OPTIMUM ENFORCEMENT LEVEL FOR TRAFFIC WEIGHT OPERATIONS

MRI REPORT

APPENDICES

IOWA HIGHWAY RESEARCH BOARD PROJECT HR-138 For the
IOWA STATE HIGHWAY COMMISSION, AMES, IOWA

OPTIMUM ENFORCEIMENT LEVEL FOR

 TRAFFIC WEIGHT OPERATIONSAPPENDICES TO FINAL REPORT October 31, 1968

MRI Project No. 3158-P

Iowa Highway Research Board Project HR-138
Conducted by the
Midwest Research Institute Kansas City, Missouri

for the

Iowa State Highway Commission Ames, Iowa

TABLE OF CONTENIS

Page No.

Appendices

1. Details of Data Development

> Tab A - Average Iowa Mileage Per Truck Trip I-I
Tab B - Number of Truck Trips Per Year in Iowa. 1-3
Tab C - Fraction of Truck Trips in Violation. 1-6
Tab D - Probability of Apprehension 1-11
Tab E - Average Fine Per Violating Vehicle 1-19
Tab F - Distribution of Pavement Types and Costs in Iowa. 1-20
Tab G - Pavement Maintenance Cost Data. 1-24
Tab H - Distribution of Axle Weights for Over-Registra- tion and Overweight Vehicles. 1-27
Tab I - Uncompensated Road Life and Maintenance Useage. 1-43
Tab J - Average Loss Prevented for Deterred Registration Violators 1-54
Tab K - Fixed and Variable Costs of Enforcement 1-55
Tab L - Average Loss Prevented for Deterred Overweight or Oversized Violators. 1-57
Tab M - Calculations for Uncompensated Costs on Secondary Roads 1-59
Tab N - Average Uncompensated Pavement Costs Per Vio- lating Vehicles Mile. 1-69
2. Bibliography and Data Sources 2-1
3. Sample Violation Records and Coding Instructions 3-1
4. Sampling Instructions for Operational Record Sample 4-1
5. Operational Experiment Sample Data Sheet 5-1
6. Computer Program Documentation: Violation Tape Analysis 6-1
7. Computer Program Documentation: Fraction Violating Vs. Time Analyses 7-1
8. Computer Program Documentation: Cost/Benefit Analyses 8-1
9. Computer Program Documentation: Uncompensated Road Main- tenance Use Per Violating Vehicle 9-1
10. Computer Program Documentation: Uncompensated Pavement
Life Use Per Violating Vehicle 10-1
11. Iowa Public Scales Available for Use by T.W.O. Officers. 11-1

AVERAGE IOWA MILEAGE PER TRUCK TRIP

Basic Information Source

1963 Iowa State Highway Commission Loadometer Survey Records_/

Form of Data
Individual trip distances are recorded in miles. The origin and destination of each trip and the state of registration of the vehicle are recorded in a coded form.

Method of Analyzing Data

The number of vehicles originally surveyed were far more than needed for the purpose of estimating a gross average mileage per trip. The records were therefore sampled systematically using every nineteenth trip. A total of 503 trips were sampled.

For trips within Iowa the trip mileage was simply recorded for each trip record. For trips that originated or terminated out of state, only the estimated portion of the trip that occurred within Iowa was recorded. The estimate of mileage in Iowa was made by examining the probable route taken on a map of Iowa highways.

Results of the Analysis
GENERAL TRUCK POPULATION

Trip Location	No. of Trips	Mileage	Average Mile age
Iowa only	382	27,623	72.3
Partial out of state	$\underline{121}$	$\underline{29,005}$	$\underline{240.0}$
All	503	56,628	112.3

[^0]
Estimate For the Violator Population

The above average mileage estimate applies to the general population of trucks. A mileage figure is also needed for weight regulation violators. The Loadometer Survey provides no direct information on mileage of violators. It was not believed that violators travel greater or less distances than non-violators per trip. However, it is possible that violations are more frequent per vehicle on out-of-state trucks than in-state trucks. Hence, the average distance might be shifted towards the $240-$ mile trip distance of out-of-state vehicles.

A tape record of all 1967 violations was used to determine the fraction of violations committed by in/out-of-state vehicles as follows: 1

VIOLATORS ONLY

Registration		Percent of Violators
Iowa	78.8	
Other	$\underline{\text { Aver age Mileage }}$	
All	100.0	72.3

The density of violations does not seem to depend significantly on state of registration since 108.0 is so close to ll2.3. However, out-of-state violators travel about three times farther per violation and thus may cause three times as much road damage per violation.

1/ The program used to process the tape is at Appendix 6.

Basic Information Sources

1. ISHC Planning Division: "Estimated Annual Vehicle Miles of Travel in Iowa in 1968 by Road System and Vehicle Type."
2. ISHC Planning Division: W-4 Table All Main Rural Roads 1966.
3. Appendix 1 , Tab M of this report.
4. Appendix 1, Tab A of this report (Average Iowa Mileage per Truck Trip).

Method of Processing Data

Item 1 supplied an estimated 1.333 billion truck miles not in. cluding pickups and panels for 1968 on the primary and secondary rural roads of Iowa. However, we are also interested in the annual vehicle miles traveled by pickups and panels on these roads. This information could not be directly determined from the available data, so the following method was used to estimate this information:

The ratio of distance traveled by pickups and panels (D_{p}) to truck mileage $\left(D_{t}\right)$ from item 1 is assumed to be in direct proportion to the number of pickups and panels counted at traffic weight stations (C_{p}) to trucks counted $\left(C_{t}\right)$. The unknown term, the number of miles traveled by pickups and panels, is equal to:

$$
D_{p}=D_{t}\left(\frac{C_{p}}{C_{t}}\right)
$$

The distance traveled by pickups and panels was calculated separately for primary roads and secondary roads.

Distance traveled by pickups and panels on primary roads:

1. $D_{t}=0.923$ million truck miles (excluding pickups and panels) from item 1.
2. Ratio $C_{p} / C_{t}=0.423$ from item 2.

Therefore:
D_{t} primary roads $=\left(0.923 \times 10^{9}\right)(0.423)=0.389$ billion miles

Distance traveled by pickups and panels on secondary roads:

1. $D_{t}=0.410$ billion truck miles (excluding pickups and panels) from item l.
2. The fraction of trucks (C_{p}) observed on secondary roads could not be directly determined from the available data. The fraction of trucks (C_{p}) was assumed to be the product of the fraction of trucks on primary roads (0.297) times the ratio of single units observed on secondary roads (0.91) to single units observed on primary roads (0.48).1/

Therefore:

$$
\begin{aligned}
& C_{p}=0.297(0.91 / 0.48)=0.561 \\
& \text { and } C_{t}=1-C_{p}=0.439
\end{aligned}
$$

3. Ratio $C_{p} / C_{t}=1.26$

Therefore:

$$
D_{t} \text { secondary roads }=\left(0.410 \times 10^{9}\right)(1.26)=0.524 \text { billion miles }
$$

The total vehicle miles in 1968 for trucks, pickups and panels is the sum of the distances calculated for these vehicles on primary and secondary roads, and is equal to 2.246 billion vehicle miles.

Now

$$
T=M / m
$$

where: T is the number of annual trips by trucks, pickups, and panels, M is the total annual truck, panel and pickup mileage, and m is the average distance traveled per truck trip, from item 4.

1/ Item 3.

$$
\begin{aligned}
& M=2.246(10)^{9} \\
& m=112.3 \\
& T=2.246(10)^{9} / 112.3=20.0 \text { million annual trips }
\end{aligned}
$$

APPENDIX 1, TAB C

FRACTION OF TRUCK TRIPS IN VIOLATION

Basic Information Sources

l. ISHC T.W.O. "Summary of Results of Traffic Weight Operations" (Attached).
2. ISHC Planning Department "Analysis of Traffic Volume and Weight Study--1966", Table W-7, p. 67.
3. ISHC T.W.O. Communication to MRI: Number of Traffic Weight Officers by Year.
4. Appendix 1, Tabs A, B of this report.
5. ISHC T.W.O. "Summonses Issued by Traffic Weight Officers July 1, 1966 through June 30, 1967 (Attached).
6. Tape File of 1967 Violation Records.
7. ISHC Planning Department Motor Vehicle Traffic Data.

Method of Processing Data

Item 2 indicated that 6.05 percent of the truck trips in Iowa were made in violation of overweight or oversize regulations. Item 5, attached below, indicated that out of 19,084 summons issued only 7,513 or 39.4 percent were overweight or oversize violation. Hence, a rough estimate of the percent violating would be 6.05 percent/0.394 or 15.5 percent. However, an analysis of item 6 indicated that about 10 percent of these violations belong to both the overweight/oversize category and the registration violation category. Hence, 1.5 percent of the violations would be double counted by the above calculation; the actual percent violating in 1967 was $15.5-1.5$ percent or 14.0 percent. This is the percent of traffic violating one or more of the laws enforced by T.W.O.

As explained in Section III A of the report the number of summons in any given year is proportional to the traffic T, the fraction violating V, and the probability of apprehension, P. Hence, the change of V with P can be obtained by scaling from the number of apprehensions and correcting for growth in probability of apprehension, and truck trips (measured by registration R) over a number of years. In other words:

$$
V=K A / P R
$$

where

$$
K=\left(V^{\prime} P^{\prime} R^{\prime} / A^{\prime}\right)
$$

and $V^{\prime}, R^{\prime}, T^{\prime}$, and A^{\prime} are the values for 1967. $K=0.0159$
Below is a table showing the results of these calculations for Iowa.

I/ Item 3.
1967 value taken from Appendix 1, Tab D. Other values were taken as linearly proportional to staff. (Apprehension model is linear for smell P.)
3/ Item 7.
4/ Item 1 (Attached below). Prior to 1958 improper registration regulalions were not too enforced. Summonses issued include estimate of improper registration violations.

Also Completion of Summonses Issued in Prior Period

No. of	Fine and	
Summonses	Court Costs	Increased
Issued	Paid	Registrations

WEIGHT

Overload of Registrations	3,498	$\$$	$39,647.29$	$\$$	$83,168.44$
Single Axle Overloads	2,384	$77,425.27$	125.00		
Two Axle Tandem Overloads	2,263	$61,516.85$			
Three Axle Tandem Overloads	11	$3,390.14$			
Gross Overloads	1,339	$66,906.27$			
Improper Registration	7,897	$118,150.51$	$16,993.95$		
Other Violations	176	$3,567.50$	131.25		

Subtotal
17,568
\$ 370,603.83
\$ 100,493.64

DIMENSIONS

Width	816	\$	13,362.75
Length	626		14,401.50
Height	16		245.00
Front-End Projection	58		1,310.00
Sub-Total	1,516	\$	29,319.25
TOTALS	9,084	\$	399,923.08

Cases prior to July 1, 1966 now complete
(454)

Registration increases due to Warnings
$\$ \quad 15,989.70 \quad \$ \quad 8,296.43$
5,199.14

GRAND TOTALS
19,084
$\$ 415,912.78$
\$ 113,989.21

SUMMARY OF RESULTS OF TRAFFIC WEIGHT OPERATIONS

Fiscal Year	No. of Summonses	Total Paid		Cost of
	Issued	Fines \& Costs	Registration	Operation
1941-42	. 8,320 \$	70,270.55 \$	173,685.60: ${ }^{\text {S }}$	61,559.91
1942-43	- 7,820	49,683.66	186,637.40	70,040.49
1943-44	. 7,507	54,862.80	157,365.11	72,598.96
1944-45	. 7,383	64,740.50	154,283.41	83,276.37
1945-46	.10,009	87,640.90	183,300.08	81,296.99
1946-47	.10,125	104,245.45	174,096.52	82,902.94
1947-48	. 9,784	128,650.20	212,263.91	85,545.13
1948-49	. 9,479	130,715.15	267,667.20	80,454.60
1949-50	.10,505	109,54.3.69	310,810.61	80,599.24
1950-51	.10,474	151,887.87	268,225.35	86,467.15
1951-52	. 13,324	221,364.06	268,205.32	156,220.75
1952-53	.16,805	272,586.41	341,300.55	197,862.66
1953-54	.15,605	241,039.18	314,305.22	221,700.75
1954-55	.14, 739	259,717.35	439,629.28	225,392.79
1955-56	.14,444	263,134.82	402, 759.49	229,135.08
1956-57	.13,692	256,941.42	336,703.83	236,373.96
1957-58	.11,952	279,741.95	235,956.70	234,867.14
1958-59	.12,565	294,485.66	247,389.00	249,217.64
1959-60	. 13,370	340,422.59	136,336.11	228,584.23
1960-61	.14,247	356,523.12	134,674.91	332,832.70
1961-62	.16,17?	416,031.55	177,444.87	342,176.67
1962-63	.16,819	406,576.74	238,170.56	360,704.14
1963-64	.18,196	433,559.23	214,568.07	387,971.59
1964-65	.22,796	525,546.38	183,268.66	433,650.39
1955-66	.21,213	481,548.21	168,942.41	477,089.26
1966-67	.19,084	415,912.78	113,989.21	485,668.76

NOTE: Figures shown under "Registration" show only the amount of additional registration fees paid on vehicles actually found to be under registered.

The results of the analysis are shown graphically in Section III, A-5 of the report.

The following function was fitted to the data for calculation purposes:

$$
V=0.02+0.98 e^{-K_{D} P}
$$

where K_{D}, the deterrence constant, is determined from 1967 conditions:

$$
\begin{aligned}
& \mathrm{P}=0.00618, \quad \mathrm{~V}=0.140 \\
& \mathrm{~K}_{\mathrm{D}}=-\frac{1}{\mathrm{P}} \text { logarithm }_{e}((\mathrm{~V}-0.02) / 0.98) \\
& \mathrm{K}_{\mathrm{D}}=-\frac{1}{0.00618} \text { logarithm }_{e}((0.140-0.02 / 0.98) \\
& \mathrm{K}_{\mathrm{D}}=340.0
\end{aligned}
$$

Therefore, in 1968, $\mathrm{P}=0.0070$

$$
\begin{aligned}
& V=0.02+0.98 e^{-340 .(0.0070)} \\
& V=0.111
\end{aligned}
$$

APPENDIX 1, TAB D

PROBABILTTY OF APPREHENSION

Basic Information Sources

I. ISHC T.W.O.: "Summary of Results of Traffic Weight Operations, July 1, 1966, through June 30, 1967."
2. Appendix 1, Tab B of this report.
3. Appendix l, Tab C of this report.
4. ISHC Planning Division: "Volume of Traffic on the Primary Road - 1965."
5. Tape File of 1967 violations.
6. Appendix l, Tab A of this report.
7. ISHC Planning Division: "Highway Mileage in Iowa by Surface Type, January 1, 1967."
8. Page III-67 of this report.

Method of Data Analysis
Apprehension rate method: One method of determining apprehension probability is to determine the number of apprehensions per violating trip. $20.00(10)^{6}$ For example: In year 1968, according to item 2, there will be were $19.42(10)^{6}$ trips of which, according to item 3, 14 percent involved one or more violations. Computer analysis of item 5 indicated there were 0.88 violators per violation (because of multiple violations by one violator on one trip). Item 1 indicated there were 19,084 apprehensions during the same period.

We may assemble these facts as follows:
Probability of apprehension $=$ Apprehensions/violating trips
or

$$
P=(19,084)(0.88) /(19.42)(10)^{6}(0.14)
$$

Results of the Analysis

$$
P=0.00618 \text { for } 1967
$$

Application of the Results

From Section III-A-4 of the report we know that P can be related to staff level, S, by a relation of the following general form:1/

$$
P=I-e^{-K_{A} S}
$$

where K_{A} is a lumped constant depending on such factors as length of trip, number of miles of road being patrolled, etc. We may solve the above equation for K_{A} :

$$
K_{A}=-\ln (1-P) / S
$$

This method was used to find K_{A} 's for conventional fixed sites and for roving patrols using loadometers for the scheduling and other management techniques employed in 1967.

These K_{A} values were in turn inserted into the Apprehension Model to obtain P^{\prime} 's for a range of new $S^{\prime} s$. For 1968,

$$
\begin{aligned}
& \text { Effective Staff }=64 \times(0.70)=44.7 \mathrm{men} \\
& P=1.0-\mathrm{e}^{-1.577(10)^{-4} \times(44.7)}=0.0070
\end{aligned}
$$

I/ Assuming that the size of the staff is not sufficient to fully man all available inspection sites.

Theoretical Analysis Method

Another method of estimating P is by theoretically calculating K_{A} from the factors known to compose it.

Under the assumption of random scale location:

$$
P=1-e^{-\left(M H D P_{S} / 168 L C\right) S}
$$

Hence,

$$
\mathrm{K}_{\mathrm{A}}=\mathrm{MHDP}_{\mathrm{S}} / 168 \mathrm{LC}
$$

where M, etc., are defined in Section III-A-4 of the report as:
$M=$ trip length of vehicles in violation
H = hours worked per day
D = days worked per week
$P_{S}=$ probability of inspecting vehicles going by site
$L=$ length of road under surveillance
$C=$ crew per site (average)

We estimate these values as follows (for 1967 average):

Parameter	Value	
		Source or Method
M	208	Item 6
H	8	Nominal
D	5	Nominal
P_{S}	1	Assumed (true for fixed sites)
L	$17,931 /$	Item 7
C	2.58	Item 8

I/ Rural primary and paved secondary only.

Thus $K_{A}=108(8)(5)(1) / 168(17,931)(2.58)=4.33(10)^{3} / 7.78(10)^{6}$.

$$
\mathrm{K}_{\mathrm{A}}=5.56(10)^{-4}
$$

However, it is known that the inspection sites are not placed randomly, but are placed in regions of high traffic density. This effectively boosts P and K_{A} by a factor related to the traffic concentration. The more traffic is concentrated on a few miles of roads the better the chance of properly locating a scale, and the better the probability of apprehension.

Figure l-D-l shows the traffic concentration of the Primary Road System. This information was processed to produce the graph in Figure 1-D-2 by plotting the fractional cumulative mileage traveled versus the cumulative amount of highway used in traveling.

Figure l-D-3 shows how the information from Figure l-D-2 is processed to produce P_{j} 's, probabilities that traffic will be located in regions 1,000 miles in length. The primary road information was combined with information on secondary roads that added to a truck mileage of 1.15 million truck miles per day.

As discussed in Section III-A-4 of the report and displayed on Figure l-D-3, P_{j} 's can be used to calculate a "boost factor" on the probability of apprehension calculated using the random site location method. This factor for Iowa is l.4l.

Since the single site probability of apprehension is proportional to the apprehension constant K_{A} we can boost K_{A} to $1.4 I \mathrm{~K}_{\mathrm{A}}$ to accommodate this effect.

Results of the Analysis

The theoretical value for P may now be calculated as

$$
P=I-e^{-1.41\left[(5.56)(10)^{-4}\right] S}
$$

where the effective staff size (S) is the product of the average staff for 1967 (56 men) and a (70%) factor to allow for vacations, sick leave, holidays, and escort duty $S=56(0.70)=39.2$ men or

$$
P=1-e^{-1.41(5.56)(10)^{-4}(39.2)}
$$

AVERAGE DAILY TRUCK TRAFFIC COUNII/

Average Daily Truck Traffic Count	Midpoint	Section Length	Total $0-49.9$
Distance Traveled	Cumulative Distance Traveled		
$50-95.9$	25	683.2	17,000

$$
\begin{aligned}
& \text { Miles traveled in a day }-2.997 \times 10^{6} \\
& \text { Miles traveled in a year }-109.0 \times 10^{7}
\end{aligned}
$$

I/ 1965 Iowa Volume of Traffic on Primary Road System.

Figure 1-D-2, Cumulative Fraction of Mileage Traveled vs. Miles of Primary Road Used

PRIMARY

Cumulative
Fraction
of Miles
Traveled
0.0067
0.0067
$\mathrm{P}_{\mathrm{j}}^{2}$

Mileage Region (J)

| 1) | $0-999.9$ |
| ---: | ---: | ---: |
| 2) | $1,000-1,999.9$ |
| 3) | $2,000-2,999.9$ |
| 4) | $3,000-3,999.9$ |
| 5) | $4,000-4,999.9$ |
| 6) | $5,000-5,999.9$ |
| 7) | $6,000-6,999.9$ |
| 8) | $7,000-7,999.9$ |
| 9) | $8,000-8,999.9$ |
| $10)$ | $9,000-9,999.9$ |

Fractional

0.000045
0.0343
0.0267
0.001706
0.0705
0.117
0.178
0.239
0.3110
0.4160
0.5530
0.7230

PAVED SECONDARY

I1) $10,000-10,999.9$
0.7576
0.0346
0.001197
12) 11,000-11,999.9
0.7922
0.0346
0.001197
13) 12,000-12,999.9
0.8268
0.0346
0.001197
0.8614
0.0346
0.001197
14) $13,000-13,999.9$
15) $14,000-14,999.9$
0.8960
0.0346
0.001197
16) 15,000-15,999.9
0.9306
0.0346
0.001197
17) $16,000-16,999.9$
0.9652
0.0346
0.001197
18) 17,000-17,999.9
0.9998

Cumulative
Fraction Mileage \quad Sum $P_{j} \quad$ Sum P_{j}^{2}
$\begin{array}{lll}1.000 & 1.000 & 0.078258\end{array}$

Boost Factor $=$ Number of 1,000 mile segments x sum $\left[P_{j}^{2}\right]$
Boost Factor $=1.8 \times 0.078258=1.41$

> Figure 1-D-3 - Calculation of Boost Factor on Apprehension Probability Due to Scale Location Along High Traffic Density Roads

$$
\begin{aligned}
& P=1-e^{-0.0550} \\
& P=1-0.9465 \\
& P=0.0530
\end{aligned}
$$

It should be noted that the apprehension rate method, which is a more direct method, yielded a value of 0.0062 or about 12 percent of the theoretical value based on the apprehension model.

The difference between the two figures was attributed to the "leakage" of information on scale schedules and other enforcement practices to violators. This leakage was assumed to be independent of slow changes in staff size, so that the apprehension rate calculated value for K_{A} would be insensitive to staff size. The leakage rate would change if ways could be found to prevent violators from finding out about enforcement practices.

Basic Information Sources

1. Tape file of 1967 Violation Records.
2. Sample of 1967 scale operation reports.
3. ISHC Summary of Traffic Weight Operations for the period July l, 1966, through June 30, 1967.

Method of Analyzing Data

A sample was made of T.W.O.'s own 1967 scale operation reports. The instructions for carrying out the sample are at Appendix 4. The fines and/or registration increases (both referred to as a "fine" herein) for each day's operations in the sample were recorded and a breakdown between fixed and roving violations calculated. The average fine per violation was calculated by simply totaling the dollars collected and dividing by the total violations recorded in item 3.

A computer analysis of Item $工$ (simply tabulating the number of violations committed for each violator apprehended) I/ indicated that there are 1.135 violations per violator. This fact can be used to determine the average amount paid by each violator as follows:

Results of Analysis

Mode of Apprehension	Percent of Apprehensions	Average Fine Per Violation		Average Fine Per Violator:
Fixed Sites				

1/The computer program is documented at Appendix 10.
륵 Taken equal to 1.135 times the average fine per violation.

APPENDIX I, TAB F

DISTRIBUTION OF PAVEMENT TYPES AND COSTS IN IOWA

(Primary System) 1/

Basic Information Sources

The information on pavement types and costs in the Iowa primary road system was obtained from the Iowa State Highway Commission. The information was forwarded by Mr. Stephen E. Roberts, Research Engineer.

In a telephone discussion with Mr. Roberts on May 2l, 1968, two pavement properties were confirmed. The bituminous treated soil aggregate is no longer used and current standards provide no structural coefficient. A structural coefficient of 0.20 was chosen based on the similarity to currently employed cold laid bituminous concrete base. Also, it was agreed to treat the asphalt treated crushed stone in pavement class 6 as asphalt treated base class I with a structural coefficient of 0.34 .

A majority of the pavement courses are types in current use. The structural coefficients for these courses are obtained from "Guide for Primary and Interstate Road Pavement Design," Design Department, Soils, January 1968 .

Data Processing and Application

The calculation of uncompensated pavement costs per violating vehicle mile requires the following inputs discussed here:
l. Pavement structure sufficiently well defined to calculate useful life in terms of reference axle applications.
2. The number of miles of each pavement structure (or the percent of total miles).
3. The cost of the pavement per lane mile.

I/Distribution of Pavement Types and Costs for paved secondary roads is contained in Appendix l, Tab M.

The pavement structures are well defined by the information provided by the ISHC. However, for class number 5 two thicknesses are indicated and for class 6 a range of thicknesses is indicated. For the class 6 pavements the extremes are used so that there are in the distributions two type 5 and two type 6 pavements. The percent miles within these classes are presented later in this section.

A range of costs is given for the class 5 and 6 pavements. The extreme values are used. The minimum value is associated with minimum thickness and maximum value is associated with maximum thickness. $1 /$

Careful consideration has been given to portland cement concrete slabs covered with an asphalt concrete course. In effect, these pavements have two lives, first as a rigid pavement with pce surface, and then as a flexible pavement with pcc base course. From this point of view these pavements could be considered as possessing a life which is the sum of the two separate lives and a total cost which is the sum of original pavement plus asphalt surfacing. In the same light one might project current pcc pavements as possessing the potential of second life as a flexible pavement. However, not all pcc pavements will be used since marginal soil support or altered alignment and grade requirements may reduce the desirability of the second life. Thus at any time the primary road system will contain these pavements in their first and second life states. The current state on the Iowa primary system is defined by the supplied data.

It appears that a pce pavement (in first life) should be evaluated as a rigid pavement with one useful life. The associated pavement cost is for the pec structure. A pavement which consists of an asphaltic concrete surface course over an old pce slab should be treated as a single life flexible pavement. However, the cost applied here should cover only the expense of adding the asphaltic concrete surface course. This procedure accounts for the possibility of a second pavement life and proportions first and second lives according to the state of the highway system.

The cost of the asphaltic concrete surface course (over pcc base) is estimated from the data supplied by the ISHC. The current

[^1]pec slab pavements cost $\$ 100,000$ to $\$ 120,000$ per two lane mile. Currently an 8 in. pcc base with asphalt surface would cost. $\$ 168,000$ per two lane mile. The cost of the asphaltic surface course is taken as $\$ 68,000$ per two lane mile or $\$ 34,000$ per lane mile.l/

Results

Two pavement distributions are presented and used in the calculations of uncompensated costs per violation vehicle mile. The first distribution uses equal amounts of the two different pavement thicknesses in class numbers 5 and 6. This distribution emphasizes thick, high capacity pavements and tends to hold uncompensated costs to a minimum. The second distribution contains a higher proportion of the thinner pavements and is used in calculations which attempt to locate an upper bound on uncompensated costs per violating vehicle mile on the primary system. These distributions are given in Table l-F-l together with structure and cost values used.

The class 4 pavement with 9 in. pec is not used in the current system. It has been carried through the calculations to indicate the second life potential of currently employed 9 in. pcc pavements.

[^2]
TABIE 1-F-I

PAVEMENT CHARACTERISTICS, COST AND DISTRIBUTION IN THE IOWA PRIMARY SYSTEM

PAVEMENT MAINTENANCE COST DATA (Primary Roads) 1

Source of Information
The basic data are obtained from the Statistical and Financial Reference ISHC (66-67) and from the Summary, Maintenance Control Sections, ISHC 1966.

Data Requirements, Processing and Results
The data needed are the annual cost of pavement maintenance per lane mile as a function of pavement type. These specific costs are used in the calculation of uncompensated costs per violating vehicle mile. Since maintenance cost data are recorded per roadway mile, it is necessary to determine the average number of lanes per roadway mile. Then the annual specific cost can be found as

$\begin{gathered}\text { Annual pavement maintenance } \\ \text { cost per lane mile }\end{gathered}=\frac{\text { Annual pavement maintenance cost per mile }}{\text { Average lanes per road mile }}$

Table l-G-I presents the (1966) proportions of two- and four-lane pavements in the Iowa primary system.

Portland cement concrete and asphalt pavements constitute 91.9% of two-lane and 99.8% of four-lane pavements. Table l-G-2 presents average lanes per road miles. Table l-G-3 presents maintenance costs per mile.

[^3]| Pavement | Miles | |
| :---: | :---: | :---: |
| | Two-Lane | Four-Lane |
| Portland Cement Concrete | 4,303 | 417 |
| Asphalt material over pce | 3,114 | 32 |
| Asphalt | 1,541 | 70 |
| Other (extensions omitted) | 790 | 1 |
| | 9,748 | 520 |
| TABLE $1-G-2$ | | |
| AVERAGE IANES PER ROAD | MLIE | |
| Pavement | Lanes Per Mile | |
| Portland cement concrete | 2.177 | |
| Asphalt material over pcc | 2.020 | |
| Asphalt over flexible base | 2.087 | |
| All asphalt | 2.043 | |

TABLE 1-G-3

ANNUAL SURFACE MAINTENANCE COSTS PER MILE

Pavement	Costs (\$/mile)			
	Routine	Special	Shoulders Approaches	Total
Portland cement concrete	283	37	391	711
Asphalt material over pcc	171	24	396	591
Asphalt	313	266	226	805
Asphalt surface treated	1,269	272	116	1,657
Gravel or crushed stone	625	322	36	983
Extensions (maintained by cities)	891	44	22	957
Only the routine and special costs are appropriate to the calculation of uncompensated costs per violating vehicle mile. The sum of these two quantities is used together with average lanes per road mile to compute the costs in Table l-G-4.				
TABLE 1-G-4				
PRIMARY ROADS ANNUAL SURFACE MAINTENANCE COSTS PER LANE MILE				
Pavement	Annual Cost Per Lane Mile (dollars)			
Portland cement concrete	147.0			
Asphalt material over pcc	97.0			
Asphalt over flexible base	277.0			

Source of Information

Data used in the development of these distributions are taken from tables in the 1966 Iowa Analysis of Traffic Volume and Weight Study. The specific tables used are identified in subsequent descriptions of procedures. The combined distribution of over-registration and overweight vehicles uses the summonses issued by traffic weight officers, July l, 1966, through June 30, 1967.

Required Data

The data discussed here are used in the calculation of uncompensated cost per violating vehicle mile. For each violating group (overregistration or overweight) the following information on each violating axle is required:

1. The axle configuration (single or tandem)
2. The legal weight
3. The actual weight (or amount over legal)
4. The average number of such violation axles per violating vehicle

Over-Registration Vehicles

The over-registration vehicles are those whose gross weights exceed the weight for which they are registered. They do not include vehicles which are over maximum allowable weight limits on a single axle, more than one axle, or on the entire vehicle.

In order to obtain the four required data items, it is necessary to determine the distribution of axle weights for commercial vehicles and to assign the over legal weight increment to the axles. The data from Table W-4, All Main Rural, are used. Also used are the implications of the "Summonses Issued by Traffic Weight Officers," July 1, 1966, through June 30, 1967.

The data on summonses show that for overload of registrations the increased registration per summons is $\$ 23.78$. This implies that the average registration increase is one increment or about $2,000 \mathrm{lb} .1 / \mathrm{It}$ follows that the average over legal (registration weight) amount is one-half the weight increment or $1,000 \mathrm{lb}$. This average is used here and is distributed over the axles of the violating vehicle.

Axle weight distributions are obtained from Table W-4, All Main Rural. Each type of vehicle is treated separately in initial data processing although in some cases similar types are grouped together. Where axle weights are over legal maximums the axles are dropped together with associated weights which constitute the entire vehicle set. (These eliminated axles and vehicles are over maximum weight limits as opposed to overregistration vehicles.) The values in the $W-4$ table are classified in weight ranges. The central value of the interval is used for all the axles in the indicated range.

The distribution of axle weights for each vehicle type is used as a guide for the distribution of the average $1,000 \mathrm{lb}$. over-registration load among the vehicle axles. These assignments are shown with other features of the data reduction in Table l-H-l. Distributions of Legal and Actual Axle Weights for Over-Registration Vehicles by Vehicle Type.

As shown in Table l-H-1 a large proportion of the panels and pickups are not capable of violating registration weight limits. This situation occurs when both axles are in the $2,000-1 \mathrm{~b}$. range.

The last column in Table l-H-l provides average numbers of the indicated axle per over-registration vehicle of the type. The next step uses these values to generate a distribution of axle types and weights applicable to the entire population of vehicles which are over their registration weights. The relative frequencies of over-registration violations by vehicle type are obtained from the summonses issued by traffic weight officers, July 1, 1966, through June 30, 1967.

The summarization of summonses by type indicates that approximately 0.218 of the violations are for, or involve, over-registration weight. (The value 0.218 consists of 0.183 for over-registration directly plus 0.035 from other violations which involve added registration fees.)

The distribution of commercial vehicles by type is obtained from the W-4 table, All Main Rural.

I/At weights less than $24,000 \mathrm{lb}$. the weight and fee increments are not uniform. However, most weight increments are 2,000 lb. and the average fee increase for $2,000 \mathrm{lb}$. is approximately $\$ 25$.

TABLE 1-H-1
DISTRIBUTIONS OF LFGAL AND ACTUAL AXLE WEIGHTS FOR OVER-REGISTRATION VEHTCLES BY VEHICLE TYPE

Vehicle Type	Vehicles Weighed	Axles Over Max. Weights	No. Vehicles Eligible for over-Reg.	Distribution of Weight Increase	Axle, or Set, Type	Axle wt. (legal) (lb.)	No. Axles Available for Over-Reg.	Over-Reg. Axle Wt.	Axles per Vehicle of Indicated \qquad Type
Panel \&	1,306	0	293	300 lb . on front	Single	2,000	293	2,300	1.0 1.0
Pickup				700 lb . on rear	Single	5,000	293	5,700	1.0
2 Axle,	1,045	3 Singles	1,037	300 lb . on front	Single	2,000	205	2,300	0.198
4 \& 6 Tire				700 lb . on rear	Single	5,000	832	5,300	0.802
					Single	5,000	484	5,700	0.467
					Single	7,500	143	8,200	0.138
					Single	10,000	251	10,700	0.242
					Single	14,000	137	14,700	0.132
					Single	17,000	22	17,700	0.021
3 Axle	390	14 Tandems	376	300 lb . on front single	Single	2,000	5	2,300	0.013
Single Unit				700 lb . on tandem	Single	5,000	180	5,300	0.479
					Single	7,500	42	7,800	0.112
					Single	10,000	107	10,300	0.285
					Single	14,000	42	14,300	0.112
					Tander	4,000	4	4,700	0.011
					Tandem	9,000	153	9,700	0.407
					Tandem	15,000	70	15,700	0.186
					Tandem	21,000	35	21,700	0.093
					Tandem	27,000	95	27,700	0.253
					Tandem	31,000	19	31,700	0.051
Tractor	169	2 Singles	167	200 lb . on front axle	Single	5,000	165	5,200	0.988
Semitrailer				400 lb . on each of	Single	7,500	2	7,700	0.012
3 Axle				other singles	Single	7,500	55	7,900	0.329
					Single	10,000	150	10,400	0.898
					Single	14,000	102	14,400	0.611
					Single	17,000	27	17,400	0.162
Tractor	647	37 Singles	610	200 lb . on front single	Single	5,000	313	5,200	0.513
Semitrailer		27 Tandens		500 lb . on tandem	Single	7,500	180	7,700	0.295
4 Axle				300 lb . on rear single	Single	10,000	117	10,200	0.198
					Single	10,000	304	10,300	0.498
					Single	14,000	182	14,300	0.298
				'	Single	17,000	124	17,300	0.203
					Tandem	4,000	1	4,500	0.0016
					Tandem	9,000	170	9,500	0.279
					Tandem	15,000	137	15,500	0.225
					Tandem	21,000	141	21,500	0.231
					Tandem	27,000	124	27,500	0.203
					Tandem	31,000	37	31,500	0.0607

	Vehicle Vehicles Type\quad Weighed	Axles Over Max. Weights	No.Vehicles Eligible. for Over-Reg.	Distribution of Weight Increase	Axle, or Set, Type	Axle Wt. (lega.l) (lb.)	No. Axles Available for Over-Reg.	Over-Reg. Axle Wt.	Axles per Vehicle of Indicated \qquad	
	Tractor 2,110	384 Tandems	1,918	200 lb . on front single	Single	5,000	216	5,200	0.1126	
	Semitrailer			400 lb . on tridems and	Single	7,500	333	7,700	0.1736	
	5 Axle			tandems. (Total l,000 lb.	Single	10,000	1,372	10,200	0.7153	
				incremental increase	Single	14,000	0		0	
				per vehicle.)	Tridem	17,000	3	17,400	0.0016	
					Tandem	9,000	623	9,400	0.3248	
						15,000	622	15,400	0.3243	
						21,000	609	21,400	0.3175	
						27,000	1,330	27,400	0.6934	
						31,000	649	31,400	0.3384	
	Tractor 10	3 Tandemis	8	100 lb . on front single	Sgl \& Tàm	5,000	2	5,100	0.25	
	Semitrailer			200 lb . on tridems	Sgl \& Tdm	7,500	4	7,600	0.50	
	6 Axle			350 lb . on tandems	Sgl \& Tdm	10,000	2	10,100	0.25	
					Sg 1 \& Tdm	10,000	5	10,200	0.625	
					Sg 1 \& Tdm	14,000	3	14,200	0.375	
					Tandem	9,000	1	9,350	0.125	
					Tandem	15,000	4	15,350	0.500	
					Tander	21,000	4	21,350	0.500	
					Tandem	27,000	7	27,350	0.875	
	Truck \& Trailer 152	12 Singles	144	For 3 Axle --	Single	2,000	42	2,200	0.2916	0.2884*
	Combinations			200 lb . on front	Single	5,000	36	5,100	0.2500	0.2000
	(6,6 Axle Units			400 lb . on each	Single	5,000	59	5,200	0.4097	0.4855
	Omitted)			other single.	Single	5,000	11	5,300	0.0764	0.0724
$\stackrel{1}{\mathbb{N}}$					Single	5,000	46	5,400	0.3194	0.2875
\bigcirc				For 4 Axle --	Single	7,500	9	7,600	0.0625	0.0500
				200 lb . on front	Single	7,500	13	7,700	0.0903	0.1548
				300 lb . on other	Single	7,500	7	7,800	0.0486	0.0461
				single and	Single	7,500	0	7,900	0.0278	0.0250
				500 lb . on tandem.	Single	$10,000$	110	10,200	0.7638	0.6492
					Single	10,000	18	10,300	0.1250	0.1185
				For 5 Axle --	Single	10,000	12	10,400	0.0833	0.0875
				200 lb . on front	Single	14,000	60	14,200	0.4166	0.3525
				200 lb . on other	Single	14,000	5	14,300	0.0347	0.0329
				singles \& tridem	Single	14,000	12	14,400	0.0833	0.0750
				400 lb . on tandems.	Single	17,000	19	17,200	0.1319	0.1055
					Single	17,000	1	17,300	0.0069	0.0066
				For 5 Axle - 2 Trailer	Single	17,000	4	17,400	0.0278	0.0250
				1.00 lb . on front	Tandem	4,000	1	4,400	0.0069	0.0119
				200 lb . on each	Tandem	4,000	5	4,500	0.0347	0.0329
				other axle.	Tandem	9,000	15	9,400	0.1042	0.1786

TABLE 1-H-1 (Concluded)

Vehicle Type	Vehicles Weighed	Axles Over Max. Weights	No. Vehicles Eligible for over-Reg.	Distribution of Weight Increase	Ax.le, or Set, Type	Axle Wt. (legal) \qquad	No. Axles Available for Over-Reg.	Over-Reg. Axle Wt.	Axles per Vehicle of Indicated Iype	
Truck \& Trailer	r 152	12 Singles	144	For 5 Axle - 2 Trailer	Tandem	9,000	17	9,500	0.1180	0.1119
Combinations				100 lb . on front	Tandem	15,000	7	15,400	0.0486	0.0833
(6, 6 Axle Units				200 lb . on each other	Tandem	15,000	7	15,500	0.0486	0.0461
Omitted)				axle.	Tandem	21,000	2	21,400	0.0139	0.0238
(concluded)				(concluded)	Tandem	21,000	6	21,500	0.0417	0.0395
					Tandem	27,000	5	27,400	0.0347	0.0595
					Tandem	27,000	2	27,500	0.0139	0.0132

[^4]Table l-H-2 presents the factors discussed above and used in developing the weight factor for over-registration vehicles in a sample of 1,000 trucks of all types on primary roads.

The distribution of axle characteristics for over-registration vehicles is obtained by applying the weight factors for specific vehicle types to the over-registration axle characteristics for the vehicle type. This procedure entails multiplying the last columns in Tables l-H-l and l-H-2. The results have been regrouped and several axles with nearly equal characteristics have been combined. The results are presented in Table 1-H-3.

Vehicles Over Maximum Legal Weights

Maximum legal limits can be exceeded on a single axle, a tandem set, an axle group or on the entire vehicle. In order to obtain the four required data items, it is necessary to determine the legal weight and overweight for each axle (or tandem set) which is in violation. The basic data are obtained from the Iowa $W-6$ tables, 1966. Here the data are given for individual, type identified, vehicles with violations in percent over state law. Violations are recorded for individual axles, axle groups and total weights.

The first step in processing the data is to determine the primary violation type for each vehicle which is indicated with more than one violation. Four overweight violation types are used, (I) single axle, (2) tandem set, (3) axle group (more than tandem), and (4) vehicle gross. In selection of a primary violation type the intent is to describe most accurately the extra legal axles, their legal loads, and their overage. The selection rules use the percent over state law values given in $W-6$. The rules are:

Single axle of tandem in violation--Treat as a single axle.

Single axle of tandem and tandem set in violation--Treat as tandem if tandem percent violation is largest.

Single(s) in group and group in violation--Use singles if there are two or more. Use the one violation single if it is twice or more in violation compared to group.

Group and gross in violation-~Use the gross unless gross violation is one-half or less of group.

DEVELOOPMENT OF WEIGHP FACTORS FOR OVER-REGISTRATION VEHICLES

	(I) Vehicle Type	(2) No. in Sample of 1,000 Trucks	(3) Violations per Vehicle of Specified Type	(4), (2) $\cdot(3)$ Violations in Specified Type per 1,000 Trucks of All Types	(5) Over-Reg. Violations per Total Violations	```(6) Other Factor (= l.0 if not indicated)```	(7), (2) $\cdot(3) \cdot(5) \cdot(6)$ Over-Reg. Vehicles of Specified Type per 1,000 Trucks of All Types	$(8),(7) / \sum(7)$ Weight Factor for Over-Reg. Vehicles of Specified Type
	Panel \& pickup	272	0.00261	0.71	0.218	293/1306*	0.0347	0.00790
	2 axle	154	0.0238	3.665			0.7990	0.18200
	3 axle	54	0.02385	1.288			0.2810	0.06400
	2S1	31	0.02666	0.826			0.1512	0.03444
¢	252	100	0.02833	2.833			0.6176	0.14068
	352 \& 3	364	0.0300	10.92			2.3806	0.54224
	$\begin{aligned} & \text { Truck }+ \\ & \text { trailer }(\mathrm{s}) \\ & \text { \& others } \end{aligned}$	25	0.02316	0.579			$\Sigma(7)=4.3903$	$\underline{0.02874}$

[^5]
AXLE CHARACTERISTICS OF OVER-REGISTRATION VEHICLES ON PRIMARY ROADS

	Single Axles			Tandem Sets		
	Legal Weight (Kips)	Amount Over Legal Weight (Kips)	Average Number of Axles Per Over-Reg. Vehicle	Legal Weight (Kips)	Amount Over Legal Weight (Kips)	Average Number of Sets Per Over-Reg. Vehicle
	2.000	0.200	0.0083	4.000	0.400	0.0003
		0.300	0.0447		0.500	0.0012
	5.000	0.100	0.0057		0.700	0.0007
		0.200	0.1877	9.000	0.400	0.1812
		0.300	0.1787		0.500	0.0425
;		0.400	0.0083		0.700	0.0261
$\stackrel{\sim}{\omega}$		0.700	0.0929	15.000	0.400	0.1782
$\stackrel{\sim}{*}$	7.500	0.100	0.0014		0.500	0.0330
		0.200	0.1406		0.700	0.0119
		0.300	0.0085	21.000	0.400	0.1728
		0.400	0.0142		0.500	0.0336
		0.700	0.0251		0.700	0.0049
	10.000	0.200	0.4335	27.000	0.400	0.3673
		0.300	0.0917		0.500	0.0289
		0.400	0.0390		0.700	0.0162
		0.700	0.0440	31.000	0.400	0.1835
	14.000	0.200	0.0101		0.500	0.0085
		0.300	0.0500		0.700	0.0033
		0.400	0.0272			
		0.700	0.0239			
	17.000	0.200	0.0030			
		0.300	0.0287			
		0.400	0.0082			
		0.700	0.0039			

Single and gross in violation--Use the gross unless gross violation is one-half or less of single.

Tandem and gross in violation--Use the gross unless gross violation is one-half or less of tandem.

Single, a separate tandem, and gross all in violation--Use the gross unless its percent violation is smaller than the other two taken individually.

After the selection of a primary violation, the primary violation within each vehicle type are listed and grouped in classes of 3 percent violation increments.* The center value of each class increment is assigned for all class members.

All violations are converted to single and tandem axle form. For gross vehicle weight violations the conversion uses the axle welght distributions found for specific vehicle types in the over-registration analysis. The legal weights distributed on the axles are for 3 axle trucks $45,000 \mathrm{lb} .$, and for semi-trailer and trailer units $72,000 \mathrm{lb}$. The percent violation figures are used with these values to obtain gross overweight in pounds. The gross overweight is then divided among the axles according to the weight distributions previously determined.

The axle group violations are first converted to gross violations by retaining the percent violation but reducing the number of violating axles to one-half the vehicle axles. The conversion to singles and tandems then follows as a conversion from gross load violation.

Overweight data from Table W-6 1966 have been processed as described above. One data set was obtained from the tables for highway system (Ol) with added data on vehicle types 2D, 3A, 2S2 and truck-trailers from system (03). These data should be representative of weight violations on the heavily traveled, highly enforced part of the primary system. The axle characteristics are given in Table 1-H-4.

The weight factor for each vehicle type is found by procedure similar to that used for the over-registration vehicles. The distribution of types is obtained from the W-4 table, All Main Rural: the summonses issued by traffic weight officers indicate that 0.3143 of the summonses are

* The 3 percent class interval grouping are not used for the three-axle single units where the small sample (9) and distribution of values would be poorly represented by the 3 percent class intervals. Values within 3 percent of one another are grouped and averaged for the three-axle vehicles.

DISTRIBUTIONS OF LEGAL AND ACTUAL AXIE WEIGHTS FOR OVER LEGAL WEIGHP VEHICLES BY VEHICLE TYPE (For Highway Systems 01 and 03)

Vehicle Type	No. Vehicles in Sample	Axle Type	Legal Weight \qquad	Amount Over Legal \qquad (1b.)	Number of Axles Per Overweight Vehicle of Specified Type
2 A	4	Single	18,000	900	1.0
3A	9	Single	13,500	500	0.333
		Single	18,000	300	0.111
		Single	18,000	2,600	0.111
		Tandem	31,500	1,200	0.333
		Tandem	32,000	1,400	0.333
		Tandem	32,000	4,600	0.111
252 \& 1	49	Single	18,000	300	0.3470
		Single	18,000	800	0.1021
		Single	18,000	1,350	0.1633
		Single	18,000	2,400	0.0204
		Tandem	32,000	500	0.1429
				1,450	0.0816
				2,400	0.1021
				3,400	0.0204
				5,300	0.0204
352	201	Single	14,000	200	0.1791
				650	0.1692
				1,100	0.0398
				1,500	0.0448
				1,950	0.0100
				2,400	0.0050
				3,200	0.0100

TABLE 1-H-4 (Concluded)

	Vehicle Type	$\begin{aligned} & \text { No. Vehicles } \\ & \text { in Sample } \\ & \hline \end{aligned}$	Axle Type	Legal Weight \qquad	Amount Over Legal \qquad	Number of Axles Per Overweight Vehicle of Specified Type
	3 S 2 (Concluded)	201	Single	18,000	300	0.0945
					800	0.0348
					1,350	0.0299
					2,400	0.0100
					3,000	0.0050
			Tandem	29,000	450	0.3582
					1,300	0.3383
					2,200	0.0796
					3,000	0.0896
					3,900	0.0199
					4,800	0.0100
					6,500	0.0199
				32,000	500	0.1343
$\stackrel{\sim}{1}$					1,450	0.0498
$\stackrel{\sim}{\sim}$					2,400	0.0149
		,			3,400	0.0348
					4,300	0.0100
					5,300	0.0100
					6,200	0.0149
					$8,200$	$0.0050 *$
					10,000	$0.0050 *$
	Truck-trailer combinations	8	Single	7,000	100	0.5000
					300	0.2500
					1,000	0.6250
					1,200	0.2500
					300	0.1250
			Tandem	29,000	400	0.5000
					1,300	0.2500
					3,900	0.6250
					4,800	0.2500

[^6] used to obtain a minimum value for uncompensated life and maintenance use.
for overweight. The overweight violations from highway system 01 show 386 violations by 231 overweight vehicles. These data are dominated by the four-axle and more, semi- and truck-trailer units, and indicate that for these units there are approximately 0.60 weight violating vehicles per weight violation summons. These values are used to calculate weight factors as shown in Table 1-H-5.

The distribution of axle characteristics for overweight vehicles is obtained by applying the weight factors for specific vehicle types to the overweight axle characteristics for the vehicle type. This procedure entails multiplying the last colums in Tables l-H-4 and l-H-5. The results have been regrouped and axles with nearly equal characteristics have been combined. The results are presented in Table l-H-6.

Over-Registration and Overweight Vehicles

A combined distribution of axle characteristics for over-registration and overweight vehicles can be formed from tables prepared separately for these two violation types. The combined distribution is obtained by using revised weight factors for each combination of vehicle type and violation type. The denominator of the revised weight factor is $4.3903+$ $3.8112=8.2015$, the number of violating vehicles, over-registration and overweight, in the sample of l,000 trucks of all types. The numerators of the weight factors are over-registration or overweight vehicles of the specified type per l,000 trucks of all types. These latter quantities are listed in column 7 of Tables $1-\mathrm{H}-2$ and $1-\mathrm{H}-5$.

Vehicles Over Maximum Legal Weight Limits on System 31
An additional distribution is obtained to be used in setting an upper bound for uncompensated life and maintenance use per overweight violating vehicle. The data in Table W-6 for highway system 31 were chosen. This highway system contains roads which are being replaced by interstates so that current traffic runs partially on older roads which may be underdesigned for current usage. In addition, the W-6 data for this system are obtained on a road which currently has no permanent enforcement weight station.

The processing of data from the W - 6 table parallels that described previously except that the weight factor for vehicle type is derived directly from the overweight data sample. (There is no attempt or need in this case to obtain violator frequency for a l,000 truck sample of all types.) The results are presented in Table l-H-7 and l-H-8.

DEVELOPMENT OF WEIGHT FACTORS FOR OVERWETGFT VEHICLES

* Indicated by the ratio of overweight to legal weight axles for this type in the W-4 Table, All Main Rural.
** Ratio is overweight to total summonses.

AXLE CHARACTERISTICS OF OVERWEICHT VEHICLES ON PRIMARY POADE
(Systems Ol and 03)

		Single Axles			Tandem	
	Legal Weight (Kips)	Amount Over Legal Weight \qquad	Average Number of Axles Per Overweight Vehicle	Legal Weight (Kips)	Amount Over Legal Weight \qquad	Average Number of Sets Per Overweight Vehicle
	7.000	0.100	0.0143	29.000	0.400	0.2079
		0.300	0.0072		1.300	0.1900
		1.000	0.0179		2.200	0.0430
		1.200	0.0072		3.000	0.0484
	13.000	0.500	0.0354		3.900	0.0287
	14.000	0.200	0.0968		4.800	0.0126
		0.650	0.0914		6.500	0.0108
		1.100	0.0215	32.000	0.500	0.0926
		1.500	0.0242		1.200	0.0354
		1.950	0.0054		1.400	$0.073 ?$
		2.400	0.0027		2.400	0.0224
		3.200	0.0054		3.400	0.0217
	18.000	0.300	0.1151		4.300	0.0054
		0.800	0.0162		4.600	0.0118
		0.900	0.1977		5.300	0.0083
		1.300	0.0390		6.200	0.0081
		2.400	0.0083		8.200	0.0027*
		2.600	0.0118		10.000	0.0027*
		3.000	0.0027			

[^7]TABLE $1-\mathrm{H}-7$

DISTRIBUTIONS OF LEGAL AND ACTUAL AXLE WEIGHTS FOR OVER LEGAL WEIGHT VEHICLES BY VEHICLE TYPE (For Highway System 31)

TABLE 1 -H-8

AXIE CHARACTHERISTICS OF OVERWEIGHT VEHICLES ON PRIMARY ROADS

 (For Highway System 31)Single Axles

Legal	Amount Over	
Weight		
(Kips)	Legal Weight (Kips)	Average Number of Axles Per Overweight Vehicle
14.000	0.200	0.1446
	0.600	0.1205
	1.100	0.1325
	1.500	0.0602
	1.900	0.0482
	2.400	0.0241
	2.400	0.0120
	0.300	0.0120
	1.350	0.0482
	1.900	0.0120
	2.400	0.0120
	3.500	0.0120
		0.0120

Tandem Sets

Legal	Amount Over	
Weight		
(Kips)	Legal Weight (Kips)	Average Number of Axles per Overweight Vehicle
29.000	0.500	0.2892
	1.300	0.2410
	2.200	0.2651
	3.100	0.1205
	3.900	0.0964
	4.800	0.0482
	5.600	0.0241
	10.800	0.0241
	0.500	0.0482
	1.450	0.0241
	2.400	0.0482
	3.400	0.0361
	4.300	0.0482
	5.300	0.0482
	7.200	0.0241
	9.100	0.0241

Source of Basic Analytical Relationships

The basic analytical relationships are taken from Highway Research Board Special Report 61E, "The AASHO Road Test, Report 5, Pavement Research," and from two design guides. The design guides, prepared by the AASHO Committee on Design, are: "AASHO Interim Guide for the Design of Rigid Pavement Structures," April, 1962, and "AASHO Interim Guide for the Design of Flexible Pavement Structures," October 12, 1961.

Flexible Pavement Life Use

The relation between pavement condition, pavement structures, and loads carried is given by

$$
W=\frac{1}{R}\left(\frac{C_{0}-p}{C_{0}-C_{1}}\right)^{1 / \beta} \rho,
$$

where

$$
\begin{aligned}
& \mathrm{W}= \text { Number of axle applications } \\
& \mathrm{R}= \text { Regional factor (to account for environment and environ- } \\
& \quad \begin{aligned}
\text { ment-soil interactions) }
\end{aligned} \\
& \begin{aligned}
\mathrm{C}_{0}= & \text { Initial serviceability index (new pavement value) }
\end{aligned} \\
&= 4.2 \text { in AASHO tests, a value applicable to Iowa } \\
& \text { pavements }
\end{aligned}
$$

```
p = Present serviceability index (after the W axle applica-
                        tions)
C
    = 1.5
```

β and ρ are functions which contain the axle configurations, axle weight, and the pavement structural property.

$$
\begin{aligned}
& \beta=0.4+\frac{0.081\left(L_{1}+L_{2}\right)^{3.23}}{\left(S_{n}+1\right)^{5.19} L_{2}} 3.23
\end{aligned}, \text { and }
$$

where

$$
\begin{aligned}
& L_{1}=\text { Load carried by a single axle or tandem pair (kips)* } \\
& L_{2}=1.0 \text { for single axle; }=2.0 \text { for tandem pair } \\
& S_{n}=\text { Structural number, a property of the pavement given by } \\
& \qquad S_{n}=A_{1} D_{1}+A_{2} D_{2}+A_{3} D_{3} \\
& D_{1}, D_{2}, D_{3}=\begin{array}{c}
\text { Thickness in inches of the surface course, base } \\
\text { course, and subbase, respectively }
\end{array} \\
& A_{1}, A_{2}, A_{3}=\begin{array}{c}
\text { Coefficients of load carrying capacities of the } \\
\text { courses. }
\end{array}
\end{aligned}
$$

[^8]
Total Life

When S_{n} is given or calculated the total useful life of a pavement is calculated using the equation for W. In this calculation (p) is set equal to 2.5, the final value for primary roads. According to Iowa practice the regional factor R is set equal to 3.0 for Classes I, II and III, and 2.0 for Class IV. (The value $R=3.0$ has been used in calculations for this report.) The axle configuration and load are set equal to reference values, $L_{1}=18.0$ and $L_{2}=1.0$. The resulting value of W is written $W_{t r}$ and is the number of reference axle load applications which the pavement should sustain during its useful life.

Reference Axle Equivalences

With the total pavement life available in terms of reference axle applications it is necessary to define life usage by every axle in these same units, i.e., reference axle applications. The equivalence value sought is the number of reference axle applications which would use the same amount of pavement life as one application of the nonreference axle. It is given by

$$
W_{r x}=\frac{W_{t r}}{W_{x r}}=\frac{\rho_{r}}{\rho_{x}}\left(\frac{4 \cdot 2-2 \cdot 5}{4 \cdot 2-1.5}\right)\left(\frac{1}{\beta_{r}}-\frac{1}{\beta_{x}}\right)
$$

Here the subscripts r and x on ρ and β indicate that they are evaluated with the reference axle values and nonreference values respectively.

The value $W_{r x}$ is a measure of life use by the nonreference axle in terms of reference axle applications. The equation for $W_{r x}$ is applied twice for each violation axle. In one calculation the legal weight of the axle is used; in the second calculation the actual weight is used. The difference of these two values is the uncompensated life use by the violation axle, in units of reference axle applications.

The relations for the rigid pavement and their applications are similar to the flexible pavement case. The fundamental relation is

$$
W=\rho\left(\frac{C_{O}-p}{C_{O}-C_{I}}\right)^{I / \beta}\left(\frac{S_{c}^{\prime}}{S_{c} \sigma^{\prime}}\right)^{\left(4.22-0.32 p_{t}\right)}
$$

where as before

$$
\begin{aligned}
\mathrm{W}= & \text { Number of axle applications } \\
\mathrm{C}_{\mathrm{O}}= & \text { Initial serviceability index } \\
& \quad-\quad \text { (but }=4.5 \text { for rigid pavements) } \\
\mathrm{C}_{1}= & \text { Terminal serviceability index in AASHO tests } \\
& =1.5
\end{aligned}
$$

$$
\mathrm{p}=\text { Present serviceability index (after } W \text { applications) }
$$

The β and ρ have generally the same forms but different coefficients and exponents.

$$
\begin{aligned}
& \beta=1.0+\frac{3.63\left(\mathrm{~L}_{1}+\mathrm{L}_{2}\right)^{5.20}}{\left(\mathrm{D}_{2}+1\right)^{8.46} \mathrm{~L}_{2} 3.52} \\
& \rho=\frac{10^{5.85}\left(\mathrm{D}_{2}+1\right)^{7.35} \mathrm{~L}_{2} 3.28}{\left(\mathrm{~L}_{1}+\mathrm{L}_{2}\right)^{4.62}}
\end{aligned}
$$

$$
\begin{aligned}
& L_{1}=\text { Axle load or tandem set load (kips) } \\
& L_{2}=1.0 \text { for single axle; }=2.0 \text { tandem set } \\
& D_{2}=\text { Concrete slab thickness (inches) }
\end{aligned}
$$

The factor with S_{C}, $S_{c}^{\prime} \sigma$, and σ^{\prime} is used to compensate for material and soil differences between the analyzed pavement and the AASHO test pavements.
$p_{t}=\underset{\text { primary roads }}{\text { Terminal value of serviceability index, }}=2.5$ for Iowa
$S_{c}=$ Modulus of rupture for concrete (28 day) in the AASHO test (psi)
$=690 \mathrm{psi}$
$S_{c}^{\prime}=$ Modulus of rupture for concrete (28 day) in analyzed pavement (psi)

$$
\frac{\sigma}{\sigma^{\prime}}=\frac{\left\{\left[\frac{(E / k) D_{2}^{3}}{12\left(1-\mu^{2}\right)}\right]^{1 / 4}-a_{1}\right\}\left(E^{\prime} / k^{\prime}\right)^{1 / 4}}{\left\{\left[\frac{\left(E^{\prime} / k^{\prime}\right) D_{2}^{3}}{12\left(1-\mu^{2}\right)}\right]^{1 / 4}-a_{1}\right\}(E / k)^{1 / 4}}
$$

where

$$
\left.\begin{array}{rl}
E= & \text { Modulus of elasticity for concrete in AASHO test } \\
& =4.2 \times 10^{6} \mathrm{psi}
\end{array} \quad \begin{array}{rl}
\mathrm{E}^{\prime}= & \text { Modulus of elasticity for concrete in analyzed pavement } \\
& (\text { psi) }
\end{array}\right)
$$

$a_{1}=10.0$ inches, a load distribution measure
$k=$ The soil support value in the AASHO test (psi/in)

$$
=60.0 \mathrm{psi} / \mathrm{in}
$$

$k^{\prime}=$ Soil support value for analyzed pavement (psi/in)

Total Life

Total pavement life is calculated using the expression for W with $L_{1}=18.0$ and $L_{2}=1.0$, and $p=2.5$. The result is denoted as $W_{t r}$ reference axle applications.

Reference Axle Equivalences

As in the case with flexible pavement calculations the life used by a nonreference axle is calculated in terms of equivalent reference axle applications. The life use by axle sub x is

$$
W_{r x}=\frac{W_{t r}}{W_{t x}}=\frac{\rho_{r}}{\rho_{x}}\left(\frac{4.5-2.5}{4.5-1.5}\right)^{\left(I / \beta_{r}-I / \beta_{x}\right)}
$$

where the subscripts r and x indicate the use of reference and nonreference axle properties.

The equation for $W_{r x}$ is applied twice for each violation axle. The actual weight is used in one calculation, the legal weight in the other. The difference in $W_{r x}$ values is the uncompensated life use in the units (reference axle applications).

Load - Maintenance Relations

There are no explicit data which identify the relations between loads and pavement maintenance costs. There are, however, some data which provide a basis for estimating these relationships. In the AASHO road tests the pavements were inspected and their states recorded at closely spaced intervals. The history of pavement states and the history
of load passages were used to derive relations between cracking and load applications. Cracking is probably the best single measure of pavement maintenance requirements. It is used here to establish the uncompensated maintenance use per lane mile wich arises from the passage of an over legal axle load.

Flexible Pavement Cracking

The AASHO road test results indicated that the first appearance of class two cracking was related to pavement design, loads, and load applications. The class two cracking is likely to require patching or sealing and is considered here as an indication of the design-loadmaintenance relationship.

The relation has the form

$$
W_{C}=\frac{A_{0}\left(a_{1} D_{1}+a_{2} D_{2}+a_{3} D_{3}+a_{4}\right)^{A_{1}} L_{2} A_{3}}{\left(L_{1}+L_{2}\right)^{A_{2}}},
$$

where

$$
\begin{aligned}
W_{c}= & \text { Number of load applications to first appearance of class } \\
& \text { two cracking. } \\
& \quad \text { (weighted to smooth seasonal variations) } \\
I_{1}= & \text { Load carried by single axle or by tandem pair (kips) } \\
I_{2}= & 1.0 \text { for single axle, }=2.0 \text { for tandem pair } \\
D_{1}= & \text { Surfacing thickness (inches) } \\
D_{2}= & \text { Base thickness (inches) } \\
D_{3}= & \text { Subbase thickness (inches) }
\end{aligned}
$$

The capital and lower case A's were chosen by AASHO investigators to fit the test results.

Table l-I-l presents the values of the coefficients.

TABLE 1 -I-1
COEFFICIENTS FOR FLEXIBLE PAVEMENT CRACKING

Coefficient	Value
A_{0}	0.3048×10^{5}
$\mathrm{~A}_{1}$	7.275
$\mathrm{~A}_{2}$	3.136
$\mathrm{~A}_{3}$	2.947
a_{1}	0.33
a_{2}	0.10
a_{3}	0.08
a_{4}	1.0

The number of reference load applications to class two cracking forms the basis for calculating maintenance use. This value is obtained using the equation for W_{C} with $L_{1}=18.0$ and $I_{2}=1.0$. The result is denoted $W_{r r m}$. For a nonreference axle the equivalent use of maintenance is obtained as the ratio $W_{\text {rmx }}$.

$$
W_{r m x}=\frac{W_{r m}}{W_{x m}}=\left(\frac{1.0}{L_{2 x}}\right)^{2.947}\left(\frac{L_{l_{x}}+L_{2 x}}{19.0}\right)^{3.136}
$$

where

$$
\begin{aligned}
I_{1 x} & =\text { Nonreference axle load (kips) } \\
L_{2 x} & =1.0 \text { for single nonreference axle } \\
& =2.0 \text { for tandem nonreference axle set, }
\end{aligned}
$$

and the reference values 18.0 and 1.0 have been inserted together with the exponents. $W_{r m x}$ is the maintenance use by the nonreference axle x in terms of equivalent applications of reference axles. (Notice that the parameters relating to the flexible pavement structure cancel out.)

Application to Maintenance Use

The equation for $W_{r m x}$ is applied twice for each violation axle. In one calculation the legal load is used; in the second calculation the actual load is used. The difference of the resulting values is the uncompensated maintenance use in reference axle applications.

Rigid Pavement Cracking

The AASHO road test results provide the following relation between cracking and load applications for rigid pavements.

$$
C^{\prime}=\frac{A_{0} L_{1} I_{1}{ }^{2}}{A_{2}^{A_{2}}}
$$

where

$$
\begin{aligned}
C^{\prime}= & \text { cracking index, linear feet of cracks per } 1000 \text { square } \\
& \text { feet of pavement.* } \\
\mathrm{L}_{\perp}= & \text { Axle load or tandem set load (kips) } \\
\mathrm{W}= & \text { Number of applications }
\end{aligned}
$$

[^9]$D_{2}=$ Pavement thickness (inches)
A_{0}, A_{1}, and $A_{2}=$ coefficients dependent on the pavement reinforcement and axle configuration.

The relation can be written

$$
W=\left[\frac{C^{\prime} D_{2} A_{2}}{A_{0} L_{1} A_{1}}\right]^{I / 2}
$$

We chose a single axle load of 18.0 kips as a reference and any convenient amount of cracking, C^{\prime}, to form a basis for maintenance use. This basis is a number of reference axle applications given by

$$
W_{r m}=\left[\frac{C^{\prime} D_{2}^{A_{2}} 2 r}{A_{O r} A_{l r}^{L_{l r}}}\right]^{1 / 2}
$$

where the subscript r is used to indicate that the values and exponents are selected for the single axle, reference load.

The application of a nonreference axle will promote cracking equivalent to some applications of the reference axle. We interpret this as equivalent maintenance use. The equivalence is given by

$$
W_{r m x}=\frac{W_{r m}}{W_{x m}}=D_{2}\left(\frac{A_{2 r}-A_{2 x}}{2}\right)\left(\frac{A_{0 x}}{A_{0 r}}\right)^{I / 2} \frac{L_{1 x}\left(A_{I x} / 2\right)}{L_{I r}^{\left(A_{I r} / 2\right)}} .
$$

This is the maintenance use by nonreference axle x in terms of equivalent reference axle applications. The coefficients and exponents depend. on pavement and axle configuration as shown in Table l-I-2.

RIGID PAVEMENT CRACKING COEFFICIENTS AND EXPONENTS

Pavement	Axle Configuration	$A_{0}^{1 / 2}$	$\frac{A_{1}}{2}$	$\frac{A_{2}}{2}$
nonreinforced	single	1.995×10^{-5}	2.62	4.84
nonreinforced	tandem	2.455×10^{-7}	4.38	6.33
reinforced	single	1.122×10^{-5}	2.30	3.57
reinforced	tandem	4.266×10^{-7}	3.13	3.96

Application to Maintenance Use

The equation for $W_{r m x}$ is applied twice for each violation axle. In one calculation the legal load is used; in the second calculation the actual load is used. The difference of the resulting values is the uncompensated maintenance use in reference axle applications.

Basic Information Sources

1. ISHC: "Summary of Traffic Weight Operations for the Period July 1, 1966, through June 30, 1967."
2. ISHC Planning Division: Motor Vehicle Data.
3. Appendix 1, Tab B of this report.

Method of Analyzing Data

Item 3 indicated that $20.00(10)^{6}$ truck trips occurred in Iowa in 1968. Item 2 indicated that there were 356,000 vehicles registered in Iowa in 1968.

We have estimated that 48,000 panels and pickups only use the municipal system. Therefore, 307,815 vehicles use the rural system. $1 /$ This implies that $20.00(10)^{6} / 307,815=65.0$ trips per year were taken by the "average" vehicle. 2

Item 1 indicated that registration violations $3 /$ brought in $\$ 100,161$ for 9,824 violations or $\$ 10.20$ per violation. Once a violator is apprehended he must pay the registration increase and cannot pay the increase twice. Hence, the most Iowa can lose from such a violation if it goes unapprehended for a full year is $\$ 10.20$. We prorate this over the 65.0 trips to obtain an average loss per trip of $\$ 10.20 / 65.0=\$ 0.157$ per trip.

Results of Analysis

Average loss for Iowa per trip of a registration violator $=\$ 0.157$.

[^10]
FIXED AND VARIABLE COSTS OF ENFORCEMENT

Basic Information Sources

1. ISHC: "Budget Status Report," July 1, 1966 to July 14, 1967.
2. ISHC: "Table of Organization and Manning-Traffic Weight Operation," dated January 11, 1968.

Method of Data Analysis

Item 2 provided information on the number of men on the T.W.O. staff and their salaries. This was developed into an average salary figure.

Item I provided information on the other types of expenditures necessary to support T.W.O. These were divided according to whether they would vary with staff, i.e., whether they were fixed or variable.

Some costs were considered semi-fixed, i.e., would increase in steps once manpower passed certain fixed levels. These are associated with hiring more administrative personnel.

The calculations and assumptions are displayed in Figure l-K-l.

Result of Analysis

Shown in Figure 1-K-l, and in Section III-A-3 of the Report.

Salary (1967 average salary and benefits for enforcement officers): $1 /$ \$6. 813

Vehicle Operation (\$104,284 per year (1967)); per
enforcement officer, $\$ 104,284 / 56$):
Miscellaneous Budget (variable portion): $\underline{0.228}$
Total Variable Operating Cost per Enforcement Officer \$8.903 FIXED OR SEMI-VARIABLE OPERATING COSTS (Thousands)

Enforcement Leve1	$\underline{20-49}$	Current $50-90$	$\underline{91-150} \quad$	$\underline{\text { 151-210 }}$

Administrative Salary: ${ }^{\text {// }}$								
Director	(I)	\$10.70	(1)	\$10.70	(1)	\$10.70	(1)	\$ 10.70
Assistant Director	(1)	11.00	(1)	11.00	(2)	20.60	(2)	20.60
Stenographer	(1)	4.63	(2)	9.26	(2)	9.26	(2)	9.26
Clerk	(2)	8.00	(2)	8.00	(3)	12.00	(4)	16.00
Mechanic	(1)	7.86	(1)	7.86	(1)	7.86	(2)	15.72
Total Administrative Salary		\$42.19		\$46.82		\$60.42		\$72.28
Miscellaneous Budget		12.79		12.79		12.79		12.79
Total Fixed and Semi-Variable								
Operating Costs		\$54.98		\$59.61		\$73.21		\$85.07

I/ Average 1967 enforcement level $=56$, final staff level $1967=64$.
$\underline{2} /$ Numbers in parentheses indicate number of administrative personnel
in each capacity.

Figure 1-K-1 - Variable and Fixed Operating Costs of T.W.O.

AVERAGE LOSS PREVENTED FOR DETERRED OVERWEIGHT OR OVERSIZED VIOLATORS

Basic Information Sources

1. Table l, section III-B-10 of this report.?
2. Appendix 1, Tab A of this report.
3. ISHC T.W.O.: "Summonses Issued by Traffic Officers, July I, 1966,through June 30, 1967."

Method of Data Analysis

Item 1 indicates that overweight violators cause $\$ 0.00809$ worth of uncompensated wear per mile of travel. Item 2 indicates that violators travel on the average 108. miles. Hence overweight violators cause $0.00809(108)=.\$ 0.874$ damage per trip in violation.

Item 3 indicates that oversize violators which cause no damage make up 20.2 percent of both oversize and overweight violators taken together.

Hence the weighted average damage for overweight and oversize violators is:

$$
0.874(0.798)+0(0.202)=\$ 0.697
$$

Results of Analysis
Average loss for Iowa per trip of an overweight or oversized violator $=\$ 0.697$.

Use of Results

The average dollar value per trip for increased compliance, L_{v}, can now be calculated as the weighted average of the average dollar value for uncompensated road wear and the average value for increased registration
fees collected. L_{v} may be calculated from the following formula:

$$
L_{v}=f_{v W} L_{v W}+f_{v I} L_{v I}
$$

where

$$
\begin{aligned}
\mathrm{f}_{\mathrm{vW}} & =\text { fraction of overweight violators } \\
= & 0.3941 / \\
& \\
\mathrm{f}_{\mathrm{vl}}= & \text { fraction of violators committing registra- } \\
& \text { tion violations } \\
= & 0.606 \mathrm{l} / \\
\mathrm{L}_{\mathrm{VW}}= & \text { Loss per violator due to uncompensated } \\
& \text { road wear } \\
= & \$ 0.697 \underline{2} / \\
\mathrm{L}_{\mathrm{vI}}= & \text { Loss per violator due to withheld registra- } \\
& \text { tion fees } \\
= & \$ 0.1573
\end{aligned}
$$

therefore

$$
\begin{aligned}
\mathrm{L}_{\mathrm{V}} & =(0.394)(\$ 0.697)+(0.606)(\$ 0.157) \\
& =\$ 0.370
\end{aligned}
$$

The average dollar value for increased compliance per trip $=\$ 0.37$.

[^11]
CALCULATIONS FOR UNCOMPENSATED COSTS ON SECONDARY ROADS

General

These calculations require the same types of information and computations as are required for the primary roads. The same road life and maintenance use relations are applied here. This Tab M presents the sources, logic and procedures used for the paved secondary roads.

Distribution of Road Types and Costs

A representative sample of secondary road pavements and the general characteristics of the pavements were supplied by Mr. Eugene Mills, ISHC, in telephone calls. General pavement characteristics are shown in Table $7-\mathrm{M}-1$.

The structural characteristics for the flexible pavements are assigned and calculated as shown in Table l-M-2. The nearly equal types are combined with rounded structural numbers as will be shown in Table l-M-3.

Pavement Costs

Guidance in pavement cost is obtained from "Secondary structures Cost Assignment," Table l and 2. These tables ref'er to

Trunk Class Codes $1,2,3,4,5$, and 6

Feeder Class Codes 1, 2, 3, and 4

Local Class Codes 1, 2, 3, and 4

The average cost for new pavement construction per two-lane mile varies from $\$ 37,000$ to $\$ 42,000$. The average for all four cost areas is $\$ 39,750$. Using comparable primary road pavement costs a range of costs per lane mile is selected as $\$ 17,000$ to $\$ 26,400$, as will be shown in Table $1-M-3$.

Code	Type	Base + Surface	Surface
44	asphalt	less than 8 in.	road or plant mix ≥ 1.0 in.
46	"	"	plant mix asphalt ≥ 1.0 in.
47	"	"	plant mix asphalt <1.0 in.
48	"	"	inverted penetration ≥ 1.0 in.
54	17	greater than or equal to 8 in .	road or plant mix ≥ 1.0 in.
55	pcc	-	6 in. or 7 in. with no reinforcing or sub base
56	asphalt	greater than or equal to 8 in.	plant mix asphalt $\geq 1.0 \mathrm{in}$.
57	"	"	plant mix asphalt <1.0 in.
58	"	"	inverted penetration ≥ 1.0 in.

Code No.	Structure	Coefficient	Contribution to Structural No.	Structural Number
44 \& 46	2 in. asph. conc.	0.44	0.88	
	4 in. crushed stone	0.12	0.48	
	3 in. soil aggr.	0.05	0.15	1.51
47	$\frac{1}{2}$ in. asph. conc.	0.44	0.22	
	4 in. crushed stone	0.12	0.48	
	3 in. soil aggr.	0.05	0.15	0.85
48	l $\frac{1}{2}$ in. invert. pene.	0.20	0.30	
	4 in. crushed stone	0.12	0.48	
	3 in. soil aggr.	0.05	0.15	0.93
54	$2 \frac{1}{2}$ in. asph. conc.	0.44	1.11	
	6 in. asph. tr. base II	0.23	1.38	
	4 in. soil aggr.	0.05	0.20	2.68
56	$2 \frac{1}{2}$ in. asph. conc.	0.44	1.10	
	6 in. crushed stone	0.12	0.72	
	4 in. soil aggr.	0.05	0.20	2.02
57	$\frac{1}{2}$ in. asph. conc.	0.44	0.22	
	8 in. crushed stone	0.12	0.96	
	4 in. soil aggr.	0.05	0.20	1.38
58	$1 \frac{1}{2}$ in. invert. pene.	0.20	0.30	
	7 in. crushed stone	0.12	0.84	
	4 in. soil aggr.	0.05	0.20	1.34

Table 7 in the above reference provides estimated annual maintenance costs per mile as follows for Trunk and Feeder secondary roads.
Surface Type
Cost per Mile (\$)
1 paved
325
2 paved
660
3 dustless
790

On primary roads over one-half of surface maintenance costs go to pavement surface work. On secondary roads the fraction should be somewhat larger. Seventy-five percent is chosen so that pavement maintenance costs per lane mile year are taken as:

Pavement	Cost per Lane Mile Year
pec	122
asphalt	247

Table l-M-3 summarizes the secondary road pavements, extent and costs.

TABLE 1-M-3

PAVED SECONDARY ROAD PAVEMENTS AND COSTS

Code No.	Thickness or Structural No.	Road Miles	Fraction of Miles	Pavement Costs (\$)	
				Construction Lane/mile	Maintenance Lane/(Mile Year)
$47 \& 48$	$\mathrm{SN}=1.0$	678	0.0859	17,000	247
$\begin{gathered} 44,46,57 \\ \& 58 \end{gathered}$	$S N=1.5$	1,355	0.1716	18,000	247
56	$S N=2.0$	4,480	0.5674	19,000	247
54	$\mathrm{SN}=2.7$	35	0.0044°	20,000	247
55	$T=6 \mathrm{in}$.	677	0.0858	25,000	122
55	$T=7$ in.	670	0.0849	26,400	122

With the pavement construction costs in Table l-M-3 the average cost per lane mile is $\$ 19,800$, in agreement with the data from secondary structures cost assignment.

Distribution of Axle Weights

The axle weight data for the primary roads are modified to account for the different vehicle mix which is observed on the secondary roads. Data from three sources are used to establish the distribution of vehicle types on paved secondary roads. The sources are:

1. "Creston Origin and Destination Traffic Report," Iowa, 1961 (Data from external station on FAS 807 South, for July average weekday traffic, Table 3-1)
2. "Buena Vista Country Paved Secondary Road Origin and Destination Traffic Study," August 1961. (From the table, Vehicle Classification, Traffic passing through Buena Vista County Interview Stations, 1961 August average weekday traffic).
3. Telephone conversations with Mr. Eugene Mills, ISHC (From a traffic survey with two stations in Polk County and one station in Stafford County. These were only counts over a 24 -hour period.

Table l-M-4 presents the data from these three sources. The commercial vehicle counts are extracted and compared with data from the primary system in Table l-M-5. This latter table shows a substantial difference in the primary and secondary road traffic. On the primary system the single units constitute 48 percent of the total commercial; on the secondary system the single units constitute 91 percent of the total commercial. The distribution (from $W-4$ table) for primary roads is modified to the secondary distribution as shown in Table l-M-6. The distribution by type is then used to develop weight factors for overweight vehicles on paved secondary roads as shown in Table l-M-7. These weight factors are then applied to the overweight axle characteristics for highway systems Ol and 03. The results are presented in Table l-M-8.

VEHICLE TYPE DISTRIBUTION ON PAVED SECONDARY ROADS

	Source					
	1				3	
	No. Vehicl	of Total	No. Vehicles	\% of Total	No. Vehicles	\% of Total
Passenger Cars			5,094	78.19	1,009	77.85
Panels \& Pickups			690	10.59	176	13.58
Passenger Cars \& Panels \& Pickups	346	91.05	5,784	88.78	1,185	91.43
2 Axle - 4 Tire					22	1.70
2 Axle - 6 Tire					78	6.02
3 Axle					3	0.23
Total Single Unit Trucks	31	8.16	652	10.01	103	7.95
Buses			3	0.05		
4 Axle Semi					1	0.08
5 Axle Semi					2	0.15
Total Semi's	3	0.79	75	1.15	3	0.23
Double Bottoms					5	0.39
Total Multiple Unit Trucks	3	0.79	75	1.15	8	0.62
Total Commercial	34	8.95	730	11.21	111	8.56
Total	380	100.00	6,514	100.00	1,296	100.00

TABLE $1-M-5$

COMPARISON OF TRUCK TYPES ON SECONDARY AND PRIMARY ROADS

* Source No. 4 is the Table W-4: All Main Rural for 1966.

$\begin{gathered} \text { Vehicle } \\ \text { Type } \\ \hline \end{gathered}$	Number in 1000 Truck Sample on Primary Road	Factor for Conversion to Secondary \qquad Road	Calculated Number in 1000 Truck Sample on Secondary Road
Panel \& pickup	272	91/48	516
2 axle	154	"	292
3 axle	54	"	103
3 axle semi	31	9/52	5
4 axle semi	100	"	17
5 and 6 axle	364	"	63
Truck \& trailer(s) \& others	25	"	4

TABLE $1-\mathrm{M}-7$
DEVELOPMENT OF WEIGHT FACTORS FOR OVERWEIGHT VEHICLES ON PAVED SECONDARY ROADS

* The inferred values are derived from $W-4$ data applied to the primary road vehicle distribution.

TABLE 1-M-8
CHARACTERISTICS OF OVERWEIGHT VEHICLES ON SECONDARY PAVED ROADS

Single Axles			Tandem Sets		
$\begin{aligned} & \text { Legal Weight } \\ & \text { (Kips) } \\ & \hline \end{aligned}$	Amount Over Legal Weight \qquad (Kips)	Average Number of Axles Per Overweight Vehicle	$\begin{aligned} & \text { Legal Weight } \\ & \quad(\text { Kips }) \\ & \hline \end{aligned}$	Amount Over Legal Weight (Kips)	Average Number of Sets Per Overweight Vehicle
7.000	0.100	0.004100	29.000	0.400	0.064349
	0.300	0.002050		1.300	0.058952
	1.000	0.005125		2.200	0.013389
	1.200	0.002050		3.000	0.015071
13.500	0.500	0.121312		3.900	0.008472
14.000	0.200	0.030125		4.800	0.003732
	0.650	0.028459		6.500	0.003347
	1.100	0.006694	31.5	1.2	0.121312
	1.500	0.007535	32.0	0.500	0.028705
	1.950	0.001682		1.400	0.133180
	2.400	0.000841		2.400	0.006876
	3.200	0.001682		3.400	0.006726
18.000	0.300	0.072209		4.300	0.001682
	0.800	0.010223		4.600	0.040437
	0.900	0.396700		5.300	0.002555
	1.350	0.012018		6.300	0.005853
	2.400	0.002555		8.200	0.000841
	2.600	0.040437		10.000	0.000841
	3.000	0.000841			

The calculated values are summarized in Table 1 below.

TABLF $1-\mathbb{N}-1$

AVERAGE UNCOMPENSATED PAVEMENT COSTS PER VIOLATING VEHICLE MILE
Uncompensated
Costs per
Violating

Type
Violators

Overweight
Primary
(O1 and 03)
0.012531

Overweight
Primary
0.021205

Overweight
Secondary (paved)
0.001227 Overweight and Primary over-registra- (O1 and 03)
tion taken
together
0.00809

Overweight Primary
(O1 and 03) and secondary (paved)

Average value based on distribution of truck traffic on primary roads (69\%) and paved secondary roads (31\%).

[^12]Each entry in Table $1-\mathbb{N}-1$ is derived through consideration of road pavement types, their costs, and the uncompensated use per violating vehicle. Summary tables which follow indicate the magnitude of these considerations and the manner in which they are combined. The tables contain the major items which are described under Methodology, Road-Damage Submodel. The more detailed considerations and numerics appear in the appendices.

Tables $1-\mathbb{N}-2$, $1-\mathbb{N}-3$, and $1-\mathbb{N}-4$ show the assembly of the conservatively low value for the primary system. 1 Here, in the class 5 and 6 pavements, the mileage (extent factor) is divided equally between the extreme pavement thicknesses.

Tables $1-\mathbb{N}-5$, $1-\mathbb{N}-6$, and $1-\mathbb{N}-7$ show the assembly of the upper bound value for the primary system. 3 Here, added emphasis is given to the thinner pavement structures; the distribution of violations is taken from a highway section with no permanent (enforcement) weight station, and lower physical properties are used for the rigid pavements. The increase in uncompensated costs here is due mainly to the distribution of violations and the emphasis on thinner pavement structures.

Tables $1-\mathbb{N}-8$, $1-\mathbb{N}-9$, and $1-\mathbb{N}-10$ show the assembly of the uncompensated cost value for secondary roads.

The uncompensated cost value for secondary roads is higher than the comparable value for the primary system. This increase arises primarily from the lower structural properties of the secondary pavements. (The low structural property pavements have a higher cost per reference axle served during their useful life.)

The vehicle distribution by type is changed here to reflect the higher proportion of single unit trucks on secondary roads. Associated with this change is a reduction in large overweights applied by heavy vehicles.

The regional factor is reduced here to 1.0 . (The value 3.0 is used for all primary roads.) The final serviceability index is left at 2.5 although design practice in Iowa uses 2.0 as a final value for secondary roads.

I/ Rigid pavement calculations here.used: modulus of rupture $=650 \mathrm{psi}$, soil coefficient $=150 \mathrm{psi} / \mathrm{in}$, and modulus of elasticity $=4.2 \times 10^{6} \mathrm{psi}$.
2/ Rigid pavement calculations used: Modulus of rupture $=500 \mathrm{psi}$, soil coefficient $=100 \mathrm{psi} / \mathrm{in}$, and modulus of elasticity $=4.2 \times 10^{6} \mathrm{psi}$.

For secondary road rigid pavement the physical properties used are: modulus of rupture $=690 \mathrm{psi}$, soil coefficient $=100 \mathrm{psi} / \mathrm{in}$, and modulus of elasticity $=4.2 \times 10^{6}$ psi. The total rigid pavement life calculated in reference axle applications is reduced by the factor 0.68 to account for the lack of sub-base in pavement construction. The corrected life appears in the tables.

Tables $1-\mathbb{N}-11$ and $1-N \mathbb{N}-12$ show the assembly of the uncompensated cost value for over-registration and overweight violators taken together. Table l-N-3 is also applied in this calculation. The overweight values and pavement emphasis correspond to those used for the conservatively low uncompensated costs on primary systems 01 and 03 . The over-registration violators contribute less to uncompensated costs than do the overweight violators. As a result, the average uncompensated cost per violator mile is reduced.

TABLE 1-N-2

AVERAGE UNCOMPENSATED COST PER MILE FOR OVERWEIGHT VEHICLES

(Primary System OI and 03)

Road	Average Cost per Violation Mile (\$)	Road Extent \& Traffic Dist. Weight Factor	Contribution to State-Wide Average (\$)
Class 1	40.020	0.0000007	0.0000280
2	0.5956	0.0000208	0.0000124
3	0.4927	0.0000810	0.0000399
4 (8 in. pcc)	0.005275	0.1080476	0.0005700
5 (8 in. pcc)	0.002578	0.2347074	0.0006051
5 (9 in. pcc)	0.001568	0.4797352	0.0007522
$6(S N=5)$	0.008047	0.0131765	0.0001060
$6(S N=7)$	0.0008070	0.1642308	0.0001325

ROAD EXIENTI AND TRAFFIC DISTRIBUTION WEIGHT FACTORS

Road	Extent Factor	$\begin{aligned} & \text { Reference Axles } \\ & \times 10^{-6} \\ & \hline \end{aligned}$		$\begin{gathered} \text { Product } \\ \times 10^{-6} \\ \hline \end{gathered}$			Weight Factor		
Class 1	0.03	0.0001	138	0.000	004	1	0.000	000	7
2	0.01	0.0128	800	0.000	128	0	0.000	020	8
3	0.03	0.016	600	0.000	498	0	0.000	081	0
4 (8 in. pcc)	0.41	1.619	400	0.663	954	0	0.108	047	6
5 (8 in. pcc)	0.21	6.868	00	1.442	280	0	0.234	707	4
5 (9 in. pcc)	0.21	14.038	000	2.947	980	0	0.479	735	2
$6(S N=5)$	0.05	1.619	400	0.080	970	0	0.013	176	5
$6(S N=7)$	0.05	20.184	000	1.009	200	0	0.164	230	8

PRIMARY ROAD PAVEMENIS, THER UNCOMPENSATED USE BY OVERKEIGHT VEHICLES FROM SYSTEMS O1 AND O3

AVERAGE UNCOMPENSATED COST PER MIEE FOR OVERWEIGHT VEHICLES (Primary System 31)

Road	```Average Cost per Violation Mile _($)```	Road Extent \& Traffic Dist. Weight Factor	Contribution to State-Wide Average (\$)
Class 1	70.3739	0.0000008	0.0000563
2	1.09164	0.0000267	0.0000291
3	0.91508	0.0001038	$0.000,0950$
4 (8 in. pcc)	0.01067	0.1383417	0.0014761
5 (8 in. pcc)	0.01623	0.4579262	0.0074321
5 (9 in. pcc)	0.00985	0.2924964	0.0028811
$6(S N=5)$	0.01573	0.0269935	0.0004246
$6(S N=7)$	0.00163	0.0841109	0.0001371
			0.0125314

ROAD EXTENT AND TRAF'FIC DISTRIBUTION
WEIGHT FACTORS FOR UPPER BOUND ON PRIMARY ROADS

Road	Extent Factor	Reference Axles \qquad $\times 10^{-6}$	Product $\times 10^{-6}$	Complete Weight Factor
Class 1	0.03	0.000138	0.0000041	0.0000008
2	0.01	0.012800	0.0001280	0.0000267
3	0.03	0.016600	0.0004980	0.0001038
4 (8 in. pcc)	0.41	1.619400	0.6639540	0.1383417
5 (8 in. pcc)	0.32	6.86800	2.1977600	0.4579262
5 (9 in. pcc)	0.10	14.038000	1.4038000	0.2924964
$6(S N=5)$	0.08	1.619400	0.1295520	0.0269935
$6(\operatorname{SN}=7)$	0.02	20.184000	$\underline{0.4036800}$	0.084 .1109
			4.7993761	1.0000000

TABLE 1-N-7

PRIMARY ROAD PAVENENTS, THEIR UNCCOPENSATED USE BY OVERKEIGHIT VEHICLE FROM SYSTEM 31

TABLE 1-N-8

Road	$\frac{\text { AVERAGE UNCOMPENSATED COST PER MILE FOR }}{\text { OVFRWETGHTT VEHTCLES ON SECONDARY ROADS }}$ OVERWEIGHT VFHICLES ON SECONDARY ROADS		
	Average Cost per Violation Mile \qquad (\$)	Road Extent \& Traffic Dist. Weight Factor	Contribution to State-Wide Average (\$)
47,48	13.0810	0.0001230	0.001609
44,46,57,			
\& 58	1.7272	0.001922	0.003320
56	0.3401	0.032752	0.011139
54	0.05555	0.001526	0.000085
55 (6 in. pcc)	0.00854	0.291928	0.002493
55 (7 in. pce)	0.00381	0.671749	0.002559

TABLE $1-N-9$

ROAD EXTENT AND TRAFFIC DISTRIBUTION WEIGHT FACTORS FOR SECONDARY ROADS

Pavement	Extent Factor	Reference Axles $\times 10^{3}$	Product $\times 10^{-3}$	Weight Factor
47, 48	0.0859	0.41285	0.03546	0.000123
44,46,57 \& 58	0.1716	3.2285	0.55401	0.001922
56	0.5674	16.636	9.43927	0.032752
54	0.0044	99.970	0.43987	0.001526
55 (6 in. pce)	0.0858	980.62	84.13720	0.291928
55 (7 in. pcc)	0.0849	2280.4	193.60596	0.671749
			288.21177	1.000000

TABLE $1-N-10$
SECONDARY ROAD PAVEMENTS, THEIR UNCOMPENSATED USE BY OVERWE IGHY VEIICIES ON SECONDARY ROADS

AVERAGE UNCOMPENSATED COST PER MILE FOR OVER-REGISTRATION AND OVERWEIGHP VEHICLES (Primary systems Ol and 03)

Road	Average Cost per Violation Mile (\$)	Road Extent \& Traffic Dist. Weight Factor		Contribution to State-Wide Average (\$)		
Class 1	22.02	0.000	0007	0.000	015	4
2	0.3315	0.000	0208	0.000	006	9
3	0.2742	0.000	0810	0.000	022	2
4 (8 in. pce)	0.002802	0.108	0476	0.000	302	7
5 (8 in. pcc)	0.001426	0.234	7074	0.000	334	7
5 (9 in. pce)	0.000863	0.479	7352	0.000	414	0
$6(S N=5)$	0.004463	0.013	1765	0.000	058	8
$6(\operatorname{SN}=7)$	0.000441	0.164	2308	0.000	072	4

TABTE 1-N-12
PRIMARY ROAD PAVEMENHS, THEIR UNCOMPENSATED USE BY OVER-REGISTRATION AND OVERWEIGHT VEHICLES

$\begin{gathered} \text { Road } \\ \text { Class No. } \end{gathered}$	Pavement	Structural No. Coef.	$\begin{aligned} & \text { Structural } \\ & \quad \mathrm{No} . \\ & \hline \end{aligned}$	Reference Axles During Life	Avg. Uncompensated Ref. Axles per Violating Vehicle\qquad		Average Uncompensated Fraction Used per Violating Vehicle (overwt, and over-registration)		Pavement Cost per Lane Mile\qquad	Maintenance Cost per Lane Mile Year\qquad (\$)	Average Uncompensated cost per Mile per Violating V-hicle (Both overweight and over-reg.)		
					Life	Maintenance	Life	Maintenance			(\$)	(\$)	(\$)
$\begin{aligned} & \text { FLEXM } \\ & \text { FLEXL } \end{aligned}$	$\frac{1}{4}$ in. invert.pene. 7 in.rolled stone	0.20 0.12	$\begin{aligned} & 0.89 \\ & (1.00 \text { used) } \end{aligned}$	0.13762×10^{3}	0.14068	0.10248	0.10223×10^{-2}	0.74468×10^{-3}	17,500	277	17.89	4.13	22.02
2	2 in.asph.conc. 7 in. bit.tr.soil ag.	$\begin{aligned} & 0.44 \\ & 0.20 \end{aligned}$	$\begin{aligned} & 2.28 \\ & (2.3 \text { used) } \end{aligned}$	0.128×10^{5}	0.1336	0.10248	1.044×10^{-5}	0.8006×10^{-5}	27,500	277	0.2871	0.0444	0.3315
3	3 in.asph.conc. 8 in.rolled stone 2 in.soil aggr.	$\begin{aligned} & 0.44 \\ & 0.12 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 2.38 \\ & (2.4 \text { used) } \end{aligned}$	0.166×10^{5}	0.1328	0.10248	0.8000×10^{-5}	0.6173×10^{-5}	30,000	277	0.2400	0.0342	0.2742
${ }^{4}$	4 in.asph. conc. 8 in.pec	$\begin{aligned} & 0.44 \\ & 0.40 \end{aligned}$	$\begin{aligned} & 4.96 \\ & (5.00 \text { used) }) \end{aligned}$	1.6194×10^{6}	0.13318	0.10248	0.82240×10^{-7}	0.63282×10^{-7}	34,000 (asph.resurface of pcc)	97	0.002796	0.000006	0.002802
${ }_{4}^{4}$	4 in.asph.conc. $9 \text { in.pce }$	$\begin{aligned} & 0.44 \\ & 0.40 \end{aligned}$	$\begin{aligned} & 5.36 \\ & (5.4 \text { used }) \end{aligned}$	2.81×10^{6}	0.1321	0.10248	0.470×10^{-7}	0.365×10^{-7}	34,000 (asph.resurface of pcc)	97	0.001598	0.000004	0.001602
RIGDM ${ }^{\text {a }}$													
RIGDL 5	8 in.pcc 9 in.pce	--	--	6.868×10^{6} 14.038×10^{6}	$\begin{aligned} & 0.18879 \\ & 0.19614 \end{aligned}$	0.12228 0.11867	$\begin{aligned} & 0.27488 \times 10^{-7} \\ & 0.13972 \times 10^{-7} \end{aligned}$	$\begin{aligned} & 0.17804 \times 10^{-7} \\ & 0.88534 \times 10^{-8} \end{aligned}$	$50,000$	$\begin{array}{r} 147 \\ 147 \end{array}$	0.001374	0.000052	0.001426
	9 in.pce	--		14.038×10^{6}	0.19614	0.11867	0.13972×10^{-7}	0.84534×10^{-8}	$60,000$	147	0.000838	0.000025	0.000863
FLEXM 66FLEXL	3 in.asph conc.	0.44											
	10 in . asph.tr.c. stone	0.34											
	6 in . soil aggr.	0.05	$\begin{aligned} & 5.02 \\ & (5.00 \text { used) } \end{aligned}$	1.6194×10^{6}	0.13318	0.10248	0.82240×10^{-7}	0.63282×10^{-7}	50,000	277	0.004112	0.000351	0.004463
	4.5 in.asph.conc. 14 in. asph.tr.c. stone	$\begin{aligned} & 0.44 \\ & 0.34 \end{aligned}$											
	6 in. soil aggr.	0.05	$\begin{aligned} & 7.04 \\ & (7.00 \text { used }) \end{aligned}$	20.184×10^{6}	0.13899	0.10248	0.68864×10^{-8}	0.50773×10^{-8}	60,000	277	0.00041 .3	0.000028	0.000441

BIBLIOGRAPHY

Publications Obtained From the Iowa State Highway Commission

1. Accounting Policy and Procedures Manual (1967).
2. Analysis of Traffic Volume and Weights at Iowa Loadometer Stations (1963).
3. Detailed Rules and Regulations Governing Access Along the Iowa Primary Road System Where Access Rights Have not Been Acquired (1966).
4. Five Year Primary Road Construction Program (1968-1972).
5. Guide for Primary and Interstate Road Pavement Design (1968). Design Department - Soils.
6. Iowa - Analysis of Traffic Volume and Weight Study (1966).
7. Iowa Hiway Hilites, January 1968.
8. Maintenance Control Sections.
9. Iowa Sufficiency Guide for the Municipal Extensions on the Primary Road System (1967).
10. Iowa Traffic Weight Operations Folder.
11. Location and Sufficiency Rating...of Bridges and Underpasses on Primary Roads and Primary Road Extensions (1967).
12. Maintenance Department Cost Accounting Organization and Procedures (1966).
13. Manual of Class Specifications (1967).
14. Origin-Destination Study (1960).
15. Policy of Iowa State Highway Commission on the Acquisition of Access Rights Along the Interstate and Primary Road Systems (1966).
16. Report on the Continuing Needs Study Development and Operation, Roy Jorgensen Associates, Inc. (1968).
17. Rural Primary Road Sufficiency Guide (1966).
18. Sample of Daily Operations' Reports.
19. Summaries of Iowa Traffic Weight Operations -- Hours Open, Scale Traffic Counts.
20. Truck and Bus Registration in Iowa (1966).
21. Volume of Traffic on the Primary Road System (1965).
22. Xerox Copies of Articles Relating to Trucking and the Highway Commission -taken from Iowa newspapers during 1967 and early 1968.

Highway Research Board Publications

23. Extension of AASHO Road Test Concepts - Four Reports, HRR 42.
24. Line Haul Trucking Costs and Weighing Vehicles in Motion - Two Reports, HRR 127.
25. Line Haul Trucking Costs in Relation to Vehicle Gross Weight, HRB Bull. 301.
26. Motor Vehicle Speed, Weight and Travel Times, HRB Bull. 303.
27. Pavement Research, HRB Special Report, 61E, Report 5.
28. Road Test one - M, $H R B$ Special Report 4.
29. Summary Report, HRB Special Report 6lG, Report 7.
30. Weighing Vehicles in Motion, HRB Bull. 50.

Scales and Weighing Equipment

31. Lee, C. E., "A Portable Electronic Scale for Weighing Vehicles in Motion," Center for Highway Research, University of Texas (1966).
32. Lee, C. E., "A Portable Scale for Weighing on the Move," "Instrumentation Technology," January 1967.
33. Cardinal Scales Brochure.
34. "Dynamic Vehicular Weighing System," Final Report, June 15, 1967,
Philco Project H-44l0 for Pennsylvania Department of Highways. Philco Project H-44l0 for Pennsylvania Department of Highways.
35. Murphy-Cardinal Axle Load Scales Brochure.
36. Murphy-Cardinal Motor Truck Scales-Permanent Pit Types.
37. Murphy-Cardinal Portable Motor Truck Scales.
38. Puckett, Russell E., "Selecting the Best Scale for In-Motion Weighing," Public Roads, 33-3, August 1964.

State Publications Relating to Traffic Weight Operations
Alaska
39. Truck Weight Report, Alaska Department of Highways, Annual Bureau of Public Roads Report (1967).

Arizona
40. Truck Weight Study, Arizona Highway Department, Annual Bureau of Public Roads Study (1967).

Arkansas
41. Description and Summary of Arkansas for 1967 Traffic Weight Operations, Arkansas State Highway Department.

Delaware
42. 1966 Truck Weights and Characteristics, Delaware State Highway Department, Annual Bureau of Public Roads Study.

Florida
43. Guide Rules for Issuance of Oversize and Overweight Hauling Permits, and Florida Statutes on Regulation of Traffic on Highways, Florida State Road Department (1965).

Illinois
44. Analysis of Weight Violation Arrests by State of Origin. Illinois State Highway Police (1967).
45. 1966 Truck Weight Survey Illinois Division of Highways, Annaul Bureau of Public Roads Study.

Indiana
46. Letter Summary of Traffic Weight Operations and Comparative Annual Activities Report, Indiana State Policy - Motor Vehicle Inspection Division (1967).

Kansas
47. 1966 Kansas Truck Weight Volume Study, Kansas State Highway Commission, Annual Bureau of Public Roads Study.
48. Policy of the Highway Commission on the Issuance of Special Permits, Revised 1968, Kansas State Highway Commission.
49. Summary of Traffic Weight Operations for 1967 in Kansas, Kansas State Highway Commission.

Massachusetts
50. 1966 Truck Weight Study, Massachusetts Department of Public Works Annual Bureau of Public Roads Study.
51. Massachusetts Statutory Weight Limits (1967).

Michigan
52. Data on Traffic Weight Operations for Michigan's 1967 Operations obtained by visit to Mi.chigan State Highway Department.

Minnesota
53. Brief Letter Summary of Minnesota Traffic Weight Operations, Minnesota Department of Highways (1968).

Mississippi

54. 1966 Truck Weight Study, Mississippi State Highway Department Annual Bureau of Public Roads Study.

Missouri
55. 1963 Truck Weight and Vehicle Classification Study, Missouri State Highway Department, Annual Bureau of Public Roads Study.

Nebraska
56. Summary of Scale Section Activities for 1962-1967. Nebraska Department of Roads.

New Mexico
57. 1966 Truck Weight Study, New Mexico State Highway Department, Annual Bureau of Public Roads Study.

North Carolina
58. Report of State Automobile Inspections and Weight Stations, North Carolina Department of Motor Vehicles (1967).

North Dakota
59. Letter Description of Traffic Weight Operations for 1967 in North Dakota, North Dakota State Highway Department.

Oregon
60. Letter Summary of Traffic Weight Operations, in Oregon, Oregon State Highway Department (1967).

Pennsylvania

34. Dynamic Vehicular Weighing Systems, Final Report, June 15, 1967, Philco Project H-4410 for Pennsylvania Department of Highways.

South Dakota
61. Truck Weight Study, South Dakota Department of Highways (1966), Annual Bureau of Public Roads Study.

Utah
$\overline{62 .}$ Arrests and Warnings (1966 - 1967), Utah Highway Patrol.

Vermont
63. 1966 Vermont Annual Truck Weight Study, Vermont Department of Highways, Annual Bureau of Public Roads Study.

Virginia
64. Detailed Description of Viriginia's Weighing System and Its Operation and Effectiveness, Virginia Department of Highways (1967).

Washington

65. Weight Control (1967), Washington State Patrol.

West Virginia
66. Allowable Vehicular Weights and Special Load Limits in West Virginia, West Virginia State Road Department (1967).

Wisconsin
67. Truck Enforcement Report, Wisconsin Department of Transportation (1967), 1964 Truck Weight Study Report, State of Wisconsin, Annual Bureau of Public Roads Report.

Other Publications
68. "A Formula for the Allocation of Maintenance Funds for Highways Using a Mathematical Model To Predict Maintenance Costs," Sutarwala, Zafar, K., and Lawrence Mann, Jr., Bulletin No. 72, Louisiana State University, Engineering Experimental Station, Baton Rouge.
69. "Background - U.S. Transportation Issues," American Trucking Association.
70. "Instruction Manual for the Compilation and Reporting of Highway Mileage," Bureau of Public Roads (1962).
71. "Instructions for Annual Trucking Characteristics Study and Instructional Memoranda," U. S. Department of Commerce - Bureau of Public Roads.
72. "Intercity Truck Tonnage, 2nd Quarter, 1967, "Department of Research and Transportation Economics," American Truckers Association, Inc.
73. "Map of State Size and Weight Maximums," Fleet Owner, March 1966.
74. "Maximum Desirable Dimensions and Weights of Vehicles Operated on the Federal-Aid Systems," Bureau of Public Roads (1964).
75. "Motor Carrier Line - Haul Costs Per Vehicle Mile (1966).
76. "State Height, Width, and Weight Maximums," Fleet Owner, March 1966.
77. "State Height, Width and Weight Maximums," Fleet Owner, October 1967.
78. "State Legal Maximum Dimensions and Weights of Motor Vehicles Compared with AASHO Standards (1967).
79. "Summary of Size and Weight Limits and Reciprocity Authority," American Trucking Authorities (1967).
80. "Values of Time Savings of Commercial Vehicles," National Cooperative Highway Research Program Report 33 (1967).

This appendix contains a brief outline of the summons data coding format used by the ISHC to compile the violations tape for 1967. A page of sample violation records is in luded as Table $3-1$. Each record represents 80 columns of data from an IBM card, divided as follows:

Item 1 Columns 1-5, Date summons was issued - day, month, and year.

Item 2 Columns 6-7, Code number of officer issuing summons.

Item 3 Columns 8-12, The last five digits of the summons number.

Item 4 Columns 13-32, Name of the owner of the vehicle in violation.

Item 5 Columns 32-34, Number of the county in which the violation was acted upon.

Item 6 Columns 35-44, Address of the owner of the vehicle.

Item 7 Column 45, Code number of the violating vehicle type.

Item 8 Columns 46-47, Code number of the scale at which violation was apprehended.

Item 9 Columns 48-49, Code number of county of origin for Iowa registered vehicles, or of state of origin for out of state registrations.

Item 10 Columns 50-54, License number of the violating vehicle.

Item 11 Columns 55-56, Code number of type of violation.

Item 12 Columns 57-66, Amount of fines assessed and fines paid.

Item 13 Columns 67-70, Amount of costs paid.

Item 14 Columns 71-77, License class required, and amount paid for license change.

Item 15 Columns 78-80, Type of completion and date of completion.

The computer program, Violation Tape Analysis, documented in Appendix 6, analyzed the data on the violation tape to produce information on the numbers and fractions of violations that were:

1. in state and out of state;
2. overweight and not overweight;
3. apprehended during the day versus apprehended during the night; and
4. the fraction of violators that received more than one summons.

It is recommended that an owner code be added to the record of each violator, so that a file of multiple violators can be maintained by the computer.

0 勺7672747195AMEは ？US $207676649919 A N E R$ IUS LINES C776773465E\＆AMER $112666622221 A M F R$ J4－676150357ANER 273078440558 ANËR CYANAMIC CD O3－6773552CCAMER CYANSNIL 1ECO7C651541AMER EOUIP 034077343575 ANER FARN LINE OEG6762474C4AMER FARN LINES 300673353505 ANER FGOD $235677148170 A N E K$ FGGUS $222673142414 A M E R$ FUEL \＆SUF 130673353487 AMER HLMES O66671347438ANER HEMES INC 311672739 C С AMER LBK 15E6EE230C70AMER LSNC； J9－67525472CAMER MILLINU 254666225222 AMER MVG \＆STG 0230764429 C5AMLR OIL 179678451134ANER RED BALL TRS $031076624152 A M E R$ RUA1J EGUIP $317676649569 A N E R$ SHUFFLE BOARDS J3－671556C55AMER SYNTHFTIC 172078240870 AMER T \＆T 06－67925363CAMER TEL \＆TEG $24866 E 133137$ ANER TENT \＆CAN 15E6O64379S1ANER TENT \＆CANVAS 1536E5E251GGAMER TK REN $230608630408 A N E K$ TRF \＆STG 15EOT8156823ANER TRS OS3E7Eヒ4IE7SAMER TKS LINES $076667723231 A M E R$ IJNIFRRN $15867155101 C A M E R$ VALVE 06267C6B58IOAMERICAN UIL U606́6632950AMCRICAN VAN LINES \＆ $8-673153 \varepsilon I 7 \Delta M E S$ E BASS 017661827640 ANES K D $31167 C \in 41105$ ANF n TCDL INC 195C7E246S43AMMONS BR $166665830040 A A R$ TK LEASE 230671154373 ANSLEN $\subset \quad$ D 266672447773 AMUNELSCN H 048605832563 ANNAY CORP C86672247CG4ANAMOSA CUNC PRED OQ－6658373GGANASTASI F $118675449 C 77 A N C H O R$ LSNG 264676E42S67ANCHOR MTR FRT $2256 ; 5628941 \mathrm{ANCO}$ MFE SUP 3C167273984OANCERSEN FH $159671452339 A N D E R S O N$ E MANDLE $310678352716 A N D E R S U N$ BROS 236667825978 ANOERSCN C 039667730366 ANOERSON $C \quad B$ 091668218810 ANDERSON $C L$ 2846666262G7ANOERSON C JKG 12E6E 3357 C ZANDERSUN CHEN PAGE 6

OYLINCCLN
78LINCCLN
CHIEF VAN LINES75MEMPHIS
78LITTLETON
78 SCOT ELF
78 JACKSCN
75ALTUN 11 LCHRV $775 \times \mathrm{C}$ IlGKLA C 78CKLA C 27K C 17ST FAUL 77MILhAUKEE 770 M $06[\mathrm{M}$ C9NPLS 94 D M 78RALSTCN 65 CCL 78CASPER 75 INDPLS 78OMAHA T8UNICN C lGLCUISV 08K C o8K C 78 LAF 75 CH I 78 CHI 75BENTON 16INCPLS 77 SCARSB 78FT WAYNE 77MARCUS 22MC GREGOR 77 C M 85 RCGERS 78FAIRF O6VINTCN 45 CRESCC 78ADA lgANANCSA 78 HARLAN $97 C N A H A$ 78 WARREN 78 TULSA 38COR FALLS 16NILAN 71 SUTHERLANOZ 7 O8GOWRIE 78 ANARILLC 75LTTEHF

3064 K 178938201000010000400 17 MLTN $212 \quad 8301000010000400 \quad 162$ 75 WAGNER $\quad 311407115$ Y8101000010000400

10820000762001200012000400
173 12040 EC4358201000010000400 $3114 \mathrm{JTOU348201000010000400}$ 3060NTETES52010CCO10000500 3200NOTEMP3001300013000400 $3062 L P 73823 C C 10 C C O 10000500$ 21184012362003700037000400 4 1K138729103000030000500 322YYA61355005752057520400 $3183 \mathrm{NO} 122782010000100 \mathrm{C0400}$ 3063 N0232982010：0010000500 $3 \quad 2 \mathrm{MOS} 756820100001000040 \mathrm{C}$ 2122K247672000E40008400400 20940588168201000010000400 323YYAO225301373C137300500 305YY 882892005780057800400 2082K277168201000010000400 $377003488401 C 00010000400$ 321YYA26903001100011000400 2101EPE1158201000010000400 3064 RT14118201000010000500 $2112 J 3632 C 8301000010000400$ $2062616286910040 C 0 C 4000500$ 3202RP97829201400014000400 32810813785009251092510400 21724235448101000010000400 217246950387005000050005000500700174 3104K044P $\times 5007179071790400163$ E3204J433PX8201000010000400 31114369128201000010000400 $3201 K 670770201000010000400$ $3114 \mathrm{JXO2C2820050COC5000400}$ $2281 \mathrm{~L} 1327 \mathrm{~F} 82010 \mathrm{C0010000400}$ 222790066786
$3061 L 9335 \mathrm{LSGC1COOO10000500}$ 323YYA46325002988029880400 2 220C3CC86C0500005000400 3 YYAOC732016660166600500 2140 LL19768200500005000400 30600M8364820100001000050C 20602941500388203882174 174 171 162 173 871 164 174 471 171 172 2960133510005000050004000501500373 3062J27621830150CC15000500 163 413530039910005000050004008200750172 20683017292000750007500500164 $22620097 C 53002300023000400$ 173 3202J324CN8201000010000400 172 $2063 N 4577782 \mathrm{ClC00010000500} 162$ 238018722002700027000400171 $3291 K 0 P 1343003885038850400173$ 21175030798600500005000400 174 271002242001540015400400363 $311407115 Y 8101000010000400 \quad 163$ 217940304610005000050004000709500161 $.3064 K 382148201000010000500162$ $3112 K C 76338201000010000400164$

APPENDIX

SAMPLING INSTRUC'TIONS FOR OPERATIONAL RECORD SAMPLE

T.W.O. Cost/Effectiveness Data Collection

Sampling Instructions

1. Purpose of Sample: To compare the cost/effectiveness of current fixed scale and roving patrol T.W.O. work parties.
2. Frame or File to be Sampled: Calendar year 1967 file of Form 771 "Scale Station Record - Daily Report."
3. Information to be Recorded from Records: As on enclosed sample information sheets. There should be one sheet filled out for each party's 8 -hour period of operation. (There may be several Form 771's covering one such period for busy parties.) Most of the information will come from the Form 771's, but it may be necessary to obtain some corresponding data from accounting or other records.
4. Size of the Sample: Approximately 5 percent (l out of 19 operating periods for every party).
5. Method of Sampling: Systematic sample of every l9th work period with a new random starting point for each work party.
6. Details of Sampling Procedure:
A. The records for each party are bound together in a few volumes. The procedure below is repeated for each work party.
B. Pick a random starting point for the work party from the attached table of random numbers. (Cross off each random number as it is used and do not use any number more than once.)
C. Count down to the starting point in the first volume for the work party. For example, the first random point is 03 ; therefore, the first party's starting point is 03, i.e., the first work period (not Form 771) to be sampled is the 3rd.
D. Record all data on the starting point work record (l or more Form 771's) onto a sample data sheet.
E. Count down 19 more work periods and copy the data on that record. Count down 19 more, copy and so on until all records for the work party have been counted, e.g., the first party will be represented by the 3 rd , 22nd, 4lst, etc., records, yielding approximately a 5 percent sample for the calendar year 1967.
F. Repeat procedures B through F for all other work parties.
G. If the data on a record are unusable for any reason, simply reject the record, count down 19 more and continue. Keep two tallies on the number of such rejections, one for fixed sites and one for roving patrols.
H. As of now the only known reason for a large number of rejections would be due to unclosed cases which should not be included in the sample. If some other major reason for rejections appears, or if the rejection rate exceeds 10 percent, please advise MRI.
7. Also, if for any reason, you do not consider 1967 sufficiently representative of current methods of operation, please advise MRI.

TABLE OF RANDOM STARTING POINIS

03	17	13	12	09	03	04	05	17	05
19	15	04	18	12	11	17	19	18	11
05	10	11	16	06	15	10	16	01	12
02	14	07	08	01	08	18	02	09	10
09	02	06	07	14	02	13	06	08	16

NOTES: 1. Use in any order.
2. Cross off as used.
3. Do not use any number more than once.
4. Use as many as needed, extras are supplied.

Scale No. \qquad

T.W.O. SAMPLE OF DAILY OPERATIONS REPORTS

1. Mode of Operation: A. Fixed Station Roving Patrol (Circle A or B)
2. A. Date $5-1-68$
B. Hours of Operation $\eta A M$ to $3 P M$
C. Inactive Periods: a. Lunch \qquad to \qquad
b. Administrative \qquad to \qquad
c. Other \qquad to \qquad
3. A. Number of Personnel on Duty: a. Capt. \qquad b. Sgt. \qquad c. Officer $/$
B. Number of Man-Hours Charged: a. Capt. \qquad b. Sgt. 8 c. Officer 8
4. A. Number of Summons Issued 1 Later opp.
B. Fines Paid \qquad
C. Court Costs Paid \qquad
D. Registration Increases Paid to Iowa \qquad
5. Out-of-Pocket Expenses:
A. Mileage at $4-1 / 2$ ¢ per mile 136
C. Public Scale Payment \qquad
B. Subsistence 3.80
D. Other \qquad

Comments (weather, etc.)

APPENDIX 5

OPERATIONAL EXPERTMEINT SAMPLE DATA SHEET

Background

Current weight scale traffic count records do not include recording traffic flow rate by time of the date, but only record total traffic by truck type for the entire day of operation.

The attached form was used to gather information on the rate of traffic flow so that an evaluation could be made of the daily manpower scheduling practices now used. The data were also used to analyze the possible "decay" in truck traffic following the opening of a scale. The data were processed by the computer program documented in Appendix 7.

WEIGHT SCALE TRUCK TRAFFIC COUNT

TRK - Pickups, Campers, etc.	TT-ST2 - 2 Axle Tractor 2 Axle Trailer
TK - 2 Axle Truck	TT2-ST2 - 3 Axle Tractor 2 Axle Trailer
TK2 - 3 Axle Truck	TT2-ST3-3Axle Tractor 3 Axle Trailer
TT-ST - 2 Axle tractor 1 Axle Trailer	TK - Pup - Tk and any Pup Trailer

The program IOWA TAPE is written in COBOL and 360 Basic Assembly Language and is presented here. The program computes the numbers and fractions of violations that are: (1) in state and out of state; (2) overweight and not overweight; (3) apprehended. during the day versus apprehended during the night, and (4) the fraction of violators that received more than one summons. Input to this program is the T.W.O. violation tape.

CCOOIO IOENTIFICATION DIVISICN.

000020 PROGRAM-IC. IIOWATAPE.

OOOO40 ENVIRONMENT DIVISION.
OUUUSO CONFIGURAIION SECTION.
000060 SOURCE-COMPUTER. IBM-360F30.
000070 OBJECT-COMPUTER. IBM-360 F30.
OOOO80 INPUT-OUTPUT SECTION.
000090 FILE-CONTROL.
000100 SELECT INPUT-TAPE ASSIGN TO 'SYSOOI' UTILITY 2400 UNITS.
000110 SELECT PRINTER ASSIGN IU 'SYSOO2' UNIT-RECORO 1403 UNIT.
001010 DAIA DIVISIQN.
001020 FILE SECTIUN.
001030 FD INPUT-TAPE
001040 RECORDING MODE IS F
001050 BLOCK CONTAINS 20 RECORDS
001060 RECORD CONTAINS 80 CHARACTERS
001070 LABEL RECORDS ARE OMITTED
001080 DATA RECORD IS INPUT-X.
00201001 INPUT-X.
002020 D 03 PICTURE $\times(5)$.
002030 DATE-X REDEFINES DATE.
002040 DAY PICTUREX.
$002050 \quad 05$ FILLER PICTURE X(4).
002060 FILLER PICTURE $03(40)$.
002070 VEHICLE PICTURE X(9).
002080 VEHICLE-X REDEFINES VEHICLE.
C02090 PICTURE 05 (2).
002100 STATE PICTURE XX.
$002110 \quad 05$ FILLER PICTURE $\times(5)$.

PAGE 1

PAGE 2

```
005010 01 RECORD-IDENTIFICATION.
005020 03 OLD-RECORD.
005030 05 FILLER PICTURE X(14) VALUE 'XXXXXXXXXXXXXXXX..
005040 03 NEW-RECORD.
005050 O5 DATE-NEW PICTURE X (5).
005060 05 VEHICLE-NEW PICTURE X(9).
005070 01 DISTX-2 COMPUTATIONAL-3.
005080 03 DISTX PICTURE S9(T) OCCURS 100 TIMES.
00602001 LINKAGE-DATA
006030 03 REVENUE-OUT PICTURE S9(5)V99 COMPUTATIONAL-3.
006040 03 FINE-IN PICTURE X(5).
006050 03 COST-IN PICTURE }\times(5)
007010 Ol DETAIL .
007020 03 DESX-01 PICTURE X(50).
007030 03 FILLER PICTURE X(5).
007040 03 DESX-02 PICTURE Z(9)9.
007050 03 DESX-03 REDEFINES DESX-02 PICTURE Z17l.99.
007060 03 DESX-04 REDEFINES DESX-03 PICTURE Z(3)9.9(5).
007080 01 LINEX.
007090 03 FILLER PICTURE X(5).
007100 03 1 PICTURE Z29.
007110 03 FILLER PICTURE X(5).
007120 03 J PICTURE 2(7)9.
008010 PROCEDURE DIVISION.
008020 UPEN INPUT INPUT-TAPE, OUTPUT PRINTER.
008070 MOVE ALL • - TO LINE.
008030 MOVE 'X' TO Sl.
008040 MOVE 'X' TO S2.
008060 MOVE 'X' TO S3.
```



```
OO9140 ELSE ADO 1 TO OTHER
GOY1:0 MOVE 'Y'IHS S2.
OOY16:O MOVE FINE TO FINE-IN.
OO9170 M!TVE COST TO COST-IN.
O09181) ENTER LINKAGE.
00Y190 CALL •TOTALREV' USING lINKAGE-DATA.
009200 ENTER COBOL.
O10O10 IF DAY, 'O' ADD REVENUE-OUT TONIGHT-REV ADD I TO INIGHT-'i,
O10020 ELSE ADD REVENUE-OUT TO DAY-REV ADD I TO MAY-NII.
010030 ADO I TO TOTAL-VIOL.
010060 GO TOLOUP.
O1101O BREAK-VIOLATION.
011020 IF S3 = 'I' ADD I TO INSTATE.
011030 IF S3 = 'O. ADO 1 IO OUTSTATE.
O11040 MOVE 'X' TO S3.
011050 IF S1 = 'Y' ANO S2 = 'Y' ADU 1 TO BOTH.
011060 MOVE 'X' TOS SI.
O11070 MOVE 'X' TO S2.
011080 IF NVIOL > 100 MOVE 100 TO NVIOL.
011090 IF NVIOL > ZERO ADD 1 TO DISTX (NVIOL).
011100 MOVE ZERO TO NVIOL.
    MOVE NEW-RECORD TO OLD-RECORD.
01201J STOP.
012020 MOVE ALL ' ' TO DETAIL.
012030 MOVE TOTAL NUMBER OF VIOLATIONS' TO dESX-OI.
012040 MOVE TOTAL-VIOL TO DESX-02.
OL2050 MDVE UETAIL TO L.
012060 WRITELINE AFTER 0.
012070 MOVE 'NUMBER OF INSTATE VIOLATORS' TO DESX-O1.
```

```
012080 MOVE INSTATE TO DESX-02.
012090 MOVE DETAIL TO L.
012100 WRITE LINE AFTER 2.
O12110 MOVE 'FRACTION OF INSTATE VIOLATORS' TO DESX-01.
0l2120 ADD INSTATE, OUTSTATE GIVING NVIOL.
012130
012140
012150
012160
012170
012180
012190
013010
013020
013030
013040
013050
013060
013070
013080
013090
013100
013110
013120
013130
013140
013150
013160
013170
```

```
        MOVE OTHER TO DESX-02.
        MuVE dETAIL TO L.
        WRITE LINE AFTER l.
        MOVE 'NUMBER OF VIOLATORS COMMITTING ROTH' TO DFSX-OL.
        MOVE BOTH TO DESX-02.
        MOVE DETAIL TO L.
        WRITE LINE AFTER l
        SUBTRACT BOTH FROM NVIOL GIVING DESX-02.
        MOVE 'NUMBER OF VIOLATGRS COMMITTING ONF IYPF' IO ()ESX-1)I.
        MOVE DETAIL TO L.
        WRITE LINE AFTER 1.
        MOVE 'NUMBER OF DAY VIDLATIONS' TO DESX-O1.
        MOVE DAY-NU TO DESX-O2.
        MOVE DETAIL TO L.
        WRITE LINE AFTER 3.
        MOVE 'NUMBER OF NIGHT VIOLATIONS' TO OESX-OI.
        MOVE NIGHT-NO TO DESX-02.
        MQVF DETAIL TO L.
        WRITE LINE AFTER l.
        move 'average day revenue to desx-01.
        DIVIDE DAY-NO INTO DAY-REV GIVING DESX-03
        MOVE DETAIL IO L.
        WRITE LINE AFTER 1.
        move 'average Night revenge' TO deSx-0l.
        DIVIDE NIGHT-NO INTG NIGHT-REV GIVING UESX-O3.
        MOVE DETAIL TO L.
        WRITE LINE AFTER 1.
        MOVE 'NO OF TICKETS, NO. OF OCCURANCES' TO L.
        WRITE LINE AFTER 0.
```

```
015050 PERFORM DUMP VARYING NVIOL FROM 1 BY I UNT IL NVIOL > 100.
015060 CLOSE INPUT-TAPE, PRINTER.
015070 STOP RUN.
0 1 5 0 9 0 ~ D U M P . ~
015100 MOVE ALL ' ' TO LINEX.
015110 MOVE NVIOL TO I.
O15120 MOVE DISIX (NVIOL) TO J.
015130 mOVE lINEX TO L.
015140 WRITE LINE AFTER 1.
```

// EXEC ASSEMBLY
totalrev start 0
USING**15
STM 14.12.12(13) SAVE GENERAL REGISTERS
L 2,0(1) LOAD ADDRESS OF LINKAGE DATA
MVC FININ(5),4(2) BRING IN THE AMOUNT OF THE FINE
mVC FINOT(5),9(2) bRING IN the amount of license increace
mVC BYTE(Il,finin move lst byte into work area
NI BYTE,X'fo' AND dut the zone
CLI BYTE,X'DO* 11 OVER PUNCH = FINE PAID BY JAIL
be zerofine
CLI BYTE.X'60' 11 PUNCH ONLY = FINE PAIO BY JAIL
bE ZEROFINE
CLI BYTE,XIFOD CHECK FOR NUMBER = FINE PAID
BE FINEPAID
CLI BYTE, X'40' CHECK FOR BLANK = FINE PAID,
bNe zerofine ELSE FINE DISMISSED
FINEPAID CLC FININ(5), $=C^{\circ}$ •


```
    LA 3,5
    LA 4,FININ+4
CHECK FOR NUMERIC FIELD,
Flivt.|IMP (LI O(4),X'CO'
    IF NOT NUMERIC., SET FINF - itkij
    HI. LEROFINE
    CLI 0(4).X'COM
    BH ZEROFINE
    BCTR 4,0
    HCT 3,FINELOOP
    PACK WORK,FININ
    AP TOTAL.HORK
CHCKCOST CLC FINOT,=C.
    BE RETURN
    MVC BYTE(I),FINOT+4
    NI RYTE,X'FO'
    CLI BYTE,X'FO'
    BE COSTlERO
    CLI BYTE,X'40'
    be costzero
    C.LI BYTE,X'DO'
    he COST1000
    CLI BYTE.X'60'
    BE COSTLOOO
    CLI BYTE.X'CO'
    BE cosr2000
    CLI BYTE,X'50'
    BE COST2000
    B RETURN
COSTZERO ZAP AREA,=P'O'
    B AODCOST
```

$\cos T 1000$	2AP	AREA $=$ P'100000
	B	ADDCOST
$\cos 12000$	ZAP	
A ODCOST	MVZ	FINOT(5), $=$ X'COC OCOCOCO $^{\circ}$
	LA	3.5
	LA	$4 . \mathrm{FINOT}+4$
COSTLOOP	CLI	014), ${ }^{\circ} \mathrm{CO}$
	BL	RETURN
	CLI	O(4), X'C9*
	BH	RETURN
	BCTR	4.0
	$B C T$	3.COSTLOOP
	PACK	WORK, FINOT
	AP	TOTAL, WORK
	AP	TOTAL, AREA
RETURN	MVC	O(4.2), TOTAL
	LM	14,12,12(13)
	BR	14
	SPACE	
FININ	DS	CLS
FINOT	DS	CL. 5
byte	DS	Cll
total	DS	CL4
WORK	CS	CL4
AREA	DS	CL4
	END	

END OF DATA

PaGE 11

This program, written in FORTRAN IV, provides a distribution of truck traffic, summonses issued, and fraction of traffic in violation with respect to time of day and as a decay function from the time a station is opened. The output is normalized to truck traffic per operation hour, summonses issued per operations hour, and fraction of truck traffic in violation per operations hour. Input to this program is a tape with data that come from Weight Scale Traffic Count. An example of a data sheet is shown in Appendix 5.

C JOB TITLE TRAFFIC decay and time of day model

C

C
C this program provives data for analyzing traffic, summonses issued,
C ANO fRACTIUN OF TRAFFIC IN VIOLATION. THE DATA IS PRESENTED WITH RESPECT
C TO TIME OF DAY ANO AS A DECAY FUNCTIGN FRGM TIME A STATION IS GPENED.
c the output is normalized to traffic per operating hour, summonses issuej
C PER OPERATING HIJUR, ANU FRACTION OF TRAFFIC IN VIGLATION PER GPERATING HUUR
C
C INPUT TG THIS PRGGRAM IS A TAPE OF WEIGHT SCALE TRAFFIG COUNT
C
C INPUT-CATA
$C \quad S C=$ SCALE NUMBER $\quad \mathrm{COL} 1-8$
C IHOUR = MILITARY TIME DF OPENING COL 9-10
C IDUR = HCURS STATICN IS OPEN NOT GREATER THAN 8 COL 11-12
C IPARTY= NUMBER UF CREW PARTY OPERATING SCALE COL 13-14
C DATE = DATE OF OBSERVATION COL 15-18
C ICHECK = LAST DATA CARD
C
C A(I,J) = TRAFFIC CCUNT I TRUCK TYPE J TIME CELL
C B(I,J) = SUMMUNSES ISSUED I TRUCK TYPE J TIME CELL
C VAR IABLE DEFINITIONS
C ASUM(J) $=$ TOTAL TRAFFIC J TIME CELL
C BSUM(J) = TUTAL SUMMONSES ISSUED J TIME CELL
C
C TIME OF DAY MOUEL
C IT IME = MILITARY TIME OF DAY
C TRAFI(ITIME) $=$ TOTAL TRAFFIC FOR ITIME
C. VLTI(ITIME) = TGTAL SUMMONSES ISSUED FCR ITIME

PAGE 1

```
C ISAMP(ITIME) = TCTAL CPERATING HOURS ITIME
C
C DECAY MODEL
C TRAFZ(J) = TOTAL TRAFFIC J HOUR FROM OPENING
C VLT2 = TOTAL SUMMONSES ISSUED FOR J HOUR FROM OPENING
C ISAMPZ (J) = TOTAL OPERATING HOURS FOR J HOUR FRUM OPENING
C
C
    DIMENSION TRAFI(24), TRAF2(11), VLTI(24), VLT2(11), ISAMP(24),
        IASUM(11), BSUM(11), A(11,11), B(11,11)
        DIMENSION SC(2)
        DIMENSION ISAMPZ(11)
C
    DO 10 J = 1,24
    ISTOP = O
    TRAFI(J) =0.0
    ISAMP(J)=0
    10 VLTI(J) = 0.0
    DO 15 J = 1,11
    TRAF2(J)=0.
    ISAMP2(J)=0
    15VLT2(J) = 0.0
    20 READ(12) SC,IHOUR,IDUR,IPARTY,DATE,ICHECK
    IF (ICHECK) 25,25,500
    25 READ(12) ((A)I,J),B(I,J),J=1,11),I=1,11)
    TRFFC=0.
    VLTNS = 0.
    IX = IDUR + 3
    IF (11-IX) 70,80,80
PAGE 2
```

```
    70 I X = 11
    WRITE(3,77.) SC
    80 CONTINUE
C Calculate traffic, summunsts i SSUED,aNid gPERATING hOURS for uecay-mouel
    00 30 J = 1,IX
    ASUM(J) =0.0
    BSUM(J) = 0.
    ISAMP2(J) = ISAMPZ(J) + I
    00 30 I = 1,11
    ASUM(J)= ASUM(J) + A(I,J)
    BSUM(J) = BSUM(J) + B(I,J)
    TRFFC = TRFFC + A(I,J)
    VLTAS = VLTNS + E(I,J)
    TRAF2(J)= TRAF2(J)+A(I,J)
30 VLT2(J) = VLTL(J) + B(1,J)
    ITIME = IHCUR + I
C calculate traffic, summonses issued, and gperating hgurs fur time-of-day-mudel
    ISAMP(ITIME) = ISAMP(ITIME) + I
    00 40 J = 1,4
    TRAFI(ITIME) = TRAFI(ITIME) + ASUM(J)
    40 VLTI(ITIME) = VLTI(ITIME) + BSUM(J)
    DO 50 J=5,IX
    ITINE = ITIME + I
    IF(24-ITINE) 41,42,42
    41 ITIME= I
    42 TRAFI(ITIME) = TRAFI(ITIME) + ASUM(J)
    VLTI(ITIME) = VLTIGITIME) + BSUM(J)
    50 ISAMP(ITIME) = ISAMP(ITIME) + I
C WRITE EXCEPTION STATEMENT IF MORE THAN 5 SUMMONSES ARE ISSUED
PAGE 3
```

TRADG = VLTNS/TRFFC
WRITE (3,750) SC, IHOUR,IDUR,IPARTY, DATE, TRADG
$0060 \mathrm{~J}=1,11$
DO $60 \quad \mathrm{I}=1,11$
IF (E(I,J.)-5) 60,60,66
66 WRITE $(3,761)((A(I, J), B(I, J), K=1,11))$
60 CONTINUE
ISTOP $=$ ISTOP +1
IF(ISTOP - 183)2C,500,500
C PERFORM SUMMARY CALCULATIONS AND WRITE RUUTINE FOR TIME-OF-DAY-MODEL 500 WRITE (3.730)
$00510 \quad 1=1,24$
IF (VLTI(I)) $502,503,502$
502 VIOL $=$ VLTI(I)/TRAFI(I)
GO $10 \quad 505$
$503 \mathrm{VIOL}=0$.
505 TRAFNI $=$ TRAFI(I)/ISAMP(I)
VIOLAI $=$ VLTI(I)/ISAMP(I)
510 hRITE(3,735) I, TRAFNI,VIOLNI, VIOL,ISAMP(I)
520 WRITE(3,740)
C PERFURM SUMMARY CALCULATICNS ANO WRITE ROUTINE FOR DECAY-MDDEL
$00530 \quad I=1,11$
If (VLT2(I)) $522,523,522$
522 VIOL2 $=$ VLT2(I)/TRAF2II)
GO TO 525
523 VIOL2 $=0$.
525 TRAFN2 = TRAF2(I)/ISAMP2(I)
VIOLN2 $=$ VLT2(I)/ISAMP2(I)
PAGE

```
530 WKITEI3,7451 I, TRAFN2,VIOLN2,VIOL2
    CALL EXIT
    700 FORNAT(2LF3.0)
701 FUKMAT(2A4,3I2,A4,11)
730 TOKMATILHL,T3I.'NORNALILED TIME OF DAY MODEL '///,IH,TIO.'TIME.,
```



```
735 FORMAT(1H, 111,I2,T22,F1O.2,T4O,F1C.3,T60,F8.4,T80,I5)
740 FORMAT(IHI,T35,"NGRMALIZED CECAY MODEL'///, 1H,TlO,'TIME',T2O,'TRA
    IFFIC',T42,'VIULATIUNS',T58,'% VIULATICNS'/)
745 FORMAT(1H,T11,I2,T22,F1O.2,T4O,F1O.3,T00,F8.4)
750 FOKMAT(LHO,2A4,315,A4,F10.4/)
761 FORMAT(1H, 22F5.0)
770 FURMAT(1H,'DURATICN ERRCR ',2A4/)
    END
ENO OF DATA
```

TIMt:	TKAFFIC	viclations	\% viUlatiuns	SAMPLE
1	25.24	0.471	0.0180	34
2	18.91	0.625	0.0331	32
3	18.78	0.889	0.0473	27
4	18.50	0.464	0.0251	28
5	20.23	0.767	0.0379	30
6	25.08	0.632	0.0252	38
7	30.62	0.851	0.0278	47
8	30.91	0.631	0.0171	85
9	42.53	0.714	0.0163	77
10	42.85	1.024	0.0239	85
11	42.85	0.929	0.0217	98
12	38.64	0.790	0.0204	100
13	39.07	0.721	0.0185	104
14	33.66	0.680	0.0176	97
15	39.65	C. 710	0.0179	100
16	39.46	0.869	0.0220	84
17	42.32	0.631	0.0149	65
1\%	36.92	0.600	0.0163	60
19	35.13	0.538	0.0153	b2
20	29.43	0.192	0.0269	53
21	30.15	0.348	0.0115	46
22	28.16	0.419	0.0149	43
23	26.26	0.677	0.0258	31
24	23.69	0.538	0.0227	26

rIME

1	10.78
2	9.37
3	9.96
4	10.67
5	36.49
6	35.76
7	34.30
8	35.28
9	35.25
10	35.06
11	29.80

VIOLATIONS

$$
\begin{aligned}
& 0.208 \\
& 0.197 \\
& 0.180 \\
& 0.191 \\
& 0.858 \\
& 0.841 \\
& 0.639 \\
& 0.774 \\
& 0.811 \\
& 0.494 \\
& 0.488
\end{aligned}
$$

* VIOLATIONS

$$
\begin{aligned}
& 0.0193 \\
& 0.0210 \\
& 0.0181 \\
& 0.0179 \\
& 0.0235 \\
& 0.0235 \\
& 0.0186 \\
& 0.0219 \\
& 0.0230 \\
& 0.0141 \\
& 0.0164
\end{aligned}
$$

COMPUTER PROGRAM DOCUMENTATION: COST/BENEFIT ANALYSES

The program, Cost/Benefit Analysis, written in FORTRAN IV is presented here. The program determines the net contribution (benefit less cost), the fraction of trips in violation, and the probability of apprehension for a range of enforcement levels. The program uses as input a card deck that describes the initial operating characteristics of the system. These include: (1) traffic level; (2) initial probability of apprehension; (3) operating cost data; (4) allocation of manpower to fixed site operation, roving patrol, and other activity; and (5) fraction of violators that are overweight, fraction of violators under-registered, and their associated damage costs. $1 /$

I/The program in its present form applies only when the apprehension effectiveness is manpower limited as discussed in the Apprehension Submodel, Section III-A-4, of this report.
this pruigraia is a cost - benefit model for the iowa traffic weioht
C OPERATIUNS STUDY. THE PURPOSE OF THIS MODEL IS TH DETERMINE
c. the net cuntributiun (revenue less cust) and level cf compliance

C TB THE LAW FOR A RANGE IF STAFF SIZE.
C TKAFFC - ANINUAL TRUCK TRIPS
C NACT - NUMBEK JF ACTIVITIES (FIXED, RUVING, OTHER)
C VCUST - VARIABLE UPERATICNS COSt PER
VCIST - VARIABLE UPERATIUNS COST PER MAN
violn - initial probability of apprehension
STAFFP(I) - ALLICATIGN OF MANPDWER TC EACH ACTIVITY FINEII) - aVERAGE REVENUE PER SUMMONS FUR EACH ACTIVITY STAFPI(I) - INITIAL MANPGWER FUR ITH ACTIVITY PAPPI(I) - INITIAL PRUBABILITY OF APPREHENSION FOR ITH ACTIVITY VIUL(I) - FRACTION TRUCK TRAFFIC IN VIOLATION AS FUNCTION OF PAPP(I).

C VIULF(J) - FRACTION UF VIULATORS WITH JTH TYPE VIOLATION
C damage(J) - luss or revenue pfr violatur with jth type violaticn
C VIOLII-FRACTICN TRUCK TRAFFIC IN VIOLATION AS FUNCTION UF PAPP(I)
C PAPPU - INITIAL PRGBABILITY APPREHENSION
C NSITES - NUMBER OF SITES
DIMENSIUN STAFFP(10), FINE(10), XLNGTH(10), XMILES(10), ICREW(10), x APPK(10), FVIUL(10), VIOLFY(10), DAMAGE(10), X STAFFI(10), PAPPI(10),ISTAFF(10),FIXEDC(10)

OIMENSION VIOL(50)
UIMENSION STAFFS(10), PAPP(10)
INTEGER STAFFN
PAPP(2)=0.
FINEI2) $=0$.
STAFFP(2) $=0$.
READ(1,704) IPASS
PAGE 1

```
            LO 202) ITIMES = 1,IPASS
    1) REAU(L,7JU) TRAFFG, PAPPO, NSITES, NACT, VCOST,VIOLN
    2O REAB(1, 7Ul) (STAFFP(I), FINF(I), STAFFI(I), PAPPI(I), I = , NACI)
    2& REAO(1,705) (VIOLFY(I), DAMAOE(1), I = 1,2)
    24 RëA|(1,7C6)(ISTAFF(K), FIXtCC(K), K=1, 5)
        OTHER = 1.0 - STAFFP(1) - STAFFP(2)
        VIUL(1)=1.00
        OETK =-ALGG((VIOLN - 0.02)/0.98)/PAPPO
        DO 2020 IYEAR = 1, 1
        KYEAR = IYEAR - 1
        WRITE(3,802) TRAFFC,VIOLN,PAPHO,STAFFP(1),STAFFP(2), OTHER
        WRITE(3.800)
C INCREASE levEl cF ENFDRCEMENT STAFFN
        CO 2000 STAFFH= 15,400,5
        PAPPT = 0.0
        SBENFT=0.0
        RENFT1 = 0.
        BE:NFT2 = 0.
        DEPR = 0.
        IF (STAFFN-205) 901,900,901
    900 WKITE(3,KO2) TRAFFC,VICLN,PAPPO,STAFFP(1),STAFFP(2), OTHER
        WRITE(3,BOO)
    9CL CORTINUE
C
        COMPUTE PRUBABILITY OF APPREHENDING A VIOLATGR PAPP(II FOR I ACTIVITY
        Dij 121, I = 1, NACI
    PAPPZ = PAPPI(1)
    APPK(I) = -(ALOG(1.0 - PAPPZ))/STAFFI(I)
    STAFFS(I)= STAFFP(I) * FLOAT(STAFFN)
1210 PAPP(I) = 1.0-EXP(-APPK(I) * STAFFS(I))
```

C COMPUTE FRACIIUN UF TRAFFIC IN VIOLATION AS FUNCTION OF PAPP(I). DO $13101=1, N A C T$

1310 PAPPT $=$ PAPPT + PAPP(I)
VIULN $=0.02+0.98 * \operatorname{EXP}(-$ DETK *PAPPTI
C
C compute tutal operating cost as function of staff level.
C FIXED COST BFIXEO DETERMINED FROM TABLE LOOK UP.
C variable cost vcost is varcost * staff level
DO $1420 K=1,5$
IF (STAFFN-ISTAFF(K)) $1410,1410,1420$
1410 SFIXEO $=$ FIXEDC(K)
GO TO 1430
1420 CONTINUE
1430 CUST $=$ VCOST * FLUAT (STAFFN) + SFIXED + DEPR
C
c CCMPUTE TOTAL SYSIEN BENEFITS
C
C BENFTI REVENUE FRUM FINES FOR I ACTIVITY.
c. BENFT2 REVENUE from increased registration and prevented road damage DU 1610 I $=1$. NACT

1610 BENFT1 = BENFT1 + TKAFFC * VIOLN *PAPP(I) *FINE(I)
DO $1620 \mathrm{~J}=1,2$
1620 BENFT2 $=$ BENFT2 2 TRAFFC*DAMAGE(J)*(VIOL(1) - VIOLN)*VIGLFY(J)
SBENFT $=$ BENFT1 + BENFT 2
C COMPUTE PROFIT
PROFIT $=$ SBENFT - COST
C
SBENFT $=$ SBENFT/1000.
PAGE 3

```
    COST}=\operatorname{COST/1000.
    PROFIT = PKOFIT/1000.
    FIXED = TRAFFC * VIOLN * PAPP(1) * FINE(1)/1000.
    RUVING = TRAFFC * VIOLN * PAPP(2) * FINE(2)/1000.
    DMAGE = TRAFFC * CAMAGE(1)* (VIOL(l) - VIOLN) * VIOLFY(1)/1000.
    RGTRE = TRAFFC * DAMAGE(2)*(VIOL(1) - VIOLN) * VIOLFY(2)/1000.
    WRITE(3,301) STAFFN, PROFIT,RGTRE, FIXED, ROVING, DMAGE,SBENFT,
X COST, PAPPT, VICLN
2000 CONIINUE
2020 CONTINUE
    CALL EXIT
    700 FORMAT(E10.0,F10.0,110,110,E10.0.F6.3)
    701 FORMAT(4F10.0)
    702 FORMAT(11F7.0)
    704 FORMAI(12)
    705 FORMAT(4F10.0)
    706 FORMAT(5(I 8,F8.0))
    800 FORMAT(1H,'STAFF',TL7,'NET',T29,'REVENUE',T46,'REVENUE',TGO,
        X'REVENUE',T76,'REVENUE',T96,'TOTAL',T109,'OPERATING',T122,
        X'P V'/,1H,T15,'REVENUE',T27,'REGISTRATION',T44,
    X'fIXED SITES',T58,"ROVING PatROL',T74,"CAMAGE PREVEN.',I95,
    X'REVENUE',IM11,'CEST'//)
    801 FORMAT ILH, I4,T15,F7.0,T29,F7.O,T45,F7.O,T60,F7.0,T75,F7.0,195,
        XF7.O,T111,F7.0,T120,F5.4,T129,F5.41
    802 FORMAT (1H1, T50,'SYSTEM INPUT DATA'/,IH ,T30,'TRAFFIC ',FIO.O,
        XT50,'FRACTION VIOLATING ',F5.3,T77,'PROBABILITY OF APPREHENSION',
        X F5.3/,1H,T30,'ALLOCATION OF MANPOWER: FIXEL, ,F5.3,', ROVING:
        X,F5.3, ', OTHER 'F5.3//)
        ENO
PAGE 4
```

Two programs, written in FORIRAN, are presented here, FLEXM, and RIGDM. Both programs calculate average uncompensated maintenance use per violating vehicle. The equations used are presented in Appendix I, Tab I. The computation results are given in average equivalent reference axles per violating vehicle. FLEXM is used for flexible pavements, RIGDM is used for rigid pavements.

Both of these programs (and the program; for life use in the next appendix) use as part of input the axle characteristics of violating vehicles. The programs accept any number of these characteristics up to and including 100. Each card in the axle deck contains

NAXE, L $\varnothing \mathrm{K}, \mathrm{L} \phi \mathrm{VER}, ~ A X I E S$

Format Il, 9X, 3F10.0

Where NAXE $=1$ for single axle, $=2$ for tandem set
$L \phi \mathrm{~K}=$ Legal axle load (Kips)
$L \emptyset V E R=A m o u n t$ axle load is over legal value (Kips)

AXLES = Average number of axles with these characteristics per violating vehicle

Input for FrEEXM

The axle defining deck as described above followed by a card with 3 in position 1 .

Output from FLEXM

The contribution from each axle in the deck is printed separately. This output appears in six columns.

Column No.
Value Printed

1 Axle type, $I=$ single, 2 = tandem set
2 Axle legal weight (Kips)
3 Amount over legal weight (Kips)

4 Number of reference axles equivalent to legal weight

5 (Number of reference axles equivalent to actual weight) - (number equivalent to legal weight)

6
Contribution to average uncompensated maintenance per violating vehicle in reference axles

Column 6 is summed and printed as the average uncompensated maintenance per violating vehicle in the units reference axles.

The program listing follows:

```
C FLEXN PRLGRAM, MEI PRLIJECT 3158-P
    REAL LUK,LUVER
    CTAN=.5*2.947
    SUMUN=0.0
    WRITE(3,101)
101 FURMAT('1','UNCUMPEINSATED MAINTENANCE, FLEXIBLE PAVEMENT', /)
201 REAU(1.1O21NAXE,LGK,LGVER,AXLES
102 FURMAT(I1,9X,3F10.0)
    G0 TC (1,2,3),NAXE
    3 WRITE(3,103) SUMUN
1O3 FURMAT (1HO,44HAVE UNCOMPENSATED REF AXLES PER WT VIOL VEH=,EL2.5)
    CALLEXIT
    1 C=1.0
        AXE=1.0
        GO TG:4
        2 C=CT AN
        AXE=2.0
        4 ROK=C*((LOK+AXE)/19.0)**3.136
        ROVER=C*((LUK+LOVER+AXE)/19.0)**3.136
        RUN=ROVER-ROK
        RAXUN=RUN*AXLES
        SUMUN=SUMUN+RAXUN
        WRITE(3,104)NAXE,LCK,LOVER,ROK,RUN,RAXUN
104 FORMAT(1H,11,5X,2F12.3,315X,E12.5))
    GO TO 201
    END
```

PAGE 1
(I for unreinforced pce, 2 for reinforced)

Axle deck (as defined previously)
Card with 3 in position 1.

Output from RIGDM
The contribution from each axle in the deck is printed separately. This output appears in six columns.

Column No.	Value Printed
1	Type of axle (1 = single, $2=$ tandem set)
2	Legal weight for axle (Kips)
3	Amount over legal weight (Kips)
4	For single axle: the equivalent number of reference axles for legal weight
	For tandem sets: (equivalent reference axles). $D_{2}^{1.49}$ where D_{2} is the as yet unspecified pavement thickness
5	For single axles: (reference axles for actual weight) - (axles for legal weight) For tandem sets: (reference axles for actual weight) - (axles for legal weight) $D_{2}^{\text {l. }} 49$
6	(Column 5 value).(Number of axles of this type, legal weight and overweight per violating vehicle)

The entries in Column 6 are summed separately for single and tandem axles.

The output is

Avg. uncompensated ref. axles per violating vehicle $=\operatorname{SUMI}+($ SUM2 $) / D_{2}^{1.49}$.

A table of values is printed for slabs from 4 in. to 12 in. The program listing follows:

```
    RlODN PROORAR, FRl pRCJI:CT 31bo-p
    KEAL LUK,LOJVIK
    KLAC(I,LOL)NTYOE
    1Ul FURMAT(IL,GX,BFIO.0)
    SUM1=0.0
    SUM2=0.0
    Or TO (1, 2),M1YP=
    l wrITt(3,1))
```



```
    XP.JN1=2.62
    XPCNL=4.38
    XPUN3=1.49
    GO TO 3
    2 WRITE(3,1Oj)
```



```
    XPONL= 2.30
    xpon2=3.13
    XPON3=0.3%
    CCEFI=1./1, .0**XPGN1
    COtF2=3.80214E-02*COEF1
    3 REAC(1, 1OL)VAXE, LUK,LOVER,AXLES
    GO TO(201,202,203), NAXE
203 WRITE(3,104)SUML,SUN2,XPON3
104 HORMAT(IHM, 45HAVE. JVCUMPENSATED REF AXLES PER WT VIGL VEH=,El<.
    15, 5HPLUS ,E12.5,34HOIVIUEO BY D2 KAISFO TO THE POWER ,F6.3)
        WRITE(j,lCb)
    105 FURMAT('O','SLAE THICK UNCOMP RFF AXLES/NT VIOL VEH.')
```

 DO 204 I=4,12
 02=1
 SUMUN=SUML+SUAZ1OZ**XPON3
 204 WRITE(3,106)O2,SUMUN
106 FURMAT(14, 3\lambda,F%.1,15X,E12.5)
CALL EXIT
201 RUK=CGEF1*LOK**XPLN1
RLIVER=COEFI*(LIJK+L:OVER)**XPGNL
RUV=RLVER-RiJK
KAXUN=RUN*AXLLS
SUMI=SUM1+RAXUN
210)WRITEE(3,1O7)NAXE,LCK,LOVER,FOK,RUN,RAXUN
107 FORMAT(' ',11,5X.2F12.3.3(5X,E12.5))
60 TG 3
202 ROK=COEF 2%LOK**XPON2
RUVER=CGEF2*(LOK+LGVER)**XPON2
RUN=ROVER-ROK
RAXUN=RUN*AXLES
SUM2=SUM2+RAXUN
GO TC 210
END

```
PAGE 2

\section*{COMPUTER PROGRAM DOCUMENTATION: UNCOMPENSATED} PAVEMENT LIFE USE PER VIOLATING VEFICLE

The two programs, FLEXL and RIGDL, written in FORTRAN, are presented here. Both programs calculate average uncompensated pavement life use per violating vehicle. They also calculate useful life and apply it as a basis for calculating average uncompensated life fractions and uncompensated maintenance fractions. FLEXL is used for flexible pavement calculations; RIGDL is used for rigid pavements.

Both programs use as part of input a deck describing the violating axles of violating vehicles. The programs accept any number of these axle descriptor cards up to and including 100. Each card in the deck contains

NAXE, L \(\varnothing \mathrm{K}, ~ I \phi V E R, A X L E S\)
Format II, 9X, 3F10.0
Where NAXE \(=1\) for single axle, \(=2\) for tandem set
\(L \phi \mathrm{~K}=\) Legal axle load (Kips)
LфVER = Amount over legal axle load (Kips)
AXIES = Average number of axles with these characteristics per violating vehicle

Input for FLEXL
The first version of this program performs the calculations for a sequence of pavements with structural numbers separated by uniform increments. The second version calculates for structural numbers which are separately listed in input. The second version simply requires additional input as indicated in the input list below:

SNLO, SNHI, SNINC, RFACT
Format 4 FIO. 0

FMUN

Format FIO. 0
(Axle descriptor deck as defined)
Card with 3 in position 1.
SN
(Second version only)

Format Flo. 0
ICON (Second version only)
Format II
Where \(\quad\) SNLO \(=\) Minimum structural number of calculation in first version

SNHI = Largest structural number of calculation in first version

SNINC = Increment for advancing structural number in first version

RFACT \(=\) Regional factor (used in both versions)
FMUIN = Reference axles equivalent to average uncompensated maintenance use per violating vehicle (from program FLEXM)

SN = Structural number for calculation in second version

ICON = A control number, \(=1\) causes program to return to read another \(S N\) value, \(=2\) causes program exit (second version).

Output from FLEXX
All the output applicable to one value of structural number is printed in sequence. The output is

Structural number

Pavement life in reference axle applications
\(\beta_{r}\) and \(\rho_{r}\) values in the life calculation
The contribution of each axle in descriptor deck

Average uncompensated life use per violating vehicle (in units of reference axle applications)

Average uncompensated life fraction per violating vehicle
Average uncompensated fraction of maintenance life used per violating vehicle

The contribution of each axle in the description deck is listed in six columns with the following meanings.

Column No.
Value Printed

1
\(I=\) single axle, \(2=\) tandem set
2 Axle legal weight (Kips)
3 Amount over legal weight (Kips)

4 Reference axles equivalent to legal weight

5 (Reference axles equivalent to actual weight) (reference axles equivalent to legal weight)

6
Contribution to average uncompensated life use per violating vehicle

The regional factor was omitted in output. It would be a desirable addition to the program.

The program listings follow:
```

C FLEXL PROGRAM, MRI PROJECT 3158-P, ORIGINAL VERSION
REAL LOK(10N),LOVFR(100)
DIMENSION NAXE(10O),AXLES(1OO)
BETA(ODF1,ODE 2)=0.4+CD*(IODE1+ODE2)/ODE2)**3.23
RHOCUT (OAD1,OAD2)=OAD2**4.33/(DAD1+חAD2)**4.79
READ(1,101)SNLO, SNHI,SNINC,RFACT
101 FORMAT(4F10.0)
READ(1,101)FMUN
00 200 I=1,100
READ(1,102INAXE(I),LOK(I),LOVER(I),AXLES(I)
N=NAXE(I)
GO TO (200,200,202),N
102 FORMAT(I 1,9X,3F10.0)
202 NDATA=I-1
GO TO 203
COATA READ IN COMDLETF, NDATA SET EQUAL TO NO. BF ITEMS
200 CONTINUE
CPEGIN DUTER LOIJP WITH SN VALUE FOR EACH PASS
203 SN=SNLO
1 SUM=0.0
WRITE(3,103)SN
103 FORMAT(1H1,45HLIFE USEAGE FLEXIBLE PAVEMENT, STRUCTUAL NO.=,F7.2)
CD=0.081/(SN+1.0)**5.19
OADI=18.0
OAD2=1.0
BETAR=RETA(DAD1,OAD2)
RHOCR=RHOCUT (OAD1,OAD2)
RHOR=10.0**5.93*(SN+1.0)**9.36*RHOCR
BETINV=1.0/BETAR

```
PAGE
1
```

 WTR=3.62OS2***IT TIVV*RHOR/QFACT
 WRITE(3,1%4)WTR,HFTAR,RHOR
 104 FIRMAT(1H), 22HTOTAI LIFF RFF.AXLFS=,F12.5,GHPETAR=,E12.5,5HQHOR=,
 2F12.5,/1
 CNON FNTER INNLR LROP WITH ONF AXLE OATA SET PFO PASS
0ח400 J=1,%10:1^
AXE=NAXF(J)
DAODK=LOK(J)
OAOACT=OADIK + IVVFR(J)
WRATOK=O.G2OG3**(BETINV-1.O/BFTAIOAOGK, AXE))*RHOCR/PHGCUT(OADOK, AX
25.1

```

```

 2AXEI
 RUN=WNATHV-NFATGK
 QAXUN=RUON*AXL[S(J)
 SUM= SUMINOAXUP:
 WPITF(3,1O5)NAXF(J),GAODK,IRVFP(J),WRATOK,RUN,RAXIN
 105 FORMAT(' ',I1,5X,OF12.3,3(5X,F12.5))
 4ON CONTINME
 HPITE(2,1001S0M
 1OG FORMATIIHO,47HAVE. INCOMPEMSATEO LIFE ISE PER WT. VIML VFH.= ,FIZ.
 25, 1AHQtFERENSF AXIES.1
 SUM=SUM/WTO
 WRITE(3.107)SUM
 1O7 FGRMAT(1HO, 52HAVE. UNCOMDENSATED LIFE FRACTIOM PFP WT, VIML VEH.=
 ?,F12.51
 SUM=FMUN/WTP
 WRITE(3,1O8)S!M
 108 FORMAT(1HO,G3HAVE. INCOMPENSATED FRACTION GF MAINT. LIFF OEO WIT. V
 PAGE ?

```
111L.VFH. \(=, 11\) (.5)

\(S N=S N+S N T N C\)
Ir (SNHI-SN) 5nO, 1,1
500 CALL i:XIT
FUO
```

C FLEXL PKJGRAM, NiRI PROJECT 3150-P
REAL LOK(1JJ),LOVER(100)
UIMENSIUN NAXE(1OC),AXLES(1O0)
HET A(UOEL,ODt C)=0.4+CD*((ODE14ODE2)/ODE 2)**3.23
RHOCUT(OAB1,(A,)2)=0ADL**4.33/(OADI +OAO2)**4.79
kEAL(1,1U1)SNLO,SNHI,SNINC,RFACT
101 FERMAT(4F1).O)
RFAO(1,1OLIFMUN
00 200 1=1,100
Kchu(i,dor)VAxi:(I),LOK(I),LCVER(I),AxLES(I)
N=NAXE(I)
GC 1[(?00, 2(0), 202), iv
102 FOKMAI(IL,3(,3F10.0)
202 NDATA=1-1
GO IC 1
COATA PEAU IH CONPIETE, NDATA SET EGUAL TE NU. LF ITEMS
200 cu.vilivue
CotgIA CUTEA LOCP WITH SA VALUE FOR EACF PASS
1 SUM=0.0
REA[(1,101)SM
WRITE(3,103)SN
103 FJRMAT(IH1,G5HLIFE USEAGE FLEXIBLE PAVEMENT, STRUCTUAL NO.=,F7.L)
CD=0.0) 1/(5v+1.0)**う.17
(A)l=18.0
OADR=1.0
BETAR=BETA(CADL,OAQ2)
KHGCK=RHUCUT(UAU1,(UAO2)
RHGN=10.0**5.93*(SN+1.0)**9.36*RHOCR
BETINV=1.0/BETAR
PAGE 1

```
```

 WTR=C.62963**BLTINV*RHOR/RFACT
 WRITEI 3,104IWTR,BETAR,RHOK
 IU4 FORMAT(1HO, 22HTOTAL LIFE REF.AXLES=, E12.5,GHBETAR=,EL2.5,5HRHOR=,
 2E12.5.1)
 CNOW ENTER INNEH LOOP imITH ONE AXLE DATA SET PER PASS
DU 400 J=1, VUATA
AXE= =VAXE(J)
UADCK=LUK(J)
AM:ACT=UADLKKLCVEK(J)

```

```

 2E)
 WRATOV=0.62963**(BETINV-1.O/RETA(GACACT,AXE))*RHUCR/RHOCUT (OADACT,
 \angleAXEI
 RUN=WRATCV-NHAAICK
 RA XUN=RUN*AXLES(J)
 SUM=SUNFRODXUJN:
 WRITE(3,1O5) MAXE(J),GADOK,LGVER(J),WRATUK,RUN, RAXUN
 lo5 FURMAT(' ',I1,5X,2F12.3,3(5x,(12.5))
 400 cintinue
 WRITE(3,106)SUM
 loo FURMAT(lho, 47HAVE. UNCUMPENSATED LIFE USE PER WT. VIOL VEH.= ,EL2.
 25,1GHRLFERENCE AXLES.I
 SUM= SUM/WIR
 INRITE(3,107)SUM
 107 +IJRNATIIHO,5ZHAVE. UNCOMPENSATED LIFE FRACTIUN PER WT . VIOL VEH.=
 2,E12.5)
 SUM=FMUN/NTR
 WRITE゙(5,108) SUM
 LOB FORMAT(LHO,GBHAVE. UNCOMPENSATED FRACTION UF MAINT. LIFE PER WT. V
 PAGE
2

```
    HUL. VEH. \(=\),E12.51
greau contrgl aO. 1 Gr next SN ok ex it
    RHAU(1,10?)1CON
    Gi TL (1, 200\(), 1\) CuN
    50U CALI: Xlf
    (Ni)

Axle descriptor deck (not over 100)
3 in position 1
EP, SOILKP, SCP
Format El0.3, 2F10.0

D2, RMUN, CON
Format F10.0, 8X, E12.5, F10.0
Where EP = Modulus of elasticity for concrete (psi)
SOITHP = Soil support value (psi/in)
\(\mathrm{SCP}=\) Concrete rupture modulus (psi)
D2 \(\quad=\) Slab thickness (in.)
RMUN = Number of reference axles equivalent to average uncompensated maintenance use per violating vehicle (from program RIGDM)
\(\operatorname{CON}=\mathrm{A}\) control number, \(=0\). on all cards containing D 2 and RMUN to be calculated, \(=1.0\) on otherwise blank card to call program exit.

\section*{Output from RIGDL}

All output for a slab thickness is printed consecutively. The output items are

\section*{Thickness}

Modulus of elasticity (fails to print because of format error)*

Modulus of rupture for concrete

\footnotetext{
* A simple correction is required. The program is reported here with the error since it is desirable to provide documentation on programs used, not on revised programs.
}

Soil support value
Total pavement life in reference axle applications
The \(\beta_{r}\) and \(\rho_{r}\) used in life calculation
RMATL, the factor compensating for current material properties over AASHO test properties

The individual contributions of violation axles
The average uncompensated life use per violating vehicle (in equivalent reference axles)

The average uncompensated life fraction per violating vehicle
The average uncompensated fraction of maintenance life per violating vehicle, and the RMUN value on which it is based

The list of individual axle contributions appears in six columns which have the same meanings as in the FLEXL output.

The program listing follows:
```

C RIGOL PRUGRAM, MKI PRCJECT 3158-P
REAL LUK(100), LUVER(100)
DIMENSIUN NAXE(100),AXLES(100)
BETA(OAU1,OAOL)=1.O+CD*(OAD1+OAO2)**5.20/0AO2**3.52
RHOCUT(UADL,UAO2)=UAD2**3.28/(UAD1+OAD2)**4.62
00 200 I=1,100
READ(1,102)NAXE(I),LOK(I),LOVER(I),AXLES(I)
102 FORMAT(IL,9X,3F10.0)
N=NAXE(I)
GO TO (200,200, 202),N
202 NOATA=I-1
GU TO 203
CAXLE WT DATA REAU IN, NDATA EQUAL NU. OF DATA ITEMS
200 CONTINUE
203 REAC(1,103)EP,SUILKP,SCP
103 FURMAT(E10.3.2F10.0)
DUML=EP/SOILKP
DUM2=(UUM1/7.OE+04)**0.25
DUM1=DUMI/11.52
CNOW ENTER UUTER LOUP WHERE EACH PASS USES A VALUE OF PAVEMENT THICKNESS
600 READ(1,104)02,RMUN,CGN
104 FORMAT(F10.0.8X,E12.5,F1C.0)
IF (CON) 300,300,500
300 SUM=C.0
WRITE(3,105ID2,EP,SCP,SOILKP
105 FORMATIIHL,35HLIFE USEAGE, RIGID PAVE. THICKNESS=,F7.2,3HE=,F12.5
2/7HSSUBC=,F8.2/7HSOILK= FF8.2)
RMATL=1.607638E04*0 2*O2*D21**0.25-10.0
RMATL=RMATL/((DUM1*D2*D2*D2)**0.25-10.0)
PAGE 1

```
```

 RMATL=(RMATL*LUM2*SCP/690.)**3.42
 CD=3.63/(02+1.0)**8.46
 OALI=18.
 OAO2=1.
 RHOCR=RILCUT(OAD1,OAD2)
 RHUR=10.0**5.65*(122+1.0)*** . 35*RHOCUT(OAO1,OAO2)
 BETAR=BETA(OADI,OADZ)
 RETINV=1.0/3ETAR
 WTR=.066067**EET INV*RHUR*RMATL
 WRITE(3,10G)wJA,GLIAR,RHOR, KMATL
    ```

```

 28H RHU:R=,E1L.5.9H RMATL= ,E12.5,/1
    ```
CNGN ENTEP INVER LCOP mITH DNE AXLE DATA SET PER PASS.
    D0 \(400 \mathrm{~J}=1\). NLATA
    \(\triangle X E=N A X E(J)\)
    UAUGK=LiJK(J)
    OADACT=(ADOK+LOVEK(J)

    2F1

        2, AXE
        RUN=WRATCV-WKATOK
        RAXUN=RUN: \(A \times\) LES(J)
        SUM \(=\) SUMA R R XUN
        WRITE(3, 1O7)NAKE(J), CADOK, LCVER(J), WRATOK, RUN, KAXUN
    107 FGRMAT(' \(11,5 \times, 2 F 12.3 .3(5 X, E 12.5) 1\)
    400 Cint inue
        WRITE (3,108) SUM
    108 FURMAIGIHO, 4 7have. UNGOMPENSATED LIFE USE PER WT. VIGL VEH. \(=\), EIZ.
page
    2
```

<5,l EH PEHERLNGF AXLES.I

```

SUM = SUM/ w IR
WRITE(3,109) SUM
109 FGRMAT(1HO, JBHAVE, UNCOMPGNSATED LIFE FRACTIUN PER WT. VIGL. VEH. = ? , E12.5)

SUM=KNUN/ATK

110 FGRMAT(iHJ, oshave. UNCGMPEGSATEO FRACTIUN It MAINT. LIFE PER WT. V 2IOL. VEH. = , \(12.5,17 H\) BASEO ON RNUN \(=\), ELZ.5)
(G) TO 610
50) CALL EXIT

ENI

\section*{Background}

Recommendations concerning possible construction of new scales should take into account the fact that there are public scales available for use by T,W.O, officers.

MRI requested that a survey be made of public scales with a capacity of \(40,000 \mathrm{lb}\). and over to determine their number and geographic distribution.

The attached information indicates that there are over 1,500 public scales compared to the Highway Commission's 31 and that some are available in every county.
T.W.O. officers currently use some of these scales routinely. Increased reliance on them is certainly feasible, but not without cost. The average charge to Iowa for use of a public scale is approximately \$1-\$2.

The effective volume handing capacity of public scales is less than state scales because officers generally have to escort each vehicle to the public scale location.

One major possible use for public scales would be for night time roving patrols as discussed in the Results Section of the report.

\section*{NUMBER OF SCALES IN EACH COUNTY 40,000 POUNDS AND OVER}

Adair \(\}\) - No scales listed in these two counties, but we know there are Adams scales in these counties.
\begin{tabular}{|c|c|c|}
\hline Allamakee - 4 & Franklin - 8 & Monona - 9 \\
\hline Appanoose - 9 & Fremont - 5 & Monroe - 2 \\
\hline Audubon - 7 & Greene - 18 & Montgomery - 12 \\
\hline Benton - 22 & Grundy -3 & Muscatine - 24 \\
\hline Black Hawk - 33 & Guthrie - 1 & O'Brien - 20 \\
\hline Boone - 15 & Hamilton - 10 & Osceola - 14 \\
\hline Bremer - 11 & Hancock - 21 & Page - 15 \\
\hline Buchanan - 20 & Hardin - 19 & Palo Alto - 15 \\
\hline Buena Vista - 23 & Harrison - 27 & Plymouth - 14 \\
\hline Butler - 1 & Henry - 20 & Pocahontas - 13 \\
\hline Calhoun - 21 & Howard - 11 & Polk - 48 \\
\hline Carroll - 23 & Humboldt - 22 & Pottawattamie - 22 \\
\hline Cass - 2 & Ida - 8 & Poweshiek - 22 \\
\hline Cedar - 20 & Iowa - 7 & Ringgold - 2 \\
\hline Cerro Gordo - 44 & Jackson - 11 & Sac - 24 \\
\hline Cherokee - 18 & Jasper - 18 & Scott - 36 \\
\hline Chickasaw - 18 & Jefferson - 8 & Shelby - 17 \\
\hline Clarke - 2 & Johnson - 19 & Sioux - 20 \\
\hline Clay - 22 & Jones - 8 & Story - 31 \\
\hline Clayton - 10 & Keokuk - 8 & Tama - 30 \\
\hline Clinton - 25 & Kossuth - 24 & Taylor - 3 \\
\hline Crawford - 13 & Lee - 19 & Union - 9 \\
\hline Dallas - 12 & Linn - 42 & Van Buren - 11 \\
\hline Davis - 6 & Louisa - 8 & Wapello - 13 \\
\hline Decatur - 8 & Lucas - 7 & Warren - 12 \\
\hline Delaware - 10 & Lyon - 16 & Washington - 21 \\
\hline Des Moines - 14 & Madison - 10 & Wayne - 8 \\
\hline Dickinson - 12 & Mahaska-2 & Webster - 35 \\
\hline Drubuque - 25 & Marion - 3 & Winnebago - 11 \\
\hline Emmet - 16 & Marshall - 23 & Winneshiek - 7 \\
\hline Fayette - 22 & Mills - 9 & Woodbury - 29 \\
\hline Floyd - 11 & Mitchell - 13 & \[
\begin{aligned}
& \text { Worth - } 9 \\
& \text { Wright - } 20
\end{aligned}
\] \\
\hline
\end{tabular}

TOTAL 1,505```


[^0]:    1/ 1963 data was most recent Origiǹ-Destination survey available. It is not believed that average trip mileage would change greatly in a few years.

[^1]:    I/It is recognized that factors other than thickness do affect pavement costs. However, for average correlations the chosen assignments seem most logical.

[^2]:    I/The figure used is the largest of the possible differences. However, it is a conservatively low estimate since resurfacing requires shoulder and entrance rework.

[^3]:    I/Pavement Maintenance Cost for Paved Secondary Roads are contained in Appendix 1 , Tab M.

[^4]:    $\stackrel{+}{\substack{\mathrm{N} \\+}}$

    * In the original reduction the truck trailer units were treated separately according to vehicle configuration and then combined giving equal emphasis to each configuration. This procedure produced these values for number of axles per over-registration vehicles of the truck-trailer types.

[^5]:    * The factor $293 / 1306$ accounts for the proportion of these light units which are capable of being over registration by having one axle above the $2,000 \mathrm{lb}$. classification.

[^6]:    * These two values were omitted in the calculation of the final distribution which was subsequently

[^7]:    * These two contributions were omitted in calculations designed to provide a minimum value for uncompensated life and maintenance use.

[^8]:    * $1.0 \mathrm{kip}=1000$. pounds.

[^9]:    * It was noted by the AASHO investigators that $C^{\prime}=100$ constituted a substantial amount of structural deterioration.

[^10]:    1/ This estimate was obtained by dividing the total rural mileage for panels and pickups by the average annual rural mileage per vehicle.
    2/ These are 112.3 mile "average" trips. Shorter trips are more frequent. 3/ As measured by apprehended registration violators.

[^11]:    1/ Appendix l, Tab C.
    2/ Appendix 1, Tab L.
    3/ Appendix I, Tab J.

[^12]:    * Classifications obtained from Analysis of Traffic Volume and Weight Study, Iowa, 1966, Table W-6.

