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Abstract 

It is generally accepted that high density polyethylene pipe (HDPE) performs well under live loads 
with shallow cover, provided the backfill is well compacted. Although industry standards require carefully 
compacted backfill, poor inspection and/or faulty construction may result in soils that provide inadequate 
restraint at the springlines of the pipes thereby causing failure. The objectives of this study were: 1) to 
experimentally define a lower limit of compaction under which the pipes perform satisfactorily, 2) to quantify 
the increase in soil support as compaction effort increases, 3) to evaluate pipe response for loads applied near 
the ends of the buried pipes, 4) to determine minimum depths of cover for a variety of pipes and soil 
conditions by analytically expanding the experimental results through the use of the finite element program 
CANDE. 

The test procedures used here are conservative especially for low-density fills loaded to high contact 
stresses. The failures observed in these tests were the combined effect of soil bearing capacity at the soil 
surface and localized wall bending of the pipes. Under a pavement system, the pipes' performance would be 
expected to be considerably better. With those caveats, the following conclusions are drawn from this study. 

Glacial till compacted to 50% and 80% provides insufficient support; pipe failureoccurs at surface 
contact stresses lower than those induced by highway trucks. On the other hand, sand backfill compacted to 
more than 110 pcf ( 17.3 kN/m3

) is satisfactory. The failure mode for all pipes with all backfills is localized 
wall bending. 

At moderate tire pressures, i.e. contact stresses, deflections are reduced significantly when backfill 
density is increased from about 50 pcf (7 .9 kN/m3

) to 90 pcf (14.l kN!m\ Above that unit weight, little 
improvement in the soil-pipe system is observed. 

Although pipe stiffness inay vary as much as 16%, analyses show that backfill density is more 
important than pipe stiffness in controlling both deflections at low pipe stresses and at the ultimate capacity of 
the soil-pipe system. The rate of increase in ultimate strength of the system increases nearly linearly with 
increasing backfill density. 

When loads equivalent to moderate tire pressures are applied near the ends of the pipes, pipe 
deflections are slighly higher than when loaded at the center. Except for low density glacial till, the 
deflections near the ends are not excessive and the pipes perform satisfactorily. For contact stresses near the 
upper limit of truck tire pressures and when loaded near the end, pipes fail with localized wall bending. 

For flowable fill backfill, the ultimate capacity of the pipes is nearly doubled and at the upper limit of 
highway truck tire pressures, deflections are negligible. 

All pipe specimens tested at ambient laboratory room temperatures satisfied AASHTO minimum 
pipe stiffness requirements at 5% deflection. However, nearly all specimens tested at elevated pipe surface 
temperatures, approximately 122°F (50°C}, failed to meet these requirements.· Some HDPE pipe installations 
may not meet AASHTO minimum pipe stiffness requirements when installed in the summer months (i.e. if 
pipe surface temperatures are allowed to attain temperatures similar to those tested here). Heating of any 
portion of the pipe circumference reduced the load carrying capacity of specimens. 

The minimum soil cover depths, determined from the CANOE analysis, are controlled by the 5% 
deflection criterion. The minimum soil cover height is 12 in. (305 mm). Pipes with the poor silt and clay 
backfills with less than 85% compaction require a minimum soil cover height of 24 in. (610 mm). For the 
sand at 80% compaction, the A36 HDPE pipe with the lowest moment of inertia requires a minimum of 
24 in. (610 mm) soil cover. The C48 HDPE pipe with the largest moment of inertia and all other pipes 
require a 12 in. (305 mm) minimum soil cover. 
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1. INTRODUCTION 

This report summarizes the findings of Iowa Department of Transportation (Iowa DOT) 

project HR-373A, "Investigation of Plastic Pipes for Highway Applications, Phase II". For 

additional details on this project, see the theses of Conard (1997) and Ng (1997). The results of the 

Phase I of this investigation are in the final report to HR-373 (Klaiber et al, 1996). 

It is generally accepted that corrugated polyethylene pipe performs well under live loads 

with shallow cover, provided that the backfill is well compacted. Watkins et al (I 983) conducted 

-
experimental studies of 24 in. (610 mm) diameter pipe under AASHTO H-20 standard truck loads 

to develop recommendations for minimum cover depths. The soils studied in these tests included a 

mixture of sandy clay silt and sandy silty clay compacted between 80% and 95% standard density 

which classified as CL and an uncompacted gravel. Katona et al (1990) applied the finite element 

program CANDE to evaluate a number of pipe and soil characteristics under a variety of surface 

loads. The soil data that Katona used included 85% and 100% compacted silty clayey sand SC with 

pipe diameters tanging from 12 in. (305 mm) to 36 in. (914 mm). 

Although industry standards require carefully compacted backfill, concern exists that poor 

inspection and/or faulty construction may result in soils that provide inadequate passive restraint at 

the springlines of the pipes thereby leading to failure. One objective of this study was to determine 

the response of the pipes under poor bedding and backfill conditions and to define a lower limit of 

compaction under which the pipes would perform satisfactorily. A second objective was to quantify 

the increase in soil support as compaction effort increased. A third objective of this investigation 

was to evaluate pipe response for loads applied near the ends of the buried pipes. Finally, the 

general software CANDE was used to analytically determine minimum acceptable depths of cover 

for a variety of pipes and soil conditions. 

L 
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2. EXPERIMENT AL TEST PROGRAM 

2.1. Pipe Characteristics 

High density polyethylene pipes, 20 ft (6.1 m) long from two different manufacturers, 

identified as A and C, were tested with various backfills. These pipes, 36 in. (915 mm) and 48 in. 

(1,220 mm) in diameter from Manufacturer A and the 48 in. (1,220 mm) diameter pipe from 

Manufacturer C were evaluated in parallel plate tests. Table 1 presents data on wall thickness, 

stiffness, and the EI as calculated by ASTM D2412, for all three pipes. These pipes are designated 

A36, C36, and C48 respectively, indicating the manufacturer and pipe diameter in inches. 

Table 1. HDPE pipe properties. 

Pipe Type/diameter 
in. (mm) 

A36 (915) 

A48 (1,220) 

C48 (1,220) 

Wall thickness 
in. (mm) 

0.30 (7.60) 

0.28 (7.10) 

0.18 (4.60) 
inner wall 

ASTM Stiffness EI 
Psi (kPa) lb-inch (MPa-mm) 

29.99 (210) 26,030 (2,940) 

20.62 (140) 42,430 (4,795) 

22.46 (155) 46,190 (5,220) 

In addition to the parallel plate tests, short specimens of the pipes (lengths equal to their 

inside diameter) were tested with the same loading arrangement that was used in the backfill 

tests. For these tests, four different backfill configurations were investigated: no backfill with 

the specimen in the saddle, sand backfill to 50% of the outside pipe diameter, sand backfill to 

70% of the outside pipe diameter, and sand backfill to the crown of the pipe. The tests without 

backfill gave baseline data against which the results from the various backfill tests were 

compared and provided insight into the behavior of the various pipes. 
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2.2. Backidl Characteristics 

Eleven field tests (ISU1-ISU4 and ISU7-ISU13) were conducted with varying 

configurations of backfill consisting of glacial till and granular material. Tests ISU1-ISU4 were 

completed in Phase I ofthis investigation (HR-373, 1996) and Tests ISU7-ISU13 were completed in 

this phase of the study. Tests ISU5 and ISU6, which were part of Phase II, were aborted because of 

instrumentation problems. The densities of the soils were measured with a nuclear density meter 

and with an Ely volumeter. The glacial till used in these tests classifies as CL-ML with a 

maximum standard proctor dry density of 118.l pcf (18.6 kN/m3
). The granular material is 

classified as SW. 

The bedding for all tests except ISUl was Iowa DOT Class B with 15% of the pipe diameter 

in a saddle cut in the natural ground and a 2 in. (50.8 mm) layer of sand added. In these tests, the 

backfill was compacted in lifts that were 25% of the pipe diameters. 

Tests ISUl through ISU4 were conducted on 36 in. (915 mm) pipe from Manufacturer C 

and Tests ISU7 through ISUIO were conducted on 36 in. (915 mm) pipe from Manufacturer A. For 

Test ISUl, the glacial till was dumped into the excavation without compaction producing a highly 

variable backfill having unit weights ranging from 38 to 72 pcf (5.96 to 11.3 kN/m3
). The pipe was 

placed on the bottom of the trench without bedding. 

The bottom of the excavation was 6 ft (1.8 m) wide and the sides were sloped 1 to I. The 

bedding for all subsequent tests was Iowa DOT Class B with 15% of the pipe diameter in a saddle 

cut in the natural ground and a 2 in. (50.8 mm) layer of sand added. In these tests, the backfill was 

compacted in 9 in. (229 mm) lifts. This means that lifts 1 through 4 placed soil to the crown of the 

pipes and lifts 5 through 7 are the placement of soil above the tops of the pipes. The soil above the 

top of the pipe was 2 ft (0.61 m) deep and composed of compacted glacial till. 

• 
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In Tests ISU2 and ISU4, compacted granular backfill was placed to 70% of the pipe 

diameter, i.e. 25.2 in. (640 mm). The remaining depth was filled with compacted till. In Test ISU3, 

the pipe was surrounded with an envelope of sand to a height of 1 ft (305 mm) above the top of the 

pipe; the remaining cover consisted of compacted glacial till. 

In Tests ISU7 and ISU8, the backfill was glacial till compacted to about 80% and 95% 

standard proctor density, respectively, around pipe from Manufacturer A. In Test ISU9, the 

geometry of backfill placement was similar to that in Tests ISU2 and ISU4 but with pipe from 

Manufacturer A. 

Tests ISUl 1 and ISU13 were conducted on 48 in. (1,220 mm) pipe from Manufacturer A, 

while Test ISU12 was conducted on 48 in. (1,220 mm) pipe from Manufacturer C. In Tests ISUlO 

and ISU13, 2 ft (610 mm) of flowable mortar (conforming to Iowa DOT Specification Sec. 2506) 

was poured on top of the sand which had been placed to 70% of the outside pipe diameter. After 

the flowable motor cured for 24 hours, crushed limestone (Iowa DOT Specification 4132) was 

placed to a height of 2 ft (610 mm) of overburden. Tests ISU9, ISUll, and ISU12 had 2 ft (610 

mm) of compacted glacial till cover. The test conditions and average densities of the soils in each 

test are summarized in Table 2. 

2.3. Test Equipment and Procedures 

Detailed description of the test equipment and arrangement can be found in Phares (1996) 

and Klaiber et al (1996). A brief description is provided here. 

The loading system was designed to simulate surface live loads passing over the pipe with a 

concentrated load applied through a 12 in. (305 mm) square plate. Loads were applied by a 

hydraulic cylinder reacting against an overhead frame connected to concrete blocks weighing 
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Table 2. Summary of pipes tested and backfill materials. 

Test Pipe type Side fill Average Top fill Average 
Number and Material Dry densi~ Material Dry densi~ 

Diameter pcf(kNlm) pcf(kNlm) 
in inches 

ISUl C36 Till 55.8 (8.8) Till 47.1 (7.4) 

ISU2 C36 Sand 126.0 (19.8) Till 116.3 (18.3) 

ISU3 C36 Sand 125.9 (19.8) Sand/Till 122.2 (19.2) 

ISU4 C36 Sand 118.3 (18.6) Till 127.7 (20.0) 

ISU7 A36 Till 92.0 (14.4) Till 93.3 (14.7) 

ISU8 A36 Till 110.l (17.3) Till 111.7 (17.5) 

ISU9 A36 Sand 96.l (15.1) Till 115.2 (18.1) 

ISUlO A36 Sand 95.1 (14.9) Flowable NIA 
Mortar 

ISUl 1 A48 Sand 93.6 (14.7) Till 108.4 (17.0) 

ISU12 C48 Sand 101.2 (15.9) Till 112.9 (17.7) 

ISU13 A48 Sand NIA Flowable NIA 
Mortar 

Approximately 80,000 lbs (355 kN). The loads were measured with a force transducer and applied 

at rnidlength of the pipe and at 5 ft (1.52 m) from each end of the pipes, i.e. three different load 

points. The test frame used is shown in Figure 1. 

Horizontal and vertical deflections were measured with string type displacement 

potentiometers. Hoop and longitudinal strains were measured with electrical resistance strain gages 

at various sections along the pipes. Only deflection measurements are reported here as the trends 

• 
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a. Schematic 

b. Photograph 

Figure 1. In-situ test frame. 
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observed in the strain measurements are parallel to the trends observed with the deflection 

measurements. 

The pipe deflections were measured during the backfilling and compaction process as well 

as during the application of the surface loads. The loads were applied directly to the soil surface 

without pavement layers. Service load tests were conducted applying contact stresses of 9,000 psf 

(431 kPa) to 14,400 psf (690 kPa) that would be expected from truck tire .pressures. Upon 

completion of the service load tests, the pipes were loaded to failure at each of the three sections. 

Failure was defined by a decrease in load with increasing pipe deflections. 

These tests provide a loading that is much more severe than would occur if a pavement were 

present. Elastic theory calculations indicate that for a soil cover of 2 ft (610 mm), the stresses at the 

top of the pipe are 10% of the contact stress. At contact stresses above the service range, for most 

tests, the load plate punched into the soil as the bearing capacity of overburden soil was exceeded. 

As one would expect, as the load plate moved closer to the pipe, the stresses in the pipe significantly 

increased. 
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3. EXPERIMENT AL TEST RESULTS 

3.1. Pipe Response During Backfilling 

Figure 2 shows the vertical deflections of the pipes during backfilling, surface loading, and 

failure loading. The numbers associated with each curve are the first seven tests previously 

described. Decreases in pipe diameter are designated as negative while expansions are positive. 

The left side of the graph shows deflection as a function of lift number and the right side of the 

graph shows deflections resulting from the surface loading where deflection is a function of contact 

stress. 

In all tests, the vertical diameter increased during backfilling and the deflections ranged 

from about 0.2 to 1.7%. The horizontal deflections decreased accordingly to produce ovalization of 

the pipes during compaction. Pipes backfilled with the denser soils experienced greater deflections 

or more pronounced ovalization. 

3.2. Pipe Response under Service and Failure Loads 

For a typical AASHTO H truck, the contact stresses range from 65 psi to 100 psi (430 to 

670 kPa) or 9,360 psfto 14,400 psf. Figure 2 shows that, for most tests in the load range of typical 

truck tire pressures, deflections are small. The exceptions are for the uncompacted till (Test ISUl) 

and the till compacted to 80% maximum density (Test ISU7). In these two cases failure occurs at 

contact stresses of about 8,000 psf (383 kPa) and 12,000 psf (575 kPa). These results are likely 

caused in part by the load plate punching into the soil. 

Initially, the vertical diameter at the sections where load is applied gradually decreased. As 

the load is increased, the pipes return to their original diameter and the pipe walls reverse in 

curvature. After the stress-strain curves reach a maximum applied contact stress, the pipes exhibit 
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strain-softening behavior with large reductions in vertical diameter and slight decreases in applied 

stress. 

For all pipes, the failure initiated at vertical deflections smaller than 5% of the pipe 

diameter. This behavior is associated with the penetration of the loading plate into the soil and 

localized pipe wall bending. These two phenomena are shown in Figures 3 and 4, respectively. 

The strain-softening phenomenon is likely exacerbated as a result of soil penetration. At the 

beginning of the loading process, the soil bearing capacity is larger than the contact stress, and the 

settlement of plate is small. Thus, without shearing or compressing the 24 in. (610 mm) soil cover, 

the vertical contact stress is distributed and transferred through soil cover to the crown of the pipe. 

Estimates of bearing capacity of the soil cover, based on Meyerhof (I 963), equations are 

shown in Table 3. The cohesions and friction angles used for calculating the theoretical bearing 

capacity are selected from CANDE-89 USER Manual (Musser, 1989). 

Table 3. Estimated bearing capacity of soil cover. 

Field Test Soil Friction Angle, Soil Cohesion, c Bearing Capacity 
Degree Psi (Kpa) psf (kPa) 

ISUl 23 0 (0) 850 (41) 

ISU2 15 2.8 (19.3) 6075 (127) 

ISU3 15 2.8 (19.3) 6080 (127) 

ISU4 15 5 (34.5) 2123 (102) 

ISU7 19 5 (34.5) 2123 (102) 

ISU8 15 9 (62) 6068 (291) 

ISU9 15 9 (62) 6072 (291) 
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Figure 3. Soil penetration by the loaded "footprint". 

Figure 4. Localized bending failure of the pipe specimen beneath the loaded "footprint". 
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Comparing the bearing capacities shown in Table 3 with the load test data, the rate of 

change of pipe vertical deflection begins to increase after the contact stress exceeds the soil bearing 

capacity. For Tests ISUl and ISU7, the vertical deflection rates start to increase at approximately 

2,000 psf (96 kPa) and 4,000 psf (192 kPa), respectively. For the remaining tests, the vertical 

deflection rates begin to increase at approximately 11,000 psf (527 kPa). Generally, the applied 

contact stress at which the vertical deflection rate begins to increase is approximately twice the 

estimated bearing capacity. After exceeding the soil bearing capacity, the plate penetrates the soil 

cover and reduces the distance between the applied load and the crown of the pipe. Reduction of 

soil cover depth increases the vertical stress increment at the crown of the pipe; thus, the vertical 

deflection increases at a faster rate until it reaches the ultimate strength of the soil-pipe system. 

Continued reduction of soil cover leads to a stress increase at the crown of the pipe and eventual 

failure of the pipe. 

Figure 5 shows the pipe horizontal deflections during the backfilling process and due to 

applied load on the pipe. For pipes with higher compacted backfill, with increasing contact stress 

the horizontal diameter remains smaller than the original diameter. In contrast, for pipe specimens 

with relatively lower compacted backfill such as in Tests 1 and 7, their horizontal diameters return 

to the original diameter and actually increase as applied loads increase. The magnitude of net 

horizontal deflection caused by the applied_ stress is relatively smaller than the net vertical 

deflection. 

3.3. Influence of Soil Characteristics on Pipe Capacity 

Figure 6 shows the net deflection of the pipes to failure as well as the net vertical deflection 

when loaded with the field test plate but without soil envelope backfill. Net deflection is deflection 
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Referring to Figure 6, the ultimate capacity of each pipe-soil system occurs at approximately 

2% vertical deflection. Also shown in Figure 6, the capacities of pipes A and C at 2% deflection are 

approximately 1,140 lb. (5.1 KN) and 1,390 lb. (6.2 KN), respectively. With a well compacted soil 

envelope around the pipe and a 2 ft (610 mm) soil cover, illustrated by Test 3, the ultimate capacity 

of the pipe is increased by approximately 16,615psf (13.9 kPa), or by a factor of 12. Even with 

poorly compacted till, shown in Test 1 the ultimate capacity is increased by approximately 6,600 lb 

(29 .4 k.N), or by a factor of 5. 

The comparison of the gain in pipe structural capacity to soil quality is illustrated in figure 

7. The rate of increase in ultimate capacity by compacting the glacial till from 80% to 95% 

Standard Proctor is about three times greater than the rate by compacting it from 50% to 80% 

standard Proctor. 
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Figure 7. Increase in ultimate load carrying capacity versus the average dry density of the 
overburden soil at Section 4. 

3.4. Pipe Dependence on Backfill Envelope 

To establish the relative dependence of polyethylene pipes on backfill, four sets of tests 

were conducted on 36 in. (915 mm) and 48 in. (1,220 mm) pipes from Manufacturers A and C with 

the length of the pipes equal to the pipe diameter. For these tests, the load application system was 

identical to that used in the field tests on 20 ft (6.1 m) long pipes. In each set oftests, the pipes were 

subjected to loading with four backfill conditions: no backfill with pipes resting in the bedding 

saddle, sand backfill to the springline, sand backfill to 70% pipe diameter and sand backfill to the 

crown of the pipe. The testing arrangement in these field tests measured the local bending response 

of the pipe while the laboratory parallel plate tests measured the hoop strength of the pipe. 
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The changes in vertical pipe diameter in these four tests are shown in Figures 8a, 8b, 8c, and 

8d, respectively. For the tests with no backfill, Figure 8a, the pipe response is nearly linear and all 

four pipes have load deflection curves that are similar. In Figure 8b where the backfill is at the 

springline, the pipes' responses become nonlinear and the loads to cause 5% deflection are nearly 

double the values observed in Figure 8a. As the backfill becomes higher in Figures 8c and 8d, the 

load deflection curves become increasingly convex upward and the pipes exhibit greater stiffness. 

This response reflects the effect of increasing restraint from the surrounding soil. In the backfill 

situations, the 48 in. (1,220 mm) pipe from Manufacturer C requires more load to produce the same 

deflection than the other 3 pipes. The difference between C48 and the other pipes suggests that this 

pipe is more highly dependent on backfill than the other three pipes because it gains stiffness more 

effectively than the other three pipes. This difference results from differences in pipe geometry. 

3.5. Pipe Backfill Response and Highway Loads 

Figure 9 shows the ultimate capacity in psf and the ultimate contact stress in psi of each soil­

pipe system versus backfill density. As shown, the ultimate capacity of uncompacted till is below 

9,360 psf (448 k.Pa) which is the lower bound of the contact stress of a typical AASHTO H-truck. 

Furthermore, the ultimate capacities of80% compacted till, ISU7, and sand compacted to 96 pcf (15 

kN!m\ ISU9, are within the range of AASHTO H-truck loading. The ultimate capacity of Test 

ISU8 is at the upper bound of the range. If a conservative contact stress of 14,400 psf (690 k.Pa) for 

an AASHTO H-truck is used for pipe design, a minimum dry density of 110 pcf (17.3 kN/m3
) is 

required to prevent the localized bending failure of the pipe. This analysis is conservative 
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Figure 9. Ultimate capacity and ultimate contact stress of each pipe-soil system. 

because of the influence of the soil bearing capacity failure caused by the load plate penetrating the 

soil. 

3.6. Influence of Pipe Characteristics on Response to Surface Loads 

Table 1 shows the relative stiffuess of the pipes as measured in the parallel plate test and 

demonstrates that the stiffuess of Pipe C is stiffer than Pipe A (for the 48 in. diameter pipe). In 

Figure 5 and Figure 7 where the two pipes were loaded with the 1 ft2 (0.0093 m2
) plate but without 

any backfill, the data also show that Pipe C is stiffer than A. Data in Table 2 indicate that the stiffer 

pipe (Pipe C) was tested with the higher density backfills. In evaluating the responses of both pipes 

shown in Figures 2, 5, and 6 it can be seen that the stiffer pipe with better backfill exhibited smaller 

deflections at higher loads. 
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The influence of pipe stiffness is addressed in part in Figure 9 where the ultimate supporting 

capacity is expressed as an increase in contact stress over that of the unsupported pipe. This figure 

suggests that soil density contributes more to the load carrying capacity of the soil pipe system than 

does pipe stiffness. Increasing backfill density, throughout the range of densities studied here, 

increases capacities associated with localized bending failure as shown in Figures 7 and 9. 

In Figure 10 the net vertical pipe deflection is plotted versus average dry density of backfill 

while in Figure 11 the vertical pipe deflection is normalized by dividing it by the appropriate pipe 

stiffness shown in Table 1. All tests reached a contact stress of 7 ,000 psf (335 kPa) before failure, 

therefore the deflections at this contact stress were used to compare the normalized response of the 

pipe-backfill systems. A comparison of these two figures shows that the pipe performance is less 

sensitive to the pipe stiffness, and more dependent on the quality of the backfill material. Both 

Figures 10 and 11 show that, at this low contact stress level, the vertical deflection is reduced at a 

higher rate with an increase from 50% standard Proctor (Test ISUl) to 80% standard Proctor (Test 

ISU7) than with the increase from 80% standard proctor density to 95% (Test ISU7 to Test ISU8). 

Also for the sand backfills at higher densities, the increase of dry density of the backfill material 

above approximately 110 pcf (17.3 KN/m3
) does not further reduce the vertical pipe deflection. 

3. 7. Pipe Response under Loads Applied near the Pipes Ends 

A comparison of pipe response when loaded at the center and at the ends is discussed for 

Tests ISU7 through ISU13. The data presented here are consistent with Tests ISUl through ISU4, 

and those data can be found in the thesis by Phares (1996). Figure 12a shows the load versus 

vertical deflection responses for the 36 in. (914 mm) pipes, and Figure 12b shows similar data for 

the 48 in. (1,220 mm) pipes. The deflections are expressed as a percentage of the pipe diameter. A 
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comparison of the deflections at the center and the ends of the pipes in all cases shows that 

deflections are somewhat higher at the ends of the pipes than at the centers. (Note that the letter 

designation e and c for each ISU test refer to end and center, respectively). Also, the differences in 

deflections at the centers and ends of the pipes is larger in the larger diameter pipes. In general, the 

variation in deflections between the center loading and end loading in Tests ISU7 through ISUIO is 

small. Clearly, the flowable mortar, Test ISUI 0, reduces deflections at a given load by an order of 

magnitude while the glacial till compacted to 80% standard proctor density, Test ISU7, deforms the 

greatest. 

In the tests on the larger diameter pipes, it can be seen that, as with the smaller diameter 

pipes, the flowable fill (Test ISU13) reduces deflections dramatically. Somewhat anomalous, is that 

the deflections of the lower density sand (Test ISUI 1) are less than those of the higher density 

backfill (Test ISU12). 

In Table 4 the percent deflections at 10,000 psf (479 kPa) contact stress are compared. For 

pipes loaded at the center, except for the low density glacial till (Test ISU7), the percent deflections 

are less than 0.5%. For end loading, except for moderately high density sand (Test ISU12) and the 

low density till (Test ISU7) where deflections approached 2%, the percent deflections are also less 

than 0.5%. Except for these two tests, deflections at the end loading are about 30% higher than 

deflections developed under center loading. End loading of pipes with flowable fill (Tests ISUl 0 

and ISU13) resulted in negligible deflections. In Test 12, pipe deflections from end loads are about 

3 times higher than deflections from center loading. Pipe dependence on backfill may explain this 

result. Although the deflections are higher at the ends of the pipes, the deflections at contact 

stresses equivalent to moderate highway tire pressures are not excessive and the pipe-soil systems of 

both diameters have adequate stiffness at both the center and ends of the pipes. 
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3.8. Ultimate Capacity of Pipe-Soil System 

Figure 13 shows the curves for loading to failure for the 36 in. (915 mm) and 48 in. (1,220 

mm) pipes. Table 5 summarizes the ultimate contact stresses and failure deflections. In Figure 13, 

most pipe failures occurred at vertical deflection between 2 and 2.5% for loads applied at the center 

of the pipe. The exceptions are the pipes with the flowable fill (Tests ISUlO and ISU13) that fail at 

deflections of 1 %. The contact stresses that cause failure of the pipes with flowable fill are more 

than twice the failure stresses in the pipes with soil backfill. 

Table 4. Pipe deflections at 10,000 psf (479 kPa) contact surface pressure. 

Field Test 

ISU7 

ISU8 

ISU9 

ISUlO 

ISUl 1 

ISU12 

ISU13 

Center Loading 
Deflection 

1.40% 

0.40% 

0.40% 

0.020% 

0.30% 

0.50% 

0.010% 

End Loading 
Deflection 

1.90% 

0.40% 

0.50% 

0.050% 

0.50% 

1.80% 

0.030% 

When loaded at the centers of the pipes with soil backfill, except for the low density till 

(Test ISU7), the pipes can withstand surface contact stresses at or near expected tire pressures. The 

pipes with flowable fill can withstand contact stresses more than double those of the pipes with soil 

backfill. 

Pipes that are loaded near the ends do not perform as well except for those with flowable fill 

backfill. Also, the larger pipe with high density sand (Test ISU12) has lower than expected 
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capacity. This is thought to be due to localized poor compaction of the soil beneath the load 

plate that resulted in soil bearing capacity failure. 

3.9. Effect of Temperature on HDPE Pipe Strength 

During the backfilling of several of the PE pipes field tested in Phase I, it was observed 

that the crown of the pipe was considerably hotter than the remaining portions (sides, invert, etc.) 

of the pipe and thus considerably more flexible. The large diameter changes and circumferential 

strains measured during backfilling were thought to be related to this temperature differential. 

Table 5. Pipe deflections at ultimate capacity. 

Field Test 

ISU7 

ISU8 

ISU9 

ISUIO 

ISUl 1 

ISU12 

ISU13 

Center Loading 

Load, psf (kPa) Deflection 

12,000 (575) 2.60% 

15,000 (720) 2.10% 

13,000 (620) 2.00% 

31,000 (1,485) 1.10% 

18,000 (860) 2.30% 

15,000 (720) 2.60% 

30,000 (1,435) 0.80% 

End Loading 

Load, psf (kPa) Deflection 

11,000 (525) 2.40% 

13,000 (620) 1.20% 

13,000 (620) 2.90% 

30,000 (1,435) 1.00% 

14,000 (670) 2.60% 

10,000 ( 480) 1.90% 

28,000 (1,340) 1.00% 

Once the pipe was buried, the soil insulated the pipe thereby eliminating the temperature 

differential. To investigate the effect of temperature variation on the load-deflection behavior of 

PE pipe, a limited number of parallel plate tests were conducted in which various regions of the 

pipes were heated (to simulate the effect of the sun on pipe in the field). These specimens as 

• 
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well as some of the field tests were instrumented so that strains, diameter changes and 

temperature distributions could be measured. 

3.9.1. Parallel Plate Testing 

The parallel plate testing program consisted of placing pipe specimens between two rigid 

plates and applying a line load at an ASTM prescribed controlled loading rate to the specimens. 

Parallel plate tests were performed at ambient and at elevated temperatures. Temperature effects 

were introduced using heat lamps creating temperature gradients similar to the conditions that 

may occur during field installation of the pipe during the summer. It was observed during the 

field tests that the crown of the pipe reached surface temperatures of approximately 120°F (50°). 

The test specimens were enclosed in an insulated box. The instrumentation used in these tests 

and the orientation of the heat lamps is shown in Figure 14. 

For each specimen tested, the temperature distribution around the pipe, changes in 

vertical and horizontal diameters, and circumferential strains were recorded. Also, pipe stiffness 

was calculated at 5% deflection according to ASTM D2412. 

A total of 4 specimens (A36, A48, C36, C48) were tested. Parameters of each specimen 

are presented in Table 6. 

The testing program included four parallel plate tests to 5% deflection on each specimen. 

One test was conducted at ambient air temperature and three tests were performed at elevated 

temperatures, varying heat lamp locations around the pipe as shown in Figure 14. 

As shown in Figure 14, each test specimen was instrumented with four strain gages, four 

deflection transducers, and eight thermocouples. All instrumentation was placed at the center of 

the specimens on the inside pipe surface. 

Strain gages were oriented in the circumferential direction. Two deflection transducers 
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were used to measure changes in the vertical and horizontal diameters; the eight thermocouples 

were installed at 450 intervals around the circumference of pipe specimens to measure 

temperature distribution. 

Table 6. Properties of parallel plate specimens tested. 

Manufacturer Inside Diameter 

A36 

A48 

C36 

C48 

NommaJ, 
in. (mm) 

36 (915) 

48 (1,220) 

. 36 (915) 

48 (1,220) 

0 = THERMOCOUPLE 

- = STRAIN GAGE 

A = CELESCO 

a. Instrumentation 

Actual, 
in. (mm) 

35.81 (910) 

47.92 (1,215) 

35.89 (910) 

47.07 (1,195) 

.-HDPE 
PIPE 

Specimen 

Wall thickness, 
in. (mm) 

0.234 (6) 

0.297 (8) 

0.292 (7) 

0.180 (5) 

Length, 
in. (mm) 

37.21 (945) 

46.75 (1,185) 

36.08 (915) 

51.43 (1,305) 

3 
v 

\ 

.-HDPE 
PIPE 

1T 
i 

I 
30° 

I 
2 I 

"" / 
/ 

30° 

b. Location of heat lamps 

Figure 14. Details of instrumentation and location of heat lamps used in parallel plate tests. 
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In the field tests, in addition to the instrumentation described in Sec. 2.3, several 

specimens were instrumented with thermocouples to record pipe temperatures during backfilling. 

Tests during the summers of 1996 and 1997 were conducted on relatively cool days, thus no 

pertinent temperature data were obtained . 

3.9.2. Pipe Stiffness Results 

Pipe stiffness per ASTM D2412 is defined as the force per unit length of the specimen 

divided by the resulting deflection obtained at a specified percentage of pipe deflection. Pipe 

stiffness was calculated at 5% deflection for all parallel plate tests performed in this phase of the 

project. Pipe stiffnesses and the highest inside surface temperature that occurred during testing 

of the various specimens is presented in Table 7. At elevated temperatures, a decrease in pipe 

stiffness· of approximately 30% occurred in the 36 in. (915 mm) diameter specimens and a 

decrease of approximately 3 7% occurred in the ( 48 in.) diameter specimens. A significant 

decrease in pipe stiffness at temperatures in the range of 68-86oF (20-30oC) above ambient room 

temperatures occurred. 

According to AASHTO, the minimum requirements for pipe stiffness at 5% deflection on 

36 and 48 in. (915 and 1,220 mm) diameter flexible pipes are 22 and 18 psi (150 and 125 kPa), 

respectively. All specimens tested at ambient room temperature conform to this minimum 

requirement; however, all specimens at elevated temperatures except heat lamp orientation 1 and 

2 on specimen A36 failed to meet this requirement. This result implies that some HDPE, 

installed on hot summer days, pipes may not meet AASHTO minimum pipe stiffness 

requirements. 

During testing, horizontal and vertical deflection transducers were monitored during 

loading. The load-deflection response of all four specimens tested in this phase of the project as a 
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function of heat lamp orientation was measured. Shown in Figure 15 is the load-deflection response 

of specimen A48. As may be seen in this figure, testing at elevated pipe temperatures produced 

higher deflections at lower loads; however, heat lamp orientation had minimal effect on the 

deflection response. Heating any portion of the pipe circumference reduced the load 

Table 7. Pipe stiffnesses at ambient and elevated temperatures determined using ASTM D2412. 

Manufacturer Diameter, 
m. 

c 36 

A 

c 48 

A 48 

Description 

Ambient 
Orientation 1 
Orientation 2 
Orientation 3 

Ambient 
Orientation 1 
Orientation 2 
Orientation 3 

Ambient 
Orientation 1 
Orientation 2 
Orientation 3 

Ambient 
Orientation 1 
Orientation 2 
Orientation 3 

Temperature, 
op 

72 (22) 
113 (45) 
115 (46) 
115 (46) 
72 (22) 
115 (46) 
115 (46) 
118 (48) 
77 (25) 
111 (44) 
113 (45) 
113 (45) 
72 (22) 
12) (50) 
118 (48) 
120 (49) 

Pipe Stiffness 
at 5% 

Deflection, 
psi (kPa) 

35.80 (245) 
27.34 (190) 
27.39 (190) 
21.58 (150) 
29.99 (205) 
21.58 (150) 
19.76 (135) 
20.15 (140) 
22.46 (155) 
14.62 (100) 
14.24 (100) 
16.05 (110) 
20.62 (140) 
13.04 (90) 
12.90 (90) 
13.38 (90) 

carrying capacity of HDPE pipes. Similar behavior was found for all specimens; for additional 

information on this phase of the investigation the reader is referred to Conard (1997). 

Circumferential strain data were collected at four locations on the inside surface of pipe 

specimens to study the strain response of HDPE pipes in ring compression. For specimen A48 

shown in Figure 16 (see Figure 17 for the key describing the location of the vanous 

circumference strains), elevated temperatures produced higher strains for a given load. 
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Heat lamp orientation 1, which is similar to the condition that would occur in the field 

during backfilling, generally produced higher strains for a given load in all the pipes tested. 

However, any heat lamp orientation produced somewhat higher strains than those at ambient 

temperatures. This indicates that the circumferential strain response is sensitive to temperature; 

this sensitivity was also observed in the deflection responses. From this investigation, it appears 

that the circumferential response of HDPE pipe is temperature sensitive but the location of heat 

source has minimal effect on pipe response in the circumferential direction. 
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4. NUMERICAL ANALYSIS USING Culvert ANalysis and DEsign (CANDE) 

4.1. General Background 

Culvert ANalysis and DEsign (CANDE) is a finite element computer program developed 

for structural design and analysis of buried culverts. As described by Musser (1989), CANDE 

methodology combines the culvert structure with the soil mass into an incremental, static, plane­

strain boundary value problem. Katona (1976) stated that the more significant limitations and 

deficiencies of CANDE are small displacement theory, time independence, and out-of-plane 

effects. Four criteria are considered for plastic pipe design by CANDE including pipe 

deflections, outer fiber stresses, buckling pressures, and handling performance. 

In the CANDE library, a choice of three solution levels, five types of pipe, and six soil 

constitutive models are available for matching the degree of ·analytical power to the problem at 

hand. The solution level 1 is an elastic method that is restricted to circular pipes deeply buried in 

a homogeneous soil with a uniformly applied pressure acting on horizontal planes. The 

schematic model of solution level 1 is show in Figure 18. The solution levels 2 and 3 is based on 

incremental virtual work using a displacement formulation. Level 2 generates the user defined 

finite element mesh automatically; however, level 3 requires the user to create and define the 

mesh topology. The solution level 2 generates an axisymmetrical model (only the right half 

system is modeled); however, solution level 3 provides nearly unlimited modeling flexibility 

including full meshes or half meshes for any shaped culvert. In addition, the extended level 2 

option allows the user to selectively change the level 2 mesh to match the problem conditions. 

The schematic trench model of solution level 2 is shown in Figure 19. 

The five pipe types are aluminum, basic, concrete, plastic, and steel, and only one pipe 

type is selected for a given problem. Each pipe type is generated in a separate subroutine and 

has its own stress-strain model and design/evaluation logic. The pipe materials stated above are 
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self explainable except the basic pipe type. The basic pipe model permits the user to describe 

nonstandard materials (or built-up) pipe properties. 
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Figure 18. The schematic model of solution level 1. 
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Figure 19. The schematic trench model of solution level 2. 

The six soil constitutive models currently available in CANDE are isotropic linear elastic, 

orthotropic linear elastic, overburden dependent, Hardin, Duncan, and Selig. The isotropic linear 

elastic model is defined by Young's modulus and Poisson's ratio. The orthotropic linear elastic 

model is applicable to directional dependent behavior in engineering materials. If a soil element 

is confined and the deformations are primarily in one direction, the overburden dependent model 

which is defined by overburden stress dependent Young's modulus and Poisson's ratio can be 
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applied. The Hardin model is defined by a variable shear modulus and a variable Poisson's ratio. 

Duncan model is defined by a variable Young's modulus and a variable bulk modulus; it is 

particularly suited to incremental construction simulation and characterizing compacted soils in 

zones of soil-structure interaction. The Selig model which is an extension of Duncan model uses 

the same Young's modulus formulation but with an alternative bulk modulus having a 

hyperbolic formulation. A library of the soil parameters of each soil model can be found in the 

CANDE-89 User Manual by Musser (1989). 

Three basic element types used in solution levels 2 and 3 are quadrilateral (or triangular) 

elements, beam-column elements, and interface elements. Quadrilateral elements have four 

external nodes and two translational degrees of freedom per node. Beam-column element is a 

straight, line-shaped element with a node at each end; each node has three degrees of freedom -

two translations and a rotation. Each culvert structure is formed by connecting the beam-column 

elements end-to-end. An interface element is composed of three nodes; two of the nodes belong 

to the respective subsystems on either side of the interface, and the third node is an "interior" 

node associated with interface forces. A pictorial description of the beam-column and 

quadrilateral elements is shown in Figure 2. Detailed descriptions of CANDE can be found in 

Katona (1976) and Musser (1989). 

4.2. Objective and Scope 

The objective of this study was to use CANDE to simulate the static interaction of pipe 

structures and the surrounding soil under surface loads. The main purpose of this theoretical 

analysis was to establish minimum soil cover heights required to_ safely support typical 

AASHTO H-truck tire loads for various types and diameters of high density polyethylene 

u 
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(HDPE) corrugated plastic pipes. Several soil conditions with different soil compactions and soil 

types were investigated. 

Before computing the minimum depth of soil cover, the analytical pipe data presented by 

Katona (1990) were used to validate the method of analysis and analytical assumptions used in 

this study. Using the same methodology and the analytical assumptions, models were developed 

to simulate and compare with the field test results of ISU4, ISU8, and ISU9. Finally, minimum 

cover height tables were developed for both 36 in. (915 mm) and 48 in. (1,220 mm) pipes (from 

both Manufacturers A and C) as a function of soil quality and pipe stiffness. 

4.3. Validation of Methodology 

Because CANDE is based on a two-dimensional geometry called plane-strain, the three-

dimensional effect of truck loads on the soil surface cannot be simulated directly. To simulate 

'the truck loads in two dimensions, an approximate analytical method suggested by Katona 

(1976) was used to represent a single concentrated point load, Q, by an "equivalent" strip load, q, 

that can be handled by CANDE (see Figure 20). The strip load, q, is actually referred to a line 

load. This approximation is based on equating vertical stresses (at the pipe crown) between 

Boussinesq's elastic theories for concentrated and strip loadings. The "equivalent" strip load, q, 

is expressed as: 

where 
q = An "equivalent" strip load, lb/in. 
Q = A concentrated load, lb. 
L = The shortest distance from the point load to the pipe crown, in. 
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Figure 20. Loading conditions of a strip load, q, and a concentrated load, Q. 

Katona (1990) presented analytical results on 24 in. (610 mm) HDPE pipes with a 12 in. 

(305 mm) soil cover using CANDE to demonstrate how the vertical pipe deflections are 

influenced by the soil quality. He modeled the pipe with a connected sequence of beam-column 

elements and the soil with continuum elements by using a revised Duncan hyperbolic soil model. 

The fundamental assumptions were small deformation theory, linear elastic polyethylene 

properties, and a bonded pipe-soil interface. The engineering properties of the pipes he used are 

summarized in Table 8. Silty clayey sand at 85% standard Proctor (SC85) and silty clayey sand 

at 100% standard Proctor (SC 100) were used in the analysis; their Duncan model parameters are 

summarized in Table 9. 
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Table 8. Polyethylene material properties of 24 in. (610 mm) HDPE pipes used by Katona 
(1990). 

Young's Design Area, Moment of Corrugated 
Modulus Strength in2/in. Inertia, Height, 

(Short Term), (Short Term), (mm2/mm) in4/in. in. (mm) 
psi (MPa) psi (MPa) (mm4/mm) 

24 in. 
HDPE 110,000 (760) 3,000 (20) 0.3 (8) 0.18 (2,950) 2.0(51) 
Pipe 

Table 9. Duncan model parameters of SC85 and SCIOO. 

Soil Soil AASHTO ~o ~~ C, 
Name Type T-99, % (deg) (deg) Psi K n Rr Kb M 

(kPa) 

SC85 SC 85 33 0 1.39 100 0.6 0.7 50 0.5 
(9.6) 

SClOO SC 100 33 0 3.47 400 0.6 0.7 200 0.5 
(24) 

Based on the approximate analytical method suggested by Katona (1976) and his 

analytical results Katona (1990), a similar finite element model was developed by the authors in 

an attempt try to obtain the same pipe responses. The same pipe, soil models, and soil properties 

were used; also the same fundamental analysis assumptions were made. The schematic diagram 

of the finite element mesh is shown in Figure 21. Each CANDE solution was obtained by first 

applying the soil loading followed by five increments of surface live load pressure up to 50 psi 

(345 kPa) and 100 psi (690 kPa) for SC85 and SCIOO, respectively. The five increments of 

surface live load pressure were chosen to simplify the computations. Note that the strip load 

used in the input file is equal to one half of the "equivalent" strip load, q, because the finite 

element model is symmetrical about the vertical axis through the center of the pipe. The 

comparisons between the vertical deflections obtained from the finite element model shown in 
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Figure 21 and the analytical data presented by Katona (1990) are presented in Figure 22. As may 

be seen in this figure, there is good agreement between Katona's deflection and the analytical 

12 in. 
I 

-t-
! 

12 in. 

36 in. 

I 
CE, 

lq 
2 

(1 in. = 25 .4 mm) 

72 in. 

Figure 21. Schematic diagram of the finite element mesh of a 24 in. pipe 
for comparison with Katona (1990). 
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Figure 22. Comparison between Katona's and author's analytical data. 

deflection obtained in this investigation for both soil cases, SC85 and SC 100. This agreement 

validates the analytical methodology developed by the authors. The analyses presented in the 

next sections are based on this analytical methodology and the aforementioned assumptions. 

4.4. Comparison of Analysis with Experimental Data 

Experimental data from field tests ISU4, ISU8, and ISU9 were compared with the 

analytical data from CANDE. The purpose of these field tests was to determine the live load 

deflection of the HDPE pipes as a function of soil quality and pipe stiffness. As previously 

noted, each pipe specimen was buried with a 24 in. (610 mm) soil cover. Field test ISU4 

completed by Klaiber et al. (1996) was performed on 36 in. (915 mm) HDPE pipe from 

Manufacturer C. It was backfilled with sand in three lifts to 70% of the pipe diameter, and the 

remainder of the backfill used glacial till. Field test ISU8 completed in this phase was performed 
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on 36 in. (915 mm) HDPE pipe from Manufacturer A. It was backfilled entirely with 95% 

compacted glacial till. Field test ISU9 has the same backfill profile as ISU4, but it was 

performed on 36 in. (915 mm) HDPE pipe from Manufacturer A. 

A finite element model using CANDE was developed for each field test. The differences 

between each model were the pipe properties and the backfill conditions (i.e., different Duncan 

soil parameters). The pipe properties that were given by the manufacturers are summarized in 

Table 10. The finite element mesh generated using the extended level 2 for aUthe field tests is 

shown in Figure 23. The finite element models of the field tests ISU4, ISU8, and ISU9 with the 

corresponding backfill conditions are shown in Figures 24, 25, and 26, respectively. The 

nomenclature of the surrounding soil is presented as its Unified classification followed by its 

percent compaction. The Duncan soil parameters of the surrounding soil are selected from the 

CANDE-89 User Manual (Musser, 1989) summarized in Table 11. The analytical and the 

experimental vertical pipe deflections ofISU4, ISU8, and ISU9 are shown in Figures 27, 28, and 

29, respectively. The experimental vertical pipe deflections are the measured deflections at 

Section 4 (mid-point) of the pipes under the 12 in. (305 mm) square loaded plate. 

Table 10. Manufacturer's polyethylene material properties of 36 in. (915 mm) 
and 48 in. (1,220 mm) HDPE pipes which were field tested. 

Young's Modulus Design Strength Possion's Moment of 

Pipe (Short Term), (Short Term), ratio, Inertia, 
psi (MPa) psi (MPa) in.fin. in4/in. (mm4/mm) 

A36 110,000 (760) 3,400 (25) 0.45 0.506 (8,290) 

C36 110,000 (760) 3,400 (25) 0.45 0.55 (9,015) 

A48 110,000 (760) 3,400 (25) 0.45 0.692 (11,340) 

C48 110,000 (760) 3,400 (25) 0.45 0.74 (12,126) 

e 
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Figure 24. The finite element model of field test ISU4 (mesh shown in Figure 23). 
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Figure 25. The finite element model of field test ISU8 (mesh shown in Figure 23). 
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Figure 26. The finite element model of field test ISU9 (mesh shown in Figure 23). 

As shown in Figures 27, 28, and 29, the analytical predictions for ISU4, ISU8, and ISU9 

do not correspond closely with the field data over the whole range of surface loads. However, 

both analytical and experimental deflections are less than 1 %. The CANDE solutions with 

backfill ML95 over-estimate the field vertical pipe deflections from the beginning of loading to 
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Table 11. Duncan soil parameters of the surrounding soil of the field test 
specimen (as per CANDE). 

Soil Soil AASHTO $0 ~$ C, psi 
Name Typ~ T-99, % (deg) (deg) (kPa) K n Rr Kb m 

SW85 SW 85 38 2 0 450 0.35 0.80 130 0.10 

SW90 SW 90 42 4 0 640 0.43 0.75 190a 0.05a 

ML95 ML 95 34 0 4 (28) 440 0.40 0.95 185 0.00 

CL95 CL 95 15 4 9 (62) 120 0.45 1.00 80 0.20 

a - lriterpolated value 

approximately of 8,000 psf (385 kPa). Beyond this contact stress, the CANDE solutions under-

estimate the field data. However, the analytical data with backfill CL95 over-estimate the field 

data and give relatively conservative predictions. The reasons for these observations are 

discussed in the following paragraphs. 

As described by Ng (1997), the large experimental vertical deflections and the rapid 

increase in the experimental vertical deflections were likely caused by the load plate punching 

into the soil cover and the localized bending of the crown of the pipe beneath the load plate. 

These two phenomena are shown in the photographs Figures 3 and 4, respectively. 

The small displacement theory, which is one of the more significant deficiencies of 

CANDE, limits the capability of CANDE to simulate the localized pipe bending and the 

punching of the load plate that cause large pipe deflections. This limitation leads to an under-

estimation of the pipe deflection for a surface load greater than approximately 8,000 lb (35 kN). 
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Figure 28. Comparison of ISU8 experimental data with analytical data. 
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Figure 29. Comparison of ISU9 experimental data with analytical data. 

The approximate analytical method that simulates the three dimensional effect of surface 

loading into a two dimensional response greatly simplifies the actual behavior. The two 

dimensional system does not account for the longitudinal bending and the changes in 

longitudinal pipe properties (i.e., effect of corrugation). These limitations will tend to over-

estimate pipe vertical deflections as shown in Figures 27 through 29 at a surface load smaller 

than approximately 8,000 lb (35 kN). 

The Duncan soil parameters (Table 11) selected from the CANDE data library do not 

completely represent the actual soil condition in the field. The difference between the actual 

stress-strain response of the surrounding soil and the CANDE soil data obviously contributes to 

the differences between the analytical and experimental data. 

4.5. Mesh Sensitivity Under Surface Loads 

To illustrate the sensitivity of the finite element mesh used under the surface load, the 
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analytical and the field data of ISU8 shown in Figure 28 using the mesh shown in Figure 23 were 

selected as a reference for comparison. The mesh under the surface load is considered because it 

is the location where the surface load is transmitted to the crown of the pipe and causes the pipe 

to deflect. The finite element model used for the mesh shown in Figure 23 was modified to 

generate the new mesh shown in Figure 30 (i.e., the only difference in the CANDE input file is 

the mesh pattern). Figure 30 illustrates the finer mesh between the location of the surface load 

and the crown of the pipe. For comparison, soil type ML95 was chosen for both finite element 

models; the Duncan soil parameters have been presented in Table 11. Pipe vertical deflections 

obtained from the two finite element models using CANDE are shown in Figure 31 where the 

modified finite element model predicts a smaller vertical deflection. Comparing with the field 

data, the modified model and the original model both under-estimate the vertical deflection at 

surface loads greater than approximately 6,000 lb (27 kN) and 8,000 lb (35 kN), respectively. 

This demonstration shows that the solutions obtained using CANDE are sensitive to the finite 

element mesh used under the surface load. 

4.6. Analytical Minimum Soil Cover 

Katona (1990) stated that a minimum of 12 in. (305 mm) of soil cover for plastic pipes 

suggested by the AASHTO Flexible Culvert Committee is taken directly from the American Iron 

and Steel Institute (AISI) (1983) for corrugated metal culverts. He noted that this requirement is 

based on the long-time observations by the corrugated steel pipe industry of structural 

performance under live loads. To provide a better design guideline for plastic pipe designers, 

finite element models with a mesh similar to Figure 23 were developed using CANDE to 

determine the minimum soil covers for both 36 in. (915 mm) and 48 in. (1,220 mm) HDPE pipes 
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from Manufacturers A and C under six different backfill conditions. To simplify computations, 

only the upper bound of the typical AASHTO H-truck's tire pressure of 100 psi (690 kPa) was 

used. Furthermore, a conservative tire contact area of 1 ft2 (0.09 m2
) that gives a concentrated 

load of 14,400 lb (64 kN) was assumed. A total of twenty four CANDE models were developed 

for each pipe type: six different backfill conditions and four soil cover heights: 12 in. (305 mm), 

24 in. (610 mm), 36 in. (915 mm), and 48 in. (1220 mm). Each CANDE model was based on the 

previously mentioned approximate analytical method suggested by Katona (1976) and the 

CANDE fundamental analysis assumptions. The manufacturer's pipe properties for the 36 in. 

(915 mm) and 48 in. (1220 mm) HDPE pipes are shown in Table 10. The Duncan soil model 

was used to represent the stress-strain responses of the six backfill conditions which are SC85, 

SClOO, SW80, SW95, CL45, and CL95. The bedding and the in-situ soils used in this analysis 

are ML95 (see Table 11). A lower and a upper bound of the soil compaction were selected for 

each soil type to represent the "poor" and the "good" backfill conditions, respectively. The 

Duncan soil parameters of SC85 and SC 100, and CL95 have been presented in Tables 9 and 11, 

respectively. Whereas, the Duncan soil parameters of SW80, SW95, and CL45 are presented in 

Table 12. 

Table 12. Duncan soil parameters ofSW80, SW95, and CL45. 

Soil Soil AASHTO ~o ~~ c K n Rr Kb m 
Name Type T-99, % (deg) (deg) (psi) 

SW80 SW 80 36 1 0 320 0.35 0.83 llOa 0.25a 

SW95 SW 95 48 8 0 950 0.60 0.70 250 0.0 

CL45 CL 45 23 11 0 16 0.95 0.75 15 1.02 

- Interpolated value 
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Figures 32 through 35 show the CANDE vertical deflection predictions for the four 

HDPE pipes with six backfill conditions as a function of the soil cover height. The analytical 

vertical deflection is the total vertical pipe deflection due to the soil cov<;:r load and the live load. 

As shown, the analytical deflections reduce dramatically when the soil cover is increased from 

12 in. (305 mm) to 24 in. (610 mm). However, the rate of deflection reduction decreases when 

the soil cover height is greater than 24 in. (610 mm). Furthermore, both 36 in. (915 mm) and 48 

in. (1220 mm) HDPE pipes with a soil cover height of 24 in. (610 mm) or higher and under any 

of the six backfill conditions meet the 5% deflection criterion. However, this 5% deflection 

criterion will not be satisfied for these pipes with a 12 in. (305 mm) soil cover and a CL45 

backfill. The good backfill condition, CL95, predicts smaller deflection than the poor backfill 

condition, CL45, and these observations are noted for every type of pipe. 
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Figure 33. CANDE vertical deflection predictions for 36 in. pipe from Manufacturer C. 
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Figure 34. CANDE vertical deflection predictions for 48 in. pipe from Manufacturer A. 
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Figure 35. CANDE vertical deflection predictions for 48 in. pipe from Manufacturer C. 
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Table 13 summarizes the analytical minimum soil cover requirements for the four pipes 

as a function of type of backfill. The minimum soil cover heights are determined from Figures 

32 through 35 where the analytical vertical deflections do not exceed the 5% deflection criterion. 

In fact, the four design criteria: pipe deflection, outer fiber stress, buckling pressure, and 

handling performance of the plastic pipe model which were mentioned earlier are considered in 

this analysis. However, the deflection criterion controls the design for minimum soil cover in all 

cases. Note that for practical purposes, the minimum soil cover heights presented are 12 in. (305 

mm) increments. As mentioned earlier, an absolute minimum requirement of 12 in. (305 mm) 

soil cover is recommended by the AASHTO Flexible Culvert Committee; however, this 

requirement is given to maintain the long term serviceability of the HDPE pipes. As shown in 

Table 13, pipes with the poor backfill condition (CL45) require a minimum soil cover height of 

24 in. (610 mm). However, with the good quality backfill (CL95, SW95, and SClOO), these 

pipes only need a minimum of 12 in. (305 mm) soil cover to satisfy all the design criteria. For 

the SW80 backfill condition, the A36 HDPE pipe with the lowest moment of inertia requires a 

minimum of 24 in. (610 mm) soil cover. Whereas, the remaining pipes with a relatively larger 

moments of inertia only need a minimum soil cover of 12 in. (305 mm). Moreover, for the SC85 

backfill condition, only the C48 HDPE pipe with the largest moment of inertia needs a 12 in. 

(305 mm) minimum soil cover, and the remaining pipes require a minimum soil cover of 24 in. 

(610 mm). 
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Table 13. Minimum soil cover height in inches. 

Moment of Backfill Condition 
Pipe Inertia, 

in.4/in. CL45 SC85 SW80 SW95 CL95 SClOO 
(mm4/mm) 

A36 0.506 (8,290) 24 24 24 12 12 12 

C36 0.55 (9,015) 24 24 12 12 12 12 

A48 0.692 (11,340) 24 24 12 12 12 12 

C48 0.74 (12,126) 24 12 12 12 12 12 

Note: 12 in.= 305 mm, 24 in.= 610 mm. 
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5. CONCLUSIONS 

The test procedures used to evaluate high density polyethylene pipes with a variety of soil 

backfill is conservative especially where low density fills are loaded to high contact stresses. The 

failures observed in these tests are the combined effect of soil bearing capacity at the soil surface 

and localized wall bending of the pipes. Under a pavement system, it is expected that the pipes' 

performance would be considerably better. With those caveats, the following conclusions are 

drawn from this study. 

1. For most tests the ovalization of the pipes during backfilling induced strains of greater 

magnitude than under surface loads, provided the loads did not exceed the bearing capacity of 

the soil cover. The exceptions were the stiffer pipes backfilled with the lower density soils. 

2. Glacial till compacted to 50% and 80% provides insufficient support so that pipe failure would 

occur at surface contact stresses lower than those induced by highway trucks. On the other 

hand, sand backfill compacted to more than 110 pcf (17.3 KN/m3) is satisfactory. 

3. At low surface contact stresses, deflections are reduced significantly when backfill density is 

increased from about 50 pcf (7.9 kN/m3) to 90 pcf (14.l kN/m3). Above that unit weight, little 

improvement in the soil-pipe system is observed. 

4. The rate of increase in ultimate strength of the system increases nearly linearly with increasing 

backfill density. 

5. At surface contact stresses approximately equivalent to moderate highway tire pressures applied 

near the ends of the pipes, pipe deflections are slightly higher than when loaded at the center. 

6. Except for low density glacial till, the deflections near the pipe ends are not excessive and the 

pipes tested here have adequate stiffness. 

7. For contact stresses near the upper limit of truck tire pressures and when loaded near the end, 

pipes with both sand and till backfills fail. 
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8. For flowable fill backfill, the ultimate capacity of the pipes is nearly doubled and at the upper 

limit of highway truck tire pressures, deflections are negligible. 

9. Pipe specimens tested at ambient laboratory room surface temperatures satisfied AASHTO 

minimum pipe stiffness requirements at 5% deflection. 

10. Nearly all specimens tested at elevated (approximately 120°F (50°C)) surface temperatures 

failed to meet these requirements. 

11. Parallel plate tests at elevated temperatures produced higher deflections at lower loads than at 

ambient laboratory conditions, however, the location of the heat source had little effect on 

deflection response. 

12. Heating of any portion of the pipe circumference reduced the load carrying capacity of 

specimens. 

13. Parallel plate tests at elevated (approximately 120°F (50°C)) temperatures also produced 

higher circumferential pipe wall strains for a given load than at ambient temperatures. 

• 
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6. RECOMMENDED RESEARCH 

Based on the literature reviewed, test results, and CANDE Analysis of Phase I (HR-373) 

and Phase II (HR-3 73A), the following research is proposed: 

I. Similar to CMP installations, there is a potential for uplift failures with PE pipe. An 

investigation (field testing plus an analytical study) of uplift failures of PE pipe 

installation should be undertaken. This investigation would include identifying situations 

in which there are potential for such failures and the development of system(s) to prevent 

uplift failures. 

2. To date, testing has been limited to laboratory and field tests on PE pipes 24 in., 30 in., 

36 in., and 48in. (610 mm, 760 mm, 915 mm, 1,220 mm) in diameter. If the DOT has 

plans in the future on using larger diameter PE pipe, they also should be tested 

(laboratory and field). 

3. At least four demonstration projects should be undertaken. Two ft of cover would be 

used in all four projects. The variables would be pipe diameter (36 in. and 48 in.) and 

type of road (Gravel (G) or Concrete pavement (CP)). The four demonstration projects 

would be as follows: 36 in. (915 mm) diameter+ G, 36 in. (915 mm) diameter+ CP, 48 

in. (1,220 mm) diameter+ G, and 48 in. (1,220 mm) diameter+ CP. The four PE pipes 

used in the demonstration projects would be instrumented (strain gages and deflection 

instrumentation) so that data could be obtained during installation and immediately after 

installation. All sites would be periodically monitored and load tested for a period of 

three years after installation. 

4. Obtain plans of several existing HDPE pipe installations and use this information as base 

line data. These installations will be periodically monitored (record any changes in 

elevations, measure vertical and horizontal diameters so that any changes can be detected, 
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etc.) for several years after their installation. Hopefully it will be possible to locate, 

installation with pipes of different diameters, from different manufacturers, with different 

amounts of cover, with different back.fill material, etc. 

5. Experimental study of 36 and 48 in. (915 and 1,220 mm) diameter HDPE pipes under 

dynamic loading and shallow cover. 

6. Characterization of Iowa soils with Duncan-Chang constitutive model for application to 

CANDE and other FEM or numerical geotechnical/structural models used by DOT. 

e 
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