FINAL REPORT lowa Department of Transportation

March 1988
TitleReport Date
Examination of highway maintenance garages March 1988
in the U.S. 30 corridor between Ames and Cedar Rapids
Author(s)
Type of ReportFinal
Saleem Baig, P.E.
Transportation Research Engineer
Research Assistant: Victor R. Filos
Coordinator(s)
Control No.
Robert R. Samuel son, P.E.
Maintenance Programs Engineer90-87-0006-774Research Performing Organization
Iowa Department of TransportationOffice of Transportation Research
800 Lincoln Way
Ames, Iowa 50010
Supplementary Notes
Prepared for and in cooperation with the Office of Maintenance, Highway Division, Iowa DOT.

Abstract

A linear programing model is used to optimally assign highway segments to highway maintenance garages using existing facilities. The model is also used to determine possible operational savings or losses associated with four alternatives for expanding, closing and/or relocating some of the garages in a study area. The study area contains 16 highway maintenance garages and 139 highway segments.

The study recommends alternative No. 3 (close Tama and Blairstown garages and relocate new garage at Jct. U.S. 30 and Iowa 21) at an annual operational savings of approximately $\$ 16,250$. These operational savings, however, are only the guidelines for decisionmakers and are subject to the required assumptions of the model used and limitations of the study.

Key Words

Optimum allocation, maintenance garages; cost multiplier, basic maintenance cost, travel time adjusted cost, overhead costs.

TABLE OF CONTENTS

SECTIONS PAGE
EXECUTIVE SUMMARY 1
I. INTRODUCTION 2
II. OBJECTIVE 3
III. REQUIREMENTS OF THE MODEL 4
A. Assumptions 4
B. Study Area 5
C. Highway Segments 5
D. Source of Data 5
E. Basic Maintenance and Overhead Costs 5
F. Key Input Data 6
G. Output Data 6
H. Computer Program 7
I. Weighted Average Speed 7
J. Travel Time Estimation 8
Existing Allocation of Highway Segments at Ames Garage 9
K. Travel Time Adjusted Costs 10
a. Sample Calculation of Cost Multiplier 11
b. Sample Calculations of Travel Time Adjusted Costs 11
IV. THE APPLICATION OF THE MODEL 12
A. Existing and Optimum Allocations 12
B. Examination of Options 12
v. CONCLUSION 21
Vi. LIMITATIONS OF STUDY 22
VII. REFERENCES 23
APPENDICES iii
TABLES iv

PAGE

1. Study Area Showing Existing Highway Segments Allocations 24
2. Optimal Highway Segments Allocations, 16 Garages \& 139 Highway Segments 25
3. Option 1: Optimal Highway Segments Allocations (Close Marshalltown, Colo, \& Blairstown Garages, Build New Garage at Tama, Expand Ames, Cedar Rapids, Colfax \& Grundy Center Garages) 26
4. Option 2: Optimal Highway Segments Allocations (Close Tama \& Blairstown Garages, Expand Traer \& Cedar Rapids Garages) 27
5. Option 3: Optimal Highway Segments Allocations (Close Tama \& Blairstown Garages, Relocate New Garage at Jct. U.S. 30 \& Iowa 21) 28
6. Option 4: Optimal Highway Segments Allocations (Blairstown Garage Closed, Build New Garage at Tama, Expand Cedar Rapids.) 29
7. Fiscal Year 1986 Labor, Equipment and Overhead Costs for the Routes and Garages in U.S. 30 Corridor Between Ames and Cedar Rapids 30
8. Existing Segment Allocation and Basic Maintenance Costs: (U.S. 30 Corridor Between Ames and Cedar Rapids) 33
9. Operating Costs for Segments Optimally Reallocated Under Option 1 36
10. Additional Mileages Served by Garages Under Option 1 38
11. Overhead Costs - Option 1 39
12. Operating Costs for Segments Optimally Reallocated Under Option 2 40
13. Additional Mileage Served by Garages Under Option 2 41
14. Overhead Costs - Option 2 42
15. Operating Costs for Segments Optimally Reallocated Under Option 3 43
16. Additional Mileages Served by Garages Under Option 3 44
17. Overhead Costs - Option 3 45
18. Operating Costs for Segments Optimally Reallocated Under Option 4 46
19. Additional Mileages Served by Garages Under Option 4 47
20. Overhead Costs - Option 4 48
21. Sample Input for MPSX Computer Program 49
22. Sample Output for MPSX Computer Program 53

TABLES

PAGE

1. Basic Maintenance Cost Multiplier as a Function of Travel Time (Eight-Hour Work Day) 10
2. Annual Savings Due to Segments Reallocated Under Optimum Allocation (U.S. 30 Corridor Between Ames and Cedar Rapids) 14
2a. Description of Highway Segments Reallocated Under Optimum Allocation Procedures 15
3. Option 1: Cost Analysis of Closing Garages at Marshalltown, Colo, and Blairstown; Build New Garage at Tama and Expand Ames, Cedar Rapids, Colfax, and Grundy Center Garages Using Optimum Allocation Model 16
4. Option 2: Cost Analysis of Closing Garages at Tama and Blairstown and Expanding Traer and Cedar Rapids Garages Using Optimum Allocation Model 17
5. Option 3: Cost Analysis of Closing Garages at Tama and Blairstown and Constructing New Garage at the Intersection of U.S. 30 and Iowa 21 Using Optimum Allocation Model 18
6. Option 4: Cost Analysis of Closing Blairstown Garage; Build New Garage at Tama and Expand Cedar Rapids Using Optimum Allocation Model 19
7. Table 7: Summary of Cost Analysis of Maintenance Garages in the U.S. 30 Corridor Between Ames and Cedar Rapids 20

EXECUTIVE SUMMARY

An optimum allocation model is used in this study to examine the current allocation of highway segments to maintenance garages in the U.S. 30 corridor between Ames and Cedar Rapids. Using the model, only 19 of the 139 highway segments would be reallocated to different garages, resulting in an annual operational savings of approximately $\$ 16,800$.

The linear programming model is also used to determine operational savings/losses for each of the following four options:

Option 1: Close Marshalltown, Colo, and Blairstown garages, build New garage at Tama, and expand Ames, Cedar Rapids, Colfax, and Grundy Center garages;

Option 2: Close Tama and Blairstown garages and expand Traer and Cedar Rapids garages;

Option 3: Close Tama and Blairstown garages and relocate new garage at Jct. U.S. 30 and lowa 21; and

Option 4: Close Blairstown garage, build new garage at Tama, and expand Cedar Rapids garage.

The model indicates the approximate operational savings or losses for each option examined:

	Estimated Annual Savings/(Losses)
Option	
1.	$(19,700)$
2.	8,500
3.	16,250
4.	$(49,100)$

The study concludes that 0ption 3 seems to be the best among the options examined. However, these operational savings are only the guidelines for decisionmakers and not the final solution. The savings are based on the assumptions of the model and limitations of the study.

The Iowa Department of Transportation (Iowa DOT) is responsible, among other transportation activities, for maintaining Iowa's interstate and primary highways in a safe and serviceable condition. However, the lack of financial resources has long affected the Department's "ability to properly accomplish itṣ highway maintenance work programs. In fiscal 1986 the Iowa DOT spent more than $\$ 69.6$ million maintaining the state's highway system.

In view of the limited financial resources, the Department has constantly been searching for ways to provide better and more coordinated transportation facilities at a minimum cost to the public. One of the ways to achieve this goal in the maintenance area is to examine the locations of highway maintenance garages to determine if some of these could be closed or relocated, thereby using available resources more efficiently and effectively. A.highway maintenance garage must be optimally located within its maintenance area to minimize the loss in productivity associated with time spent traveling to the work locations.

In 1981 the Iowa DOT completed a study, "An Optimum Allocation Approach to Closing or Relocating Highway Maintenance Garages in Iowa" (1). The study identified an "Optimum Allocation Model" which was used by the Ȧlabama Department of Transportation. This linear programming model, using the input data currently available at the Iowa DOT, can optimally assign highway segments to maintenance garages. It can, with some limitations, also determine the operational savings/losses of closing and/or relocating specified garages within a study area. This model will be used to examine several garage locations in the U.S. 30 corridor between Antes and Cedar Rapids.

II. OBJECTIVE

The purpose of this study is to use the "Optinum Allocation Model" (developed in state study No. 81-3) to examine the possibility of closing and/or relocating several highway maintenance garage locations in the U.S. 30 corridor between Ames and Cedar Rapids. The linear programming model is used to:

1. Optimally assign highway segments to maintenance garages in the study area; and
2. Determine operational savings/losses of closing and/or relocating highway maintenance garages for each of the following four options:

Option 1: Close Marshalltown, Colo, and Blairstown garages, build new garage at Tama, and expand Ames, Cedar Rapids, Colfax, and Grundy Center garages;

Option 2: Close Tama and Blairstown garages and expand Traer and Cedar Rapids garages;

Option 3: Close Tama and Blairstown garages and relocate new garage at Jct. U.S. 30 and Iowa 21; and

Option 4: Close Blairstown garage, build new garage at Tama, and expand Cedar Rapids garage.

The Office of Maintenance provided these options for examination.
III. REQUIREMENTS OF THE MODEL

The following describes the assumptions, key input data, computer program, etc., which are needed to apply the optimum allocation model to a given study area. A. Assumptions

1. With the concurrence of the Office of Maintenance, highway maintenance vehicles are assumed to travel at average speeds of 35 mph for snow and ice control activities and 40 mph for other maintenance activities. These average speeds are used to determine a weighted average speed which is then used to estimate travel times from garages to highway segments.
2. The travel times from garage " X " to segment " Y " and from segment " Y " to garage "X" are assumed to be the same.
3. Any highway segment formed is represented by its midpoint. Thus the highway maintenance cost of a segment is assumed to be concentrated at its midpoint. Also, travel times are calculated from garages to midpoints of highway segments.
4. The cost of servicing a highway segment from a maintenance garage is assumed to vary as a function of travel time between the garage and the segment. The relationship is quantified by the use of "cost multipliers," which is shown in Table 1 (page 10).
5. The highway maintenance cost for a route in a given maintenance area is assumed to be uniformly distributed along the route.
6. The garages in the study area are assumed to have unlimited capacities. This means the garages can be expanded, if necessary, to service all the segments optimally assigned to them.
7. Capital costs are not considered.

B. Study Area

The study area for this project is the U.S. 30 corridor between Ames and Cedar Rapids. It consists of 15 "active" highway maintenance garages and is shown in Appendix 1.

C. Highway Segments

1. All the routes in the study area were broken up into suitable segments; and
2. The end points of a highway segment should be suitable for turning maintenance vehicles around (junction, intersection or town).

A total of 139 highway segments, ranging from 0.29 mile to 20.21 miles in length; were formed in the study area. These segments are shown in Appendix 2.

D. Source of Data

The Office of Maintenance provided the necessary information and the fiscal year 1986 labor, equipment and garage overhead costs for all the routes in the study area. These costs are shown in Appendix 7.

E. Basic Maintenance and Overhead Costs

The fiscal year 1986 labor, equipment and overhead costs were adjusted for inflation to reflect what these costs would be if the same maintenance activities were done in fiscal year 1987. The Office of Maintenance provided the following inflation factors:
Labor 5\%
Equipment 3.5%
Overhead 5\%

The inflation-adjusted labor and equipment costs for a route were combined to form a single cost. This single cost is referred to as the "basic maintenance" cost for that route. The "basic maintenance" cospt associated with each route is proportionally allocated (with respect to length) to the segments forming that route.

Sometimes the overhead cost of each maintenance garage in the study area is not readily available. In certain maintenance areas, the overhead costs for some garages are combined during the record-keeping process. In such situations, the Office of Maintenance recommends the overhead costs of the garages involved be determined according to the relative percentages of the number of persons and/or the number of miles of highway associated with each garage.

F. Key Input Data

The following is used for developing the input data for the model:

1. Operating costs for all the routes in the study area; and
2. Crew travel times from garages to work sites.

The Office of Maintenance does not keep records of crew travel times. The technique for estimating crew travel times for use is explained later in this report.
G. Output Data

For a given set of garage locations, the model's output consists of the following:

1. Annual operating costs for the entire study area; and
2. The optimum allocation of all highway segments to maintenance garages and their respective operating costs in the study area.

H. Computer Program

The model uses a computer program (MPSX) developed by the International Business Machine (IBM). The program is available for lease from IBM and is also available at the Iowa State University at Ames. It is a highly efficient computer program designed to solve large-scale linear programming problems. The project has used the computer program at the Iowa State University Computation Center. Samples of the computer input and output data are shown in Appendices 21 and 22.

I. Weighted Average Speed

The optimum allocation model is sensitive to small changes in speed and thus is sensitive to small changes in travel time. For a given highway segment, the travel time from a given garage to the segment is generally greater for snow and ice control activities than it is for the other maintenance activities. Therefore, a "weighted" average speed rather than a "simple" average speed is used in this study.

A weighted average speed of 38 mph is used. It was determined as shown below. All the data is provided by the Office of Maintenance.

$$
\begin{aligned}
& \% \text { of snow and ice control activities }=32.2 \% \\
& \text { Average speed for snow and ice control activities }=35 \mathrm{mph} \\
& \text { Average speed for other maintenance activities }=40 \mathrm{mph} \\
& \text { Therefore, } \\
& \begin{aligned}
\text { Weighted average speed } & =(0.322)(35)+(1.0-0.322)(40) \\
& =11.27+27.12 \\
& =38.39 \mathrm{mph} \quad \text { Use } 38 \mathrm{mph}
\end{aligned}
\end{aligned}
$$

J. Travel Time Estimation

The following is the basic formula that is used in estimating travel times from garages to highway: segments:
$\underset{(\text { in minutes })}{\text { Travel Time }}=\frac{\text { Distance (in Miles) }}{\text { Speed (Miles Per Hour) }} \times 60$
The shortest and most logical travel distances from garage locations to midpoint of segments were calculated using the Primary Road Inventory and Mileage Summary (3) and the Maintenance Area Responsibility Maps (2).

As an example, the trävel time from segment No. 1 to the garage at Ames is calculated as follows:

Length of segment No. $1=11.41$ miles (from map--page 9)
(the shortest distance from Ames garage--G1 $=\frac{11.41}{2}$ miles
to the midpoint of segment No. 1)
$=5.70$ miles
Vehicle weighted average speed $=38.00 \mathrm{mph}$
Therefore,
Travel Time : $\quad=\frac{5.70}{38.00} \times 60$ minutes
$=9$ minutes
A computer program was used to estimate travel times from garages to highway segments for the entire study area.

Existing Allocation of Highway Segments at Ames Garage

K. Travel Time Adjusted Costs

The basic maintenance cost for each highway segment was adjusted using its travel time from the garage and the corresponding cost multiplier as determined from Table 1. The concept of cost multipliers is based on the assumptions that one-way travel time less than 45 minutes would result in more than six hours of productive work (for an eight-hour work day) at the work site. This would result in less cost associated with nonproductive travel. One the other hand, travel time greater than 45 minutes would result in less productive work and consequently in greater maintenance cost. This relationship was developed in a project prepared for the Alabama DOT (1).

The travel time adjusted costs are called "operating costs" in this study. Sample calculations are shown below.

Table 1
Basic Maintenance Cost Multiplier as a Function of Travel Time (Eight-Hour Work Day)

One-Way Travel Time from Garage to Segment (Minutes)	Productive Work (Hours)	Basic Maintenance Cost Multiplier
$00-15$	$7.5-7.0$	0.8
$15-75$	$7.0-5.0$	$0.8-1.2$
$75-135$	$5.0-3.0$	$1.2-2.0$
$135-165$	$3.0-2.0$	$2.0-3.0$
2165	≤ 2.0	8.0

Source: Reference No. 1
a. Sample Calculation of Cost Multiplier

Basic Logic (from Table 1):
(45 minutes one-way) (Travel Time
is equivalent to $(=) 6$ hours of productive work.
and

$(6$ hours of
(Productive Work)

thus
(i) $\begin{aligned} & (7 \text { hours of } \\ & \text { (Productive Work) }\end{aligned}=$: to a Cost Multiplier of 0.8 (i.e. $\frac{6}{7}$)
(ii) $\begin{aligned} & (5 \text { hours of } \\ & \text { (Productive Work) }\end{aligned}=$ to a Cost Multiplier of 1.2 (i.e. $\frac{6}{5}$)

The basic maintenance cost for any highway segment in the study area is multiplied by the appropriate cost multiplier to obtain the maintenance cost adjusted for its travel time from a particular garage under consideration.
b. Sample Calculations of Travel Time Adjusted Cost

Consider highway segment No. 1 in Ames maintenance area.
Basic Maintenance Cost $=\$ 31,359$
(Travel Time from Ames Garage) $=9$ minutes
(to Midpoint of Segment 1)
Cost Multiplier (Using Table 1) $=0.8$
Therefore,

$$
\begin{aligned}
\binom{\text { Travel Time Adjusted })}{\text { Cost }} & =\left(\begin{array}{c}
\text { Cost })
\end{array}\right) \times(\text { (Bultiplier }) \\
& =(0.8)(31,359) \\
& =\$ 25,087
\end{aligned}
$$

The travel time adjusted costs (operating costs) for the 139 highway segments as serviced from each of the 16 garages were calculated using a computer program.

IV. THE APPLICATION OF THE MODEL

A. Existing and Optimum Allocations

The optimum allocation model was first used to examine the existing allocation of highway segments to the maintenance garages in the given study area.

The "existing allocation" (Appendix.1) refers to the current maintenance areas which were determined by the Office of Maintenance without the use of the optimum allocation model. These two allocations (existing and optimum) were compared on the basis of operating costs only. To ensure compatibility in cost, the operating costs pertaining to the existing allocation were also determined from travel time. adjusted costs by utilizing the cost multipliers and the travel times as determined by the existing allocation system.

The application of the model to the existing allocation system resulted in the reallocation of 19 segments of the 139 highway segments with the associated cost savings of approximately $\$ 16,800$. The optimal highway segments allocations are shown in Appendix. 2. The reallocated highway segments and the corresponding cost savings are shown in Table 2.

B. Examination of Options

The optimum allocation technique was also used to evaluate the financial effect of closing and/or relocating garages for four options as described earlier under "objective" of the research project.

A highway maintenance garage must be optimally located within its maintenance area to minimize the loss in productivity. Closing a highway maintenance garage increases travel cost. On the other hand, maintainino a garage involves overhead costs. Closing a garage, therefore, iṣ cost beneficial only when the resulting increase in travel cost is less than the overhead costs of that garage.

The results of the cost analysis for each of the four options are shown in Tables $3,4,5$ and 6, respectively. A summary of the estimated savings/(loss) for each option considered is shown in Table 7. Appendices 3 through 6 indicate the optimal highway segments allocations to garages for options 1 through 4; respectively.

Table 2
ANNUAL SAVINGS
DUE TO
SEGMENTS REALLOCATED UNDER OPTIMUM ALLOCATION (U.S. 30 CORRIDOR BETWEEN AMES AND CEDAR RAPIDS)

Table 2 ä.
DESCRIPTION OF HIGHWAY SEGMENTS
REALLOCATED UNDER OPTUMUM ALLOCATION PROCEDURES

Highway Segment No.	Route	Description	
		From	T0.
14	210	Jct. U.S: 65 \& Ia. 210	Jct. I-35 \& Ia. 210
28	930	State Center	Story Co. Line
32	146	Jct. U.S. 30 \& 1ă. 146	Tama Co. Line
36	330	Jet. U.S. 30 \& Iä. 330	Jct. U.S. 65 \& İa. 330
41	14	Laurel	Jct. İ, 14 \& Ia. 224
53	163	Monroe	Pella
71	63	Poweshiek Có: Line	Jct. U.S. 6 \& U.S. 63
73	21	Jct. Ia. 21 \& U.S. 30	Jct. Ia. 21 \& Ia. 212
78	229	Jct. U.S. 63 \& Ia. 229	Garwin
80	63	Jct: U.S: 63 \& Ia. 96	Jct. U.S. 63 \& Ia. 229
88	218	Laporte City	Jct. Iä: 8 \& UU.S. 218
99	218	Vinton	Jct. Ia. 199 \& U.S. 218
100	199	Jct. Ià 199 \& U'S. 218	Ván Hórnè
107	218	Jct. Ia, 199.\& U.S. 218	Jct: U.S. 30 \& U.S. 218
111	279	Atkins	Jct. U.S: 30 \& Ia. 279
112	30	Linn Co. Line	Cedar Rapids
119	21	Jct: Ià. 21 \& İa. 212	Jct. U.S. 6 \& Ia. 21
120	419	Jct. Ü.S: 6 \& İa. 419	Victor
125	1	Jct. Ia. 1 \& U.S. 30	Solon

OPTION 1: Cost analysis of closing garages at Marshalltown, Colo, and Blairstown; build new garage at Tama and expand Ames, Cedar Rapids, Colfax, and Grundy Center garages using optimum allocation model

\begin{tabular}{|c|c|c|c|c|c|}
\hline (1)
\vdots

Item \& \begin{tabular}{l}
(2)

Garages Not Closed (\$)

 \&

(3)

Garages Closed (\$)

 \&

(4)

Increased Travel Cost (3) - (2) (\$)

 \&

(5)

Overhead Cost of Garages Closed

- (Overhead at Tama and Increase In Overhead After Expanding Ames,

C. Rapids, Colfax \& Grundy Center) (\$)

 \&

(6)

Estimated Savings/(Loss) (5) - (4) (\$)
\end{tabular}

\hline | A 1.1 |
| :--- |
| Garages | \& 3,471,770 \& \& . \& \&

\hline Close Marshalltown, Colo \& Blairstown; new garage at \& , \& \& \& \&

\hline Tama; expand \& \& 3,548,601 \& 76,831 \& 57,144 \& $(19,687)$

\hline Ames, \& \& \& \& \&

\hline Rapids, Colfax \& Grundy Center \& \& \& \& \&

\hline
\end{tabular}

Note: All costs shown are 1987 costs. See Appendix 11 for overhead costs. Col. (5) $=(78,597+45,506+22,344)-(57,803+9,450+6,300+9,450+$ $6,300)=\$ 57,144$

OPTION 2: Cost anlaysis of closing garages at Tama and Blairstown and expanding Iraer and Cedar Rapids garages using optimum alloction model

Note: All costs shown are 1987 costs. See Appendix 14 for overhead costs. Col. (5): $(40,911+22,344)-(6,300+6,300)=\$ 50,655$

Table 5
OPTION 3: Cost analysis of closing garages at Tama and Blairstown and constructing new garage at the intersection of U.S. 30 and lowa 21 using optimum alloction model

(1)	(2)	(3)	(4)	(5)	(6)
Item	Garages Not Closed - (\$)	Garages Closed (\$)	Increased Travel Cost (3) - (2) $(\$)$	Overhead Cost of Garages Closed - (Overhead at New Location) \qquad (\$)	$\begin{gathered} \text { Estimated } \\ \text { Savings/(Loss) } \\ (5)-(4) \\ \hline(\$) \\ \hline \end{gathered}$
All					
Close Tama					
\& Blairs-					
town;					
construct					
new garage		3,473,546	1,776	18,031	16,255
U.S. 30 \&					
Ia. 21					

Note: All costs shown are 1987 costs. See Appendix 17 for overhead costs. Col. (5) $=(40,911+22,344)-(45,224)=\$ 18,301$

OPTION 4: Cost analysis of closing Blairstown garage; build new garage at Tama and expand Cedar Rapids using optimum allocation model

(1)	(2)	(3)	(4)	(5)	(6)
				Overhead Cost of Garages Closed (Overhead at Tama and Increase in	Estimated
Item	Garages Not Closed (\$)	Garages Closed (\$)	Travel Cost (3) - (2) (\$)	Afer Expanding Cedar Rapids) (\$)	$\begin{gathered} \text { Savings/(Loss) } \\ \left(5 \frac{-}{(4)}\right. \\ \hline \end{gathered}$
All					
Garages	3,471,770				
Close					
Blairstown;					
new garage					
at Tama;		3,491,714	19,944	-29,180	$(49,124)$
expand					
C. Rapids					

Note: All costs shown are 1987 costs. See Appendix 20 for overhead costs. Col. $(5)=22,344-(45,224+6,300)=-\$ 29,180$

Table 7.
SUMMARY OF
COST ANALYSIS OF MAINTENANCE GARAGES IN THE U.S. 30 CORRIDOR BETWEEN AMES AND CEDAR RAPIDS

Option	(1) Item	(2) Garage(s) Not Closed (\$)	(3) Garages(s) Closed (\$)	(4) Increased Travel Costs $(3)-(2)$ (\$)	(5) Overhead Cost of Garages(s) Closed - Increase in Overhead After Expanding/New Garage (\$)	(6) Estimated Savings/(Loss) $(5)-(4)$ (\$)
	All Garages	3,471,770				
1.	Close (MCB), build new garage at Tama \& expand (ACRCGC)		3,548,601	76,831	57,144	$(19,687)$
$\bigcirc 2$.	Close (TB) \& expand (TRCR)		3,513,943	42,173	50,655	8,482
3.	```Close (TB) & con- struct new garage at inter. U.S. }3 & Ia. }2```		3,473,546	1,776	18,031	16,255
4.	Close (B), build new garage at Tama \& expand CR	.	3,491,714	19,944	-29,180	$(49,124)$

LEGEND

Note: All costs shown are 1987 costs.

(MCB)	Marshalltown, Colo, and Blairstown
(ACRCGC)	Ames, Cedar Rapids, Colfax, and Grundy Center
(TB)	Tama and Blairstown
(TRCR)	Traer and Cedar Rapids
(B)	Blairstown
(CR)	Cedar Rapids

v. CONCLUSION

The. optimum allocation model was used to examịe several highway maintenance garage locations in the U.S. 30 corridor between Ames and Cedar Rapids.

First, the model examined the current allocation of highway segments to maintenance garages in the study area. It reallocated only 19 segments of the total 139 highway segments to different maintenance garages. The study concludes there would be an annual operational savings of approximately $\$ 16,800$ if the Highway Segments Allocation System, as determined by the model, is used.

Secondly, the model also examined the four options selected by the Office of Maintenance. These options are described under 'objective' of the study. The study finds the following operational savings or losses for each of the options examined.

Estimated Annual
Operational Savings/(Losses)
Options (\$)
1.
$(19,700)$
2.

8,500
3.

16,250
4.
$(49,100)$
It appears option No: 3 would generate the maximum annual operational savings for the Department. These operational savings, however, should be used only as guidelines by the managers in the decision-making process. This is not the final solution, and the results of the study must be viewed in retation to the limitations of the study which are stated in Section VI.

VI. LIMITATIONS OF STUDY

The accuracy of the cost savings reported in this study is subject to:

1. The reliability of the historical cost data provided for use in this study.
2. The accuracy of the apportionment of an overhead cost in cases where two or more garages have a combined overhead cost.
3. The accuracy of the average speeds of maintenance vehicles used to calculate the weighed average speed.
4. The garage overhead costs.
5. Capital costs are not considered.
6. Paul T. Nkansah and Saleem Baig. An Optimum Allocation Approach to Closing or Relocating Highway Maintenance Garages in Iowa. Final Report. Office of Transportation Research, Planning and Research Division, Iowa Department of Transportation. June 1981.
7. Iowa Department of Transportation, Office of Maintenance, Maintenance Area Responsibility Maps. October 1986.
8. Iowa Department of Transportation, Office of Transportation Inventory, Primary Road Inventory and Mileage Summary, 1986.
9. Mathematical Programming System Extended (MPSX). Linear and Separable Programming Program Description. First Edition, February 1971.

Study Area Showing Existing Highway Segments Allocations

Appendix 1

Gra. 368A
$25103 / 4 / 87$

Optimal Highway Segments Allocations 16 Garages and 139 Highway Segments

Appendix 2

Garage	Location
G1	Ames
G2	Colo
G3	Grundy Center
G4	Marshalltown
G5	Colfax
G6	Newton
G7	Grinnell
G8	Malcolm
G9	Tama
G10	Traer
G11	Jct. US 30 \& lowa 21 (New garage to be built later)
G12	Blairstown
G13	Urbana
G14	Williamsburg
G15	Cedar Rapids
G16	Marion
Legend:	
\square	Existing garage
	New garage to be built
G	Garage number
-....	Highway segments
	Study boundary area
00	Segment number (Reallocated)

Gra. 368A
2510 $2 / 17 / 87$

Option No. 1
Optimal Highway Segment Allocations
(Close Marshalltown, Colo, \& Blairstown Garages,
Build New Garage at Tama, Expand Ames, Cedar Rapids, Colfax \&
Grundy Center Garages)

Appendix 3

Segment Served

Location

-Ames (G1 Expand) Colo (G2 Closed)

- $]^{-1}$ Grundy Center (G3 Expand)

Marshalltown (G4 Closed)
$\square \square \square$ Colfax (G5 Expand)
XXXXXX Newton (G6)
$\because \% \% \% \%$ Grinnell (G7)

- Malcolm (G8)
- Tama (G9 Expand)

Traer (G10)
Blairstown (G12 Closed)
\downarrow Urbana (G13)
$\triangle \Delta$ Williamsburg (G14)
$\Delta \Delta \Delta$ Cedar Rapids (G15 Expand)
$\star \star \star$ Marion (G16)

Legend:
Existing garage

- Closed garage

Expand garage

- New Garage

G Garage numberStudy boundary area

[^0]
Option No. 2

Optimal Highway Segment Allocations
(Close Tama \& Blairstown Garages,
Expand Traer \& Cedar Rapids Garages)
Appendix 4

Segment
 Served

Location

- Ames (G1)
- - Colo (G2)
-1. Grundy Center (G3)
$\star \star \star$ Marshalltown (G4)
믐 Colfax (G5)
XXXX Newton (G6)
\cdots Grinnell (G7)
○ ○ Malcolm (G8)
Tama (G9 Closed)
Traer (G10 Expand)
Blairstown (G12 Closed)
- Urbana (G13)
- Δ Williamsburg (G14)
$\Delta \Delta$ Cedar Rapids (G15 Expand)
- Marion (G16)

Legend:

Existing garage	
Closed garage	
G	Expand garage
Gtudy boundary area	

Gra 368 A
2510
$2 / 17 / 87$

Option No. 3
Optimal Highway Segment Allocations (Close Tama \& Blairstown Garages, Relocate New Garage at Jct. U.S. 30 \& Iowa 21)

Appendix 5

Segment
 Served

- Ames (G1)
-0e0 Colo (G2)
- ! - Grundy Center (G3)
$\star \star \star$ Marshalltown (G4)
믐 Colfax (G5)
xxxxx Newton (G6)
$\therefore \ldots \%$ Grinnell (G7)
- Maicolm (G8) Tama (G9 Closed)

Traer (G10)
Jct. U.S. 30 \&

- lowa 21
(G11 Relocated Garage)

Blairstown (G12 Closed)
— Urbana (G13)
\triangle Williamsburg (G14)

- Cedar Rapids (G15)
$\Delta \Delta \quad$ Marion (G16)

Legend:

Existing garage

- Closed garage

G Garage number
\square Relocated garageStudy boundary area

Gra. 3688
2510
$2 / 17 / 87$

Option No. 4
Optimal Highway Segment Allocations (Blairstown Garage Closed, Build New Garage at Tama, Expand Cedar Rapids)

Appendix 6

Segment

Served

Location

- Ames (G1)
-e. Colo (G2)
- - \quad - Grundy Center (G3)
$\star \star \star$ Marshalltown (G4)
븜 Colfax (G5)
xxxxy Newton (G6)
$\ldots \ldots \%$ Grinnell (G7)
○ ○ Malcolm (G8)
— Tama (G9 Build New Garage)
Traer (G10)
Blairstown (G12 Closed)
- Urbana (G13)
© $\triangle \Delta$ Williamsburg (G14)
- Cedar Rapids (G15 Expand)
$\Delta \Delta \Delta$ Marion (G16)

Legend:

- Existing garage
- Closed garage

Expand garage

- New Garage

G Garage number

Study boundary area

Gra. 368 B

FISCAL YEAR 1986
LABOR, EQUIPMENT AND OVERHEAD COSTS
FOR THE ROUTES AND GARAGES IN U.S. 30 CORRIDOR BETWEEN AMES AND CEDAR RAPIDS

Location and Number of Garages	1986 Garage Overhead Cost (Dollars)	Routes Served by Garage	$\begin{aligned} & 1986 \text { Labor } \\ & \text { Cost. } \\ & \text { (Dollars) } \\ & \hline \end{aligned}$	\qquad
Grundy Center (1101)	\$ 49,526	14	\$ 41,888	\$ 34,882
		57	9,182	6,683
		175	33,233	29,489
		214	4,949	4,386
Marshalltown (1104)	74,854	14	37,039	35,034
		30	32,506	29,977
		96	17,341	13,675
		146	12,350	11,906
		233	-6,549	6,812
		234	10,379	11,067
		245	10,353	2,528
		311	3,733	3,781
		330	31,308	32,465
		930	14,245	15,154
Ames(1105)	144,984	30	37,578	52,286
		35	76,285	92,537
		69	24,508	31,380
		210	17,578	21,357
		221	6,863	6,695
Colo (1106)	43,339	30	19,855	13,533
		65	59,989	40,724
		133	1,490	906
		947	530	217
Newton (1304)	65,339	6	14,338	9,680
		14	55,062	46,752
		80	46,619	34,815
		223	3,657	3,003
		224.	5,690	5,688
$\begin{aligned} & \text { Grinnell } \\ & (1305) \end{aligned}$	59,676	6	32,840	18,458
		80	44,715	26,293
		146	58,688	32,805
		225	11,609	5,384
Malcom (1306)	52,610	6	15,768	10,933
		21	29,954	20,170
		63	57,031	37,167
		80	50,752	27,236
		85	6,750	2,805
		-30-		

APPENDIX 7 (Continued)

Location and Number of Garages	1986 Garag Overhead Cost (Dollars)	Routes Serve by Garage	1986 Labor Cost (Dollars)	$\begin{gathered} 1986 \text { Equi.pment } \\ \text { Cost } \\ \text { (Dollars) } \\ \hline \end{gathered}$
Tama	38,963	- 21	\$ 944	\$. 806
(1308)		30	48,364	37,077
		63	27,891	21,874
$\begin{aligned} & \text { Träer } \\ & \text { (1309) } \end{aligned}$	42,700	8	12,459	10,254
		: 21	11,725	12,831
	:	$\therefore \quad 63$	41,620	37,830
		96	4,988	5,131
	\because	229.	9,330	6,307
$\begin{aligned} & \text { Blairstown } \\ & (6101) \end{aligned}$	21,280	- 21	922	483
	,	- 30	43,818	33,017
	\because	$\therefore 82$	16,406	10,734
		131	15,939	9,625
		$\because 200$	1,060	558
		201	7,690	4,369
		279	3,190	2,537
		287:	1,343	1,176
		940	0	0
		\cdots		$\therefore \quad 1$
Urbana(6102)	89,376	- $21 . \mathrm{F}$	732	1,773
		- 30	11,510	$\therefore 11,665$
		150	21,884	20,273
		- 198\%	3,207	2,032
		$\therefore 199$	917	$\because 510$
		218	60,290	53,479
	\cdots	363	1,161	1,930
		380	83;071	70,918
		919	599	-123
		920	13,273	12,787
Williamsburg (6405)	9006			
	90,062	6 21	$\begin{aligned} & 21,244 \\ & 23,289 \end{aligned}$	18,050 17,279
	.	21 80	21,289 97,990	17,279 84,766
		149	26,725	26,853
		151	14,108	14,140
	\%	212	13,801	11,906
	\because	220	14,514	13,754
		419	1,790	1,465
Colfax(1301)	53,182	80	51,153	26,906
		117	29,916	17,445
		- 163	55,167	$\therefore 34,135$
		223	10,057	4,213
Cedar Rapids(6106)	183,660	. 30	60,381	75,540
		- 94	18,026	19,302
		$\therefore 151$	38,080	48,543
	\cdots	380	164,482	186,992
	:	- 941	43,789	43,506
		965	3,126	3,901
		-31-;		

APPENDIX 7 (Continued)

Location and Number of Garages	1986 Garage Overhead Cost (Dollars)	Routes Served by Garage	$\begin{aligned} & 1986 \text { Labor } \\ & \text { Cost } \\ & \text { (Dollars) } \\ & \hline \end{aligned}$	1986 Equipment Cost \qquad
Marion (6107)	66,785	1	\$ 12,977	\$ 14,662
		13	56,757	69,870
		100	32,053	35,594
		151	5,509	4,686

Note: The garage overhead costs include utilities, field supervision, maintenance garage and yard operations, maintenance area administrative work and other support activities.

Source: Office of Maintenance, Highway Division, Iowa DOT

APPENDIX 8

Existing Segment Allocation and Basic Mántenance Costs: (U.S. 30 Corridor Between Ames and Cedar Rapids.)

Highway Segment No.	Route	Assigned to Garage at:	*Basic Majntenance Costs \qquad
1	69	Ames	31,359
2	35	Àmés	112,273
3	221	Ames	14,135
10	30	Amiés	93,572
11	35	Ames	63,602
12	69	Amès	26,852
13	210	Ames	12,476
14	210	Ames	28,086
101	200	Blairstown	1,691
102	30	Blairstown	31,537
103	131	Blaírstown	26,698
104	21	Bláirstown	1,468
105	82	Blairstown	28,336
106	30	Blairstown	8,698
108	30	Blairstown	28,772
109	287	Biairs town	2,627
110	201	Blairstown	12,597
111	279	Blairstown	5,976
112	30	Blairstown	11,175
124	30	Cedar Rapids	25,245
126	30	Cedar Rapids	43,993
127	30	- Cedar Rapids	30,906
128	380	Gedar Rapids	139,340
129	965	Gedar Rapids	6,674
130	151	Cedar Rapids	50,138
131	151	Cedar Rapids	40,088
132	30	Cedar Rapids	41,440
133	941	Cedar R Rapids	91,008
134	94	Cedar Rapids	38,905
135	380	Cêdar Rapids	226;903
38	223	Colfax	14;921
44	117	colifax	34,426
45	80	Colfäx	33,717
46	80	Colfax	19,274
47	80	Colfax	28;570
51	117	Colfax	15;042
52	163	Colfax:	46,844
53	163	Colfax	46,411
4	65	Colo	20,614
5	65	Colo	42,833
6	30	Colo	16,724
7	65	Colo	30;829
8	30	Colo	18,131
9	133	Colo	2,503
15	65.	Colo	10;862

Highway Segment No:	Route
54	225
55	146
65	6
66	80
67	80
68	80
69	146
70	6
16	20
17	14
18	214
19	175
20	14
21	14
22	175
23	175
56	63
57	63.
58	2.1
59	21
60	85
61	80
62	21
63	6
64	63
125	1
136	13
137	151
138	13
139	100
24	14
25	311
26	96
27	233
28	930
29	930
30	330
31	30
32	146
33	14
34	30
35	330
36	234
37	245

Assigned to Garage at:	*Basic Maintenance Costs (1987) Dollars)
Grinnell	17,762
Grinnell	51,747
Grinnell	26,394
Grinnell	26,169
Grinnell	26,169
Grinnell	21,826
Grinnel1	43,828
Grinnell	27,193
Grundy Center	16,558
Grundy Center	25,386
Grundy Center	9,737
Grundy Center	23,006
Grundy Center	30,430
Grundy Center	24,269
Grundy Center	32,087
Grundy Center	10,323
Malcolm	26,665
Malcolm	55,480
Malcolm	10,203
Malcolm	33,262
Malcolm	9,991
Malcolm	81,479
Malcolm	8,863
Malcolm	27,872
Malcolm	16,206
Marion	28,801
Marion	40,399
Marion	10,635
Marion	91,512
Marion	69,250
Marshalltown	47,210
Marshall town	7,833
Marshall town	32,362
Marshalltown	13,927
Marshall town	9,749
Marshall town	20,892
Marshall town	17,210
Marshalltown	27,712
Marshall town	25,291
Marshall town	27,941
Marshall town	37,445
Marshall town	49,264
Marshalltown	22,352
Marshall town	6,138

APPENDIX 8 Hightway Segment No.	Route	Assigned to Garrâgè at:	*Basic Mântenance costs \qquad
39	223	Newton	6.948
40	14	Newton	23,423
41	14	Newton	14,280
42	224	Newton	11.862
43	14	Newtón	28,961
48	6	Newtón	25;074
49	80°	Newton	84,985
50	14	Newton	39;538
71	63	Tâma	17,939
72	63	Tảmà	20,299
73	21	Tama	1,825
74	30	Támá	27,447
75	30	Tama.	27,447
76	63	Tama	13,688
77	30	Tàma .	34;263
78	229	Traer	16,325
79	96	Traer	10,548
80	63	Traer	20,276
81	63	Traer	21;463
82	8	Tracer	14,941.
83	21	Tráer	25,591
84	8	Traer	$\because \quad 8,754$
85	63	Traer	41,116
86	380	Urbana	30, 163
87	380	Urbana	29:252
88	218	Uribana	30,068
89	380	Urbañà	39;798
90	150	Uribaná	8,876
91	920	Úrbana	6.594
92	920	Uribana	20,578
93	380	Urbana	61,412
94	919	Urbaña	-756
95	363	Urbẩnà	3,217
96	150	Urbana	35;085
97	218	Urbana	39,765
98	198	Urbáa	5:470
99	218	Urbana	37,735
100	199	Urbana	1,491
107	218	Ưrbaña	11;088
113	151	Willamsbúrg	10, 324
114	220	Wiotiams burg	29,475
115	151	Wilitamsburg	19,124
116	6	Williams burg	18;867
117	212	Williams burg	26;814
118	6	Wilijamsbúrg	22,121
119	21	Wilijamsburg	42,338
120	419	Wilijambiurg	3,396
121	80	Williagmsbürg	107,468
122	149	Williamsburg	55,854
123	80	Wilijâmsbuřg	83;153
* 1987 Labor âñ equipment costs based on the 1986 cost adjưsted for inflation.$-35=$			

APPENDIX 9

Operating Costs for Segments Optimally
Reallocated Under Option 1

Highway Seqment No.	Segment Length (Miles)	Route	Originally Assigned to:	Optimally Assigned to:	$\begin{gathered} * \text { Operating } \\ \text { Costs } \\ \text { (1987 Dollars) } \\ \hline \end{gathered}$
24	15.19	14	Marshalltown	Grundy Center	44,692
33	8.99	14	Marshalltown	Tama	26,078
31	8.74	30	Marshalltown	Tama	23,463
34	11.81	30	Marshalltown	Tama	35,698
26	10.04	96	Marshalltown	Traer	28,910
32	9.04	146	Marshalltown	Tama	21,413
27	5.3	233	Marshalltown	Grundy Center	13,463
36	6.72	234	Marshall town	Colfax	21,607
37.	1.24	245	Marshalltown	Colfax	5,852
25	4.73	311	Marshalltown	Grundy Center	7,206
30	7.06	330	Marshalltown	Tama	16,522.
35	20.21	330	Marshalltown	Colfax	45,980
28	3.36	930	Marshalltown	Ames	9,489
29	7.2	930	Marshalltown	Tama	20,613
6	7.37	30	Colo	Ames	15,386
8	7.99	30	Colo	Ames	15,109
4	6.68	65	Colo	Ames	21,851
5	13.88	65	Colo	Ames	40,834
7	9.99	65	Colo	Colfax	28,157
15	3.52	65	Colo	Colfax	9,197
9	. 97	133	Colo	Ames	2,019
104	2.12	21	Blairstown	Tama	1,429
102	10.95	30	Blairstown	Tama	29,014
106	3.02	30	Blairstown	Cedar Rapids	8,408

```
APPENDIX 9 (Continued)
```

Highway Segment No.	Segment Length	Route	Originally Assigned to:	Optimally Assigned to:	$\begin{gathered} \text { *Operating } \\ \text { Costs } \\ (1987 \text { Bodars) } \end{gathered}$
108	9.99	30	Blairstown	Cedar Rapids	25,895
112	3.88	30	Blairstown	Cedar Rapids:	9,238
105	3.75	82	Blairstown	- Tama	28,336
103	6.47	131	Blairstown	Tama	24,740
101	2.16	200	Blairstown	Tama	1,567
110	4.77	201	Blairstown	Cedar Rapids	11,505
111	1.98	279	Blairstown	Cedar Rapids	5,139
109	1.93	287	Blairstown	Cedar Rapids.	2,434

* Operating costs are based on travel time adjusted costs.

APPENDIX 10

Additional Mileages Served by Garages Under Option 1

Harage	Increase in Miles Served	
Tama	78.29	$\%$ Increase in Miles
Colfax	41.68	35
Ames	40.25	19
Cedar Rapids	25.57	18
Grundy Center	25.22	12
Traer	10.04	11
TOTAL	221.05	5

OVERHEAD COSTS - OPTION 1

Garage	(1) Overhead Cost (1986. \$)	(2) Overhead Cost (1) $\times(1.05)$ (1987. \$)	(3) Overhead Cost After Expansion (1986\$)	(4) Overhead Cost After Expansion (3) $\times(1.05)$ (1987 \$)	(5) Increase in Overhead Cost After Expanding (4) - (2) (1987 \$)
Marshalltown	74,854	78,597.			
Colo	43,339	45,506			
Blairstown	21,280	22,344			
Tama	38,963	40,911	55,050 1/	57,803	16,892
Ames	144,984	152,233	153,984 21	161,683	9,450
Cedar Rapids	183,660	192,843	189,660 3/	199,143	6,300
Colfax	53,182	55,841	62,182 4/	65,291	9,450
Grundy Center	49,526	52,002	55,526 ${ }^{\text {/ }}$	5¢,302	6,300

1/ New garage (14 stalls)
2/ Three additional stalls
3/ Two additional stalls
4/ Three additional stalls
5/ Two additional stalls
Note: 1986 costs and information on additional stalls are provided by the Office of Maintenance. 1987 costs are adjusted for inflation.

The garage overhead costs include utilities, field supervision, maintenance garage and yard operations, maintenance area administrative work and other support activities.

Operating Costs for Segments Optimally Reallocated Under Option 2

Highway Segment No.	Segment Length \qquad (Miles)	Route	Originally Assigned to:	Optimally Assigned to:	$\begin{gathered} * \text { Operating } \\ \text { Costs } \\ \text { (1987 Dollars) } \\ \hline \end{gathered}$
73	6.97	21	Tama	Traer	1,740
74	7.77	30	Tama	Marshalltown	28,179
75	7.77	30	Tama	Marshalltown	25,983
77	9.7	30	Tama	Marshalltown	29,238
71	8.06	63	Tama	Maicolm	14,471
72	9.12	63	Tama	Malcolm	18,269
76	6.15	63	Tama	Traer	12,045
104	2.12	21	Blairstown	Malcolm	1,458
102	10.95	30	Blairstown	Traer	31,747
106	3.02	30	Blairstown	Cedar Rapids	8,408
108	9.99	30	Blairstown	Cedar Rapids	25,895
112	3.88	30	Blairstown	Cedar Rapids	9,238
105	3.75	82	Blairstown	Urbana	29,091
103	6.47	131	Blairstown	Traer	27,054
101	2.16	200	Blairstown	Traer	1,702
110	4.77	201	Blairstown	Cedar Rapids	11,505
111	1.98	279	Blairstown	Cedar Rapids	5,139
109	1.93	287	Blairstown	Cedar Rapids	2,434

* Operating costs are based on travel time adjusted costs.

Additional Mileages Served by Garages Under Option?

Garage	Increase in Miles Served	\% Increase in Miles
Traer	32.7	31
Cedar Rapids	25.57	24
Marshall town	25.24	24
Malcolm	19.3	18
Urbana	-3.75	3
TOTAL	106.56	100

APPENDIX 14

OVERHEAD COSTS - OPTION 2

	(1)	(2)	(3)	(4)	(5)
Garage	Overhead Cost (1986 \$)	Overhead Cost (1) $\times(1.05)$ (-1987-\$)	Overhead Cost After Expansion (1986 \$)	Overhead Cost After Expansion (3) $\times(1.05)$ (-1987-\$)	Increase in Overhead Cost After Expanding (4) - (2) (-1987-\$)
Tama	38,963	40,911			
Blairstown	21,280	22,344			
Traer	42,700	44,835	48,700 1/	51,135	6,300
Cedar Rapids	183,660	192,843	189,660 $2 /$	199,143	6,300

1/ Two additional stalls
2/ Two additional stalls
Note: 1986 costs and information on additional stalls are provided by the Office of Maintenance. 1987 costs are adjusted for inflation.

Operating Costs for Segments Optimaliy

Reallocated Under Option 3

Highway Segment No.	Segment Length \qquad	Route	Originally Assigned to:	Optimally Assigned to:	$\begin{gathered} \text { *Operating } \\ \text { Costs } \\ (1987 \text { Dollars) } \\ \hline \end{gathered}$
73	6.97	21	Tama	$\begin{aligned} & \text { Jct. U.S. } 30 \\ & \text { \& Ia. } 21: . \end{aligned}$	$1,460$
74	-7.77	- 30	Tama		21,958
75	7.77	30	Tama	$\begin{aligned} & \text { Jct. U.S. } 30 \\ & \& \text { Ia. } 21 \end{aligned}$	$22,507$
77	9.7	30	Tama	Marshalltown	29,238
71	8.06	63	Tama	Maicolm	14,471
72	9.12	63	Tama	Malcolm	18,269
76	6.15	63	Tama	Traer	12,045
104	2.12	21	Blairstown	$\begin{aligned} & \text { Jct. U.S.S. } \\ & \text { \& } \\ & \text { Ia. } \end{aligned}$	1,174
102	10.95	30	Biairstown	$\begin{aligned} & \text { Jct. U.S. }{ }^{30} \\ & \text { \& Ia. } 21 \% \end{aligned}$	$\therefore 25,230$
106	3.02	30	Blàirstown	$\underset{\& \text { Ia. } 21}{ }$	7,190
108	9.99	30	Blairstown	$\underset{\& \text { Ia: } 21}{ }{ }_{c}^{\text {Jct. U.S. }} 30$	25,895
112	3.88	30	Blairstown	Cedar Rapids	9,238
105	3.75	82	Blairstown	$\begin{gathered} \text { Jct. U.S. } 30 \\ \& \text { Ià: } 21 \end{gathered}$	23,613
103	6.47	131	Blairstown		21,358
101	2.16	200	Blairstown	$\underset{\&}{\text { Jct. U.S. }} \underset{21}{ } 30$	1,353
110	$4: 77$	201	Blairstown	Cedär Rappids	11,505
111	1.98	279	Blairstöwn	Cedar Rapids	5,139
109	1.93	287	Blairstown	$\begin{aligned} & \text { Jct.: U.S. } 30 \\ & \text { \& Ia. } 21 \end{aligned}$	2,329

* Operating costs are based on travè itime adusted costs.

APPENDIX 16
 Additional Mileages Served by Garages Under Option 3

Total Miles Served by New Garage/ Increase in Miles
Garage Served
\% Miles Allocated to New Garage/\% Increase in Miles
Jct. U.S. 30 \& Ia. 21 1/ 62.9 59
Malcolm 17.18 16
Cedar Rapids 10.63 10
Marshalltown9.79
Truer6.156
TOTAL 106.56 100
1/ New garage.

OVERHEAD COSTS - OPTION 3

$\begin{array}{ll}\text { Intersection U.S. } 30 \\ \text { \& Ia. } 21\end{array} 433,070 \underline{1 /} 45,224$

1/ New garage (10 stalls)
Note: 1986 costs and information on number of stalls are provided by the Office of Maintenance: 1987 costs are adjusted for inflation.

Operating Costs for Segments Optimally

 Reallocated Under Option 4| Highway Segment No. | Segment Length (Miles) | Route | Originally Assigned to: | Optimally Assigned to: | $\begin{gathered} \text { *Operating } \\ \text { Costs } \\ \text { (1987 Dollars) } \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 104 | 2.12 | 21 | Blairstown | Tama | 1,429 |
| 102 | 10.95 | 30 | Blairstown | Tama | 29,014 |
| 106 | 3.02 | 30 | Blairstown | Cedar Rapids | 8,408 |
| 108 | 9.99 | 30 | Blairstown | Cedar Rapids | 25,895 |
| 112 | 3.88 | 30 | Blairstown | Cedar Rapids | 9,238 |
| 105 | 3.75 | 82 | Blairstown | Tama | 28,336 |
| 103 | 6.47 | 131 | Blairstown | Tama | 24,740 |
| 101 | 2.16 | 200 | Blairstown | Tama | 1,567 |
| 110 | 4.77 | 201 | Blairstown | Cedar Rapids | 11,505 |
| 111 | 1.98 | 279 | Blairstown | Cedar Rapids | 5,139 |
| 109 | 1.93 | 287 | Blairstown | Cedar Rapids | 2,434 |

* Operating costs are based on travel time adjusted costs.

Garage	Increase in Miles Served	\% Increase in Miles
Tama	25.45	50
Cedar Rapids	$\underline{25.57}$	$\frac{50}{200}$
TOTAL	51.02	$100 \cdots$

OVERHEAD COSTS - OPTION 4

	(1)	(2)	(3)	(4)	(5)
	Overhead Cost	Overhead Cost	Overhead Cost After Expansion-	Overhead Cost After Expanstion-	Increase in Overhead Cost After Expanding
Garage	(1986 \$)	$\begin{gathered} (1) \times(1.05) \\ (1987 \$) \end{gathered}$	(1986 \$)	$\begin{gathered} (3) \times(1.05) \\ (1987 \$) \end{gathered}$	$\begin{aligned} & (4)-(2) \\ & (1987 \$) \end{aligned}$
Blairstown	21,280	22,344			
Tama	38,963	40,911	43,070 1/	45,224	4,313
Cedar Rapids	183,660	192,843	189,660 2/	199,143	6,300

1/ New garage (10 stalls)
2/ Two additional stalls
Note: 1986 costs and information on additional stalls are provided by the Office of Maintenance. 1987 costs are adjusted for inflation.

Sample Input for MPSX Computer Program

5 $\frac{7}{7} \quad 8$ Notes \qquad $\frac{10}{235678901234567890} \frac{1}{1234567899^{1}} \frac{2}{2}$
$2 \quad 3$
$3-4$ \qquad 95

Notes

[^0]: Gra. 368A
 2510 2/17/8

