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Abstract 
 
 

The effects of diethylenetriaminpenta(methylenephosphonic acid) (DTPMP)  a 

phosphonate inhibitor, on the growth of delayed ettringite have been evaluated 

using concrete in highway US 20 near Williams, Iowa, and the cores of six 

highways subject to moderate (built in 1992) or minor (built in 1997) deterioration.  

Application of 0.01 and 0.1 vol. % DTPMP to cores was made on a weekly or 

monthly basis for one year under controlled laboratory-based freeze-thaw and 

wet-dry conditions over a temperature range of -15o to 58oC to mimic extremes in 

Iowa roadway conditions.  The same concentrations of phosphonate were also 

applied to cores left outside (roof of Science I at Iowa State University) over the 

same period of time.   Nineteen applications of 0.1 vol % DTPMP with added 

deicing salt solution (~ 23 weight % NaCl) were made to US 20 during the 

winters of 2003 and 2004.  In untreated samples, air voids, pores, and occasional 

cracks are lined with acicular ettringite crystals (up to 50 µm in length) whereas 

air voids, pores, and cracks in concrete from the westbound lane of US 20 are 

devoid of ettringite up to a depth of ~0.5 mm from the surface of the concrete.  

Ettringite is also absent in zones up to 6 mm from the surface of concrete slabs 

placed on the roof of Science I and cores subject to laboratory-based freeze-

thaw experiments.  In these zones, the relatively high concentration of DTPMP 

caused it to behave as a chelator.  Stunted ettringite crystals 5 to 25 µm in 

length, occasionally coated with portlandite, form on the margins of these zones 

indicating that in these areas DTPMP behaved as an inhibitor due to a reduction 

in the concentration of phosphonate. Analyses of mixes of ettringite and DTPMP 
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using electrospray mass spectrometry suggests that the stunting of ettringite 

growth is caused by the adsorption of a Ca2+ ion and a water molecule to 

deprotonated DTPMP on the surface of the {0001} face of ettringite.  It is 

anticipated that by using a DTPMP concentration of between 0.001 and 0.01 vol 

% for the extended life of a highway (i.e. >20 years), deterioration caused by the 

expansive growth of ettringite will be markedly reduced. 

 

 
1. Introduction 
 

During their service lives, Iowa roadways are susceptible to premature 

deterioration due to the growth of expansive secondary minerals in the concrete 

paste.  These secondary minerals form years after initial highway construction 

and include: calcite (CaCO3), portlandite (Ca(OH)2), brucite (Mg(OH)2), and 

ettringite (Ca6Al2(SO4)3(OH)12.26H2O).  Of these minerals, delayed ettringite is 

probably the most abundant [1].  

Delayed ettringite in Iowa highways commonly fills microscopic pores and 

small air voids (<100 µm in diameter) and lines the margins of large air voids (> 

100µm in diameter) (Fig. 1) and occasional cracks.  There is considerable 

controversy in the literature concerning whether cracking in cement paste is 

caused by the expansive growth of ettringite [1-6] or whether ettringite forms after 

crack development [7-11].  Regardless of its role in concrete deterioration, 

previous research has shown the expansive nature of delayed ettringite, but the 

mechanisms involving expansion remain in doubt since it is unclear whether they 

are topochemical in nature or due to through solution [1].  Where delayed 
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ettringite formation has been shown to produce damage in concrete, it is 

generally associated with heat cured concrete treated to temperatures > 70oC, 

rather than concrete cured at room temperature [12].  However, it is clear that 

ettringite is an expansive mineral in highways cured under normal weather 

conditions [1]. 

Sulfate is a necessary component for ettringite to form and can originate from 

internal or external sources.  Internal sources of sulfate can originate from pyrite 

(FeS2) inclusions in dolomite and limestone aggregates.  The pyrite oxidizes to 

form goethite (FeO(OH)) or ferrihydrite (Fe(OH)3) and releases sulfate [13].  

External sources of sulfate include natural or polluted groundwater, sulfur dioxide 

from the combustion of fuel, and sulfur impurities of deicing salts applied to 

roadways in winter [14]. 

Previous research involving crystallization inhibitors show that delayed 

ettringite growth, concrete expansion, and damage can be reduced in controlled 

experimental conditions [1,15].  Cody et al. [15] evaluated the nucleation rate, 

growth, morphology, and stability of ettringite in the presence of more than 300 

chemicals and admixtures.  The plasticizers sorbitol, citrate, and tartrate were 

found to inhibit ettringite nucleation and growth as did certain lignosulfonate air-

entrainment admixtures. Lee et al [1] evaluated the effects of four different 

crystallization inhibitors: two phosphonates, HEDP [1-hydroxyethylidene-1,1-

diphosphonic acid] and DTPMP; a phosphate ester, NTP [nitrilo-tri(ethyl acid 

phosphate)]; and a polyelectrolyte, PA (polyacylic acid) on ettringite growth in 

highway concrete.  Concrete blocks from Iowa highways as well as fabricated 
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and cured type I mortar (without coarse aggregate) were subjected to continuous 

immersion, wet/dry cycling, and freeze-thaw cycling in sodium sulfate solutions 

and in sodium sulfate solutions containing an inhibitor.  The sodium sulfate 

ensured the growth of abundant ettringite crystals in the cement paste. The two 

phosphonate inhibitors were effective in reducing ettringite nucleation and growth 

in concrete, whereas the two other non-phosphonates were less effective.  Of the 

two phosphonates, DTPMP (manufactured by Monsanto Company), was the 

most effective in inhibiting ettringite growth and subsequent expansion and 

cracking of the blocks (Fig. 2).  DTPMP is nontoxic (Dequest 2060S, MSDS, 

Solutia, Inc.) and is not biodegradable by most bacteria.  The use of DTPMP has 

been approved by Jim Rost, Director of IDOT Environmental Services, who 

considers this chemical to be environmentally safe.   

Diamond [16] showed that laboratory studies of delayed ettringite growth do 

not always duplicate what occurs in field concretes, in large part, because the 

fluid composition in equilibrium with the cement paste and ettringite in each 

setting is often different.  To follow up on the laboratory experiments and to better 

understand ettringite growth in field concretes, the present study focuses on the 

application of DTPMP to selected sections of roadway in Iowa, under normal 

highway weather conditions.  The goal of this research is to evaluate the 

performance of the application of DTPMP on the prevention or reduction of 

delayed ettringite in Iowa highway concrete, with the main objective of preventing 

premature deterioration.  In addition to this set of experiments, cores were 

obtained from selected Iowa highways and subject to periodic applications of 
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DTPMP at different concentrations under wet-dry, freeze-thaw and real weather 

conditions.  It should be noted that some coarse dolomite aggregates show 

compositional rims (Fig. 3) that primarily result from dedolomitization reactions 

associated with the application of deicing salts to the highway [17].  

The physical characteristics of concrete cores used in the present study are 

given in Table 1 and show that moderate deterioration was observed in highways 

built in 1992 (core identity E, F, and H) whereas only minor deterioration is 

present in highways constructed in 1997 (core identity O, P, and Q).  Details of 

the core location, petrography of the aggregate, the cement mix of the core, and 

the proportion of sulfur-bearing minerals and oxidized products are given in 

Appendices A to F.  Sample designations have used the following terminology.  

For example, sample H1 and H2 are cores 1 and 2 from location H.  As samples 

were prepared, the cores were cut midway into two halves parallel to the surface 

of the core, a top and a bottom. A core from the top half of core H1 would have 

the designator H1T.  The top and bottom of this half of the core will have the 

designator T (top) or B (bottom), so that a sample from the top of the top half of 

core from location H1 will be referred to as H1TT.   

    

2. Experimental Design 

The present study consists of four parts:  1. Application of DTPMP to test 

plots on the eastbound and westbound lanes of U.S. 20 near Williams, Iowa. The 

aim of this experiment was to determine whether or not there was any effect on 

the application of sodium chloride deicing salt with chemical inhibitor to 
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deteriorated highway (westbound) and to newly made highway that contained 

slag (eastbound).  This was a relatively short-term project as applications were 

only made over two winters immediately prior to storm activity. Ideally, 

applications should be made and studied for a period of at least 10 years to 

evaluate the long-term effects of the inhibitor on ettringite growth in Iowa 

highways. 2.  Application of DTPMP to samples of cores collected from roadways 

in Iowa built in 1992 and 1997.  These samples were exposed to normal weather 

conditions as they were stored in the open on the rooftop of Science I at Iowa 

State University.  Applications of deicing salt solution and chemical inhibitor were 

made on a weekly basis, regardless of weather conditions, to simulate the effects 

of long-term (multi-year) applications of deicing salt and chemical inhibitor. 3.  

Samples of core from roadways built in 1992 and 1997 were stored in a furnace 

and a freezer and subjected to DTPMP to mimic the extreme temperatures (-15o 

to 58oC) that can occur on highways in Iowa.  4. An experiment was conducted to 

evaluate possible chelating or inhibiting effects of DTPMP on ettringite. This 

experiment involved the determination of species using electrospray mass 

spectrometry that are produced when ettringite was added to inhibitor solution.   

 

2.1. Field Test on U.S. 20 

Two separate sections of highway were treated, one on the westbound 

lane of US 20 between mile markers 157.65 and 157.85 and the other on the 

eastbound lane between mile markers 168.80 and 169.00.  Prior to the 

application of the inhibitor, four cores were taken from the highway approximately 
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120 yards from each end of both test strips.  At each interval, cores were 

obtained from the center and edge of a panel.  The westbound lane showed 

visible signs of deterioration with discoloration of the pavement surface 

particularly near panel joints.  This discoloration is accompanied by fine fractures.  

After cutting these cores to obtain sample blocks, cracks were visible inside 

some of them.  In other parts of the panel, the surface of the highway exhibits 

some pitting, scaling, and fracturing (cracks up to 0.25 inch wide).  Sodium 

chloride brine has been applied to the highway since 1991 as an anti-icer and 

deicer prior to and during storms, respectively.  By contrast, the eastbound 

section of highway was paved in 2002 and opened for traffic in November, 2003.  

Prior to the commencement of the study, the highway surface had not been 

treated with deicing salts.  Slices of core were studied with a petrographic 

microscope and a scanning electron microscope prior to combined deicer-

inhibitor applications and compared with slices of core taken from the same 

location at the end of the 14 month long experiments, which covered two winters 

(Fig. 3).   

Based on data derived from the laboratory-based experiments of Lee et al. 

[1], 0.1 vol % DTPMP was added to deicing salt solution (~ 23 weight % NaCl) 

and applied to 352 yards of both test strips via a spray bar attached to the front of 

an IDOT truck fitted with a 22 gallon tank that would dispense inhibitor solution at 

a rate of 5.3 gallons per minute while the vehicle was traveling at 14 miles per 

hour.  The pH of the solution was buffered to 10 with NaOH (~0.1 m) to 

approximate pH conditions of the concrete and to alleviate direct corrosion of the 
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alkaline cement paste with acidic DTPMP, which has a pH of <2, and to alleviate 

potential deleterious alkali-silicate, alkali-carbonate, and dedolomitization 

reactions that occur at low pH [17] (Fig. 4). Nineteen applications of solution were 

sprayed onto the road surface during the winters of 2003 (8 applications) and 

2004 (11 applications).  

 

2.2. Roof Experiments  

Samples for these experiments were taken from cores of six Iowa roadways 

that were considered, on the basis of physical inspection, to exhibit minor or 

moderate amounts of deterioration. The physical characteristics of these cores 

are described in detail by Hart [18] and summarized in Table 1.  For each 

highway location, two sets of cores were taken from the center of the panel and 

the right-hand driving lane near the margin of the panel.  Cores were cut with a 

water saw into rectangular blocks that had an average volume of 72.5 cm3 (7.4 

cm x 2.8 cm x 3.5 cm).  The samples were then placed on wooden pallets to 

raise them above the surface of the roof and subsequently divided into two 

groups so that chemical applications could be made on a weekly or monthly 

basis (Fig. 5).  A total of 124 concrete samples were obtained from the 6 different 

roadways with 66 samples on each pallet.  Tops and bottoms of core were 

included since they were more commonly in contact with deicing solutions on the 

highway compared to the center of the core.  

Samples were treated with three different DTPMP-bearing solutions buffed by 

NaOH to a pH of 10: 0.01 vol % DTPMP and distilled water, 0.1 vol % DPTMP 
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and distilled water, and 0.1 vol % DTPMP with 0.75M NaCl.  This combination of 

solution mixtures was chosen to test the effects of varying inhibitor concentration 

and adding saline deicing salt. Solutions were sprayed only to the top surface of 

the block to simulate the application of solutions to concrete surfaces in the test 

strips along US 20.  The solutions were applied using Nalgene squirt bottles with 

a trigger nozzle that released ~ 1 ml of solution per squeeze of the trigger.  A 

volume of 5 ml of solution was applied to approximate the amount of solution 

applied per unit area in the test strips.  Solutions were sprayed on a weekly (70 

applications) or monthly basis (16 applications) from the beginning of November 

2002 to the end of February, 2004. 

   

2.3. Laboratory Experiments  

     Wet-dry experiments and freeze-thaw experiments primarily followed the 

methods described in Lee et al. [1].  However, instead of completing immersing 

concrete blocks in solution for the duration of the experiment, the surface of 

concrete blocks (7.4 cm x 2.8 cm x 3.5 cm) were sprayed with the same volume 

of solution as that used in the roof experiments. For freeze-thaw experiments, 

eighteen samples were sprayed with three solutions:  0.01 vol % DTPMP and 

distilled water, 0.1 vol % DTPMP and distilled water, and 0.1 vol % DTPMP with 

0.75M NaCl.  Half of the samples were also subsequently sprayed with 5 vol % 

Na2SO4 in an attempt to induce the growth of ettringite.  Both sets of samples 

were stored in a freezer at -15oC in individual non-reactive 250 ml Nalgene 

containers to ensure minimal sample contaminate.  A set of three untreated 
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control samples were kept in other containers for comparison.  Four samples 

were also completely submerged in 0.75M Na2SO4 with 0.1 vol % DTPMP and 

distilled water and stored in containers in a manner described by Lee et al. [1].  

All laboratory experiments ran for exactly one year.  Samples subjected to 

freeze-thaw experiments were treated with solutions on all sides of the blocks (1 

ml per side) and subsequently placed in a freezer for 132 hours. Samples were 

then removed and air warmed to 25oC for 24 hours for a total of 56 cycles over 

the year long period of the experiments.   

     Wet-dry experiments were conducted in the same manner as the freeze-thaw 

experiments except that the samples were placed in a sealed furnace that was 

set to a temperature of 58oC (~135oF).  Samples were sprayed with three 

solutions:  0.01 vol % DTPMP and distilled water, 0.1 vol % DTPMP and distilled 

water, and 0.1 vol % DTPMP with 0.75M NaCl.  In addition to these solutions, 

half of the samples were also sprayed with a solution of 5 vol % Na2SO4.  A total 

of nine samples from the six Iowa roadway cores were treated with the three 

solutions in addition to the sodium sulfate solution.  Another twelve samples from 

the six Iowa roadway cores (Table 1) were treated with just the three solutions 

mentioned above minus the sodium sulfate solution.  A set of four untreated 

control blanks were kept in the oven for comparison.  Four additional samples 

were stored in 250 ml Nalgene containers and were submerged in 0.75M Na2SO4 

with 0.1 vol % DTPMP and distilled water.  Samples were treated with inhibitor 

solutions on all sides of the blocks (1 ml per side) and were placed in the furnace 

for 132 hours and then removed and air cooled to 25oC for 24 hours. 
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2.4. Nature of Possible Reaction between Ettringite and DTPMP 

An electrospray mass spectrometer was used to try and better understand 

any chemical reaction that may have taken place in solution between ettringite 

and DTPMP.  Ettringite was synthesized by dissolving Al2(SO4)3.18H2O (Fisher 

lot 030165) in deionized water and by combining it with a saturated solution of 

Ca(OH)2 (Fisher lot  028280) using the technique described by Cody et al. [11].  

Both solutions were filtered prior to mixing and the combined solution allowed to 

sit at room for 24 hours whereupon ettringite was filtered from solution and 

allowed to air dry. 0.6 g of ettringite was subsequently combined with 250 ml of 

0.1 vol % DTPMP and deionized water, with NaOH added to increase the pH to 

10.  First a blank solution of deionized water was run to set a baseline to 

eliminate background peaks.  Then a solution with a concentration of 2.4 g/l of 

ettringite was obtained and 20 µl of this solution was diluted to 0.4 mM and 

introduced into a Finnigan TSQ700 electrospray mass spectrometer.  To work 

out potential species in this solution a spectrum in negative ionization mode was 

obtained of a solution containing 0.1% vol DTPMP with ettringite. 

 

3. Methods of Study 

3.1 General Procedures and Instrumentation 

Petrographic analyses of thin-sections were conducted with both transmitted 

and reflected light utilizing a standard petrographic polarizing microscope to 
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identify minerals and textures. Pieces of concrete core rather than polished thin 

sections of concrete were studied with a Hitachi S 2460 reduced-vacuum 

scanning electron microscope (SEM) because polishing of the thin section would 

likely remove or reduce soluble components.  Back-scattered images obtained 

with the SEM were taken and energy dispersive analytical X-ray (EDAX) area 

maps were collected for Si, Al, K, Na, O, Ca, Mg, S, Cl, P, and Fe.  EDAX point 

analyses were obtained at high magnification for qualitative mineral identification. 

An accelerating voltage of 20 kV was generally used for imaging and EDAX point 

analysis.   

A Finnigan TSQ700 electrospray mass spectrometer was used to determine 

potential chemical reactions that occurred in solution between DTPMP and 

ettringite.  The TSQ700 instrument was equipped with an API 2 interface to run in 

negative electrospray ionization mode.  The operating voltage was set 4.5 kV 

with a capillary temperature of 250ºC and a sheath gas (nitrogen) pressure of 80 

psi. 

 

4.     Results 

4.1. Field Test on U.S. 20 

     Cores taken from test plots along the eastbound and westbound lanes at the 

end of the nineteen deicer-inhibitor applications were compared with the cores 

taken prior to the application of inhibitor solutions.  SEM images showed that the 

top surface of both treated and non-treated cores contained no ettringite in air 

voids or large pores.  This is probably due to the dynamic nature of the driving 
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surface of a roadway as the tire tread of a vehicle interacts with the road surface.  

The four cores taken from the eastbound section of U.S. 20 in this field test 

showed no physical, textural, or mineralogical differences to the original cores 

taken before the application of inhibitor solutions, except for a slight discoloration 

that could be seen from a cross section of the core.  The discoloration (white 

instead of the normal blue-gray color) occurred 3 to 4 cm from the surface of the 

core and is a result of hydration of slag, which is an integral component of the 

concrete paste in the eastbound lane.  Petrographic and scanning electron 

microscopy did not show any evidence of the presence of primary, secondary or 

delayed ettringite in air voids or large pores.  This result is hardly surprising 

because the presence of slag reduces the amount of cement paste that contains 

sulfate and chemically reacts with calcium hydroxide so that calcium hydroxide is 

converted to calcium silicate hydrate instead of being converted to gypsum which 

can then form ettringite [19].  Moreover, this section of roadway is only 2 to 3 

years old and delayed ettringite may have not had sufficient time to grow. 

The field test conducted on the westbound lanes yielded completely 

different results than the non-reactive eastbound section.  The westbound 

section of U.S. 20 is composed of a C-3 cement mix and is devoid of slag.  SEM 

studies show the presence of abundant ettringite in air voids and large pores 

throughout the cores obtained prior to and after the deicer-inhibitor applications.  

SEM images show that the inhibitor solution clearly affected ettringite growth ~ 

0.3 to 0.5 mm below the surface of the highway (Fig. 4).  In non-treated cores 

(i.e. prior to inhibitor application) ettringite near the surface is ~15-20 µm in 
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length (Fig. 4A), with some crystals approaching ~50 µm in length, whereas 

ettringite crystals in treated cores were < ~10 µm in length (Fig. 4B).  The middle 

and bottom sections of treated and non-treated cores exhibited ettringite crystals 

in air voids in the ~20 to 50 µm range.  The morphology of crystals varied from 

euhedral, elongate (20 to 25 µm) crystals (Fig. 4A) to squat, irregular-shaped 

crystals approximately 5 to 15 µm in length.  Some of these crystals are coated 

with portlandite (Fig. 4B) whereas others show no spatial association to 

portlandite but are also stunted (Figs. 4C and 4D).    

 

4.2 Roof Experiments 

The six concrete cores used for the roof experiments were C-3 and C-4 

mixes (Table 1), which have an air entraining agent and a water reducer added.  

The water/cement ratio for these cores was 0.38 to 0.43, respectively. 

Transmitted light microscopy and SEM imaging of samples prior to the 

application of solutions containing DTPMP showed the presence of abundant 

ettringite in highways built in 1992 (core samples F, E, and H).  Acicular ettringite 

crystals between ~20 and 50 µm filled air voids up to ~100 µm in diameter and 

generally lined the rims of air voids > ~100 µm in these samples.  Ettringite was 

less abundant in highway concretes built in 1997 (core samples Q and P), but 

they still contained a significant amount of ettringite.  Core sample O contained 

between 10 to 20 weight % fly ash and was devoid of ettringite because of the 

addition of fly ash to the concrete mix that gave the concrete a resistance to 

sulfates.  
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At the end of chemical applications, visual inspection of the blocks showed 

that they were, in general, structurally intact and devoid of cracks, pits, and 

scales. However, three blocks did split because of expansion due to freeze-thaw 

action of pre-existing cracks that were initiated during sample preparation.   

We have used the term “ettringite” for the hydrated Ca-Al sulfate present 

in the treated highway concretes but it should be noted that another hydrated Ca-

Al sulfate, monosulfate (Ca4Al2SO4(OH)12.6H2O), will also be present when the 

sulfate content of the concrete paste is low.  However, qualitative SEM point 

analyses of the hydrated Ca-Al sulfate, shown in Figure 6A, in samples F4TB, 

H4BB, E4TT, F1TT, and E1TM indicate that ettringite is the dominant phase. 

Only minor amounts of Si were detected, indicating that the thaumasite 

[Ca3Si2(OH)12.24H2O(SO4)2(CO3)2] component of the ettringite-thaumasite solid 

solution is low.  Figure 6A also show the presence of a minor amount of an 

unidentifiable species with a very low S/Ca ratio.  Yang et al. [20] also identified a 

similar phase in heat cured mortars.   

Results showed that application of inhibitor solution at a weekly rate had a 

more dramatic impact on the size and abundance of ettringite in air voids and 

pore spaces than those subject to monthly applications.  At the surface of the 

blocks, where the inhibitor-bearing solution was applied, SEM imaging showed 

there was an enormous reduction in the amount of ettringite in air voids and large 

pore spaces for all concrete blocks treated weekly with the same solutions used 

in the roof experiments (i.e., 0.01% DTPMP, 0.1% DTPMP, and 0.1% DTPMP 

plus 0.75M NaCl).  Most air voids at or within 1 mm of the surface were devoid of 
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ettringite.  When a solution composed of 0.1% DTPMP plus 0.75M NaCl was 

applied, NaCl were present in some voids and within the paste.  

SEM images of samples to which DTPMP-bearing solutions were applied 

on a weekly basis show that phosphonate had penetrated beneath the surface of 

the concrete, to depths of between 1 and 6 mm.  Pathways of air voids normally 

filled or lined with ettringite were either absent or lined with stunted or corroded 

ettringite crystals (Fig. 7).  Below these depths, all voids and large pores were 

filled or lined with ettringite similar in morphology to that in untreated samples.     

By contrast, for samples treated with DTPMP-bearing solution on a 

monthly basis some air voids at or adjacent to the surface were lined with 

ettringite.  The presence of ettringite was confirmed by qualitative SEM EDAX 

analysis.  Directly below the surface and throughout the rest of the blocks, 

ettringite was present in voids and large pores. 

        

4.3 Laboratory Experiments 

Wet-dry and freeze-thaw experiments were applied to the same six cores 

that were used in the roof experiments.  In both sets of laboratory experiments, 

inhibitor solutions were applied on a weekly basis to all sides (1 ml per side) of 

the concrete block instead of just one side as was the case for the experiments 

carried out on the roof of Science I.  Blocks were cut below the top surface of the 

core, just above the base of the core, and from the middle of the core.  For both 

wet-dry and freeze-thaw experiments involving inhibitor-bearing solutions, SEM 

imaging showed that air voids at the surface of these blocks were devoid of 
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ettringite.  Control blocks that had no inhibitor solutions applied to them exhibited 

no physical changes due to freeze-thaw conditions alone.     

Concrete samples subject to freeze-thaw experiments at the end of one 

year were structurally intact, although there was scaling on the surface of sample 

Q3TB, with deterioration of cement paste around the margins of aggregate 

particles (Fig. 8).  Samples immersed in 0.75M Na2SO4 and 0.1 vol % DTPMP 

exhibited scaling along the aggregate-cement paste interface whereas cracks up 

to 1 cm in length also occurred near the corners of blocks.  Samples immersed in 

0.75M Na2SO4 with 0.1 vol % DTPMP contained abundant ettringite throughout 

the blocks, and were clearly unaffected by the DTPMP presumably due to the 

disproportionately high concentration of Na2SO4.  Similarly, samples sprayed with 

0.1 vol % DTPMP and 5 vol. % Na2SO4 were also unaffected by the presence of 

the inhibitor.  However, for these samples, Na2SO4 crystals grew in spaces 

adjacent to aggregate particles during the thaw period when samples were 

exposed to air for 24 hours.  For samples sprayed with 0.01 vol % DTPMP and 

distilled water,  0.1  vol % DTPMP and distilled water, and  0.1  vol % DTPMP 

and distilled water with 0.75M NaCl, SEM images combined with EDAX point 

analysis showed the presence of corroded and stunted ettringite crystals in air 

voids ~1-6 mm from the surface of the block. Such crystal morphologies mimic 

those that formed during the roof experiments.  Figure 6B shows that SEM point 

compositions of the hydrated Ca-Al sulfate crystals in samples P5TB, P6TB, 

Q3TB, H2Tb, and H4TB were primarily of ettringite with a minor amount of 

monosulfate.  These compositions are similar to those reported for the roof 
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experiments.  In sample Q3BT, minor amounts of alite (Ca3SiO5) and belite 

(Ca2SiO4), as indicated by SEM point analyses, occur as minute grains along the 

walls of some air voids (Fig. 9).  Rather than forming as a product of the 

ettringite-consuming reaction, alite and belite are natural products found in 

Portland cement and were likely present in the walls of the void.  However, where 

DTPMP-bearing (Na2SO4-free) solutions were applied, ettringite crystals 

diminished in size to 10 to 15µm within one month (Fig. 10).   In samples, treated 

with 0.1 vol. % DTPMP and 0.75 M. NaCl, the random distribution of NaCl 

crystals throughout the concrete paste was relatively common.  Although this 

appeared to have no major effect on the degree of deterioration of the concrete, 

the spatial distribution of these crystals clearly demonstrates that the infiltration of 

the NaCl brine was considerable.  In sample P5TB, for example, an almost 

continuous zone of NaCl crystals from one end of the block to the other shows 

that the solution penetrated a minimum of 3.6 cm.  There was no evidence that 

this zone was spatially related to fractures in the sample suggesting that the 

solution primarily permeated through the sample along connected pores. 

Samples Q2BT, H2BT, E2BT, which were submerged in 0.75M Na2SO4 

and subjected to wet-dry experiments, deteriorated rapidly within 3 to 4 months.  

Cracks developed near the corners of blocks and along aggregate-cement paste 

interfaces. With time, the volume and grain-size of ettringite increased and 

formed in both air voids and the cement paste.  After ~3-4 months the volume of 

ettringite and associated cracks were so abundant that concrete blocks exhibited 

catastrophic failure and crumbled.   
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By contrast, the remainder of the samples that were treated with the same 

solutions as the freeze-thaw experiments on the roof of Science I remained 

structurally intact with no visible evidence for scaling or deterioration for the first 

five months. However, after that time, cracks began to develop throughout the 

concrete block with the block eventually collapsing.  The concrete deteriorated 

due to the dehydration of ettringite and other hydrous phases in the cement 

paste, including monosulfate, at high temperature (58oC)  

 

4.4 Nature of Possible Reaction between Ettringite and DTPMP 

An electrospray mass spectrum was obtained in negative ion mode of a solution 

containing 0.1% vol DTPMP mixed with ettringite (Fig. 11).  Inspection of Figure 

11 shows the presence of a deprotonated DTPMP peak (molecular weight of 

572.2) plus two other prominent peaks at 628.1 and 670.2.  Although we are 

unable to identify the peak at 670.2, that at 628.1 is deprotonated DTPMP with a 

Ca2+ ion and a water molecule adsorbed onto the phosphonate ion.   

      

5.     Discussion 

Deterioration of concrete in, for example, highways, heat-treated precast 

concrete, concrete railroad ties, and dam galleries that is caused by the 

expansive growth of ettringite has been supported by several studies [1-6]. 

Various theories have been put forward to explain ettringite-related expansion 

mechanisms.  For example, Cohen [21] and Diamond [22] proposed that 

expansion was caused by crystal growth pressures whereas Mehta [23], Mehta 
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and Wu [24], and Mehta and Wang [25] suggested that concrete expansion is, in 

part, caused by water adsorption on the negatively charged surfaces of ettringite.  

Despite these suggestions, details of the expansive mechanism remain in 

question.  Moreover, there is considerable debate whether ettringite is an 

expansive mineral or whether it simply grows in pores and cracks after their 

development [10-11]      

Ettringite in Iowa highways occurs in air-entrainment voids, interstitial pore 

spaces, cracks, and along the interface between aggregate particles and cement 

paste and is considered by Lee et al. [2] to have been an expansive mineral that 

resulted in the deterioration of the highway concrete.  Lee et al. [2] speculated 

that ettringite was precipitated directly from pore solutions in the highway 

concrete and that the expansive pressures developed because of ettringite 

growth that completely fills microscopic pores and by pressures caused by water 

expansion on the negatively charged surfaces of ettringite.  Whether expansion 

is enhanced by the ice development in infilled and near-filled air voids during 

freeze-thaw remains uncertain, however, it should be noted that such air voids 

are common in the highways used in this study.   

 Ideally, for the highway to maintain its structural integrity, the 

concentration of the DTPMP inhibitor applied to the highway should be low 

enough to cause a reduction in the size of ettringite so that expansive pressures 

produced by ettringite growth on the cement paste are non-existent.  However, in 

order to determine whether DTPMP would react with ettringite under highway 

conditions (rather than in the laboratory where conditions are controlled) in a 
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short period of time (i.e. 15 months); we chose DTPMP concentrations of 0.1 and 

0.01 vol %, which we consider to be high.   The results obtained from the 

applications of DTPMP to the westbound lane of US 20, concrete slabs exposed 

on the roof of Science I, and laboratory based wet-dry experiments are 

consistent with the phosphonate mostly acting as a chelator rather than an 

inhibitor, since ettringite was completely removed in some parts of the highway 

slab.  Both the 0.1 and 0.01 vol % phosphonate-bearing solution permeated into 

the concrete slab and completely dissolved ettringite up to 6 mm from the 

concrete surface (most commonly 1-4 mm).  The phosphonate-bearing solution 

undoubtedly migrated along microcracks, enlarged pore spaces, air voids, and 

distorted transition zones between aggregate and cement paste.  These 

experiments show two important aspects: 1. The chelating solution serves to act 

as a tracer to the extent to which phosphonate-bearing solutions can penetrate 

concrete slabs over a 12-15 month period (i.e. up to 6 mm); and 2. The relative 

importance of chelation and inhibition of DTPMP on ettringite growth.  While the 

process of chelation completely dissolves the ettringite, the effects of inhibition 

are seen at the margins of the zone of chelation where ettringite crystals become 

corroded and stunted.  This zone presumably represents a volume where the 

concentration of DTPMP becomes markedly reduced to the extent that it 

behaves like an inhibitor.  It should be stressed here that other components of 

the solution (e.g., NaCl) likely penetrated samples on the order of the centimeter 

scale.  We suspect that the large size of the phosphonate molecule, the likely 

high adsorption rate of DTPMP, and the clogging of pores by NaCl, likely results 
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in localized differences in the amount of penetration of the phosphonate.  The 

smaller NaCl molecules are less reactive with the cement paste than the 

phosphonate allowing it to penetrate distances on the centimeter scale. 

 Our understanding of the mechanism which causes DTPMP to act as an 

inhibitor is, in part, derived from the findings of Tomson et al. [26] who evaluated 

the adsorption and desorption isotherms of four phosphonates, including 

Dequest® 2000, Dequest® 2010, and Dequest® 2060 on calcite over a wide 

range of solution conditions, which included variable NaCl concentrations.  The 

effectiveness of phosphonates as a retarder of ettringite growth was also 

demonstrated by Coveney et al. [26], using designed phosphonate molecules 

with shapes varying from linear to cyclic.  In Tomson et al.’s [26] experiments, the 

phosphonate solution species that forms is one that essentially has Na and Ca 

attached to the surface of the phosphonate. The phosphonate molecules 

designed by Coveney et al [27] produced a marked reduction in the length of 

ettringite crystals.  

Experiments conducted in the present study of solutions that contain 

DTPMP and ettringite, using electrospray mass spectrometry in negative ion 

mode, show the presence of an ion with a molecular weight of 628.1, which 

corresponds to a deprotonated DTPMP molecule with adsorbed Ca2+ and water. 

In this experiment, it is likely that the Ca ion was cleaved off ettringite and that 

the ion with the molecular weight of 628.1 was adsorbed onto the {0001} face of 

ettringite.  However, in highway concretes, there are several Ca-bearing minerals 

in the cement paste that could also serve as the source of Ca in such an ion. In 
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this regard, it should be noted here that SEM imaging studies showed no 

corrosion along aggregate-cement paste interfaces suggesting that the 

breakdown and subsequent contribution of Ca from minerals in the cement paste 

is less likely than ettringite.   Regardless of the source of Ca, such adsorption 

produced the stunted ettringite crystals in concrete derived from the westbound 

lane of US 20,  slabs exposed on the roof of Science I, and in core from 

laboratory based wet-dry experiments.   

 

6. Summary and Conclusion 

The results obtained in this and companion studies [1,2] on the role of ettringite 

in concrete deterioration should have considerable implications on the way 

maintenance personnel treat highways over their service life.  Ideally, testing of 

the effects of inhibitors on the growth of ettringite should be conducted on 

highways over a multi-year span (i.e. > 10 years).  In this way, the nature and 

extent of ettringite growth can be evaluated as well as the amount, the 

concentration, and the nature of inhibitors can be tested in a realistic fashion.  

The present study attempts to simulate these long-term tests by conducting 

experiments involving a phosphonate inhibitor, DTPMP, on an operating highway 

(US 20), and cores from operating highways that have been subject to moderate 

and minor amounts of deterioration over a year long period when exposed to 

normal weather conditions in Iowa.  We used phosphonate concentrations of 

0.01 and 0.1 vol%, which are high for normal inhibitor concentrations, but it was 

unclear at the beginning of the experiments whether any inhibition of ettringite 
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growth would be observed at low concentrations.  In addition, we have extended 

the laboratory controlled freeze-thaw and wet-dry experiments of Lee at al. [1] by 

exclusively testing the potential inhibition effects of ettringite growth by DTPMP, 

over a range of temperatures that better mimic the extremes in Iowa weather 

conditions.  The results of all experiments in the present study have relied on 

petrographic analysis and SEM imaging of concrete slabs before and after year 

long phosphonate application.  The experiments show that high concentrations of  

DTPMP (i.e., 0.01 and 0.1 vol. %) will dissolve ettringite in air voids, pores, and 

cracks up 6 mm from the surface of the concrete after only one year of 

phosphonate application.  Note that the zone of chelation along the westbound 

lane of US 20 is only 0.3 to 0.5 mm deep but this is due to the fact that only 

nineteen phosphonate applications were made during the project. The results of 

highway, roof and laboratory experiments effectively show the rate at which 

inhibitor solutions penetrate cured concrete paste.  However, the experiments 

more importantly show that the phosphonate acts as an inhibitor around the 

zones of chelation.  This suggests that if concentrations of <0.01 vol % 

phosphonate, for example 0.001 vol%, were applied to the highway over its 

service life, secondary or delayed ettringite is likely to be stunted in length and 

will not create deterioration as a result of expansive growth.  We saw no visual 

affect of cracking or deterioration due to reaction of DTPMP with the cement 

paste.  The reason for the stunted growth of ettringite when treated by DTPMP is 

caused by the adsorption of a Ca2+ ion and a water molecule to deprotonated 

DTPMP on the surface of the {0001} face of ettringite.   
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Table 1  
Characteristics of Iowa highway concrete cores used in roof, furnace, and freezer experiments 

 
Core 
ID 

Year 
Built Deterioration Roadway County Mix 

Type Cement Fine 
Aggregate 

Coarse 
Aggregate 

Air 
Entraining 

Agent 

Water 
Reducer 

E 1992 Moderate I-80 Iowa C-3 Buffalo IA 
(I) 

Disterhoff 
(A48508) 

Sully 
(A50002) Sika AER 

Sika 
Plastocrete 

161 

F 1992 Moderate SH-150 Buchanan C-3 
Mason 
City IA 
(LH I) 

Hoffman 
(A10510) 

Hazleton 
(A10010) 

Protex 
AES 

Protex 
PDA25-DP 

H 1992 Moderate SH-163 Polk/ 
Jasper C-4 

Mason 
City IA 
(LH I) 

Colfax 
(A50502) 

Sully 
(A50002) 

Dara-Vair 
R WRDA-82 

O 1997 Minor US-151 Linn C-3 
(Slag) 

Mason 
City IA 
(HNIS) 

Ivanhoe 
(A57520) 

Bowser-
Springville 
(A57008) 

Daravair 
1000 

Sika 
Plastocrete 

161 

P 1997 Minor SH-163 Mahaska C-3 Louisville 
NE (I/II) 

New 
Harvey 

(A63512) 

Sully 
(A50002 

Sika AEA-
15 

Sika 
Plastocrete 

161 

Q 1997 Minor SH-137 Mahaska C-3 
Mason 
City IA 
(HNIS) 

New 
Harvey 

(A63512) 

Sully 
(A50002 

Conchem 
Air None 
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Figure 1.  SEM micrograph of large (A) and small (B) air voids lined with well-formed, euhderal  
                 ettringite crystals, approximately 20 µm in length in sample “H” treated with sodium  
                 sulfate solution  

 

 
 

Figure 2.  Illustration of Dequest 2060S (DTPMP) molecule - Diethylenetriamine penta (methylene 
   phosphonic acid). 
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Figure 3.  Concrete samples O5BB (left) and P3TB (right) showing compositional rims on dolomite 
                  particles that formed by dedolomitization reactions associated with the application of 

NaCl  deicing salts. 
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Figure 4.  SEM micrographs of treated core samples from the westbound lane of U.S. 20 near  
                 Williams, Iowa.  A.  Ettringite crystals from core sample (E1TB)  prior to treatment with 
                 inhibitor solution.  B. Treated sample of core #1 U.S. 20 westbound, showing very short 
                 crystals, 0.23 mm directly below the road surface, coated with portlandite (these crystals 
                 are only ~10µm and less in length).  C. Profile of treated sample of core #4 U.S. 20 
                 westbound, showing air voids 0.33 mm below road surface.  Ettringite crystals are ~20 
                 µm in length but exhibit a different morphology than is normally seen for ettringite.  
                 D. Closeup of treated sample of core #2 U.S. 20 westbound, showing unusual morphology. 
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Figure 5.  Layout of highway concrete samples on the roof of Science I at Iowa State  
                 University. 
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Figure 6.  Atomic ratio plots of S/Ca vs. Al/Ca of hydrated Ca-Al sulfate in concrete samples from: A.      

Experiments conducted on the roof of Science I at Iowa State University; and B. Controlled 
freeze-thaw experiments.  Note that for both sets of experiments the sulfate is primarily 
ettringite with lesser amounts of monosulfate.    
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Figure 7.  SEM micrograph of roof sample Q3TM showing a pathway of air voids close to the sample 
                 surface that are devoid of ettringite.  At a distance of approximately 4 mm from the  
                 surface, ettringite remains in the air voids showing the distance the chelating phosphonate   
                 solution penetrated. 
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                Figure 8.  Sample Q3TB was subject to freeze-thaw cycling and application of Dequest 
                                 2060S over a one year period and shows signs of pitting, scaling, and cracking.  
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Figure 9.  SEM micrograph of sample Q3TB.  Near the surface, air voids contain no ettringite but 
instead trace amounts of alite and belite.  At a distance of 2 mm from the surface, euhedral 
crystals of ettringite line the walls of the air voids. 
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Figure 10.  SEM micrograph of stunted ettringite crystals (~10-15 µm in length) in sample H4TB 
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Figure 11.  Electrospray mass spectrometry spectrum in negative ionization mode of deprotonated  
                   DTPMP molecule (molecular weight = 572.2),  with a Ca2+  and a water molecule 

adsorbed onto the phosphonate molecule (molecular weight = 628.1)  and other 
unidentifiable species.  

 
 
 
 
 
 
 
 
 
 



 46

Appendix A:  General information on concrete cores used in roof and laboratory experiments 
Sa
mp. 

# 
Iowa Location Project ID # Year 

Built Mile Post Sample 
# Core Locations Lane Core Station 

Core 
Mile 
Post 

Quarry 
Location 

H1T SH163 
Polk/Jasper Co. RP-163-1(50)--16-77 1992 12.36 to 

17.01 H1T 208+89 to 
189+72 WB WB 136+00 17 Eagle 

City Fm 

HIB SH163 
Polk/Jasper Co. RP-163-1(50)--16-77 1992 12.36 to 

17.01 HIB 208+89 to 
189+72 WB WB 136+00 17 Eagle 

City Fm 

H2T SH163 
Polk/Jasper Co. RP-163-1(50)--16-77 1992 12.36 to 

17.01 H2T 189+72 to 
170+76 WB WB 136+00 17 Eagle 

City Fm 
H2B SH163 

Polk/Jasper Co. RP-163-1(50)--16-77 1992 12.36 to 
17.01 H2B 189+72 to 

170+76 WB WB 136+00 17 Eagle 
City Fm 

H3T SH163 
Polk/Jasper Co. RP-163-1(50)--16-77 1992 12.36 to 

17.01 H3T 208+89 to 
189+72 WB WB 136+00 17 Eagle 

City Fm 
H3B SH163 

Polk/Jasper Co. RP-163-1(50)--16-77 1992 12.36 to 
17.01 H3B 208+89 to 

189+72 WB WB 136+00 17 Eagle 
City Fm 

H4T SH163 
Polk/Jasper Co. RP-163-1(50)--16-77 1992 12.36 to 

17.01 H4T 189+72 to 
170+76 WB WB 136+00 17 Eagle 

City Fm 
H4B SH163 

Polk/Jasper Co. RP-163-1(50)--16-77 1992 12.36 to 
17.01 H4B 189+72 to 

170+76 WB WB 136+00 17 Eagle 
City Fm 

H5T SH163 
Polk/Jasper Co. RP-163-1(50)--16-77 1992 12.36 to 

17.01 H5T 982+00 to 
995+53 EB EB 994+00 13 Eagle 

City Fm 
H5B SH163 

Polk/Jasper Co. RP-163-1(50)--16-77 1992 12.36 to 
17.01 H5B 982+00 to 

995+53 EB EB 994+00 13 Eagle 
City Fm 

H6T SH163 
Polk/Jasper Co. RP-163-1(50)--16-77 1992 12.36 to 

17.01 H6T 995+53 to 13+00 EB EB 994+00 13 Eagle 
City Fm 

H6B SH163 
Polk/Jasper Co. RP-163-1(50)--16-77 1992 12.36 to 

17.01 H6B 995+53 to 13+00 EB EB 994+00 13 Eagle 
City Fm 

E1T I-80 Iowa Co. IR-80-6(157)205--12-
4 1992 204.80 to 

209.65 E1T 260+00 to 
238+40 WB WB 210+00 208.7 Eagle 

City Fm 
E1B I-80 Iowa Co. IR-80-6(157)205--12-

4 1992 204.80 to 
209.65 E1B 260+00 to 

238+40 WB WB 210+00 208.7 Eagle 
City Fm 

E2T I-80 Iowa Co. IR-80-6(157)205--12-
4 1992 204.80 to 

209.65 E2T 231+70 to 
201+65 WB WB 210+00 208.7 Eagle 

City Fm 
E2B I-80 Iowa Co. IR-80-6(157)205--12-

4 1992 204.80 to 
209.65 E2B 231+70 to 

201+65 WB WB 210+00 208.7 Eagle 
City Fm 

E3T I-80 Iowa Co. IR-80-6(157)205--12-
4 1992 204.80 to 

209.65 E3T 260+00 to 
238+40 WB WB 210+00 208.7 Eagle 

City Fm 
E3B I-80 Iowa Co. IR-80-6(157)205--12-

4 1992 204.80 to 
209.65 E3B 260+00 to 

238+40 WB WB 210+00 208.7 Eagle 
City Fm 

E4T I-80 Iowa Co. IR-80-6(157)205--12-
4 1992 204.80 to 

209.65 E4T 231+70 to 
201+65 WB WB 210+00 208.7 Eagle 

City Fm 
E4B I-80 Iowa Co. IR-80-6(157)205--12-

4 1992 204.80 to 
209.65 E4B 231+70 to 

201+65 WB WB 210+00 208.7 Eagle 
City Fm 

E5T I-80 Iowa Co. IR-80-6(157)205--12-
4 1992 204.80 to 

209.65 E5T ? WB WB 210+00 208.7 Eagle 
City Fm 

E5B I-80 Iowa Co. IR-80-6(157)205--12-
4 1992 204.80 to 

209.65 E5B ? WB WB 210+00 208.7 Eagle 
City Fm 

E6T I-80 Iowa Co. IR-80-6(157)205--12-
4 1992 204.80 to 

209.65 E6T ? WB WB 210+00 208.7 Eagle 
City Fm 

E6B I-80 Iowa Co. IR-80-6(157)205--12-
4 1992 204.80 to 

209.65 E6B ? WB WB 210+00 208.7 Eagle 
City Fm 

Q2T US165 Polk Co. NHS-500-1(96)--19-
77 1997 55.87 to 

60.11 Q2T 1323+08 to 
1316+50 SB SB 1317+00 58 North Hill 

Group 
Q2
B US165 Polk Co. NHS-500-1(96)--19-

77 1997 55.87 to 
60.11 Q2B 1323+08 to 

1316+50 SB SB 1317+00 58 North Hill 
Group 

Q3T US165 Polk Co. NHS-500-1(96)--19-
77 1997 55.87 to 

60.11 Q3T 1328+50 to 
1324+30 SB SB 1317+00 58 North Hill 

Group 
Q3
B US165 Polk Co. NHS-500-1(96)--19-

77 1997 55.87 to 
60.11 Q3B 1328+50 to 

1324+30 SB SB 1317+00 58 North Hill 
Group 

Q4T US165 Polk Co. NHS-500-1(96)--19-
77 1997 55.87 to 

60.11 Q4T 1323+08 to 
1316+50 SB SB 1317+00 58 North Hill 

Group 
Q4
B US165 Polk Co. NHS-500-1(96)--19-

77 1997 55.87 to 
60.11 Q4B 1323+08 to 

1316+50 SB SB 1317+00 58 North Hill 
Group 

Q5T US165 Polk Co. NHS-500-1(96)--19-
77 1997 55.87 to 

60.11 Q5T 1223+50 to 
1243+53 NB NB 1268+00 57 North Hill 

Group 
Q5
B US165 Polk Co. NHS-500-1(96)--19-

77 1997 55.87 to 
60.11 Q5B 1223+50 to 

1243+53 NB NB 1268+00 57 North Hill 
Group 

Q6T US165 Polk Co. NHS-500-1(96)--19-
77 1997 55.87 to 

60.11 Q6T 1264+25 to 
1281+00 NB NB 1268+00 57 North Hill 

Group 
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   Samp. # Iowa 
Location Project ID # Year 

Built Mile Post 

Q6B US165 Polk 
Co. 

NHS-500-1(96)--19-
77 1997 55.87 to 

60.11 

P1T SH163 
Mahaska Co. 

NHS-163-4(22)--2R-
62 1997 44.99 to 

54.78 

P1B SH163 
Mahaska Co. 

NHS-163-4(22)--2R-
62 1997 44.99 to 

54.78 

P3T SH163 
Mahaska Co. 

NHS-163-4(22)--2R-
62 1997 44.99 to 

54.78 

P3B SH163 
Mahaska Co. 

NHS-163-4(22)--2R-
62 1997 44.99 to 

54.78 

P4T SH163 
Mahaska Co. 

NHS-163-4(22)--2R-
62 1997 44.99 to 

54.78 

P4B SH163 
Mahaska Co. 

NHS-163-4(22)--2R-
62 1997 44.99 to 

54.78 

P5T SH163 
Mahaska Co. 

NHS-163-4(22)--2R-
62 1997 44.99 to 

54.78 

P5B SH163 
Mahaska Co. 

NHS-163-4(22)--2R-
62 1997 44.99 to 

54.78 

P6T SH163 
Mahaska Co. 

NHS-163-4(22)--2R-
62 1997 44.99 to 

54.78 

P6B SH163 
Mahaska Co. 

NHS-163-4(22)--2R-
62 1997 44.99 to 

54.78 

F1TJ SH150 
Buchanan Co. F-150-3(42)--20-10 1992 49.20 to 

51.35 

F1BJ SH150 
Buchanan Co. F-150-3(42)--20-10 1992 49.20 to 

51.35 

F2BMS SH150 
Buchanan Co. F-150-3(42)--20-10 1992 49.20 to 

51.35 

F3TJ SH150 
Buchanan Co. F-150-3(42)--20-10 1992 49.20 to 

51.35 

F3BJ SH150 
Buchanan Co. F-150-3(42)--20-10 1992 49.20 to 

51.35 

F4TMS SH150 
Buchanan Co. F-150-3(42)--20-10 1992 49.20 to 

51.35 

F4BMS SH150 
Buchanan Co. F-150-3(42)--20-10 1992 49.20 to 

51.35 

F5T SH150 
Buchanan Co. F-150-3(42)--20-10 1992 49.20 to 

51.35 

F5B SH150 
Buchanan Co. F-150-3(42)--20-10 1992 49.20 to 

51.35 

F5B2 SH150 
Buchanan Co. F-150-3(42)--20-10 1992 49.20 to 

51.35 

F6T SH150 
Buchanan Co. F-150-3(42)--20-10 1992 49.20 to 

51.35 

F6B SH150 
Buchanan Co. F-150-3(42)--20-10 1992 49.20 to 

51.35 

O2T US151 Linn 
Co. 

NHS-151-3(97)--19-
57 1997 33.48 to 

36.68 

O2B US151 Linn 
Co. 

NHS-151-3(97)--19-
57 1997 33.48 to 

36.68 

O3T US151 Linn 
Co. 

NHS-151-3(97)--19-
57 1997 33.48 to 

36.68 

O3B US151 Linn 
Co. 

NHS-151-3(97)--19-
57 1997 33.48 to 

36.68 

O4T US151 Linn 
Co. 

NHS-151-3(97)--19-
57 1997 33.48 to 

36.68 

O4B US151 Linn 
Co. 

NHS-151-3(97)--19-
57 1997 33.48 to 

36.68 

O5T US151 Linn 
Co. 

NHS-151-3(97)--19-
57 1997 33.48 to 

36.68 

O5B US151 Linn 
Co. 

NHS-151-3(97)--19-
57 1997 33.48 to 

36.68 

O6T US151 Linn 
Co. 

NHS-151-3(97)--19-
57 1997 33.48 to 

36.68 

O6B US151 Linn 
Co. 

NHS-151-3(97)--19-
57 1997 33.48 to 

36.68 

Samp. # Core 
Locations Lane Core 

Station 
Core 
Mile 
Post 

Quarry Location 

Q6B 1264+25 to 
1281+00 NB NB 

1268+00 57 North Hill Group 

P1T 1001+40 to 
1040+45 EB EB 

1009+00 51 Eagle City Fm 

P1B 1001+40 to 
1040+45 EB EB 

1009+00 51 Eagle City Fm 
P3T 1001+40 to 

1040+45 EB EB 
1009+00 51 Eagle City Fm 

P3B 1001+40 to 
1040+45 EB EB 

1009+00 51 Eagle City Fm 
P4T 1001+40 to 

1040+45 EB EB 
1009+00 51 Eagle City Fm 

P4B 1001+40 to 
1040+45 EB EB 

1009+00 51 Eagle City Fm 
P5T 1214+48 to 

1187+56 EB WB 
1191+00 55 Eagle City Fm 

P5B 1214+48 to 
1187+56 EB WB 

1191+00 55 Eagle City Fm 
P6T 1214+48 to 

1187+56 EB WB 
1191+00 55 Eagle City Fm 

P6B 1214+48 to 
1187+56 EB WB 

1191+00 55 Eagle City Fm 
F1TJ 528+30 to 

525+47 FW NB 508+00 51 Hopington Fm 

F1BJ 528+30 to 
525+47 FW NB 508+00 51 Hopington Fm 

F2BMS 525+47 to 
511+55 FW NB 508+00 51 Hopington Fm 

F3TJ 528+30 to 
525+47 FW NB 508+00 51 Hopington Fm 

F3BJ 528+30 to 
525+47 FW NB 508+00 51 Hopington Fm 

F4TMS 525+47 to 
511+55 FW NB 508+00 51 Hopington Fm 

F4BMS 525+47 to 
511+55 FW NB 508+00 51 Hopington Fm 

F5T 502+45 to 
502+00 FW NB 482+00 51 Hopington Fm 

F5B 502+45 to 
502+00 FW NB 482+00 51 Hopington Fm 

F5B2 502+45 to 
502+00 FW NB 482+00 51 Hopington Fm 

F6T 502+00 to 
500+85 FW NB 482+00 51 Hopington Fm 

F6B 502+00 to 
500+85 FW NB 482+00 51 Hopington Fm 

O2T 243+61 to 
277+26 NB SB 287+00 35 Scotch Grove Fm 

O2B 243+61 to 
277+26 NB SB 287+00 35 Scotch Grove Fm 

O3T 284+26 to 
297+07 SB SB 287+00 35 Scotch Grove Fm 

O3B 284+26 to 
297+07 SB SB 287+00 35 Scotch Grove Fm 

O4T 243+61 to 
277+26 NB SB 287+00 35 Scotch Grove Fm 

O4B 243+61 to 
277+26 NB SB 287+00 35 Scotch Grove Fm 

O5T ? ? SB 287+00 35 Scotch Grove Fm 
O5B ? ? SB 287+00 35 Scotch Grove Fm 
O6T ? ? SB 287+00 35 Scotch Grove Fm 

O6B ? ? SB 287+00 35 Scotch Grove Fm 



Appendix B:  Summary of etrographic observations of concrete core samples 
Sample 

# 
Lime/Dolo 

Stone 
Ag. Grain 
Size (mm) 

Grain 
Shape Aggregate Rims (Y or N) & Description Flyash 

or Slag 
Void 

(Paste) % 
Ettringite in Voids 

(Description) Cracks (Where) 

H1T Dolo/Lime 0.03 to 0.09 An to Sub Partial and Complete Rims Into Paste None 5% Some Rim Large crack in paste 
HIB Dolo/Lime 0.06 to 0.12 An to Sub Partial Rims, Some Into Paste None 5% Some Rim Fine and medium aggregate 

H2T Dolo/Lime 0.03 to 0.20 Sub None None 5% None Large cracks in paste and fine & 
coarse aggregate 

H2B Dolo/Lime 0.04 to 0.10 Sub Partial and Complete Rims None 5% Rim and Void Filled Fine aggregate 
H3T Dolo/Lime 0.05 to 0.22 Sub Partial and Complete Rims None 5% Rim and Small Void Filled Fine aggregate 
H3B Dolo/Lime 0.02 to 0.13 Sub to Euh Partial Rims None 5% Rim and Small Void Filled Coarse aggregate 
H4T Dolo/Lime 0.02 to 0.10 Sub to Euh Partial Rims None 5% Rim and Small Void Filled Coarse aggregate 
H4B Dolo/Lime 0.02 to 0.10 Sub to Euh Partial Rims None 5% Rim and Small Void Filled None 

H5T Dolo/Lime 0.05 to 0.18 Sub to Euh Partial and Complete Rims None 5% Rim and Small Void Filled Large crack in paste/Coarse 
aggregate 

H5B Dolo/Lime 0.05 to 0.15 Sub to Euh Partial Rims, Some Into Paste None 5% Rim and Small Void Filled None 
H6T Dolo/Lime 0.02 to 0.12 Sub to Euh Partial Rims None 5% Large Rims Going to Void Filled Fine aggreagte 
H6B Dolo/Lime 0.02 to 0.13 Sub Partial Rims None 5% Rim and Small Void Filled Fine & coarse aggregate 
E1T Dolo/Lime 0.05 to 0.10 Sub Partial and Complete Rims Into Paste None 5% Rim and Small Void Filled Fine & coarse aggregate 
E1B Dolo/Lime 0.04 to 0.14 An to Sub Partial Rims None 5% Rim and Void Filled Fine aggregate 

E2T Dolo/Lime 0.03 to 0.18 Sub to Euh Partial and Complete Rims Into Paste None 5% Small Void Filled Large cracks through fine 
aggregate and paste 

E2B Dolo/Lime 0.02 to 0.13 Sub to Euh Partial Rims None 5% Rim and Void Filled Large crack around large void 
space 

E3T Dolo/Lime 0.02 to 0.18 Sub to Euh Partial and Complete Rims Into Paste None 5% Small Void Filled Large crack in paste 
E3B Dolo/Lime 0.05 to 0.10 Sub Partial Rims None 5% Rim and Void Filled Large crack in paste 
E4T Dolo/Lime 0.10 Sub Partial and Complete Rims None 5% Rim and Small Void Filled None 
E4B Dolo/Lime 0.02 to 0.10 Sub to Euh Partial and Complete Rims None 5% Rim and Small Void Filled None 
E5T Dolo/Lime 0.02 to 0.12 Sub Partial and Complete Rims None 5% Some Rim and Small Void Filled Fine aggregate 
E5B Dolo/Lime 0.02 to 0.11 Sub Partial and Complete Rims None 5% Rim and Void Filled Coarse aggregate 
E6T Dolo/Lime 0.04 to 0.12 Sub to Euh Partial and Complete Rims None 5% Rim and Small Void Filled Coarse aggregate 
E6B Dolo/Lime 0.02 to 0.05 Sub Partial and Complete Rims None 5% Rim and Void Filled None 
Q2T Lime 0.10 Sub to Euh None None 5% Rim Fine aggregate 
Q2B Lime 0.05 to 0.25 Sub to Euh Partial and Complete Rims None 5% Some Rim Coarse aggregate 
Q3T Lime 0.12 Sub to Euh Partial Rims, Some Into Paste None 5% None Large crack in paste 
Q3B Lime 0.03 to 0.15 Sub Partial Rims, Some Into Paste None 5% Rim None 

Q4T Lime 0.02 to 0.25 Sub Partial Rims, Some Into Paste None 5% Small Void Filled Large crack in paste/Coarse 
aggregate 

Q4B Lime 0.02 to 0.10 An to Sub Partial Rims None 5% Rim and Void Filled None 
Q5T Lime 0.05 to 0.28 Sub to Euh Partial Rims None 5% Some Rim and Small Void Filled None 
Q5B Lime 0.01 to 0.08 An to Sub Partial and Complete Rims None 5% None Coarse aggregate 
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Sample 
# 

Lime/Dolo 
Stone 

Ag. Grain 
Size (mm) 

Grain 
Shape Aggregate Rims (Y or N) & Description Flyash 

or Slag 
Void 

(Paste) 
% 

Ettringite in Voids 
(Description) Cracks (Where) 

Q6T Lime 0.12 Sub to Euh Partial Rims, Some Into Paste None 5% Some Rim and Small Void Filled Coarse aggregate 
Q6B Limestone 0.05 to 0.18 An to Sub Complete Rims None 5% Some Rim None 
P1T Dolo/Lime 0.05 An to Sub Partial Rims, Some Into Paste None 5% Some Rim and Small Void Filled Fine aggregate 
P1B Dolo/Lime 0.04 to 0.18 An to Sub Partial and Complete Rims None 5% Rim and Void Filled Coarse aggregate 
P3T Dolo/Lime 0.02 to 0.14 Sub Partial and Complete Rims None 5% Small Void Filled Coarse aggregate 
P3B Dolo/Lime 0.03 to 0.10 Sub Partial and Complete Rims None 5% Small Void Filled Coarse aggregate 
P4T Dolo/Lime 0.05 to 0.10 An to Sub Partial and Complete Rims None 5% Some Rim and Small Void Filled Coarse aggregate 
P4B Dolo/Lime 0.02 to 0.10 An to Sub Partial and Complete Rims Into Paste None 5% Small Void Filled Coarse aggregate 
P5T Dolo/Lime 0.02 to 0.12 An to Sub Complete Rims None 5% Some Rim and Small Void Filled None 
P5B Dolo/Lime 0.02 to 0.08 An to Sub Partial and Complete Rims Into Paste None 5% Rim and Void Filled Coarse aggregate 
P6T Dolo/Lime 0.02 to 0.06 An to Sub Partial and Complete Rims Into Paste None 5% Some Rim and Small Void Filled Coarse aggregate 
P6B Dolo/Lime 0.02 to 0.07 An to Sub Partial and Complete Rims None 5% Rim and Small Void Filled Coarse aggregate 
F1TJ Dolo 0.03 to 0.10 An to Sub Partial and Complete Rims None 5% Rim Coarse aggregate 
F1BJ Dolo 0.04 to 0.10 An to Sub Partial Rims, Some Into Paste None 5% Rim and Small Void Filled Fine aggregate 

F2BMS Dolo 0.04 to 0.08 An None None 5% Rim and Small Void Filled None 

F3TJ Dolo 0.03 to 0.10 Sub Partial and Complete Rims Into Paste None 5% None Large cracks in paste/Coarse 
aggregate 

F3BJ Dolo 0.04 to 0.10 An to Sub Complete Rims None 5% Rim and Void Filled None 
F4TMS Dolo 0.04 to 0.10 Sub Complete Rims, Some Into Paste None 5% None Large crack in paste 
F4BMS Dolo 0.03 to 0.10 An to Sub Partial Rims None 5% Rim and Void Filled None 

F5T Dolo 0.03 to 0.08 An to Sub Partial and Complete Rims Into Paste None 5% None Large crack in paste 
F5B Dolo 0.04 to 0.08 An to Sub Partial Rims None 5% Rim and Void Filled None 

F5B2 Dolo 0.04 to 0.09 An Partial and Complete Rims Into Paste None 5% Void Filled None 
F6T Dolo 0.03 to 0.08 An to Sub Partial and Complete Rims Into Paste None 5% Void Filled Large crack in paste 
F6B Dolo 0.03 to 0.09 An Partial Rims None 5% Rim and Void Filled None 
O2T Lime 0.02 to 0.13 An to Sub Partial Rims, Some Into Paste Flyash 8% None Fine & coarse aggregate 
O2B Lime 0.02 to 0.08 An to Sub None Flyash 8% None Fine aggregate 

O3T Lime 0.03 to 0.12 An to Sub Partial Rims Flyash 8% None Large cracks in paste/Coarse 
aggregate 

O3B Lime 0.02 to 0.08 An to Sub Partial Rims Flyash 8% None Coarse aggregate 
O4T Lime 0.02 to 0.10 An to Sub Partial Rims Flyash 8% None None 
O4B Lime 0.02 to 0.07 An to Sub Partial Rims, Some Into Paste Flyash 8% None None 
O5T Lime 0.02 to 0.10 Sub Partial Rims Flyash 8% None Coarse aggregate 
O5B Lime 0.02 to 0.05 An to Sub Partial Rims Flyash 8% None Coarse aggregate 
O6T Lime 0.02 to 0.12 Sub Partial and Complete Rims Into Paste Flyash 8% None None 
O6B Lime 0.02 to 0.08 Sub None Flyash 8% None None 



 
Appendix C:  Percentage of S-bearing minerals (pyrite and gypsum) and members 

              of the system Fe-O-H in roadway cores used in  roof and laboratory experiments 
 

 
 
 
 

 
 
 

 
 
 
 
 
 

Sample # Pyrite Gypsum Magnitite Hematite Goethite 
H1T 0.40% x 0.10% x 0.20% 
HIB 0.40% 2.00% 0.20% 0.05% 0.20% 
H2T 0.30% x 0.20% 0.02% 0.10% 
H2B 0.30% 2.00% 0.30% x 0.20% 
H3T 0.30% x 0.20% 0.01% 0.10% 
H3B 0.30% 0.50% 0.10% 0.02% 0.20% 
H4T 0.30% x 0.10% 0.01% 0.05% 
H4B 0.20% x 0.20% x 0.03% 
H5T 0.10% x 0.10% x 0.01% 
H5B 0.30% x 0.30% x 0.10% 
H6T 0.10% x 0.20% 0.10% 0.02% 
H6B 2.00% x 0.30% x 0.01% 
E1T 0.20% x 0.20% x x 
E1B 0.10% x 0.20% 0.10% x 
E2T 0.10% x 0.10% 0.05% x 
E2B 0.10% x 0.20% 0.05% x 
E3T 0.20% 0.50% 0.10% 0.02% x 
E3B 0.10% x 0.10% 0.02% x 
E4T 0.02% 0.50% 0.10% 0.05% x 
E4B 0.07% x 0.02% 0.01% x 
E5T 0.10% x 0.02% 0.01% 0.05% 
E5B 0.10% 0.50% 0.02% 0.02% x 
E6T 0.01% 2.00% 0.05% x x 
E6B 0.07% x 0.10% 0.01% x 
Q2T 0.07% x 0.10% 0.10% 0.02% 
Q2B 0.10% 0.50% 0.50% x x 
Q3T 0.05% x 0.07% x 0.01% 
Q3B 0.05% x 0.05% x x 
Q4T 0.05% x 0.07% x x 
Q4B 0.07% 0.25% 0.05% x x 
Q5T 0.05% x 0.05% 0.01% x 
Q5B 0.05% x 0.01% x x 
Q6T 0.02% x 0.20% 0.01% x 

Sample # Pyrite Gypsum Magnitite Hematite Goethite 
Q6B 0.05% 2.00% 0.10% x Trace 
P1T Trace 1.00% 0.50% x x 
P1B Trace x 0.25% x x 
P3T Trace x 0.05% x x 
P3B 0.05% 0.50% 0.10% x Trace 
P4T 0.01% x 0.05% x Trace 
P4B 0.01% x 0.05% x Trace 
P5T 0.01% 1.00% 0.05% Trace x 
P5B 0.05% x 0.07% Trace x 
P6T 0.01% x 0.05% x Trace 
P6B Trace 2.00% 0.05% x x 
F1TJ Trace x 0.04% Trace 0.05% 
F1BJ x x 0.01% Trace x 

F2BMS x x Trace x Trace 
F3TJ x x 0.01% x 0.01% 
F3BJ x x 0.03% Trace x 

F4TMS x x 0.03% x Trace 
F4BMS x x 0.01% x x 

F5T Trace x 0.02%  0.01% 
F5B x x 0.01% Trace Trace 

F5B2 x x 0.01% Trace x 
F6T x 2.00% 0.02% Trace Trace 
F6B Trace x 0.01% Trace x 
O2T 0.01% x Trace Trace x 
O2B Trace x 0.01% Trace x 
O3T 0.01% x 0.01% Trace Trace 
O3B 0.01% x 0.01% x Trace 
O4T Trace 0.25% Trace x x 
O4B Trace x Trace x x 
O5T Trace 0.25% Trace x x 
O5B 0.05% x 0.01% Trace x 
O6T Trace x Trace x x 
O6B Trace x 0.01% x x 
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Appendix D:  1992 core sample cement mix information 
 
 

ID Year Project Number Roadway County Contractor Max./Min. 
Temp Mix Type 

E 92 IR-80-6(157)205--12-48 I-80 Iowa Fred Carlson 85/55 C-3WR-C 

      77/54 C-3WR-C 

      86/65 C-3WR-C 

F 91 F-150-3(42)--20-10 SH-150 Buchanan Manatt's 70/55 C-3WR-C 

      89/60 C-3WR-C 

      65/50 C-3WR-C 

      65/50 C-3WR 

      65/50 C-3WR 

      50/35 C-3WR 

 92     47/38 C-3WR-C 

H 92 RP-163-1(50)--16-77 SH-163 Polk/Jasper Cedar Valley 84/56 C-4WR-C 

      86/68 C-4WR-C 

      82/68 C-4WR-C 

      57/46 C-4WR 

      54/47 C-4WR 

 

ID Cement Fly Ash Fine Aggregate Coarse Aggregate Water Reducer Air Entraining Agent

E Buffalo IA (I) Ottumwa (C) Disterhoff (A48508) Sully (A50002) Sika Plastocrete 161 Sika AER 

 Buffalo IA (I) Ottumwa (C) Disterhoff (A48508) Sully (A50002) Sika Plastocrete 161 Sika AER 

 Buffalo IA (I) Ottumwa (C) Disterhoff (A48508) Sully (A50002) Sika Plastocrete 161 Sika AER 

F Mason City IA (LH I) Louisa (C) Hoffman (A10510) Hazleton (A10010) Protex PDA25-DP Protex AES 

 Mason City IA (LH I) Louisa (C) Hoffman (A10510) Hazleton (A10010) Protex PDA25-DP Protex AES 

 Mason City IA (LH I) Louisa (C) Hoffman (A10510) Hazleton (A10010) Protex PDA25-DP Protex AES 

 Mason City IA (LH I) None Hoffman (A10510) Hazleton (A10010) Protex PDA25-DP Protex AES 

 Mason City IA (LH I) None Hoffman (A10510) Hazleton (A10010) Protex PDA25-DP Protex AES 

 Mason City IA (LH I) None Hoffman (A10510) Hazleton (A10010) Protex PDA25-DP Protex AES 

 Mason City IA (HN I) Louisa (C) Randalia (A33510) Hazleton (A10010) Prokrete N-3 Conchem AES 

H Mason City IA (HN I) Ottumwa (C) Colfax (A50502) Sully (A50002) WRDA-82 Dara-Vair R 

 Mason City IA (HN I) Ottumwa (C) Colfax (A50502) Sully (A50002) WRDA-82 Dara-Vair R 

 Mason City IA (HN I) Ottumwa (C) Colfax (A50502) Sully (A50002) WRDA-82 Dara-Vair R 

 Mason City IA (HN I) None Colfax (A50502) Sully (A50002) WRDA-82 Dara-Vair R 

 Mason City IA (HN I) None Colfax (A50502) Sully (A50002) WRDA-82 Dara-Vair R 
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Appendix E:  1997 core sample cement mix information 

 
 

ID Year Project Number Roadway County Contractor Max./Min. 
Temperature Mix Type 

O 97 NHS-151-3(97)--19-57 US-151 Linn 
Allied 

Construction 91/67 C-3WR-C10 

      77/53 C-3WR-C10 
      83/59 C-3WR-C10 

P 97 NHS-163-4(22)--2R-62 SH-163 Mahaska Fred Carlson 82/56 C-3WR-C20 

        
      75/56 C-3WR-C20 

Q 97 NHS-137-3(19)--19-62 SH-137 Mahaska Manatt's 46/23 C-3-C20 

      46/23 C-3-C20 

      90/70 C-3WR-C20 
      87/68 C-3WR-C20 

 

        ID Cement Fly Ash Fine Aggregate Coarse Aggregate Water Reducer   Air Entraining Agent 

        O Mason City IA (HN IS) Louisa (C) Ivanhoe (A57520) Bowser-Springville 
(A57008) Sika Plastocrete 161       Daravair 1000 

 Mason City IA (HN IS) Louisa (C) Ivanhoe (A57520) Bowser-Springville 
(A57008) Sika Plastocrete 161       Daravair 1000 

 Mason City IA (HN IS) Louisa (C) Ivanhoe (A57520) Bowser-Springville 
(A57008) Sika Plastocrete 161       Daravair 1000 

       P Louisville NE (I/II) Council Bluffs #3 
(C) New Harvey (A63512) Sully (A50002) Sika Plastocrete 161         Sika AEA-15 

 Louisville NE (I/II) Ottumwa (C) New Harvey (A63512) Sully (A50002) Sika Plastocrete 161         Sika AEA-15 

       Q Mason City IA (HN I/II) Louisa (C) New Harvey (A63512) Sully (A50002) None         Conchem Air 

 Mason City IA (HN I/II) Louisa (C) New Harvey (A63512) Sully (A50002) None         Conchem Air 

 Mason City IA (HN I/II) Louisa (C) New Harvey (A63512) Sully (A50002) Conchem 25DP **         Conchem Air 

 Mason City IA (HN I/II) Louisa (C) New Harvey (A63512) Sully (A50002) Conchem 25DP **         Conchem Air 
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Appendix F:  U.S. 20 core sample cement mix information 
 
 

Eastbound US 20 Built 1999 QMC Mix Design 
Cement Type IS 0.093 

Fly Ash 0.019 
Coarse 0.32 

Intermediate 1/2" 0.057 
Fine 0.308 

Water 0.133 
Air 0.07 

 
Westbound US 20 Built 1991 C-3WR-C15 

Cement Type I 0.092 
Fly Ash 0.019 
Coarse 0.375 
Fine 0.308 

Water 0.146 
Air 0.06 

 
 
 
 




