Field Evaluation of Electro-Reflective Measuring Apparatus (ERMA)

Highway Division Office of Materials March 1981

DISCLAIMER

The contents of this report reflect the views of the author and do not necessarily reflect the official views or policy of the Iowa Department of Transportation. This report does not constitute a standard, specification or regulation. FIELD EVALUATION OF ELECTRO-REFLECTIVE MEASURING APPARATUS (ERMA)

by Charles J. Potter March, 1981

IOWA DEPARTMENT OF TRANSPORTATION HIGHWAY DIVISION OFFICE OF MATERIALS Ames, Iowa 50010 515-296-1232

ACKNOWLEDGEMENTS

Special thanks to Lyman Moothart, Materials Lab. Tech. 4, for successfully modifying the ERMA device; to Robert Johannes, District #1 Paint Foreman, Roy Franke, District #2 Paint Foreman, James Hall, District #3 Paint Foreman, Jack Johnson, District #4 Paint Foreman, Bert Jester, District #5 Paint Foreman, and Ron Larsen, District #6 Paint Foreman, for selecting and rating the test sections; and to Ralph Kalsem, Materials Lab. Tech 3, who supervised the ERMA field evaluation crew.

TABLE OF CONTENTS

Page

11 6 -1114	
ABSTRACT	
INTRODUCTION	
ERMA OPERATIO	N AND INTERPRETATION OF ERMA TEST DATA 6
EVALUATION OF	ERMA CORRELATION TO DISTRICT PAINT
FOREMEN RATIN	GS
CONCLUSIONS	
RECOMMENDATIO	NS
APPENDIX "A"	WORK PLAN TO EVALUATE ERMA
APPENDIX "B"	TEST SECTION LOCATION
APPENDIX "C"	DISTRICT PAINT FOREMEN RATINGS ON 54 TEST SECTIONS
APPENDIX "D"	ERMA READINGS ON 54 TEST SECTIONS D-1
APPENDIX "E"	ERMA PRINCIPLE OF OPERATION AND OPERATING INSTRUCTIONS
APPENDIX "F"	COMPUTER CORRELATIONS OF ERMA STUDY VARIABLES

ABSTRACT

The Electro-Reflective Measuring Apparatus (ERMA) was developed by the Minnesota Department of Highways in 1974 to measure the retro-reflective characteristics of pavement marking materials. Minnesota researchers recommended that due to the increased cost of pavement marking materials and reduced availability of these materials, ERMA can and should be used as a maintenance management tool to determine when painting is necessary rather than according to a fixed time schedule.

The Iowa DOT Office of Materials built an ERMA device patterned after Minnesota's design in 1976. Subsequent efforts to calibrate and correlate this ERMA device to District Paint Foremen ratings proved unsuccessful, and ERMA modification or abandonment was recommended in 1979.

Lyman Moothart, Materials Lab. Tech. 4, modified the ERMA device in 1980 and correlation attempts to District Paint Foremen ratings conducted in November 1980 have been moderately successful. A Paint/No Paint ERMA value has been established which will identify about 90% of the painting needs but will also include about 40% of the marking lines not needing repainting.

The Office of Maintenance should establish a trial ERMA program to study the accuracy and potential cost savings of using ERMA to identify pavement marking needs.

(1) E.R.M.A. A RETRO-REFLECTIVITY DEVICE Materials, Research And Standards Division, Minnesota Department of Highways, Special Study 276, Preliminary Report 1974, MECHANICS Prepared by H. J. Gillis, Research Assistant

iii

FIELD EVALUATION OF ELECTRO-REFLECTIVE MEASURING APPARATUS (ERMA)

Introduction:

The Electro-Reflective Measuring Apparatus (ERMA) was developed by the Minnesota Department of Highways in 1974 to measure the retro-reflective characteristics of pavement marking materials. The Iowa DOT Office of Materials built an ERMA device patterned after Minnesota's design in 1976. Subsequent efforts in 1977 and 1978 to calibrate and correlate the ERMA device to District Paint Foremen Ratings proved unsuccessful, and ERMA was not effective in evaluating the reflective quality of pavement marking materials during a study conducted in 1979. There was not enough range in the machine between the reflectivity of good and poor marking materials or between the reflectivity of marking materials and background portland cement concrete. Also, the ERMA device could not be calibrated to black and white standards statewide. It was recommended in 1979 that ERMA be modified to increase the range between black and white standards and to read the same on black and white standards at all times or be abandoned.

ERMA modification was performed in 1980 by Lyman Moothart, Materials Lab. Tech. 4. Modifications included: (1) Use of a co-axial scanner, which sends and receives light along a common axis, to minimize the effect of ambient light filtering into the sensor box; (2) Full scale graph deflection of 50 millimeters (50 minor divisions) to increase the machine range; and (3) Increased sensor light angle with the pavement (from 17° to 40°) which provides calibration capability to adjust ERMA readings to black and white standards at all times.

FIGURE NO. 1 ERMA SENSOR LIGHT

A work plan was written in September 1980 to evaluate the newly-modified ERMA device. This work plan is included in Appendix "A" of this report and briefly consisted of selecting fifty (50) one-mile test sections of various marking line condition, rating the test sections individually by six (6) District Paint Foremen based on general condition and reflectivity alone, and using ERMA to measure marking line reflectivity and contrast in both the static and dynamic test positions. Contrast is the difference in reflectivity (ERMA Readings) of the marking line minus the background pavement reading. Static ERMA readings were taken in a stationary position (Figure No. 2 and Figure No. 3), and dynamic ERMA readings were taken at 40 miles per hour (Figure No. 4).

FIGURE NO. 2

STATIC ERMA TEST POSITION ON MARKING LINE

FIGURE NO. 3

STATIC ERMA TEST POSITION ON BACKGROUND PAVEMENT

FIGURE NO. 4

DYNAMIC ERMA TEST POSITION PERFORMED AT 40 M.P.H. Test section location, District Paint Foremen ratings on test sections, and ERMA readings on test sections are included in Appendix "B", Appendix "C", and Appendix "D", respectively, of this report. This information provided the raw test data for linear correlation studies on the computer. Those variables with the highest correlation coefficients were graphically plotted for further analysis. ERMA Operation And Interpretation Of ERMA Test Data:

ERMA principle of operation and operating instructions are included in Appendix "E" of this report. ERMA calibration procedures consist of placing the sensor box on black and white standards and adjusting the position and gain controls of the recorder to achieve zero and full scale deflection, respectively, on the graphical output.

FIGURE NO. 5

ERMA SENSOR BOX ON BLACK CALIBRATION STANDARD

FIGURE NO. 6

ERMA SENSOR BOX ON WHITE CALIBRATION STANDARD

The black standard consists of flat black paint and the white standard consists of 3M brand Stamark marking material. Originally, it was felt that a third yellow Stamark calibration standard would be required, but this proved not to be the case. The ERMA device deflected the same on both white and yellow Stamark calibration standards thereby eliminating the need for the yellow standard. Evidently, the white and yellow colors are similar enough not to affect ERMA readings, and reflectivity is mostly due to impregnated glass beads.

FIGURE NO. 7 ERMA RECORDER

Examples of ERMA graphical output for calibration, static test position, and dynamic test position are shown in Figure No. 8, Figure No. 9, and Figure No. 10, respectively. Note that the marking line reflectivity and background pavement reading are rather well-defined for the static test position shown in Figure No. 9. The ERMA static contrast would be 24 for this example (34-10 = 24).

-9-

The graphical output of ERMA dynamic testing at 40 m.p.h. is evaluated by visually placing a line through the average peaks and valleys as illustrated in Figure No. 10. The ERMA dynamic contrast would be 24 for this example (30-6 = 24).

Dynamic ERMA readings are not always well-defined and some variance in interpretation of test data from person to person may be experienced. This variance should be tolerable considering that ERMA reflectivity testing is not an exact science, but rather only gives a general indication of pavement marking condition.

Erratic dynamic ERMA readings may sometimes be encountered when driving toward the sunlight (Figure No. 11). This is due to the infiltration of sunlight into the ERMA sensor box and can be alleviated by either testing in the opposite direction or testing at another time of day.

-11-

Other ERMA limitations include:

- The 40 m.p.h. dynamic testing speed, which is the fastest speed the driver can keep the sensor box directly over the marking line;
- 2. The time of year, which is restricted to nonwinter months since salt residue can obscure marking lines and cause unusually high pavement background readings;
- 3. ERMA mounting, which is presently restricted to the left-hand side of the test van preventing edge line evaluation in some cases; and
- 4. Sensor light intensity, which presently restricts the pavement angle to 40° and is more difficult to calibrate than a higher intensity light would be.

-12-

Evaluation Of ERMA Correlation To District Paint Foremen Ratings:

The work plan in Appendix "A" of this report established a large number of variables for study. Linear correlation programming on the computer based on the least squares method was used to search for significant correlation coefficients among these variables. A perfect correlation coefficient is 1.0000 where all points lie along a line, and one variable can accurately be used to predict what the other variable will be throughout the entire range of points. A correlation coefficient of 0.0000 represents a random distribution of points with no correlation whatsoever.

A list of variables correlated on the computer and their respective correlation coefficients is included in Appendix "F" of this report. ERMA static and dynamic contrast readings correlated better to the District Paint Foremen nighttime reflectivity ratings than the ERMA static and dynamic marking line reflectivity readings did. This is not surprising since, intuitively, a good marking line is dependent not only on the reflectivity of the marking line itself but also on the reflectivity of the material on which it is placed. Any given marking line would be better-defined on black asphaltic concrete pavement, for instance, than on white portland cement concrete pavement.

District Paint Foremen nighttime reflectivity ratings consisted of six (6) independent 0 to 100 ratings of each

-13-

test section based on nighttime reflectivity alone. The rating panel members were instructed that a rating of 100 would be a perfect installation just repainted while a rating of 0 would be an installation invisible at night. The six independent ratings were later averaged to produce an average District Paint Foremen nighttime reflectivity rating for each test section.

In a similar manner, District Paint Foremen daytime general condition ratings consisted of six (6) independent 0 to 100 ratings of each test section based on daytime general condition. Rating panel mamebers were instructed to consider the amount of paint missing, faded, etc., and to assign a value of 100 to a perfect installation just repainted and a value of 0 to an installation with paint completely missing. These ratings were later averaged to produce an average District Paint Foremen daytime general condition rating for each test section.

Average District Paint Foremen composite ratings were determined for each test section by averaging daytime and nighttime ratings together. Each District Paint Foreman also independently judged each test section to need repainting or not.

Figure No. 12 and Figure No. 13 illustrate the relationships between ERMA static and dynamic contrast readings and average District Paint Foremen nighttime reflectivity ratings. The correlation coefficients were not as high as hoped, but

-14-

still proved significant since the study objective was to determine an ERMA paint/no paint value and not necessarily to predict what a District Paint Foreman rating would be from any given ERMA contrast reading. In addition, the ERMA device correlated almost as well to the average District Paint Foremen nighttime reflectivity ratings as any two (2) District Paint Foremen correlated to each other. (See Page F-4)

-15-

Assuming a test section should be repainted if at least two (2) District Paint Foremen rated the section to need repainting, then 25 test sections need repainting and 29 test sections do not need repainting in Figure No. 12. At a static ERMA contrast value of 20, 20 of 25 or 80% of the test sections requiring repainting are identified, but 8 of 29 or 28% of the test sections not requiring painting are also included. At a static ERMA contrast value of 25, 24 of 26 or 96% of the needs are identified, but 14 of 29 or 48% of the test sections not requiring painting are also included.

-16-

Using a similar analysis in Figure No. 13, at a dynamic ERMA contrast of 20, 76% of the needs are identified, but 22% of the test sections not requiring painting are also included. At a dynamic ERMA contrast of 25, 90% of the needs are identified, but 41% of the test sections not requiring painting are also included.

An ERMA contrast reading of 25 appears to be the best paint/no paint value. This value will identify about 90% of the painting needs but will also include about 40% of the marking lines not needing repainting. The following table was developed from Figure No. 12 and Figure No. 13 and can be used to generally categorize pavement marking line condition based on ERMA contrast readings:

ERMA CONTRAST	REFLECTIVITY RATING
20 Or Less	Poor Reflectivity - Needs Repainting
21 To 25	Marginal Reflectivity - May Or May Not Need Repainting
26 Or More	Good Reflectivity - Does Not Need Repainting

Figure No. 14 shows that ERMA static and dynamic contrast correlate very well together (c.c. = 0.8006). ERMA static contrast is a more accurate indicator of pavement marking line reflectivity than ERMA dynamic contrast since very little or no ambient light filters into the sensor box in the static test position, and since less graphical interpretation is required. For this reason, ERMA static testing is used to specially evaluate pavement marking materials while ERMA dynamic testing is used to determine maintenance painting requirements.

ERMA static contrast for yellow marking lines only correlated very well to District Paint Foremen nighttime reflectivity ratings as can be seen in Figure No. 15. The corresponding ERMA dynamic contrast for yellow marking lines only did not correlate well, however, as can be seen in Figure No. 16. The same problem occurred that all test sections below an ERMA contrast reading of 25 were not rated to need repainting by the District Paint Foremen. Even though this problem exists, a substantial cost savings in painting materials may still be realized by using ERMA to identify maintenance painting needs. This will depend on the mileage of pavement marking lines with sufficient reflectivity not to need repainting as rated by the ERMA device that would have been repainted otherwise. A trial ERMA program by the Office of Maintenance would establish the ERMA dynamic contrast value of marking lines which would survive the winter with adequate reflectivity. This value may be 30 to 35.

-19-

ERMA's cost-effectiveness could be determined by subtracting ERMA testing costs from paint savings resulting from its use. A two-person test crew and test van are required for ERMA dynamic testing at 40 m.p.h. Assuming an hourly wage of \$8 per hour, a test van operating rate of 10¢ per mile and no lodging, ERMA test data can be collected and reduced for approximately \$2 per mile. This compares favorably to the potential cost savings of painting materials alone (\$44 per mile for centerline and \$59 per mile for edge line).

Figure No. 17 and Figure No. 18 demonstrate ERMA static and dynamic repeatability, respectively, between November 1980 and January 1981. Normally, salt residue would make marking line reflectivity very different between these two times, but Winter '80-'81 was especially mild resulting in fewer salt applications and less corresponding marking line and pavement discoloration.

ERMA DYNAMIC CONTRAST (January 1981)

ERMA repeatability was not quite as good as expected but bad and good marking lines were still distinguished (with some interchange) at an ERMA contrast value of 25.

ERMA devices can be built for approximately \$3,500 each. This includes \$400 for the co-axial scanner, \$3,000 for the recorder, and \$100 for miscellaneous hardware. A test van would also be required, but could be used for other District Paint Foremen activities.

Conclusions:

- Modifications to the ERMA device performed in 1980 including use of a co-axial scanner, full scale graph deflection of 50 millimeters and calibration capability, have greatly improved the machine.
- 2. The ERMA device (as presently constructed) is mostly detecting reflectivity due to glass beads since the machine deflected the same on both white and yellow 3M Stamark calibration standards.
- 3. ERMA correlation attempts conducted in November of 1980 have been moderately successful. A Paint/No Paint ERMA value has been established which will identify about 90% of the painting needs but will also include about 40% of the marking lines not needing repainting.
- 4. The ERMA device correlated almost as well to average District Paint Foremen nighttime reflectivity ratings as any two (2) District Paint Foremen correlated to each other.
- 5. ERMA testing to identify maintenance painting needs appears to have good cost-saving potential since ERMA test data can be collected and reduced for about \$2 per mile while centerline painting costs \$44 per mile and edgeline painting costs \$59 per mile for materials alone.

-23-

Recommendations:

- Future ERMA devices (if any) should use a higher intensity sensor light to simplify calibration procedures.
- 2. Identical ERMA sensor box assemblies should be mounted on both sides of the test van to permit either centerline or edgeline testing at 40 m.p.h. by the flip of a switch by the recorder operator.
- 3. The Office of Maintenance should establish a trial ERMA program to determine the ERMA contrast value of marking lines which would survive the winter, and to study the accuracy and potential cost savings of using ERMA to identify pavement marking needs.
- 4. If this trial ERMA program proves successful, more ERMA devices should be constructed and made available to District Paint Foremen at a cost of \$3,500 each plus test van.

APPENDIX "A"

1

6

WORK PLAN TO EVALUATE ERMA

WORK PLAN TO EVALUATE ERMA (Electro-Reflective Measuring Apparatus)

- Select 50 one-mile sections in District #1 with paint lines of various condition (I.E. some just repainted, some badly needing repainting, etc.)
 - A. Robert Johannes, District #1 Paint Foreman, will select the sections.
 - B. Include I-80 at the N.E. Mixmaster in Des Moines (3M Stamark installation)
- 2. The 6 District Paint Foremen will drive the 50 test sections at day and at night and independently assign a value from 0 to 100 to each test section based on general condition and reflectivity.
 - A. Worksheets with instructions will be developed and provided by the Special Investigations Section.
 - B. A daytime field review of each test section will result in 6 independent 0-100 ratings for each test section based on general condition alone. Consider amount of paint missing, faded, etc. A rating of 100 would be a perfect installation just repainted, while a rating of 0 would be an installation with paint completely missing.
 - C. A nighttime field review of each test section will result in 6 independent 0 to 100 ratings for each test section based on reflectivity alone. A rating of 100 would be a perfect installation just repainted, while a rating of 0 would be an installation not visible at all at night.
 - D. An average 0 to 100 composite rating for each test section will be determined by adding the daytime and nighttime ratings together and dividing by 2.
 - E. Each test section will be independently judged to need repainting or not by the 6 District Paint Foremen.
- 3. ERMA will be used to assign a 0 to 6 reflectivity rating to each test section. A rating of 6 will result on a newly painted installation, while a rating of 0 will result on an installation with no nighttime reflectivity at all.
 - A. Contrast will also be determined for each test section by subtracting the background ERMA reading from the paint marking ERMA reading.
 - B. Five stationary readings (with corresponding background readings) will be taken and averaged for each test section to assign an ERMA rating to each test section.
 - C. A moving (Mobile) ERMA rating will also be assigned to each test section.
- 4. Computer correlations of Paint Foreman ratings and ERMA ratings will be made.
 - A. If no correlation exists, further ERMA development or abandonment is required.
 - B. If a meaningful correlation does exist, a Paint/No Paint ERMA Value will be determined and a trial ERMA Program established with Ron Hagen of Central Maintenance.

Name

	ERMA FIELD EVALUATION WORKSHEET	•		Date	·	······
Section Number	Location		A Daytime Rating Based On General Condition (0-100)	B Nighttime Rating Based On Reflectivity Alone (0-100)	Composite Rating $\left(\frac{A+B}{2}\right)$	Does This Section Need <u>Repainting</u> ? Yes No
						А
			- -			2
	· · · · · · · · · · · · · · · · · · ·					

APPENDIX "B" TEST SECTION LOCATION

. . .

В	-1
---	----

TEST SECTION LOCATION

ABBREVIATION LIST

Abbreviation Meaning Northbound NB Southbound SBEastbound EΒ WB Westbound Asphaltic Concrete Pavement AC \mathbf{PC} Portland Cement Concrete Pavement WLL White Lane Line Yellow Center Line YCL White Edge Line WEL Left Yellow Edge Line LT.YEL Right White Edge Line RT.WEL

B-2

Test Line Section Surface Number Milepost Route Type Type NB I-35 115 \mathbf{PC} WLL 1 2 NB I-35 118 LT. YEL \mathbf{PC} 3 NB I-35 121 \mathbf{PC} RT. WEL 126 4 NB I-35 \mathbf{PC} WLL 5 NB I-35 129 LT.YEL \mathbf{PC} 6 NB I-35 131 PC RT. WEL 7 Iowa 175 157 New PC YCL 8 Iowa 175 157 New PC WEL 9 NB I-35 140 \mathbf{PC} WLL 10 NB I-35 142 PCLT. YEL 11 U.S. 20 155 AC YCL U.S. 20 12 160 WEL AC 13 U.S. 20 159 AC YCL 14 U.S. 20 153 AC YCL U.S. 20 15 152 AC WEL 16 U.S. 69 147 YCL AC 17 WB 520 147 \mathbf{PC} RT. WEL WB 520 WLL 18 145 \mathbf{PC} 19 WB 520 143 LT.YEL PC

20

21

22

23

Iowa 17

Iowa 17

Iowa 17

Iowa 17

TEST SECTION LOCATION

48

45

39

37

 \mathbf{PC}

PC

 \mathbf{PC}

PC

YCL

YCL

YCL

YCL

Test Section Number	Route	Milepost	Surface Type	Line Type
24	Iowa 175	147	AC	YCL
25	Towa 175	146	AC	YCL
26	Iowa 17	34	PC	YCL
27	Iowa 17	30	PC	YCL
28	Iowa 17	27	PC	YCL
29	Iowa 17	24	PC	YCL
30	WB U.S. 30	136	PC	WT.T.
31	WB U.S. 30	134	PC	T.T. YEL
32	WB U.S. 30	132	PC	RT_WEL
33	EB U.S. 30	133	PC	RT WEL
34	EBUS 30	134	PC	WT.T.
35	EB II S 30	136	PC	
36		10	PC PC	VCI
37		130	AC	I CLI
27		107	PC	
20	EB U.S. 30	141	PC	L'L . YEL
39	EB U.S. 30	144	PC	RT.WEL
40	EB U.S. 30	146	PC	WLL
41	EB U.S. 30	149	PC	WLL
42	WB U.S. 30	149	PC	WLL
43	U.S. 69	109	AC	YCL
44	Iowa 210 (From Iowa 69	6 to I-35)	AC	YCL
45	SB I-35	101	PC	WLL

TEST SECTION LOCATION (CON'D)

B-4	
-----	--

TEST SECTION LOCATION (CON'D)

Test Section Number	Route	Milepost	Surface Type	Line Type
46	SB I-35	99	₽C	LT.YEL
47	SB 1-35	97	PC	RT.WEL
48	NB I-35	98	PC	WLL
49	NB I-35	100	PC	LT.YEL
50	NB I-35	103	PC	RT.WEL
51	NB I-35	106	PC	WLL
52	NB 1-35	108	PC	LT.YEL
53	WB I-35, 80(From NE Mixmaster to U.S. 69)	-	AC	All Lines
54	EB I-35, 80(From NE Mixmaster to U.S. 69)		AC	All Lines

. .

9 5

\$

.

1

A

. .

APPENDIX "C" DISTRICT PAINT FOREMEN RATINGS ON 54 TEST SECTIONS

DISTRICT PAINT FOREMEN RATINGS ON

54 TEST SECTIONS

LIST OF ABBREVIATIONS AND SYMBOLS

....

11

Abbreviation Or Symbol	Meaning
AC	Asphaltic Concrete Pavement
PC	Portland Cement Concrete Pavement
WLL	White Lane Line
YCL	Yellow Centerline
WEL	White Edge Line
LT.YEL	Left Yellow Edge Line
RT.WEL	Right Yellow Edge Line
A	Daytime District Paint Foremen Rating Based on General Condition (0-100)
В	Nighttime District Paint Foremen Rating Based on Reflectivity Alone (0-100)
(A+B)/2	Composite District Paint Foremen Rating (0-100) Which Is The Average Rating Of A Plus B Above
\otimes	Rated To Need Repainting By At Least 4 of 6 District Paint Foremen
Θ	Rated To Need Repainting By 3 Of 6 District Paint Foremen
0	Rated To Need Repainting By 2 Of 6 District Paint Foremen
()	Rated Not To Need Repainting By 5 of 6 District Paint Foremen
\odot	Unanimously Rated Not To Need Repainting By 6 District Paint Foremen

C-2

DISTRICT PAINT FOREMEN RATINGS ON 54 TEST SECTIONS

.

...

. .

NO.	61	с	DI	STRI	CT #	1	DI	STRI	ст #	2	נס	ISTR	ECT :	# 3	DIS	STRI	CT #	4	DI	STRI	СТ	#5	DI	STRI	CT #	16		AVER/	AGE	
TEST SECTION	MARKING LIN TYPE	PAVEMENT TYP	А	в	(A+B)/2	REPAINT ?	A	в	(A+B)/2	REPAINT ?	A	в	(A+B)/2	REPAINT ?	A	В	(A+B)/2	REPAINT ?	A	в	(A+B)/2	REPAINT ?	A	В	(A+B)/2	REPAINT ?	A	В	(A+B)/2	REPAINT ?
1	WLL	PC	75	65	70	No	85	75	80	No	89	87	88	No	85	95	90	No	75	80	77	No	85	75	70	No	82	80	81	\odot
2	lt. yel	PC	85	85	85	No	87	90	89	No	87	90	.88	No	85	95	90	No	77	80	78	No	95	100	97	No	86	90	88	\odot
3	RT.WEL	PC	85	80	82	No	70	90	80	No	82	87	85	No	80	95	87	No	84	90	87	No	85	95	90	· No	81	90	86	\odot
4	WLL	PC	45	60	53	Yès	50	60	. 55	Yes	72	75	73	No	75	80	78	No	40	45	42	Yes	65	55	60	Yes	58	63	61	\otimes
5	LT.YEL	PC	95	80	87	No	85	90	88	No	90	90	90	No	90	95	92	No	70	65	67	No	85	90	-87	No	86	85	85	0
6	RT.WEL	PC	85	60	72	No	51	65	58	Yes	82	86	84	No	90	95	92	No	65	60	62	No	75	80	77	No	75	74	74	0
7	YCL	PC	85	50	62	No	40	30	35	Yes	45	30	37	Yes	60	65	62	Yes	50	45	47	Yës	40	35	38	Yes	53	43	48	\otimes
8	WEL	PC	45	30	38	Yes	40	30	35	Yes	27	30	28	Yes	40	45	42	Yes	60	35	47	Yes	30	25	27	Yes	40	33	36	\otimes
9	WLL	PC	45	50	47	Yes	50	40	45	Yés	72	60	66	.Yes	75	60	68	No	60	50	55	No	50	40	45	Yes	59	50	55	\otimes
10	LT.YEL	PC	90	85	[.] 88	No	90	91	90	No	86	87	87	No	90	95	92	No	80	85	82	No	95	90	92	No	89	89	89	\odot
11	YCL	AC	45	30	37	Yes	40	. 20	30	Yes	27	40	33	Yes	40	60	50	Yes	45	15	30	Yes	65	50	58	Yes	44	36	40	8
12	WEL	AC	65	40	52	Yës	60	45	52	No	75	60	68	Yes	65	60	62	Yes	40	20	30	Yes	50	60	55	Yes	59	48	54	\otimes
13	YCL	AC	45	30	37	Yes	55	22	38	No	72	50	61	Yes	65	65	65	No	50	40	45	Yes	45	40	42	Yes	55	41	48	\otimes
14	YCL	AC	45	30	37	Yes	75	25	50	No	75	50	62	Yes	55	50	52	Yes	75	70	72	No	65	60	62	No	65	48	57	•
15	WEL	AC	65	50	57	Yes	55	60	58	No	60	55	58	Yes	65	70	67	No	60	57	58	No	70	65	67	No	63	60	62	0
																				-										

<u>Ω-</u>3

DISTRICT PAINT FOREMEN RATINGS ON 54 TEST SECTIONS

.

																										-			~	
			DI	STRI	CT #	1	DI	STRI	CT #	2	DI	STR	ECT a	#3	DI	STRI	СТ #	4	DI	STR	CT i	¥5	DI	STRI	CT #	6	A	.VERA	.GE	-
TEST SECTION N	MARKING LINE TYPE	PAVEMENT TYPE	A	в	(A+B)/2	REPAINT ?	А	в	(A+B)/2	REPAINT ?	A	в	(A+B)/2	REPAINT ?	A	В	(A+B)/2	REPAINT ?	A	в	(A+B)/2	REPAINT ?	А	В	(A+B)/2	REPAINT ?	A	в	(A+B)/2	REPAINT ?
16	YCL	AC	85	65	75	NO	90	75	82	No	89	87	88	No	85	90	87	No	80	75	77	No	90	80	85	No	87	79	83	\odot
17	RT.WEL	PC	75	65	70	NO	85	80	82	No	90	91	90	No	85	95	90	No	70	65	67	No	75	85	80	No	8 0	80	80	\odot
18	WLL	PC	60	50	55	Yes	70	75	72	No	85	86	85	No	70	90	80	No	70	65	67	No	75	85	80	No	72	75	73	
19	LT.YEL	PC	70	55	62	Yes	60	60	60	No	80	85	83	No	70	85	78	No	67	60	63	No	85	70	78	No	72	69	71	
20	YCL	PC	70	60	65	Yes	65	70	68	No	35	40	37	Yes	50	70	60	Yes	70	50	60	No	75	65	70	No	61	59	60	Θ
21	YCL	PC	70	50	60	Yes	85	50	68	NO	79	40	60	Yes	75	60	68	No	50	20	35	Yes	60	45	53	Yes	70	44	57	\otimes
22	YCL	PC	60	20	40	Yes	40	10	25	Yes	75	25	50	Yes	50	10	30	Yes	40	20	30	Yes	35	20	28	Yes	50	18	34	\otimes
23	YCL	PC	60	10	35	Yes	60	20	40	No	45	27	36	Yes	50	40	45	Yes	40	10	25	Yes	30	15	23	Yes	48	20	34	\otimes
24	YCL	AC	70	50	60	NO	60	40	50	No	81	75	78	No	75	60	68	Yes	75	60	68	No	75	55	65	No	73	57	65	()
25	YCL	AC	70	50	. 60	NO	50	40	45	No	81	76	78	No	75	70	72	No	70	60	65	No	80	65	73	No	71	60	66	⊘
26	YCL	PC	85	50	67	No	90	60	75	No	89	55	72	Yes	90	80	85	No	65	60	62	No	75	40	57	Yes	82	58	70	0
27	YCL	PC	85	50	67	No	88	60	74	No	85	56	71	Yes	70	75	72	No	65	60	62	No	70	55	63	Yes	77	59	68	0
28	YCL	PC	85	50	67	Ио	91	60	76	No	87	49	68	Yes	70	75	72	No	65	60	62	No	70	40	55	Yes	78	56	67	0
29	YCL ·	PC	75	50	62	Yes	93	62	78	No	86	30	58	Yes	70	65	68	Yes	70	65	67	No	75	50	62	No	78	54	66	0
30	WLL	PC	50	50	50	Yes	80	70	75	No	72	45	58	Yes	50	40	45	Yes	70	70	70	No	65	55	60	No	65	55	60	0
													Į	ļ		ļ				l					ļ	Į	ţ	Į		

Q.

DISTRICT PAINT FOREMEN RATINGS ON 54 TEST SECTIONS

																		I		_,,		í				[
NO.		(13	DIS	STRI	CT #	1	DI	STRI	CT #	2	DI	STR	ICT f	3	DI	STRI	CT #	4	DI	STRJ	ICT	ŧ5	DI	STRI	CT #	6	A	VERA	\GE	
TUST SECRION	MARKING LIN TYPE	PAVEMENT TYP	A	в	(A+B)/2	REPAINT ?	A	В	(A+B)/2	REPAINT ?	A	В	(A+B)/2	REPAINT ?	A	в	(A+B)/2	REPAINT ?	A	В	(A+B)/2	REPAINT ?	A	в	(A+B)/2	REPAINT ?	A	B	(A+B)/2	REPAINT ?
31	LT.YEL	PC	50	50	50	Yes	60	60	60	No	35	30	32	Yes	45	40	42	Yes	40	30	35	Yes	70	65	67	No	50	46	48	8
32	RT.WEL	PC	50	50	50	Yes	65	65	65	No	45	60	53	Yes	45	40	42	Yes	40	50	45	Yes	60	45	53	Yes	51	52	51	\otimes
33	RT.WEL	PC	50	50	50	Yes	90	60	75	No	40	50	45	Yes	45	40	42	Yes	40	30	35	Yes	65	55	60	No	55	48	52	\otimes
34	WLL	PC	50	50	50	Yes	95	50	73	No	42	45	43	Yes	45	40	42	Yes	40	30	35 .	Yes	65	50	58	No	56	44	50	8
35	LT.YEL	PC	50	50	50	Yes	70	55	63	No	45	50	47	Yes	45	40	42	Yes	50	40	45	Yes	60	40	50	Yes	53	46	50	\otimes
35	YCL	AC	60	60	60	Yes	38	70	54	Yes	40	50	45	Yes	35	55	45	Yes	45	35	40	Yes	80	85	82	NO	50	59	55	\otimes
37	WLL	PC	90	70	80	No	96	70	83	NO.	95	80	87	No	85	85	85	No	90	90	90	No	75	85	80	NO	89	80	85	\odot
38	LT.YEL	PC	30	20	25	Yes	40	40	40	Yes	25	30	27	Yes	30	25	27	Yes	25	20	22_	Yes	35	40	37	Yes	31	29	30	\otimes
39	RT.WEL	PC	55	40	47	Yes	82	75	78	No	80	60	70	No	80	90	85	No	80	75	77	No	75	60	68	No	75	67	71	
40	WLL	PC	90	70	80	No	81	60	71	No	90	75	83	No	70	60	65	Yes	85	80	82	No	80	75	77	No	83	70	76	•
41	WLL	PC	90	70	80	No	84	60-	72	No	91	85	88	No	85	85	85	No	90	90	90	No	85	65	75	No	.83	76	80	\odot
42	WLL	PC	90	70	80	No	85	60	72	No	91	86	88	No	85	85	85	No	90	90	90	No	80	70	75	No	87	77	82	\odot
43	YCL	AC	85	75	80	No	78	70	74	No	75	80	77	No	80	85	82	No	84	80	82	No	95	99	97	NO	83	82	82	\odot
44	YCL	AC	80	75	83	No	77	80	79	No	90	95	92	No	85	90	87	No	90	95	92	No	95	99	97	No	86	89	87	\odot
45	WLL	PC	70	60	65	Yes	45	65	55	No	85	87	86	No	85	85	85	No	70	75	72	No	85	65	75	NO	73	73	73	
					ς																	:								-
	* _		Į	1	•								1					l	.		. 1	· ·	I.	ŧ		· ·	. !	. 1	. !	

0-5

.

DISTRICT PAINT FOREMEN RATINGS ON 54 TEST SECTIONS

NO.	E	<u></u>	DI	STRI	CT #	1	DI	STRI	СТ #	2	DI	STR	ICT I	¥3	DI	STRI	CT #	4	DI	STRI	(CT #	¥5	DI	STRI	CT #	6	P	VERA	GE	
TEST SECTION	MARKING LIN TYPE	PAVEMENT TYP	A	в	(A+B)/2	REPAINT ?	A	в	(A+B)/2	REPAINT ?	A	В	(A+B)/2	REPAINT ?	А	В	(A+B)/2	REPAINT ?	А	в	(A+B)/2	REPAINT ?	A	В	(A+B)/2	REPAINT ?	A	в	(A+B)/2	REPAINT ?
46	LT.YEL	PC	75	60	67	No	60	30	45	No	80	85	82	No	80	65	73	No	55	60	58	No	75	60	68	No	71	60	65	\odot
47	RT.WEL	PC	80	65	72	No	85	70	78	No	83	88	85	No	85	90	87	No	70	65	67	No	80	85	82	NO	81	77	79	\odot
48	WII	PC	70	60	65	Yes	85	80	82	No	85	90	87	No	85	90	87	No	75	70	72	No	75	60	68	NO	79	75	77	۲
49	LT.YEL	PC	75	55	65	Yes	80	50	65	No	86	93	89	No	80	70	75	No	65	70	68	No	80	65	73	NO	78	67	72	
50	RT.WEL	PC	85	65	75	NO	85	85	85	No	95	98	97	No	90	95	92	No	70	65	67	No	90	85	87	No	86	82	84	\odot
51	WLL	PC	75	60	67	No	90	60	75	No	85	90	87	No	85	90	87	No	70	65	67	No	95	75	85	No	83	73	78	\odot
52	LT.YEL	PC	90	65	77	No	85	70	78	No	92	98	95	No-	85	90	87	No	70	65	67	No	80	65	73	No	84	76	80	\odot
53	All Line	s AC	90	85	87	No	90	90	90	NO	-	-	-	-	95	95	95	No	<u> </u>	<u>~</u> "	-		95	95	95	No	93	91	92	0
54	All Line	s AC	90	85	87	No	70	70	70	No	-	-	-	-	95	95	95	No	-	-		-	95	95	95	No	88	86	87	\odot

APPENDIX "D" ERMA READINGS ON 54 TEST SECTIONS

ERMA READINGS ON 54 TEST SECTIONS LIST OF ABBREVIATIONS AND DEFINITIONS

D-1

11

ł

X.

Abbreviation Or	
Word Defined	Meaning
AC	Asphaltic Concrete Pavement
PC	Portland Cement Concrete Pavement
WLL	White Lane Line
YCL	Yellow Centerline
WEL	White Edge Line
RT.WEL	Right White Edge Line
LT.YEL	Left Yellow Edge Line
Static	ERMA Readings Taken In A Stationary Position
Contrast	The Difference In Reflectivity (ERMA Readings) Of The Marking Line Minus The Background Pavement Reading
Dynamic	ERMA Readings Taken At 40 Miles Per Hour

<u>.</u>			In	Individual Static Readings (5 Per Test Section)								Avera Stati	ge c Rea/	ling	Average Dynamic Reading			
TEST SECTION N	MARKING LINE TYPE	PAVEMENT TYPE	MARKING LINE	PAVEMENT	MARKING LINE	PAVEMENT	MARKING LINE	PAVEMENT	MARKING LINE	PAVEMENT	MARKING LINE	PAVEMENT	MARKING LINE	PAVEMENT	CONTRAST	MARKING LINE	PAVEMENT	CONTRAST
1	WLL	PC	26	4	26	8	21	6	36	6	26	4	27	6	21	13	0	13
2	LT.YEL	PC	38	16	47	13	41	13	41	14	30	6	39	12	27	22	0	22
3	RT.WEL	PC	<u>5</u> 9	14	65	13	48	10	38	1.0	42	12	50	12	38	32	0	32
4	WLL	PC	33	14	34	10	32	10	32	1.0	30	10	32	11	21	18	0	18
5	LT.YEL	PC	51	14	50	16	58	16	44	18	52	11	51.	15	36	40	2	38
6	RT.WEL	PC	49	13	58	12	40	4	48.	10	50	11	49	10	39	39	[.] 0	39
7	YCL	PC	36	24	46	26	54	31	45	32	56	36	47	30	17	14	0	14
8	WEL	PC	34	23	46	24	46	22	60	30	34	24	44	25	19	-	-	-
9	WLL .	PC	28	10	38	10	32	10	34	11	381.	10	34	10	24	34	8	26
10	LT.YEL	PC	36	1.4	46	12	32	11	41	12	32	12	37	12	25	50	20	30
11	YCL	AC	22	9	14	13	33	16	28	10	34	13	26	12	14	15	0	15
12	WEL	AC	62	12	38	10	57 .	14	58	14	48	19	53	14	39		-	-
13	YCL	AC	22	16	16	4	20	0	10	8	24	8	18	7	11	6	0	6
14	YCL	AC	20	10	29	8	32	10	28	8	30	12	28	10	18	12	Ö	12
15	WEL	AC	42	10	-46	18	40	18	32	20	36	13	. 39	16	23		- -	-

D-2

. ...

.

.0	-		Average Individual Static Readings (5 Per Test Section) Static Reading								lina	Average Dynamic Reading						
TEST SECTION N	MARKING LINE TYPE	PAVEMENT TYPE	MARKING LINE	PAVEMENT	MARKING LINE	PAVEMENT	MARKING LINE	PAVEMENT	MARKING LINE	PAVEMENT	MARKING LINE	PAVEMENT	MARKING LINE	PAVEMENT	CONTRAST	MARKING LINE	PAVEMENT	CONTRAST
15	YCL	AC	34	4	28	2	30	2	38	6		-	33	4	29	12	0	12
17	RT.WEL	PC	53	14	50	12	52	10	50	6	38	6	49	10	39	60	. 1	59
18	WLL	PC	53	14	53	11	48	10	31	10	47	9	46	11	35	62	20	42
19	LT.YEL	PC	46	18	41	19	32	19	38	20	34	20	38	19	19	45	24	21
20	LT.YEL	PC	22	13	27	14	30	14	29	14	24	11	26.	13	13	19	6	13
21	YCL	PC	36	26	30	20	28	22	30	22	41	17	33	21	12	22	10	12
22	YCL	PC	24	26	32	20	_20	22	14	17	4	1.2	19	19	0	12	5	7
23	YCL	PC	18	20	22	20	20	18	22	16	-	-	21	19	2	18	2	16
24	YCL .	AC	30	14	32	12	32	12	26	.12	42	10	.32	12	20	8	0	8
25	YCL	AC	20	10	30	6	28	8	12	8	21	8	22	8	14	6	0	6
26	YCL	PC	38	30	40	30	44	30	42	30	48	28	42	30	12	14	0	14
27	YCL	PC	45	32	40	30	46	28	36	28	40	30	41	30	11	12	0	12
28	YCL	PC	54	34	48	35	34	29	30	22	40	28	41	30	11	12	0	12
29	YCL	PC	33	25	34	22	32	20	30	24	34	22	33	. 23	10	11	0	11
30	WLL	PC	28	12	38	14	28	.12	21	10	_ 29	8	29	11	18	30	8	22

D J J J

Q			In	Individual Static Readings (5 Per Test Section)							Avera Stati	ge c Rea:	ling	Average Dynamic Reading				
TEST SECTION N	MARKING LINE TYPE	PAVEMENT TYPE	MARKING LINE	PAVEMENT	MARKING LINE	PAVEMENT	MARKING LINE	PAVEMENT	MARKING LINE	PAVEMENT	MARKING LINE	PAVEMENT	MARKING LINE	PAVEMENT	CONTRAST	MARKING LINE	PAVEMENT	CONTRAST
31	LT.YEL	PC	22	12	21	11	19	10	20	10	28	10	22	11	11	30	8	22
32	RT.WEL	PC	28	12	32	10	30	12	16	10	20	10	25	11	14	-		-
33	RT.WEL	PC	44	8	38	10	32	9	28	7	20	2	32	7	25	34	8	26
34	WLL	PC	13	10	22	8	22	8	19	9	25	9	20	9	11	24	4	20
35	LT.YEL	PC	37	10	21	10	20	11	22	6	22	11	24	10	14	. 30	8	22
36	YCL	AC	24	10	25	10	20	12	29	13	28	10	25	11	14	24	5	19
37	WLL	PC	34	13	44	14	38	16:	47	14	36	14	40	14	26	39	12	27
38	LT.YEL	PC	17	16	21	16	21	14	19	16	33	17	. 22	16	6	31	18	13
39	RT.WEL ·	PC	34	17	34	17	29	· 8	34	18	52	13	37	15	22			-
40	WLL	PC	40	16	39	13	41	12	34	10	40	14	39	13	26	41	18	23
41	WLL	PC	43	12	38	10	30	10	38	10	34	10	37	10	27	43	14	29
42	WLL	PC	40	10	36	12	32	12	41	10	33	14	36	12	24	-	-	_
43	YCL	AC	28	10	28	8	27	6	29	8	18	8	26	8	18	26	8	18
44	YCL	AC	34	8	38	8	36	8	50	6	28	8	37	8	29	38	6	32
45	WIL	PC	43	19	28	26	40	10	38	11	34	11	37	15	22	26	0	26
		l						l	ļ	l		I						1

₽-4

TEST SECTION NO.

.

																	UN .
		Ir	divid	ual St	atic	Readin	<u>gs (5</u>	Per T	<u>'est S</u> e	ection)	Avera Stati	ge c Rea	ling	Avera Dynam	ge lic Re	adinc
MARKING LINE TYPE	PAVEMENT TYPE	MARKING LINE	PAVEMENT	MARKING LINE	PAVEMENT	MARKING LINE	PAVEMENT	MARKING LINE	PAVEMENT	MARKING LINE	PAVEMENT	MARKING LINE	PAVEMENT	CONTRAST	MARKING LINE	PAVEMENT	CONTRAST
LT.YEL	PC	39	26	2 6	20	23	11	18	13	16	13	24	17	7	22	0	22
RT.WEL	PC	78	16	43	14	59	14	61	10	64	17	61	14	47	44	0	44
WLL	PC	26	9	26	8	19	2	28	10	16	10	23	8	15	32	4	28
LT.YEL	PC	19	16	26	17	21	16	26	16	27	18	24	17	7	21	8	13
RT.WEL	PC	53	12	50	20	51	16	70	24	71	24	59	19	40	46	8	38
WLL	PC	30	10	29	11	16	11	40	10	34	10	30	10	20	30	5	25
LT.YEL	PC	41	12	42	14	46	10	36	11	38	10	41	. 11	30	52	8	44
All Lines	AC	27	3	38	0	28	0	20	0	29	4	28	1	27	35	1	34
All Lines.	AC	30	2	28	4	25	5	28	1	26	1	27	3	24	27	1	26
					-												

σ

APPENDIX "E" ERMA PRINCIPLE OF OPERATION AND OPERATING INSTRUCTIONS

ł.

.

.....

1

ERMA PRINCIPLE OF OPERATION

The ERMA device consists of an inverter, co-axial scanner, sensor and recorder as illustrated in Figure E-2. The inverter converts the test van's 12 Volt DC power to 120 Volt AC power for ERMA operation. A SC501 Co-Axial Scanner manufactured by General Electric Company is presently used to determine the reflectivity of pavement marking lines. A co-axial scanner sends and receives light along a common axis which minimizes the effect of ambient light that filters through the brushes into the sensor box (Figure E-1). Scanner output is amplified and has gain control which is necessary for calibration purposes.

The angle between the sensor light and pavement is presently restricted to 40° to achieve enough reflectivity on the white calibration standard for full scale graph deflection. A higher intensity sensor light would allow a greater working range of angles for full scale graph deflection and thereby simplify calibration procedures.

E-1

FIGURE NO. E-2 BLOCK DIAGRAM SHOWING ERMA OPERATING COMPONENTS

ERMA OPERATING INSTRUCTIONS

ERMA Activation

- 1. Start Test Van.
- 2. Turn Inverter Switch On.
- 3. Check That Recorder Switch Is On.
- 4. Check To See If Sensor Is Lit.

Recorder Operation

- 5. Range Switch In 0.5 Position.
- 6. V/CM-ZERO Switch In V/CM Position.
- 7. Paper Speed 5 MM/SEC.

Calibration Procedure

- 8. Place Sensor Over Black Portion Of Calibration Standard.
- 9. Use Position Control To Achieve Zero On Right Edge of Graph Paper.
- 10. Place Sensor Over White Portion Of Calibration Standard.
- 11. Use Gain Control To Achieve Full Scale Or 50 Millimeter Deflection.
- 12. Recheck At Least Twice To Assure Proper Deflections (Repeat Steps 8-11).

APPENDIX "F" COMPUTER CORRELATIONS OF ERMA STUDY VARIABLES

· · · ·

COMPUTER CORRELATIONS OF ERMA STUDY VARIABLES

Description Of <u>Variables</u>	Correlation Coefficient
Average ERMA Static Contrast	0.5604
District #1 Paint Foreman Nighttime Reflectivity Ratings (B)	
Average ERMA Static Contrast	0.5942
District #2 Paint Foreman Nighttime Reflectivity Ratings (B)	
Average ERMA Static Contrast	0.6369
District #3 Paint Foreman Nighttime Reflectivity Ratings (B)	
Average ERMA Static Contrast	0.6379
District #4 Paint Foreman Nighttime Reflectivity Ratings (B)	
Average ERMA Static Contrast	0.4506
District #5 Paint Foreman Nighttime Reflectivity Ratings (B)	
Average ERMA Static Contrast	0.6635
District #6 Paint Foreman Nighttime Reflectivity Ratings (B)	·
Average ERMA Static Contrast Versus	0.6692
Average District Paint Foremen Nighttime Reflectivity Ratings (B)	
Average ERMA Dynamic Contrast Versus	0.5108
District #1 Paint Foreman Nighttime Reflectivity Ratings (B)	
Average ERMA Dynamic Contrast Versus	0.5988
District #2 Paint Foreman Nighttime Reflectivity Ratings (B)	•

(

(.

Ι.,

COMPUTER CORRELATIONS OF ERMA STUDY VARIABLES (CONT'D)

Description Of Variables	Correlation Coefficient
Average ERMA Dynamic Contrast Versus	0.5828
District #3 Paint Foreman Nighttime Reflectivity Ratings (B)	
Average ERMA Dynamic Contrast	0.5256
District #4 Paint Foreman Nighttime Reflectivity Ratings (B)	
Average ERMA Dynamic Contrast Versus	0.3461
District #5 Paint Foreman Nighttime Reflectivity Ratings (B)	
Average ERMA Dynamic Contrast	0.5619
District #6 Paint Foreman Nighttime Reflectivity Ratings (B)	
Average ERMA Dynamic Contrast	0.6015
Average District Paint Foremen Nighttime Reflectivity Ratings (B)	
Average ERMA Static Contrast	0.8006
Average ERMA Dynamic Contrast	
Average Yellow ERMA Dynamic Contrast	0.5723
Average District Paint Foremen Nighttime Reflectivity Ratings (B)	
Average White ERMA Static Contrast	0.4698
Average District Paint Foremen Nighttime Reflectivity Ratings (B)	
Average ERMA Static Contrast On A.C. Pavement	0.4076
Average District Paint Foremen Nighttime Reflectivity Ratings (B)	

F-2

COMPUTER CORRELATIONS OF ERMA STUDY VARIABLES (CONT'D)

Description Of Variables	Correlation Coefficient
Average ERMA Static Contrast On P.C.C. Pavement Versus	0.7335
Average District Paint Foremen Nighttime Reflectivity Ratings (B)	
Average Yellow ERMA Static Contrast Versus	0.8044
Average District Paint Foremen Nighttime Reflectivity Ratings (B)	
Average ERMA Static Marking Line Reflectivity Versus	0.4263
Average District Paint Foremen Nighttime Reflectivity Ratings (B)	
Average ERMA Dynamic Marking Line Reflectivity Versus	0.4993
Average District Paint Foremen Nighttime Reflectivity Ratings (B)	
Average ERMA Static Marking Line Reflectivity Versus	0.5249
Average ERMA Dynamic Marking Line Reflectivity	
Average Yellow ERMA Static Marking Line Reflectivity On P.C.C. Pavement Versus	0.8192
Average District Paint Foremen Nighttime Reflectivity Ratings (B)	
Average ERMA Static Contrast Versus	0.5058
Average District Paint Foremen Daytime General Condition Ratings (A)	
Average ERMA Dynamic Contrast Versus	0.4281
Average District Paint Foremen Daytime General Condition Ratings (A)	
Average ERMA Static Contrast Versus	0.6175
Average District Paint Foremen Composite Ratings (A+B/2)	

.

COMPUTER CORRELATIONS OF ERMA STUDY VARIABLES(CONT'D)

Description Of Variables	Correlation Coefficient
Average ERMA Dynamic Contrast	0.5456
Average District Paint Foremen Composite Ratings (A+B/2)	
District #l Paint Foreman Nighttime Reflectivity Ratings (B)	0.8438
District #6 Paint Foremen Nighttime Reflectivity Ratings (B)	
District #2 Paint Foreman Nighttime Reflectivity Ratings (B)	0.6990
District #4 Paint Foreman Nighttime Reflectivity Ratings (B)	•
Distirct #6 Paint Foreman Nighttime Reflectivity Ratings (B)	0.7286
District #4 Paint Foreman Nighttime Reflectivity Ratings (B)	
District #3 Paint Foreman Nighttime Reflectivity Ratings (B)	0.7392
District #5 Paint Foreman Nighttime Reflectivity Ratings (B)	
Average ERMA (Contrast/Marking Line Reflectivity)X	100
Average District Paint Foremen Nighttime Reflectivity Ratings (B)	0.7039
Average ERMA Static Marking Line Reflectivity Plus Contrast	0.5771
Average District Paint Foremen Nighttime Reflectivity Ratings (B)	
Average ERMA Dynamic Marking Line Reflectivity Plus Contrast	0.5538
Average District Paint Foremen Nighttime Reflectivity Ratings (B)	

COMPUTER CORRELATIONS OF ERMA STUDY VARIABLES (CONT'D)

Description (Variables	Correlation Coefficien			
Average ERMA Reflectivity Ve	Static Marking Line Plus Contrast ersus	0.7068		
Average ERMA Reflectivity	Dynamic Marking Line Plus Contrast			
Average ERMA	Static Contrast (November 1980) Versus	0.6551		
Average ERMA	Static Contrast (January 1981)			
Average ERMA	Dynamic Contrast (November 1980) Versus	0.7326		
Average ERMA	Dynamic Contrast (January 1981)			