70	17.27
1990	18.40	20.12	16.68	5.89	6.93	5.52	1.00	0.38	0.88	8.75
1991	13.88	7.52	4.16	3.17	4.23	4.00	0.87	0.54	0.58	4.59
1992	5.15	4.76	6.67	2.61	3.77	4.17	0.07	1.46	2.05	3.58
1993	1.33	1.39	0.84	2.00	1.19	0.17	0.00	0.13	0.17	0.85
1994	7.92	14.48	4.47	10.41	8.29	5.39	0.13	0.29	0.35	6.17
1995	3.72	4.86	4.11	1.28	2.52	3.18	0.00	0.29	0.78	2.47
1996	4.42	6.64	3.00	2.61	1.81	1.24	0.00	0.00	0.00	2.37
1997	9.00	7.33	6.47	3.16	10.77	3.95	0.00	0.00	0.36	5.10
1998	23.00	13.96	9.17	3.58	3.36	1.24	0.07	0.00	0.05	6.42
1999	11.41	2.75	2.11	1.84	3.68	0.52	0.00	0.00	0.09	2.83
2000	6.54	4.75	0.90	2.05	4.00	1.74	0.00	0.00	0.00	2.53
2001	3.23	1.30	3.44	2.75	3.94	1.33	0.13	0.00	0.00	1.90
2002	7.04	2.04	2.94	4.00	5.88	1.23	0.00	0.00	0.00	2.82
2003	6.77	3.04	3.20	1.50	7.00	0.13	0.00	0.00	0.00	2.76
2004	7.77	2.30	1.90	0.86	3.25	1.00	0.00	0.04	0.00	2.12
2005	9.31	3.59	1.80	2.68	3.53	1.83	0.00	0.00	0.36	2.79
2006	2.50	4.96	2.10	2.14	3.53	0.86	0.00	0.00	0.39	2.01
2007	2.19	2.93	2.30	1.96	2.90	0.85	0.00	0.28	0.00	1.62
2008	2.39	4.11	0.00	1.09	0.40	0.20	0.00	0.12	0.00	1.03
2009	2.92	1.39	2.29	1.57	1.83	0.00	0.00	0.00	0.21	1.17
Statistics:										
10 Year Avg.	5.07	3.04	2.09	2.06	3.63	0.92	0.01	0.04	0.10	2.08
Long-term Avg.	12.00	9.49	2.99	3.01	4.39	1.13	0.10	0.13	0.19	4.08
Percent Change from:										
2008	22.6	-66.3		44.5	358.3					13.5
10 Year Avg.	-42.3	-54.4	9.9	-23.7	-49.4	-100.0	-100.0	-100.0	116.0	-43.8
Long-term Avg.	-75.6	-85.4	-23.2	-47.9	-58.3	-100.0	-100.0	-100.0	9.0	-71.4

Table 5.5 Mean number of cottontail rabbits counted/30-mile route on the August roadside survey, regionally and statewide, (1962-present).

YEAR	NORTH WEST	NORTH CENTRAL	$\begin{gathered} \hline \text { NORTH } \\ \text { EAST } \\ \hline \end{gathered}$	WEST CENTRAL	CENTRAL	EAST CENTRAL	$\begin{aligned} & \hline \text { SOUTH } \\ & \text { WEST } \\ & \hline \end{aligned}$	SOUTH CENTRAL	$\begin{gathered} \hline \text { SOUTH } \\ \text { EAST } \\ \hline \end{gathered}$	STATEWIDE
1962	3.6	1.5	4.3	10.1	5.3	6.2	6.0		5.6	5.2
1963	8.9	4.8	4.2	10.8	5.0	6.9	8.0	9.9	12.7	7.9
1964	2.3	2.3	1.7	11.1	6.6	3.1	10.2	19.4	13.7	7.9
1965	3.1	3.0	3.7	7.9	2.8	4.0	16.2	24.3	11.2	8.1
1966	2.0	3.2	6.5	9.7	5.9	5.0	30.2	31.7	9.5	10.3
1967	2.8	2.4	4.4	6.9	6.1	4.0	18.8	16.3	10.9	7.5
1968	1.9	3.3	4.0	6.9	5.3	5.7	17.7	17.5	8.5	7.4
1969	2.0	2.2	5.0	3.4	2.5	5.6	16.6	18.0	6.8	6.3
1970	1.4	2.0	4.3	2.7	1.7	3.6	12.5	11.3	4.7	4.4
1971	1.9	1.4	3.9	3.7	2.8	4.2	14.8	16.5	5.6	5.4
1972	2.8	1.7	2.7	3.9	2.3	6.4	11.7	14.8	4.7	5.5
1973	2.2	2.6	3.7	3.9	4.2	6.0	13.8	14.3	6.1	5.8
1974	2.1	1.9	4.4	3.6	2.0	3.9	5.8	8.4	6.0	4.1
1975	1.3	1.2	2.5	2.6	1.4	3.6	5.1	7.0	5.2	3.2
1976	1.3	1.6	5.9	7.3	4.2	5.5	9.3	16.4	8.9	6.4
1977	1.4	1.2	4.0	2.2	1.9	5.1	7.9	11.7	5.4	4.3
1978	3.8	2.0	6.9	4.7	3.7	5.5	12.7	14.0	5.2	6.2
1979	3.2	1.7	3.3	4.1	2.7	2.3	5.6	8.2	2.5	3.6
1980	2.3	3.0	2.1	4.2	4.2	1.8	5.5	9.8	4.9	4.2
1981	3.4	4.6	6.4	5.2	3.2	7.4	11.1	21.1	9.0	7.8
1982	2.4	2.3	2.7	4.4	2.5	4.9	7.7	19.5	11.7	6.4
1983	3.1	2.5	6.4	4.2	3.1	5.0	7.2	17.6	12.7	6.8
1984	2.0	1.4	3.0	4.2	2.6	4.0	3.5	14.7	14.0	5.6
1985	3.2	2.7	3.9	3.8	4.4	5.5	7.1	22.9	12.0	7.4
1986	3.0	2.6	4.6	4.3	3.8	3.8	9.7	25.2	12.7	7.7
1987	4.1	3.5	3.2	6.3	4.4	4.3	8.1	34.4	7.7	8.6
1988	3.1	1.8	2.0	4.8	2.6	2.5	4.6	12.8	6.7	4.5
1989	2.4	2.4	4.6	5.2	2.9	4.3	6.3	13.5	8.5	5.4
1990	2.7	3.9	7.0	7.7	5.5	7.3	9.2	26.0	14.7	9.2
1991	2.4	1.8	3.4	5.1	2.5	3.3	7.0	16.3	9.1	5.5
1992	2.6	3.8	4.0	4.8	4.1	3.6	7.1	13.7	12.4	6.0
1993	1.3	1.8	3.9	6.5	2.2	5.0	6.7	15.4	10.1	5.5
1994	2.2	1.9	5.4	5.4	3.3	7.4	8.9	14.4	10.4	6.3
1995	3.2	4.0	3.8	5.5	4.8	6.5	13.0	15.7	9.5	7.0
1996	3.6	3.7	5.8	5.2	3.7	6.3	6.4	13.8	8.5	6.2
1997	2.1	2.4	5.2	2.9	3.4	6.2	6.0	11.8	5.1	4.9
1998	2.0	2.7	5.1	3.1	3.7	6.3	5.8	10.4	7.5	5.1
1999	4.1	2.3	5.1	5.0	4.7	9.1	7.9	10.6	6.0	5.9
2000	2.4	2.0	4.9	4.2	4.9	6.9	7.4	19.3	7.2	6.4
2001	1.6	1.6	1.3	2.1	3.0	3.5	5.3	12.0	4.1	3.8
2002	2.7	2.2	2.7	3.7	4.8	6.5	3.8	11.2	9.3	5.3
2003	5.0	3.9	5.7	6.9	8.3	8.0	9.1	21.4	11.0	8.8
2004	3.0	3.3	5.7	4.2	3.9	6.1	8.7	24.9	14.6	8.1
2005	4.7	2.9	5.7	5.0	4.6	3.7	12.6	12.1	7.0	6.2
2006	3.8	2.8	5.2	5.6	4.3	5.8	8.4	14.9	7.8	6.4
2007	1.7	2.6	4.2	3.6	2.8	6.1	5.7	6.1	8.0	4.3
2008	4.0	2.8	2.6	6.1	5.1	3.6	8.8	16.9	7.0	6.3
2009	2.2	1.3	3.7	4.7	4.0	4.5	10.3	9.6	6.1	5.0
Statistics:										
10 Year Avg.	3.1	2.5	4.2	4.6	4.6	5.5	8.0	14.8	8.2	6.1
Long-term Avg.	2.8	2.5	4.3	5.1	3.8	5.1	9.5	15.9	8.6	6.2
Percent Change from:										
2008	-44.7	-51.5	40.8	-23.3	-20.4	28.0	17.7	-43.4	-13.6	-20.9
10 Year Avg.	-28.3	-47.1	-11.3	1.6	-11.9	-16.9	29.2	-35.5	-25.9	-17.4
Long-term Avg.	-19.8	-46.8	-13.2	-8.2	6.2	-10.8	9.0	-39.9	-29.0	-19.1

Table 5.6 Small game harvest estimates from the lowa small-game survey (1963-present). Resident and NR hunter harvests combined.

YEAR	PHEASANT	QUAIL	COTTONTAIL	JACKRABBIT	SQUIRREL	HUNS	RUFFED GROUSE
1958*	1,548,564						
1959*	1,070,285						
1963	1,935,000	327,977	2,066,472	75,015	1,440,576	8,000	
1964	1,737,400	291,030	2,260,090	97,785	1,111,290	7,000	
1965	1,117,500	513,760	1,602,060	133,000	1,236,400	11,500	
1966	1,449,400	1,051,630	2,180,525	91,690	1,370,250	12,000	
1967	1,212,200	736,520	1,548,035	55,660	1,196,810	11,300	
1968	1,393,900	777,685	1,761,370	62,405	1,014,940	21,600	
1969	1,642,899	1,144,700	1,722,280	98,930	1,164,030	20,900	2,110
1970	1,788,500	1,178,685	1,725,535	71,705	1,115,410	28,300	4,085
1971	1,817,000	1,037,957	1,305,083	41,468	1,172,742	31,100	3,880
1972	1,396,900	657,300	1,148,100	31,200	1,048,000	16,800	8,500
1973	1,905,086	791,242	1,424,927	30,863	1,105,271	45,284	
1974	1,672,476	727,324	1,271,577	40,027	1,119,048	39,976	
1975	1,230,095	543,971	996,227	19,064	1,046,559	26,436	
1976	1,425,500	1,080,500	1,136,300	20,700	1,377,500	54,800	24,400
1977	1,357,862	849,183	1,322,263	19,975	1,283,043	48,991	17,022
1978	1,428,708	660,625	856,999	26,077	815,562	108,473	9,166
1979	1,200,709	312,410	461,285	13,713	696,363	55,414	7,717
1980	1,429,617	524,450	588,363	7,932	844,999	70,764	17,305
1981	1,447,969	563,569	1,134,781	22,860	949,681	69,698	23,940
1982	972,556	302,648	712,227	5,237	759,438	52,782	9,279
1983	1,047,027	270,690	720,012	8,845	669,490	91,035	5,894
1984	724,192	190,708	636,209	6,376	529,316	33,306	13,308
1985	852,716	189,236	717,631	2,108	673,665	62,931	8,336
1986	855,894	339,000	472,585	6,082	506,769	60,018	12,701
1987	1,412,082	397,633	690,091	8,830	532,001	109,061	5,254
1988	1,139,599	289,592	424,561	3,907	510,065	104,094	13,039
1989	1,441,990	426,302	435,791	3,025	583,183	118,282	13,335
1990	1,407,002	321,493	608,805	4,463	466,140	147,922	9,338
1991	1,138,463	231,818	437,144	3,171	407,172	45,541	5,764
1992	925,123	179,825	311,607	2,113	328,644	37,328	3,794
1993	1,226,010	201,461	334,667	3,212	439,477	24,577	1,606
1994	1,245,580	178,589	288,982	262	395,232	22,331	2,189
1995	1,443,010	220,999	335,862	6,280	377,714	6,677	2,630
1996	1,367,060	81,039	331,047	2,666	302,908	36,358	3,011
1997	1,340,050	181,025	340,661	5,063	265,874	38,045	3,402
1998	1,237,980	100,594	255,149	10,008	319,081	25,613	0
$1999{ }^{\text {a }}$	899,174	110,128	237,409	8,777	242,224	20,200	1,373
$2000{ }^{\text {b }}$	1,001,867	140,828	350,739	1,626	217,116	19,258	489
2001	470,116	32,226	196,483	3,840	248,833	5,814	903
2002	729,460	63,872	167,284	1,637	152,825	5,130	265
2003	1,080,466	114,067	243,699	738	202,729	8,204	1,083
2004	756,184	68,256	259,327	151	233,530	12,535	152
2005	806,601	40,675	210,591	671	132,195	14,674	5,424
2006	748,025	75,276	155,892	999	165,255	10,724	9,160
2007	631,638	54,444	131,250	1,262	169,478	4,885	3,809
$2008{ }^{\text {c }}$	383,083	13,391	122,296	57	120,998	1,420	179
2009	271,126	12,136	127,663	608	169,041	4,643	48
Statistics:							
10 Year Avg.	687,857	61,517	196,522	1,159	181,200	8,729	
Long-term Avg.	1,199,217	395,712	782,297	22,598	664,444	38,547	
Percent Change from:							
2008	-29.2	-9.4	4.4	966.7	39.7	227.0	
10 Year Avg.	-60.6	-80.3	-35.0	-47.5	-6.7	-46.8	
Long-term Avg.	-77.4	-96.9	-83.7	-97.3	-74.6	-88.0	

[^3]Table 5.7 Estimated hunter and harvest numbers for pheasant and quail by residency status from the lowa small-game survey (1987-present).

YEAR	Pheasant				Quail			
	Resident		Non Resident		Resident		Non Resident	
	Hunters	Harvest	Hunters	Harvest	Hunters	Harvest	Hunters	Harvest
1987	178,203	1,129,395	33,915	251,613	70,026	181,378	13,727	64,760
1988	170,323	902,226	33,682	237,373	59,230	212,646	13,792	76,946
1989	173,017	1,122,951	38,569	319,039	69,591	381,321	10,380	44,981
1990	171,016	1,047,529	39,829	359,473	61,219	269,896	11,667	51,597
1991	161,741	852,158	40,578	286,305	49,713	184,195	11,271	47,623
1992	139,681	677,670	36,749	247,453	47,641	155,919	8,646	23,906
1993	138,619	999,149	27,642	226,857	43,027	175,793	6,318	25,667
1994	147,841	876,365	41,824	369,216	41,504	156,413	8,754	22,176
1995	155,308	1,118,638	44,995	324,368	39,653	193,544	11,185	27,454
1996	155,889	1,059,385	49,704	307,675	33,996	62,438	10,978	18,601
$1997{ }^{\text {a }}$	154,855	1,037,620	50,349	302,432	24,927	134,418	10,546	46,607
1998	141,838	936,181	42,748	301,797	26,393	83,067	5,985	17,527
$1999{ }^{\circ}$	142,521	684,596	39,152	214,578	32,306	86,058	8,811	24,070
2000	134,873	781,143	32,648	220,724	33,114	114,110	6,843	26,718
$2001{ }^{\text {² }}$	99,125	352,469	23,781	117,620	20,459	24,812	4,132	7,414
2002	97,842	548,413	29,757	181,047	16,194	43,492	4,693	20,380
2003	108,819	849,898	33,414	230,568	19,937	99,971	4,958	14,096
2004	99,753	586,632	31,009	169,552	17,139	57,486	5,197	10,770
2005	107,255	641,957	28,937	164,644	15,277	33,714	3,301	6,961
2006	91,642	558,369	27,038	189,656	17,787	49,783	4,769	25,493
2007	85,803	481,754	23,426	149,884	14,227	42,799	4,007	11,645
$2008{ }^{\text {u }}$	69,640	299,875	16,231	83,208	12,114	10,716	1,791	2,675
2009	60,708	217,816	13,309	53,310	8,237	11,098	1,942	1,038
Statistics:								
10 Year Avg.	95,546	531,833	25,955	156,021	17,449	48,798	4,163	12,719
Long-term Avg.	129,840	772,269	33,882	230,800	33,640	120,220	7,552	26,918
Percent Change from:								
2008	-12.8	-27.4	-18.0	-35.9	-32.0	3.6	8.4	-61.2
10 Year Avg.	-36.5	-59.0	-48.7	-65.8	-52.8	-77.3	-53.4	-91.8
Long-term Avg.	-53.2	-71.8	-60.7	-76.9	-75.5	-90.8	-74.3	-96.1

${ }^{\text {a }}$ lowa lost 800,000 acres of whole field enrollment CRP.
${ }^{\text {u }}$ Small Game Harvest Survey changed from a single to a double mailing. Hunter estimates from 1999-present are more conservative than pre-1999 estimates.
${ }^{\iota}$ Fourth worst winter in Iowa records for total snowfall.

Table 5.8 Sales of hunting-related licenses and stamps in lowa (1942-present).

YEAR ${ }^{\text {a }}$	RESIDENT					NON-RESIDENT			HABITAT STAMP	IA DUCK STAMP ${ }^{9}$	$\begin{gathered} \text { HUNT } \\ \text { PRESERVE }^{n} \\ \hline \hline \end{gathered}$
	FURHARVESTER			$\begin{array}{cc} \hline \text { RESIDENT LIFETIME } \\ \text { HUNT }^{\mathrm{a}} & \text { over } 65 \\ \hline \end{array}$		HUN	TING	TOTAL			
	over 16°	under 16	TOTAL ${ }^{\text {c }}$			over 18	under 18	LICENSE ${ }^{\text {e }}$			
1942				226,046				447			
1943				193,270				612			
1944				211,657				1,163			
1945				245,609				998			
1946				326,128				1,646			
1947				273,242				632			
1948				332,019				1,727			
1949				349,734				2,256			
1950				338,111				2,393			
1951				329,320				2,371			
1952				340,935				2,391			
1953				343,982				3,115			
1954				346,435				3,203			
1955				369,493				3,936			
1956				364,985				4,544			
1957				339,389				4,422			
1958				355,658				5,521			
1959				320,246				4,535			
1960				313,851				5,352			
1961				301,809				5,448			
1962				288,087				5,470			
1963				307,475				7,531			
1964				301,964				8,370			
1965				275,640				6,505			
1966				292,745				9,638			
1967				295,276				11,244			
1968				309,424				12,223			
1969				303,602				17,326			
1970				322,509				21,898			
1971				328,542				30,264			
1972				277,317				28,559		70,446	
1973				291,755				34,497		67,323	
1974				318,930				42,224		70,797	
1975				302,436				36,382		70,814	
1976				306,489				41,849		66,120	
1977				296,940				39,032		69,023	
1978				295,696				32,848		67,041	
1979	17,602	4,813	22,415	257,676				27,302	279,621	52,865	768
1980	19,366	5,529	24,895	266,655				30,793	296,667	50,202	822
1981	19,116	4,990	24,106	266,053				31,379	297,297	45,751	742
1982	17,505	4,248	21,753	245,969				24,002	269,290	44,391	751
1983	14,964	3,699	18,663	237,851				23,206	261,340	42,981	766
1984	14,537	3,329	17,866	221,519				21,927	243,154	44,445	696
1985	25,156	3,519	28,675	208,444				22,977	233,779	37,681	729
1986	23,709	3,064	26,773	205,356				27,254	236,219	40,157	882
1987	28,923	3,338	32,261	220,674				35,676	259,350	43,357	1,112
1988	24,105	2,380	26,485	218,588				35,023	257,702	34,799	1,696
1989	18,411	1,530	19,941	226,124				40,197	271,342	32,920	1,499
1990	13,853	973	14,826	219,636				41,500	263,530	31,468	1,786

Table 5.8 Continued.

YEAR ${ }^{\text {a }}$	RESIDENT					NON-RESIDENT			HABITAT STAMP ${ }^{\dagger}$	IA DUCK STAMP ${ }^{9}$	$\begin{gathered} \text { HUNT } \\ \text { PRESERVE } \end{gathered}$
	FURHARVESTER			RESIDENT LIFETIMEHUNT ${ }^{\text {a }} \quad$ over 65		HUNTING		TOTAL LICENSE ${ }^{\text {e }}$			
	over $16^{\text {b }}$	under 16	TOTAL ${ }^{\text {c }}$			over 18	under 18				
1991	14,208	719	14,927	217,200				45,792	266,845	32,537	1,454
1992	14,272	793	15,065	203,508				39,211	247,673	34,304	1,810
1993	14,672	829	15,501	197,966				29,231	232,298	31,741	2,137
1994	15,811	952	16,763	211,289				45,610	260,815	33,232	1,870
1995	15,343	903	16,246	210,727				48,028	263,531	34,903	2,467
1996	17,237	1,021	18,258	209,663				53,058	265,653	43,060	2,317
1997	18,330	1,066	19,396	211,530				52,730	269,443	38,275	2,516
1998	18,325	1,078	19,403	208,790				50,511	266,519	40,349	3,107
1999*	15,804	1,004	16,808	206,210	2,885	42,379	2,086	44,465	253,943	42,588	2,772
2000	12,793	1,936	14,729	200,995	1,642	39,067	1,901	40,968	245,351	40,913	2,898
2001	14,665	658	15,323	194,051	1,515	26,748	1,090	27,838	237,407	40,378	2,963
2002	14,235	644	14,879	189,138	2,339	36,728	1,532	38,260	229,829	37,574	3,282
2003	13,753	651	14,404	193,279	1,772	43,145	1,951	45,096	240,527	35,746	3,173
2004	13,906	701	14,607	190,154	1,786	41,159	1,847	43,006	235,336	34,611	3,254
2005	12,711	665	13,376	189,813	1,886	40,159	1,801	41,960	233,416	31,666	3,165
2006	13,796	746	14,542	188,628	1,973	39,038	1,815	40,853	231,284	31,982	3,370
2007	14,445	834	15,279	184,257	1,970	35,267	1,604	36,871	222,559	31,992	3,010
2008	14,673	850	15,523	177,723	2,074	28,427	1,167	29,594	208,461	30,560	2,665
2009	13,376	722	14,098	172,230	2,257	24,352	1,026	25,378	198,880	29,644	2,562
Statistics:											
10 Year Avg.	13,835	841	14,676	188,027	1,921	35,409	1,573	36,982	228,305	34,507	3,034
Long-term Avg.	16,761	1,877	18,638	263,065	2,009	36,043	1,620	23,269	250,937	43,648	2,034

Percent Change from:

2008	-8.8	-15.1	-9.2	-3.1	8.8	-14.3	-12.1	-14.2	-4.6	-3.0	-3.9
10 Year Avg.	-3.3	-14.1	-3.9	-8.4	17.5	-31.2	-34.8	-31.4	-12.9	-14.1	-15.6
Long-term Avg.	-20.2	-61.5	-24.4	-34.5	12.3	-32.4	-36.7	9.1	-20.7	-32.1	26.0

${ }^{\text {a }}$ Change to ELSI electronic licensing system in 1999*. Resident hunting, combination, fur/fish/game licenses and furharvester were license types issued prior to ELSI implementation.
${ }^{b}$ Furhanvester (over 16) sales is the sum of discontinued fur(over 16) and fur/fish/game licenses, from 1979-99.
${ }^{\text {c }}$ Total furharvester sales is the sum of furharvester over and under 16 columns. Total does not include NR sales.
${ }^{\text {d }}$ Total resident licenses is sum of resident hunt, combination, and fur/fish/game, until ELSI system implementation in 1999.
${ }^{e}$ For comparisons to previous years total NR licenses is sum of NR over and under 18 sales after 1999 ELSI implementation.

Table 5.9 Estimated hunter numbers (resident \& NR combined) from the lowa small-game survey.

YEAR	PHEASANT	QUAIL	COTTONTAIL	JACK RABBIT	SQUIRREL	HUNS	RUFFED GROUSE
1958*	267,455						
1959*	238,903						
1963	277,400	47,028	169,994	30,494	150,932		
1964	271,285	46,535	179,585	31,815	136,415		
1965	225,735	46,450	138,379	26,080	123,640		
1966	240,400	63,785	154,647	20,355	130,500		
1967	244,300	62,485	150,050	20,615	138,520		
1968	247,100	70,367	147,380	20,131	120,790		
1969	259,100	81,100	159,000	24,810	133,600		1,540
1970	283,400	87,665	167,190	26,460	136,150		2,660
1971	301,150	80,250	134,470	16,326	118,059		1,663
1972	230,000	63,900	137,000	12,800	105,000	6,400	3,000
1973	307,974	106,150	201,560	23,209	159,473	22,374	
1974	307,200	101,101	192,100		159,000		
1975	280,019	102,668	175,850				
1976	289,592	125,575	173,125	11,600	143,474	22,054	8,198
1977	279,689	103,776	170,074	11,302	141,596	17,691	5,668
1978	270,413	101,916	142,809	14,268	120,503	34,329	8,306
1979	241,972	73,461	114,642	10,029	111,434	23,465	4,931
1980	252,440	86,816	119,901	8,526	111,425	27,554	9,281
1981	254,803	97,430	150,881	11,106	117,942	28,731	7,059
1982	214,263	68,479	118,994	4,862	105,262	21,532	8,317
1983	203,014	63,060	118,535	7,331	98,553	25,366	5,701
1984	176,312	58,630	102,993	5,543	86,380	21,179	7,573
1985	175,225	54,427	107,500	6,568	88,849	25,956	5,949
1986	184,759	63,985	92,727	5,193	84,082	30,822	6,874
1987	212,118	83,754	103,199	7,298	77,819	40,878	6,053
1988	204,659	74,584	84,529	4,376	74,783	44,154	8,353
1989	211,586	79,971	89,054	5,634	80,937	48,785	9,611
1990	210,845	72,886	87,437	4,679	70,539	49,220	7,095
1991	202,319	62,684	83,200	4,001	63,601	25,165	4,884
1992	176,430	56,287	66,967	5,802	60,443	22,949	4,378
1993	166,260	49,345	65,704	1,547	62,175	14,920	2,197
1994	189,664	50,258	68,840	1,239	57,381	18,294	2,521
1995	200,302	50,839	68,499	4,361	57,495	15,954	3,940
1996	205,592	44,974	75,870	2,623	56,382	21,914	2,525
1997	205,203	35,473	51,785	2,872	43,632	12,330	2,031
1998	184,585	32,378	54,588	1,604	53,859	13,502	152
$1999{ }^{\text {a }}$	181,673	41,117	50,254	2,456	46,994	11,390	1,481
2000	167,521	39,957	46,311	1,572	35,395	6,043	960
2001	122,906	24,591	36,125	2,933	36,760	5,757	3,227
2002	127,599	20,887	27,945	1,692	25,482	4,417	1,060
2003	142,233	24,895	31,600	326	27,863	4,054	930
2004	130,583	22,336	32,195	600	29,302	4,537	273
2005	136,192	18,578	40,225	1,870	25,943	7,147	3,074
2006	118,680	22,556	34,292	1,989	27,746	5,553	3,046
2007	109,229	18,234	31,106	1,502	23,160	3,819	1,489
$2008{ }^{\text {b }}$	85,871	13,095	27,191	1,405	22,857	2,996	416
2009	74,017	10,179	25,840	1,894	24,586	3,705	369
Statistics:							
10 Year Avg.	121,483	21,531	33,283	1,578	27,909	4,803	
Long-term Avg.	209,999	59,721	102,173	9,193	84,929	19,304	

Percent Change from:						
2008	-13.8	-22.3	-5.0	34.8	7.6	23.7
10 Year Avg.	-39.1	-52.7	-22.4	20.0	-11.9	-22.9
Long-term Avg.	-64.8	-83.0	-74.7	-79.4	-71.1	-80.8

Table 5.10 lowa's ring-necked pheasant hunting seasons.

YEAR	DATES REGULAR/YOUTH	SEASON LENGTH	SHOOTING HOURS	LIMIT - BAG/POSS		$\begin{gathered} \text { \# COUNTIES } \\ \text { OPEN } \end{gathered}$
				REGULAR	YOUTH	
1946	28 OCT-17 NOV	21	1000-1600	3/6		59
1947	11 NOV-20 NOV	10	1200-1600	2/2		64
1948	11 NOV-30 NOV	20	1200-1600	214		68
	11 NOV-5 DEC	25	1200-1630	$2 / 4$		68
1949	11 NOV-17 NOV	7	1200-1630	$2 / 4$		11
1950	11 NOV- 5 DEC	25	1200-1630	3/3		70
	11 NOV-20 NOV	10	1200-1630	3/3		13
1951	11 NOV- 5 DEC	25	1200-1630	3/3		65
	11 NOV-22 NOV	12	1200-1630	3/3		27
1952	18 NOV-12 DEC	25	1200-1630	3/3		65
	18 NOV-29 NOV	12	1200-1630	3/3		27
1953	11 NOV- 5 DEC	25	1200-1630	3/3		69
	11 NOV-22 NOV	12	1200-1630	3/3		23
1954	11 NOV- 5 DEC	25	1200-1630	3/3		70
	11 NOV-22 NOV	12	1200-1630	3/3		22
1955	12 NOV- 5 DEC	24	1200-1630	3/3		70
	12 NOV-24 NOV	13	1200-1630	3/3		22
1956	10 NOV- 3 DEC	24	1200-1630	3/3		70
	10 NOV-22 NOV	13	1200-1630	3/3		22
1957	9 NOV- 2 DEC	24	1200-1630	3/3		70
	9 NOV-21 NOV	13	1200-1630	3/3		22
1958	8 NOV-1 DEC	24	1000-1630	3/6		70
	8 NOV-23 NOV	16	1000-1630	3/6		22
1959	14 NOV- 7 DEC	24	0900-1630	3/6		70
	14 NOV-29 NOV	16	0900-1630	3/6		22
1960	5 NOV-28 NOV	24	0900-1630	3/6		92
1961	11 NOV-15 DEC	35	0900-1630	3/6		92
1962	10 NOV-14 DEC	35	0900-1630	3/6		92
1963-64	9 NOV- 1 JAN	54	0830-1700	3/9		92
1964-65	7 NOV- 3 JAN	58	0830-1700	3/9		92
1965-66	13 NOV- 2 JAN	51	0830-1600	216		92
1966-67	12 NOV- 2 JAN	52	0800-1630	3/6		92
1967-68	11 NOV-1 JAN	52	0800-1630	3/6		94
1968-69	9 NOV-31 DEC	53	0800-1630	3/6		94
1969-70	8 NOV-31 DEC	54	0800-1630	3/6		94
1970-71	14 NOV- 3 JAN	51	0800-1630	3/6		94
1971-72	13 NOV- 2 JAN	51	0800-1630	3/6		96
1972-73	11 NOV- 1 JAN	52	0800-1630	3/12		96
1973-74	10 NOV- 6 JAN	58	0800-1630	3/12		96
1974-75	9 NOV- 5 JAN	58	SUNRISE-SUNSET	3/12		97
1975-76	8 NOV- 4 JAN	58	0800-1630	3/6		97
1976-77	6 NOV- 2 JAN	58	0800-1630	3/6		STATEWIDE
1977-78	5 NOV- 1 JAN	58	0800-1630	3/6		STATEWIDE
1978-79	4 NOV- 1 JAN	60	0800-1630	3/6		STATEWIDE
1979-80	3 NOV- 6 JAN	65	0800-1630	3/6		STATEWIDE
1980-81	1 NOV- 4 JAN	65	0800-1630	3/6		STATEWIDE
1981-82	7 NOV- 3 JAN	58	0800-1630	3/6		STATEWIDE
1982-83	6 NOV- 2 JAN	58	0800-1630	3/6		STATEWIDE

Table 5.10 Continued.

YEAR	DATES REGULAR/YOUTH	SEASON LENGTH	SHOOTING HOURS	LIMIT - BAG/POSS		\#COUNTIESOPEN
				REGULAR	YOUTH	
1983-84	5 NOV-1 JAN	58	0800-1630	3/6		STATEWIDE
1984-85	3 NOV-1 JAN	60	0800-1630	3/6		STATEWIDE
1985-86	2 NOV- 5 JAN	65	0800-1630	3/9		STATEWIDE
1986-87	1 NOV- 4 JAN	65	0800-1630	3/9		STATEWIDE
1987-88	31 OCT- 3 JAN	65	0800-1630	3/12		STATEWIDE
1988-89	29 OCT- 8 JAN	72	0800-1630	3/12		STATEWIDE
1989-90	28 OCT-10 JAN	75	0800-1630	3/12		STATEWIDE
1990-91	27 OCT-10 JAN	76	0800-1630	3/12		STATEWIDE
1991-92	26 OCT-10 JAN	77	0800-1630	3/12		STATEWIDE
1992-93	31 OCT-10 JAN	72	0800-1630	3/12		STATEWIDE
1993-94	30 OCT-10 JAN	72	0800-1630	3/12		STATEWIDE
1994-95	29 OCT-10 JAN	74	0800-1630	3/12		STATEWIDE
1995-96	28 OCT-10 JAN	75	0800-1630	3/12		STATEWIDE
1996-97	26 OCT-10 JAN	77	0800-1630	3/12		STATEWIDE
1997-98 ${ }^{1}$	26 OCT-10 JAN / 18-19 OCT	78/2	0800-1630	3/12	1/2	STATEWIDE
1998-99	31 OCT-10 JAN / 23-24 OCT	72/2	0800-1630	3/12	1/2	STATEWIDE
1999-00	30 OCT-10 JAN / 22-23 OCT	73/2	0800-1630	3/12	1/2	STATEWIDE
2000-01	28 OCT-10 JAN / 21-22 OCT	75/2	0800-1630	3/12	1/2	STATEWIDE
2001-02	27 OCT-10 JAN / 20-21 OCT	76/2	0800-1630	3/12	1/2	STATEWIDE
2002-03	26 OCT-10 JAN / 19-20 OCT	$77 / 2$	0800-1630	3/12	1/2	STATEWIDE
2003-04	25 OCT-10 JAN / 18-19 OCT	78/2	0800-1630	3/12	1/2	STATEWIDE
2004-05	30 OCT-10 JAN / 23-24 OCT	73/2	0800-1630	3/12	1/2	STATEWIDE
2005-06	29 OCT-10 JAN / 22-23 OCT	74/2	0800-1630	3/12	1/2	STATEWIDE
2006-07	28 OCT-10 JAN / 21-22 OCT	75/2	0800-1630	3/12	1/2	STATEWIDE
2007-08	27 OCT-10 JAN / 21-22 OCT	76/2	0800-1630	3/12	1/2	STATEWIDE
2008-09	25 OCT-10 JAN / 18-19 OCT	78/2	0800-1630	3/12	1/2	STATEWIDE
2009-10	31 OCT-10 JAN / 23-24 OCT	72/2	0800-1630	3/12	1/2	STATEWIDE

[^4]Table 5.11 lowa's Bobwhite quail hunting seasons.

YEAR	DATES	SEASON LENGTH	SHOOTING HOURS	LIMIT BAG/POSS	AREA OPEN
1963-64	2 NOV-1 JAN	61	0830-1700	6/12	STATEWIDE
1964-65	31 OCT- 3 JAN	65	0830-1700	8/16	STATEWIDE
1965-66	6 NOV-31 JAN	86	0830-1600	8/16	STATEWIDE
1966-67	22 OCT-31 JAN	102	0800-1630	8/16	STATEWIDE
1967-68	21 OCT-28 JAN	103	0800-1630	8/16	STATEWIDE
1968-69	26 OCT-31 JAN	98	0800-1630	8/16	STATEWIDE
1969-70	25 OCT-31 JAN	99	0800-1630	8/16	STATEWIDE
1970-71	24 OCT-31 JAN	100	0800-1630	8/16	STATEWIDE
1971-72	23 OCT-31 JAN	101	0800-1630	8/16	STATEWIDE
1972-73	28 OCT-31 JAN	96	0800-1630	8/16	STATEWIDE
1973-74	27 OCT-31 JAN	97	0800-1630	8/16	STATEWIDE
1974-75	26 OCT-31 JAN	98	SUNRISE-SUNSET	8/16	STATEWIDE
1975-76	25 OCT-31 JAN	99	0800-1630	8/16	STATEWIDE
1976-77	6 NOV-31 JAN	86	0800-1630	8/16	STATEWIDE
1977-78	5 NOV-31 JAN	87	0800-1630	8/16	STATEWIDE
1978-79	4 NOV-31 JAN	88	0800-1630	8/16	STATEWIDE
1979-80	3 NOV-6 JAN	64	0800-1630	6/12	STATEWIDE
1980-81	1 NOV-31 JAN	92	0800-1630	8/16	STATEWIDE
1981-82	7 NOV-31 JAN	86	0800-1630	8/16	STATEWIDE
1982-83	6 NOV-31 JAN	87	0800-1630	8/16	STATEWIDE
1983-84	5 NOV-31 JAN	88	0800-1630	8/16	STATEWIDE
1984-85	3 NOV-31 JAN	90	0800-1630	8/16	STATEWIDE
1985-86	2 NOV-31 JAN	91	0800-1630	8/16	STATEWIDE
1986-87	1 NOV-31 JAN	92	0800-1630	8/16	STATEWIDE
1987-88	31 OCT-31 JAN	93	0800-1630	8/16	STATEWIDE
1988-89	29 OCT-31 JAN	95	0800-1630	8/16	STATEWIDE
1989-90	28 OCT-31 JAN	96	0800-1630	8/16	STATEWIDE
1990-91	27 OCT-31 JAN	97	0800-1630	8/16	STATEWIDE
1991-92	26 OCT-31 JAN	98	0800-1630	8/16	STATEWIDE
1992-93	31 OCT-31 JAN	93	0800-1630	8/16	STATEWIDE
1993-94	30 OCT-31 JAN	93	0800-1630	8/16	STATEWIDE
1994-95	29 OCT-31 JAN	95	0800-1630	8/16	STATEWIDE
1995-96	28 OCT-31 JAN	96	0800-1630	8/16	STATEWIDE
1996-97	26 OCT-31 JAN	98	0800-1630	8/16	STATEWIDE
1997-98	25 OCT-31 JAN	99	0800-1630	8/16	STATEWIDE
1998-99	31 OCT-31 JAN	93	0800-1630	8/16	STATEWIDE
1999-00	30 OCT-31 JAN	94	0800-1630	8/16	STATEWIDE
2000-01	28 OCT-31 JAN	96	0800-1630	8/16	STATEWIDE
2001-02	27 OCT-31 JAN	97	0800-1630	8/16	STATEWIDE
2002-03	26 OCT-31 JAN	98	0800-1630	8/16	STATEWIDE
2003-04	25 OCT-31 JAN	99	0800-1630	8/16	STATEWIDE
2004-05	30 OCT-31 JAN	94	0800-1630	8/16	STATEWIDE
2005-06	29 OCT-31 JAN	95	0800-1630	8/16	STATEWIDE
2006-07	28 OCT-31 JAN	96	0800-1630	8/16	STATEWIDE
2007-08	27 OCT-31 JAN	97	0800-1630	8/16	STATEWIDE
2008-09	25 OCT-31 JAN	99	0800-1630	8/16	STATEWIDE
2009-10	31 OCT-31 JAN	93	0800-1630	8/16	STATEWIDE

Table 5.12 lowa's Hungarian partridge hunting seasons.

		SEASON	SHOOTING	LIMIT	AREA
YEAR	DATES	LENGTH	HOURS	BAG/POSS	OPEN
1963-64	9 NOV-1 JAN	54	0830-1700	2/4	16 NW COUNTIES
1964-65	7 NOV-3 JAN	58	0830-1700	2/4	w US 65, N US 20
1965-66	13 NOV-2 JAN	51	0830-1600	2/4	w US 65, Nus 20
1966-67	12 NOV-2 JAN	52	0800-1630	2/4	w US 65, Nus 20
1967-68	11 NOV-1 JAN	52	0800-1630	2/4	w US 65, N US 20
1968-69	9 NOV-31 DEC	53	0800-1630	4-Feb	?
1969-70	8 NOV-31 DEC	54	0800-1630	2/4	?
1970-71	14 NOV-3 JAN	51	0800-1630	2/4	W. US 65; N. US 30, 129, STATE 141
1971-72	13 NOV-2 JAN	51	0800-1630	2/4	W. US 65; N. US 30, 129 , STATE 141
1972-73	11 NOV-1 JAN	52	0800-1630	4/8	W. US 65; N. US 30, 129, STATE 141
1973-74	10 NOV- 6 JAN	58	0800-1630	4/8	N. US 30
1974-75	9 NOV-5 JAN	58	SUNRISE-SUNSET	4/8	N. US 30
1975-76	8 NOV-4 JAN	58	0800-1630	4/8	N. US 30
1976-77	6 NOV- 2 JAN	58	0800-1630	4/8	N. US 30
1977-78	5 NOV-1 JAN	58	0800-1630	6/12	N. US 30
1978-79	4 NOV-1 JAN	60	0800-1630	6/12	N. US 30
1979-80	3 NOV-6 JAN	65	0800-1630	6/12	N. US 30
1980-81	1 NOV-31 JAN	92	0800-1630	6/12	N. 1-80
1981-82	7 NOV-31 JAN	86	0800-1630	6/12	N. 1-80
1982-83	6 NOV-31 JAN	87	0800-1630	6/12	N. 1-80
1983-84	5 NOV-31 JAN	88	0800-1630	6/12	N. 1-80
1984-85	3 NOV-31 JAN	90	0800-1630	6/12	N. 1-80
1985-86	2 NOV-31 JAN	91	0800-1630	6/12	N. 1-80
1986-87	1 NOV-31 JAN	92	0800-1630	6/12	Statewide
1987-88	31 OCT-31 JAN	93	0800-1630	8/16	Statewide
1988-89	29 OCT-31 JAN	94	0800-1630	8/16	Statewide
1989-90	7 OCT-31 JAN	117	0800-1630	8/16	Statewide
1990-91	6 OCT-31 JAN	118	0800-1630	8/16	Statewide
1991-92	5 OCT-31 JAN	119	0800-1630	8/16	Statewide
1992-93	10 OCT-31 JAN	114	0800-1630	8/16	Statewide
1993-94	9 OCT-31 JAN	115	0800-1630	8/16	Statewide
1994-95	8 OCT-31 JAN	116	0800-1630	8/16	Statewide
1995-96	14 OCT-31 JAN	109	0800-1630	8/16	Statewide
1996-97	12 OCT-31 JAN	112	0800-1630	8/16	Statewide
1997-98	11 OCT-31 JAN	113	0800-1630	8/16	Statewide
1998-99	10 OCT-31 JAN	114	0800-1630	8/16	Statewide
1999-00	9 OCT-31 JAN	115	0800-1630	8/16	Statewide
2000-01	14 OCT-31 JAN	110	0800-1630	8/16	Statewide
2001-02	13 OCT-31 JAN	111	0800-1630	8/16	Statewide
2002-03	12 OCT-31 JAN	112	0800-1630	8/16	Statewide
2003-04	11 OCT-31 JAN	113	0800-1630	8/16	STATEWIDE
2004-05	9 OCT-31 JAN	115	0800-1630	8/16	StATEWIDE
2005-06	8 OCT-31 JAN	116	0800-1630	8/16	Statewide
2006-07	7 OCT-31 JAN	117	0800-1630	8/16	Statewide
2007-08	13 OCT-31 JAN	111	0800-1630	8/16	Statewide
2008-09	11 OCT-31 JAN	113	0800-1630	8/16	Statewide
2009-10	10 OCT-31 JAN	114	0800-1630	8/16	Statewide

Table 5.13 Iowa's cottontail and jackrabbit seasons.

YEAR	DATES COTTONTAILS / JACKRABBITS	SEASON LENGTH	SHOOTING HOURS	LIMIT - BAG/POSS		$\begin{aligned} & \text { AREA } \\ & \text { OPEN } \end{aligned}$
				cottontalls	JACKRABBITS	
1963-64	14 SEP-23 FEB	163	0600-1800	AGGREGAT	-10/NONE	STATEWIDE
1964-65	12 SEP-21 FEB	163	0600-1800	AGGREGAT	- 10/NONE	STATEWIDE
1965-66	12 SEP-21 FEB	163	0600-1800	AGGREGAT	- 10/NONE	STATEWIDE
1966-67	10 SEP-19 FEB	163	0600-1800	AGGREGAT	- 10/NONE	STATEWIDE
1967-68	15 SEP-17 FEB	163	0600-1800	AGGREGAT	- 10/NONE	STATEWIDE
1968-69	14 SEP-16 FEB	163	0600-1800	AGGREGAT	- 10/NONE	STATEWIDE
1969-70	13 SEP-15 FEB	163	0600-1800	AGGREGAT	- 10/NONE	STATEWIDE
1970-71	12 SEP-28 FEB	170	0600-1800	AGGREGAT	- 10/NONE	STATEWIDE
1971-72	11 SEP-29 FEB	171	0600-1800	AGGREGAT	- 10/NONE	STATEWIDE
1972-73	9 SEP-28 FEB	173	0600-1800	AGGREGAT	- 10/NONE	STATEWIDE
1973-74	8 SEP-28 FEB	174	0600-1800	AGGREGA	10/NONE	STATEWIDE
1974-75	7 SEP-28 FEB	175	SUNRISE-SUNSET	AGGREGAT	- 10/NONE	STATEWIDE
1975-76	6 SEP-28 FEB	176	SUNRISE-SUNSET	AGGREGAT	- 10/NONE	STATEWIDE
1976-77	11 SEP-28 FEB	171	SUNRISE-SUNSET	AGGREGAT	- 10/NONE	STATEWIDE
1977-78	3 SEP-28 FEB	179	SUNRISE-SUNSET	AGGREGAT	-10/NONE	STATEWIDE
1978-79	2 SEP-28 FEB/4 NOV-7 JAN	180/65	SUNRISE-SUNSET	10/NONE	3/6	STATEWIDE
1979-80	1 SEP-29 FEB/3 NOV-6 JAN	182/65	SUNRISE-SUNSET	10/20	3/6	STATEWIDE
1980-81	6 SEP-28 FEB/1 NOV-4 JAN	176/65	SUNRISE-SUNSET	10/20	3/6	STATEWIDE
1981-82	5 SEP-28 FEB/7 NOV-3 JAN	177/58	SUNRISE-SUNSET	10/20	3/6	STATEWIDE
1982-83	4 SEP-28 FEB/6 NOV-2 JAN	178/58	SUNRISE-SUNSET	10/20	3/6	STATEWIDE
1983-84	3 SEP-29 FEB/5 NOV-18 DEC	180/44	SUNRISE-SUNSET	10/20	3/6	STATEWIDE
1984-85	1 SEP-28 FEB/3 NOV-16 DEC	181/44	SUNRISE-SUNSET	10/20	3/6	STATEWIDE
1985-86	31 AUG-28 FEB/2 NOV-15 DEC	182/44	SUNRISE-SUNSET	10/20	3/6	STATEWIDE
1986-87	30 AUG-28 FEB/1 NOV-14 DEC	183/44	SUNRISE-SUNSET	10/20	3/6	STATEWIDE
1987-88	5 SEP-29 FEB/31 OCT-13 DEC	178/44	SUNRISE-SUNSET	10/20	3/6	STATEWIDE
1988-89	3 SEP-28 FEB/28 OCT-10 DEC	179/44	SUNRISE-SUNSET	10/20	3/6	STATEWIDE
1989-90	2 SEP-28 FEB/29 OCT-11 DEC	180/44	SUNRISE-SUNSET	10/20	3/6	STATEWIDE
1990-91	1 SEP-28 FEB/27 OCT-9 DEC	181/44	SUNRISE-SUNSET	10/20	3/6	STATEWIDE
1991-92	31 AUG-29 FEB/26 OCT-8 DEC	183/44	SUNRISE-SUNSET	10/20	3/6	STATEWIDE
1992-93	5 SEP-28 FEB/31 OCT-6 DEC	177/37	SUNRISE-SUNSET	10/20	3/6	STATEWIDE
1993-94	4 SEP-28 FEB/30 OCT-5 DEC	176/37	SUNRISE-SUNSET	10/20	$2 / 4$	STATEWIDE
1994-95	3 SEP-28 FEB/29 OCT-4 DEC	177/37	SUNRISE-SUNSET	10/20	2/4	STATEWIDE
1995-96	2 SEP-28 FEB/28 OCT-1 DEC	178/35	SUNRISE-SUNSET	10/20	2/4	STATEWIDE
1996-97	7 SEP-28 FEB/26 OCT-1 DEC	174/37	SUNRISE-SUNSET	10/20	2/4	STATEWIDE
1997-98	1 SEP-28 FEB/25 OCT-1 DEC	181/38	SUNRISE-SUNSET	10/20	2/4	STATEWIDE
1998-99	1 SEP-28 FEB/31 OCT-1 DEC	181/32	SUNRISE-SUNSET	10/20	2/4	STATEWIDE
1999-00	1 SEP-28 FEB/30 OCT-1 DEC	181/33	SUNRISE-SUNSET	10/20	2/4	STATEWIDE
2000-01	1 SEP-28 FEB/28 OCT-1 DEC	181/35	SUNRISE-SUNSET	10/20	2/4	STATEWIDE
2001-02	1 SEP-28 FEB/27 OCT-1 DEC	181/36	SUNRISE-SUNSET	10/20	2/4	STATEWIDE
2002-03	1 SEP-28 FEB/26 OCT-1 DEC	181/37	SUNRISE-SUNSET	10/20	$2 / 4$	STATEWIDE
2003-04	1 SEP-28 FEB/25 OCT-1 DEC	181/38	SUNRISE-SUNSET	10/20	2/4	STATEWIDE
2004-05	1 SEP-28 FEB/30 OCT-1 DEC	181/33	SUNRISE-SUNSET	10/20	2/4	STATEWIDE
2005-06	1 SEP-28 FEB/29 OCT-1 DEC	181/34	SUNRISE-SUNSET	10/20	2/4	STATEWIDE
2006-07	1 SEP-28 FEB/28 OCT-1 DEC	181/35	SUNRISE-SUNSET	10/20	1/2	STATEWIDE
2007-08	1 SEP-28 FEB/27 OCT-1 DEC	181/36	SUNRISE-SUNSET	10/20	1/2	STATEWIDE
2008-09	1 SEP-28 FEB/25 OCT-1 DEC	181/38	SUNRISE-SUNSET	10/20	1/2	STATEWIDE
2009-10	1 SEP-28 FEB/31 OCT-1 DEC	181/32	SUNRISE-SUNSET	10/20	1/2	STATEWIDE

1963-1977 SEASONS AND LIMITS ARE AN AGGREGATE OF COTTONTAILS AND JACKRABBITS.

Figure 5.1 Survey regions for the August Roadside Survey.

Figure 5.2 Statewide trends in pheasant harvest and August roadside survey counts

Figure 5.4 Statewide sex ratio and estimated cock harvest from winter pheasant surveys

Figure 5.3 Statewide trends in pheasant broods and average brood size from August roadside survey

196219661970197419781982198619901994199820022006

Figure 5.5 Statewide trends in pheasant hens with and without broods from August roadside survey

Figure 5.6 Statewide trends in small game harvests and August roadside survey counts

Figure 5.7 Regional trends in ring-necked pheasant numbers from the August roadside survey (1962-present).
Note: Because of variation in historical counts, vertical axises among survey regions are not to the same scale.

Figure 5.8 Regional trends in bobwhite quail numbers from the August roadside survey (1962-present).

Figure 5.9 Regional trends in gray partridge numbers from the August roadside survey (1963-present).

Figure 5.10 Regional trends in cottontail rabbit numbers from the August roadside survey (1962-present).

Figure 5.11 Sales of lowa hunting licenses

Figure 5.12 Estimated number of lowa small-game hunters (resident and NR hunters combined)

WILDLIFE RESTORATION - 2009-2010 activities

PEREGRINE FALCON RESTORATION

The peregrine falcon (Falco peregrinus) was extirpated as a breeding bird from the eastern U.S. by 1964. In the Midwest, peregrines formerly nested on cliffs along Lake Superior, Lake Michigan and the upper Mississippi River, plus suitable palisade areas. The upper Mississippi River area was the major historic nesting area for peregrines in the Midwest, with an estimated historic population of $30-35$ pairs (Tordoff 1986). Most of Iowa’s historic peregrine nesting occurred on the Mississippi River bluffs of northeastern Iowa in Allamakee, Clayton, Dubuque, and Clinton counties (Anderson 1907, Allert 1939, Pierce 1940), but nesting also occurred on the palisades of the Cedar River in Linn and Johnson counties (Bailey 1918) and along the Cedar River in Black Hawk County (Anderson 1907). A nest was also reported at the mouth of Beaver Creek in Polk County (DuMont 1931). Prior to reintroduction, the last documented nests were noted in 1955 and 1956 at two of six eyries in Allamakee County (Berger and Mueller 1969), although there were reports of a nest with two eggs in Allamakee County in 1964 and a nest with downy young at Blackhawk Point, Allamakee County in 1967 (Roosa and Stravers 1989). Pesticides, specifically DDT, were the primary cause for the dramatic decline in the peregrine population. Until 1998, the peregrine falcon was a federally and state listed endangered species. The bird was federally delisted in 1998, but remains on the state endangered species list.

In an effort to guide recovery of the peregrine falcon to the eastern U.S., an Eastern Peregrine Recovery Plan (EPRP) was developed. The overall
goal of this plan was to establish a viable peregrine falcon population consisting of 175 breeding pairs, which is half of the pre-pesticide population. For each region of the eastern U.S., EPRP set a goal of 20-25 breeding pairs. Iowa falls under the Midwestern and Great Lakes regional plan (MGLRP). As part of the MGLRP, Iowa set a goal of establishing 5 breeding pair by the year 2000 with an ultimate goal of 10 breeding pair for a viable population. To achieve this goal, the Wildlife Diversity program planned to release 55 peregrines in the first 5 years. The "magic number" of birds released to get one breeding pair return is about 13. A maturing bird is expected to return to a release site within 2-3 years after release and establish a territory within that area. As a result, no release site will be used for more than 2 years to avoid confrontations with adult falcons and hack birds.

Iowa's Peregrine Falcon Restoration project began in 1989 with the release of 10 ($2 \mathrm{~F}, 8 \mathrm{M}$) birds in Cedar Rapids from the Telecom USA building. There was one mortality during this first release when a bird collided with a building. Releases continued for the second year at the Cedar Rapids release site with 13 falcons (3F,10M) in 1990. Two of these birds, 1 male and 1 female, died as a result of collisions with buildings. During the 1990 hacking process a subadult male (T6?- apparently from 1989 C.R. release) showed up in Cedar Rapids and regularly interacted with hacked birds.

In 1991, a second release site was selected for the third year of the project. A total of 19 birds ($8 \mathrm{~F}, 11 \mathrm{M}$) were released in 1991 at the First Baptist Foundation of the Elsie Mason Manor in

Des Moines. Similar to the 1991 Cedar Rapids release, a subadult male (T93from 1990 Cedar Rapids release) appeared for a brief period of time. Little to no aggressive interactions were observed between this subadult and the hacked falcons. During 1991, peregrines were observed in Cedar Rapids, Davenport and Keokuk; however, no nests were located. A second release was not attempted at the Des Moines site during 1992 because two falcons attempted to nest on the American Republic Insurance building. The female (R13 - Kansas City 1990) laid 5 eggs total. One egg rolled off the alcove ledge and another was cracked. The 3 remaining eggs were laid in a different alcove and never incubated. The male at this site was X20 from the 1990 Cedar Rapids release. This was the first nesting attempt in Iowa in nearly 30 years.

Elsewhere in the state during 1992, falcon pairs established two additional territories. A male falcon in Cedar Rapids successfully attracted a mate in mid-May, but it was too late in the season for breeding. The pair engaged in courtship flights and investigated the nest box on the Firststar Bank building, but did not actually attempt to nest. In the Quad Cities, a pair appeared to be incubating eggs under the Centennial Bridge; however, there were no observations of feeding in late-June. The site was investigated in September, but no eggs, egg fragments, dead young or even a definitive nest site was found.

The third release site chosen for releases in 1992 (the $4^{\text {th }}$ year of the project) was Davenport. However, the arrival of a falcon pair precluded this site from release since the territorial adults could potentially harm the young hacked
birds. As a result, 8 birds (2F,6M) were released from the Laurel Building in Muscatine during 1992. A male Cedar Rapids bird (T95 - 1990) appeared after the hacked birds fledged. T95 engaged in mock combat with the young and occasionally harassed them at the hack site, but he did not harm any of the young. Of the 8 birds released at Muscatine, 2 died, both males.

In 1993, there was much falcon activity across the state. We had 2 successful peregrine falcon nests in Iowa. The falcon pair returning to the American Republic Insurance building was the same male (X20) and female (R13) who attempted to nest in 1992. Shortly after their return, the male (X20) was found decapitated after a three-bird territorial dispute. The "winning" male did not remain in the area. The female (R13) eventually mated successfully with a third male, T93 (from 1990 Cedar Rapids release), that came to Des Moines. This pair successfully hatched and raised 3 young. In early July, one of these young was found dead in the air conditioning unit of the American Republic Insurance Building.

The second successful nest occurred in Cedar Rapids. The male was identified as X64 (Des Moines 1991) and the female as R49 (Des Moines - 1991). This pair laid 4 eggs and hatched 2. Of the two young, one died of exposure from stormy weather. The Iowa Falconer's Association donated a young male to foster into the nest. The adults accepted the "implant" along with the remaining female chick. Both young fledged successfully from the nest.

A third nesting occurred in Iowa during 1993 at the Centennial Bridge in Davenport. A pair was observed demonstrating nesting behavior, but that
soon changed about the time young should hatch. Closer observation of the nest site did not reveal young or eggs, however, a possible scrape was located along with falcon prey remains. A decomposed body of a female falcon (W24 - Kenosha, WI) was found trapped in the I-beam of the bridge. It is possible that this bird was the nesting female. Once she became trapped, the male abandoned the nest and attracted a new female (R95 - Colonnade, MN). By this time, it was too late in the season for nesting.

At Muscatine, a single male (C/M - Muscatine, 1992) returned to the site, but did not attract a mate. Because of the return of this bird, a second release was not made at this site.

During 1994, two falcon pairs nested successfully, marking the second year in a row for nest success. The birds at Firststar Bank in Cedar Rapids were the same, R49 and X64. They laid and hatched 4 eggs (2F,2M), but one female died soon after hatching. Another chick was treated for trichonomoniasis (Frounce) and released. All three young fledged successfully. The second successful nest was at the same site in Des Moines - the American Republic Insurance building. This pair was also the same birds from 1993, R13 and T93. Their first nesting attempt on the east side of the building was unsuccessful as one egg rolled off the ledge and the other two eggs were abandoned. The birds moved to the west side where they laid and hatched three young ($1 \mathrm{~F}, 2 \mathrm{M}$), all of which fledged successfully. The young female later died as a result of a collision with a building and one young male died of unknown causes. There was no known nesting attempts at either Davenport or Muscatine, however, a bird was observed during the winter at the

Centennial Bridge in Davenport.
The original goal established by EPRP of 20-25 nesting pair was met and replaced with a new regional goal of 40 territorial pairs. This new goal was met and surpassed in 1993. By 1994, the midwestern region had 61 territorial pairs with 41 successfully nesting. As a result of meeting the regional goal, many states tapered off falcon releases. However, Iowa's goal of establishing 5 nesting pairs by the year 2000 did not look promising without further releases. Furthermore, many did not consider the Midwestern population recovered since there was very little nesting on natural eyries aside from cliffs in northern Minnesota and Michigan.

In order to address the need for more releases in Iowa, a Peregrine Falcon Recovery Team (PFRT) was formed to continue releases with the hope of establishing a sustainable peregrine population that requires little or no maintenance or manipulation. The (PFRT) hoped to continue urban releases in strategic locations along the Mississippi and inland along known flyways. The group would also evaluate the possibility of releasing birds along the cliffs of NE Iowa.

The 2 falcon pairs in Cedar Rapids and Des Moines nested successfully once again in 1995, marking the third consecutive successful nesting season in Iowa. The Cedar Rapids pair produced four eggs and hatched three young ($1 \mathrm{~F}, 2 \mathrm{M}$). All three young fledged successfully. One male was later found dead as a result of a collision. The Des Moines pair laid four eggs and hatched three females, all of which fledged successfully.

Iowa has been able to maintain its two nesting falcon pairs in Des Moines and Cedar Rapids. Regionally
during 1996, there were 87 territorial pairs of which 45 nested successfully. The Cedar Rapids pair (still the same male and female) again produced 3 birds (1F,2M), one egg did not hatch. All 3 birds fledged successfully. The Des Moines pair hatched 3 young, but one mysteriously disappeared leaving only 2 males to fledge successfully. This year marked the start of additional falcon releases with the hopes of achieving the goal of 5 breeding pair by the year 2000 . The Peregrine Falcon Recovery Team, who generated the funding and volunteers to conduct the releases, spearheaded these releases. Mason City released 7 birds total (3F,4M), two of which (both females) came from Iowa City during the hacking process. Iowa City was in the process of hacking 3 birds ($2 \mathrm{~F}, 1 \mathrm{M}$), when a wild peregrine showed up at the release site and killed the male. The two remaining females were transported to Mason City to fledge for safety of the birds. There were no releases at Burlington due to mortality prior to placing the birds in the hack box.

The falcon project met with mixed success in 1997. Both falcon pairs returned to nest in Cedar Rapids and Des Moines, however, the Des Moines pair exhibited problems. The female laid her eggs in an alcove on the American Republic Insurance Building that did not have pea gravel in the bottom, so the eggs got wet. We put gravel in, but it was too late. The female abandoned the eggs. She did, however, lay 2 eggs in another alcove and 1 in yet another. To facilitate incubation, we moved the lone egg in with the 2, but later one was kicked out of the scrape, one was cracked and the other was abandoned. Two of the 6 eggs were sent for analysis to try and provide answers
for the aberrant behavior of the Des Moines female. On the bright side, the Cedar Rapids pair laid 4 eggs and successfully fledged 2 (both males). Elsewhere in the state, the PFRT continued releases at the Mason City site with 3 young ($1 \mathrm{~F}, 2 \mathrm{M}$), one of which died from injuries received after colliding with a fence. Iowa City did not release birds in 1997, but Bob Anderson started his efforts of releasing birds on the natural eyries of NE Iowa. He released 4 birds in 2 batches of two ($2 \mathrm{~F}, 2 \mathrm{M}$) at a hack site situated on the cliffs overlooking the Iowa River near Bluffton. Two of the birds were equipped with radio transmitters, but were not tracked successfully for very long due to the topography interfering with the transmission of the signals.

Things were back on track for 1998. Both falcon pairs nested successfully in Cedar Rapids and Des Moines. The Des Moines pair produced 3 young (1F,2M) as did the Cedar Rapids pair $(2 \mathrm{~F}, 1 \mathrm{M})$. There was no evidence of additional eggs in Des Moines, however, there were 5 eggs in Cedar Rapids. As for other releases in the state, Mason City concluded its final peregrine release in 1998, sending off 15 falcons ($4 \mathrm{~F}, 11 \mathrm{M}$) without a hitch and Louisa had its first release with 4 young (3F,1M). Bob Anderson continued his cliff-site releases in 1998. However, he changed the release site from Bluffton to Effigy Mounds National Monument. The latter location is an exceptional bluff overlooking the Mississippi River. Two psuedo-rocked hack boxes were mounted on the bluff face. A total of nine birds ($5 \mathrm{~F}, 4 \mathrm{M}$) were released from the sight. Radio transmitters on the birds indicated no mortality up to dispersal. Unfortunately, two of the Effigy Mounds birds died during the spring of 1999 due
to a possible collision and a drowning.
The Peregrine Falcon Recovery Project had a slight change in direction during 1997. The decision was made to no longer allow urban releases, except for two grandfathered sites that already had the steps in motion for 1998 releases. Those grandfathered sites were Mason City and Louisa. The Mason City site releases were completed with the hacking of 15 falcons in 1998, and Louisa continued releases through 2000. The reasoning behind this decision was that the transition of falcons nesting in urban areas to natural cliff sites was not occurring as originally thought. In fact, some studies indicate that urban birds may actually be hindering wild nesting since falcons attract falcons. In an effort to return falcons to their historic nesting eyries in Iowa, the Iowa DNR has prioritized cliff-site releases.

Falcon production had mixed success again in 1999. On a down note, the Des Moines pair did not produce any young. The American Republic Insurance Building, where the birds nest, was getting a new roof. Rainy weather pushed construction into peak nesting time, causing too much disturbance for the breeding adults. Cedar Rapids was still a production stronghold with 3 young fledging in 1999. On a positive note, 1999 produced Iowa’s third nesting falcon pair at a power smokestack in Lansing. The adults, both from Minnesota successfully produced 3 young (1F,2M). Falcons have been sighted in Mason City, but no nest attempts were documented.

Release efforts continued in Iowa during 1999. Louisa released 8 birds in their second release year. The Raptor Resource Project, headed by Bob Anderson, was awarded a grant by the Iowa DNR to continue release efforts at

Effigy Mounds National Monument. He released 9 falcons in 1999. Bob was also granted a FWS permit to take chicks from smokestack nests and release them at cliff sites along the Mississippi River. A new cliff release site was added in 1999. This site, at Eagle Point Park in Dubuque, is also along the Mississippi River. Two rock-lined hack boxes were placed on a bluff overlooking the river. Volunteers released 21 falcon chicks (5F,16M) in 1999 from this site.

2000

In 2000, for the first time in at least 3 decades, wild peregrines were produced on Mississippi River cliffs. At Queen's Bluff, in southeastern Minnesota, 1 young fledged successfully from parents which had been released in Iowa. The female was hacked from Mason City in 1998, and the male was hacked from Effigy Mounds in 1998. In all, there were 5 pairs of peregrines at cliff-sites along the Mississippi River. Thanks to efforts by Bob Anderson, the same pair that nested in 1999 in a nest-box at the Alliant Energy power plant smokestack near Lansing, now nested in a nest-box at a nearby cliff, where peregrines historically nested. They fledged 4 young (3M,1F), but the young female died post fledging. It is worth noting that, according to Bud Tordoff (Tordoff et al 2000), "these were the first young peregrines known to fledge from a cliff nest in the Mississippi River valley since the extirpation of the original population by DDT in the 1950s and 1960s."

Urban nest sites were also successful in 2000. At the American Republic Building in Des Moines, 9-year-old female 13R, nesting here for the eighth year, paired again with 10 -yearold male 93T, his seventh year at the site. They produced 4 eggs and fledged

2 male young. In Cedar Rapids at the Firstar Bank nest site, a 2-year-old female, *S/*5 (fledged in Des Moines in 1998) replaced female R49. She mated with 11-year-old male 64X, here for the eighth year. They produced 4 eggs and fledged 4 young (3M,1F). Besides the 3 successful nests, there was also a peregrine pair reported in April at the smokestack nest box at the Louisa MidAmerican power plant. Also reported was a 1999 Louisa released male (wearing black/green band) frequenting the Mid-American Energy Co. building in Davenport, and a peregrine with a gold band on the right leg and a red/black band on the left leg was reported in Burlington on July 1 by Conservation Officer, Don Simonson.

Mississippi River peregrine releases continued in 2000, with 19 falcons hacked at the Dubuque cliff site and 6 male peregrines hacked at the Louisa power plant site. All told, there were 164 peregrines hacked from Iowa release sites from 1989-2002. Eightyfour of these birds were released along the Mississippi River, and 62 peregrines were released off limestone bluffs.

2001

Year 2001 saw 5 Iowa peregrine territories. The same returning nesting pairs were identified at Des Moines, Cedar Rapids, and Lansing. The Des Moines pair produced 4 eggs and fledged 3 young ($2 \mathrm{M}, 1 \mathrm{~F}$). The young female later died after colliding with a window. There were 3 eggs laid and 3 young females fledged at Cedar Rapids. The Lansing pair attempted to nest unsuccessfully on a cliff, and finally laid 4 eggs (which did not hatch) in a nest box. An unidentified pair of peregrines attempted to nest beneath the Centennial Bridge in Davenport. The female is a
sub-adult wearing a black/green band, and it is not known if the male is banded. Young falcons were heard food-begging beneath the bridge, but it is not known if any young fledged successfully (unverified report indicated one). A fifth pair of falcons held a nesting territory at the Louisa generating plant smokestack nest-box. The female hatched in 1999 from a smokestack box in Minneapolis, and the male has not been identified. The stage is set for 5 nesting pairs in 2002.

2002

In 2002 six falcon territories were reported with five sites successfully fledging young. At Cedar Rapids four-year-old female $* S / * 5$, nesting here for the third time, and thirteen-year-old male 64X (identified previously as 64T), here for the tenth year, produced four eggs, hatched three and fledged two females and a male.

The Des Moines pair once again laid three eggs on the east side of the American Republic Insurance bldg. However, the eggs disappeared as hatch date drew near. In late June an egg was discovered on the west side of building which hatched. A lone male was banded July 30 and successfully fledged in early August.

The Lansing cliff site was active in 2002 where the same pair successfully fledged two young, a male and a female. The adult female X/*D, fledged in 1998 at NSP Sherco, Becker, Minnesota and here for the first time, paired with five-year-old male *T/M, nesting here for the fourth year. The falcon box on the bluff, across from the Alliant Energy plant placed by Bob Anderson was a suitable backdrop as historic falcon banders gathered to assist and witness event. It had been 44 years since Dan Berger,

Jack Oar, Jim Grier, Jack Oberg, Dave Seal, and Chuck Sindelar banded falcons at historic eyries. This year they were assisted by Dave Kester, banding two young.

In the Quad Cities the pair that previously occupied the Centennial Bridge nested in a falcon box placed by falconer, Tom Deckert. Three-year-old female 8/*E, hacked in 1999 at Muncie, Indiana paired with three-year-old male P/D, hacked in 1999 at Dubuque, Iowa. The MidAmerican Insurance building hosted three young, two females and a male in downtown Davenport. All successfully fledged with minimal intervention from humans.

A new falcon site came on line this year. A box affixed to the smokestack of the Louisa Generating Station near Muscatine was used. The female Z/V fledged in 1999 at NSP Riverside, Minneapolis, Minnesota. The tiercel has not been identified. One young male successfully fledged.

A sixth falcon territory occurred at the Holnam Cement Plant at Mason City. Falconer Lowell Washburn who hacked 25 young from the site between 1996 - 1998, reported a male was seen intermittently throughout the summer.

Also in 2002 eight young falcons were hacked at the Duane Arnold nuclear facility near Palo, Iowa. Bob Anderson with Raptor Research Project coordinated the placement of four young. Meanwhile four young at a smokestack box near Alma, Minnesota were stranded when an untimely death of the adult male occurred at that site. Plus, the female was discovered injured and unable to provide for young. The four were relocated to the Palo site and all eight successfully fledged.

In 2003 there were seven territories in Iowa. Mason City territory at Holnam Plant was inactive, but two new territories occurred in Iowa. Falcon activity was noted at nestbox at Alliant Plant near Chillicothe in Wapello Co. An adult peregrine was observed and a scrap was created in nestbox. At Quad Cities under I-80 bridge, a fledgling falcon was photographed and according to falconer Lowell Washburn an eyrie was presumed to have occurred under bridge. Adults were not identified at either site.

At Des Moines same adults fledged four young from second, NW alcove of American Republic building. At Cedar Rapids same adults fledged four young. At Louisa female Z/V and unknown male fledged three young.

Near Lansing the wild pair attempted to nest on a natural ledge. Two young hatched but had disappeared by banding time. Falconers Bob Anderson and Dave Kester believed raccoon predation destroyed nest. Raccoon sign was observed in area and access by land was possible.

Quad Cities female 8/*E and unidentified male produced four young under Centennial bridge. Young were relocated to natural bluff near Bluffton and hacked by Bob Anderson. All four survived and were observed throughout summer.

Iowa falcons produced at least 16 young this year making it a banner year for falcon production.
2004
In 2004, Bob Anderson reported the pair at Lansing cliff, Allamakee County, hatched young but none were present at banding. A second, wild nesting pair was reported downstream by Dave Kester, on a Mississippi River cliff at Waukon Jct., Allamakee County. There
were 2 eggs but no young produced. Female at this site was identified as Lora (48/E), hatched at Xcel Energy, Monticello, MN in 2003. Male is two-year-old 19/M Dairyland Cooperative at Alma, Wisconsin 2002. Anderson believed only male was incubating.

A scrape was present at nest box on smokestack at Alliant Energy Plant at Chillicothe, Wapello County, but no young produced. Two unidentified peregrines occupied site.

Danny Akers, a reliable birder, reported a peregrine pair copulating about one mile southwest of Guttenberg, Clayton County, on April 18, but despite subsequent searches in the area, no eyrie was discovered.

At state Capitol bldg in Des
Moines female 39/E, NSP Riverside, Minneapolis 2003, has paired with 93T and is actively defending site from intruders.

At American Republic Insurance bldg. at Des Moines, Polk Co. Iowa, female 8/*T (produced three young) (Colonnade bldg. 2002) here for her first nesting attempt paired with fourteen-year-old male 93T (produced 27 young), his twelfth year at this site. Four eggs were laid and three males fledged. One immature male, D/06, was retrieved dead from collision with Ruan bldg. in July.

At Louisa Generating Plant, Louisa County, Jim Haack, MidAmerican Energy, reports that five-yearold female Murphy Z/V (produced eight young), here for fourth year, and an unidentified male fledged four, three males and a female. Female 62/D recently was trapped inside a building and died of apparent heat exhaustion.

At US Bank bldg at Cedar Rapids, Linn Co. Iowa, six-year-old female *S/ *5 (produced 13 young)
nesting here for fifth time and 13 yearold male 64X (produced 38), here for $12^{\text {th }}$ year, produced four eggs, hatched four, and fledged three, one male and two females. Female 63/D was found dead. It was feared no young survived at this site as shortly after fledging, adults were sighted repeatedly but no young were seen.

At Davenport, Scott County, a pair once again nested at Centennial Bridge on eastern section of middle span. Three young were reported before fledging, but neither adult was identified. Also, no activity was reported at 2003 territory at I80 Bridge near Bettendorf.

It appears there is a new territory at Burlington, Des Moines County, beneath another Mississippi River Bridge. Former falconer, Lee Eberly, reported at least one, and possibly two peregrines were seen flying to and from under the bridge in mid-June, and vocalizations were heard 4 or 5 times. There has been peregrine activity noted at this site in the past. No peregrines were identified, and it is unknown if there was an active nest.

In summary, young fledged was down from 16 in 2003 to 13 in 2004 at four successful sites. There was evidence of peregrine territorial activity at ten sites.

2005

In 2005 ten territories had seven successful fledgings with 21 young produced. At Firstar Bank (US Bank), Cedar Rapids, Linn County, Iowa, Jodeane Cancilla, Macbride Raptor Project, reports that seven-year-old female *S/*5 (produced 16 young), nesting here for the sixth year, and two-year-old male 78/E (produced 3), here for his first nesting, produced four eggs,
hatched all four, and fledged three young, two males and a female.

American Republic, Des Moines, Polk County, Iowa. 15-year-old male 93T (31 young), his 13th year at this site, paired for the second year with four-year-old female Ellie b/g 8/*T, fledged in 2001 at Colonnade, Minneapolis, Minnesota. They produced four eggs, four were banded, and fledged three young, two females and one male. One male was found dead, having fallen from eyrie. On July 22 , female $8 / * \mathrm{~T}$ was found with a wing injury that precludes further flying, although she lives on in captivity. Male 93T has sired 31 young in his long career here.

MidAmerican Energy Corporate Headquarters, Davenport, Scott County, Iowa. Dave Sebben reports two six-year-olds, female $8 / *$ E, fledged at Muncie, Indiana, in 1999, paired with male P/D, fledged at Dubuque, Iowa, in 1999, produced one young. It was banded but died when hit by a car after fledging.

At Louisa, Louisa County, Iowa, Jim Haack, MidAmerica Energy, reports that an unidentified female and an unidentified male, both banded, fledged four young, two males and two females. This is the fourth year of successful nesting at this site.

Leo’s Bluff, Waukon Junction, Allamakee County, Iowa. This is second year for this cliff site. Dave Kester and Bob Anderson report that two-year-old female Lora 48/E paired with three-year-old Brady 19/M, both here for the second year, and nested a half mile upstream from the 2004 site. They fledged two young, one each sex, from a cliff with no nest box, the first such cliff nest in Iowa in over 40 years.

Alliant Energy Lansing / Lansing cliff, Lansing, Allamakee County, Iowa. Bob Anderson, Raptor Resource Project, and Dave Kester report that an unidentified adult female with a b/r band paired with eight-year-old male Alpha *T/M (produced 14 young), nesting here for the seventh year. The site has had an interesting history. Falcons were first attracted to nest in a box on a nearby stack, where they fledged young in two seasons. The stack box was then removed and a box placed on the nearby cliff. Young were fledged in 2002. However, in 2003 and 2004, the falcons used a ledge instead of the box and lost their young to raccoon predation. This year, Kester and Anderson placed a new box on the stack, from which five young peregrines were fledged, three males and two females.

Alliant Energy Plant, Chillicothe, Wapello County, Iowa, Judi Johnson reports six-year-old female Z/V (produced 10 at Louisa and Chillicothe) and an unidentified male, judged by plumage to be two years old, produced four eggs and fledged two young. Female Z/V has relocated to this site from Louisa Generating Plant.

I80 Bridge, Quad Cities, Scott County, Iowa, had peregrine activity again this year. An adult pair is on site, but no young were found. A nest tray was installed under the bridge on Iowa side of center span of bridge. This bridge is 12 miles upstream from Centennial Bridge. Mississippi bridge, Burlington, Des Moines County, Iowa. John Rutenbeck reports seeing and hearing two peregrines flying under the bridge in mid-June. Peregrine activity has been noted here in past years. There was no proof of a nest this year.

State Capitol, Des Moines, Polk County, Iowa, female Fast Track b/g 39/E, fledged in 2003 at NSP Riverside, Minneapolis, Minnesota, here in 2004 and early spring this year, was not seen through the nesting season. Adult male, T93, from downtown nest site has been soaring and perching on west side of Capitol, throughout summer.

Seven successful sites produced 21 young in 2005. There were three additional sites with peregrine pairs for a total of ten territories this year.

There were some downturns in Iowa's peregrine population in 2006. However there were ten territories reported and five successful sites that produced eleven young. At Leo's Bluff near Waukon Junction, IA, both of the adult falcons and their young mysteriously disappeared according to bob Anderson. When he and Dave Kester rappelled into the eyrie, one pipped egg and fragments from three other eggs that indicated a normal hatch were discovered. However, there were no eyas falcons or defending adults. Other cliffs in that area of the river were searched on several occasions without finding either of the adult falcons. This is very strange and researchers are at a loss to explain what could have happened.

The adult falcons at the Lansing, IA power plant moved back to the nearby cliff this year, most probably due to a major construction project that took place near the stack. In past seasons, these falcons have lost their young around ten days of age to raccoons at this ledge. On $5 / 17 / 06$, a large contingency of volunteers met at this cliff to initiate efforts to repel raccoons from the ledge site. However, they were too late. One set of raccoon
tracks and eggshell fragments were discovered at the eyrie.

Another disappointment occurred in Des Moines where an unidentified female laid eggs at American Republic Insurance bldg. onto cold concrete. Four eggs were discovered and pea gravel added under them but they did not hatch.

On a brighter note at Cedar Rapids US Bank bldg. female *S/5* here for eighth year (produced 20 young) and three-year-old male 78/E (produced seven young) here for second year. Pair produced four young - three males and one female.

At MidAmerican Energy Corporate Headquarters, Davenport, Scott County, Iowa. Dave Sebben reports two seven-year-olds, female 8/*E, fledged at Muncie, Indiana, in 1999, paired with male P/D, fledged at Dubuque, Iowa, in 1999, produced two young.

At Louisa Generating Station, Jim Haack, MidAmerican Energy, reports that an unidentified female and an unidentified male, both banded, fledged two females and one male. There was one dead young in box. This is the fifth year of successful nesting at this site.

Alliant Energy Plant, Chillicothe, Wapello County, Iowa, Judi Johnson reports seven-year-old female Z/V (produced 10 at Louisa and Chillicothe) and an unidentified male and fledged one young.

At Great River Bridge local birder, Hal Geren, reported two adult and one young throughout July.

At I 280 Bridge at Quad Cities, local birder Kelly McKay reported pair of falcons on west pier (Iowa side) of bridge. Two eggs on concrete were discovered and placed in a nest tray with
pea gravel. There was no further activity reported at this site.

At I 80 bridge in Quad Cities a pair of peregrines were defending the bridge but no eggs were discovered. Nest tray on Iowa side of bridge had not been used.

In summary there were ten territories with five successful pairs and eleven young produced in 2006.

2007

Spring 2007 held great promise for peregrine nesting in Iowa. A definition of success might include as many wildproduced young in a year that were hacked in any given year, since project began in 1989. In 1999 at Eagle Point Park in Dubuque, 21 peregrines were released by Lowell Washburn, Tom Deckert and Dubuque College. This year twelve territories with eight successful nests produced 23 young.

In Des Moines four young were produced at American Republic Insurance bldg. (37 young since '93) New male at this site is 63/B, (Woodman Tower, Omaha, NE. '04)(four young '07). There is a second territory at State Capitol.

In Cedar Rapids a brood of five young were reported by Theresa Chapel at USBank (50 young since '93).
Female *S/5* (Des Moines, IA '98) here for ninth year (produced 25 young) and four-year-old male 78/E (Kokomo, IN. '03) here for third year (produced 12 young) produced five young, all males.

At Lansing cliff (14 young since '99), Bob Anderson boarded up the power plant nest box and installed a cliff nest box here on $3 / 30 / 07$. Raccoon predation has been a problem at this location, but it was believed the box would provide a successful nest.

Raccoon predation occurred again this year.

At Leo's Bluff near Waukon Jct. (four young since '05) Bob Anderson reported that last year falcons hatched one egg successfully, but the entire family mysteriously disappeared in midMay. This year, the nest was successful with two young. Adult female 66/A (St. Louis '05) and male is unbanded. First nested here 2004.

At Clinton, Iowa, (one young '07) unidentified pair produced one young at new site. Site is ML Kapp Generating Station with Alliant Energy. This site is located at southern extent of historic peregrine nesting range along Mississippi flyway in Iowa.

At I 80 Bridge unidentified pair defended territory, but no eyrie or young detected. Nest tray had not been used and is now located on upstream side on Illinois side of channel.

At MidAmerican HQ (12 young since '02) in Quad Cities same eight-year-old pair 8/*E (Muncie, IN '99) and P/D (Dubuque, IA '99) here for sixth year (two on Centennial Bridge) laid four eggs in rain gutter. Eggs were placed in nest tray but did not hatch. Female recycled and laid four eggs in nest box, but did not successfully hatch.

At I 280 bridge (four young ’07) near Quad Cities unidentified pair produced four young at this new site. Young were banded by Jodeane Cancilla of Macbride Raptor Project with assistance from Illinois DOT officials.

At Louisa Generating Station (19 young since '02) Jim Haack reported four young successfully fledged from 06/A female (St. Louis, MO. '05) and unidentified male for sixth year.

At Burlington, Great River Bridge (at least two young since '04) an
unidentified pair, here for fourth year fledged at least one young.

At Chillicothe (five young since '05), Ottumwa Generating Station with Alliant Energy, Judi Johnson reports eight year-old female Z/V (NSP Riverside, Mpls. MN. '99) (produced 12 at Louisa and Chillicothe) and an unidentified male fledged two young.

In summary twelve territorial pairs provided eight successful nests with 23 young produced in 2007.

2008

Spring 2008 began inauspiciously enough, but climate conditions resulted in a tough year for some peregrine pairs in Iowa. This year thirteen territories with eight successful nests produced 20 young.

In Des Moines three young were produced at American Republic Insurance bldg. (40 young since '93) Male at this site is $63 / \mathrm{B}$, (Woodman Tower , Omaha, NE. '04)(seven young '07). Female is unbanded.

A second territory at State Capitol produced two young. Female 39/E (NSP Riverside Plant, Minneapolis MN) has been at Capitol since 2003. Male is unbanded.

In Cedar Rapids a brood of two young were reported by Theresa Chapel at USBank (52 young since '93). Female *S/5* (Des Moines, IA '98) here for tenth year (produced 27 young) and five-year-old male 78/E (Kokomo, IN. '03) here for fourth year (produced 14 young).

At Lansing cliff (17 young since '01), Bob Anderson reports falcon pair back in Alliant Energy smokestack box and fledged three.

At Waukon Jct. (seven young since '04) Bob Anderson reported that pair relocated up stream to Gitta’s Bluff.

Nest was successful with three young. Adult female *K/*W (John Latsch Park, MN '06) and male is unbanded.

At Clinton, Iowa, (one young '07) unidentified pair produced no young at this site. Site is ML Kapp Generating Station with Alliant Energy. This site is located at southern extent of historic peregrine nesting range along Mississippi flyway in Iowa.

At I 80 Bridge unidentified pair defended territory, but no eyrie or young detected. Nest tray had not been used and is now located on upstream side on Illinois side of channel.

At MidAmerican HQ (13 young since '02) in Quad Cities same nine-year-old pair 8/*E (Muncie, IN '99) and P/D (Dubuque, IA '99) here for seventh year (two on Centennial Bridge) laid three eggs in nest box. One young fledged.

At I 280 bridge (four young ’07) near Quad Cities unidentified pair produced nested on Illinois side of bridge. Flood conditions prevented exploring this site in '08.

At Louisa Generating Station (23 young since '02) Jim Haack reported four young successfully fledged from 06/A female (St. Louis, MO. '05) and unidentified male for seventh year.

At Burlington, Great River Bridge (at least four young since '04) an unidentified pair, here for fifth year fledged two young.

At Chillicothe (four young since '05), Ottumwa Generating Station with Alliant Energy, Judi Johnson reports nine- year-old female Z/V (NSP Riverside, Mpls. MN. ‘99) (produced 12 at Louisa and Chillicothe) and an unidentified male were unsuccessful. Three eggs were discovered June 13, but area was subjected to violent storms later in the month.

There is a new pair occupying Agri-Bunge grain elevator at McGregor, Iowa. Female is a brown bird immature. In summary thirteen territorial pairs provided eight successful nests with 20 young produced in 2008.

2009

Spring 2009 heralded the year Peregrine Falcons were upgraded from Endangered to a Species of Special Concern status in Iowa. This year thirteen territories with nine successful nests produced 25 young.

In Des Moines four young were produced at American Republic Insurance bldg. (44 young since '93) Male at this site is $63 / \mathrm{B}$, (Woodman Tower , Omaha, NE. '04)(11 young '07) Female is 39E (NSP Riverside plant '03) here for first year (produced six young two at capitol in '08).

A second territory at State Capitol produced four young. Female (six young) and male are unbanded (four young).

In Cedar Rapids a brood of one young was reported by Theresa Chapel at USBank (53 young since '93). Female *S/5* (Des Moines, IA '98) here for eleventh year (produced 28 young) and six-year-old male 78/E (Kokomo, IN. '03) here for fifth year (produced 15 young).

At Lansing cliff (20 young since '01), Bob Anderson reports falcon pair back in Alliant Energy smokestack box and fledged three.

At Waukon Jct. (seven young since '04) Bob Anderson reported that pair relocated back to Leo's Bluff. Nest was unsuccessful. Adult female *K/*W (John Latsch Park, MN '06) and male is unbanded.

At Clinton, Iowa, (three young '07) unidentified pair produced two
young at this site. Site is ML Kapp Generating Station with Alliant Energy. 46 D was photographed at ADM and is possibly at ML Kapp. This site is located at southern extent of historic peregrine nesting range along Mississippi flyway in Iowa.

At I 80 Bridge unidentified pair defended territory, but no eyrie or young detected. Nest tray had not been used and is now located on upstream side on Illinois side of channel.

At MidAmerican HQ (15 young since '02) in Quad Cities same ten-yearold pair 8/*E (Muncie, IN '99) and P/D (Dubuque, IA '99) here for eighth year (two on Centennial Bridge) laid three eggs in nest box. Two young fledged.

At I 280 bridge (four young '07) near Quad Cities unidentified pair nested on Illinois side of bridge.

At Louisa Generating Station (27 young since '02) Jim Haack reported four young successfully fledged from 06/A female (St. Louis, MO. '05) and unidentified male for eighth year.

At Burlington, Great River Bridge (at least four young since '04) an unidentified pair, here for sixth year fledged one young.

At Chillicothe (nine young since '05), Ottumwa Generating Station with Alliant Energy, Judi Johnson reports ten-year-old female Z/V (NSP Riverside, Mpls. MN. '99) (produced 16 at Louisa and Chillicothe) and an unidentified male were successful. Four young fledged.

In summary thirteen territorial pairs provided nine successful nests with 25 young produced in 2009.

2010

Spring 2010 was the year Peregrine Falcons were considered a Species of Special Concern in Iowa and
no longer endangered. It should be noted that nesting pair on I 280 bridge near Davenport have located on the Illinois side the last three years and are no longer included in Iowa data base. This year fourteen territories with ten successful nests produced 21 young.

In Des Moines two young were produced at American Republic Insurance bldg. (46 young since '93) Male at this site is $63 / \mathrm{B}$, (Woodman Tower , Omaha, NE.'04)(13 young '07) Female is 39E (NSP Riverside plant '03) here for second year (produced eight young, two at Capitol in '08).

A second territory at State Capitol produced one young. Unbanded female (seven young) and male 39/A (American Republic '08) here for first year were successful above east portico.

In Cedar Rapids a brood of four young was reported by Theresa Chapel at USBank (57 young since '93). Female *S/5* (Des Moines, IA '98) here for twelth (produced 32 young) and seven-year-old male 78/E (Kokomo, IN. '03) here for sixth year (produced 19 young).

At Lansing cliff (22 young since '01), Bob Anderson reports falcon pair back in Alliant Energy smokestack box and fledged two.

At Waukon Jct. (seven young since '04) Bob Anderson reported that pair relocated back to Leo's Bluff. Nest was unsuccessful. Adult female $* \mathrm{~K} / * \mathrm{~W}$ (John Latsch Park, MN '06) and male is unbanded.

At MacGregor Bob Anderson reports Agri Bunge Elevator has unidentified pair. Thre young were produced.

At Clinton, Iowa, (three young
'07) unidentified pair were not successful at this site. Site is ML Kapp Generating Station with Alliant Energy.

46D was photographed at ADM and is possibly at ML Kapp. This site is located at southern extent of historic peregrine nesting range along Mississippi flyway in Iowa.

At ADM plant in Clinton, new nesting pair produced three males. Female is $35 / \mathrm{M}$ and female is $83 / \mathrm{M}$ (Cedar Rapids ’03)

At I 80 Bridge unidentified pair defended territory, but no eyrie or young detected. This bridge was under reconstruction this year but pair did not relocate to nest box on MidAmerican Riverside smokestack just downstream.

At MidAmerican HQ (18 young since '02) in Quad Cities same eleven-year-old pair 8/*E (Muncie, IN '99) and P/D (Dubuque, IA '99) here for ninth year (two on Centennial Bridge) laid four eggs in nest box. Three young fledged.

At I 280 bridge (four young ’07) near Quad Cities unidentified pair nested on Illinois side of bridge. We will no longer include this pair with Iowa totals.

At Louisa Generating Station (28 young since '02) Jim Haack reported one young successfully fledged from 06/A female (St. Louis, MO. '05) and unidentified male for ninth year. An earlier hatch of three young had disappeared by June 11. A new nest site at the plant near area that was used for releases produced one young.

At Burlington, Great River Bridge (at least five young since '04) an unidentified pair, here for seventh year fledged one young.

At Chillicothe (11 young since '05), Ottumwa Generating Station with Alliant Energy, Judi Johnson reports eleven- year-old female Z/V (NSP Riverside, Mpls. MN. ‘99) (produced 18 at Louisa and Chillicothe) and an
unidentified male were successful. two young fledged.

There were two new bridge pairs
to be aware of at Dubuque and
Muscatine this year. At Dead Cow bluff near Lansing bob Anderson reported dawn from young but no falcons in June.

In summary fourteen territorial pairs provided ten successful nests with 21 young produced in 2010.

LITERATURE CITED

Allert, O. P. 1939. Notes on certain raptors in Allamakee, Clayton, and Dubuque counties, Iowa. Iowa Bird Life 9:34-36.

Anderson, R. M. 1907. The birds of Iowa. Proc. Davenport Acad. Sci. 11:125-417.
Bailey, B. H. 1902. The duck hawk--(Falco peregrinus anatum)--in Iowa. Proc. Iowa Acad. Sci. 10:93-98.

Bailey, B. H. 1918. The Raptorial Birds of Iowa. Iowa Geological Survey Bull. No. 6. 238pp.

Berger, D. and H. C. Mueller. 1969. Nesting Peregrine Falcons in Wisconsin and adjacent areas. Pp. 115-122 in J. J. Hickey, ed. Peregrine Falcon populations: their biology and decline. Univ. of Wis. Press, Madison. 596pp.

DuMont, P. A. 1931. Birds of Polk County, Iowa. Des Moines: Des Moines Audubon Society, 72pp.

Keyes, C. R. 1906. Prolific duck hawk. Auk 23:99-100.

Pierce, F. J. 1940. Kentucky warbler Carolina wren, and duck hawk in Allamakee County. Iowa Bird Life 10:27.

Redig, P. T. and H. B. Tordoff. 1994. Midwest Peregrine Falcon restoration, 1994 report. Univ. of Minn. 76pp.

Roosa, D. M. and J. Stravers. 1989. Nesting of Raptors Uncommon in Iowa: Summary and New Records. Jour. Iowa Acad. Sci. 96(2):42-49.

Tordoff, H. B. 1986. A Peregrine Falcon life table. Natural History Leaflet. No.3. Bell Museum of Nat. Hist. 4pp.

Tordoff, H. B., M. S. Martell, P. T. Redig, and M. J. Solensky. 2000. Midwest Peregrine Falcon Restoration, 2000 Report. Bell Museum of Natural History, Minneapolis, Minn. 47pp.

Peregrine falcons released in lowa as part of the Midwestern Peregrine Recovery Project.

Young Peregrine falcons produced from known lowa nesting pairs 1993 - Present.

RIVER OTTER RESTORATION

1800

Prior to Iowa settlement, the river otter was common along major rivers and streams throughout the state. However, otter populations were reduced by a combination of factors including unregulated trapping, stream degradation, polluted waters, and agricultural activities. By the early 1900s there were few otter sightings on Iowa's interior streams. The species was extirpated from most of the state, except for a small remnant otter population along and adjacent to the Mississippi River in northeastern and east central Iowa through much of the 1900s.

1985

Efforts to restore the river otter to other parts of Iowa began in 1985 when 16 otters ($8 \mathrm{~F}, 8 \mathrm{M}$) from Louisiana were released at the upper end of Red Rock Reservoir in Marion County. These otters were obtained through a three-way trade in which the Iowa DNR provided wild turkeys to Kentucky who, in turn, bought 16 otters from Louisiana, for $\$ 400$ each, to be released in Iowa. Two turkeys were traded for each otter received. Each otter was tagged with fingerling fish tags in both ears and on the webs of both hind feet for future identification. Radio transmitters were implanted in the otters at Red Rock to monitor movements, mortality, and habitat use. Radio telemetry data indicated that otters gravitated to the shallower wetlands portions of the Red Rock Reservoir and seem to closely align themselves with the presence of beavers apparently spending some time in association with beaver lodges and dens.

1989-90

After the apparent success of the initial release, additional otters were released at sites throughout Iowa (Table 7.1). Otters were obtained through the same 3-way trade mentioned earlier until 1989. In 1989, the Mitchell County Conservation Board and local schools provided the funds to purchase 8 animals for release in the Cedar River near St. Ansgar in Mitchell County. In 1990, 38 additional otters were release on the Cedar River in Mitchell County as well as on the Winnebago River in Cerro Gordo County. These releases were funded through local fund-raising efforts and the "They Otter Be In Iowa" T-shirt sales from the Iowa Trappers Association, Furtakers of Iowa, ISU Fisheries and Wildlife Biology Club, and the Iowa DNR.

Between 1985 and 1990, 222 otters were released at 11 sites (Table 7.1). To help reduce trapping mortality at each release site, a portion of the stream was closed to trapping within 10 yards of a beaver lodge or den, because these areas were commonly used by otters. In 1997, this restriction was deemed unnecessary and, consequently, removed, with the exception of Linn County. In 2008 the Linn County restriction was eliminated. However, many trappers either avoid or adjust their trapping activities in areas where otter sign and beaver are closely associated with each other.

1997

Two additional sites received otters in 1997. Indian Creek Nature Center in Linn County provided funding for 17 animals, and Chichaqua Wildlife Area in Polk County where the Polk County CCB received a Resource

Enhancement and Protection (REAP) grant that provided funding for 10 animals.

Two release sites were added in 1998, both in Cedar Falls. The Black Hawk CCB provided funds for 12 animals. Half were released on the Cedar River at Hartman Reserve Nature Center and the remaining 6 were released on the other side of the Cedar River at George Wyth State Park. In 1999, no animals were purchased from Louisiana for release. Between 1985-1999, 261 Louisiana River Otters were released into Iowa's rivers and lakes.

1999-2000

Otter populations in several localized release sites across the state were experiencing road-kills and incidental trappings. The Iowa DNR wanted to determine the viability of these localized "otter hot spots" by live trapping and trans-locating some of the animals and monitoring the population changes at both site of capture and the release site. In 1999, 5 otters were trans-located from the Des Moines River in Boone County to Peterson Pits along the Skunk River in Story County. An additional 3 otters were trans-located from the Little Sioux River in Buena Vista County to the Boyer River in Sac County.

2000-2001

During the fall and winter of 20002001, 5 additional otters were released to Buena Vista County Boyer River Site. Five were captured and released on the East Nishnabotna River near Audubon. Three were captured and released at Miami Lakes in Monroe County. Two were released on Cedar Creek east of Albia. During the fall and winter of 20012002, 5 more otters were captured and released on the East Nishnabotna River
near Audubon. The Iowa River Greenbelt Trust also funded the release of 11 river otters to the Iowa River at the Hardin City Access near Steamboat in 2000-01.

The DNR delisted the river otter from the threatened list in 2001 but otters were given protected status until the first regulated harvest season occurred in 2006.

2001-2002

In 2001-02, a record 32 additional river otters were trapped and released at other sites across the state. (Table 7.1)

2002-2003

In 2002-2003, only 11 otters were trans-located to other parts of Iowa. This was surprising, as the trapping conditions early in the season were relatively mild. I do not think the lower numbers are reflective of reduced otter populations but rather a reduction of effort on the part of our contract trappers. Select Contract Trappers received $\$ 100$ per each otter caught plus mileage to and from the release sites.

2003-2004

In 2003-2004 we discontinued translocation of River Otters within the state. A concerted effort was made to collect otter teeth and reproductive tracts from all remaining river otter carcasses within the state to determine the population age structure, and reproductive status of Iowa otters. Pooling this data with previous collections has given us an adequate sample to develop a population model and population estimate of Iowa's River Otters.

2005

A river otter habitat model for Iowa has been developed from Iowa GIS information. These are important steps in meeting the requirements of the Scientific

Authority of the Fish and Wildlife Service before Iowa was allowed a regulated River Otter harvest season. Nearly 100 otter teeth and reproductive tracts have been collected to further add evidence to the validity of a regulated river otter season. Our goal was to have this season by no later than 2006. A river otter harvest management plan has been developed from all data gathered. Initial seasons will be conservative, and all Iowa otters will be required to be CITES (Convention in Trade of Threatened and Endangered Species) tagged within 48 hours of capture.

Otter releases have been monitored by searching for tracks, mudslides, snow slides, and by soliciting observations from DNR and CCB personnel, and the public. Thus far, the results are encouraging; otters have been observed at all release sites and in all 99 counties across the state. Reproduction was documented in over 85 of Iowa's 99 counties. Major mortality causes were incidental trapping and roadkills. The goal of the otter restoration project was to have statewide distribution and ultimately some type of regulated, though conservative, otter harvest season in most portions of the state.

As the otter population increases, we are receiving more otter depredation complaints, particularly on farm ponds. Some fishery interests are also showing concern of otter depredation of certain fish species on certain localized rivers and streams.

Areas in southern Iowa have apparently benefited from otter releases in Missouri. Southern Minnesota is also benefiting from northern Iowa releases. Nearly everyone closely associated with furbearer resources in Iowa believe, River Otters are doing extremely well.

A notice of intended action to establish a conservative River Otter harvest season occurred in late 2005. Six public hearings were held and the public was also able to express their opinions on the proposed season via the DNR website. About 450 responses were tallied with about 85% of those inputs supportive of the regulated river otter harvest season as proposed. In May, the DNR Commission unanimously voted to move forward with the first regulated River Otter harvest season. After receiving the science data that we provided on Iowa's River Otter population, the Scientific Authority of the Fish and Wildlife Service approved Iowa river otter season under the CITES (Convention in Trade of Endangered Species) Treaty.

Dr. Bill Clark's, Professor at Iowa State University, Iowa River Otter population model projected that there are a conservative 7000 otters in the state. Taking 400 of these animals would still allow the population to increase and expand

The parameters for Iowa's first River otter season were as follows: Opening 8:00 a.m. November 4, 2006 and closing January 31, 2007 or when the statewide quota of 400 otters has been reached. Each licensed fur harvester (trapping only,) could take 2 otters during the entire open season. A valid fur harvester license, 16 years of age and over--\$21, and habitat fee, $\$ 8.50$, is required.

Trappers were allowed a 72-hour grace period after the quota is reached to clear their traps of river otters and relinquish any otters over the legal 2 per season that they have taken. River otters found in traps during the grace period could be kept even though the quota was exceeded, as long as the trapper had not reached his or her personal season bag
limit of 2 otters per season. River otters trapped after the grace period or in excess of the seasonal bag limit must be turned over to the department; the trapper will not be penalized. Trappers found holding otters after the grace period would be subject to citation including a fine and possible revocation of their fur harvester license.

Reporting requirements were as follows: Trappers, who bag a river otter, including landowners and tenants not required to have a fur harvester license, must report their harvest to a DNR conservation officer within 24 hours. The trapper must arrange to receive a CITES tag from the officer within 72 hours of the time it is reported and the tag must be placed on the animal before it is skinned.

Upon receiving a telephone report from a trapper that a river otter has been legally taken, conservation officers will call the department's harvest reporting system. The number of river otters taken will be updated daily and a message recorded on the department's telephone system. The number taken will be available 24 hours a day. Trappers may check the message daily to determine when the season closes and the grace period begins and ends. The department will use all practical means to publicize the closing dates.

Every River Otter that may legally be kept by a trapper must have a CITES tag attached. Tags will be supplied by the conservation officer. The tag must remain with the pelt until the pelt is sold or used for other purposes that render it no longer available for sale. A secondary carcass tag will remain with the otter carcass so needed reproductive and age structure data can be collected. Persons displaying River Otters as taxidermy mounts or other decorative items must keep the tag in their possession as proof of legal harvest.

Persons that accidentally capture a river otter during a closed season or after the person's individual bag limit has been reached will not be penalized as along as the following circumstances occur: (1) the river otter is captured during a legal trapping season or as part of a legal depredation control process. (2) A conservation officer is contacted within 24 hours and the river otter and all parts thereof are turned over to a conservation officer as soon as practical.

The Scientific Authority and a group of fur technical resource professionals continue to work on a protocol to streamline all requests made to establish river otter harvest seasons. They failed to reach their initial goal of having this new protocol in place by January 1, 2006. The new streamlined protocol is still pending but very slow progress is being made. They have yet to reach an agreement as of January 2010 although effort will be made by the states to get both the river otter and bobcats CITES tagging protocol streamlined.

We believe that Iowa 's River Otter population is very healthy and increasing and that as we collect data associated with our River Otter harvest season, the population will be able to continue to increase and the harvest parameters will likely be liberalized.

2006-2007
The otter harvest results by county, of Iowa's first 3 seasons are shown in Figures 1, 2, 3. The season opened up the first Saturday of November, with the other traditional furbearer harvest seasons. We realized that may not be the most optimum time of otter pelt primeness, as otter pelts do not tend to be prime until December but because we expected many of the otter to be caught incidental to beaver and raccoon trapping
early in the season, we believed that this currently is the most appropriate opening date. Perhaps after a few years of River Otter harvest seasons we can open up the otter season on a date different than the traditional opening, although my impression is that will be difficult to accomplish because of all the early pressure to capture furbearers and because river otters are vulnerable to capture in both raccoon and beaver trap sets.

The statewide quota of 400 otters was reached in the first 10 days of the season of Iowa's first ever regulated River harvest season. With the 72 hour grace period a total of 469 otters were taken. Figures 1, 2, 3, and 4 show the county by county harvest breakdown of harvested River Otters from our first regulated harvest season in 2006 through 2009 . Although there are some differences, these harvest numbers generally are parallel and reflective of where we would consider the best otter habitat is located in the state. The River Otter harvest sex ratio is nearly $50: 50$ males and females, with animals each year, not being identified to sex. (See Figures 5, 6, 7, and 8). Figures 9, 10, 11, and 12 gives the breakdown of otters harvested by trap type and as expected footholds or restraining traps are used the most to capture the most followed by Conibears and snares. Nearly 2/3's of the otters were caught incidentally to trapping other animals, primarily raccoon and beaver although 2009 may see the beginning of a little more effort to actually target river otters by furharvesters. (See Figures 13, 14,15 , and 16). A total of $361,325,361$, and 379 trappers caught at least 1 otter in 2006, 2007, 2008, and 2009 respectively. Except for 2007each year we have seen a few more trappers have the opportunity to take at least one otter. 110, 95, 109, 140 trappers caught their season bag limit of 2
otters making the average take per trapper from 1.29 to 1.36 river otters per trapper for each of the 4 first seasons. (Figures 17, 18,19 , and 20 . Population age structure of the harvested river otters is still being analyzed but there has been not significant change in the 4 years of a harvest season.

Concern that trappers taking more than limit would end up in the bag of other household members were unfounded as there were less 10% of the otter harvest occurred from members of the same household. Very few problems or concerns have occurred during Iowa's first ever, and now 4, River Otter harvest seasons.

The slogan for Iowa’s River Otter restoration was "They Otter Be In Iowa." With that theme in mind, the River Otter harvest season of 2006-2007 was the first new open harvest season since 1973 (34 years), when another restored wildlife species, the wild turkey season, opened.

2007-2008

The season parameters for the 2007-2008 River Otter season will remained the same except the grace period will be shortened to 48 hours instead of the 72 from the previous season. This parallels the bobcat season which we believe makes it easier from a furharvester perspective to follow all the appropriate regulations. As predicted it took a little longer to reach the 400 river otter statewide quota than last year perhaps because it was not the first ever regulated otter harvest season. Also weather conditions were unusually warm last year and in normal weather conditions like that of 2007-2008 it would likely take longer to reach the quota.

2007-2008
Results of the 2007-2008 season are shown in the attached figures. Data from these first 3 regulated river otter
seasons closely parallels one another.
2008-2009
The only change in the otter season for 2008-2009 was to increase the harvest quota from 400 otters per season to 500 . We recommended the removal of the furharvester season bag limit but that was rejected by the Natural Resource Commission which quietly frankly was the best thing to do when wants to distribute river otter harvest amongst more furharvester.
2009-2010
The river otter harvest parameters for 2009-2010 season and for the upcoming 2010-2011 remained the same. We working to streamline the CITES tagging process to make it more efficent to get harvested river otters tagged.

Further analysis needs to be completed but it is suggested that by 20112012 season we should be able to liberalize the season quota on river otters by probably at least 100 or perhaps.

Our slogan was "They Otter in Iowa" additionally should read "and now most certainly they truly are."

Table 7.1 River otter release sites in Iowa, 1985 - present.

Year	Males	Females	County	Nearest Town	River / Area
1985	8	8	Marion	Runnells	Red Rock Reservoir
1986	10	10	Tama	Chelsea	Otter Creek WMA
1986	10	10	Hamilton	Stratford	Boone River
1986	10	10	Guthrie	Guthrie Center	Springbrook Park
1987	10	10	Clay	Peterson	Little Sioux River
1987	10	10	Lucas	Russell	Rathbun Reservoir
1988	10	10	Bremer	Tripoli	Sweet Marsh WMA
1988	10	10	Linn	Waubeek	Wapsipinicon River
1988	10	10	Montgomery	Morton Mills	Nodaway
1989	5	3	Mitchell	Otranto	Cedar River
1990	7	8	Mitchell	Otranto	Cedar River
1990	13	10	Cerro Gordo	Mason City	Winnebago River
1997	9	8	Linn	Cedar Rapids	Indian Creek
1997	6	6	Polk	Chichaqua	Skunk River
1998	7	5	Black Hawk	Cedar Falls	Cedar River
1998-1999*	5 sex	unknown	Story	Ames	Peterson Pits
1998-1999	3 sex	unknown	Sac	Reiff Park	Boyer River
1999-2000	5 sex	unknown	Sac	Reiff Park	Boyer River
1999-2000	5 sex	unknown	Audubon	Audubon	E. Nishnabotna River
1999-2000	3 sex	unknown	Monroe	Miami Lake	Miami Lake
1999-2000	2 sex	unknown	Wapello	Cedar Creek	Cedar Creek
2000-2001	5 sex	unknown	Audubon	Audubon	E. Nishnabotna River
2000-2001	11 se	unknown	Hardin	Steamboat Rock	Iowa River
2001-2002	3 sex	unknown	Hardin	Steamboat Rock	Iowa River
2001-2002	2 sex	unknown	Clayton	Eldorado	Turkey River
2001-2002	4 sex	unknown	Pottawattamie	Oakland	W. Nishnabotna River
2001-2002	2 sex	unknown	Marion	Hamilton	North Cedar Creek
2001-2002	2 sex	unknown	Cass	Atlantic	E. Nishnabotna River
2001-2002	5 sex	unknown	Poweshiek	Brooklyn	English River
2001-2002	14 se	unknown	Worth	Northwood	Shellrock River
2002-2003	2 sex	unknown	Pottawattamie	Avoka	W. Nishnabotna River
2002-2003	9 sex	unknown	Grundy	Grundy Center	Blackhawk Creek

GRAND TOTAL of Males and Females $=345$
*Coincides with the capture of otters to translocate during the succeeding trapping seasons. No otters were translocated during the winter of 2004-2005.

Figure 1. River Otters Harvested Per County 2006

Figure 2. River Otters Harvested Per County 2007

Figure 3.River Otters Harvested Per County 2008

Figure 4. River Otters Harvested Per County 2009

Figure 6. 2007 Otter Harvest Sex Ratio

Figure 7. 2008 Otter Harvest Sex Ratio

Figure 8. 2009 Otter Harvest Sex Ratio

Figure 9. Harvest Type 2006

Other, 3, 1\%
Snare, 26, 6\% unknow n, 23,

\square unknow n
\square Conibear
\square Foothold
\square Roadkill
\square Snare
\square Other

Figure 10. 2007 Harvest Type
Snare, 40, unknow n, 1,

Roadkill, 3, 1\%

55\%

Figure 11. 2008 Harvest Type

Figure 12. 2009 Harvest Type

Figure 13. Otters Intentional Targeted 2006

Figure 14. 2007 Otters Intentionally Targeted

Unknown, 15,
4\%

Figure 15. 2008 Otters
Intentionally Targeted

Figure 16. 2009 Otters Intentionally Targeted

Figure 19. 2008 Harvest Per
Trapper $=1.33$

2 Otters, 109 , 30%

Figure 20. 2009 Harvest Per
Trapper = 1.36

Figure 21. 2008 Otters Harvested Per Household
7,1\%
6, 1\%
20, 4\%

Figure 22. 2009 Otters Harvested Per Household

GREATER PRAIRIE CHICKEN RESTORATION

HISTORICAL REVIEW

$\begin{array}{rrr}\text { Greater } & \text { prairie } & \text { chickens } \\ \text { (Tympanuchus } & \text { cupido } & \text { pinnatus) }\end{array}$ commonly nested throughout Iowa from the time of European settlement in the mid-nineteenth century until about 1900. Numbers peaked about 1880 when most of Iowa was a mosaic of small grainfields, hayfields, pasture, and native prairie, which provided ideal habitat conditions (Ehresman 1996). During the late nineteenth century, prairie chickens were the most abundant gamebird on Iowa prairies. Hunting and trapping them for food and market were very important to settlers. Bags of 25 to 50 a day were common, and some hunters took up to 200 per day.

By 1878, Iowa lawmakers were concerned that prairie chickens were being over-harvested. The Iowa Legislature passed a law that year limiting the daily bag of prairie chickens to 25 birds per person. This is believed to be the first time that bag limits were used as a tool to regulate the harvest of game in the United States. Additional restrictions followed, and the last open season for prairie chickens in Iowa was held in 1915 (Stempel and Rodgers 1960).

As agricultural land use intensified, populations of prairie chickens started to decline. By the 1930's, most prairie chickens found in the northwestern part of the state were migrant winter flocks. Small numbers continued to nest along the northern, northeastern, and southern borders of the state. By the 1950's, the only known nesting prairie chickens were in Appanoose, Wayne, and Ringgold Counties in southern Iowa. The last verified nesting prior to reintroduction
attempts was in Appanoose County in 1952 (Stempel and Rodgers 1960).

RESTORATION

First Reintroduction Attempt

In the early 1980's, the Iowa Conservation Commission, now the Iowa Department of Natural Resources (IDNR), attempted to restore prairie chickens to west central Iowa. The IDNR negotiated with the Kansas Fish and Game Commission (KFGC), now Kansas Department of Wildlife and Parks (KDWP), to trade wild turkeys for 100 prairie chickens (Table 8.1). The release site was located in the Loess Hills east of Onawa, Monona County (Fig. 8.1). This is an area of steep to moderately rolling bluffs and hills bordering the Missouri River valley. These hills have large expanses of grassland interspersed with brush and small crop fields.

Fifty-three prairie chickens were released in 1980. Results from the first release were mixed. A large number of chickens were observed in the release area the following day; however, sightings thereafter were sporadic and often at a distance from the release area. In 1981, single birds occurred near the release area and groups of birds were reported 20 and 60 miles from the release site. No spring leks were located in the 2 years following the release, and no reproduction was reported.

In 1982, KFGC personnel decided to attempt a different trapping approach, using rocket-nets to trap chickens on the lek sites. This resulted in 48 more chickens being transported to Iowa for release at the same area in the Loess Hills. A greater effort to acclimatize the birds
was made in the 1982 release. The birds were banded and put in a large holding pen with separate cells for each sex. They were kept in pens overnight for the males and a day longer for the females. It was hoped that males would be stimulated to remain near the release site by holding the females a day longer. Taped lek calls were also played through speakers located near the pen about 45 minutes prior to releasing males. This was an attempt to induce chickens to establish a lek in the area.

Two prairie chicken broods were reported near the release site in 1982, and up to six adults were observed near the Missouri River bottom the same year. Two leks consisting of only a few displaying males were located in 1983 and 1984. Most sightings were in the heavily agricultural Missouri River valley instead of the hills where they were released. The birds appeared to prefer the level valley to the hilly region where they were released. Suitable grassland habitat was lacking in the valley. Only an occasional sighting has been reported in this region since 1984, leading to the conclusion that this reintroduction effort failed (Ron Munkel, IDNR, pers. comm.).

Second Reintroduction Attempt

1987-1989 Stockings: In 1987, the
IDNR made a second restoration attempt at Ringgold Wildlife Area located two miles north of the Missouri border in Ringgold County (Fig 8.1). Wildlife personnel considered this region to be the best potential prairie chicken habitat in Iowa. In addition, the immediate vicinity was one of the last strongholds of prairie chickens in southern Iowa and northern Missouri (Christisen 1985, Stempel and Rodgers 1960). The surrounding portions of Ringgold County and adjacent Harrison

County, Missouri, are cattle country, with 60% or more of the land in permanent grass. Donald Christisen (1985) concluded that the demise of prairie chickens in this area was due to heavy utilization of grasslands by livestock, resulting in poor quality habitat. Recent years had brought some positive changes in the grasslands of the area including the restoration of around 200 ha of prairie on the Ringgold Wildlife Area.

Birds were again obtained from Kansas through a three-way trade in which IDNR supplied wild turkeys to the Michigan Department of Natural Resources (MDNR) while a MDNR crew trapped prairie chickens in Kansas for translocation to Iowa. Prairie chickens were captured in the spring with funnel traps set on booming grounds in the Flint Hills region of Kansas. Every few days the captured birds were transported to Iowa and released the next morning utilizing a soft release box and artificial lek technique, which had been successfully used in Kansas to reintroduce sharptail grouse (Rodgers 1987). A total of 254 prairie chickens were translocated to the Ringgold Wildlife Area from Kansas during 1987, 1988, and 1989 (Table 8.1).

By the spring of 1988 , leks had been established at the release site and a site 15 km south in Missouri. The Missouri site was on the Dunn Ranch, a cattle ranch operated by Forrest and Maury Meadows of Bethany, Missouri. The ranch included about 500 ha of wellmanaged native prairie pasture in addition to several hundred hectares of cool season pasture. This ranch contained a major lek before the disappearance of prairie chickens in the 1960's. The lek established in 1988 was on the same site as the historic lek, and the birds using it
were verified as Iowa release birds by the bands on their legs (Maury Meadows, pers. comm.).

During 1990 and 1991 reproductive conditions for gallinaceous birds were poor in this area; however, brood sightings were made each year. By 1991, prairie chickens appeared to be firmly established on Dunn Ranch, but only one lek of six males could be located in Iowa that year. The success of the reintroduction of prairie chickens to the Dunn Ranch was the bright spot of the project thus far. It was evident that reintroductions in this region could succeed.

1992-94 Stockings: An agreement with KDWP once again allowed IDNR crews to trap and translocate 100 prairie chickens a year. Instead of releasing all of the birds at one site, it was decided to release significant numbers on large grassland tracts in the region, while releasing a smaller number at the original Ringgold Wildlife Area. Birds were translocated to two new sites in 1992, Mount Ayr and Kellerton, respectively 28 and 24 km north of Ringgold (Fig. 8.1). Sites continued to shift in subsequent years and the Orient site (Adair County) was added in 1993. All of the sites contained high quality grasslands and open landscapes. Predominant land use at all three sites was a mixture of pasture, hay, and CRP.

A total of 304 prairie chickens were released in this three-year period (Table 8.1).

Subsequent Stocking:

No additional stockings were anticipated following releases in 1994. However in 2001, South Dakota Game Fish and Parks (SDGFP) employees incidentally trapped three prairie chickens
and offered them to IDNR. One male and two female chickens were released at the Kellerton lek in April 2001. This additional release results in a total of 561 prairie chickens translocated to Iowa since 1987.

Missouri Reintroduction: The Missouri Department of Conservation (MDC) has been reintroducing prairie chickens in north central Missouri since 1993. Approximately 100 birds have been released each year through 1997 and again in 2000. They have released birds at eight sites located 60 to 100 km southeast of the Ringgold Wildlife Area and 10 to 40 km south of the Iowa border (Larry Mechlin, MDC, pers. comm.). Some of these birds have been spotted in Iowa over the years.

BOOMING GROUND SURVEY

Methods

Attempts have been made each spring by IDNR personnel and volunteers to locate leks and count booming males. Counts of known leks are made on sunny mornings with winds < 10 mph throughout the month of April. In the past, lek sites were glassed or flushed to determine the number of booming males and new leks were located by driving gravel roads and stopping periodically to listen for booming. A more formalized survey was begun in 2009, using a prairie chicken habitat suitability model to establish 10 Survey Areas across 8 southern Iowa counties (Fig. 8.2). Each survey area had between 19 and 26 listening points located randomly or at a known past or present lek site. A total of 207 listening points were surveyed twice during the booming season (Fig. 8.2). MDC personnel make similar counts on and around the Dunn Ranch, where the birds are part of the same
regional population. It is possible that some booming grounds have not been located.

Results

2000: Booming prairie chicken males were observed in Decatur, Ringgold, and Wayne Counties in 2000 (Table 8.2). This was the first time a lek was recorded in Wayne County. Forty-four males were active on six booming grounds. This was the highest number of booming males recorded in Iowa and the highest total number of males per lek. The number of booming males increased 13% over 1999, but the number of active leks decreased from eight to six (-25%). The six-year mean total number of booming males is 34.8; therefore, the number observed in 2000 is 26% above the mean. The same trend was observed for total number of males per lek; 7.3 is 28% above the sixyear mean of 5.7. Known active lek locations are shown in Figure 8.2.

2001: Booming activity was observed by department personnel again in Decatur, Ringgold and Wayne Counties in 2001 (Table 8.2). Birds were active on seven booming grounds, an increase of one site (16.6\%) from the previous year. However, the number of booming males dropped to 28 in 2001, a 36.4% decline from 2000 and a 16.7% decline from the seven-year mean total of 33.6. The 2001 mean of four males per lek represented a 45.2% decline from 2000. Known active lek locations are shown in figure 8.2.

2002: This year personnel witnessed a direct loss of one lek in Ringgold Co. (69N, 29W, Sec 3) from previous years due to CRP conversion to rowcrop, but yet maintained seven active leks as in 2001.

This is the third year for Decatur, Ringgold, and Wayne counties. Three new locations were found. However, the number of booming males fell again this year (21.4\%) to 22 , bringing the mean total to 37.0 (Table 8.2). This also continues a two year trend of declining males per lek to 3.1 in 2002. This year the number of leks is near average, but the count of booming males and mean males per lek is below the eight year mean at 59.5% and 52.5% respectfully. Current and prior lek locations are shown in figure 8.2. There were no releases or relocates done in 2002.

2003: Three new locations were noticed again this year (Table 8.2). There was a gain of two leks from 2002 to nine for 2003, which is above the average to date by 15.3% (Table 8.2). This year yielded the most positive observation by matching the most leks observed since 1998. Also males per lek increased from 3.1 in 2002 to 3.6 in 2003, and total booming males showed increases of 10 from 22 to 32 , making this the fifth most since 1995 (Table 8.2). Current and prior lek locations are shown in figure 8.2.

2004: Only one new location was noticed this year (Table 8.2). There was a loss of three leks from 2003 to six for 2004, which is below the average to date by 21% (Table 8.2). For the first time since reporting in 1995, only two counties are reported with active leks. Total booming males is among the lowest in record since 1997 (Table 8.2). However, males per lek continues to show steady numbers in recent years with 3.7 in 2004. Despite the large amount of spring rain in 2004, biologists still received reports of large broods. Current and prior lek locations are shown in figure 8.2.

2005: Two new lek locations were noted this year (Table 8.2). However, there was a reduction in total number of leks from six in 2004 to five this year. In 2005, there were once again 3 counties reporting active leks, which is up one county from last year. Total booming males was 24, which also is up from 22 last year (Table 8.2). Males per lek was the highest it has been since 2000, with 4.8 males per lek seen. Weather conditions were favorable for nesting this season, and broods have been reported. Current and prior lek locations are shown in figure 8.2.

2006: One new lek location was noted this year though one previously active was observed inactive so the total number of active leks remains at five (Table 8.2). These five leks were spread across three counties which is also consistent with last year. However, the lowest number of booming males since 1996 was recorded this year with only 16 reported (Table 8.2). The average number of males per lek was 3.2. No brood sightings were reported. Current and prior lek locations are shown in figure 8.2.

2007: Four active leks were identified this year spread through 3 counties (Table 8.2). Only 15 booming males were recorded across these leks with an average of 3.75 males per lek. The largest lek is by the Kellerton viewing platform and observers on April 2, 2007 reported between 14-22 birds at a time on the lek evenly split between male and female. No broods were spotted during summer surveys in 2007.

The number of leks has declined over the past 10 years from a high of 9 to this year's 4 . The number of booming males has declined as well and broods
have proven difficult to find.
2008: A new effort was embarked upon in 2008 to determine the genetic diversity of southern Iowa's prairie chicken population. Trap lines were set out at the largest lek on the Kellerton Wildlife Area at the end of March and run through April $18^{\text {th }}$. Blood was collected from the 10 birds captured (7 males, 3 females) and sent for genetic analysis. Full results are still pending.

Booming males were counted on four leks this year all in Ringgold County. The biggest lek was once again at Kellerton Wildlife area where as many 14 males were initially observed booming though once the females appeared there were only 10 males. Current and prior lek locations are shown in figure 8.2.

2009: The newly established lek survey recorded 3 established lek sites in Ringgold County and one possible lek site in Adams County. The well established Kellerton lek had a high of 13 males and 4 females observed, while a smaller lek area to the north of Kellerton had a high of 4 males and 1 female seen during the survey (table 8.2). This smaller lek area was likely used by a total of 5 males and 2 females. One male was possibly heard booming at a lek area to the east of this smaller lek site. Another two male chickens were not seen, only heard at a possible lek area in Adams County.

In addition, a prairie chicken nest was located for the first time just southwest of the main Kellerton lek. Twelve eggs were counted and a later visit confirmed that 11 successfully hatched. A further sighting of the brood recorded that two of the chicks had died and the remainder of the brood was not seen and their fate is unknown.

2010: The 2010 lek survey recorded 3 established lek sites in Ringgold County. The well established Kellerton lek had a high of only 8 males however a high of 7 was collected on another satellite lek site and an additional 4 were observed on the final lek site, north of Kellerton (table 8.2). Outside of the lek survey an additional 6 females were observed on one of the satellite lek sites. The average number of males observed per lek was the highest it has been in the previous 10 years at 6.33 . While this number should be somewhat encouraging it really seems to reflect the concentration of birds on fewer lek sites.

No prairie chicken nests or broods were located in the Kellerton area during 2010. However, two broods were flushed in two different fields at TNC's Dunn Ranch in northern Missouri. Other sightings in the Kellerton area include 2 observations of a winter flock containing 24-25 individual birds.

DISCUSSION

Prairie chicken reintroduction efforts have resulted in a small population of prairie chickens in a concentrated area of southern Iowa and northern Missouri.

Pasture and hay are still primary land uses in this region which benefits the chickens. One major threat to the habitat in this area is the high price of corn, making CRP less desirable. Hundreds of acres of CRP are likely to be removed from the program and returned to crop land in the next few years.

On a positive note, this area was targeted for additional acres in the CP-38 SAFE program with the goal of restoring habitat specifically for chickens and the USDA announced the first open sign-up for CRP in a few years. The area around

Kellerton is also a high priority area for land acquisition particularly tracts to the south of Kellerton WA that would connect with Ringgold WA and prairie chicken populations in northern Missouri. In addition, intensive management of large blocks of grassland by public agencies will help ensure adequate habitat into the future.

Another complicating aspect of prairie chicken management is the small size of the prairie chicken population and whether because of low genetic diversity, it may be necessary to supplement the population with additional releases. The trapping study in 2008 revealed that genetic diversity within the population was low.

Kellerton Bird Conservation Area

A model for landscape-level grassland bird conservation was developed by research biologists in the Midwest and serves as the basic design for Iowa's Bird Conservation Areas (BCA). The Kellerton Bird Conservation Area (KBCA) was formally designated in 2001 and is the first attempt to put the habitat objectives of the Dissected Till Plains Bird Conservation Plan into action. The KBCA is a 10,000 -acre area of public and private lands located in extreme south central Iowa and was the first BCA designated in the country.

In 1998, the KBCA consisted of 70% grassland, 25% cropland, and 5% woodland. The primary booming grounds used by the chickens are located within the boundaries. All the land was privately owned, and the grasslands were either pasture, hayfields, or land entered in CRP. Within this 10,000 -acre area, a contiguous block of 2,100 acres of grassland was identified as a priority acquisition tract.

A 680-acre parcel was the first desired purchase aimed to protect Iowa's
largest greater prairie chicken lek. The IDNR acquired the initial 680-acre KBCA tract in December 1998. The IDNR, the National Fish and Wildlife Foundation, Pheasants Forever, Iowa Audubon, and numerous private donations provided funds for the initial acquisition. The IDNR continues to purchase land in the area whenever it can. In 2007 two parcels totaling 315 acres were purchased, both near the Ringgold wildlife area.

In addition to the proposed 2,000 acre publicly-owned core area, IDNR and the Natural Resource Conservation Service (NRCS) promote conservation efforts on nearby private land. Area biologists work closely with landowners
and implement WHIP, and CRP programs in and around the area. WHIP and CRP programs can be used to enhance wildlife management on an additional 2,500 acres of land within the KBCA by encouraging farmers to use rotational grazing, cutting trees, planting native grasses, and prescribed burning.

In addition to the KBCA acquisition, the Missouri Nature Conservancy (TNC) purchased the 2,200acre Dunn Ranch in the spring of 1999. The MDC also acquired Pawnee Prairie, a large grassland tract west of the Dunn Ranch.

LITERATURE CITED

Christisen, D. M. 1985. The greater prairie chicken and Missouri's land-use patterns. Terrestrial Series No. 15. Missouri Department of Conservation. Jefferson City. 51 pp .

Ehresman, B. L. 1996. Greater Prairie-Chicken. Pages 130-131 in L. S. Jackson, C.A. Thompson, and J. A. Dinsmore, editors. The Iowa Breeding Bird Atlas. University of Iowa Press, Iowa City, Iowa, USA

Rodgers, R. 1983. Evaluation of the re-establishment potential of sharptailed grouse in western Kansas. Federal Aid Project No. W-23-R-20, Study No. 18, Job Q-1, Kansas Fish and Game Commission. Pratt. 7pp., mimeo.

Stempel, M. E.., and S. Rodgers, Jr. 1961. History of prairie chickens in Iowa. Proceedings of the Iowa Academy of Science 68:314-322.

Table 8.1. Dates, numbers, and locations of greater prairie chicken releases in Iowa, 1980-2001. Gamma $(\Gamma)=$ male, Epsilon $(\mathrm{E})=$ female

Release Date	No. Released	Source*	Release Location
February 1980	$\begin{array}{\|l\|} \hline 29 \Gamma \\ 24 \mathrm{E} \\ \hline \end{array}$	KFGC	Loess Hills Wildlife Area, Monona Co. ${ }^{1}$
April 1982	$\begin{array}{\|l\|} \hline 31 \Gamma \\ 18 \mathrm{E} \\ \hline \end{array}$	KFGC	Loess Hills Wildlife Area, Monona Co.
April 1987	$\begin{array}{\|l\|} \hline 20 \Gamma \\ 9 \mathrm{E} \end{array}$	KFGC	Ringgold Wildlife Area, Ringgold Co. ${ }^{2}$
April 1988	$\begin{array}{\|l\|} \hline 48 \Gamma \\ 75 \mathrm{E} \end{array}$	KFGC	Ringgold Wildlife Area, Ringgold Co.
April 1989	$\begin{aligned} & \hline 40 \Gamma \\ & 62 \mathrm{E} \end{aligned}$	KFGC	Ringgold Wildlife Area, Ringgold Co.
April 1992	$\begin{aligned} & \hline 18 \Gamma \\ & 21 \mathrm{E} \end{aligned}$	KDWP (IDNR trapping crew)	Mount Ayr, Ringgold Co., Price Twp., Sec. 13. ${ }^{3}$
April 1992	$\begin{array}{\|l\|} \hline 31 \Gamma \\ 20 \mathrm{E} \\ \hline \end{array}$	KDWP (IDNR trapping crew)	Kellerton, Ringgold Co., Athens Twp., Sec. 8. ${ }^{4}$
April 1992	$\begin{aligned} & 9 \Gamma \\ & 9 \mathrm{E} \end{aligned}$	KDWP (IDNR trapping crew)	Ringgold Wildlife Area, Ringgold Co., Lotts Creek Twp., Sec. 24. ${ }^{2}$
April 1993	$\begin{aligned} & \hline 13 \Gamma \\ & 33 \mathrm{E} \end{aligned}$	KDWP (IDNR trapping crew)	Kellerton, Ringgold Co., Athens Twp., Sec. 8. ${ }^{2}$
April 1993	$\begin{aligned} & \hline 24 \Gamma \\ & 24 \mathrm{E} \end{aligned}$	KDWP (IDNR trapping crew)	Orient, Adair Co., Lee Twp., Sec. $36 .{ }^{5}$
April 1994	$\begin{aligned} & 10 \Gamma \\ & 17 \mathrm{E} \end{aligned}$	KDWP (IDNR trapping crew)	Kellerton, Ringgold Co., Athens Twp., Sec. 8. ${ }^{4}$
April 1994	$\begin{aligned} & \hline 31 \Gamma \\ & 34 \mathrm{E} \end{aligned}$	KDWP (IDNR trapping crew)	Orient, Adair Co., Lee Twp., Sec. $36 .{ }^{5}$
April 2001	$\begin{aligned} & 1 \Gamma \\ & 2 \mathrm{E} \end{aligned}$	SDGFP	Kellerton, Ringgold Co., Athens Twp., Sec. 16. ${ }^{4}$

* KFGC = Kansas fish and Game Commission, KDWP = Kansas Department of Wildlife and Parks, SDGFP = South Dakota Game Fish and Parks Department, IDNR = Iowa Department of Natural Resources.
${ }^{1-5}$ Release sites indicated on county map (Figure 8.1)

Figure 8.1 Location of release sites and total number of prairie chickens released in Iowa, 19802001.

Figure 8.2. Location of sites surveyed and sites where chickens were detected during the 2010 prairie chicken lek survey.

TRUMPETER SWAN RESTORATION

Prior to the settlement of Iowa, trumpeter swans nested throughout the state. However, wetland drainage and unregulated hunting of trumpeters soon brought their demise. Prior to 1998, the last pair wild nesting trumpeter swans in Iowa occurred in 1883 on the Twin Lakes Wildlife Area southwest of Belmond, Iowa in Hancock County. Some 115 years later, the first modern day hatch of three wild trumpeter swan cygnets occurred in 1998 in Dubuque County. This pair hatched 5 in 1999, 5 again in 2000, 4 in 2001, 5 in 2002 and 4 in 2003.

In 2000, a second pair nested on a Winnebago County Conservation Board wetland (Russ Tract at Thorpe Park) 8 miles west of Forest City. This pair had 5 eggs. Unfortunately none hatched. We did; however, augment the nest with a sixth egg and it hatched providing this pair with a young cygnet to help bond the pair to the wetland nest site.

Trumpeter swans were first given nationwide protection in 1918 when the United States, Canada, and Mexico signed the International Migratory Bird Treaty. A nationwide swan count in the early 1930s indicated that only 69 existed in the continental United States with all those occurring in Red Rock Lakes National Wildlife Refuge in southwest Montana. The Red Rock Lakes became the nation's first National Wildlife Refuge because of the presence of these trumpeter swans.

In 1993, the Iowa Department of Natural Resources developed a plan to restore trumpeter swans to the state. Our original goal was to establish 15 wild nesting pairs to the state by the summer of 2003. That goal was reached in 2004. Our updated goal was to have 25 wild nesting pairs in Iowa by 2006, and that goal was reached in 2005. Our $2^{\text {nd }}$ goal is
to use the swans to "trumpet" the many positive values of wetlands not only for wildlife habitat for many rare and endangered plant and animal species, but for water quality improvement (nature's natural water filter), flood reduction, and groundwater recharge as well.

Iowa trumpeter swans are being obtained from 26 different states, including zoos, private propagators, other state swan projects, and any other sources that might have available swans. We have establishing flightless breeder pairs at appropriate sites, the young of which the DNR releases for free flight at other places across the state. We find it necessary to move young produced at these flightless pair sites have to be moved otherwise they interfere with the following year's reproductive activity because the adult pair continually harass the young to harass from their nesting territory.

Fifty partnership breeding pair sites are currently established. Through the summer of 2008 nearly all trumpeter swans released in Iowa are marked with plastic green or red neck collars and leg bands, along with U.S. Fish and Wildlife Service metal leg bands. The plastic neck and leg bands are marked with alpha letters C, F, H, J, K, P, T, M, and two numbers, 00 through 99 . Many of the early FWS leg bands were made of soft aluminum metal and several of these dropped off. In 2004, we began using lock-on stainless steel FWS leg bands and we are not aware of any band losses since then.

We are trying to obtain as much outside funding as possible and we are the fortunate recipients of $\$ 165,000$ in memory of David A. and Robert Luglan Sampson, formerly of Webster City.

Numerous individuals, organizations, and corporations have contributed significant smaller dollar amounts. The Iowa Chapter of the Wild Sheep Association of North America has contributed over $\$ 4000$ to Trumpeter Swan Restoration in recent years. Considerable soft match/inkind contributions have been made and are conservatively estimated at over 1.5 million dollars. The Trumpeter Swan Program was also awarded a State Wildlife Grant (SWG) in 2004.

Table 12.1 and Fig 12.1 show the number of trumpeter swans released and their release sites in Iowa since 1994. Seventy-seven swans were released throughout Iowa in 2004. In 2005, 115 swans were released. In 2006, 70 trumpeters were released and in 2007, 71 trumpeter swans were released. In 2008, 53 trumpeters were released in Iowa and 18 in Arkansas. In 2009, 61 trumpeters have been released in Iowa and15 in Arkansas. In 2010, 51 trumpeters have been released in Iowa and 16 in Arkansas. A grand total of 1041 trumpeters released to date. Iowa has the largest trumpeter swan observation database with over 3600 observation of neck collared swans thru 2010. After 10 years of migration observations, the largest concentrations of migrating Iowa swans are wintering in northeast and east-central Kansas and northwest and west-central Missouri. One Iowa trumpeter swan wintered as far south as Oklahoma during the winter of 1998/1999. Also, one swan wintered near Heber Springs, Arkansas in 1999/2000. During the winter of 2002-2003, 2 swans released at Hottes Lake near Spirit Lake, Iowa, migrated to Lubbock, Texas. These are possibly the first known, or at least the first of very few interior swans to migrate to Texas since the 1880 's. There were 6 confirmed shootings of Iowa swans out-of-state, (1 in Wisconsin, 5 in

Texas). A $\$ 17,000$ fined was charged to four men in connection with the family group of 5 Iowa swans shot in Texas.

In 2001, the swans that nested at Union Slough NWR and Mallard Marsh wintered in southwest Arkansas. In the winter of 2003/2004, a record 9 (at that time) 35 free flying trumpeter swans wintered near Webster City, Iowa. An estimated 75 to 100 trumpeter swans wintered in the state in 2003/2004. "Traditional" swan wintering sites are developing in Iowa. During the winter of 2004-2005, 15 trumpeters staged and spent a portion of their winter at private partner Bob \& Mary Boock's property near Wheatland in east central Iowa. Twenty-four swans staged and spent most of the winter on a rock quarry pit in Atlantic in southwest Iowa. On Bill Beemer's Pond, a private partner site near Webster City, 61 trumpeter swans spent the winter and another dozen staged on that area before moving further south. During 2005-2006, the number of wintering/staging swans at Wheatland and Atlantic remained the same. At Bill Beemer's the wintering swans increased to 74 and near Mason City, Iowa on the Winnebago River, 13 free flying swans appeared. Nearly 100 swans wintered on Bill Beemer's pond near Webster City in 2008 and 2009. Approximately 50 swans wintered in Atlantic, about 35 swans wintered near Nora Springs, while about 20 wintered at our Great Ape partnership site in southeast Des Moines. During the record snowy and cold winter of 2009 and 2010 about 150 trumpeter swans wintered at Beemer's pond. Over 250 trumpeters wintered in Iowa each of the past 4 years. If swans can find open water during the winter, many of them will remain throughout the state. These "winter" sites have provided many people the opportunity to view this "charismatic-
mega fauna."
Migration movements "out of that norm" included 3 swans released at Union Slough NWR that migrated to and wintered in southeast Colorado near Ft Lyon. Two of these were observed at Monticello, Minnesota in the spring of 1997. The straight-line round trip mileage for these birds is over 1300 miles. An unusual swan movement during the winter of 2008-09 was reported in Virginia and that swan returned to Iowa and was reported near Waterloo during the summer of 2009. We have been disappointed that several of our marked swans have lost both plastic neck collars and legs bands and a few have lost the soft aluminum metal USFWS leg bands. A 9C lock on band is currently being used and should remain for a lifetime and for the last 3 years we have not neck collared any swans that have been released in Iowa. Neck collar losses create problems analyzing both movements and mortality of Iowa Trumpeter Swans.

A review of the last 11 years of swan sightings indicates most areas of the state are now seeing swans at sometime during the year. This is another indication that the restoration effort is moving forward. During 2006, 29 of our partnership pairs' nests hatched, producing nearly 90 young. Ten additional nests failed to hatch and about 2 dozen of the nearly 90 cygnets died of various causes. The invasion of West Nile Virus into Iowa had us cautiously concerned, but at this point we have seen little impact on the trumpeter swans. A new concern could be avian influenza. We hope, if that does occur, impacts will be minimal. We continue to obtain several cygnets from other states and zoos across the nation, including the National Zoo in Washington D.C. and the Great Plains Zoo in Sioux Falls, South

Dakota. The DNR is excited about the future of trumpeter swans in the state and it appears that free flying swans in Iowa are nearing sustainability.

Thru 2008, 274 known mortalities to date includes: 56 have died in power line collisions, 54 poached by violators, 14 died due to lead poisoning, 11 due to apparent malnutrition, and 34 to diseases. Several other mortalities have likely occurred from unknown and unreported causes. Mortality rates are somewhat higher than anticipated and could likely slow trumpeter swan restoration efforts, although our known swan nest attempts are still increasing. Iowa currently has the dubious distinction of having some of the higher shooting mortality of any state in the Midwest. We hope that with increased publicity, additional enforcement efforts, and public scrutiny, we will see the illegal shooting be reduced. Shooting trumpeter swans results in a citation of $\$ 1500$ in liquidated damages, court costs, and perhaps hunting license revocation. During the summer of 2009, we tallied a record 40 nest attempts. In 2010, 40 trumpeter swan nest attempts occurred in Iowa. Figure 1 shows Iowa's yearly nests attempts since our first modern day nest attempt in 1998. All wildlife populations are cyclic so we know that nest attempts will show ups and down over the duration of the trumpeter restoration efforts. Each year there could also be 2 or 3 other nest attempts that we do not know about as we have had at least a few families of swans show up in the state in what we would consider earlier than when normal southward swan migration begins.

A major milestone was reached in 1998, 1999, and again in 2000, when the first and second free-flying trumpeters nested in Iowa since 1883. Seven free flying swans have bonded and mated with
seven captive/pinioned swans and have produced eggs. Besides these, we have several pairs of Iowa swans nesting in Southern Minnesota and Wisconsin. Several trumpeters nesting just across the Iowa border into Minnesota and the one near Potosi, WI are the southern most nesting swans in the respective states. At least one Iowa bird, a male, was part of a nesting pair on the north shore of Lake Ontario. Also a pair attempted to nest in 2007 and successfully nested on the Canadian shore of the boundary waters 2008.

High mortality of adults from illegal shootings had us greatly concerned that we may be negatively impacting wild nesting swans in future years. However, in 2002, we had 8 nest attempts in Iowa and 2 Iowa pairs nesting on the Wisconsin side of the Mississippi River. In 2003, we had 13 wild trumpeter swans nest attempts in Iowa and the same 2 Iowa pair nesting on the Wisconsin side of the Mississippi River producing a record 44 young in the wild. In 2004, we had 4 new wild nesting pairs in Iowa, with a total of 14 wild trumpeter swans nest attempts in Iowa, 9 were successful. Forty trumpeter swans nesting attempts occurred in 2010. Figure 12.1 shows the statewide distribution of these nesting attempts. Several additional Iowa released Trumpeter were reported nesting in MN and WI this year. In 2004, a pair of Iowa trumpeter swans nested, unsuccessfully, near Chillicothe, MO., giving hope that swans will nest on some farm ponds and perhaps our restoration efforts will spill over into Missouri. This pair has successfully hatched 3 cygnets near Dawn, MO, a few miles from their unsuccessful nest attempt of the previous year. In 2006, this pair's nest flooded out. Their first nest attempt in 2007, also flooded out, but in their renest attempt 1 cygnet hatched. This was the nesting
attempt of trumpeter swans in Missouri in over 140 years. In 2008 and 2009 the pair was not present but one cygnet remains in the area of where it hatched in 3 years previous. A new milestone occurred in 2006 when a pair of Iowa trumpeter swans nested for the first time in nearly 160 years near Savanna, IL. Reports of a second pair of nesting trumpeter swans in the Savanna, Illinois has yet to be confirmed. This pair nested again in 2007 but was flooded out in 2008. In 2009 this pair nested again and successfully hatched 4 cygnets.

Since 1998, 235 known trumpeter swan nests have occurred in Iowa, 190 of which hatched at least one egg. Also see the attached addendum for a fact sheet review of Iowa's up-to-date Trumpeter Swan Restoration successes. In 2005 Iowa had 26 known wild trumpeter swan nest attempts. In 2006 and 2007, we tallied 29 and 30 known nest attempts respectively. In 20082009 and 2010 we had 25 and 40 nest attempts respectively.

Iowa has and continues to be a major player in the increase and expansion of the interior trumpeter swan restoration efforts. The Iowa DNR believes that it is approaching sustainability of trumpeter swan in the state. Because we have the largest contingency of captive producing trumpeters in the U.S., we received approval to cooperate with the Trumpeter Swan Society, Arkansas Game and Fish Department, the Mississippi Flyway Council, and the Fish and Wildlife Service and release trumpeter swans in Arkansas. The plan was to release up to 40 swans that had flew in Iowa to hopefully get their "compass readings" and released them on the Buffalo National River and Holla Bend NWR in Arkansas and only at Holla NWR in 2010. We captured and release 18 in 2008, 15 in 2009, and 16 in
2010. The intent is to see if these released swans will migrate north the first year and then in succeeding years return south to winter with additional swans from the northern states. So far Iowa swans released in AR The first one was sighted in molting condition at Willow Slough in Fremont County in July of 2008. The second one apparently died from a utility wire collision northeast of Clarinda, IA in April of 2010. Other reports include two swan in Otter Tail county MN , one in western IL, and one in DesMoines county, IA As far as we know the remainders of the swans are still in the vicinity of where they were released in Arkansas.

The Trumpeter Swan Society has
made enhancing more southward migration one of their goals since its inception. Iowa trumpeter swan production will allow this goal to be tested to see if additional southward migration can be enhanced. This 3 year portion of the Iowa to Arkansas project was completed with the 2010 release. We will continue to explore the possibility of capturing family groups of wintering free flying in both Iowa and Minnesota and releasing them in Arkansas as a part of the effort to enhance more swans to migrate southward.

The attached addendum is a summarized fact sheet of Iowa's up-todate trumpeter swan restoration successes.

Wild Trumpeter Swan Nest in 2010

40 nest attempts

3. Successful

Unsuccessful

Table 12.1 Trumpeter swans released in lowa

* Since 1994 there have been 1041 swan releases by the lowa DNR.

Table 12.2. Wild free flying Trumpeter swans banded and released in Iowa, 1997 - present.

Year	County	Males		Females
	Total			
1997 Miller's Quarry	Tack Hawk	0	1	1
1998 Holzer's Pond	Blabuque	2	1	3
1999 Mason City	Cerro Gordo	3	2	5
2000 Holzer's Pond	Dubuque	2	1	3
2000 Mason City	Cerro Gordo	2	2	4
2000 Stark/Nessa Quarry	Hamilton	2	0	2
2001 Dunbar Slough	Greene	1	0	1
2001 Kennedy's Pond	Dubuque	1	1	2
2002 Holzer's Pond	Dubuque	3	1	4
2002 Schildberg Gravel Quarry	Cass	1	4	5
2002 East Twin Lake	Hancock	2	0	2
2003 Schildberg Gravel Quarry	Cass	2	2	4
2004 Schildberg Gravel Quarry	Cass	5	7	12
2004 Beemer's Pond	Hamilton	3	5	8
2005 Stark/Nessa Quarry	Hamilton	5	0	5
2006 Beemer's Pond	Hamilton	4	2	6
2006 Schildberg Gravel Quarry	Cass	0	1	1
2007 Ventura Marsh	Cerro Gordo	0	2	2
2008 Ventura Marsh	Cerro Gordo	0	1	1

OSPREY RESTORATION

Osprey, Pandion haleatus, commonly called the fish hawk or fish eagle, is neither a true hawk nor eagle. Ospreys are cosmopolitan and occur worldwide with the exception of Antarctica. The species is of ancient lineage and presently is classified near the kite family. There are four subspecies presently recognized, two occurring in North America, P.H. carolinenses and P.H. ridgwayi. Ridgwayi is found in the Bahamas and Caribbean, while carolinensis is the Midwestern species. Carolinensis is migratory in its northern range and resides in south Florida and possibly part of the Gulf coast and northwest Mexico.

Ospreys were never confirmed to historically nest in Iowa, but were probably here given the abundance of lakes and wetlands that dotted the prairie. Ospreys are very unwary birds and territorially appear weak. Pairs will nest colonially. Nests may be upon structure, manmade or natural, that provides a platform, but Ospreys have been known to nest on the ground. Nests are generally at least one-foot deep and four to five feet wide, are made of sticks and lined with grass. Highest productivity is attained on power poles and nesting platforms.

Ospreys were heavily affected by the biocide crash of the 1950s. Populations were severely reduced throughout the range but hardest hit in the Great Lakes and Atlantic coast. A strong fidelity to ancestral breeding areas slowed range expansion into vacant and newly created habitat since the DDT era.

With construction of lakes by Department of Natural Resources and reservoirs by U.S. Army Corps of

Engineers, potential osprey habitat exists that was previously not available. There are numerous osprey summer sightings in Iowa, but apparently these young, non-breeding ospreys return to northern areas for mating and nesting. Despite this population growth, ospreys have demonstrated little breeding range expansion. Minnesota and Wisconsin DNR officials suggest that ospreys, in our lifetime, do not readily pioneer new breeding ranges. Instead they experience suppressed reproduction as density of breeders increase. To address this issue, young ospreys from Wisconsin and Minnesota are being relocated to areas with suitable habitat in southern Minnesota, Iowa, Kansas, Missouri and Ohio.

The Iowa Department of Natural
Resources has assisted conservation partners with technical assistance, encouragement, and fish to successfully release ospreys in Iowa. The Macbride Raptor Project located near Coralville Reservoir has spearheaded this work. Beginning in 1997, four or five young ospreys have been released annually at their facility until 2002. Personnel at the Hartman Reserve Nature Center and volunteers in Cedar Falls initiated a release at their facility in 1998. Staff of Boone County Conservation Board and Polk County Conservation Board with volunteers coordinated a release at Saylorville Reservoir in 2000. Boone Co. staff and volunteers began releases at Don Williams Lake in 2003. Wickiup Hill in Linn Co. and Clear Lake were added in 2004. The U.S. Army Corps of Engineers has provided distinguished service for releases at Coralville and Saylorville Reservoir respectively. Assisted by literally hundreds of
volunteers, these conservation organizations have devoted their efforts to bring ospreys to Iowa as a nesting species. A four-year minimum commitment of releasing ospreys is required at each site. Project fundraising is the responsibility of the conservation organizations doing the releases. Ospreys cost about \$500 per bird.

In Iowa, ospreys have two bands, a silver U.S. Fish and Wildlife Service band and a numbered, lavender band on separate legs. Forty-eight ospreys have been released at the three sites since 1997.

Beginning in 2000 Osprey released in SW Minnesota by Minnesota DNR, built a nest atop a microwave tower near Cayler Prairie in NW Iowa. In late winter Great-horned Owls were seen at the nest and tending young, however by April the Ospreys were once again nesting at the site. Incubation appeared to be progressing, but ultimately the nesting attempt failed. It was believed extremely violent storms were a factor in the demise of the nesting attempt. A second pair was also observed nest building in the Spirit Lake area. At Coralville reservoir a 1998 released Osprey was nest building with two other unidentified adult Osprey. The adults were seen feeding the yearclass of 2001.

2002

In 2002 the Spirit Lake pair nested on a platform at the outdoor classroom area of Spirit Lake school. Tim Waltz with Big Sioux Wildlife unit coordinated the pole/platform placement at the school. In early July a single egg was discovered by Ed Heidenbrink and Don Poggensee, but no young were produced at the site. Also on a pole/platform near Cayler

Prairie a nest was constructed at that site.

At Coralville reservoir a nest was constructed by A5 (Macbride 1998) and an unbanded female, but apparently no eggs were laid. These birds were joined by H2 (2000 Saylorville) feeding young hacked birds. Four Wisconsin Ospreys were placed at the site. However, two young died from heat stress prior to release.

At Saylorville a pair of wild birds E4 (Hartman 2000) and E1 (Macbride 2000) appeared at the site, strafing released birds and causing excitement. Five additional osprey were hacked from the site.

At Hartman Reserve Nature
Center four additional Ospreys were hacked in 2002.

2003

In 2003 the Spirit Lake pair successfully nested at the outdoor classroom of Spirit Lake Middle School. One chick was banded July 10, 2003. It was the first Osprey chick to be banded in Iowa since European settlement of the area. The adult female was banded B/T and released in 1997 near Minnetonka, Minnesota by the Minnesota DNR. The heritage of the adult male is unknown.

Also in 2003 three Osprey chicks were produced at Macbride Recreational Area near Coralville Reservoir. The Macbride Raptor Project observed that the male, A5, was released from their facility in 1998. The female, H2, was released at Saylorville Reservoir by Polk County Conservation Board in 2000.

Fourteen additional Osprey were released at Hartman Reserve Nature Center near Waterloo/Cedar Falls, Don Williams Lake by Boone County Conservation Board, and Saylorville Reservoir by Polk County Conservation

Board. Hopefully those Ospreys will prosper and banding young will occur at their sites in 2004. In 2003, 77 Osprey have been relocated to Iowa with four wild-produced chicks.

2004

Spring 2004 brought four nesting attempts at three sites in Iowa. At Red Rock Reservoir, unit biologist, Chuck Kakac, reported two young fledging from remote nest observed from Runnels overlook.

Unfortunately, three nest attempts failed due to extreme climatic conditions. At Macbride the nest that was successful in 2003 blew down in high winds. Male A8 (Macbride 1998) was identified at this nest. A second nest at Macbride was constructed and occupied by an unidentified pair. At Spirit Lake Outdoor Classroom same pair attempted to nest again. Birder, Ed Thelen, observed male Osprey carrying something from nest then dropping it. He discovered a newly hatched chick, dead. At Saylorville an unidentified Osprey pair built nest on a platform at west-end of Mile Long Bridge during summer.

Two new release sites were established this year. Volunteers at Clear Lake constructed a release tower at Iowa Regular Baptist Camp along north shore of Clear Lake. Linn County Conservation Board staff and volunteers at Wickiup Hill coordinated a release. Both sites released five Ospreys from Chippewa Flowage region near Hayward, Wisconsin. Also an additional rehabbed Osprey from Wisconsin was released at Wickiup Hill.

Boone County Conservation staff and volunteers placed five Wisconsin Ospreys at Don Williams Reservoir. And volunteer staff at Hartman Reserve

Nature Center placed four Wisconsin Ospreys at their site. Polk County Conservation staff and volunteers placed five Minnesota Ospreys at their site at Jester Park on banks of Saylorville Reservoir.

A total of 25 Ospreys were placed at five sites in 2004. Since 1997 105 Ospreys have been released at six sites. Six wild produced Ospreys have fledged from Iowa nests.

2005

Spring 2005 brought five known nesting attempts in Iowa. Unidentified pairs carried sticks and made nest attempts at Saylorville, Hartman Reserve Nature Center, Don Williams and Lake Macbride. A second nesting pair at Macbride fledged two young. A total of five Ospreys came to Iowa from Minnesota and nineteen more were relocated from Wisconsin. At Hartman a wild nesting pair appeared to be incubating but no hatching was noted. Four additional Wisconsin Ospreys were released.

At Don Williams a wild nesting pair carried sticks throughout summer but did not incubate. Five additional Ospreys were relocated from Minnesota. At Clear Lake five additional Ospreys were relocated from Wisconsin. At Linn County’s site at Wickiup Hill Conservation board staff and volunteers released five additional Ospreys from Wisconsin.

A new site was constructed at Red Rock Reservoir by Marion Co. Conservation Board, DNR Parks, and Newton Correctional facility personnel. Five Ospreys were relocated from Wisconsin.

Since 1997129 Ospreys have been released at seven sites. Eight wild Ospreys have been produced in Iowa.

A 2002 female from Saylorville, J4, paired with an unidentified male in Twin Cities. A nest was constructed and female was apparently incubating, but male disappeared. Nest failed due to poor incubation it was believed. A replacement male was at nest site later in summer.

2006

In 2006 there were six nesting pairs reported and four successful nesting pairs fledged eight young. A total of ten Ospreys came to Iowa from Minnesota and fifteen more were relocated from Wisconsin. There were three rehabilitated Ospreys placed at White Rock Conservancy.

At Hartman Reserve Nature
Center a wild nesting pair fledged two young. Male is H8 from 2001 release and female is unbanded.

At Lake Macbride personnel from Macbride Raptor Project reported two nesting pairs and one was successful. Adults J7 (Hartman 2003) and K8 (Hartman 2002) fledged two young.

At Don Williams a wild nesting pair fledged two young. However, one young was discovered dead at nest site. Necropsy revealed that it was not West Nile virus. Five additional Ospreys were relocated from Minnesota.

At Jester Park, Polk CCB report a pair E1 (Macbride 2000) and E4 (Hartman 2000) fledged two young. At Linn County’s site at Wickiup Hill, Conservation board staff and volunteers released five additional Ospreys from Wisconsin. A wild nesting pair appeared to be incubating but no chicks hatched.

At Clear Lake five additional Ospreys were relocated from Minnesota.

However two young did not survive hacking process.

At Red Rock Reservoir Marla Mertz of Marion Co. Conservation Board and DNR Parks personnel released five Ospreys from Wisconsin.

A new site was established at White Rock Conservancy where five Wisconsin Ospreys were hacked. Three rehabbed birds from The Raptor Center were also released.

Since 1997157 Ospreys have been released at eight sites. Sixteen wild Ospreys have been produced in Iowa.

2007

In 2007 there were nine Osprey nest attempts with five successful nests producing 12 young. A definition of success might be concluded at Macbride Raptor Project, located near Coralville Reservoir, where three nesting pairs fledged seven young. The most any site has released at one time are six relocated birds.

This year eleven Ospreys were brought to Iowa from Minnesota and nineteen were relocated from Wisconsin to five sites.

In conjunction with three wild nesting birds at Macbride, a nesting pair returned to Jester Park and fledged one young. Another successful nesting occurred at Don Williams in Boone Co., where three young were banded. An unidentified pair at Rathbun Reservoir constructed a nest tih one egg that was abandoned due to high water up to the nest.

In Cedar Falls, pair returned to successful nest site. However, last year's nest had been removed by iwireless cell phone company. Pair reconstructed new nest on nearby cell phone tower, but later abandoned the site.

At Wickiup Hill in Linn Co. pair returned to nest site established in 2006. Pair appeared to be incubating but did not hatch. In July a nest site was discovered on 280 ft . meterological tower at Duane Arnold nuclear plant near Wickiup Hill. It is believed to be a separate nesting pair with critical details omitted. It has not been determined if adults are banded, or the outcome of nesting attempt.

Also, Linn CCB staff and volunteers placed five Wisconsin young and one rehabbed bird from Minnesota at Wickiup Hill.

At Clear Lake six Wisconsin young were placed by volunteers.

At White Rock Conservancy there were six Wisconsin young placed by SOAR and volunteers.

At Red Rock there were four Minnesota and two Wisconsin young placed by Marion CCB, Ia. DNR, and volunteers.

At Spirit Lake Dickinson CCB, Tim Waltz with DNR, and volunteers placed six Minnesota young at this new site.

Since 1997187 Ospreys have been released at nine sites. Thirty wild Ospreys have been produced at 15 nests, since 2003.

2008

In 2008 there were eleven Osprey nest attempts with two successful nests producing six young. This year ten Ospreys were brought to Iowa from Minnesota and ten were relocated from Wisconsin to five sites.

A new nesting pair was discovered just south of Sioux City in Woodbury Co. Three young fledged from this site according to Jerry Von Ehwegen.

There were four wild nesting pairs at Macbride. Three young from nest at Jester Park were rescued before nest flooded over. All three survived and two were released at White Rock Conservancy. Another nesting occurred at Don Williams in Boone Co. but fierce storms after hatching destroyed the young.

In Cedar Falls, pair returned to successful nest site. However, last year's nest had been removed by iwireless cell phone company. Pair reconstructed new nest on nearby cell phone tower, but nesting attempt failed.

At Wickiup Hill in Linn Co. pair returned to nest site established in 2006. Three young hatched but did not survive fierce storm in June. Second pair at Duane Arnold did not appear to be successful in 2008.

Nest at Rathbun Lake was swamped by June floods again. And a new pair were observed by Jay Gilliam creating a nest near Walnut Woods in Polk Co.

Four wild nesting pairs at Macbride/Coralville Reservoir failed due to extreme weather conditions.

At Clear Lake two Wisconsin and two Minnesota young were placed by volunteers.

At White Rock Conservancy there were three Minnesota Osprey young placed. Additionally two wildproduced young from Jester Park nest were released successfully.

At Red Rock there were two Minnesota and two Wisconsin young placed by Marion CCB, Ia. DNR, and volunteers.

At Spirit Lake Dickinson CCB, Tim Waltz with DNR, and volunteers placed four Minnesota young.

At Mudlake in Dubuque the Dubuque CCB and University of

Dubuque volunteers released four Wisconsin Ospreys at this new site. Since 1997209 Ospreys have been released at ten sites. 33 wild Ospreys have been produced at 16 successful nests since 2003.

2009

In 2009 there were twelve Osprey nest attempts with eight successful nests producing 17 young. This year ten Ospreys were brought to Iowa from Minnesota and ten were relocated from Wisconsin to five sites.

There is a nesting pair just south of Sioux City near Sergeant Bluffs in Woodbury Co. Three young fledged from this site according to Jerry Von Ehwegen. A zero was observed upon band of adult female.

There were three wild nesting pairs at Macbride. Site off Scales Bend Road were believed to have relocated from Coralville Reservoir. Three young were produced. Unable to read adult bands, if any. Site at Sugar Bottom has one young. Female is unbanded and male is unconfirmed. Site at Lake Macbride had three young. One of adults has a purple band.

At Jester Park in Polk CCB two young were banded from pair that relocated from Lodge area to campground \#6. A new pair at Walnut woods built sizable nest but were unsuccessful.

At Don Williams, Boone CCB banded two young.

In Cedar Falls, a pair returned to successful nest site upon iwireless cell phone tower. However, last year's nest had been removed by iwireless cell phone company. Pair reconstructed new nest lower on cell phone tower, but nesting attempt failed. Second pair at George Wythe was active but nested
unsuccessfully. One adult is AT from White Rock 2006. Third pair at Don Miller's quarry were unsuccessful. Fourth pair at Gilbertville fledged two. At Duane Arnold Plant pair from Wickiup Hill in Linn Co. produced one young.

Nest at Rathbun Lake was inactive.

At Spirit Lake four young from Minnesota were placed by Dickinson CCB staff and volunteers. One young perished due to West Nile Virus before release.

At White Rock Conservancy Kay Neumann and Saving Our Avian Resources staff placed four Minnesota Osprey young.

At Mud Lake in Dubuque the Dubuque CCB and University of Dubuque volunteers released five Wisconsin Ospreys.

At Annett Nature Center Missy Smith and Warren CCB staff and volunteers placed five Wisconsin Ospreys.

At Red Rock two Minnesota Ospreys were released by Marla Mertz with Marion CCB.

Since 1997228 Ospreys have been released at eleven sites. 50 wild Ospreys have been produced at 24 successful nests since 2003.

2010

In 2010 there were 18 Osprey nest attempts with 14 successful nests producing 22 young. This year 12 Ospreys were brought to Iowa from Minnesota and nine were relocated from Wisconsin to five sites.

There is a nesting pair just south of Sioux City near Sergeant Bluffs in Woodbury Co. Two young fledged from this site according to Jerry Von Ehwegen. A zero was observed upon
band of adult female. Also according to Von Ehwegen, there were two new nests in Monona Co. with each nest fledging one,.

There were three wild nesting pairs at Macbride. Site off Scales Bend Road were believed to have relocated from Coralville Reservoir. Three young were produced. Staff were unable to read adult bands, if any. Site at Sugar Bottom has one young. Female is unbanded and male is unconfirmed. Site at Lake Macbride had three young. One of adults has a purple band.

At Jester Park in Polk CCB two young were banded from pair that relocated from Lodge area to campground \#6. A new pair at Walnut Woods built sizable nest in 2009 and produced two young. A new nest was built at Polk City Refuge. Adults were not identified but male had green USFWS band indicating it was hatched in Iowa. This is first evidence of F2 generation of ospreys in Iowa.

At Don Williams, Boone CCB banded two young. However six days later, young were dead. West Nile Virus is suspected.

In Cedar Falls, a pair returned to successful nest site upon iwireless cell phone tower. However, last year's nest had been removed by iwireless cell phone company. Pair reconstructed new nest lower on cell phone tower, but nesting attempt failed. Second pair at George Wythe was active but nested unsuccessfully. One adult is AT from White Rock 2006. Third pair at Don Miller's quarry were unsuccessful. Fourth pair at Gilbertville fledged two.

At Duane Arnold Plant pair from Wickiup Hill in Linn Co. produced two young. A second Linn Co. nest was reported south of Palo in August.

Nest at Rathbun Lake was flooded again

At Spirit Lake a pair nested near release site. Two young hatched and were banded, however, 30 day old chicks did not survive ferocious July storms. Two young from Minnesota were placed by Dickinson CCB staff and volunteers and successfully fledged.

At White Rock Conservancy Kay
Neumann and Saving Our Avian Resources staff placed four Minnesota Osprey young.

At Mud Lake in Dubuque the Dubuque CCB and University of Dubuque volunteers released four Wisconsin and one Minnesota Ospreys.

At Annett Nature Center Missy
Smith and Warren CCB staff and volunteers placed five Wisconsin and one Minnesota Ospreys.

At Red Rock four Minnesota Ospreys were released by Marla Mertz with Marion CCB.

In summary 18 nesting pairs had 14 successful nest attempts with 22 young produced. Since 1997249 Ospreys have been released at eleven sites. Seventy two wild Ospreys have been produced at 38 successful nests since 2003.

This project is in keeping with the IA DNR mission to protect, propagate, increase, and preserve the wildlife of the state (Section 456A.23, Code of Iowa, 1997). Establishing an Osprey population will improve the state's wildlife diversity and increase the public's appreciation of wetland ecology. There was a goal of five nesting pairs by 2006.

Ospreys in lowa 2010

Figure 11.1-Osprey released in Iowa

Figure 11.2 - Wild Osprey produced in Iowa

SANDHILL CRANES IN IOWA

Prior to European settlement of Iowa, Sandhill Cranes probably were a common nesting species and abundant migrants. As early as 1820, Edwin James saw large flocks of cranes migrating north along the Missouri River in Harrison County. Even in the 1890's, it was not uncommon to see flocks of hundreds or even thousands of cranes in Winnebago and Hancock Counties in spring. Although there are few specific records, Sandhill Cranes probably were fairly common nesters in north-central and northwest Iowa. With settlement, the combination of unregulated hunting and loss of nesting habitat led to a rapid disappearance of nesting cranes from Iowa. The last Sandhill Crane nesting of that era was at the headwaters of the Iowa River near Hayfield in Hancock County in May 1894. As was common in those days, the eggs were taken for an egg collection.

Cranes nest in shallow wetlands with dense vegetation. They create a nest mound by pulling up marsh plants and laying one to three eggs that hatch in late spring. About three months after hatching the young begin to fly, but the brownish-colored young remain with their parents throughout their first winter. Cranes eat waste grain, seeds, berries, roots, tubers, snakes, frogs, crayfish, worms and insects.

By the early 1900s, even migrating Sandhill Cranes were rare in Iowa. For the next 60 years, there are very few reports of cranes in Iowa. Throughout the Midwest, problems similar to Iowa's caused Sandhill Crane populations to dwindle. Just a few dozen pairs remained in Wisconsin, Minnesota and Michigan through the

1940s. During the 1970s and 1980s, however, nesting populations increased in the northern states, and a few migrating sandhills were seen in Iowa.

The number of Sandhill Cranes reported in Iowa increased greatly in the late 1970s and 1980s (Dinsmore 1989), culminating in their return as a nesting species. Nesting birds derive from populations in Wisconsin, which increased greatly in the 1970s and 1980s (Robbins 1992) and eventually spilled over into Iowa. These birds winter in Florida and Georgia. The huge flocks that gather in central Nebraska nest in the Arctic. Those flocks are probably the source of most cranes seen in western Iowa (Kent and Dinsmore 1996).

In 1992, after a 98-year absence, Sandhill Cranes successfully nested in Iowa at Otter Creek Wildlife Management Area in Tama County. Two colts were produced. In 1993, cranes also attempted to nest at a second area at Green Island along the Mississippi River in Jackson County, however due to annual flooding, young were not produced at that site until 1997. In the mean time cranes at Sweet Marsh became established and successfully nested, beginning in 1994. The Sweet Marsh flock has grown to include four other sites in Bremer Co.
$\underline{2002}$
In 2002, Sandhill Cranes were observed in four new sites. Reports were received of cranes sited in Clinton and Chickasaw County. Allamakee County picked up another site where young were produced and in western Iowa, young were produced in

Woodbury County. Cranes have been included in bird counts in at least 14 counties during the year.

2003
In 2003 unison calling between adults increased to 27 pairs around the state. There were 95 known sightings and fifteen documented young around the state. Dr. Jim Dinsmore provided a sightings file that included a number of counties where cranes were seen in recent years.

In Boone County a nesting pair had wintered at a farmstead south of Madrid. The pair performed nesting courtship displays and created a nest in the farmyard. Two eggs were laid in the spring. In April the nest and eggs were destroyed. Raccoons or dogs were suspected. In June a Sandhill Crane carcass was discovered in the vicinity of the nest near powerlines. The fate of this unconventional pair is unknown.

$\underline{2004}$

In 2004 cold, wet spring conditions hampered Sandhill Crane nesting in Iowa. Twenty-seven pairs of cranes were reported but only seven young hatched. However, most sites had summering cranes and additional pairs were reported near Belle Plaine, Chickasaw Co., and Olin in Jones Co. Jones County became fifteenth county documenting crane nesting.

2005

Exciting news in 2005 includes successful nesting of cranes in Winnebago County. CCB Director, Robert Schwartz, reported a colt at Hogsback Wildlife Area. Also DNR Biologist, Bill Ohde, reported a new pair at Wiese Slough in Muscatine County that produced one young. Ric Zarwell,
in Allamakee Co., reported four pairs with four young. Across the state 20 pairs were reported with nine pairs that successfully reproduced 13 young. Including Winnebago and Muscatine Counties, Sandhill Cranes have now been reproduced in 17 counties.

$\underline{2006}$

In 2006 a favorable nesting season has maintained our Sandhill Cranes nesting population at 17 counties. Two notable crane sightings occurred when Whooping Cranes were reported in Iowa. During spring migration five whoopers stayed over in Winnebago Co. A second flock of eight whoopers were discovered in northeastern Iowa. By early June all had left Iowa and returned to their home at Necedah National Wildlife Refuge in Wisconsin. In September three of the five Whoopers returned to Winnebago Co. As of 2005 there were only 336 whoopers in the wild and 135 in captivity.

2007
In 2007 Sandhill Crane sightings were included in three new counties: Palo Alto, Greene, and Madison Counties. Also Crane reproduction was noted at Chichaqua Bottoms in Polk Co. bringing our total to 18 counties with cranes successfully nesting.

Also, during this past summer there were record numbers of Whooping Crane chicks hatched at Wood Buffalo National Park in northern Canada. An aerial survey of the breeding grounds found 65 nests and 84 new chicks. The new Whooping Crane chicks include 28 sets of twins. This year's offspring come after last year's encouraging numbers of 76 new chicks - including 24 sets of twins.
$\underline{2008}$
Record flood levels in 2008 suppressed nesting crane reproduction around the state, but good numbers have been frequenting our marshes during autumn migration of 2007. Otter Creek Marsh in Tama Co. and Sweet's Marsh in Bremer Co. reported flocks of 25 and 27 birds last autumn. This nesting season Sweet Marsh reported 15 birds with five unison calling pairs. Otter Creek had 18 cranes with two pairs producing one young each. Allamakee Co. distinguished itself with 22 cranes sighted during spring survey and four unison calling pairs. Although there has been limited growth of crane population and subsequent reports around the state, cranes are increasingly appreciated by birding community and conservation groups dedicated to providing marshland habitat around the state.
$\underline{2009}$
In 2009 the weather during the crane survey in April was quite favorable. Twenty five pairs have been reported with two counties, Muscatine and Woodbury, including crane sightings after a few years of not recording any sightings. With suitable nesting habitat being emphasized in every county, it is hopeful Sandhill Cranes will maintain their incremental growth in reproduction. A pair near Comanche, Iowa raised young at a five acre wetland near Hwy 30.
$\underline{2010}$
Wetland conditions
during the Crane Survey in April, 2010 were quite favorable for successful nesting as record snowfall provided the melt water to fill wetland basins. With a wetter than normal summer we should see moderate population changes, if
summer 2010 flooding is similar to the 2008 flooding around Iowa. At this time, good reproduction has occurred at enough sites to maintain our optimism that Iowa's Sandhill Crane population is continuing to increase. Autumn flights of cranes around Pool 9 of the Mississippi River, Otter Creek Marsh and Sweet's Marsh are providing outdoor enthusiasts opportunities to see Cranes on Iowa wetlands. About 110 cranes were observed during this spring's survey. Nesting success was confirmed for 11 pairs, resulting in a 2010 production of 14 colts.

Sandhill Cranes in lowa, 2010

Figure 14.2 Number of sandhill cranes observed during April surveys and independent reports of reproduction.

BALD EAGLE RESTORATION

HISTORICAL REVIEW

When Euro-Americans first arrived in Iowa, it is likely that bald eagles nested throughout the state, particularly in the woodlands along rivers, streams, and fish infested lakes. As forests were cut and the woodland habitat occupied by eagles was altered, eagle numbers declined. Direct persecution (mostly shooting) and changes in eagle habitat, particularly nesting habitat, appear to have eliminated the bald eagle as an Iowa nester by the early 1900s. Early records for the bald eagle in Iowa do not give us a good idea of how many nests there once were for this species, but we do know that eagles were "formerly common in Iowa and frequently nested in favorable localities" (Anderson 1907). It appears that the last nest documented near the turn of the last century was in Jasper County in 1905, where two young eaglets were taken from a nest near Kellogg (Anderson 1907).

The passage of the Federal Bald Eagle Protection Act of 1940 was the first real effort to protect eagles, especially from shooting. The use of organochlorine pesticides (such as DDT) after World War II also severely devastated eagle populations (Broley 1958, Carson 1962). It was only after the banning of organochlorine pesticide use in this country in 1972 and the listing of the bald eagle for protection on the Endangered Species Act in 1978 that this species began to recover. The bald eagle was considered an extirpated species on Iowa's first threatened and endangered species list in 1977 (Roosa 1977), and it was not again expected to be seen nesting in Iowa.

MORE RECENT IOWA NESTING RECORDS

As improbable as it seemed, the bald eagle did nest in Iowa again. The first nest noted in over 70 years was located near New Albin on the Mississippi River floodplain in 1977 (Roosa and Stravers 1989). Two young were produced that first year, but it was not until 1980 that another eaglet was produced from that nesting territory. In 1984, Dinsmore et al. (1984) considered the bald eagle a rare summer resident. It was in 1985 that a second Iowa eagle nest appeared, just three miles downstream from the first. That nest produced three young. During 1986, a third nesting territory appeared in Allamakee County on the Mississippi River, and a fourth occurred in Jackson County. The first documented nest away from the Mississippi River was found in 1987 along the Skunk River near Coppock in Jefferson County (Figure 15.1). The following year there were eight active nests reported. Two more new nests were discovered away from the Mississippi River, one in Allamakee County and one in Fremont County near Forney’s Lake. A new nest was also found in Clayton County along the Mississippi River, and a nest in a huge cottonwood tree was reported by towboat captain, Pat Flippo, for Des Moines County near the mouth of the Skunk River.

As part of the USFWS regional plan for bald eagle recovery, in 1981 Iowa established a goal of 10 active Bald Eagle nests by the year 2000 (Grier 1988). This goal was surpassed in 1991 when the number of active nests jumped to 13 . Nest numbers climbed to 21 in 1992, to 43 in 1995, and to 84 in 1998 - the last year in which most Iowa nests were monitored closely. At that time, bald eagles had nested in 42 different counties. The number of eagle pairs continued to grow, and by 2004, eagles had been reported nesting in 66 counties. Adams, Henry, Poweshiek, and Ringgold counties were the 2004 additions. During 2005, five more counties (Polk, Marshall, Story, Montgomery, and Kossuth) reported eagle nesting for the first time, bringing Iowa's eagle nesting county total to 71. Similarly, during 2006, six additional counties (Dickinson, Franklin, Boone, O’Brien, Wapello, and Page) reported eagle nesting, and four new counties (Hancock, Cedar, Greene, and Lee) reported eagle nests in 2007. In 2008, eagle nesting was confirmed in Davis and Pottawattamie counties, and in 2009, Cerro Gordo and Emmet counties reported their first eagle nesting. Bald eagle nests were reported for Clarke and Audubon counties in 2010, so that eighty-eight counties have now documented eagle nesting (Figure 15.1).

As the number of active nests increased since 1977, so has the number of young produced (see Figure 15.2). A slow but steady increase in the number of nests occurred until 1990, when seven of the eight active nests successfully fledged 13 youngsters. For several years, there was an increase of about seven active nests per year, and in 1995, 58 young fledged from 31 successful nests. In 1998, 47 successful nests fledged at least 82 young, although there were 15 nests for which the nesting outcome was unknown that year. For the years 1999 to present, recording eagle nesting activity for every nest has become less of a priority for IA DNR. Records are still kept for all nests reported, with an emphasis placed on documenting new eagle nests. However, data for nest activity and nest success is not nearly as complete as for years prior to 1999. In 2004, at least 28 new nests were documented, with an estimated 175 total active eagle nests. During 2005, an additional 25 new nests were reported, and it was estimated that there were 190 total active eagle nests. Now, as prime eagle nesting habitat is becoming saturated, it appears that the rapid growth rate of eagle nesting is beginning to taper off. Still, there continues to be about 15 new nesting territories reported each year. DNR estimates that there are approximately 250 active nests in the state, and these nests are located within the approximately 300 different bald eagle territories identified since 1977 in 88 counties. Projected eagle nest numbers (based on number of new nests reported each year and average nest increase rate since 1995) is shown in Figure 15.3 for 1999-2010.

Concerning the number of young produced per nest, there is fairly complete information recorded for this through 1998. The average number of young for 22 years in Iowa is 1.7 young per successful nest. Of further interest is the fact that 13.6% of Iowa nests produced three young each during this time. In 1996 alone, 10 of the 40 (25\%) successful Iowa nests produced three young each. To gain better information on current nest productivity, in 2010, 54 eagle nests were randomly selected to be monitored. The results of that effort will be published in the 2010 report.

Midwinter Bald Eagle Survey: Beginning in 1983, Iowa Conservation Commission staff cooperated on a national Midwinter Bald Eagle Survey to assess the health of the greater bald eagle population. In cooperation with the National survey coordinator, USGS Raptor Research and Technical Assistance Center in Boise, Idaho, Iowa DNR Wildlife Diversity Staff continue to coordinate this survey today. Data from this survey indicate a dramatic increase in Iowa winter bald eagle numbers since 1991 (Figure 15.3). An especially high count $(2,493)$ during the winter of 2001 was related to harsh weather conditions and the subsequent concentration of eagles in count areas of the Mississippi River. Very mild winter conditions during surveys conducted in 2002 and 2003 were reflected in lower count numbers, which were still higher than any year prior to 2001. Cold winter weather again forced eagles south into Iowa during the next winter, and the 2004 survey results documented 4,432 bald eagles along Iowa’s rivers; particularly along the Mississippi River. Milder weather conditions during the January, 2005 survey resulted in eagles being more spread out, and a reduced total (from 2004 count) of 3,164 bald eagles was tallied. The mild winter weather trend continued for the January, 2006 survey, and only 2,592 bald eagles were counted within the state. Similar mild conditions occurred for the 2007 count, with 2,431 bald eagles tallied during January. In 2008, cold weather returned, and Iowa's January count found 3,913 bald eagles within Iowa borders. During the January 2009 survey, 2,534 eagles were counted, and 2,566 bald eagles were tallied during the January 2010 survey. In spite of decreased numbers of eagles counted during the last two surveys (perhaps partly due to variable weather conditions during surveys and large fluctuations in food resource availability), the overall population trend is upward. During the last ten years, the average Iowa count is approximately 2,500 eagles, with the majority of these birds associated with the Mississippi and Des Moines rivers.

DISCUSSION

Both nesting and winter survey data were used for evaluating the delisting of bald eagles in the United States. Such information was used to upgrade the bald eagle national status from Endangered to Threatened in 1995, and in August 2007, the bald eagle was removed from the Federal Endangered/Threatened Species list. Iowa upgraded bald eagle from Endangered to Special Concern status in 2009.

Undoubtedly there are several reasons why nesting Bald Eagles have staged a comeback in Iowa. One reason for the recovery may be related to this species' ability to pioneer into suitable nesting habitat. This was not only true of Iowa's first nest in seven decades, which appeared in Allamakee County, but it also became obvious in 1987 when a pair of eagles nested in Jefferson County along the Skunk River. It was further evidenced in 1988 when an eagle pair nested in extreme southwestern Iowa in Fremont County near the Missouri River. Another key element helping eagle recovery appears to be Iowa's close proximity to one of the more stable nesting populations of bald eagles in the continental United States. Three states to the north, including Minnesota, Wisconsin, and Michigan, presently have a combined total of approximately one-third of all nesting eagles in the lower 48 states. There is little doubt that Iowa's eagle population has benefitted from its neighbor states to the north. Even in 1998, when eagle nests occurred
in 42 counties, over half of all Iowa's eagle nests could be found in four counties in the northeastern corner of the state.

An unanticipated factor that has helped bald eagle numbers recover is their adaptability. It appears that eagles nesting in the Mississippi River floodplain may be somewhat tolerant of boat traffic (McKay et al. 1995). Other instances indicate that some eagles are more tolerant of disturbance than others. There are now numerous nests located within several hundred yards of buildings, roads, and farm fields. One nest along the Upper Iowa River in Howard County is only about 100 yards from the bedroom window of very interested eagle nest watchers. The nest is located across the river and, so far, human activities have not negatively affected the nest's success. Grier (1988) explained that eagles' ability to tolerate human activity and nest close to buildings has . . "broadened their amount of available habitat and living space."

THE FUTURE

Although the outlook for Iowa's eagle population is favorable, there are still factors that affect eagle numbers. Unmanaged logging continues to pose a threat to eagles, and the removal of large, mature cottonwoods along Iowa streams limit where eagles can nest and find foraging perches. Two central Iowa eagle winter roosts were severely logged, and fewer eagles are being seen at both of these sites. Logging in the vicinity of eagle nests also can affect the nesting outcome. Even though there are strict federal laws protecting eagle roost and nest sites against disturbance during their occupancy, cutting of roost trees of bald eagles during the time of year that eagles are not using them is not prohibited.

Lead poisoning is also a concern, as a number of eagles are found in Iowa each year, either dead or suffering from this problem. Five out of eight bald eagles found sick in Iowa and brought to wildlife rehabilitators between November 1998 and January 1999 suffered from lead poisoning. Iowa's Wildlife Rehabilitators report that of the bald eagles received by rehabilitators and tested for presence of lead since January 2004, at least 50% show elevated levels of lead. Since 1996, an average of 25% of the bald eagles admitted each year to The Raptor Center at the University of Minnesota have toxic levels of lead in their blood. Where this lead is coming from is yet to be determined.

Despite current problems that face the bald eagle, its numbers continue to recover. In 1963, an Audubon Society survey found only 417 remaining bald eagle nests in the continental United States. It was a species headed for extinction. In 2006, the USFWS estimated about 9,500 active nests in the lower 48 states. Iowa, which had no nests for over 70 years, in 2009 had approximately 210 active nests. The enforcement of protective laws and a change in the public's attitude toward eagles have helped bring back this species. With the continuation of public support for bald eagle recovery, this bird's population should continue to increase.

Bald Eagle Appreciation Days: Iowa DNR staff have promoted the appreciation of bald eagles since helping establish the first event in Keokuk in 1985. There are presently at least 13 Bald Eagle Appreciation Days held in Iowa each winter to celebrate the existence of eagles, and between 20,000 and 30,000 people gather at these events annually.

ACKNOWLEDGMENTS

Our thanks to the many Iowans who continue to monitor our eagle nests, continue to help with winter eagle surveys, and provide information that better helps the different agencies protect and manage for this species.

LITERATURE CITED

Anderson, R. M. 1907. The birds of Iowa. Proceedings of the Davenport Academy of Science 11:125-417.

Broley, C. L. 1958. The plight of the American Bald Eagle. Audubon 60:162-171.

Carson, R. L. 1962. Silent Spring. Houghton Mifflin Co., New York.
Dinsmore, J. J., T. H. Kent, D. Koenig, P. C. Petersen, and D. M. Roosa. 1984 Iowa Birds. Iowa State University Press, Ames. 356pp.

Grier, J. W. 1988. Northern states Bald Eagle recovery team report. Report of Raptor Research Foundation, Minneapolis, Minnesota.

McKay, K. J., J. W. Stravers, and U. Konig. 1995. Report asessing the impacts of human activity on Bald Eagle reproductive success along the Upper Mississippi River during the 1994 breeding season. Technical Report: U. S. Fish and Wildlife Service Upper Mississippi River Fish and Wildlife Refuge. McGregor, Iowa. 51pp.

Roosa, D. M. 1977. Endangered Iowa birds: (An annotated list of endangered, threatened, extirpated or 'status undetermined' birds of Iowa). Special report of the Preserves Board No. 4.

Roosa, D. M., and J. Stravers. 1989. Nesting of raptors uncommon in Iowa: Summary and new records. Journal of the Iowa Academy of Science 96(2):41-49.

Figure 15.1. First year in which a bald eagle nest was reported for 88 counties, 1977 through 2010.

Figure 15.2. Number of Bald Eagle active nests and young produced in Iowa, 1977 through 2010.

Figure 15.3

Fig. 1 Number of Bald Eagles Seen During lowa Mid-Winter Survey 1991-Present

BOBCAT STATUS IN IOWA 2000 to Present

By Ron Andrews, Iowa DNR

Prior to settlement, bobcats were found throughout Iowa. Historically they were the most abundant of Iowa's three native cat species - the bobcat, lynx, and mountain lion/cougar. By the late 1800 s , historical records mention little of bobcats in Iowa.

In the 1930s and 1940s small numbers of bobcats were reported in all corners of Iowa, although they were most numerous in the northeast corner of the state. Between the 1940's and mid-1980s, bobcats were infrequent throughout most of the state.

During the past 20 years, increasing numbers of bobcat sightings, road kills, and several incidentally trapped bobcats have occurred. Some landowners in southern and western Iowa consider bobcats commonplace. Over 200 dead bobcats were turned over to the DNR during the fall/winter of 2006-2007.

Figure 13.1 shows that there are over 75 counties have known bobcat presence within their boundaries. Several other counties probably have bobcat presence but they have not been officially confirmed. This past year we continue to have a few fairly reliable reports of bobcat sightings in more northern areas of the state. This information needs to be continually updated to monitored what appears to be a gradual expansion of bobcats northward in Iowa. Nebraska, Kansas, and Missouri show similar bobcat expansion and increases particularly near Iowa's southern and western borders. In fact, Missouri has had a statewide bobcat harvest season for many years. Their harvest has been record breaking numbers during the past 9 years and the highest harvest of bobcats occurs adjacent to Iowa's southern border.

Dr. Jim Pease, Extension Wildlife Specialist, at Iowa State University, worked with graduate student, Anne Avery, on a more elaborate survey of bobcat sightings and the public's perception of predators in the state. Her M.S. thesis was completed in September, 2003.

The Iowa DNR de-listed the bobcat from threatened status in September 2003. They were, however, given complete protection until we implemented our first regulated harvest season in
2007. An attempt was made to get a conservative bobcat harvest season in a portion of the state, implemented in the fall of 2006. That effort was thwarted by bio-politics.

Reproductive and population age structure data is being collected from all bobcat carcasses obtained from road killed and incidentally trapped animals. We will continue to monitor the increase and modern day expansion of bobcats in Iowa.

The Iowa DNR and Iowa State University has completed and extensive bobcat population study. The first phased involved monitoring bobcat's movements, mortality, habitat use, and demographics in south-central Iowa. The second phase was an in-depth study of bobcat genetics and is scheduled for completion by the end of 2010. Forest Game Biologist, Todd Gosselink, is the DNR project leader. Dr. Bill Clark is ISU professor and major advisor. M.S. graduate student, Stephanie Koehler/Tucker, completed the first phase of the population ecology of bobcats in southern Iowa. ISU PhD graduate student, Dawn Reding, is working on the genetics component of the study. A summary of the results to date by Field Project Advisor, Todd Gosselink, is attached. The information collected from this phase of the study includes bobcat genetic sampling from all the surrounding states. This will be very useful in determining the relationship and population dynamics of Iowa bobcats and the future management of the species.

The bobcat population increase and expansion has been phenomenal during the last 20 years. Iowa's bobcat population is healthy enough and that is why the bobcat has been de-listed from threatened status. An ultra conservative bobcat harvest season has been approved and did occur during the fall of 2007.

Approved parameters for this first conservative bobcat season are as follows:
(1)An open zone quota of 150 bobcats was allowed.
(2) Only 21 counties in the southern 2 tiers of Iowa were open to harvest. The bobcat harvest season would be closed throughout the rest of Iowa.
(3) Both hunting and trapping would be allowed including all current legal means and methods of hunting. Hunters must have a furharvesters license and pay a habitat fee.
(4) The season would open 8:00 a.m. the first Saturday of November (November 3 in 2007) and close January 31 or when the quota of 150 harvested bobcats occurred plus a 48 hour grace period.
(5) To provide opportunity and to distribute the harvest amongst more furharvesters, only 1 bobcat per season per licensed fur harvester would be allowed.
(6) All bobcats would have to be CITES tagged. Procedures for obtaining CITES tags are spelled out in the Iowa Hunting and Trapping Synopsis.
(7) All dead Bobcats taken in the closed zone, after the season closes, or in excess of the 1 bobcat allowed per season, would have to be relinquished to the Iowa DNR.
(8) All live trapped bobcats should be released when taken after the season closes, after the furharvester takes his first bobcat season as there is a season bag limit of 1 per furharvester, and in the closed portion of the state.
(9) People possessing or taking bobcats illegally would be subject to a citation, fine, and possible revocation of their fur harvester license.
(10) Carcass tags will be provided to each furharvester taking a bobcat so that the DNR can obtain enough data to continue, expand, and perhaps liberalize future bobcat harvest seasons. Reproductive and population age structure data and DNA material will be collected from as many bobcats as possible.
The first bobcat harvest season (2007) results are self explanatory and are shown in figures $1-16$ below.

Figures 1, 2, and 3 shows the bobcat harvest by county. It is a little premature to say whether there are any trends occurring in the bobcat harvest by county other than to say that it seems to follow what might be expected based on the carcass data, which was collected before the first harvest season in 2006. Bobcats, can sometimes be difficult to sex by just casual observation particularly yearling bobcats. Close inspection is usually required. Figures 5, 6, and 7 indicate that bobcat harvest sex ratio is nearly the same for 2007 and 2009. The 2008 harvest indicated that quite a few more females were harvested as opposed to males being harvested.

Figures 8, 9, and 10, show the variety of bobcat harvest methods. During the first 3 years of harvest, between 70 and 80% of the bobcats are harvested by trapping, including foothold Conibear traps and snares. Between 10 and 15 \% are taken by hunting methods including calling, hounds, and archery hunters likely taking a few incidental to their deer hunting efforts. Approximately 60 to 70% of the bobcats harvested during the first 3 years were taken incidentally to other recreational activities.

In an effort to measure potential concern for bobcats that would be harvested by several family members of one household we reviewed furharvesters who harvested bobcats that lived at the same household address. By doing such, we may have an indication of furharvesters that had filled their one possession limit, the captured another bobcat and perhaps then perhaps purchase a furharvester license for another member of the household to legally(?) cover the additional bobcat or bobcats taken. Figures 14, 15, and 16 indicate that of the 591 bobcats harvested from 2007 2009, 28 total bobcats 5.7% were from the same household address. In my estimation, there is very little reason to be concerned about furharvesters trying to cover themselves should they take more than their one bobcat per season limit. For the 2008 g season we have added the 4 counties of Pottawattamie, Harrison, Monona, and Woodbury Counties to the open zone and increase the open zone quota to 200 bobcats. All other parameters and CITES tagging procedures will be the same. The results of the 2008 season are shown below. The harvest data for the second season closely paralleled the first ever regulated bobcat harvest season of 2007. The 2008 data indicate somewhat higher capture by Conibear traps and snares and slightly more brag bias regarding intentional capture as opposed to accidental or incidental capture. Most hunters and trappers are very satisfied with the season results to date with the possible exception that they would rather have a higher season bag limit or no bag limit at all.

The third bobcat harvest season 2009 showed similar trends to the previous 2 seasons.

The public can be assured that such a harvest will be closely monitored to allow for a healthy, sustainable, expanding bobcat population in Iowa.

An archer survey to monitor several wildlife populations, including bobcats, was begun in 2004 to monitor wildlife population trends of
several wildlife species. This should become a very useful piece of data to monitor bobcat population trends throughout the state and particularly in monitoring the bobcat population northward expansion in Iowa.

Two websites to help with identification of bobcat tracks, listen to a bobcat growl, and a wealth of other information is: http://www.beartracker.com/bobcat.html and http://www.geocities.com/Yosemite/9152/bobcattrackers.html.

Must reading for all interested in bobcats and Iowa wildlife: A COUNTRY SO FULL OF GAME by Dr. James J. Dinsmore

Figure 1. Iowa Counties with One or More Bobcat Sightings (1999-2005)

Figure 2. Bobcats Harvested Per County 2007

Figure 3. Bobcats Harvested Per County 2008

Figure 4. Bobcats Harvested Per County 2009

Figure 7. 2009 Bobcat Harvest Sex Ratio

\square Unknown	
\square	
\square	Female

Figure 10. 2009 Bobcat Harvest Method of Take

15, 6\%

| \square unknow n |
| :--- | :--- |
| \square Conibear |
| \square Foothold |
| \square Roadkill |
| \square Snare |
| \square Shot |
| \square Archery |
| \square Hounds |
| \square Calling |
| \square Live Trap |

Figure 12. 2008 Bobcats Intentionally Targeted

Figure 13. 2009 Bobcats Intentionally Targeted

18, 8\%

Figure 14. 2007 Harvest Per Household

148, 97\%

- 1 Bobcat
 $\square 2$ Bobcats

Figure 15. 2008 Harvest Per Household

Figure 16. 2009 Harvest Per Household

MOUNTAIN LION/COUGAR STATUS IN IOWA 2000 - present

The mountain lion/cougar (or puma, panther, and various other names) is the largest of the three wildcats historically documented in Iowa. The lynx and the bobcat are the other two. The mountain lion/cougar probably occurred throughout the state, but nowhere in great numbers. The lynx has been extirpated and the bobcat is currently increasing in numbers. The last historical record of a mountain lion/cougar in Iowa appears to be near Cincinnati, Iowa in Appanoose County, where one was shot in 1867.

Since the mid-1990's, the DNR has received several reports of large "cat" like sightings that lead some to believe that a very few "free ranging" mountain lions/cougars may again be occurring in some portions the state. These "free ranging" mountain lions/cougars could be either escapees, or released animals, privately owned, (grandfathered in before July 1, 2007 legislation to curtail the ownership of certain "dangerous wild animals") or animals dispersing from western and southwestern states.
THE IOWA DNR HAS NOT 'STOCKED' OR INTRODUCED MOUNTAIN LIONS INTO THE STATE NOR IS THERE ANY CONSIDERATION OF DOING SO. Southeast South Dakota, eastern Nebraska, northeast Kansas, northern Missouri, as well Minnesota, Wisconsin, and Illinois, have reported increased mountain lion/cougars sightings during the past $9+$ years.

Figure 1 is a map showing reported observations that appear to be credible, confirmed mountain lion/cougar tracks, 3 visual sightings, a road-kill near Harlan and 2 shot animals, one near Ireton and the other near Chariton, which could possibly indicate that a very few wild mountain lions/cougars have roamed into the state. The road-killed animal in Jasper County was not reported to the DNR until after the road-kill near Harlan. This animal was exhumed and a close inspection of the remains showed the animal had been de-clawed, indicating that it must have been a captive animal at one time.

The confirmed sighting in Ringgold County was observed by DNR personnel, and mountain lion scat was collected at that observation site. Two other visuals, one in Harrison County and one in Fremont County appear to be valid sightings. We have several instances of deer hunters seeing partially eaten deer covered by grass and other debris. This is
somewhat typical of how mountain lions/cougars cache their prey but some bobcats will similarly cover their prey although older deer (those seen while hunting) would not necessarily be a prey target for most, smaller sized bobcats. Overall however, the $150,000+$ deer hunters seldom report a sighting of a mountain lion/cougar during there hunting activities. With the methods of deer hunting that takes place in Iowa, this is where one would expect to see more and actually have a few more mountain lions/cougars killed than in any other Iowa activities. Actually it seems that we get more reports of mountain lion/cougar sightings during the summer when wildlife cover is at its maximum then we do in the winter when it is at its minimum.

In November 2004, a confirmed, ground truth, photo of a mountain lion/cougar was taken near Albion, IA in Marshall County on a trail master, motion sensitive camera. In spite of the many other photos supposedly of Iowa mountain lions circulating the internet, this photo is the only validated photo of a free ranging Iowa mountain lion and it is the last documented report through August 2008.

In November 2003, a mountain lion/cougar was shot in Sioux County near Ireton, Iowa. In January 2004, a mountain lion/cougar was shot south of Chariton, Iowa in Wayne County. DNA testing to determine origin of the 3 dead animals has been completed and results indicate that they are of North American origin. Theory has it that the only legal source of captive mountain lions/cougars should show DNA of South American origin, although more study is necessary before that theory can be substantiated or discounted. In February 2004, Dale Garner, DNR administrator, confirmed a mountain lion/cougar track south of Lucas, IA in Lucas County. Since then, there have been numerous reports in 2005, 2006, 2007, 2008, and 2009 but none officially validated with solid evidence. Reports continue to still come in to the Clear Lake office during 2008 at about an average of 3 to 4 sightings per week from points all over the state. It had been nearly 5 years since we have had a validated mountain lion/cougar carcass, ground truthed photo of track or animal, a dropping or scat, or DNA evidence in the state.

However in December of 2009, during the second deer shotgun season, a hunter shot a
male cougar from a tree near Marengo, IA. Like the other 3 killed since 2002, it also appeared to be a wild free ranging animal with not broken teeth and very sharp claws indicating that it was not a apparent captive reared escapee or one that had been released. Some DNA tissue has been sent in for analysis to see if we can determine the origin of the animal.

Currently the mountain lion/cougar has no legal status in the Iowa Code, thus they are not given any sort of protection by Iowa law. The DNR requested that the 2002 legislative session consider legislation to designate the mountain lion/cougar and the black bears as furbearers, thus allowing the DNR to properly manage these species, should their numbers increase. It was also requested that indiscriminate killing of these animals should not be allowed unless they are about to cause damage or injury to property or persons. The legislation passed the Senate with little controversy, knowing full well that the House would not consider this potentially hot-button politically issue. The DNR was asked by the Governor's office not to pursue mountain lion/cougar and black bear furbearer status in the Iowa Code in 2006, 2007, and 2008. Senator Mary Lunby of Cedar Rapids, however, introduced legislation to do such again during the 2007 legislative session, but "politics" again reined and the legislation did not get any consideration. "Politics," prompted by agricultural concerns, will continue to make this legislation difficult but we hope a coalition of folks, may someday be vocal enough, to help get this enacted. Departmental rules associated with such legislation would have very minimal restrictions thus allowing anyone with special concerns to destroy a mountain lion/cougar, if it was going to injure or harm property or persons.

Professor James Mahaffy of Dordt College has a listing his assessment of mountain lion/cougar sightings in Northwest Iowa. He has recorded several sightings along the Big Sioux and Doon Rivers and in the eastern edge of South Dakota and the western edge of Iowa. Numerous other mountain lion/cougar sightings have been generated from these reports. We attempted to map only those most credible reports. However, since the spring of 2002 , we have received so many reports, which agency personnel and others believe to be reliable, that it is becoming increasingly difficult to sort out which reports are reliable. Over 1,500 mountain lion sightings have been reported since 2000. Tracks, photos, video or other evidence is necessary before we can officially place them on our map. Although the DNR does not advocate
indiscriminate killing of mountain lion/cougar, another road-kill, shooting, or a clear photo or video would help add credibility and confidence to all the mountain lion/cougar sightings that we are currently receiving.

Poor quality mountain lion/cougar sighting videos from Harrison, Taylor, and Fremont Counties still make it difficult to definitely determine whether these are actually mountain lion/cougar sightings but some DNR personnel believe they are.

Photos of a large cat-like animal were taken near Newell, IA. Admittedly, the initial view of these photos leaves one with the appearance that this is a mountain lion/cougar photo and the media blew this incident out of proportion about the presence of mountain lion/cougars in Iowa. With some CSI (Cat Scene Investigations) involving a full size mountain lion/cougar silhouette cutout, the DNR determine that the photo was that of a barn cat rather than a mountain lion/cougar photo, although the local folks involved in taking the photo were unconvinced. The media did however do their best to help us recover from all the "puma" paranoia that the photos and the first new articles promoted.

I still get an average of 3 reports of mountain lion/cougar sightings a week and I don't receive near all of them.. Some the more absurd ones have included a "pack of 6 " in one sighting. I am sure that we have had no mountain reproduction in the state in spite of the fact that I get reports contrary to that.

During August of 2009, the Mesquakie Community near Tama/Toledo, IA have reported that some of their members have seen a mountain lion/cougar on their settlement and several dogs are missing and one was located with serious injury. Initial investigations have turned up no evidence to back this up. But further investigations are pending.

Another interesting sidebar to the whole mountain lion/cougar scenario is that I get more reports of mountain lion/cougars during the summer months than I do in the fall when there is a myriad of hunters and farmers on the landscape and cover is decreasing.

We have very little evidence of livestock depredation due to mountain lions/cougars. We have had reports of horses with claw marks (scratches) on the hind flank and a few reports of sheep and other livestock that some property owners believe were taken by mountain lions/cougars. Solid evidence to validate these reports is difficult to ascertain. However, mountain lion/cougar researchers believe that white-tailed deer and other wild
animals, especially mammals, are the preferred prey.

Even so, predators are generally opportunists and if hungry they will take what is readily available. We have had at least 5 reports (1 in Carroll, 1 in Harrison County, 1 in Polk County, 1 in Jones County, 1 in Calhoun County, and 1 in Pocahontas County) from people who believe that they have seen mountain lion cubs. Several additional reports of mountain lion/cougar cubs have been reported this past year. At this point most DNR personnel are skeptical of those reports. All of 3 mountain lions/cougars killed in Iowa and others in the Midwest have all been reproductively immature 1 to 2 year old males.

Credible mountain lion sightings and tracks are important to the Iowa DNR. Two excellent websites to help with mountain track identification are http://www.beartracker.com/cougar.html and http://www.geocities.com/Yosemite/9152/cougar html. It is important to remember that all cat tracks are round is shape; with 4 toes and a heel pad that has 3 posterior lobes and a less than prominent M shape on the forepart of the heel pad. Adult mountain lion/cougar tracks are 4 inches or larger in diameter, where as bobcat tracks are nearer to the $21 / 2$ to 3 inch range in diameter. All cats have retractable claws, thus the tracks they leave show no claw marks except in unusual circumstances. When possible, good plaster casts of suspected tracks will aid greatly in their identification.

We will continue to monitor and attempt to sort and map reliable sightings, but because there are still many mountain lion/cougar sightings based on poor visuals and so few tracks found, they are increasingly difficult to substantiate.

SAFETY ISSUES:

The good news is that lions generally avoid humans. People are more apt to be killed by a dog than a mountain lion/cougar. Some safety do's and don'ts can be found at the Mountain Lion Foundation of Texas website,
www.mountainlion.org Also the Eastern Cougar Network is a great source of Mountain lion/cougar information. There website is mdowling@courgarnet.org.

Here are some suggestions in the remote chance you have a mountain lion/cougar encounter:
(1) Spread your jacket, coat or shirt above you head attempt to look larger.
(2) Hold your ground, wave, shout and don't run, as running stimulates the predator reflex (just like dogs) to pursue anything that runs away.
(3) Maintain eye contact if you sight a lion. Lions prefer to attack from ambush and count on the element of surprise
(4) If small children are present, or if there are several people in your group, gather everyone very close together. Mountain lions are not predators of large groups.

In the past 110 years 66 people have been attacked by mountain lions/cougars, resulting in 61 injuries, 19 of which were fatal, and none occurred in Iowa.

In 2006 the DNR published a 4 fold brochure on the Status of Mountain Lions/Cougars in Iowa - - Myth or Reality. The brochure is attached and also available on the Iowa DNR website.

Since the first modern reports of mountain lion/cougars sightings began to increase significantly in 2001, I have given well over 300 public informational meetings statewide regarding the status of mountain lions/cougars in Iowa and the Midwest.
Drafted by Ron Andrews, Iowa DNR, 1203 North Shore Dr., Clear Lake, IA 50428 Ph\# 641-357-3517 June, 2010

8000

Numerous additional sighting have been reported, but are not mapped because of less than credible information

BLACK BEAR STATUS IN IOWA 2001 to Present

Black bears were one of the most recognizable and noticeable mammals encountered by Europeans as they settled North America. As settlers moved west, they generally killed any bears they encountered. Thus, black bear numbers declined rapidly in many areas and disappeared from much of their former range. Most present-day Iowans probably associate black bears with some of our large national parks and do not realize that they once occurred in Iowa. When the settlers reached Iowa, they found them widespread throughout the state but higher numbers occurred where there were more woodlands. Bears were killed because they would damage crops, harass and kill livestock, and because they were valuable both as food and for their hides. Several black bear stories of the exploits of early-day "Davy Crocketts" in Iowa have been recorded in journals and diaries.

There are pre-1900 records of black bears from 48 Iowa counties, twothirds of them from counties in the eastern half of Iowa. The last recorded historical bear sighting in the 1800s was one killed near Spirit Lake in 1876. Although a Fish Commission had been established in 1873 nothing really happened in terms of a Game/Wildlife legislation until after the last black bear had disappeared. Thus they are not recognized as a designated wildlife species in the Iowa Code. In the 1960s, black bear reports begin to occur in the state. Several of these reports were from captive bears that were either turned loose or were escapees. In the 1990s through the present, we began to field more reports of what appeared to be wild
free ranging black bears in the state. Currently, the nearest established wild populations of black bears are in Wisconsin, Minnesota, and southern Missouri. These populations are expanding their range towards Iowa from both the north and south. Figure 18.1 shows the most recent sightings of bears in Iowa. During 2002, there were at least 5 different fairly reliable black bear sightings. In 2003 and 2004, no reliable sightings have been reported. However during the spring and summer of 2005, the Iowa DNR received its first modern day black bear depredation complaint. In Allamakee County, a black bear reportedly was marauding several beehives in a few scattered locations foraging on both the bees and the honey. In 2008, a surge of 5 black bear sightings has occurred, 1 in each of the following counties: Davis, Johnson, Winneshiek, as well as one shot in both Franklin and Fremont counties a week apart. Although not validated as yet, the circumstantial evidence seems to indicate that the one shot in Franklin County may have been and escaped or released bear while the one in Fremont County appears to be wild as it had been seen in Missouri, just days before it was killed just across where it was seen along the Iowa/Missouri border.

In July (2009), a male black bear entered the state and paralled the Iowa border south before crossing the Mississippi returning to Wisconsin. Figure 18.2 shows the interesting movement of this black bear. This bear crossed the Mississippi River near Harpers Ferry in Allamakee County moved westward then south and basically paralleled the river southward to near Clinton. Then it moved slightly northeast before crossing the Mississippi River near Green Island, Iowa back into Wisconsin then northward to Baraboo,

Wisconsin where it became impossible to keep track of it because it had not specific markings.

During May of 2010, there was a reliable report of an adult black bear and a yearling spotted just west of Marquette, IA (Clayton County) feeding at bird feeders. In late May, 2010, a smaller bear, probably a yearling, was witnessed in northwest Mitchell County near Carpenter, IA. In early June, a bear was seen north of Northwood (Worth County) near the Iowa Minnesota border. Observations of this bear have also reported in southern Minnesota. I would seem unlikely that this bear was the same one reported near Marquette as it was not reported at any point between and in Iowa that would be unusual as there is so much open territory to see the bear. All indications are that these are wild, free ranging bears as opposed to bears that were either released or escaped from captivity.

Black bear sightings are usually more reliable than mountain lion/cougar sightings because they do not necessarily flee when sighted, the bear tracks are very distinct, and they are not readily mistaken for other animals.

Black bears, like mountain lions/cougars, have no legal status in Iowa. The DNR continues to consider legislation to give both species legal furbearer status in the Iowa Code. The Governor's office has discouraged the DNR from pursuing legal status of the black bear and mountain lion/cougar because of bio-political conflicts between agriculture and these 2 wildlife species. Senator Mary Lunby of Cedar Rapids introduced wildlife designation status for the black bear, but it did not get debated during the 2006 and 2007 legislative sessions. Agricultural politics seemed to thwart this effort. However
the public outcry over the 2 black bears shot in mid 2008 seems to point to the fact that the much of the public is in favor of some type of legal black bear status is appropriate. The effort to give them furbearer status needs to be pursued in the future. This would allow appropriate wildlife management to occur which would include opportunities to handle nuisance black bear complaints. Regardless of legislation it would appear that the DNR is developing develop a more uniform and standard policy concerning bear sightings in Iowa. A lot of emotion is generated when one of these bears are killed. Where possible we should discourage the indiscriminant killing of black bears unless there are concerns for human, pets, or livestock safety. Bears are omnivores, primarily vegetarians, foraging on seeds, fruits, berries and other plant material but given the hunger and need they will feed upon animals as well. Human tolerance will be the deciding factor as to whether black bears could ever re-established again in Iowa. If they do, I am sure that their numbers would remain quite small.

Much of the historical information in this report was paraphrased from Dr. James J. Dinsmore's book "A County So Full of Game-The Story of Wildlife in Iowa".

GRAY WOLF (TIMBER WOLF) STATUS IN IOWA 2001 to Present

Two large wolf-like mammals were frequently encountered by early settlers in Iowa. While Iowa was still part of the Louisiana Territory, in the early 1800s the very first piece of wildlife legislation was that to encourage killing wolves. There are no known specimens preserved in museums from the state. Historians usually did not distinguish between the gray (timber) wolf, Canis lupus and the coyote, Canis latrans often called the "prairie wolf." Both species were greatly persecuted and until very recently, only the coyote remains and thrives in the state.

Two different subspecies of gray wolf occurred in Iowa. The Great Plains wolf (a name that causes considerable confusion because the coyote which was often given a similar name, (the prairie wolf) was found over the western twothirds of the state. The Great Plains Wolf followed the bison herds, feeding on the stragglers from the herd as well as other prey (Dinsmore, 1994). The other subspecies was the gray (timber) wolf found primarily in eastern Iowa, especially in the wooded northeastern corner of the state. Gray wolves were likely extirpated by the late 1800s. Bowles (1971) regards the last valid wolf record to be from Butler County in the winter of 1884-85. A timber wolf taken Shelby County in 1925 appeared to be wild, but it also could have escaped from captivity before being shot. Gray wolves often fed on the domestic animals that settlers brought to Iowa, and there are numerous reports of them killing chickens, pigs, calves, and sheep in Iowa. Gray wolves were fully protected in all the 48 states in August of

1974 under the Endangered Species Act (ESA) of 1973. In 1978, they were reclassified (down-listed) from endangered to threatened under the ESA in Minnesota. The US Department of Interior's Fish and Wildlife Service administers the ESA. The Fish and Wildlife Service is working to allow more state rights' management of gray wolves and other resident species. In 2007, the gray wolf was taken off the Threatened list in Minnesota. Taking the gray wolf off the endangered/threatened list has generated considerable controversy between wildlife professional and animal rights' activists. Public review and input of this effort continues. Pending some sort of litigation the Gray Wolf will now be allowed to have some sort of legal regulated harvest and state management in Minnesota if their DNR decides to do so.

Unlike the Mt. Lion/Cougar and the Black Bear, under the Iowa Code, the gray (timber) wolf is designated as a furbearer with state protected status. My speculation is that is because the gray/timber wolf was not clearly separated from the coyote in early bounty legislation, while the Mt.Lion/Cougar and the Black Bear had basically disappeared before any wildlife legislation occurred. Thus the wolf was officially listed as a furbearer while the other 2 species had already disappeared and thus no reason to include them in early legislation. In recent years Minnesota wolves have been edging southeastward long the Mississippi River towards Iowa. In the mid-1990s occasional, lone wolves were appearing in the Winona, Minnesota region, approximately 75 miles from the Iowa border.

On November 15, 2002, a wolf was shot in Houston County, Minnesota, which is adjacent to Allamakee County, Iowa, the northeastern most county of the Iowa. Rodney Rovang, manager of the Effigy Mounds National Monument near Marquette, Iowa, indicates that he has observed occasional wolf tracks in and near Allamakee County over the past decade. Two known wolf-like animals were taken during the past year in Sioux and Guthrie County.

In October of 2000, a radio collared wolf from Michigan was shot and killed near Kirksville, Missouri. This animal traveled over 600 miles (Straight line from where it was radio collared to where it was killed) and could have actually moved through a portion of Iowa before being killed in Missouri. Kirksville is located about 50 miles south of Bloomfield, IA. Wolves are very mobile animals and as they extend their range southward more will likely frequent Iowa.

The Rocky Mountain wolf population was delisted from threatened on July 182008 which allowed them to be legally harvested with approved state management plans, however an injunction by animal rights activists has now placed them back on the Threatened List which in essence gives them protection again. This is subject final court action as to whether they remain threatened or are in fact, delisted again where ranchers could kill them as needed to protect their livestock.

THE GRAY (TIMBER WOLF
WAS OFFICALLY DELISTED FROM ENDANGERED AND THREATENED ON MARCH 6, 2009. Many Western states now allow wolves to be readily killed if there is concern for the welfare of livestock. Numerous animals have, in fact, been taken since this occurred.

Plans are underway to revise Iowa’s Gray Wolf Management Plan as required under the removal of the gray wolf from the Threatened list. Now that the gray wolf has been removed from the Threatened list in Minnesota, we are planning to revise the plan to accommodate the newly designated status of the gray wolf in the Midwest. The revised version will serve as guide as to how the DNR should respond to wolf concerns as wolf numbers increase and human and wolf encounters occur. During 2009 and early 2010 people reported what they believed were gray wolves in Iowa on a more frequent basis but we have not been able to validated their presence with any sort of solid evidence. If the current trend continues, I think it is only a matter of time before a validated wild gray wolf is killed in the state. Because gray wolves, at a distance can be readily mistaken for coyotes or in some cases dogs, many reports will be cases of mistaken identity. Figure 1 shows the few documented wolves that have been seen in Iowa during the past few decade.

Shot \& Killed 11/02, MN

APPENDICES

1. 2009 Bowhunter Observation Survey
2. Ruffed Grouse Observation Survey

2009 BOWHUNTER OBSERVATION SURVEY

BACKGROUND

The Iowa Department of Natural Resources (DNR) conducted the annual Bowhunter Observation Survey during October 1 - December 4, 2009. This was the sixth year of the survey, which was designed jointly with William R. Clark, Professor at Iowa State University. The two primary objectives for this survey are to: 1) determine the value of bowhunter observation data as a supplement to other deer data collected by the DNR; and 2) develop a long-term database of selected furbearer data for monitoring and evaluating population trends. Bowhunters are a logical choice for observational-type surveys because the methods used while bowhunting deer are also ideal for viewing most wildlife species in their natural environment. In addition, bowhunters typically spend a large amount of time in bow stands: more than 40 hours/season is not uncommon. We believe avid bowhunters are the best hunters to select for participation in this survey because they not only hunt often, but they also have the most experience in selecting good stand locations, controlling or masking human scent, using camouflage, identifying animals correctly, and returning surveys.

METHODS

Participants for the 2009 survey were selected from a list of bowhunters who had purchased a license for each of the 3 years prior to 2009 (i.e., avid bowhunters). Our goal was to select approximately 999 bowhunters in each of Iowa's 9 climate regions. Each climate region contains approximately 11 counties, and approximately 91
bowhunters were selected per county in an effort to evenly distribute observations in each region. Selection of participants consisted of a 3-step process. In each county, participants were first selected from a core group of avid bowhunters who had previously indicated an interest in participating in this survey. If fewer than 91 core group participants existed in a county, additional participants were randomly selected from a separate list of avid bowhunters who were not in the core group. Finally, if the number of "core group" and "randomly selected" participants in a county was less than 91, additional avid hunters were selected from other counties in the region to reach the regional goal of 999 participants. A total statewide sample of 8,991 bowhunters was selected for participation.

RESULTS \& DISCUSSION

Responses were obtained from 2,027 bowhunters who recorded their observations during 31,102 hunting trips, yielding 105,287.5 hours of total observation time (3.39 ± 0.02 hours/trip; mean $\pm 95 \%$ CL). Bowhunters reported a median of 15 trips during the 65-day season. Regionally, the number of bow hunting trips (and hours hunted) ranged from 2,377 (7,479.5 hours) in northwest Iowa (Region 1) to 5,057 (17,745 hours) in northeast Iowa (Region 3). The raw survey response rate was 22.5%.

Observations were standardized for each of the 12 species to reflect the number of observations per 1,000 hours hunted in each of the 9 regions. In addition, 95% confidence limits were calculated for each estimate. Precision among estimates for common species, such as deer, wild
turkeys, and raccoons, was good: confidence limits were generally within $\pm 15 \%$ of the estimate. However, for less common species, such as badgers, bobcats, gray fox, and otters, the uncertainty associated with the estimate was quite large and occasionally exceeded the estimated value.

A comparison of results from 2008 and 2009 indicated that the number of total deer observed/1,000 hours declined significantly in northwest Iowa (Region 1). No significant changes in total deer observations were observed in any other region. The only significant change in the number of wild turkeys observed $/ 1,000$ hours occurred in east-central Iowa (Region 6) where a significant increase was observed. Bobcat observations/1,000 hours remain stationary in west-central Iowa and across the southern third of the state, and data suggest that the bobcat population is slowly expanding into northwest, central, and east-central Iowa.

The DNR thanks all hunters who participated in the 2009 Bowhunter Observation Survey. Iowa's bowhunters are the best group of hunters to provide this observational information, and their participation in this survey will play a major role in the conservation of these wildlife species in the future. The volume of information they have provided could never be duplicated by the staff of biologists, technicians, and conservation officers of the Iowa DNR.

When looking at the following charts, we caution against making comparisons between regional estimates for any species. Any differences in observation rates between regions could be related to differences in many factors such as population size, habitat, topography, land use, or any other factor affecting the sightability of animals. For each of the selected species, any differences between regions are NOT entirely related to regional differences in population size.

Total Deer Observations Per 1,000 Hours Hunted
Bowhunter Observation Survey, Iowa Dept. of Natural Resources

Antlered Deer Observations Per 1,000 Hours Hunted
Bowhunter Observation Survey, Iowa Dept. of Natural Resources

Antlerless Deer Observations Per 1,000 Hours Hunted
Bowhunter Observation Survey, Iowa Dept. of Natural Resources

Unknown Deer Observations Per 1,000 Hours Hunted
Bowhunter Observation Survey, lowa Dept. of Natural Resources

Badger Observations Per 1,000 Hours Hunted
Bowhunter Observation Survey, Iowa Dept. of Natural Resources

Bobcat Observations Per 1,000 Hours Hunted
Bowhunter Observation Survey, lowa Dept. of Natural Resources

Gray Fox Observations Per 1,000 Hours Hunted

Bowhunter Observation Survey, Iowa Dept. of Natural Resources

Bowhunter Observation Survey, Iowa Dept. of Natural Resources

Opossum Observations Per 1,000 Hours Hunted
Bowhunter Observation Survey, Iowa Dept. of Natural Resources

Raccoon Observations Per 1,000 Hours Hunted
Bowhunter Observation Survey, Iowa Dept. of Natural Resources

Red Fox Observations Per 1,000 Hours Hunted
Bowhunter Observation Survey, Iowa Dept. of Natural Resources

Bowhunter Observation Survey, Iowa Dept. of Natural Resources

Striped Skunk Observations Per 1,000 Hours Hunted
Bowhunter Observation Survey, lowa Dept. of Natural Resources

Wild Turkey Observations Per 1,000 Hours Hunted
Bowhunter Observation Survey, Iowa Dept. of Natural Resources

Hours Hunted by Survey Participants
Bowhunter Observation Survey, Iowa Dept. of Natural Resources

Bowhunting Trips by Survey Participants
Bowhunter Observation Survey, lowa Dept. of Natural Resources

Average Hours Hunted/Bowhunting Trip
Bowhunter Observation Survey, Iowa Dept. of Natural Resources

RUFFED GROUSE

HISTORICAL PERSPECTIVE

History: Ruffed grouse (Bonasa umbellus) were found nearly statewide in Iowa during the mid-19th century but deforestation and grazing of timber caused a dramatic decline of grouse populations (Klonglan and Hlavka 1969). Ruffed grouse had disappeared from southwest Iowa by 1900 and further population declines occurred in the south and east-central portions prior to the 1920's.

Grouse were restricted to their present range in the northeast 6 counties by 1930 (Fig. 2.9). Between 1930 and the early 1960's there was an increase in available and potential grouse habitat in southern and eastern Iowa primarily from secondary succession of private forests and the acquisition and removal of state lands from grazing.

HUNTING SEASONS

Although limited in distribution the existing populations in northeast Iowa have persisted and provided limited hunting opportunity. The first modern-day hunting season was in 1968, after a 44-year continuously closed season. Current hunting season format was established in 1981 and has varied only to assure the season opens on a Saturday.

FALL RUFFED GROUSE SURVEY

Estimates of ruffed grouse harvest and hunter effort were historically obtained from the annual Small Game Hunter Survey. The sampling strategy associated with this survey was primarily designed to estimate the annual harvest and hunter effort for species that have somewhat large population distributions (i.e., distributed across all or most of Iowa). However, ruffed grouse
have a distribution that is primarily limited to northeast Iowa, and the sampling strategy was less than optimal for estimating ruffed grouse harvest and hunter effort. In addition, ruffed grouse harvest is limited to the northeast Iowa grouse hunting zone while the harvest of all other small game is allowed statewide.

In 2008, ruffed grouse were removed from the small game hunter survey and the Iowa Ruffed Grouse Survey was initiated. This survey has two primary goals: (1) to obtain an estimated rate that grouse are encountered by squirrel, turkey, and deer hunters, and (2) obtain an estimate of the number of grouse flushed, grouse harvested, and days hunted by ruffed grouse hunters. The sampling frame for the Iowa Ruffed Grouse Survey consists of all individuals who obtained a regular hunting license and reside in one of 14 counties that coincide with the grouse hunting zone in northeast Iowa. The limited sampling frame suggests that any estimates of grouse harvest and hunter effort should be considered minimum estimates because individuals residing outside of the 14 -county area may also hunt and harvest grouse in the grouse hunting zone. The sampling design for this survey uses stratified random sampling whereby individuals are selected at random from each of 14 strata (i.e., counties) to help ensure the sample is distributed across the entire grouse hunting zone. The survey consists of two mailings: postcards are initially mailed to 3,500 individuals in mid-February and a second follow-up mailing is sent to nonrespondents in late March.

Responses are returned via prepaid business reply mail to the Boone Wildlife Research Station. Postcards are electronically imaged and data are entered using OCR, ICR, and OMR technology.

Data are verified by DNR personnel and validated through the use of predetermined validation rules. Further accuracy checks are performed by routines written in SAS programming language. Missing values are inputted using the Hot Deck procedure of PRECARP, and estimates are calculated using SAS PROC SURVEYMEANS and the SAS SMSUB macro.

2009-2010 Survey: Hunters surveyed in NE Iowa (Allamakee, Blackhawk, Bremer, Buchanan, Chickasaw, Clayton, Delaware, Dubuque, Fayette, Howard, Jackson, Jones, Linn, and Winneshiek) reported observing an average of 11.0 grouse per 1000 days of hunting, which was lower than the previous year of 20.2 grouse per 1000 days. On average, it took hunters 13.7 days to detect a
grouse, was slightly longer than the previous year of 12.2 days. An estimated 369 ruffed grouse hunters spent an estimated total of 2876 days hunting for grouse in 2009-10. The previous year, 416 grouse hunters spent 2566 total days hunting grouse. For the 2009-10 season, an estimated 370 ruffed grouse were flushed by grouse hunters, which was lower than the 1237 estimated the previous year. For the 2009-10 season, an estimated 48 ruffed grouse were harvested, which was lower than the 179 estimated harvest of ruffed grouse the previous year. However, the 95\% CL (Table 2.13 \& 2.14) indicate there was no statistical difference in any of the values, which is due to the small numbers of ruffed grouse hunters in Iowa, making it difficult to estimate values with postcard surveys.

LITERATURE CITED

Klonglan, E. D., and G. Hlavka. 1969. Recent status of ruffed grouse in Iowa. Proc. Iowa Acad. Sci. 76:231-240.

Table 2.13 Ruffed grouse small game license (general hunters) survey results, 2009-2010 in NE** lowa.

* grouse detected while fall hunting other species (e.g. deer, squirrel, rabbit)

YEAR	Grouse observed per 1000 days of hunting*	Lower 95% CL	Upper 95% CL	\# of days for a hunter to detect a grouse*	95\% CL
$2008-2009$	20.2	13.2	27.1	12.2	$11.4-13.0$
$2009-2010$	11.0	6.6	15.5	13.7	$12.8-14.7$

Table 2.14 Ruffed grouse hunters survey results, 2009-2010 in NE** Iowa.

* grouse flushed and harvested by grouse hunters, grouse hunters surveyed only in NE IA.

YEAR	Number of grouse hunters	Lower 95\% CL	Upper 95\% CL	\# of days hunters spent grouse hunting	95\% CL	Number of grouse flushed*	95\% CL	Number of grouse harvested*	95\% CL
2008-2009	416.2	189.8	645.5	2565.8	448.3-4683.3	1236.7	113.5-2359.8	179.2	-11-369.4
2009-2010	369.1	160.7	577.5	2876.3	688.4-5064.3	369.5	-63.5-802.5	47.5	-45.1-141.0

** NE Iowa counties surveyed included: Allamakee, Blackhawk, Bremer, Buchanan, Chickasaw, Clayton, Delaware, Dubuque, Fayette, Howard, Jackson, Jones, Linn, and Winneshiek.

Figure 2.9 Present ruffed grouse distribution in lowa.

[^0]: ${ }^{\text {a }}$ Shed-antlered bucks are included in the percentages for antlered bucks; this is what they represent biologically in the population.

[^1]: ${ }^{a}$ Success rates from 2005 and prior are not comparable to subsequent years.

[^2]: ${ }^{2}$ Hens per cock.

[^3]: ${ }^{2}$ Small Game Harvest Survey changed from a single to a double mailing. Harvest estimates from 1999-present are more conservative than pre-1999 estimates.
 ${ }^{\mathrm{b}}$ Survey methodology changed account for unrealistic harvest (e.g. reports of 1 bird harvested for 60 days effort).
 ${ }^{\text {c }}$ Ruffed grouse dropped from small game survey and estimated with it's own survey.

[^4]: ${ }^{\overline{1}}$ Iowa's first youth pheasant season, open to resident hunters 15 years or younger.

