Evaluation of the PAVEDEX Road Survey System in Iowa

 URORRY
 50 MNGOLTMA
 A Was 10Wh 50010

Publication No, FHWA-TS-90-038
April 1990

US Department of Fransportation

17-168Tz :deral Highway Administrenion

Form DOT F 1700.7
(8-72)
Reproduction of completed page authorized

TABLE OF CONTENTS

Page

1. INTRODUCTION 1
2. DESCRIPTION OF IOWA DOT METHOD 2
Roughness 3
Crack, Patching, and Rut Depth 4
3. DESCRIPTION OF PAVEDEX METHODS 5
4. COMPARISON OF THE IOWA DOT AND PAVEDEX METHODS 12
Iowa DOT Observations 16
PAVEDEX Observations 19
PAVEDEX Data Collection Procedures 20
PAVEDEX Data 26
Comparison of Iowa DOT and PAVEDEX Results 30
Comparison of Iowa DOT Visual Crack \& 31Patch Survey vs. PAVEDEX Survey Method
5. EVALUATION OF RESULTS 36
General 36
Correlation of Data 37
Costs and Productivity 40
Speed of Data Collection 41
Potential Uses of the PAVEDEX System 42
Potential Modifications 43
Accuracy of Measurements 44
PAVEDEX Applications in Iowa 45
Page
6. CONCLUSIONS AND RECOMMENDATIONS 46
Conclusions 46
Recommendations and Potential Uses 46
7. BIBLIOGRAPHY 47
APPENDIX A: DESCRIPTION OF IOWA DOT SYSTEMS 48
Method of Test for BPR Type Road Roughness 49Measurement (Test Method No. Iowa 1001-A)
Method of Determination of Longitudinal 51Profile Value Using the IJK Ride Indicator(Test Method No. Iowa 1002-B)
Method of Determination of Longitudinal Profile 59
by Means of the CHLOE Profilometer
(Test Method Iowa 1003-A)
Method of Determination of Present serviceability 64Index (Test Method No. Iowa 1004-C)
APPENDTX B: DESCRIPTION OF PAVEDEX SYSTEMS OPERATION 71
Data Acquisition 72
Image Processing 73
Computer Image Processing 76
Test Section Data Output 79
section A 79
Section BB (Shoulder) 31
section B 92
Section CC (Shoulder) 94
Test Section Data Output (Continued)
Page
Section C 85
Section D 87
Section E 89
Section F 93
Section G 97
Section H 101
Section I 105
APPENDIX C: STATISTICAL ANALYSIS RESULTS 107
Rigid Pavement Statistical Data 108
Flexible Pavement Statistical Data 110
Shoulder Statistical Data 111

LIST OF FIGURES

Page
Fig. 1. PAVEDEX PAS I Unit 6
Fig. 2. Front Mounted Cameras 6
Fig. 3. Front Camera Mountings and Position 8
Fig. 4. Rear Camera Mountings and Position 8
Fig. 5. Rack Mounted Recording/Control Equipment 9
Fig. 6. Data Location Encoder 11
Fig. 7. Roof Mounted Roadside Camexa 11
Fig. 8. Front Camera Mounting Bar 24
Fig. 9. Rear Camera Mounting Frame 24
Fig. 10. Sample PAVEDEX Rigid Pavement Output 32
(Section A)
Fig. 11. Sample PAVEDEX Flexible Pavement Output 33
(Section C)
Fig. 12. Survey Van Operations Flowchart 74
Fig. 13. Image Processing Flowchart 75

LIST OF TABLES

Page
TABLE 1. P.C. Pavement Present Servicability Index 17 (Test Site Values)
TABLE 2. A.C Pavement Present Servicability Index 18(Text site Values)

Past pavement condition evaluations have been accomplished using all available information gathered regarding the surface of the pavement and the structural strength of the materials used in road construction, so that a proper maintenance schedule could be developed. Most of this information was gathered manually; however, with the advent of computers and high technology, many of these activities have been automated.

The Iowa Department of Transportation (Iowa DOT) uses primarily manual procedures. The PAVEDEX Inc. system is partially automated to gather and analyze surface condition information. The surface condition information, as used in this study, comprises cracking and patching. Roughness and rut depth measuring equipment were not available on the equipment at the time of the field survey.

The Iowa Department of Transportation determines cracking and patching by sending a trained crew to estimate and measure this information in the field. The Iowa DOT also determines the rut depth from these field measurements and roughness by a response-type roadmeter that is calibrated against a standard instrument, the CHLOE profilometer. Using the combination of values, the Iowa DOT obtains a present Serviceability Index (PSI) value that lies between zero and five $($ zero $=$ bad, five $=$ good) to evaluate the overall condition of the road.

The PAVEDEX Inc. system uses pairs of $C C D$ video cameras mounted on each end of a standard truck van to photograph the pavement surface at highway speeds. The photos are analyzed by a trained observer using dual computer monitors to identify the distress types and amounts. Computer algorithms are used to summarize the type, amount, and severity of various types of cracks and patches.

The objective of this study is to evaluate PAVEDEX's automated system. Nine sections of roads in the vicinity of the Iowa DOT were evaluated with both the Iowa DOT and PAVEDEX methods. Many of these sections were also evaluated in a previous study of the PASCO system.

2. DESCRIPTION OF IOWA DOT METHOD

Since the Iowa Pavement Management System keys on the Present Serviceability Index value, it is important to understand how that value is obtained. The Iowa DOT defines the PSI of a road surface as

$$
\begin{align*}
\mathrm{PSI}= & \mathrm{LPV}-0.01(\mathrm{Cac}+\mathrm{P})^{1} / 2-1.38(\overline{\mathrm{RD}})^{2} \tag{1}\\
& \text { for asphalt surfaces and } \\
\mathrm{PSI}= & \mathrm{LPV}-0.09(\mathrm{CpC}+\mathrm{P})^{1} / 2 \tag{2}
\end{align*}
$$

for concrete surfaces where LPV is a function of the roughness of the road and

Cac $=$ the number of square feet per 1,000 square feet of asphaltic concrete exhibiting "alligator" cracking.
$\mathrm{Cpc}=$ the linear feet per 1,000 square feet of portland cement pavement having cracks $1 / 4$ inch wide or sealed
$\mathrm{P}=$ number of square feet per 1,000 square feet of pavement having skin or full depth patching.
$\mathrm{RD}=$ the mean depth of rutting, in inches, measured with a four-foot straightedge.

Thus, the PSI is made of two values, LPV and the deduction for cracking, patching, and rut depth. The LPV is selected so that a maximum LPV is five when the roughness is zero; thus, the PSI value can reflect values of five, indicating excellent, to zero, indicating poor road condition. The current Iowa DOT methods of obtaining values of roughness, cracking, patching, and rut depth are detailed in the Appendix A. A general description is provided in the following sections.

Roughness

Roughness can be defined as the deviation of the surface from a smooth profile, a constant gradient longitudinal profile. The Iowa DOT uses the Bureau of Public Roads (BPR) roughometer to obtain the roughness in terms of inches of roughness per mile. The BPR roughometer consists of a single road wheel attached to an accumulating counter by a one-way clutch. As the wheel moves up and down while being towed, all movements in one direction are summed. Another counter records the number of revolutions of the tire so that distance traveled can be calculated (see Appendix A). The

BPR readings are calibrated against a standard device (CHLOE Profilometer) to obtain Longitudinal Profile Values (LPV's). The BPR roughometer can be operated at 20 mph .

Cracking, Patching, and Rut Depth
The method of determining the cracking, patching, and rut depth by the Iowa DOT is presented in detail in the Appendix A. The Department uses crews of three to five persons to observe and record the extent of cracking, patching, and rut depth as defined below:

Cracking (asphalt)
Cac $=$ number of square feet per 1,000 square feet of asphaltic concrete exhibiting "alligator" or "fatigue" cracking.

Cpc $=$ linear feet of cracking per 1,000 square feet of portland cement pavement.

Only those cracks that are open to a width of $1 / 4$ inch or more along half their length or those that are sealed are to be included.

Patching
$P=$ number of square feet per 1,000 square feet repaired by skin (widening joint strip seal) or full depth patching.

Rut Depth
$\mathrm{RD}=$ mean depth of rutting, in inches, measured with a four-foot straightedge.

The crew drives on the shoulder, if possible, estimates the areas of cracking and patching, and records them on a
work sheet. A typical work sheet is shown in Appendix A. The rut depth is measured at every 0.05 miles for asphalt pavement, and one set of readings is taken at the beginning and end of a half-mile test section of concrete pavement.

The area of cracking in asphalt pavement is totaled and divided by the area of the test section in thousands of square feet to obtain cac for use in Equation (1). The number of cracks and $1 / 2$ cracks (divided by 2) are totaled and multiplied by the width of the roadway and divided by the area of the test sections in thousands of square feet to use (Cpc) in Equation (2). The area of patching is totaled and divided by the area of the test section in thousands of square feet to obtain P for Equation (1) or (2). The rut depth measurements are totaled and averaged to obtain $R D$ in Equation (1).
3. DESCRIPTION OF PAVEDEX METHODS

The PAVEDEX system employs the use of a one-half ton van, with a heavy duty (100 amp) alternator and auxiliary air conditioner. A 1-KW invertor in the van supplies the power for the recording and photographic equipment.

Two NEC/CCD cameras are mounted on each end of the van and a fifth is mounted on the roof of the vehicle as shown in Fig 1. The front two cameras (Fig. 2) are focused on the road surface at a 20 degree angle to the vertical as shown in Figure 3; and the rear cameras are positioned at 15 degrees to the vertical as shown in Figure 4.

Figure 1. RAVEDEX PAS I Unit

Figure 2. Front Mounted Cameras

Synchronization of the equipment allows for the use of any pair of the cameras at the same time. Each camera provides a continuous picture of an area 512 pixels by 512 pixels; with a shutter speed of $1 / 1,000$ second producing 30 frames per second. The vehicle and the cameras are synchronized to provide a picture of 6-feet 6 -inches wide (with a 6-inch overlap at the center of the lane) and 4-feet long.

VHS recorders, shown in the lower right portion of Figure 5, provide 400 lines of resolution each, and are mounted in the van to record on two-hour, 1/2-inch, black-and-white or color film video tapes. Considering the abilities of the cameras, the recorders are the primary bottleneck in the current system. The $400-1$ ine resolution prevents the equipment from gathering the level of detail that the cameras can provide. Three such recorders are shown in Figure 5. Two are used to record data from the selected downward-looking cameras (front or rear) and the third is used with the forward-looking (overhead) camera. The recorders are arranged to allow the recorder person to switch cameras and recorders with the switch box (shown in the lower portion of Figure 5), while the vehicle is in motion. The top recorder unit gathers data from the right side of the vehicle, the middle recorder gathers data from the left side and the lower recorder is connected to the forward-looking camera for this test. The switch box allows the operator to select from the left or right side cameras and the front or back cameras while in motion. This feature is very helpful

Figure 3. Front Camera Mounting and Position

Figure 4. Rear Camera Mountings and Position

Figure 5. Rack-Mounted Recording/Control Equipment
in determining the best angle for gathering data that will eliminate the most shadow from the van.

Also shown in figure 5 are distance measuring electronics (lower left), the 100-amp generator (middle left) and the three VCR drives and digitizers (upper left).

A Panasonic model 6200 monitor in the upper right portion of the rack allows the recorder to view the same picture that is being recorded at any time.

An encoder attached (Fig. 6) to the odometer delivers information (with 1-inch resolution) every 30 milliseconds to the film for recording the time, date, road segment number, location (to the nearest foot) from the section origin and the frame count number for each frame.

The roof mounted camera shown in Figure 7, is designed to provide the same type of information on roadside inventory.

Image processing is accomplished using a trained observer and computer control of the VCR's playback using an inverted RS232 interface with a time-based corrector conditioning the signals. A decoder reads the header board data on each frame to provide the computer with correct data on the time and location of the frame. As the computer advances the film a frame at a time, the trained observer identifies the distress type, severity and amount via keyboard codes. The computer collates all of the distress data for each customer designed project segment and stores the information.

Figure 6. Data Location Encoder

Figure 7. Roof-Mounted Roadside Camera
4. COMPARISON OF PAVEDEX AND IOWA DOT METHODS

In order to judge the PAVEDEX method of evaluating the surface condition of the road, we decided to survey the surface of nine sections of roadway and two shoulder sections, approximately one mile in length, in the vicinity of the Iowa DOT. The sites represent the various pavement and traffic conditions that the Iowa DOT actually encounters in rehabilitating and maintaining the primary road system. Many of the sites (sites A-E) have been used in previous studies to evaluate equipment such as the PASCO System for evaluating pavement condition. The sites are briefly described below:
A. Interstate 35 northbound lanes (between the Ia. 210 Interchange and the abandoned railroad bxidge) milepost 103 to 104. This 10-inch, meshreinforced portland cement concrete pavement with 76.5-foot joint spacings was constructed in 1965 on 4 inches of granular subbase and 8 inches of asphalt treated base and is used as an approach to a weigh-in-motion site
B. Interstate 35 northbound lanes (between the 13 th Street Interchange and the Story County Road E-29 Interchange) from mile post 114 to 115. This section of 10-inch, joint-reinforced portland cement concrete pavement with 20 -foot joint spacings was reconstructed in 1984 on 6 inches of recycled portland cement concrete. A reconstructed
asphalt concrete shoulder is also included in the evaluation. Part of this section is used by the Iowa DOT in their annual evaluation of the road roughness measuring equipment. The outside, 10foot wide shoulder is also included as a separate condition rating section.
C. Interstate 35 southbound lanes (between Story County Road E-29 and the 13th Street Interchange) from mile post 115 to 114. This section contains 8-inch continuously reinforced portland cement and eight inches of asphalt-treated base in the southbound lanes. The northbound lanes were replaced with 10 inches of joint reinforced concrete in 1985, over 6 inches of recycled concrete. Shoulders on the northbound lane were overlaid with asphaltic concrete at the same time. Various areas of the driving surface in the southbound lane were overlaid with asphaltic concrete in 1984 in conjunction with maintenance operations. The outside, 10-foot shoulder in each direction is also included in the evaluation and is in varying stages of distress.
D. Dayton road between Lincoln Way and 13th Street in Ames. This section was constructed of a 4-inch granular subbase and a 6-inch rolled stone base and was surfaced with three inches of asphaltic concrete in 1959. It was sealcoated in 1965 and
resurfaced with two inches of asphaltic concrete in 1968 and sealed in 1980. The surface offers varying amounts of distress to measure, including a railroad crossing. This city street has a 45 mph speed limit.
E. Dayton Road between Lincoln Way and U.S. Highway 30. This 8-inch portland cement surface constructed in 1981 shows relatively little deterioration and is in a 45 mph speed zone. It does provide a way to review the effect of transverse surface texturing in the condition results.
F. Story County Road E-41 east of Ames beginning onehalf mile east of I-35 and continuing one mile east. This section is made up of a thickened edge portland cement concrete section (10"-7"-10") placed in 1928. The section was widened from 18 to 24 feet in 1955 with portland cement concrete. In 1956, three inches of asphaltic concrete was placed over the entire section. In 1978, an open-graded surface course (research project) was added. Thicknesses range from $1-1 / 2$ inches ($1 / 2$ inch mix size) to 1 inch (sand mix). Conventional mixes and thicknesses were used in various segments of the test section. Seven different pavement surface textures were applied. That surface provides difficulty for many types of condition
measuring devices in determining the level and type of distress present. The route contains evidence of centerline joint deterioration, and both longitudinal and transverse cracking.
G. U.S. 69 from Airport Road south to Ken Maril Street. This is one of the original sections of U.S. 69 and contains the thickened edge design (10-7-10 inch) portland cement base placed in 1929 with a two-foot asphalt widening and overlay placed in 1948. The composite section is in a 50 mph zone and includes a large amount of cracking of various types and patterns.
H. Story County Road E-41 and Lincoln Way from Dayton Road easterly 0.7 mile to the beginning of the asphalt section noted in section F. It was also built in 1928 with the thickened edge section as in section F. It was overlaid and widened from 18 feet to 24 feet in 1954 with a minimum of 6 inches of mesh reinforced portland cement concrete. This section exhibits several areas of joint failures, punchouts and popouts of the surface aggregate.
I. Mortenson Road between Elwood Drive and Ash Street. This is a 25 mph section that exhibited large amounts of longitudinal and transverse cracking and joint deterioration at the time of section selection. It was constructed in 1978, with 7 inches of plain jointed portland cement concrete.

The City of Ames repaired this section in 1989 prior to the PAVEDEX survey and therefore it should exhibit only minor amounts of distress and new patches of large size.

Iowa DOT Observations

The Iowa DOT collected the necessary data (patching, cracking, roughness (LPV) and rut measurements) to compute the PSI values on all sections:

The BPR roughometer was used to determine the LPV values. On May 23, 1989 crack and patch surveys were conducted on all sections. The BPR survey was conducted on June 5, 1989 over all sections, except the shoulders of I-35. Roughness measurements are not currently conducted on shoulder areas in Iowa. Three passes were made in each wheel track of each section, excluding the shoulders of I-35. Using the current correlation table (BPR method versus LPVs), the LPVs corresponding to the BPR method were obtained and are shown in the results (see Tables 1 for portland cement and 2 for asphaltic concrete sections). Columns 1 and 2 of Tables 1 and 2 identify each test section by letter and location. Columns 3 and 4 identify the field mile post reference locations of each end of the sections. City and county sections do not have the milepost references and therefore begin with zero and end with the length of section in miles. Column 5 identifies the length of each section in miles and column 6 indicates the width of the driving lanes.

Table 1. P.C. Pavemene Presert Serieeability Index (Test Site Values)

	Site	Rout	From ${ }^{\text {MP_ }}$	$\mathrm{Y}_{\mathrm{TP}_{-}}$	Length (Miles)	Width (Feet)	Date of C\& Survey_	$\underset{(\text { Lin. }}{\text { Crack }}$	- ${ }^{\text {c }}$	$\begin{aligned} & \text { Patch } \\ & (S q . F t .) \end{aligned}$	$\underline{-1}$. $09 \sqrt{\text { C+P }}$	Fault (In.)	$\stackrel{\mathrm{RD}}{(\mathrm{In.})}$	0.0.F.	Date of BPR Survey	$\stackrel{\mathrm{RR}}{(\mathrm{In} / \mathrm{Mi})}$	LPV	PSI
	A	1-35 N8	103	104	1.0	12	5-23-89	528	8.33	93	1.47	. 28	. 17	. 17	0	6-5-89	84	3.83	3.55
\cdots	8	1-35 NB	114	115	1.0	12	5-23-89	0	0.00	0	0.00	0	. 03	. 07	0	6-5-89.	80	3.95	3.95
	ε	Oayton Rd. (US 30 to Lincoln Kay)	0	1	1.0	24	5-23-89	0	0.00	2	. 016	. 01	. 09	. 04	0	$\begin{gathered} 6-5-89 \\ 6-5-89 \end{gathered}$	$\begin{aligned} & 153 \mathrm{NB} 8 \\ & 143 \mathrm{SB} \end{aligned}$	$\begin{aligned} & 2.86 \\ & 2.95 \end{aligned}$	2.85 2.94
	H	E-41	0	0.85	0.85	24	5-23-89	48	. 446	346	3.212	. 17	. 11	. 02	3	$\begin{aligned} & 6-5-89 \\ & 6-5-89 \end{aligned}$	$\begin{aligned} & 123 \mathrm{kB} \\ & 129 \mathrm{kB} \end{aligned}$	$\begin{aligned} & 3.14 \\ & 3.08 \end{aligned}$	2.97 2.91
	1	Mortenson Rd. WB (Elwood Or. so Ash St.)	0.5	0	0.50	24	5-23-89	60	. 947	0	0	. 09	. 05	. 02	0	6-5-89	155 WB	2.84	2.75
	1	Mortenson Rd. $E 8$ (Elwood Br. to Ash St.)	0.00	0.5	0.50	24	5-23-89	132	2.083	7162	113.04	. 97	. 06	. 02	0	6-5-89	184 E8	2.64	1.67

Table 2. A.C. Pavement
Present Serviceability Index
(Test Site Values)

	Site	Route	From $\xrightarrow{M P}$	$\begin{aligned} & Y_{0} \\ & { }_{40} \end{aligned}$	Length (Miles)	Width (Feet)	Date of Cap Survey_	$\begin{gathered} \text { Crack } \\ \left(S_{Q} . \mathrm{F}_{\mathrm{t}}\right) \end{gathered}$	C_	$\begin{gathered} \text { Patch } \\ (\mathrm{Sq.Ft.}) \end{gathered}$	$?$. $01 \times 1 \times$	$\begin{gathered} \mathrm{RD} \\ (\mathrm{In}) \end{gathered}$	$\begin{gathered} .01 \sqrt{C+P P} \\ +1.38 R D^{3} \end{gathered}$	Date of BPR Survey	$\begin{gathered} \mathrm{RR} \\ (\mathrm{In} / \mathrm{Mi}) \end{gathered}$	LPV_	PSI
	8	$\begin{aligned} & \text { 1-35 NB } \\ & \text { (Shoulder) } \end{aligned}$	114	115	1.0	10	5-23-89	0	0	0	0.00	0	--	0	-	-	-	-
$\stackrel{+}{+}$	c	1-35 SB	115	114	1.0	12	5-23-89	0	0	150	2.367	. 0154	. 082	. 02	6-5-89	84	3.35	3.33
	c	$\begin{aligned} & \text { I- } 35 \text { SB } \\ & \text { (Shoulder) } \end{aligned}$	115	114	1.0	10	5-23-89	0	0	112	2.121	. 0146	-	. 01	-	-	-	-
	20	Dayton Rd. (Lincoln Hay to 13th St.)	0	0.75	0.75	$\therefore 24$	5-23-89	1020	10.732	654	6.881	. 042	. 179	. 09	$\begin{gathered} 6-5-89 \\ 6-5-89 \end{gathered}$	$\begin{aligned} & 145 \text { NB } \\ & 154 \mathrm{SB} \end{aligned}$	$\begin{aligned} & 2.39 \\ & 2.31 \end{aligned}$	2.30
	F	E-41	0	1.10	1.10	24	5-23-89	16	. 115	875	6.277	0.25	. 095	. 04	$\begin{aligned} & 6-5-89 \\ & 6-5-89 \end{aligned}$	$\begin{aligned} & 129 \mathrm{~EB} \\ & 137 \mathrm{~KB} \end{aligned}$	$\begin{aligned} & 2.55 \\ & 2.47 \end{aligned}$	2.51 2.43
	6	US 69	112.80	113.80	1.0	24	5-23-89	1272	10.038	3065	24.187	$0: 59$. 160	. 09	$\begin{aligned} & 6-5-89 \\ & 6-5-89 \end{aligned}$	$\begin{aligned} & 130 \mathrm{NB} \\ & 126 \\ & 5 B \end{aligned}$	$\begin{aligned} & 2.54 \\ & 2.59 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.50 \end{aligned}$

The Interstate sections have a 12 -foot width related to the area surveyed of the total 24 -foot width. Shoulders are 10feet wide for the surveyed area and all other sections were surveyed in both directions of the 24 -foot width pavement. The date of the crack and patch survey is shown in column 7. Columns 8 and 9 represent the amount of cracking measured and the appropriate value per thousand square feet for the calculation of PSI. Similar values for the amount of patching identified are shown in columns 10 and 11 . Column 11 combines the crack and patch figures into one deduct value. The faulting noted in a set of measurements for portland cement concrete is noted in column 12 and the measured rut depth is shown in column 13. The presence of "D" cracking is identified in column 14 according to level of severity from 0 illustrating no presence to 5 representing segments in need of full depth patching or replacement of the concrete pavement. The BPR date of survey and the recorded inches per mile of roughness are shown in columns 14 and 15. The corresponding longitudinal profile for the BPR data is shown in column 16. The. PSI shown in the last column represents the LPV value minus the deductions shown in column 14 for asphalt surfaces and column 12 for portland cement concrete. Rut depth is noted for concrete pavements, but not used in the calculation of PSI.

PAVEDEX Observations

PAVEDEX employs the use of a standard Ford Econoline van equipped with video cameras at each of the corners of the van
to photograph the pavement. . The equipment used in this test was equipped to photograph the pavement from any combination of the four cameras. Continuous video images of consecutive passes of the vehicle were made of each of the test sections of road and the two shoulder sections on I-35. A series of four tapes were made on this test, representing film of the left and right portions of the surveyed lane for approximately 90 miles of pavement at various speeds.

PAVEDEX Data Collection Procedures

The PAVEDEX van comes ready to use in a matter of minutes. The cameras can be covered during travel between sites to protect them from road debris or carried in the ready position. Cameras are usually removed at the end of the day for security reasons. Remounting time for the next day's work is completed in 10-15 minutes through the use of single cable connections and quick mounts for the camera assembly.

The cameras used to measure pavement distress are mounted on two simple bar assemblies attached to the front and rear bumpers. A separate camera can be mounted on the top of the van to provide a separate view of the roadway and right-of-way features, such as traffic controls that can be associated with the pavement surface in determining safety strategies. The data from each camera is stored on VHS tape for analysis.

The vehicle can be operated by one person, but as in the case with most of the pavement distress vehicles, a two-
person staff is recommended. The use of two people allows the vehicle operator to control position of the vehicle, and identify any particular items on the pavement that may create problems in computer identification. The recorder can operate the controls to determine the best camera arrangement and record on a dictaphone, any miscellaneous distress items to be concerned with at a given location.

Power for the van recording system comes from a special 100-amp alternator and the van engine. This makes the system self-contained and removes the requirement for additional power sources.

The camera used on this project is the NEC Model TI-23A CCD. It is designed to photograph the pavement in black and white. This 1/2-inch, totally solid-state TV camera uses a charge-coupled device (CCD), a solid-state imaging device, as a photoelectric transfer element instead of the pickup tube generally used. This provides a black-and-white camera with higher sensitivity, higher image quality, and lower after image. Pictures are highly uniform and free of geometric distortion and sticking. The camera's compactness, light weight, long service life and high resistance to shocks and vibration make it ideal for a wide range of applications, such as pavement evaluation. previous video cameras have not provided the clarity needed to determine pavement condition. The camera provides the same type of image that the 35 mm cameras can provide in terms of a shuttered effect to freeze a particular portion of the pavement for evaluation.

Camera features that affect the reliability and effectiveness of this unit include:

1. The use of two, solid-state CCDs in one camera to provide an interline transfer imaging device and embedded channel signal readout register to eliminate any resolution degradation due to higher transfer efficiency. A higher modulation factor also guarantees clear, crisp pictures.
2. Signals photoelectrically transferred by the solidstate imaging device are converted to video signals with digital scanning, a technique that reduces geometric distortion.
3. The image does not stick, even when the camera is shooting a bright subject.
4. The solid-state device provides improved resistance to shocks and vibrations that often destroy conventional pickup tube cameras.
5. The $C C D$ solid-state imaging device provide much longer life than the conventional vacuum tube cameras.
6. The electronic shutter speed on the cameras used in this test is $1 / 1000$ second in the shutter mode.
7. A single cable and quick coupling arrangement are used to speed the attachment of the camera to the mounting and provide a watertight connection.

The front pair of cameras are mounted on a simple metal box bar frame that is mounted approximately 45 inches above the pavement surface. The actual distance from the camera lens vertically to the pavement is 41 inches. A 74-inch long
mounting bar allows the manufacturer to change the location of the cameras and concentrate on any given area of the pavement surface with a minimum of downtime. Cameras were centered over each half of the pavement lane for the Iowa Test (see Figure 8) with a distance of 64 inches between cameras. These cameras were focused on the pavement at an angle of approximately 20 degrees from the vertical.

The rear cameras are mounted on two cantilever arms attached to a similar bar as used on the front of the vehicle (see Figure 9). Cameras are attached some 30 inches behind the vehicle on the end of the cantilevers and focused at 15 degres from the vertical, on the pavement at a height of 5 feet. Camera spacing is held at the same 64 inches as on the front of the vehicle.

Mounting arrangements for the cameras provide a way of viewing the entire 12-foot lane with an overlap area of 6 inches in the center of the lane transversely. Camera mountings and shutter speeds allow for a single picture of an area 6-feet (plus overlap) wide by 4-feet longitudinally to be taken by each camera with only minimal overlap in successive pictures. The camera mounting heights also provide protection from road spray and allow the unit to be used during periods when the pavement is wet immediately after a rain. Use is not recommended during periods when the pavement exhibits standing water due to the reflective nature of the surface.

The cameras are each synchronized with the left rear

Figure 8. Front Camera Mounting Bar

Figure 9. Rear Camera Mounting Frame
camera and can be operated independently or in combination with one or more other cameras. Shutter speed is controlled by the speed of the vehicle, but is established at $1 / 1,000$ second and 30 frames per second. The recording rates allow for the collection of approximately $35-40$ miles of data at 25 mph (urban conditions) or 100-140 miles of data at 55 mph (rural conditions) per video tape.

Data from the cameras are recorded on one of three recorders (one for the overhead camera and one for each of the pair of pavement cameras being used) housed in the van. A simple rack mounting frame with $1 / 2$-inch cushioning materials for each recorder help provide improved quality of data. The entire rack mount (see Fig. 5) is cushioned on a 1-inch thick blanket of rock mining matt over one inch of plywood. A special header board on each frame of the film provides two lines of information on the time and location of the picture. Line one includes six digits of time (hour, minutes, seconds) in military time, and the frame number from 1-29. The second line includes five digits of distance measurement from the beginning of the section and the last three identify the road segment number assigned by the operator.

Other equipment in the van includes a generator, digitizer, distance measuring computer, TV monitor, and switch box to provide the recorder a way of monitoring all the camera outputs from one visual monitor. The monitor also provides a way to view the time and distance header board
information at any time. Switch box controls allow the operator to change from front to rear or left to right camera views and operation.

A model NC-15 CCD color camera is used for the top mounting to photograph the right of way. It performs in the same manner as the TI-23A, but provides color pictures. It was not used in the Iowa test due to the type of information required. The camera is mounted over the driver's head on the roof of the van and is controlled by the operator or recorder person. It is capable of being mounted in variable positions on a bar across the van. The camera can be adjusted to a given vertical angle and horizontal angle relative to the area of the right of way, desired for viewing.

The equipment used for the Iowa demonstration included the capability to photograph and measure cracking in the form of longitudinal, transverse and alligator cracking. Manual evaluation done with the use of the dictaphone could increase the types of data gathered to include flushing, ravelling, patching, and block cracking. The van did not include equipment to measure rut depth or longitudinal or transverse profile.

PAVEDEX Data

Data collection was carried out on June 29 and June 30, 1989 on the nine test sections. Both days of data collection for this test were sunny with temperatures ranging to 85 degrees fahrenheit on the first day and 89 degrees on the
second day. Little or no wind was encountered either day.
The sections measured the first day included three passes each of sections A, B, C, and the shoulder sections noted as $B B$ and $C C$, during the mid portion of the day (10:30 am - 2:30 pm) to record the effect of the sun being directly overhead. The last run on section $C C$ was made during the 3:00 pm - 6:00 pm period due to the timing involved. Runs on A, B and C were made at 55 mph and those made on the shoulders $B B$ and $C C$ were made at speeds ranging from 40-55 mph depending on the particular run. Rear cameras were employed on the northbound runs (sections A, B, and $B B$) and front cameras on the southbound runs (sections C and CC). The system is very quick to operate and the only time spent was that to drive the section and move to the next section. Three runs on most sections could be accomplished in 15 to 30 minutes.

A series of afternoon (3:00 pm to 6:00 pm) runs were also made on sections A, D, F, G, H, and I. This completed the runs on section A and provided half the information required on the other two-lane sections. The odd numbered runs on section D and E are in a northerly direction and the even numbered runs represent southbound runs. Speeds on these sections ranged from $30-45 \mathrm{mph}$. Rear cameras were employed in the northbound direction and front cameras in the opposite direction. Speed limits, stops and railroad crossings indicated no particular problems for the recording equipment.

On sections F and H, the odd numbers represent the eastbound runs and the even numbers the westbound. On these sections, the speeds ranged from 35 to 50 mph depending on the traffic flow at a given run. Rear cameras were used in the eastbound direction and the front cameras in the westbound direction.

Odd numbered runs were made in the westbound direction on section I, and evens in the eastbound direction. The first run was made at 15 mph and the two successive runs were made at 25 mph . This section employed the use of the front cameras in the westbound direction and rear cameras in the eastbound direction. The curvilinear alignment of this section presented no particular data collection problems for the system.

Section G runs were made with the odd numbers representing the southbound direction and the evens the northbound direction. The speeds used were 35 mph on the first two runs and 40 mph on the last run. Front-mounted cameras were used in both directions on this segment. This marks the first section where the angle of the sun started to become a factor in camera selection.

A final series of afternoon runs was made on section A at speeds of $50-55 \mathrm{mph}$ employing the front cameras only.

Camera determination was made prior to the beginning of each run by the recorder person based on a survey of the camera views to remove the most shadow from the van. This vehicle operates with only natural sunlight and camera
selection is based on the angle of the sun and direction of travel.

The second day began at 9:25 am and ended at 1:34 pm with the final runs being made on sections B, C, D, E, F, G, H, and I. In this case, the front-mounted cameras were used on all runs made on sections B and C at speeds of $45-55 \mathrm{mph}$.

Sections D and E presented the reverse problem of camera selection noted in the afternoon of the first day. Initial camera selection used the front cameras for one run and then employed the rear camera for the remaining runs to reduce shadow problems.

Runs on sections F and H were made at speeds of $38-46$ mph with the cameras being reversed from the previous day. Front cameras were used in the eastbound direction and rear cameras in the westbound direction.

Section G presented the same camera selection as the other north-south sections. Speeds of 39-45 mph were employed and camera selection center mainly on the use of the front camera with two northbound uses of the rear camera.

All runs on section I were made using the front mounted camera and speeds of $26-30 \mathrm{mph}$.

Speeds shown above were identified from the odometer on the vehicle and should be considered representative of the actual speeds across the sections.

Data collection moves very quickly and smoothly with the PAVEDEX system. With proper planning of the routes to be surveyed, the only time lost would be that in dead heading
over completed sections to move to the next section. This could be reduced through correlation of the tape header data during retrieval and employment of long sections (days run) of the same route.

Comparison of Iowa DOT and PAVEDEX Results

The original test had been set up to compare the distress, ride and rut depth measurements. The PAVEDEX equipment used for the test had not been outfitted to provide rut depth or longitudinal profile information. Only distress data from the two systems (PAVEDEX and Iowa DOT) can be compared from the tests.

In terms of crack measurement, the Iowa DOT method has been to count the number of cracks in several ways based on the surface type and crack type. The predominant crack type is first identified and then the severity and extent applied. Alligator cracking is measured in square feet per 1,000 square feet of surface area. Longitudinal cracks in asphaltic concrete pavement must exceed 100 feet in length and be 1/4-inch wide. They are also measured in number on asphaltic concrete pavement per 0.05 mile. Transverse cracks can be open over $1 / 4$ inch or sealed and measured as the number per 0.05 mile on asphaltic concrete pavement.

PAVEDEX does not provide the number of cracks, but does provide more detail on the cracks. The cracks are identified by type and severity. The alligator and longitudinal cracks are identified by length in feet of cracks of a given severity. ($L=$ low severity cracks of $1 / 4$
inch or less in width, $M=$ medium severity cracks of $1 / 4-1 / 2$ inch in width and $H=$ high severity cracks are those with width greater than $1 / 2$ inch). Transverse cracks were counted per segment as those that cross at least one wheel path. "D" cracking is measured by occurrence and value scale.

Using the Iowa method, patched areas are measured in square feet. The same is done in the PAVEDEX method, except the patch's condition is subdivided into two categories (good and poor) that correspond to the relative surface appearance at the joints and across the patch.

Comparison of Iowa DOT Visual Crack and Patch Survey
 Versus pavedex Survey Method

Two items of information used in the evaluation make a one for one comparison of the Iowa method and the PAVEDEX methods difficult. The first is the difference in definitions of cracks and patches. Iowa looks at cracks by direction, greater than $1 / 4$ inch in width and certain lengths, while PAVEDEX identifies all cracks down to $1 / 8$ inch in width and subdivides them by their type and direction. PAVEDEX rates the condition and area of the patch, while the Iowa method looks only at the area of the patching.

The second difference comes in the definitions used by the trained observer in each case. Crack patterns and policies on how to rate sealed cracks differ with the two systems.

PAVEDEX summary data was provided to the authors in the form of floppy disks containing LOTUS spreadsheet files, and

Figure 10. Sample pAvedex Rigid Pavement output (Section A)

Figure 11. Sample RAVEDEX Flexible Pavement Output (Sec. C)
SNVEEEX, HEC. SFWMAXE, W SEPT 1983
1却 TEMASTEAILON
"C' MPAD 135 gant

5×11	SEE	Ime	956	- Llimatin		FEEI	Lbigitminat.		FEET	Thatgerse		\#	Pataes sel feel	
\#			\%	1	H	H	L	n	H	L.	H	H	Pl	P2
1	Cl	1	36	0	0	0	8	θ	0	-	-	0	-	-
1	c2	1	55	0	8	6	0	0	0	0	8	-	8	0
1	c3	1	76	0	0	\%	0	8	8	8	0	8	-	e
1	E	2	11	0	0	8	0	0	0	2	0	0	0	0
1	C5	2	31	0	0	*	0	0	0	8	*	0	0	*
1	c6	2	43	0	2	0	θ	0	-	1	8	0	-	, 8
2	ct	1	35	0	0	0	0	0	0	2	0	θ	8	-
2	c2	1	56	0	0	0	8	0	0	2	0	0.	0	0
2	C3	1	77	0	0	0	\bigcirc	1	0	0	c	-	0	8
2	64	2	12	8	0	0	2	θ	0	0	0	0		0
2	cs	2	32	0	6	0	$?$	0	e	1	0	0	0	-
2	16	2	50	0	0	0	8	0	-	0	8	0	\%	0
3	Cl	1	36	0	0	0	\cdots	0	θ	6	\bigcirc	0	-	15
3	C2	1	57	θ	8	0	0	0	0	5	0	0	0	15
3	c3	1	70	0	θ	0	8	0	0	5	0	8	0	15
3	C4	2	13	0	0	\%	-	8	0	3	8	0	0	15
3	C5	2	33	-	0	0		0	0	4	0	8	0	15
3	66	2	51	0	0	0	0	0	1	5	0	\cdots	0	15
4	Cl	1	37	0	8	0	0	0	8	8	8	0	0	15
4	12	1	58	0	8	0	0	0	0	8	8	0	0	15
4	43	1	73	0	0	0	0		0	4	0	0	0	15
4	64	2	14	0	0	0	0	-	0	18	0	8	θ	15
4	c5	2	34	0	0	0	0	0	1	8	0	0	8	15
4	L6	2	5	0	9	0	0	0	8	8	0	0	8	15
5	Cl	1	38	0	0	0	0	0	0	15	0	8	15	-
5	ca	1	59	0	B	0	*	0	0	17	0	0	15	-
5	c3	1	89	0	8	0	6	0	0	13	0	0	15	9
5	C	2	15	0	0	0	0	0	1	17	0	8	15	-
5	cs	2	35	0	0	0	0	0	0	17	0	0	15	8
5	16	2	53	0	0	0	0	0	0	14	8	0	15	0
6	Cl	1	39	0	0	0	0	0	0	27	8	0	*	-
6	c2	1	69	0	0	0	0	0	0	20	0	0	0	8
6	c3	1	01	0	0	0	*	0	8	24	0	0	?	0
6	C4	2	16	1	0	0	8	0	0	24	8	θ	0	\bigcirc
6	c5	2	36	0	8	0	0	θ	0	21	0	8	0	0
6	t5	2	54	0	0	8	0	0	0	24	8	-	0	0
7	Cl	1	40	0	0	0	0	0	-	23	0	0	8	0
7	ca	1	61	0	0	0	0	0	8	25	8	0	0	0
7	c3	1	02	0	0	0	0	0	\bigcirc	21.	0	0	0	0
7	64	2	17	0	0	\%	0	0	0	25	0	0	0	0
1	C3	2	37	0	0	e	0	-	0	23	0	0	0	0
7	C6	2	55	0	0	8	8	3	0	25	0	0	\%	*

paper copies of the same data. Partial examples of that data are illustrated in Figure 10 for section A and Figure 11 for section C. The remaining summaries are in Appendix C.

In an attempt to evaluate the two systems, the author assumed some values for the length of cracks as noted in the PAVEDEX information. These included an average length of 2 feet for corner cracks (CC), 12 feet for first and second stage cracks (FSC), and 18 feet for third stage cracks. The following observations were made from the PAVEDEX summaries and the Iowa DOT summary forms.

Section A - The PAVEDEX information identifies some 534 feet of cracking and 110 square feet of patching compared to the Iowa DOT 528 feet of cracking and 93 square feet of patching. This is very good, but one should expect this on a continuously reinforced slab. It should be noted that the percent of slabs columns assume an imaginary slab length of 5 feet for calculations, rather than the fact that the slab has no joints.

Section B - Some 24 feet of cracking and no patching were identified by PAVEDEX, while the Iowa DOT identified none of either distress. This represents only two cracks and could have been missed in the standard DOT test method.

Section C - PAVEDEX identified some 100 feet of longitudinal and transverse cracks and 90 square feet of patching, while Iowa DOT found no cracks and 120 square feet of patching. The difference may be the result of problems in identification of transverse cracks vs changes in surface
type (asphalt and concrete) or surface texturing differences. across the section.

Section D - The PAVEDEX system identified some 1950 feet of cracking (majority being longitudinal in nature) and no patching. Iowa DOT figures indicate 1020 feet of cracking is. and 654 square feet of patching.

Section E - Some 20 feet of cracking, two spalls, and no. patching were identified by PAVEDEX. The Iowa DOT noted no cracking and 2 square feet of patching. This section has areas where poor concrete placement has been noted and could. be identified as spalls. The cracking could have been missed in the standard Iowa test method. The patch difference is most likely the result of one area and a . difference in recognition by the observers in each case.

Section F - The PAVEDEX system found some 2,500 feet of cracks and no patch areas on this section. The Iowa DOT found 16 feet of cracking and 875 square feet of patching on this site. It appears that the manufacturer's equipment experienced problems in the recognition of cracks and patches due to the surface texture of the former research test sites on this section of pavement.

Section G - This section produced some 8,750 feet of cracking and 313 square feet of patching by the PAVEDEX evaluation. The Iowa DOT identified some 1,272 feet of cracking and 3065 square feet of patching. The differences in this location are primarily due to the definitions being used by each observer for identifying the primary direction
and condition of cracks in the surface. The surface does not fit either system well and could be better measured in terms of percent of area block cracked.

Section H - Some 496 feet of cracking and 2,210 square feet of patching were identified by the PAVEDEX method along with 44 spalls. The Iowa method produced 48 feet of cracking and 346 square feet of patching. The bulk of the difference is found in the definition of patching at the $I-35$ bridge approaches and the Dayton Ave. returns adjacent to the test slab.

Section I - The PAVEDEX system identified some 230 feet of cracking, 18 spalled areas, several replaced slabs, and no patches. The Iowa DOT identified some 182 feet of cracking and 7,162 square feet of patching. The difference here is in the manner of addressing the replacement slabs. It represents one of the problems facing any equipment evaluation.

General comments - The PAVEDEX equipment did not try to measure the pavement-shoulder joint problems on the interstate highway sections. Section E presented some problems with coarse aggregate popouts and ravelling that are not addressed at this time by PAVEDEX.
5. EVALUATION OF RESULTS

General

The system is easy to operate, quick to become operational at the site, and relatively maintenance free. It
provides a way to survey pavement surface condition and the roadway environment with one pass of the vehicle and provide quick copies of the two-camera views for various highway segments. This information can then be utilized in planning, design and maintenance of the road and surrounding features. The system can be used for network or project level survey information collection.

Correlation of Data

The general correlation of the data gathered by the Iowa DOT and the PAVEDEX equipment has been discussed in the previous sections. The surface texture properties of the county and city streets appear to have caused the most differences in measured distress. The difference in policytype decision definitions regarding distress types is the major factor on asphalt surfaces. The equipment did well on the concrete pavement distress identification and quantification, but did not do as well on the asphalt surfaces.

Some of the objectives of this study included the evaluation of the effect of rural/urban setting, surface type and texture, traffic control, railroad crossing effect, angle of the sun and repeatability of the equipment.

The results indicate no particular problems with obtaining useful data in either rural or urban locations. The effect of the railroad crossing and stopping and starting at intersections made no appreciable difference on the results.

The location of the beginning of filming on each site
does have an effect, A small number of the film segments could not be correlated due to differences in initial points on the pavement, and were therefore not evaluated for distress. Future uses of this equipment should include the addition of some physical identification marks on or near the pavement edge to assure specific starting and ending points for evaluations.

An evaluation was made to determine the effect of the sun's position on the recorded distress types and amounts by taking data at differing times of day. Data was collected during the mid-portion of the day when the sun is nearly directly above the machine and during the early morning or late afternoon hours. A series of three passes was made over each of the pavement sections during the midday and one of the other two time periods to test both the sun's effect and repeatability. The results were tabulated in terms of mean values of each distress type, for each of the passes and time periods. A 95% confidence level was used to test the variability between passes and time periods. A tabulation of values illustrating the repeatability of measuring each distress type is shown in the Tables in Appendix C.

The statistical analysis indicates the equipment does very well in determining the amounts and type of rigid pavement distress. All values for successive passes and time period differences were found to be in the confidence interval, except those for patching and severe spalling. The patching quantities reflect a potential problem in the
criteria that was employed to select a patch from a pavement slab. Class 3 spalling differences in Section H are related to the areas around the bridge approaches and are an isolated instance. All types of distresses were measured in various sections, but the reader is cautioned to note that the levels of distress are relatively light in all the rigid sections tested.

Testing on the asphalt sections reflected a variety of statistical answers. Interstate section C met the 95\% confidence interval for all values tested.

Six tests were made in each direction on the remaining roads and the equipment experienced problems in identification of alligator, longitudinal, and transverse cracks consistently in successive passes or time periods. The best results came in the identification of severe transverse cracks and patches, but no test met the 95\% criteria. Each of the two-lane sections exhibited large amounts of cracking or patching. This creates large problems for both the trained field observer and the PAVEDEX office trained observer in being consistent. It is one of the areas the computer can bring the most objectivity to in the future. Visual observation of the standard deviations associated with this portion of the data indicates much lower values for work done during the mid portion of the day than the morning or afternoon. Direction of travel did not make a large difference in result. It did make a difference in determining the camera selection. Afternoon selection of cameras
in north-south passes required differing arrangements due to the shadows of the camera mountings on the picture area.

Tabulations of the data by test section and distress type are included in Appendix B for the user inspection.

Costs and Productivity

The current trained observer method of evaluating the pavement distresses by PAVEDEX, used approximately 18 person hours to evaluate 54 miles of pavement. This assumes that two computer monitors and two separate cassette tapes are being viewed simultaneously. This translates into 3 lane miles per hour and compares favorably to the estimated one lane mile per hour being estimated for computer analysis of such films.

The Iowa DOT cost of a roughness survey is approximately $\$ 173$ per test section including $\$ 107$ for crack and patch survey. It should be noted that the crack and patch survey is done on a short segment of a construction project length of approximately 5 miles. This would translate into a cost of $\$ 10-15$ per lane mile of project and includes all field costs. The cost estimated for PAVEDEX to do the field survey and analysis of the data is $\$ 20-25$ per lane mile for state highways, \$19-22 per Interstate lane mile, \$30-50 per county lane mile and $\$ 50-60$ per city lane mile. The PAVEDEX cost includes measurement of alligator, longitudinal, transverse and block cracks and patching for flexible pavements and corner cracks, slab cracks and patching of rigid pavements. Other types of distress measurements are negotiable.

PAVEDEX has the capability to provide a full-color perspective view of the road and roadside environment for addressing things such as sign inventories, drainage, curb condition, sidewalks and paint striping. This is identified as an additional cost of $\$ 3.00$ per lane mile.

Special maintenance reports that show the amount and location of distress every 500 feet within the pavement section can be developed for a cost of $\$ 3.50$ per lane mile.

The Iowa DOT conducted the survey of the nine sections in one day. PAVEDEX took one and one-half days to make all the runs over each section. Some time was lost in waiting for the angle of the sun to change before taking more test runs on some sections. Approximately 18 hours of time were expended by a PAVEDEX trained observer to analyze the 54 lane miles of pavement and 12 lane miles of shoulder.

An operator and recorder were used to collect the PAVEDEX data. Analysis of the tapes was accomplished in Spokane, Washington by a trained technician. Two technicians from the Iowa DOT were used to collect the Iowa DOT data. Computations for the Iowa DOT data were done in Ames, Iowa by qualified engineers. In either case the data collection and analysis can be accomplished by trained technicians, rather than using engineers for this operation.

Speed of Data Collection

Field data collection with the PAVEDEX system can be accomplished at any highway speed due to the synchronization of the cameras and the recording equipment. Due to the
shuttering effect of the cameras, the system samples the pavement surface as the speed of the vehicle increases. Assuming that 30 frames per second are obtained regardless of speed, the record does provide a continuous strip of film of the entire pavement as would be the case with some other types of equipment. It is quite adequate for network analysis and in most cases could be regulated by speed to provide project level design details. Reduced travel speeds will allow for a greater portion of lane length to be photographed for distress identification and quantification. Potential Uses of the PAVEDEX System

The PAVEDEX system would work very well in replacement of the existing field survey crews that are trained to take crack and patch measurements. If purchased, the equipment would require the training of one or more observers to review the film and determine the distress types, extent and severity levels. If the system was purchased as a service, all crack and patch data collection and analysis would be included in the contract and the Department could receive summaries in the form of tabular reports, computer disks, or film copies or a combination of all items. Disk information could be directly input into pavement management system data banks and films could be copied for district, design, and maintenance personnel use in planning and constructing rehabilitation projects. Summary tabular reports could be used in the same manner as current crack and patch reports are by the Department.

Addition of the forward looking camera, profile equipment and rut depth measurement capability would provide a one unit pavement rehabilitation data collection source. The use of combined pavement and safety observers could provide measurements of both pavement, and related signing, and capacity problems in the portions being observed. The use of films that are coordinated for illustrating the relationship of pavement condition, capacity and roadside safety problems at one time to administrators would be very helpful in overall roadway improvement and rehabilitation programming.

Potential Modifications

The equipment potential can be improved by the addition of equipment or methods of analyzing longitudinal and transverse profile, computer analysis of the distress types, and the provision for the viewing of individual sections of highway by the user. Longitudinal profile is a must for most all pavement management systems to respond to the users. PAVEDEX does not currently have this capability, but is negotiating for the addition of such equipment to the test unit.

Transverse profile or rut depth measurement is essential for distress measurement of asphalt pavement surfaces. It is not present on the test unit. PAVEDEX is in the process of developing a method that utilizes two cameras and overlapping photos to identify surface relief or profile for this purpose.

The analysis system used in this test employed the use of two computer monitors and a trained observer to determine the type and amounts of each distress present. To remove the subjectivity in this process, the computer algorithms are being developed to identify and quantify the common distress types by use of the computer by the PAVEDEX Corporation.

The Iowa DOT uses photolog film for many demonstrations and decisions involving pavement rehabilitation and design. Such film is used at all levels of the agency for decision support material. It is imperative that the user can identify where they are on the PAVEDEX film and relate pavement surface conditions to the roadside environment around the pavement. The current PAVEDEX system allows this to happen only through the use of a special decoder. Consideration by PAVEDEX should be given to this enhancement to meet the needs of Iowa DOT and other state highway agencies and local government units.

Accuracy of Measurements

The capabilities of the camera allow it to view a 0.15-inch (approximately 1/8-inch) crack in the transverse direction and 0.09 inch (less than $1 / 8$ inch) in the longitudinal direction. This is based on the 512×512 pixel area of camera view that covers an area of 6-feet 6-inches transversely and 4-feet longitudinally with each frame. The capability is diminished somewhat by the fact that the VHS recorder limitation of 400 lines per frame cannot capture all that the camera sees. We would be correct in saying that the
system can identify $1 / 4$-inch cracks in any direction under ideal lighting, and analysis procedures can identify and quantify $1 / 8$-inch cracks. The 1/4-1/8. inch cracks provide a threshold value that can be used by designers and maintenance personnel to plan and design crack rehabilitation.

The system is not designed to measure the $1 / 32$-inch crack usually identified as a hairline crack in "D" crack susceptible pavements. Other algorithms will be required to determine the presence of "D" cracking in its early stages.

PAVEDEX Applications in Iowa
PAVEDEX information and the system can be employed best at the network level for both the DOT and local units of government. It provides objective. crack and patch measurements for analysis of haul roads, detours, and pavement rehabilitation projects for all highway decision makers. It reduces manpower needs in the pavement evaluation area while increasing the objectivity and repeatability of such information.

Information taken by this unit at proper speeds.can provide project level measurement of distress types: and amounts for rehabilitation contract quantities. Data collected in conjunction with the forward looking camera, can provide complete pavement environment information for safety and capacity considerations in the programming process.

Conclusions

The PAVEDEX system is capable of collecting pavement condition data at highway speeds on various types of surfaces. Its current trained observer analysis is a limitation on the system. The addition of a smart computer that can be programmed to user distress selection criteria will complete the user needs. It can be currently used successfully on rigid pavements with only minor analysis modifications to account for lowa transverse grooving texturing. Prior training by the observer and selection of flexible pavement distress measures could very well bring the results into acceptable ranges for use by the Iowa DOT. Recommendations and Potential Uses

The equipment evaluated can be used on Iowa highways to evaluate network level pavement condition. It is limited by the training of the distress observer in Iowa distress criteria and in how to evaluate some of the rigid and flexible surface textures. The current cost of data collection and analysis makes the equipment useful only in urban, high traffic, multilane areas where pavement surveys are expensive and dangerous to the surveyors. The PAVEDEX system would be useful in the area of pavement condition and photolog data collection during daylight hours. It could be used currently in the analysis of before and after haul road and detour analysis without disruption of traffic during the survey.
7. BIBLIOGRAPHY

Davis, John C. Statistics and Data Analysis in Geology. John Wiley \& Sons, New York, 1973.

Highway" Research Board. "The AASHO Road Test," special Report 73, Proceedings of a Conference held May 16-18, 1962, St. Louls, Mo.

Towa Department of Transportation. "Method of Determining Longitudinal profile value by Means of the chLOE Profilometer," Feb. 1971.

Iowa Department of Transportation. "Method for Determining Present Serviceability Index," Dec. 1981.

Iowa Department of Transportation, Highway Division, Office of Materials. "Method of Determining Longitudinal Profile Value Using IJK Ride Indicator," March 1976.

Potter, Charles J. "PSI analysis for FHWA PASCO study," Iowa Department of Transportation, Ames, Iowa July 1986.
U.S.: Department of Transportation, Federal Highway Administration, Iowa Department of Transportation, "Demoñstration Projects No. 72, Automated Pavement Data Collection Equipment, Iowa DOT Evaluation of the PASCO Road Survey System," FHWA-DP-72-2, April 1987.

TOWA STATE HIGHWAY COMMISSION

Materials Department

METHOD OF TEST POR B.P.R.
TYPE ROAD ROUGHNESS MEASUREMENT

Scope

The road roughness indicated by this method is a comparative index expressed as inches of roughness per mile of driving lame tested.

The surface tesi provides a measure at 20 miles per hour with summation of one way movement of standard towed trailer built in accordance to plans originally drawn by the Bureau of Pubilc Roads Administration in 1941, and. revised at various later dates.

Procedure

A. Apparatus

1. Towing vehicle with accurate tachometer for speed control.
2. Roughometer trailer consisting of a frame, integrator, and a standard 6.70-15 ${ }^{\text {n }}$ automobile tire.
3. Electrical components.
a. Revolution counters in towing unit.
b. Integral counter on vertical movement.
c. Duplicate sets of counters with switch over to change counters for recording facllities without stopping, and a master switch.
4. Slgns and rotating beacons on trailing vehicles in accordance with Traffic and Safety minimum requirements.
B. Test Record Forms
5. Use work sheet labeled, Road Roughness Measurement, Field Woxk Sheet, for recording field measurements.
6. For Maboratomy final report, the forw is labeled Road Rovitmess Report.
C. Test Procedure
7. Stop and remove trailer wheels from single wheel roughometer.
8. Engage wheel revolution counter and integrating roughness counter.
9. Check the damping fluid level in the damping pots, and add if needed.
10. The entire unit must be warmed up prior to testing a pavement section for roughness. Check tire inflation (27 p.s.i.) before and after warmup period. The wamm-up pertod consists of towing the unit at a speed of 30 mph . for a distance of approximately 10 miles with the counters turned on for the last two miles. A longex period is required during cool weather.
11. Set the roughoneter countexs and wheel revolution counters to zero ready for a start on test section, with the vehicle far enough from the begimning of the section to safely accelerate the vehicle to a constant 20 mph . speed, before reaching the test section. Maintain this speed for all tests.
12. Turn on the master switch at the beginning of the test section. Omit bridges and railroad taracks during the actual test run, by switching the master switch off and on at the proper times.
13. Duxing the run through the project, the predetermined sections within the project are checked by the recorder, switching from one set of counters to another, when the revolution counter shows the proper interval. The usual normal section length is predetexmined by the foll owing rive:

No. of Miles In Project	No. of Revolutions in Sections (*)	Appropriate Chosen Int. erva? (M1.)
Less than 2.0	186	1/4
2.0 to 5.0	372	1/2
$\begin{aligned} & \text { Greater than } \\ & 5.0 \end{aligned}$	744	1

* Note: Based on present callbrated rate of test tire revolutions per measured mile with 27 p.s.i. tire pressure.

The above rule is followed unless a special request 1 made to have the reading units changed on a certain project, or by the recorder noticing an exceptionally rough section that he wishes to isolate in the notes, or report as a special section. Keep the units in each two lane roadway Identical as to stationing from beginning to end of section.

D. Reporting Results

1. The field work sheet provides places to note the project number, contractor, actual number of miles in project, weather conditions, description of location and the tested section 1tself, Testing personnel are reported along with visiting personnel riding as observers Starting locations are recorded with readings and section lengths. The remariss column is used to help describe any special events, conditions, etc.

Fig. 1
Roughometer in towing Position
E. Normal Check Calibrations

1. Each year-al.1 the bearings on the trailer unit including spring bearlngs are to be cleaned, checked regreased and renewed as required. The tire is also to be checked for roundness to . O10" maximum variation. The center of percussion is checked on unit, and adjusted by changing balance weights on frame if necess. ary.
2. Before each week of operation, a check over standard measured courses is made to determine if counters, integrators and desh pots are perforining properiy. If at any time during the weeks work the, operator feels that the results are not correct, an extre check may be made.
F. Preceutions
3. The Resident or County Engineer must be notifled before arriving on his project for teating, so that he may have the work readed for testing, and to arrange for any observers to accompany the testing crew:
4. Temperatures below ireezing may affect the integrator by reducing its sensitivity to slip and grab in its check of slight movements.

Fig. 2
Closemup of Roughometer.

IOWA DERARTMENT OF TRANSPORTATION
 HIGHWAY DIVISTON

Office of Materials

METHOD OF DETERMINATION OF LONGITUDINAI.

 PRORIEE VAEUE USING THE IJK RIDE INDICATOR
Scoge

This testing method is used to determine the Longitudinal profile Value (LPV) using the IJK Ride Indicator. The Longitudinal profile value is used to determine the Present Servicaability Index (P.S.I.), a concept developed by the Aneriman Assoctation of state Highway officials (AASHO) Road Test. It (P.S.I.) is used as an indicator of the ability of a pavement to serve the traveling public and as an objective method of highway evaluation.

The IJK (Lowa-Johannsen-Kirk) Ride Indicator was developed by the rowa Department of Transportation Materiais Laboratory.

Procedure

л. Apparatus

1. IJK Ride Indicator (An electromechanical device mounted on the differential of a standard automobile)(Fig. 1 to 4).
2. Tire pressure gauge.
3. Portable calculator.
B. Test Record Forms and section tdentification
4. Longitudinal profile value worksheet (Form 921).
5. Einal Report (Forms 915 or. 922).
6. "rest Sections by Milepost" booklet.
7. Correlation Table (Longitudinal profile value vs. Sum/Length for testing unit).
c. Personnel
8. Two pexsonnel are required. one is assigned to drive while the other
operates the counters and makes calculations.
D. Correlation
9. The zongitudimal profile Value is derived Erom equations of the AASHO Road Test using a correlation between the CHLOE Profliometer and the IJK Ride Indicator. The cHLOE is used as a correlation standard because it is not affected by possible changes in suspension but primarily is dependent only on proper electrical operation. The reiationship between the cHLOE and the IJK Ride Indicator is determined through a computer program by the least square parabolic method ($X=C X^{2}+M X+B$).
\&. Test procedure
10. Drive the test vehicle at least 10 mil.os before beginning testing.
11. Operate the vehicle in a careful, legal, conscientious manner.
12. Be sure the IJK unit is accurately zeroed before mounting on the venlcle.
13. Be sure the dampening fluid Level is correct. This should be checked weekiy during continuous operation.
14. During continuous testing, the unit should be tested on eight conveniently close correlation sections weekly to verify proper operation.
15. When ready to begin testing, disengage the IJK arm lock.
16. Start the test vehicle far enough from the begimning of the test section to insure adequate aistance for acceleration to the standard tast speed of 50 MPH . Turn the main switch to the "ON" position as the fear wheels pass the start of the test section. It is turned off in the same position at the end of the section.
17. Turn the main switch off while crossing railroad tracks and bridges (including approaches). This length and roughness counts are electrioally omitted.
18. There is a rotary switch to change from one bank of recording counters to the other so testing can be continuous.
19. Record the counter values and calculate the $\mathrm{Sum} / \mathrm{L}$.
20. If there is some reason to indicate possible erroneous data a repeat run should be made. valid runs are expected to check within 10% of each other.
21. Using the $S u m / L$, obtain the proper Longitudinal profile value from the table to the closest 0.05 \{3.95, 4.15 etc.).
F. precautions
22. Maintain the tire pressure at 25 psi cold, 28 psi, warm. If any tire alignment ox balancing problems are noted, have them corrected.
23. Be sure to engage the IJK arm lock when not testing.
24. Keep the venicle in a neat orderly condition.
25. Have the automobile serviced at the proper interval.
G. Calculations for Longitudinal profile value
26. Enter the necessary descriptive data in tine heading portion of the LPV worksheet. The method of calculation is as follows: the summation of counts from counter no. 1×1, counter no. 2 $\times 2$, counter no. 3×3, etc. These products are totaled and divided by the tested length (in miles) to obtain the sum/L. This sum/length is then used to find the Longitudinal profile value from the correlation table.
A. Reporting Results
27. The final report for all testing uses the same data that was necessary for the worksheet. Form 915 is used for county inventory testing and form 922 is used for testing individual projects. A deduction for cracking, patching and rut depth is used (from
the most recent survey) to yield a present Serviceability Index.

Fig. 1
The IJK Ride Indicator Vehicle

Fig, 2
The IJK Ride Indicator Control Console, showing Visual Indicators, Switches and Electrical counters on the floor of the automobile.

Fig. 3
The IJK Ride Indicator sensing unit

Fig. 4
The IJK Ride Indicator Sensing unit with Cover as Mounted on the Rear Differential Housing of the Vehicle

Unit Worksheet

ROO X No. I- 35 county Stool Year Built Date Tested RT/OCM-GG Date Reported

Notes

Test Method No. Iowa 1002-B
March 1976 Road Meter
Page 7
fona demaktaint of trimgrortation HIGUNAY DIVISION office of matertals County J. McCaskey V.R. Snyder (2) Present Serviceability Index Summaxy for Jones County (53)

Date Reported 3-16-76 Lab. No. LN6-44 to 57

Lab. No. LV-	Eeginning Milepost	Ending Milepost		Poad tho.	Length (Miles)	Surface Type	$\begin{gathered} \text { Dir. } \\ \text { L } \\ \text { Lane } \end{gathered}$	$\begin{aligned} & \text { Longitudinal } \\ & \text { Profile } \\ & \text { Value of } \\ & \text { March } \\ & 1976 \end{aligned}$	$\begin{aligned} & \text { Winter } 75-76 \\ & \text { Ded. for } \\ & \text { Cracking } \\ & \text { Patching } \end{aligned}$	lresent Serviceability Index	
44	20.77	22.24	US	151	3.47	$A C$	EB	3.70	. 05	3.65.	
							WB	3.70	. 05	3.65	
45	22.24	27.34	US	151	5.10	$A C$	EB	3.65	.10	3.55	
							WB	3.65	. 10	3.55	
46	27.34	37.61	US	151	(5.58)	AC	EB	3.55	. 05	3.50	
							WB	3.60	. 05	3.55	
					(4.26)	PC.	EB	${ }^{+3.30}$.15	3.15	
							WB	3.50	. 15	3.35	
47	38.69	48.07	us	151.	(6.68)	AC	EB	3.55	.05	3.50	
							WB	3.55	. 05	3.50	
					(2.52)	PC	EB	3.35	. 10	3.25	
							HB	3.25	. 10	3.15	
48	0.00	21.22	IA	64	(14.47)	$A C$	EB	3.15	. 00	3.15	
							WB	3.20	.00	3.20	
					(5.16)	PC:	EB	3.25	.70	2.55	
							WB	3.25	. 70	2.55	
49	115.78	119.25	IA	1	3.47	AC	NB	3.05	. 35	2.70	
							SB	3.10	.35	2.75	
50	39.10	42.44	IA	38	3.34	$A C$	NB	4.00	.00	4.00	
							SB	3.95	.00	3.95	
51.	43.45	47.81 .3	IA	38	4.36	$A C$	NB	3.55	.10	3.45	
							SB	3.50	. 10	3.40	
52	50.01	53.39	IA	38	3.38	AC	NB	3.55	.00	3.55	
							SB	3.55	.00	3.55	
53	53.39	63.50	IA	38	10.11.	AC	NB	4.00	. 00	4.00	
							SB	4.00 :	. 00	. 4.00	.
54	65.11	. 68.41	IA	38	3.30	PC	NB	4.05	. 00	4.05	
							SB	4.05	.00	4.05	
55	43.16	53.42	IA	136	10.26	$A C$	NB	3.85	. 00	3.85	
							SB	3.85	. 00	3.85	
56	54.79	58.39	IA	1.36	3.60	AC	NB	3.75	. 05	3.70	
							SB	3.80	. 05	3.75	.
57	58.39	72.04	IA	136	13.65	$A C$	NB	3.90	. 00	3.90	
							SB	3.95	. 00	3.95	

Deductions for cracking and patching were calculated on a 2 lane roadway basis.
(Length) indicates tested length on an AC/PC section.

IOWA DEPARTMENT OF TRANSPORTATION
 HIGHWAY DIVISION
 OFFICE OF MATERIALS

LPV REPORT

N	Outsj.cle Bcund Lane	S	Outside Bound Lane
Length Tested	9.97		10.02
Longitudinal Profille Value	4.05		4.00
Average Longitudinal profile value			4.05
Deducation for Cracking, patching and Rut	Depth		0.05
Present Serviceability Index			4.00

TOWA STATE HTGEWAY COMMISSION

Materials Department

METHOD OF DETERMINATION OF LONGYTUDINAL

PROFILE VALUE BY MEANS OF THE CHLOE PROFILOMETER

Scope

This method is used to determine the Longitudinal Profile Velue (LPV) of pave ment by the CHLOE Profilometer. The test is conducted at 5 mph , while obtaining the sumation of a value $Y(1)$ which can be related to the slope of the pavement and that of the square of $Y(1)$, where $i=1,2,3$ $\cdots N$, and N is the total number of points * 6 -inch intervals. The values of N, Yi, and Y1, are used to detexmine the CHLOE Slope Variance (CSV), Road Test System Slope Variance (SV), and the Longitudinal Profile Value (LPV).

Procedure
A. Apparatus

1. CHLOE Profilioneter
a. Electronic Computer Indicator (Fig. 1).
b. CHLOE trailer section (Fig. 2).
2. Towing and transporting vehicie.
3. Sarety support vehicies as needed to insure safe operation.
B. Test Record Form

Use work sheet "LPV for PC or AC Pavement ${ }^{\text {f }}$ for recording field measurements.
C. General Procedure

1. Calibration Procedure
a. Attach the CHLOE trailer section to the towing vehicle.
b. Ine roller contact, switch plate, and electronic computer indicator should be checked before beginning the road test. Anytime the data appears to be in error a check should be made and if an exror is verified the malfunction should be corrected. The prom cedure for checking is as follows: First turn the electric eye switch at the rear of the trajler section from the road test to the manual position, then with the
slope wheels up, the upright arm of the slope wheels is moved forward until the roller contact goes off the switch plate. While turning the calibrating crank, slowly move the upright arm to the rear until the roller contact impinges on the first switch segment. Hold this position and set the electrondc computer in. dicator to zero, then turn the caldbrating erank stowly until $N=10$. Check to see if the quantities indicated (\sum, Y, Y^{2}) are correct. (Table I glves the values that should be obtained for each segment). If correct, reset the electronic computer indicator to zetro, move the upright arm rearward until the number two switch segment is contacted and follow the same procedure used for the first switch segment, Continue this procedure until all 29 switch segments have been checked.
c. Check to see if the pressure in the CHLOE trailer tires is $45 \pm$ 0.5 psi .
d. The position of the trailer hitch should be such that a slope mean ($\Sigma I+N$) between 14 and 15 is obtained. To check this, lower the slope wheels, set the electric eye switch to the road test position, and zero the electronic computer indicator. Full the CHLOE Profilometer ahead until. $N=100$. The $\sum Y$ value should be between 1400 and 1500 . If it is not, the tradier tongue should be raised or lowered by turning the crank at the front of the trailer section. Turning the crank counterclockwise lowers the ΣY value and turning it clockwlise raises the $\sum \mathrm{Y}$ value. Repeat the procedure if necessary.
e. The downward force of the CHLOE slope wheels should be between 150 and 1601 bs . To check this a bathroom scale and two wooden blocks of the same thlckness as the scale are needed. Pull the CHLOE carmlage wheels onto the
wooden blocks, then place the scale under the slope wheels and lower them. If the scale does not read between 150 and 160 2bs., adjustment can be made by turning the $3 / 16^{\prime \prime}$ knurled screw located at the bottom of the connector box fastened to the 11ft motor. Turning this screw clockwise w111 decrease the force and turning it counterclockwise will increase the force.
f. For more detailed instructions on the operation of the CHLOD Profilometer see CHiLOE Frofilometei operating and Servicing instructions.
2. Testing Procedure
a. Set the electric eye to "road test ${ }^{11}$ and lower the slope wheels.
b. Set the electronic computer indicator to a zero reading.
c. Turn the counter switch on when the slope wheels reach the beginning of a test sec. tion and turn it off at the end of the section.
a. When runming a test section, the speed of the towing vehicle should be about 5 mph .
e. Record the values of $N, \Sigma Y$, and $\Sigma \mathrm{X}^{2}$.
f. Compute the $L P V$ as described in "Calculations".
D. Calculations (See "Typical. Calcula. tion Example.)
3. Enter the velues of N, EY, and ΣY^{2} on lines 6,7 and 8 respec. tively.
4. Divide $\Sigma \mathrm{Y}$ by N to an accuracy of one ten-thousandth (0.0001) and enter on line 9.
5. Square this number and record the result to the nearest thous. andth (0.001) on line 11.
6. Divide ΣY^{2} by N, round the answer to the nearest thousandth, and record it on line 10 .
7. Subtract line 11 from line 10 and enter the result on ine 12 .
8. Multiply line 12 by 8.46 to obtain the CHLOE Slope Variance (inne 13).
9. Subtract 2.00 from the CHLOE Slope Variance and place the result on Ine 14 .
10. Find the \log of line 14 , record it on inne 15 .
11. Multiply line 15 by 1.80 if the surface type is PC or 1.91 if AC , and record this result on line 17 .
12. On line 16 enter 5.42 if the surface type is PC or 5.03 if the surface type is AC.
13. Subtract Iine 17 from Ine 26 to obtain the Longitudinal profile Value (LPV) of the test section.

Precautions

A. The voltage supply to the CHLOE Profilometer from the batteries must not be less than 11.5 V .
B. The operator must watch the electronic computer indicator closely to insure that it is working properly.

Reporting of Results

Enter state, county, route no., location, project, weather, date and test personnel in the appropriate places on the work sheet.

The LPV determined by the CHLOE Pro. filometer may be used along with other factors to calculate a Present Serviceability Index as described in "Method of Determination of Present Serviceability Index". (Test Method No. Iowa 1004.)

Fig． 1
Electronic Computer Indicator

\＆゙身名。 2
CHLOE Trailer section

TABLE I

Switch Segment	$Y \quad N=10{ }^{2}$	
1	10	10
2	20	40
3	30	90
4	40	160
5	50	250
6	60	360
7	70	490
8	80	640
9	90	810
10	100	1,000
11	110	1,210
12	120	1,440
13	130	1,690
14	140	1,960
15	150	2,250
16	160	2,560
17	170	2,890
18	180	3,240
19	190	3,610
20	200	4,000
21	210	4,410
22	220	4,840
23	230	-5,290
24	240	15,760
25	250	6,250
26	260	6,760
27	270	7,290
28	280	7,840
29	290	8,410

TYPICAL CALCULATION EXAMPLE
LPV for PC of AC Pavement
state Iowa
County Story
Route No. 13 th $^{\text {Stret }}$
tocation E. of Ames
Project \qquad
Date $4-16-70$ $\stackrel{0}{0}$

Test Personnel

1	Section No.	10									
2	Location	1648-1673									
3	Surface Type	$P C$									
4	Direction	$E B$									
5	Wheelpath	0									
6	No. of readings (N)	4951									
7	$\Sigma \mathrm{Y}$	71733									
8	$E Y^{2}$	1044724									
9	($\Sigma Y / \mathrm{N})$	14.4886									
10	$\sum Y^{2} / N$	211.013									
11	$(\Sigma \mathrm{Y} / \mathrm{N})^{2}$	209.920									
12	(1ine 10-1ine 11)	1.093									
13	$\mathrm{CSV}=(1 \mathrm{ine} \mathrm{12)} \times 8.46$	9.247			.						
14	$(1+S V)=(1 i n e 13-2) *$	7.247									
15	$\log (1+S V)=\log$ (line 14%	0.8596									
16	Enter 5.41 for $P C$, or 5.03 for Ac	5.41									
17	If PC $1.80 \times$ line 15 If $1.91 \times$ line 15	1,55									
18	LPV $=$ (Line $16-1$ ine 17)	3.86									

* $s v=\operatorname{csv}-3$
$L P V(P C)=5.41-1.80 \log (1+S V)$
$\operatorname{LPV}(A C)=5.03 \cdot 1.91 \log (1+S V)$

LOWA DEPARTMENT OF TRANSPORTATION HIGHWAY DIVISION

office of Materials

METHOD OF DETERMINATION OF PRESENT SERVICEABILITY INOEX

General Scope

The present Serviceability Index (PSI) was developed by the AASHO Road Test as an objective means of evaluating the ability of a pavement to serve traffic. The Present Serviceability Index is primarily a function of longitudinal profile with some influence from cracking, patching and rut depth.

The AASHO rating scale ranges from 0 to 5 with adjective designations of:

Very Poor	$0-1$
Poor	$1-2$
Fair	$2-3$
Good Good	$3-4$
Very Good	$4-5$

The Bureau of Public Roads has a similax scale with the following designations which are more realistic in the evaluation of new pavements:

PSI	Rating
Above 4.5	Outstanding
$4.5-4.1$	Excellent
$4.1-3.7$	Good
$3.7-3.3$	Fair
Below 3.3	Poor

The test is conducted in two parts: (1) Determination of the Longitudinal profile Value (LPV), (2) Determination of Deduction for Cracking, patching and Rut Depth.

Part I. Determination of the Longitudinal Profile Value

Scope:

The Lowa DOT uses three methods for determination of the longitudinal profile value:

```
1. CHLOE Profilometer
    2. g%R Type Road Roughometer
3. IJK Type Road Meter
```


Test Procedure

1. The determination of longitudinal profile value by the CHLoe profilometer is described in Test Method No. Iowa 1003-A.
2. The determination of road roughness by the BPR Type Roughometer is described in Test Method No. Iowa 1001-A.

The inches per mile as described therein is then used in conjunction with the most current correlation of road roughness (inches/mile) vs. longitudinal profile value (LPV) determined by the CHLOE Profilometex to obtain a longitudinal profile value.
3. The determination of the road meter roughness value, which is the same as the Longitudinal profile Value, by the IJK Type Road Meter, is described in Test Method No. Iowa 1002-8.

Part II. Determination of Deduction for Cracking, Patching and Rut Depth

Scope:

The purpose of this portion of the test is to determine the value of the present Serviceability Index lost due to physical deterioration of the roadway.

The evaluation is conducted according to general procedure established by the AASHO Road rest and described in detail in the "Highway Research Board Special Report 61E."

Test Procedure -- Flexible Pavement:
The equation for present Sexviceability Index of fiexible pavement is:

```
PSI m:LPV - .01 N
```

where;
PSI = Present Serviceability Index
LPV $=$ Longitudinal Profile Value
C+P measures of cracking and patching of the pavement
$\overline{R D}=A$ measure of rutting in the wheel paths

Cracking. C, is defined as the square feet per 1000 square feet of pavement surface exhibiting alligator or fatigue cracking This type of cracking is defined as load related cracking which has progressed to the state where cracks have connected together to form a grid like pattern resembling chicken wire or the skin of an alligator. This type of distress can

Test Method No. Iowa 1004-C
advance to the point where the individual pieces become loosened.

Figure 1.

Alligator cracking

Patching, P, is the repair of the pavement surface by skin (i.e. widening joint strip seal) or full depth patching. It is measured in square feet per 1000 square feet of pavement surface.

Rut depth, RD , is defined as the mean depth of rutting, in inches, in the wheel paths under a $4-f t$ straightedge.

Cracking, L, is defined as the number of longitudinal (parallel to traffic flow) cracks which excede 100 feet in length and 1) are open to a width of 1/4" over half their length or 2) have been sealed. If these cracks are observed to occur less than 3 feet from one another, the condition described under C should be looked for and if present reported instead of reporting the distress as longitudinal cracking.

Cracking, m , is defined as the number of transverse (right angles to traffic direction) cracks that are open to a width of $1 / 4^{\prime \prime}$ over half their length or have been sealed. Random or diagonal cracks are ignored.

Faulting, F, is defined as the mean vertical displacement, in inches, measured with a 4-ft. straightedge.

Page 3 of 6

PSI = Present Serviceability Index
$L P V=$ Longitudinal profile Value
$C+P=$ Measures of cracking and patching of the pavement

Cracking, c, is defined as the lineal feet of cracking per 1000 square feet of pavement surface. Only those cracks which are open to a width of $1 / 4^{\prime \prime}$ of more over half their length or which have been sealed are to be included.

Patching, P, is the repair of the pavement surface by skin or Eull depth patching. It is measured in square feet per 1000 square feet of pavement surface.

Rut depth, $\overline{R D}$, is defined as the mean depth of rutting, in inches, in the wheel paths under a 4-ft. straightedge.

Faulting, F, is defined as the mean vertical displacement, in inches, measured with a 4-ft. straightedge.
D-cracking, D, refers to a characteristic pattern than can develop in portland cement concrete. Initially, the occurrence of D-cracking may be preceded and accompanied by staining of the pavement surface near joints and cracks. However, not all stained joints and cracks develop D-cracking. D-cracked concrete will first exhibit fine parallel cracks adjacent to the transverse and longitudinal joints at the interior corners. The D-cracks will bend around the corner in a concave or hourglass pattern. As the D-cracking progresses, the entire length of the transverse, longitudinal and random cracks will be affected. The cracked pieces may become loose and dislodged under the action of traffic. The occurrence of $\mathrm{D}-$ cracking in the check sections will be rated on a point scale as described in the Test procedure section.

Test Method No. Iowa 1004-C December 1981

Figure 4.
D-cracking - Initial stages

Figure 5.
D-cracking - AIL joints affected

Procedure

A. Apparatus

1. A passenger vehicle with an accum rate odometer.
2. A four foot long rut/fault gauge.
3. Mechanical counters.
4. A 50-foot tape.
5. Safety equipment - - hard hats, safety vests, survey signs.

Test Method No. Iowa 1004-C

Page 4 of 6

Rigid

The procedure for rigid pavement is to drive on the shoulder, if possible, and count all cracks meeting the previously described criteria. cracks extending across only one lane are recorded as "half cracks" and summed to full cracks during the data summary phase. Longitudinal, diagonal and random cracks are accounted for by estimating how many times they would extend across the roadway and recording that number.

The area of each patch is estimated and recorded individually on the worksheet.

The rut depth is measured in the outside and inside wheeltracks of both lanes. one set of measurements will be taken at the beginning of the $1 / 2$ mile test section and one set at the end.

Eaulting is measured one foot in from each pavement edge at 0.05 mile intervals and recorded $\{10$ sets of readings per check section).

The D-crack Occurrence Factor (DOF) in the test section will be evaluated and assigned a numerical rating based on the following description.

DOF Value
$0=$ No D-cracking noticeable
$1=$ D-cracking is evident at some joints especially the interior corners. pavement is sound condition and no maintenance is required due to D-cracks.

2 = D-cracking is evident at most joints and has progressed across width of slab. Pavement is in sound condition and no maintenance is required due to D-cracking.
$3=$ D-cracking is evident at virtually all joints and random cracks. Minor raveling and spalling are occurring and traftic is causing some loosening of cracked pavement. Some minor maintenance of spalled areas is required.

4 = D-cracking very evident as in 3 above. Spalling and removal by traffic has progressed to point that regular maintenance patching is required. Effect on riding quality of pavement is now noticeable.
$5=$ D-cracking has continued to progress at sites identified in 3 above and requires regular maintenance patching. Full depth patches may be necessaxy, Ride quality has deteriorated to point where reduced diriving speed is necessary for comfort and safety.

DOF $=2$

$D O F=5$

Figure 6. Examples of D-crack Occurxence Factors
D. Calculations

1. Elexible Pavement
a. The area of cracking is totaled and divided by the area of the test section in thousands of square feet to obtain C.
b. The area of patching is totalea and divided by the area of the test section in thousands of square feet to obtain P.
c. The rut depth measurements are totaled and averaged to obtain $\overline{\mathrm{RD}}$.
D. The number of longitudinal cracks in the two areas surveyed are totaled, averaged, and reported as L.
e. The number of transverse cracks and $1 / 2$ cracks (divided by 2) In the two areas surveyed are totaled, avexaged, and reported as T.
ξ. The faulting measurements are totaled and averaged to obtain E.
g. Cracking (C), patching (P), and rut depth ($\overline{R D}$) as calculated above and LPV, as determined in Part I, are used in the following formula to determine the present Serviceability Index (PSI):
$P S I=L P V-0.01 \sqrt{V+\bar{P}}-1.38 \overline{R D}^{2}$
2. Rigid pavement
a. The number of cracks and $1 / 2$ cracks (divided by 2) are totaled and multiplied by the width of the roadway and divided by the area of the test section in thousands of square Eeet to obtain C.
b. The area of patching is totaled and divided by the area of the test section in thousands of square feet to obtain p.
c. The rut depth measurements are totaled and averaged to obtain RD.
d. The faulting measurements are totaled and averaged to obtain F.

$$
\begin{aligned}
& \text { e. Cracking (C) and patching (P) } \\
& \text { as calculated above and LpV } \\
& \text { as determined in part I are } \\
& \text { used in the following formula } \\
& \text { to determine the Present } \\
& \text { Serviceability Index (PSI): } \\
& \text { PSI w LPV }-.09 \text { V }+\mathrm{P}
\end{aligned}
$$

E. Reporting Results

1. Lab: Number.
2. Beginning Milepost.
3. Ending Milepost.
4. Rcad Number.
5. Length.
6. Surface type.
7. Direction and Lane.
8. RMRV or LPV.
9. Deduction for cracking and patching.
10. Present Serviceability Index.

Rut Depth Gauge Calitration

A. Procedure

Place the rut depth gauge on a section of channel iron or any perfectly flat surface over 4 feet long. Make sure that the gauge is placed vertically perpendicular to the surface to insure accurate readings. Press the measuring scale down until it makes contact with the flat surface, while still keeping the ends of the gauge on the surface. Check to see that the scribed line on the plastic marker lines up with the '0' mark on the measurting scale.

If the marker does not line up with the ' 0 ' mark, remove the plastic marker and file the holding screw holes to allow the marker to slide up and down. This is accomplished by either filing the bottom of the screw holes to allow the marker to slide up or by filing the top of the screw holes to allow the marker to slide down.

Mount the plastic marker template but do not tighten the holding screws. Place the gauge on the flat surface making sure the gauge is perpendicular and the measuryng scale is in contact with the surface. line up the scribed line with the ' 0 ' mark and then tighten the holding screws.

The rut depth gauge should be calibrated at least once per year and before any rutting survey such as the statewide Crack and Patch Survey.
WB Linclonway or Duff to A incolnmay \& Gramd \# CRACX ANO PATCH SURVEY REPORT GHEET (I\&S C.)

Survey Conducted By
Toum No oc comen yerill
(1/4 wide over $1: 2$ crich tength or sealed)

D. Cracking Occurence Factor 10 to 51 $\frac{20}{10}$
$60+12+21+404+48+8+48+36+36$ $12+140+144+12+2 x 2+144+36+16$
FAULTING AND RUT OEPTH(10 Localions 0.05 Nules Apsrt)
(Ofiving isne for 4 Lane Haghways)

-rsiá
owr $\frac{2.0, ~ E 1}{n}$
$0,0,0$
$\omega_{4} \mathrm{e}$
iwt $\frac{0.1}{4}$
0.0.2
(Passing Lane For 4 Lan Highways)
IWT $P_{12} 0$
Lisiak
108
owr $\frac{C i}{n}$
0,90

(3) Remiats:
$\underbrace{}_{0} 1$

APPENDIX B: DESCRIPTION OF PAVEDEX SYSTEMS OPERATION

OPERATION OF THE PAVEDEX PAS I SXSTEM Data Acquisition

A one-half ton comercial van, with heavy duty (100 amp) alternator and auxiliary air conditioner is utilized as a basic vehicle. A 1-KW invertor in the van is the power supply.

There are four NEC CCD cameras mounted on the van: two in front focused at the road at a 20 degree angle from the vertical; and two in the rear, mounted at a 15 degree angle from the vertical. One pair of cameras is operated at any given time, through the use of video switcher controls inside the van, to provide images with the optimum lighting conditions.

The cameras provide images of 512 pixels by 512 pixels covering an area 6 feet 6 inches by 4 feet. A 6-inch overlap is obtained in the transverse direction. The cameras are synchronized with the speed of the vehicle to allow videotaping at speeds up to 55 mph and produce very clear frames of video distress with resolutions below $1 / 8$ inch. The camera shutter speed is set at $1 / 1000$ of a second producing 30 frames per second. The resolution is limited currently by the 400 lines of resolution obtained in the two super VHS Panasonic recorders in the van that provide two hours of $1 / 2$-inch tape storage.

An encoder, mounted in the van, receives the signal from an optical odometer (with 1 -inch resolution) every 30
milliseconds which is transmitted to each frame. The time, date, codes road segment number, the location in feet (to the nearest foot) from the beginning of a designated road segment and the frame count are encoded on each frame.

An additional color videocamera is mounted on top of the van and focused on the roadway and. surroundings ahead of the vehicle showing a "perspective view" suitable for taking inventories of road signs, traffic lights, curbs etc. and monitoring conditions along the road such as vegetation growth. A third VCR records this camera and the same information is input to each frame as on the pavement oriented cameras. A schematic diagram of the survey van and equipment is shown in Figure 12.

Image Processing

Computer controlled VCR's are utilized incorporating an inverted RS232 interface with a time base corrector conditioning the signals. A decoder converts the encoded data enabling the computer to know the time and location of each frame. The computer advances the tape in the VCR to the next frame containing none of the roadway from the previously analyzed and stops. A trained operator observes the pavement distress, if any, on the stopped frame, and inputs the classification, severity and amount of distress, for each distress observed, via keyboard codes. The computer collates all the distress data for each customer-designated road project segment and stores the information for later

PAVEDEX PAS I DATA ACQUISITIIN EQUIPMENT CINFIGURATIGN

Figure 12. Survey Van Operations Flowchart

Figure 13. Image Processing Flowchart

printing. The entire process is shown in schematic view in Figure 13.

Computer Image Processing

PAVEDEX has developed proprietary software for automatic computer image processing of video images. Electronic equipment is just now demonstrating the processing speeds required to render automatic processing less expensive than visual processing. PAVEDEX plans to convert entirely to automatic computer image processing during the fourth quarter of 1989 or, at the latest, the first quarter of 1990.

The output of the PAVEDEX system used in Iowa was summarized in a LOTUS spreadsheet. This allowed the manufacturer to group the data from the various runs for each 0.1 mile section of the test pavements. Copies of the spreadsheets are included. Those spreadsheets identifying portland cement concrete pavements contain the following information and headings:

1. Sort \# - Reference to the 0.1 mile segment of the pavement tested.
2. Seg - Segment of the tape that refers to the test site.
3. Tape - Number of the video tape containing the data.
4. Seg \# - Segment identifying number on the tape that correlates it to a given test section.
5. CC \# and \% slabs - Corner Cracks. The number of diagonal cracks that meets both a transverse and longitudinal
edge. The percentage of slabs column is number of slabs effected in the 0.1 -mile segment, by the distress. The computer will accept any slab length the user inputs. In this case the manufacturer used 5 foot as a pseudo length due to the variation in slabs on the sites.
6. FSC \# and \% slabs - First and second Stage Cracks. The number of transverse, longitudinal or diagonal cracks that divide the slab into two or more pieces and the percentage of slabs effected by this type of distress.

7, 8, 9. Spalling \# and \% slabs - Spalling is defined as the breakdown or disintegration of edge cracks, resulting in the loss of concrete and progressive widening of the cracks. These columns identify the number of occurrences with an indication of the severity (size) of the distress. The mean width for column 1 is less than $1 / 2$ inch, for column 2 it is less than $1 / 2$ inches, and for column 3 it is greater than 1 1/2 inches.

10, 11, 12. Patches G F P, Sq.ft. and \% area - The G, p relates the condition of the patches identified. The area in square feet is a measurement of the patch size and the percentage of area is the patch area divided by the total area of the segment (length in feet by 12 foot of width).
13. TSC \# and \% - Third state cracks. Interconnected cracks that divide the slab into three or more pieces and the percentage of the slabs that are effected.

Different headings are used on the survey summaries concerning asphaltic concrete surfaces. They include:

1. Sort \#, Seg, Tape, Seg \# - These are the same identifiers used on the portland cement concrete forms.
2. Alligator Feet L, M, H - Number of linear feet of alligator cracks in the test segment of a given severity as defined by width of opening such as Low, Medium, High. This could be set by the nerator, but in this case the Iowa DOT standards were used.
3. Longitudinal Feet L, M, H - Number of linear feet of longitudinal cracks in the test segment of a given severity as defined by width of opening by the Iowa DOT standard. This can be varied by the user.
4. Patches P1, P2, Sq.ft - The area of patches in various stages of deterioration in square feet of surface as identified by the P1 and P2.

The following pages contain copies of all the spreadsheet summaries and Figures associated with each of the distresses shown in the summaries. The bars on each Figure are arranged in the same order as the test runs were conducted (1-3 or 1-6).

				Le		FSt：		Eisuling		golling		spating		FATEHS		QATCHES F		antues		TSC	
H			\ddagger		St．pa	\＃	XSIAB		LnBS		Eldiss		（5Lnc		\％Arkea		RRE	5015	nfen	\＃	2 2 Led
1	Al	1	138	0	．	3	15	θ	0	0	1	0	0	0	0	0	0	0	0	11	18
1	能	1	14.1	\checkmark	－	B	11	0	0	0	0	0	0	0	0	0	0	0	0		19
1	\％ 4	1	150	0	0	$1:$	15	0	0	0	0	0	a	＊	0	0	0	0	0		19
1	04	1	493	9	\square	10	$1{ }^{2}$	0	a	，	0	0	0	0	0	0	0	0	8	13	16
1	0	1	343	0	0	11	13	0	0	0	B	2	0	0		1	0	0	0		15
1	保	1	943	0	？	13	$1:$	0	0	1	0	0	1	0	0	＊	0	0	0		15
8	91	1	131	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	4
2	n：	1	14	0	0	0	0	0	0	0	0	－	－	1	0	0	0	Q	0	1	1
\％	Q3	1	165	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0		3
8	¢4	1	4	0	－	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
\％	A5	1	504	0	0	0	0	1	1	0	0	0	0	0	0	1	0	0	0	3	4
\％	n	1	：14	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	3	1	1
3	． 01	1	13.	8	\％	0	0	0	－	0	0	0	0	0	0	0	0	0	8	0	0
a	dic	1	14 E	0	\％	0		0	0	1	0	0	0	1	0	0	4	0	8	－	－
3	13.3	1	18	0	0	0	a	θ	0	－	0	0	0	9	0	0	0	1	0	－	0
3	A	1	年	\therefore	a	0	0	4	0	0	1	0	0	8	0	0	0	0	0	0	0
3	nif	t	5	0	0	0	0	8	8	0	0	2	0	0	0	0	0	1	0	0	1
3	06	1	315	\％	1	0	0	1	0	0	0	\％	0	0	0	0	0	0	0	0	0
4	Q 1	1	133	0	0	2	©	n	0	$!$	1	1	0	0	0	0	9	0	0	0	a
\％	п．	1	14.5	8	0	2	3	－	0	2	3	0	1	θ	8	4	8	0	0	？	0
4	as	1	143	1	0	1	1	D	1	1	1	0	9	0	8	0	0	0	θ	8	0
$\stackrel{3}{4}$	$n{ }^{1}$	1	46	0	0	3	3	2	0	a	2	0	0	15	0.23	\％	d	0	0	－	0
4	吅	1	S	4	0	2	c	0	3	1	1	0	\square	\％	0	a	0	0	a	1	0
4	孫	1	：16	0	－	4	3	0	0	1	1	0	0	0	0	0	0	0	0	\square	0
5	01	$!$	134	0	0	2	2	＊	0	2	2	0	0	37	0.57	0	0	0	4	1	8
\square	能	1		0	0	1	1	\checkmark	0	－	1	0	0	30	0.64	4	0	0	0	0	9
5	03	1	13	0	0	2	2	0	ด	1	1	0	0	31	0.56	0	0	0	8	0	0
5	14	1	437	0	0	2	4	0	0	2	4	0	0	15	0.45	0	0	0	0	0	0
5	AJ^{\prime}	1	54	\square	0	2	3	0	0	3	4	0	0	30	0.66	0	0	8	0	0	．
5	$0{ }_{6}$	1	517	0	（	3	4	0	0	3	4	0	0	30	0.67	0	0	0	8	a	0
5	11	1	135	0	0	3	3	0	1	c	2	0	0	15	0.28	0	0	0	0	1	0
6	会	1	145	0	－	3	4	1	0	2	2	0	0	15	0.30	0	8	0	0	C	0
6	83	1	15	0	0	3	4	0	0	2	3	0	a	15	0.31	0	\％	0	0	0	0
6	14		438	0	8	3	3	0	－	2	2	0	0	15	8.27	0	0	0	0	0	0
6	解	1	504	0	0	5	6	0	0	2	3	0	0	15	0.36	0	0	0	0	0	0
6	H	1	510	0	0	4	4	0	＊	2	2	0	0	15	0.25	0	0	0	0	0	0
7	A	1	1敞	0	0	1	1	0	8	1	1	0	0	30	0.60	0	0	0	0	0	0
7	服		146	0	0	2	$?$	0	8	1	1	－	\square	30	0.58	0	0	0	0	0	0
7	$n 3$	1	156	0	0	1	1	8	0	2	3	1	0	30	0.67	0	0	0	0	0	0
1	0^{4}	1	493	0	0	1	1	0	0	2	2	，	0	30	0.60	1	0	0	0	＊	0
7	$\mathrm{n}^{\text {\％}}$	1	597	0	0	2	2	0	0	2	E	0	0	30	0.54	0	0	0	0	0	0
1	15	1	913	0	0	$\stackrel{\text { c }}{ }$	2	1	1	1	1	0	0	30	0.59	0	0	0	0	0	0

flutas

										HU	$1-5$		Rth		(tutil)						
gin	SEO	1			C		SL S	Sphte	Ling		$2{ }^{\text {cina }}$		3		ATCHES 6		Pmides F		Pilats		5
\#			\#		*SLAE	\%	\%SLABS	\#	25Lnes	\#	xSLats		XLabs	SPF	T \% AREA		T \times AREA	suft	\% AREA	\#	*St.fis
8	AI	1	137	0	0	0	0	0	0	0	0	0	0	15	0.32	0	0	0	0	0	a
8	AE	1	147	0	0	0	0	0	0	0	0	0	0	15	0.32	0	0	0	0	0	0
8	13	1	157	0	0	()	0	0	0	0	0	0	0	15	0.29	0	0	0	1	0	0
8	04	1	500	0	0	0	0	8	0	0	0	0	0	15	0.35	0	0	0	8	0	1
ε	nis	1	310	0	0	0	0	0	0	0	0	1	0	15	0. 28	0	0	0	0	0	0
8	ab	1	500	9	0	0	0	0	0	0	0	0	0	15	0.29	0	1	0	0	0	0
3	\ldots	1	138	0	0	4.	1	1	0	,	1	1	1	0	0	0	0	0	0	0	*
9	A2	1	148	1	0	1	1	0	0	,	1	1	1	0	0	θ	0	1	1	0	0
9	113	1	180	0	0	2	2	0	0	1	1	1	1	0	0	1	0	0	0	0	0
3	1.4	1	501	0	0	1	2	0	0	1	2	1	E	0	0	0	0	0	0	0	0
9	As	1	511	0	0	2	2	0	0	4	5	1	1	0	0	0	0	0	0	0	Q
3	值	1	5.21	0	0	1	2	0	0	2	3	1	2	0	0	0	0	0	0	0	0
10	11	1	133	0	0	1	2	0	0	0	0	0	4	30	1.82	0	0	0	0	0	1
10	n2	1	143.	0	0	1	2	0	\%	0	0	0	0	30	0.96	0	0	0	0	1	2
19	$1 . i$	1	154	*	0	1	2	0	0	0	0	1	0	31	1.40	0	0	0	0	0	0
18	04	1	50	χ	x	*	X	χ	x	χ	χ	χ	x	χ	χ	χ	x	x	x	X	x
19	As	1	de	\times	*	*	x	*	\%	Y.	χ	χ	X	χ	x	X	x	χ	*		x
13	0	1	5e	0	0	2	2	0	0	1	1	0	0	3	0.52	0	0	0	0	0	0

PRUEMEX, IMC. SOTRONE, UR SEDT 1989 IOM DEHENSTROTIOH

[1m	3 F		E. SEG		muar	EET	L00t	ond	FEE		Sver		vatat	
,			*	1	N	H	L	M	H	L.	H	!	91	P2
1	41.	1	64	0	0	0	84	0	0	5	0	0	0	A
1	0 O	1	86	0	0	8	85	0	0	50	0	1	\%	0
1	418	1	108	a	0	8	88	0	0	5	0	0	,	0
2	\%	1	65	0	0	0	0	8	0	13	8	0	0	0
z	He?	1	87	0	0	0	0	1	0	13	0	0	0	1
2	193	1	103	0	0	0	0	0	0	ic	0	0	0	0
3	! 19	1	66	a	0	0	12	6	'0	2	4	0	0	0
3	He	1	88	a	0	0	6	6	0	3	4	0	0	8
3	14.3	1	110	0	0	0	6	6	0	3	4	8	0	0
4	- 201	1	67	0	0	8	16	0	0	3	0	0	0	0
4	Wes	1	89	8	8	0	13	0	0	3	0	0	0	0
4	103	1	111	0	4	1	20.	0	0	5	0	0	0	0
s	14	1	68	0	0	1	76	8	a	5	8	8	0	0
5	We.	1	30	0	0	0	72	0	0	5	0	0	0	*
5	的	1	112	0	0	0	65	0	0	3	0	0	0	-
6	14.1	1	69	0	9	0	7	0	a	3	0	0	0	0
6	He	1	31	0	0	0	13	-	0	3	0	\%	0	0
6	143	1	113	0	0	0	14	0	0	1	8	0	0	8
7	1711	1	70	16	1	0	48	9	0	14	0	0	0	0
i	W	1	32	- $2 ?$	0	0	44	0	0	. 12	0	d	0	8
7	173	1	114	24	\%	0	57	0	*	13	0	0	0	0
0	H1	1	71	0	9	0	,	0	0	3	0	0	0	6
3	14.	1	93	0	1	0	0	0	0	1	0	0	0	0
0	143	1	115	0	0	0	0	0	0	0	0	0	8	a
9	U01	1	72	0	*	0	0	0	0	1	1	0	0	0
9	Hete	1	94.	0	0	0	0	0	0	3	1	0	-	0
y	1183	1	116	0	0	0	0	(0	4	1	0	0	0
10	6in	1	73	0	0	0	3	0	0	6	0	θ	0	0
10	He	1	95	0	0	0	26	0	0	7	0	0	0	-
10	4 H	1	117	.	0	0	28	0	0	6	0	n	0	0

10WH DELUNGTRATION
"E" RIMD $1-35$
NURTH

 IOA BEMEISTRATICN

SSit	ceg	TAPE SEG		QLLISGATOES FEET			LOHGTUDTAPAL FEET			TGATSYERSE			Priches saft	
			\#	L	H	H	L	H	H	L	M	H	O1	Fic
11	C:	1	83	0	θ	8	6	0	?	11	2	0	0	θ
11	ces	1	119	9	0	0	8	0	0	11	0	0	0	0
11	: 063	1	495	\%	0	0	0	0	0	10	0	0	0	0
$\underline{2}$	Cl	1	33	0	0	3.	0	0	0	3	0	0	0	0
12	C2	1	120	0	0	\%	0	0	0	3	0	0	0	0
12	CC3	1	485	0	0	0	0	0.	0	3	0	0	0	1
13	St	1	180	8	0	8	0	$?$	0	4	0	2	0	0
13	cca	1	121	0	0	0	0	3	0	3	0	0	0	0
13	CCS	1	487	0	0	0	0	0	8	3	0	0	0	0
14	iCl	1	10.	0	0	0	0	0	0	6	0	1	0	0
14	CCJ	1	tex	v	0	0	0	0	0	6	0	2	0	0
14	CC3	1	488	0	0	0	7	1	0	5	0	0	0	0
15	CCI	$!$	122	0	0	0	0	0	1	10	0	0	18	8
15	Ca	1	12.3	0	0	0	8	1	0	14	0	3	18	0
15	Col	1	497	P	0	0	0	0	0	13	0	(24	0
15	CCI	1	103	?	0	8	0	0	θ	12	0	0	9	0
15	Cis	1	124	0	0	0	0	-	0	10	0	0	al	0
16	CS	1	438	0	0	0	0	0	0	12	0	$\hat{0}$	28	0
$1 /$	CCl	1	104	8	0	0	0	0	0	18	0	t	21	a
17	CL3	1	185	1	3	0	0	0	0	co	0	0	ct	0
17	CC3	1	431	(0	0	0	$?$	c	18	0	0	19	0
10	CCI	1	105	0	0	0	0	2	0	21	0	0	0	0
18	CO2	1	100	-	0	0	Q	0	-	21	0	0	0	0
13	TE3	1	492	0	0	0	2	-	0	2	0	8	0	0
13	[C]	1	106	0	0	0	0	0	0	12	0	0	20	0
13	CS2	1	127	0	0	0	0	0	0	10	0	8	19	0
13	c.3	1	433	0	0	0	0	0	0	10	0	0	20	0
ci	CCL	1	107	d	a	0	0	0	0	5	0	0	40	8
0	CC?	1	128	1	1	8	2	2	*	8	0	0	47	8
a	CCS	$!$	434	0	0	0	0	จ	0	8	0	0	64	a

$30 ;$	5	mes	\%	RLLISMUA		$\begin{gathered} \text { FERT } \\ H \end{gathered}$	Lemmama		$\begin{aligned} & \text { FET! } \\ & \mathrm{H} \end{aligned}$			4	FATCHES St FEET	
4				L'	H		. L	M		L	N	if	F1	P2
1	fi	-	3	0	0	0	$?$	0	-	8	3	0	8	0
1	0	$!$	3	8	θ	0	0	0	8	0	8	8	0	0
!	03	1	76	0	0	0	4	0	0	0	8	P	0	$\hat{0}$
$!$	\therefore	\because	11	?	\mathfrak{a}	3	0	8	a	E	8	0	0	8
1	C	¿	31	0	\%	0	0	3	0	0	0	0	0	0
1	8	\pm	43	0	θ	0	0	0	0	1	0	8	0	0
2	Cl	1	35	\bigcirc	0	0	0	0	8	2	0	(1)	0	8
2	E.	1	55	0	0	0	8	0	8	2	0	0	0	0
2	C3	1	77.	0	0	0	0	0 .	0	0	0	0	0	0
2	6	2	!	0	\&	0	8	0	\%	0	0	0	0	0
2	ce	2	22	8	0	0	0	0	0	1	0	0	0	0
2	Cs	ε	53	0	8	0	0	9	0	1	8	0	0	0
3	C:	$!$	35	0	8	0	1	0	0	6	0	0	0	15
3	C	1	57	0	0	8	0	0	0	5	0	0	0	15
3	0	1	78	3	0	0	8	3	0	5	8	?	0	15
3	6	z	13	0	1	8	8	0	\%	3	0	0	0	15
3	Es	2	35	0	0	0	e	0	0	4	0	0	0	15
3	65	2	51	0	0	0	0	0	1	5	0	0	a	15
4	01	1	37	0	0	a	A	0	0	8	0	0	0	15
4	0	1	5	0	$?$	0	0	0	0	8	8	0	0	15
4	0	1	()	0	?	3	8	8	8	g	0	0	0	1%
4	U'	こ	14	0	0	2	0	8	0	10	0	0	8	15
4	c	2	34	0	0	0	0	0	0	8	0	0	8	15
4	CS	E	Ez	0	8	8	0	8	8	8	8	3	0	13
$¢$	Cl	1	30	0	0	a	0	3	0	15	0	0	15	0
5	c^{2}	1	53	0	0	8	0	0	0	17	0	θ	15	0
5	C3	1	82	0	8	0	6	0	0	13	0	0	15	1
5	C4	2	15	9	0	0	8	0	0	17	0	θ	15	0
5	[3]	2	45	0	0	0	1	0	0	17	0	9	15	0
Ξ	ce	2	53	0	3	0	0	0	0	14	0	8	15	0
6	\bigcirc	1	33	0	0	0	0	0	0	27	0	*	0	?
6	0	1	60	0	0	0	0	0	0	28	0	\%	0	0
6	c3	1	81	0	0	0	0	0	0	24	0	0	8	0
6	Cl	2	16	0	0	0	0	0	0	24	0	8	0	8
6	C5	2	36	0	0	0	0	0	0	21	8	0	0	0
6	cs	2	54	0	0	2	0	0	0	24	8	*	0	8
7	Cl	1	40	0	8	(1)	0	0	Q	33	0	8	B	0
7	Ca	1	61	2	0	0	0	θ	0	25	0	9	0	a
7	C3	$!$	8	0	$?$	*	θ	0	8	21	l	0	0	0
7	C4	ε	17	0	0	2	a	0	8	26	0	0	0	0
7	E	2	37	0	0	0	-	0	0	23	0	0	0	0
7	C5	2	5	0	0	2	8	a	0	c5	0	0	0	0

FASE
(CINI)

SUKi:	68	18FE	$\begin{gathered} \text { SEG } \\ \end{gathered}$	Alligator		FEET	LOMGITUDINAL			TRANSYEREE		*	PATChES SQ FEET	
				L	M		\pm	m	H	\downarrow	M	H	F1	2
a	Cl	1	41	0	0	0	0	0	0	8	0	0	0	?
8	C2	1	82	0	0	0	0	0	*	8	0	0	0	0
8	C3	i	83	0	8	\%	0	0	0	8	8	0	0	0
6	C4	2	18	8	0	0	0	0	0	7	0	0	0	0
8	cs	2	38	0	0	0	0	0	0	10	0	0	0	0
:	C6	2	35	0	-	0	0	0	0	10	8	0	0	,
9	Cl	1	$4{ }^{3}$	0	0	0	6	0	0	4	0	3	0	0
?	Ca	1	83	0	0	8	0	8	0	4	8	2	0	0
9	63	1	84	*	0	0	1	0	0	3	0	8	8	8
3	[4	2	17	1	0	0	5	0	8	E	8	0	8	*
1	t5	2	37	0	0	0	7	8	8	4	8	0	0	8
3	ce	2	57	8	0	0	5	0	0	2	0	-	0	0
10	Cl	1	43	0	a	0	0	0	0	8	\bigcirc	0	0	0
10	C	1	64	0	0	0	0	0	0	6	0	0	0	0
10	6	1	85	0	0	0	0	0	\%	6	0	0	0	
12	Ci	2	0	1	?		0	0	8	7	,	?	9	0
10	C5	2	40	0	0	,	-	0	0	7	0	0	-	
10	LS	\because	58	0	0	0	0	0	8	7	0	\%	e	,

PAVEDEX, IMC. SPOKAME, MA SEPT. !999
IDHa demohsiration 'pr rohd dayfoh raad north

SEG	SEG	TAPE	SORT	S0RI	Alligator feet			LONGITUDTAL FEET			IRAMSVERSE			PATCHES St FEET		
	*		1.	+	L	n	H	1	H	H	1	H	H	PI	P2	
01	171	1	1	1	0	0	0	30	2	0	35	0	0	0	0	-
D3	207	1	1	2	0	0	0	77	0	0	46	0	0	0	0	-
05	243	1	1	3	0	0	0	85	7	0	. 41	0	0	0	0)
D8	88	2	1	4	0	0	0	23	0	0	38	0	0	0	0	,
010	124	2	1	5	0	0	0	81	0	0	44	0	0	0	0	-
012	159	2	1	6	0	0	0	45	0	0	42	0	0	0	0	,
01	172	1	2	1	0	0	0	137	0	0	49	0	0	0	0)
03	208	1	2	2	0	0	0	169	0	0 ,	50	0	0	0	0	-
05	244	1	2	3	0	0	0	- 146.	0	0	48	0	0	0	0	,
18	89	2	2	4	0	0	0	39	0	0	54	0	0	0	0	
010	125	2	2	5	0	0	0	94	0	0	48	0	0	0	0	-
D12	160	2	2	5	0	0	0	134	0	0	52	0	0	0	0	,
01	173	1	3	1	0	0	0	105	72	0	33	9	0	0	0)
03	209	1	3	2	18	0	0	159	35	0	46	4	0	0	0	
05	245	1	3	3	0	0	0	140	47	0	41	5	0	0	0	-
08	90	2	3	4	0	0	0	150	30	0	51	0	0	0	0	,
010	126	2	3	5	0	0	0	142	37	0	43	0	0	0	0	-
012	161	2	3	6	0	0	0	159	25	0	48	0	0	0	0	,
01	174	1	d	1	0	0	0	104	0	0	36	1	0	0	0)
03	210	1	4	2	0	0	0	75	5	0	34	1	0	0	0	-
05	246	1	4	3	0	0	0	105	0	0	39	0	0	0	0	-
D8	91	2	4	4	0	0	0	89	0	0	36	0	0	0	0	,
D10	127	2	4	5	0	0	0	106	0	0	34.	3	0	0	0	
012	162	2	4	6	0	0	0.	99	0	0	32	0	0	0	0	,
01	175	1	5	1	6	0	0	63	44	0	46	5	0	0	0)
D3	211	1	5	2	6	0	0	100	17	0	49	3	0	0	0	-
D5	247	1	5	3	6	0	0	93	6	0	44	3	0	0	0	
D8	. 92	2	5	4	0	0	0	86	0	0	59.	0	0	0	0	,
010	128	2	5	5	0	0	0	51	6	0	42	6	0	0	0	,
012	163	2	5	6	0	0	0	65	0	0	52	4	0	0	0	,
11	178	1	6	1	5	0	0	15	0	0	38	0	0	0	0)
03	212	1	6	2	0	0	0	11	0	0	36	0	0	0	0	-
05.	248	1	6	3	0	0	0	6	0	0	40	0	0	0	0	
D8	93	2	6	4	0	0	0	12	0	0	39	0	0	0	0	
010	123	2	6	5	0	0	0	11	0	0	36	0	0	0	0	,
012	164	2	6	6	0	0	0	5	0	0	34	0	0	0	0	,
01	177	1	7	1	0	0	0	105	0	0	38	0	0	0	0	.
03	213	1	7	2	0	0	0	98	0	0	37	0	0	0	0	,
05	243	1	7	3	0	0	0	93	0	0	43	0	0	0	0	-
08	34	2	7	4	0	0	0	92.	0	0	44	0	0	0	0	-
010	130	2	7	5	0	0	0	128	0	0	45	0	0	0	0	-
012	165	2	7	6	0	0	0	91	0	0	33	0	0	0	0	
01.	178	1	8	1	67	0	0	437	0	0	47	0	0	0	0)
03	214	1	8	2	93	0	0	303	0	0	45	0	0	0	0	
05	250	1	8	3	98	0	0	465	0	0	48	0	0	0	0)
08	. 95	2	8.	4	39.	0	0	414	0	0	60	0	0	0	0	-
D10	131	2	8	5	45	0	0	461	0	0	55	0	0	0	0	
012	166	2	B	6	35	0	0	434	0	0	52	0	0	0	0	,

FAVEDEX, INC. SFOKANE, HA SEPT. 1889
iona demonstration do moad dayton roab
South

SOR 1	SEG	TAPE SEG SORT			ALLIGATOR			LONGITU日EAAL		$\begin{gathered} \text { FEET } \\ \mathrm{H} \end{gathered}$	TRANSUERSE		$H$$H$	PATCHES SQ FEET	
1			1	-	L	n	. H	L	N		L	H		P1	P2
81	02	1	179	1	116	0	0	353	0	0	54	0	0	0	0
B2	D4	1	215	1	96	0	0	307	0	0	58	0	0	0	0
83	D6	1	251	1	89	0	0	303	0	0	51	0	0	0	0
84	D7	2	62	1	27	0	0	344	0	0	82	0	0	0	0
85	D9	2	38	1	53	0	0	305	0	0	53	0	0	0	0
86	011	2	132	1	- 45	0	0	388	0	0	56	0	0	0	0
81	02	1	180	2	135	0	0	283	0	0	80	0	0	0	0
B2	04	1	216	2	154	0	0	244	0	0	57	0	0	0	0
B3	06°	1	252	2	171.	0	0	177	0	0	65	0	0	0	0
B4	07	2	63	2	47	0	0	494	0	0	71	0	0	0	0
85	03	2	97	2	92	0	0	325	0	0	65	0	0	0	0
86	011	2	132	2	45	0	0	388	0	0	56	0	0	0	0
81	02	1	$18!$	3	11	0	0	167	0	0	48	0	0	0	0
82	04	1	217	3	12	0	0	151	0	0	43	0	0	0	0
83	06	1	253	3	12	0	0	175	12	0	52	0	0	0	0
84	07	2	64	3	5	0	0	201	0	0	49	0	0	0	0
85	03	2	98	3	8	0	0	. 164	0	0	49	0	0	0	0
86	011	2	133	3	8	0	0	195	0	0	51	0	0	0	0
81	02	1	182	4	73	0	0	226	11	0	61	0	0	0	0
-2	04	1	218	4	44	0	0	221	19	0	55	1	0	0	0
83	06	1	254	4	137	0	0	208	47	0	51	0	0	0	0
84	07	2	-65	4	28	0	0	300	13	0	66	0	0	0	0
85	09	2	99	4	32	0	0	231	23	0	59	0	0	0	0
86	011	2	134	4	23	0	0	304	9	0	61	0	0	0	0
81	02	1	183	5	100	0	0	173	0	0	32	2	0	0	0
B2	04	1	219	5	125	0	0	173	34	0	34	1	0	0	0
83	06	1	255	5	19	0	0	112	6	0	37	0	0	0	0
84	07	2	66	5	56	0	0	199	0	0	38	0	0	0	0
85	09	2	100	5	61	0	0	245	0	0	38	0	0	0	0
86	D11	2	135	5	46	0	0	277	0	0	35	0	0	0	0
81	02	1.	184	6	63	0	0	177	0	0	57	0	0	0	0
B2	04	1	220	6	54	0	0	178	${ }^{0} 0$	0	54	0	0	0	0
83	06	1	256	6	34	0	0	147	11	0	52	2	0	0	0
84	D7	2	67	6	16	0	0	197	0	0	53	0	0	0	0
85	03	2	101	6	11	0	0	181	0	0	57	0	0	0	0
86	011	2	136.	6	19	0	0	153	0	0	54	0	0	0	0
81	02	1	185	7	17	0	0	108	0	0	54	0	0	0	0
82	10	1	221	7	15	0	0	105	0	0	44	0	0	0	0
83	06	1	257	7	24	0	0	96	0	0	57	0	0	0	0
84	07	2	68	7	11	0	0	166	0	0	50	0	0	0	0
85	09	2	102	7	7	0	0	117	0	0	47	0	0	0	0
. 86	Oll	2	137	7	6	0	0	115	0	0	51	0	0	0	0
81	02	1	186	8	67	0	0	202	0	0	47	0	0	0	0
82	D4	1	222	8	44	0	0	131	7	0	46	0	0	0	0
83	06	1	258	8	59	0	0	185	8	0	49	0	0	0	0
84	07	2	69	8	21	0	0	201	0	0	51	0	0	0	0
85	09	2	103	8	15	0	0	165	0	0	46	0	0	0	0
86	011	2	138	8	17	0	0	153	0	0	52	0	0	0	0

JU月 DE
＂E ROMD．BRYTON ROAO NORTH

ginl	5mir		1程安	SEG	LC			FSC	sroteme 1 ．		SFALLING 2		$\begin{gathered} \text { SFRLLING } \\ 3 \end{gathered}$		FATCHES 6		PAICKIS F		FIICHES \％		15C	
＊	\＃			\＃	＊	\％SLIBS		WSturs		25Lnos	）	2Stanc	\＃	\％SLPBS	S0．7	\times area	Saft	\％${ }^{\text {PREA }}$				$\times 5$ OUS
i	1	E1	1	168	0	0	1	1	2	2	0	0	8	0	0	8.00	0	0	0	0	0	0
11	1	E3	1	197	0	0	0	0	3	3	0	0	1	0	4	0.80	0	0	0	0	0	0
E1	1	E5	1	233	1	0	0	0	3	3	0	0	0	0	0	0.00	0	0	0	0	0	0
31	1	E 0	c	日17	1	1	0	8	1	1	0	0	0	0	0	0.00	0	0	0	0	0	9
41	1	E10	2	114	0	9	0	0	1	1	0	1	0	0	0	8.00	0	0	0	D	0	0
4	1	EL2	2	149	B	0	0	0	2	2	0	0	A	0	0	8.83	0	0	0	0	1	＊
2	2	1：1	1	151	1	0	0	0	0	0	0	0	0	1	15	0.25	0	0	0	0	0	0
12	i	E． 3	1	190	0	0	0	0	0	0	0	0	0	0	15	8.27	0	0	0	0	0	0
42	2	$E 5$	1	234	0	0	8	0	0	0	3	0	0	0	15	0.27	θ	0	8	0	0	8
32	2	EO	2	818	．	0	8	0	0	0	0	0	0	0	15	0.27	0	0	0	0	0	0
42	2	4．1\％	2	115	0	0	0	0	0	0	8	8	0	0	15	8.87	0	0	0	0	0	1
5.2	2	E12	2	158	0	0	0	0	0	0	0	0	0	0	15	0.26	0	0	0	0	0	8
3	3	E1	1	16？	0	0^{4}	0	0	0	0	0	0	0	0	0	8.00	0	－	0	0	0	0
1.	3	E 5	1	199	0	0	0	9	0	0	0	0	9	0	8	0.09	0	0	0	0	0	8
c3	3	ES	1	235	0	0	0	0	0	0	0	0	0	0	0	8． 0^{18}	0	8	0	0	＊	0
35	3	E8	2	81C	0	0	0	a	0	0	0	0	0	8	0	8.01	0	0	8	0	0	1
43	3	E10	2	116	0	0	0	0	0	0	0	0	0	0	0	0.89	0	0	8	0	0	0
5,3 ．	3	El：	2	151	0	0	0	0	0	0	0	0	0	0	a	0.08	0	0	0	8	8	0
4	4	E	1	163	0	0	0	0	0	0	0	0	0	0	0	0.00	0	0	6	0	．	0
14	4	E3	1	208	0	0	1	0	0	0	8	（	0	0	0	8.08	1	0	0	0	0	6
\％	4	E	． 1	236	0	8	0	1	0	0	0	0	0	0	0	0.88	0	0	0	0	8	0
31	4	E8	2	Bid	0	0	0	0	0	0	0	0	0	0	0	0.00	8	0	0	0	0	0
44	4	E19	2	117	0	0	0	9	0	0	0	0	0	0	8	0.00	0	0	0	（i）	0	0
54	4	EH	2	152	0	0	0	＊	1	1	0	0	0	0	0	2．80	0	0.	0	0	0	9
9	5.	E1	1	164	0	0	0	0	0	0	0	0	0	0	0	0.89	0	0	0	0	0	0
15	5	E3	1	201	0	0	0	0	0	0	0	0	0	0	0	0.90	0	0	8	0	0	0
83	5	E5	1	237	0	0	0	0	0	0	0	0	0	0	0	0.00	0	0	0	0	8	0
35	5	E8	2	02	0	0	0	0	0	0	0	0	0	0	0	0． 18	0	0	0	0	0	0
45	5	E， 10	2	118	0	8	0	0	0	0	0	0	9	0	0	0.09	0	0	0	0	0	6
5	5	El 2	2	153	1	0	0	0	0	0	0	0	0	0	0	8.08	0	0	0	0	0	0
6	6	El	1	165	0	0	0	0	0	0	0	0	0	0	0	0.60	0	0	0	0	0	3
16	6	E． 3	1	20	0	0	0	0	0	0	0	0	1	0	0	0.00	0	0	0	0	0	0
E6）	6	ES	1	238	0	0	0	0	0	0	0	8	0	0	0	8.08	0	1	0	0	0	0
36	6	E8	2	83	0	0	1	0	0	0	0	0	0	0	0	0.00	0	0	0	0	0	8
46	6	Eiv	2	119	0	0	0	0	0	0	0	0	0	0	0	8.80	0	0	0	0	0	0
：6	6	Ela	2	154	0	0	0	0	0	0	ท	8	0	0	0	0.00	0	0	0	6	0	0
7	7	E1	1	156	1	2	1	2	0	0	0	0	0	0	0	0.09	0	0	0	0	0	8
17	1	E 3	1	c03	1	1	0	0	0	0	0	0	0	0	0	0.00	8	0	0	0	0	0
¿i	7	E． S	1	239	1	1	1	1	0	0	0	0	0	0	0	0.00	0	0	0	0	0	0
31	7	E0	2	84	0	0	1	1	0	0	0	1	0	0	0	8.60	0	0	0	0	0	6
41.	7	E14	E	120	1	． 1	1	1	0	0	0	0	0	0	0	0.80	0	9	0	0	0	0
51	7	$E 12$	E	155		1	1	1	0	0	0	（	0	3	a	0.80	0	0	0	（1）	0	0

PRUEDEX, BILC. SFOKOME, Wh SEPT 1989
10朝 Demongination
"E" ROAD DAYTON REMD SOUIH

PRNECEX, INC. SPOKAHE, HA SEPT. 1889 IOHA DEMOHSTRATIOK
"FP ROAD STORY ROAD E-41 EAST
sort gari geg seg tape alligator fekt longifumal feet transyerse 1 patches se feet

					L	H	H	1	\%	H	1.	\#	H	$p 1$	P2
1	1	81	278	1	1	\pm	1	χ	x	1	\%	1	\pm	χ	*
2	1	$F 3$	321	1	1	χ	χ	1	X	$\underline{ }$	1	1	1	1	1
3	1	F5	363	1	0	0	0	80	14	0	59	2	0	0	0
4	1	57	177	2	0	0	0	33	23	0	53	3	0	0	0
5	1	$F 9$	218	2	0	0	0	95	21	0	60.	4	0	0	0
6	1	F11	259	2	0	0	0	81	30	0	50	4	0	0	0
1	2	Fl	279	1	0	0	0	94	22	0	50	4	0	0	0
2	2	83	321	1	1	$\underline{1}$	1	K	λ	1	*	1	1	*	χ
3	2	55	364	1	0	0	0	65	37	0	52	3	0	0	0
4	2	¢7	178	2	θ	0	0	83	27	0	55	4	0	0	0
5	2	$F 9$	219	2	0	0	0	93	21	0	57	2	0	0	0
6	2	F11	260	2	0	0	0	121	18	0	60	4	0	0	0
1	3	Fil	280	1	0	0	0	65	19	0	50	3	0	0	0
2	3	83	322	1	0	0	0	75	15	0	53	4	0	0	0
3	3	55	365	1	0	0	0	46	30	0	52	3	0	0	0
4	3	F7	179	2	0	0	0	102	13	0	56	2	0	0	0
5	3	F\%	220	2	0	0	0	88	16	0	50	3	0	0	0
5	3	FII	261	2	0	0	0	72	22	0	52	4	0	0	0
1	4	Fl	281	1	0	0	0	152	44	0	57	5	0	0	0
2	4	$F 3$	323	1	0	0	0	199	19	0	60	7	0	0	0
3	4	$F 5$	366	1	0	0	0	165	38	5	53	4	0	0	0
4	4	F7	180	2	0	0	0	200	25	0	66	6	0	0	0
5	4	F3	221	2	0	0	0	171	34	0	53	8	0	0	0
6	4	FII	262	2	0	0	0	164	35	0	57	6	0	0	0
1	5	Fl	282	1	0	0	0	281	54	0	60	4	0	0	0
2	5	F3	324	1	0	0	0	313	59	0	70	10	0	0	0
3	5	55	367	1	0	0	0	242	68	0	68	5	0	0	0
4	5	F7	181	2	0	0	0	286	40	0	71	8	0	0	0
5	5	$F 9$	222	2	0	0	0	329	44	0	71	6	0	0	0
6	5	$71!$	263	2	0	0	0	301	48	0	67	8	0	0	0
1	6	11	283	1	0	0	0	399	69	0	62	10	0	0	0
2	6	53	325	1	0	0	0	344	74	0	59	7	0	0	0
3	6	F5	368	1	0	0	0	- 446	85	0	72	6	0	0	0
4	6	F7	182	2	0	0	0	487	59	0	70	8	0	0	0
5	6	53	223	2	0	0	0	512	46	0	68	7	0	0	0
6	6	FIt	264	2	0	0	0	495	57	0	71	10	0	0	0
1	7	F1	284	1	0	0	0	412	53	0	55	5	0	0	0
2	7	F3	326	1	0	0	0	407	50	0	58	4	0	0	0
3	7	55	363	1	0	0	0	456	45	0	59	3	0	0	0
4.	7	F7	183	2	0	0	0	614	28	0	62	6	0	0	0
5	7	99	224	2	0	0	0	538	41	0	61	4	0	0	0
6	7	fll	265	2	0	0	0	528	45	0	61	3	0	0	0

Sort sort seb			SEE TAPE		Mlithitas	feet	Lametyuatma		7EI	TRAMEVERE		1	Patches se feey			
*	1		1													
					1 n	V	- 1	\#		H	1		H	H	' P1	92.
1	8	Fl	285	1	00	0	302	37	0	61	4	0	0	0		
2	8	H	327	1	00	0	279	41	0	62	3	0	0	0		
3	8	55	370	1	00	0	331	36	0	59	4	0	0	0		
4	8	51	184	2	00	0	418	$33:$	0	60	5	0	0	0		
5	8	F9	225	2	00	0	403	30	0	57	4	0	0	0		
6	8	FII	265	2	00	0	412	19	0	62	6	0	0	0		
1	9	$f 1$	286	1	00	0	218	12	0	56	4	0	0	0		
2	3	13	328	1	00	0	204	32	0	65	5	0	0	0		
3	9	55	371	1	00	0	178	28	0	62	3	0	0	0		
4	3	57	185	2	00	0	197	24	0	64	2	0	0	0		
5	9	F9	226	2	00	0	172	35	0	60	4	0	0	0		
6	9	f11	257	2	00	0	199	22	0	65	6	0	0	0		
1	to	$f 1$	287	1	- 0°	0	142	10	0	31	3	0	0	0		
2	10	$F 3$	329	1	00	0	30	14	0	54	4	0	0	0		
3	10	55	372	1	00	0	178	16	0	67	3	0	0	0		
4	10	F7	185	2	0.0	0	140	16	0	69	1	0	0	0		
5	10	F9	227	2	00	0	189	11	0	65	2	0	0	0		
6	10	FII	268	2	00	0	204	14	0	74	2	0	0	0		
1	11	Fl	288	1	1	χ	8	1	1	1	1	x	1	1.		
2	11	F3	330	1	00	0	41	7	0	42	3	0	0	0		
3	11	F5	373	1	00	0	55	8	0	58	2	0	0	0		
4	11	77	187	2	$1 \times$	1	1	1	1	1	$!$	1	1	1		
5	11	$f 9$	228	2	00	0	109	0	0	11	-	0	0	0		
6	11	fll	269	2	00	0	- 80	0	0	10	0	0	0	0		

sort sort seg seg tape alligator feet longitudinal feet transuerse patches ge feet

7	4	$F 2$	231	1
8	4	$F 4$	335	1
3	4	$F 6$	377	1
10	4	58	190	2
11	4	$F 10$	232	2
12	4	$F 12$	273	2

0	0
0	0
0	0
0	0
0	0
0	0

165	18	0		49	4	0		0	0
169	15	0		52	7	0	0	0	
173	14	0	$:$	51	8	0	0	0	
125	27	\because	0	47	6	0	0	0	
144	15	0		53	5	0	0	0	
116	19	0		54	5	0	0	0	

7	5	52	292	1
8	5	54	336	1
9	5	56	378	1
10	5	58	191	2
11	5	510	233	2
12	5	512	274	2

0	0	0	\cdots	191	20
0	0	0	191	26	0
0	0	0	271	20	0
0	0	0	216	14	0
0	0	0	214	17	0
0	0	0	178	22	0

| 49 | 9 | 0 | 0 | 0 |
| ---: | ---: | :--- | :--- | :--- | :--- |
| 53 | 7 | 0 | 0 | 0 |
| 51 | 10 | 0 | 0 | 0 |
| 45 | 8 | 0 | 0 | 0 |
| 49 | 6 | 0 | 0 | 0 |
| 55 | 7 | 0 | 0 | 0 |

7	6	52	293	1	0	0	0
8	6	54	337	1	0	0	0
9	6	56	379	1	0	0	0
10	6	58	192	2	0	0	0
11	6	710	234	2	0	0	0
12	6	512	275	2	0	0	0

57	6	0	43	6	0
48	8	0	41	5	0
41	9	0	41	8	0
29	8	0	38	4	0
10	10	0	40	5	0
9	9	0	45	7	0

7	7	52	294	1	0	0	0	0	0	0	26	10	0	0	0
8	7	54	338	1	0	0	0	7	0	0	27	10	0	0	0
9	7	56	380	1	0	0	0	0	0	0	33	6	0	0	0
10	7	58	193	2	0	0	0	0	0	0	35	5	0	0	0
11	7	510	235	2	0	0	0	0	0	0	27	7	0	0	0
12	7	512	276	2	0	0	0	0	0	0	33	9	0	0	0

"F" ROAD STORY ROAD E-41
 hest ccont

gort surt seg			SEG tape		Alligator feet			LONGITUDINAL FEET			TRAMSYERSE		8	Patches su feet	
1	1		1												
					1	n	H	L	H	H	1.	n	H	P1	P2
7	8	52	295	1	0	0	0	31	0	0	43	10	0	0	0
8	8	54	339	1	0	0	0	12	0	0	41	6	0	0	0
9	8	76	381	1	0	0	0	7	0	0	45	5	0	0	0
10	8	F8	194	2	0	0	0	6	0	0	45	6	0	0	0
11	8	110	236	2	0	0	0	12	0	0	42	8	0	0	0
12	8	H12	277	2	0	0	0	7	0	0	43	9	0	0	0
7	2	$F 2$	296	1	0	0	0	80	5	0	32	5	0	0	0
8	9	54	340	1	0	0	0	65	6	0	35	8	0	0	0
9	9	16	382	1	0	0	0	66	6	0	36	6	0	0	0
10	3	78	195	2	0	0	0	64	9	0	31	5	0	0	0
11	9	F10	237	2	0	0	0	62	16	0	32	6	0	0	0
12	3	12	278	2	0	0	0	63	5	0	38	8	0	0	0
7	10	$F 2$	297	1	0	0	0	202	9	0	52	4	0	0	0
8	10	54	341	1	0	0	0	185	7	0	49	5	0	0	0
9	10	76	383	1	0	0	0	205	10	0	44	9	0	0	0
10	10	F8	196	2	0	0	0	173	6	0	45	4	0	0	0
11	10	510	238	2	0	0	0	201	5	0	46	5	0	0	0
12	10	512	279	2	0	0	0	!75	7	0	47	6	0	0	0
7	11	F2	238	1	0	0	0	81	5	0	46	4	0	0	0
8	11	54	342	1	0	0	0	99	0	0	46	6	0	0	0
9	11	F6	384	1	0	0	0	52	0	0	50	3	0	0	0
10	11	FB	197	2	0	0	0	78	6	0	47	4	0	0	0
11	11	F10	239	2	0	0	0	67	6	0	51	5	0	0	0
12	11	512	280	2	0	0	0	64	0	0	47	3	0	0	0

PAVEDEX, INC. STPOKANE, HA SEPT. 1389 IOHA DEMONSTRATION ROAD "G" US 69 NORTH

SORT		SEG	SEg	TAPE	All	TOR		LONGITU	AL. FE			VERSE	\#	PATCHES	SQ FEET
1	*		1		$!$	\cdots	H	L	H	H	1	\#	H	PI	P2
1	7	G2	436	1	44	0	0	622	337	54	97	30	8	0	30
1	8	64	455	1	4	0	0	655	378	44	97	38	12	0	30
1	9	G6	475	1	40	0	0	566	313	61	105	43	13	0	30
1	10	68	301	2	37	0	0	724	347	47	120	29	8	0	30
1	11	610	321	2	30	0	0	601	280	55	141	28	7	0	30
1	12	612	341	2	24	,	0	700	259	43	106	25	9	0	30
2	7	62	437	1	11	0	0	663	283	40	98	33	9	0	30
2	8	64	456	1	18	0	0	648	309	48	98	22	7	0	30
2	3	66	476	1	17	0	0	558	270	54	115	20	12	0	30
2	10	18	302	2	13	0	0	577	248	42	97	20	9	0	30
2	11	610	322	2	13	0	0	644	232	35	117	35	6	0	30
2	12	612	342	2	13	0	0	655	247	39	87	19	10	0	30
3	7	62	438	1	32	0	0	643	261	35	99	36	8	0	30
3	8	64	457	1	18	0	0	657	284	40	86	31	13	0	60
3	9	68	477	1	26	0	0	628	250	48	115	35	- 14	0	30
3	10	68	303	2	20	0	0	577	226	34	80	32	12	0	60
3	11	610	323	2	19	0	0	591	196.	31	102	35	14	0	60
3	12	612	343	2	13	0	0	605	190	37	95	30.	10	0	60
4	7	G2	439	1	26	0	0	563	208	49	102	39	6	0	30
4	8	64	458	1	0	0	0	601	219	40	83	31	9	0	30
4	9	96	478	1	24	0	0	668	181	42	96	34	12	0	30
4	10	68	304	2	13	0	0	650	229	35	100	28	7	0	30
4	11	610	324	2	14	0	0	686	199	31	114	35	9	0	30.
4	12	612	344	2	25	0	0	626	183	36	79	25	8	0	30
5	7	G2	440	1	53	0	0	615	180	35	91	29	9	0	30
5	8	64	459	1	30	0	0	536	194	48	74	26	12	0	30
5	9	66	479	1	25	0	0	621	211	39	97	24	6	0	60
5	10	68	305	2	31	0	0	572	163	43	71	24	7	0	60 ..
5	11	610	325	2	28	0	0	602	185	38	102	20	6	0	60
5	12	612	345	2	23	0	0	563	160	34	88	23	8	0	60
6	7	62	441	1	40	0	0	588	216	51	99	35	8	0	60
6	8	64	460	1	22	0	0	552	195	53	86	30	10	0	60
6	9	66	480	1	32	0	0	595	227	43	108	38	7	0	60
6	10	60	306	2	25	0	0	568	174	37	79	29	10	0	30
6	11	610	326	2	36	0	0	631	189	43	105	26	6	0	60
6	12	812	346	2	23	0	0	605	165	38	82	30	6	0	60

					ROAD "6" US 69			NORTH		(CONT)				Patches sa feet	
	S0RT	SEG	SEg	TAPE			FEET	LONGItU	AL 5			Sverse	1		
4	*		\%		L	H	H	L	H	H	1.	,	H	PI	P2
7	7	62	442	1	26	0	0	565	337	46	107	33	9	0	30
7	8	64	461	1	29	0	0	472	278	38	99	27	12	0	30
9	9	66	481	1	13	0	0	524	310	43	102	39	10	0	0
7	10	68	307	2	13	0	0	508	273	42	92	34	,	0	30
7.	11	610	327	2	12	0	0	609	188	34	108	33	7	0	30
7	12	612	347	2	14	0	0	666	182	40	91	31	10	0	30
8	7	62	443	1	23	0	0	649	188	31	82	23	7	0	30
8	8	64	462	1	12	0	0	614	209	39	72	26	10	0	30
8	9	66	482	1	13	0	0	638	195	27	76	30	9	0	30
8	10	68	308	2	13	0	0	569	165	29	66	20	6	0	30
8	11	610	328	2	13	0	0	571	177	21	85	26	8	0	30
8	12	612	348	2	0	0	0	638	179	25	72	18	7	0	30
9	7	G2	444	1	0	0	0	215	130	28	36	17	3	0	0
9	8	64	463	1	0	0	0	256	145	35	19	12	5	0	0
3	3	68	483	1	0	0	0	162	169	22	16	24	7	0	0
9	10	68	309	2	0	0	0	229	142	18	28	15	5	0	0
3	11	610	329	2	0	0	0	186	120	21	10	20	6	0	0
9	12	612	349	2	0	0	0	217	99	17	15	18	3	0	0
10	7	62	445	1	0	0	0	0	0	0	0	0	0	0	0
10	8	64	464	1	0	0	0	0	0	0	0	0	0	0	0
10	9	66	484	1	0	0	0	0	0	0	0	0	0	0	0
10	10	68	310	2	0	0	0	0	0	0	0	0	0	0	0
10	11	610	330	2	0	0	0	0	0	0	0	0	0	0	0
10	12	612	350	2	0	0	0	0	0	0	0	0	0	0	0

PaVEDEX, INC. SPOKANE, HA KA SEPT. 1989
IOHA DEKONSTRATION
ROAD "G" US 69 SOUTH

S0RT	SORT	SEG	SE8	TAPE		TOR		Lowgitu	FEE			verse	\#	PATCHES	St FEET
-	1		1		L	M	H	L	1	H	1	H	H	Pl	P2
1	1	61	426	1	7	0	0	$50!$	306	31	77	24	7	0	30
1	2	63	446	1	14	0	0	526	295	58	97	22	. 12	0	60
1	3	65	465	1	19	0	0	379	210	41	59	13	13	0	30
1	4	67	291	2	7	0	0	410	188	21	77	15	3	0	30
1	5	69	311	2	7	0	0	428	228	28	69	28	8	0	30
1	6	611	331	2	17	0	0	382	351	23	78	19	7	0	30
2	1	61	427	1	0	0	0	643	397	18	89	35	9	0	0
2	2	63	446	1	15	0	0	484	374	28	102	28	18	0	30
2	3	65	466	1	0	0	0	832	385	21	68	34	11	0	0
2	4	G7	292	2	0	0	0	588	352	13	97	30	23	0.	0.1
2	5	69	312	2	0	0	0	606.	303	12	104	27	19	0	0
2	6	611	332	2	0	0	0	599	320	10	113	24	15	0	0
3	1	61	428	1	49	0	0	450	176	25	114	17	8	0	60
3	2	63	447	1	36	0	0	508	192	15	95	23	5	0	30
3	3	65	467	1	19	0	0	483	207	6	87	28	9	0	60
3	4	67	293	2	25	0	0	409	205	21	116	15	4	0	60
3	5	69	313	2	34	0	0	397	264	16	122	13	7	0	30
3	6	611	333	2	31	0	0	391	248	12	110	16	7	0	30
4	1	61	429	1	11	0	0	425	369	31	76	26	16	0	30
4	2	63	448	1	13	0	0	452	269	23	. 64	34	23	0	30
4	3	65	468	1	12	0	0	466	247.	19	71	30	12	0	30
4	4	67	294	2	11	0	0	505	193	17	80	24	13	0	30
4	5	69	314	2	11	0	0	430	284	28	81	21	16	0	30
4	6	611	334	2	12	0	0	425	319.	14	77	25	13	0	30
5	1	61	430	1	12	0	0	558	240	12	83	29	19	0	30
5	2	63	449	1	26	0	0	494	381	16	89	36	13	0	30
5	3	65	469	1	12	0	0	505	280	23	80	28	15	0	30
5	4	67	295	2	12	0	0	450	354	13	86	24	11	0	30
5	5	69	315	2	12	0	0	520	316	8	98	30	13	0	30
5	6	611	335	2	14	0	0	566	282	11	101	22	9	0	30
6	1	61	431	1	30	0	0	418	269	9	78	16	8	0	30
6	2	63	450	1	35	0	0	362	363	12	70	22	12	0	30
6	3	65	470	1	21.	0	0	467	348	6	82	15	13	0	30
6	4	67	296	2	24	0	0	398	291	9	38	14	7	0	60
6	5	69	316	2	24	0	0	493	256	15	91	12	5	0	60
6	6	Gil	336	2	18	0	0	420	223	6	86	18	8	0	60

					ROAD "6"			11569	sout	(CONI)					
SORT	SORT	SEG	SE6	tape	ALL	Por		LONGITU	AL. FE			VERSE	1	PATCHES SQ FEET	
*	,		*		L	n	H	1.	H	H	1	M	H	Pl	P2
7	1	61	432	1	24	0	0	473	186	19	93	20	6	0	30
7	2	63	451	1	26	0	0	477	210	24	100	27	4	0	30
7	3	65	471	. 1	13	0	0	488	260	28	100	23	10	0	30
7	4	67.	297	2	13	0	0	522	219	20	116	18	6	0	60
7	5	69	317	2	12	0	- 0	458.	177	22	97	20	3	0	30
7	6	G11	337	2	13	0	0	501	183	18	120	16	7	0	60
8	1	61	433	1	19	0	0	531	212	29.	88	30	9	0	30
8	2	63	452	1	26	0	0	459	258	40	107	28	6	0	30
8	3	65	472	,	13	0	0	507	215	28	81	36	7	0	30
8	4	67	298	2	13	0	0	494	276	21	118	26	13	0	30
8	5	69	318	2	13	0	0	532	223	26	106	30	11	0	30
8	6	611	338	2	13	0	0	494	306	29	117	25	8	0	30
9	1	$6!$	434	1	13	0	0	432	189	21	100	16	6	0	30
9	2	63	453	1	12	0	0	493	230	24	120	20	8	0	30
13	3	65	473	1	12	0	0	389	210	18	93	17	8	0	30
9	4	67.	299	2	14	0	0	440	172	27	104	25	7	0	30
9	5	63	313	2	13	0.	0	480	183	17	109	21	4	0	30
9	6	611	339	2	20	0	0	444	164	19	92	18	6	0	30
10	1	61	435	1	15	0	0	551	317	35	95	20	8	0	30
10	2	63	454	1	20	0	0	499	371	44	112	26	6	0	30
10	3	65	474	1	20	0	0	497	320	30	87	17	10	0	30
10	4	67	300	2	20	0	0	482	304	31	102	21	7	0	30
10	5	69	320	2	24	0	0	531	274	31	106	24	4	0	30
10	6	Gll	340	2	20	0	0	528	347	27	115	23	8	0	30

IUH DEMCNSTRATIOM
" H^{n} ROAD LINCOLN WAY
EAST

PRGE 2

Rund latcoln hay enst tcont)																						
SOAR SORT MEG TME				SEG	Le		140		5praLing		spalling			alluma 3	fatches				chathes		ISC	
1	\#			\%		xplains				*SLAES	1	25tn ${ }^{\text {a }}$	\#	XSLASS	Saft	x AREA	50 F 1	XAREA		*AREA		x 5.8 Af
1	7	HI	1	275	0	0	0	0	1	1	4	4	1	1	0	0.00	0	0.00	θ	0.00	4	1
2	7	173	1	317	0	0	1	0	1	1	5	6	1	1	0	00	1	0.30	0	0.09	3	4
3	7	18	1	359	0	0	0	0	0	0	4	5	1	1	0	0.08	0	0.08	0	2. 38	3	4
4	7	117	2	173	0	-	0	0	1	, 1	4	5	3	4	0	8.00	-	0.00	0	0.80	2	3
5	7	119	2	214	0	0	0	1	2	2	2	$?$	4	5	0	8. 08	1	0.68	-	0.6	2	2
6	7	HII	2	255	0	0	1	1	1	1	5	6	1	1 :	0	0.00	0	8.00	-	0.00	3	2
1	0	11	1	276	0	0	0	0	0	0	3	3	2	2	0	0.00	1	0.00	0	0.00	0	0
2	8	116	1	318	0	0	0	0	0	0	1	1	1	1	0	0.00	0	0.mo	0	0.00	0	0
3	8	115	1	360	1	0	0	1	0	0	3	3	2	2	0	0.00	\checkmark	0.00	-	8.ea	0	0
4	0	17	2	174	0	0	:	0	0	0	2	3	3	5	0	8.06	0	0.00	0	a. ${ }^{\text {a }}$	0	0
5	0	119	2	215	1	-	0	0	8	0	1	1	3	3	0	4.0	0	0.98	-	Q.m	0	0
6	8	$1 H 1$	2	256	0	0	0	0	0	0	0	0	3	4	-	0.00	-	0.20	0	2. 28	0	0
1	9	III	1	277	0	0	0	0	0	1	4	4	4	4	0	0.00	-	0.88	0	0.80	0	0
2	9	H_{3}	1	319	0	0	0	0	0	0	4	4	5	5	0	0.00	0	0.68	0	8. em	0	0
3	9	H	1	364	1	-	0	0	8	0	5	7	6	8	8	0.80	0	0.00	0	0.20	1	-
4	9	17	2	175	1	0	0	0	0	0	4	7	7	11	0	0.00	1	0.00	0	0.00	1	0
5	9	119	2	216	0	0	0	0	1	1	6	8	4	5	0	0.00	0	0.60	0	0.08	8	0
6	9	Hil	2	257	0	0	8	0	0	0	5	6	6	6	0	0.00	8	0.80	0	8.90	0	0
1	18	III	1	278	-	0	0	0	1	1	4	5	3	4	0	0.00	-	0.80	θ	8.0.0	0	e
2	10	113	1	320	0	0	0	0	0	0	5	8	1	2	0	0.00	0	0.00	0	8.00	θ	0
3	10	15	1	362	0	0	0	0	1	1	5	7	2	3	0	0.00	0	0.0	0	0.8	0	0
4	10	17	2	176	0	0	0	0	2	3	3	5	2	3	0	0.100	0	0.80	0	8.00	1	0
5	10	119	2	217	0	0	0		0	d	3	5	3	5	0	0.0	0	0.00	0	0.00	0	0
6	10	(til	2	258	0	0	1	0	0	0	5	8	1	\%	0	0.00	0	0.80	0	0.00	0	0

FAVEDEX, INC. SFOKMNE, Wh SEPT 1989 IOWA bemalkitanion
"H" homb lithein hay hest

Sth		SEl		$5 E G$	[L		FFC		$\underset{1}{\text { SPRLLiNG }}$		$\begin{aligned} & \text { SPR:LING } \\ & 2 \end{aligned}$		$\begin{aligned} & \text { SMLLING } \\ & 3 \end{aligned}$		FAICHES		FATCHESF		$\underset{p}{\text { Phtides }}$			150	
\#	\#			*		x ${ }_{\text {che }}$		XLLABS		SL.ABS	*	*SLARS	1	*LLAES	Saft	x mata	SPFT	XAREA		XAIEA			SLAT;
7	1	H2	1	¢99	0	0	0	0	1	1	2	2	1	1	15	0.24	0	0.00	0	0.00		0	0
8	1	$14{ }^{\text {a }}$	1	343	0	0	0	\checkmark	1	1	1	1	2	2	15	0.24	0	Q.00	0	8.00		,	8
9	1.	H6	1	365	1	*	0	0	2	3	1	1	3	4	15	8.24	1	0.00	0	0.01		0	0
10	1	H8	2	198	0	0	0	0	3	3	2	2	2	2	15	0.24	0	0.0	0	0.00		c	0
11	1	1118	2	24	0	0	1	1	0	0	3	2	3	2	15	0.84	0	0.60	0	0.60		0	0
4	1	H2	2	281	0	\downarrow	0	0	1	0	2	2	3	4	15	0.24	0	0.4	0	0.48		\%	0
7	2	13	1	320	1	1	0	0	0	0	1	1	1	1	0	0.00	0	0.0	0	0.90		0	
8	2	114	1	344	0	0	0	0	2	3	1	1	2	3	0	0.00	0	0.00	0	0.60		-	0
9	2	${ }^{16}$	1	306	0	0	0	0	0	0	2	3	2	3	0	8.00	0	0.08	0	8.60		0	0
10	2	$\mathrm{HP}^{\text {a }}$	2	193	0	3	0	0	0	0	2	3	4	6	-	0.00	1	0.00	0	0.00		0	0
11	2	H1\%	2	2410	0	-	1	1	0	0	3	A	3	4	0	8.60	0	0.00	8	0.00		.	0
81	2	His	2	282	0	0	1	0	0	0	3	5	3	5	0	0.80	0	0.60	0	8.00		0	0
7	3	He	1	301	0	0	3	4	1	1	0		1	1	0	8.00	0	0.00	0	0.0		0	
$1)$	3	$\mathrm{HH}^{\text {a }}$	1	345	0	0	3	3	2	2	1	1	1	1	0	0.0	0	8.08	0	0.00		0	a
3	3	116	1	387	1	8	2	3	2	3	1	1	,	1	0	0.00	0	0.00	θ	0.00		0	0
10	j	14	2	20	0	0	2	2	1	1	4	5	1	1	0	0.60	0	8.0	-	0.00		0	0
11	3	140	2	- 24	1	1	1	1	1	1	2	2	1	1	0	0.00	0	2.en	0	0.00		-	0
21	3	Hic	2	2 Q 3	0	0	2	3	1	1	2	3	1	1	,	0.00	0	0.60	0	0.00		0	0
7	4	H?	1	302	0	0	a	0	1	1	1	1	0	0	0	0.00	0	0.00	0	0.00		1	1
6	4	啲		316	0	a	1	0	2	3	1	1	,	0	1	e.e 0	1	8.00	0.	0.00		1	
3	4	H	1	368	0	0	1	1	1	1	\cdots	- 1	0	0	0	8.08	\bigcirc	8.00	0	0.00		3	4
10	4	H1	2	201	2	2	,	1	1	1	2	2	0	0	0	0.00	1	8.00	8	0.00		2	E
11	4	110	2	24.	3	0	3	4	1	1	2	3	0	0	0	0.00	0	0.00	0	0.00		3	4
21	4	H2	2	284	0	0	2	2	0	0	2	2	8	0	0	0.00	0	0.00	0	0.00		4	4
1	5	${ }^{3}$	1	363	2	2	1	1	1	0	2	2	2	2	0	0.00	0	8.0	2190	34.55		2	8
8	5	114	1	347	0	a	,	2	0	0	4	5	1	1	0	0.00	0	Q. 6	2285	34.79	4	4	5
)	5	16	1	389	1	1	2	2	8		2	2	1	1	0	0.00	0	0.00	c175	34.32		2	ε
10	5	110	:	202	0	$*$	0	0	0	0	c	2	1	1	0	0.00	0	0.00	2250	35.35		7	7
11	5	H19	2	24.3	0	0	$?$	0	0	0	3	4	2		0	0.00	0	0.00	2255	35.58		5	7
21	5	1 L	2	285	1	1	1	1	0	a	3	4	1	1	-	0.04	0	0.60	2190	34.56	4	4	5
7	6	He	1	324	0	0	,	0	1	1	1	1	0	0	30	9.47	0	0.00	-	Q.po		0	0
8	6	Hf^{\prime}	1	348	0	0	0	0	\%	1	2	3	0		30	0.47	\checkmark	0.00	0	0.0		-	0
3	6	116	1	390	0	0	0	0	1	1	2	2	0		60	0.95	-	0.00	1	0.00		0	0
10	6	18	2	203	0		0	0	1	1	3	3	1	1	68	0.35		0.08	0	0.03		2	2
11	6	170	2	$\mathrm{c}_{4} 4$	0	0	1	1	0	1	2	2	8	0	45	0.71	0	0.88	0	0.69		1	1
4	6	H12	2	886	0	\square	1	1	1	1	2	3	0	0	30	0.47	-	0.98	0	0.00		-	?

FALE ?

 " I " guad murtenson romo hest

				SEG	cc		FSC		Spallitig		5mbling		$\operatorname{spaling}_{3}$		$\underset{G}{\text { FATCHES }}$		PATCHES F		ParcuesF		1 SC	
\%	\#			\#		\% 3 LABS		xSLABS		xSLASS	-	XSLARS	*	\%SLASS	gaft	\% AREA	S0FT	XPREA		Hea		Sumb
1	1	11	1	395	θ	0	2	2	0	- 0	0	0	0	0	0	0	0	0	0	0	0	0
\%	1	13	1	496	0	0	2	2	0	0	0	-	0	a	0	0	0	0	0	-	0	,
3	1	15	1	416	0	0	2	2	0	0	0	0	0	a	0		0	0	0	0	0	0
4	1	17	¿	351	0	0	2	2	1	1	0	0	0	0	0	0	0	0	0	0	0	0
3	1	19	\%	361	1	0	2	2	8		0	0	0	2	0	0	0	0	0	0	0	0
6	1	111		371	0	1	2	2	0	*	0	3	0	0	0	0	0	0	0	0	-	\downarrow
1	2	11	1	336	1	,	3	3	4		4	4	1	1	0	1	0	0	0	0	0	$?$
a	2	1.3	1	407	1	1	4	4	4	4	5	5	1	1	0	0	0	0	0	0	*	0
3	2	15	1	417	1	1	3	3	3	3	3	3	1	1	8	1	0	0	0	0	0	0
4	2	17	2	352	1	1	3	3	3	3	4	4	1	1	0	0	0	0	0	0	0	0
5	2		2	362	1	1	4	4	4	4	3	3	1	1	0	0	-	0	8	0	0	0
6	2	111		372	1	1	3	3	3	3	5	6	1	1	0	0	0	0.	0	0	0	0
,	3	11	1	337	0	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
a	3	131	1	408	0	0	1	,	0	0	2	2	0	0	0	a	0	0	0	0	0	0
3	3	151	1	418	θ	0	1	1	2	2	1	1	0	0	0	0	a	0	0	0	0	0
4	3	17	2	353	0	0	1	1	2	2	1	1	0	0	0	0	0	0	0	0	0	0
5	3		2	363	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
6	3	1112		373	a	0	1	1	0	0	2	2	0	0	1	0	0	0	a	3	0	O
$!$	4	111	1	378	0	0	n	0	0	9	0	0	0	0	0	0	0	0	0	0	0	0
*	4	131	1	409	0	*	0	0	0		0	-	0	0	0	0		0	0	θ	0	0
3	4	151	1	417	0	0	0	0	0	0	0	8	0	0	0	0	0	0	a	0	0	0
4	4	118	2	354	0	0	0	0	θ	e	0	0	0	0	0	0	0	0	1	0	0	0
$\dot{\sim}$	4		2	364	0	0	0	0	0	8	1	0	0	0	0	0	0	1	0	-	0	0
6	4	111 ?		314	0	0	A	0	0	0	1	1	θ	0	0	0	*	3	0	0	0	0
1	5	111	1	339	0	0	3	4	9	0	0	0	0	0	0	0	0	0	0	1	0	0
2	5	151	1	410	0	1	4	5	0	0	0	0	0	0	0	0		,	0	1	0	"
3	5	151	1	400	0	\square	4	5	0	0	0	0	0	0	-	0	0	0	0	0	0	
,	5	172		355	0	,	3	5	0	0	0	0	0	0	\cdots	0	-	0	0	0	0	0
!	5	17 a		365	8	0	3	5	0	0	0	0	0	0	-		0	1	0	0	8	0
6	5	1112		375	0	0	3	4	0	-	0	0	0	0	0	0	0	0	0	0	0	0

APPENDIX C: STATISTICAL ANALYSIS RESULTS

			statistic		CHECK R		ID PAVEMENTS				
test	TIME		cc	FSC	SPALLING	Spalling	SPALLING	Patch	PATCH	PATCH	TSC
SECTION	HOURS				1	2	3	G	F	P	
A NORTH	1400	total	0	60	0	20	3	360	0	0	47
		MEAN	0	20	0	6.67		120	0	0	15.67
		STD DEV.	0	1.73	0	0.58	0	0	0	0	1.53
	1800	total.	0	71	2	31	3	300	0	0	40
		MEAN	0	23.67	0.67	10.33	1	100	0	0	13.33
		STD DEV.	0	3.51	0.58	1.15	0	17.32	0	0	1.15
B NORTH	1300	total	0	6	0	0	0	0	0	0	0
		MEAN	0	2	0	0	0	0	0	0	0
		STO DEV.	0	0	0	0	0	0	0	0	0
	930	total	0	6	4	0	0	0	0	0	0
		MEAN	0	2	1.33	0	0	0	0	0	0
		STD DEV.	0	0	1.15	0	0	0	0	0	0
E NORTH	1530	TOTAL	12.	12	11	3	0	0	0	0	0
		MEAN	1	4	3.67	1	0	0	0	0	0
	.	Sto dev.	0	1	0.57	0	0	0	0	0	0
	1045	-TOTAL	2	- 8	. ${ }^{\text {F }}$	46	0	0	0	0	0
		MEAN	0.67	2.67	2.33	2	0	0	0	0	0
		STD DEV.	0.58	1.15	$1: 15$	- 0	0	0	0	0	0

			Statistic		Check R		ID. Pavements			Patch	ISC
test	TIME		cc	FSC	SPALLING	Spalling	spalling	PATCH	PATCH		
SECTION	HOURS				1	. 2	3.	-	F	P	
E SOUTH	1530	total	0	3	3	5	0	0	0	0	0
		MEAN	0	1	1	1.67	0	0	0	0	0
		STD DEV.	0	0	0	0.58	0	0	0	0	0
	1045	Total.	0	2	3	5	0	0	0	0	0
		MEAN	0	0.67	1	1.67	0	0	0	0	0
		STD DEV.	0	0.58	1	1.15	0	0	0	0	0
H EASt	1645	total	10	34	22	93	45	120	0	5760	43
		mean	3.33	11.33	7.33	31°	15	40	0	1920	-14.33
		StD dey.	1.53	2.52	1.53	2.65	1.73	8.66	0	90	2.08
	1130	total	7	34	21	81	72	120	0	5910	46
		MEAN	2.33	11.33	7.	27	24	40	0	1970	15.33
		STD DEV.	1.53	1.15	1	1	6.56	8.66	0	60.62	2.31
	1645	total.	4	20	39	. 37	$\therefore 18$	$\because 310$	0	. 6530	22
		MEAN	1.33	6.67	13	12.33	. 6	$103: 33$	0	2176.67	7.33
		sto dev.	1.53	0.58	2	1.15	1	36.86	0	27.54	1.15
	1130	total	4	26	25	59	26	285	0	6645	35
		MEAN	1.33	8.67	8.33	19.67	8.67	95	0	2215	11.67
		STD DEV.	0.58	2.81	0.58	1.53	0.58	22.91	0	56.79	1.53
1 WEST	1795	total	3	28	14	17	3	0	0	0	0
		MEAN	1	10	4.67	5.33	1	0	0	0	0
		Sto dev.	0	1	0.58	1.53	0	0	0	0	0
	1330	total.	3	28	14	17	3	0	0	0	0
		MEAN	1	9.33	4.67	5.67	1	0	0	0	0
		STD DEV.	0	0.58	1.53	2.08	0	0	0	0	0
1 EASt	1715	total	0	25	4	17	0	0	0	0.	0
		MEAN	0	8.33	1.33	5.67	0	0	0	0	0
		STD DEV.	0	1.15	0.58	0.58	0	0	0	0	0
	1330	total	0	30	4	20	- 2	0	0	0	0
		MEAN	0	40	1.33	6.67	0.67	0	0	0	0
		StD DEV.	0	2	1.53	0.58	1.15	0	0	0	0

			STATISTIC		CHECK F		flexible	PAVEments		$\begin{gathered} \text { PATCH } \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} \text { PATCH } \\ 2 \\ \hline \end{gathered}$
test	time		Allig.	LONG.	LONG.	. LONG.	. TRANS	TRANS	trans		
SECTION	HOURS		LOW	LOW	MEDIUM	M HIGH	Low	MEDIUM	1 HIGH		
C SOUTH	1150	total	0	12	0	0	291	0	0	45	90
		MEAN	0	4	0	0	72.75	0	0	15	30
		Std dev.	0	3.46	0	0	48.86	0	0	0	0
	945	rotal	0	18	0	0	288	0	0	45	90
		MEAN	0	6	0	0	96	0	0	15	30
		STD DEV.	0	1	0	0	2	0	0	0	0
D NORTH	1530	total	299	3140	229	0	1015	30	0	0	0
		MEAN	99.67	1046.67	76.33	0	333.33	10	0	0	0
		STD DEV.	19.86	86.17	36.12	0	8.96	4.36	0	0	0
	1045	toral.	119	3077	92	0	1081	13	0	0	0
		MEAN	39.67	1025.67	30.67	0	360.33	4.33	0	0	0
		STD DEV.	5.03	57.35	6.03	0	36.56	4.51	0	0	0
D SOUTH	1530	TOTAL	1677	4618	157	0	1219	6	0	0	0
		MEAN	599	1539.33	52.33	0	406.33	2	0	0	0
		STD DEV.	25.12	146.96	38.08	0	12.42	0	0	0	0
	1045	total	699	6869	36	0	1270	0	0	0	0
		MEAN	233	2289.67	12	0	423.33	0	0	0	0
		STD DEV.	39.85	441.36	11.53	0	14.47	0	0	0	0
F west	1645	total	0	4012	438	0	1526	207	0	0	0
		MEAN	0	1337.33	146	0	503.67	69	0	0	0
		STD DEV.	0	35.92	13.07	0	6.66	1	0	0	0
	1130	total	0	3341	460	0	1537	190	0	0	0
		MEAK	0	1113.67	153.33	0	512.33	63.33	0	0	0
		STD DEV.	0	14.36	17.47	0	39.93	6.81	0	0	0
F EASt	1645	total.	0	6085	1023	0	1700	127	0	0	0
		MEAN	0	2028.33	341	0	566.67	42.33	0	0	0
		STD DEV.	0	. 62.64	38.94	0	87.13	4.51	0	0	0
	1130	TOTAL	0	7956	897	0	1994	142	0	0	0
		MEAN	0	2652	299	0	664.67	47.33	0	0	0
		StD DEV.	0	29.82	11	0	33.86	4.93	0	0	0
G SOUTH	1730	total	544	14549	8283	734	2758	728	311	0	930
		MEAN	181.33	4849.67	2761	244.67	919.33	242.67	103.67	0	310
		STD DEV.	41.01	118.33	158.07	34.93	98.27	20.55	6.66	0	17.32
	1145	TOTAL	433	14326	7805	564	2986	642	284	0	990
		mean	144.33	4775.33	2601.67	188	995.33	214.	94.67	0	330
		STD DEV.	13.05	92.21	105.88	18.03	13.05	9.16	9.86	0	30

\checkmark			statistic			Check flexible		Pavements			
TEST	TIME		Allig.	LONG.	LONG.	LONG.	Trans	trans	trans	PATCH	PATCH
SECtION	HoURS		LOH.	LOH	MEDIUM	High	104	MEDIUM	HICH.	1	2
G NORTH	1730	total	615.	15135	6477	1133	2356	804	246	0	870
		MEAN	205	5045	2159	377.67	785.33	268	82	0	290
		STD DEV.	44.44	82.16	45.57	8.08	62.58	32.07	13	0	17.32
	1145	total	448	15351	5236	945	2330	716	211	0	960
		MEAN	149.33	5117	1745	315	776.67	238.67	70	0	320
		STO DEV.	27.13	150.63	238.67	10.39	91.66	23.02	2.51	0	17.32

rest SECTION	TINE HOURS		statistic		CHECK		SHOULDERS	$\begin{gathered} \text { PAICH } \\ 1 \\ \hline \end{gathered}$
			atlig.	LOMGIT.	LONGIT	transy	TRAMSY	
			LOH	LOH	MEDIUM	LOW	MEDIUM	
UB SHLDR.	1330	total	62	798	18	305	15	0
		MEAN	20.67	266	6	101.67	5	0
		SID DEV.	4.16	7.55	0	1.53	0	0
CC SHLDR.	1345	total.	0	7	0	310	2	391
		MEAN	0	2.33	0	103.33	0.67	130.33
		STD dev.	0	4.04	0	3.06	1.15	14.74

