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PURPOSE AND OBJECTIVES 

Several primary techniques have been developed through which soil­

aggregate road material properties may be improved. Such techniques 

basically involve a mechanism of creating a continuous matrix system of 

soil and/or aggregate particles, interlocked through the use of some 

additive such as portland cement, lime, or bituminous products. Details 

by which soils are stabilized vary greatly, but they are dependent on the 

type of stabilizing agent and nature of the soil, though the overall 

approach to stabilization has the common feature that improvement is 

achieved by some mechanism(s) forcing individual particles to adhere to one 

another. This process creates a more rigid material, most often capable 

of resisting the influx of water during freezing, loss of strength due to 

high moisture content and particle dispersion during thawing, and loss of 

strength due to migration of fines and/or water by capillarity and pumping. 

The study reported herein, took a new and relatively different 

approach to strengthening of soils, i.e., improvement of roadway soils and/ 

or soil-aggregate materials by structural reinforcement with randomly 

oriented fibers. 

The purpose of the study was to conduct a laboratory and field investi­

gation into the potential of improving (a) soil-aggregate surfaced and sub­

grade materials, including those that are frost-prone and/or highly 

moisture susceptible, and (b) localized base course materials, by uniting 

such materials through fibrous reinforcement. The envisioned objective 

of the project was the development of a simple construction technique(s) 
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that could be (a) applied on a selective basis to specific areas having a 

history of poor performance, or (b) used for improvement of potential base 

materials prior to surfacing. 

Little background information on such purpose and objective was 

available. Though the envisioned process had similarities to fibrous 

reinforced concrete, and to fibrous reinforced resin composites, the 

process was devoid of a cementitious binder matrix and thus highly depend­

ent on the cohesive and frictional interlocking processes of a soil and/or 

aggregate with the fibrous reinforcement; a condition not unlike the intro­

duction of reinforcing bars into a concrete sand/aggregate mixture without 

benefit of portland cement. Thus the study was also directed to answering 

some fundamental questions: (1) would the technique work; (2) what type 

or types of fibers are effective; (3) are workable fibers commercially 

available; and (4) can such fibers be effectively incorporated with con­

ventional construction equipment, and employed in practical field 

applications? The approach to obtaining answers to these questions, was 

guided by the philosophy that an understanding of basic fundamentals was 

essential to developing a body of engineering knowledge, that would serve 

as the basis for eventual development of design procedures with fibrous 

products for the applications previously noted. 

REVIEW OF LITERATURE 

Fiber reinforcement of construction materials dates to prehistoric 

times, when civilizations in Mesopotamia added straws to mud bricks (19). 

The aim was to provide integrity to a weak matrix by arresting the growth 
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of cracks; i.e., more or less the same objective for many modern appli­

cations. At a much later date, Europeans utilized horse hair for rein­

forcing plastics, and civilizations in Australia and New Zealand utilized 

vegetable fibers for reinforcing plaster-boards (19). Such applications 

were confined to small scale operations. Composite material technology 

remained relatively undeveloped till the early part of this century, when 

it took a quantum leap with the development of reinforced concrete, and 

asbestos cement (19). 

Early developments in soil fiber composites were in the area of rein­

forced earth. Vidal (26) conducted studies in the late 1960s on utilization 

of galvanized steel for reinforcing retaining wall backfill. This study 

demonstrated that retaining walls could be constructed at less cost than 

more conventional techniques. 

In the mid 1970s, Fang and Mehta (9) performed studies on the possibility 

of utilizing sulfur treated bamboo for reinforcing slopes, earth dams and 

backfill materials for retaining walls. This study showed that bamboo 

reinforcement enhanced the shear strength of soil and could be economically 

used to reinforce such engineered structures. For existing dams and em­

bankments, it was proposed that the bamboo be installed vertically, with 

its length exceeding the depth of a theoretical failure plane. For new 

embankments or dams, it was proposed that the bamboo should be placed hori­

zontally, either in strips or the form of a mat. Bamboo reinforced earth also 

showed better resistance to seismic excitations than non-reinforced earth. 

It was not until the mid 1970s when studies on utilization of fabrics 

in roadway soils were first reported (27) . Handfelt (12) showed that non­

woven fabrics could reduce frost boiling and increase stability of soil 
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aggregate roads. 

Gray and Ohashi (10) conducted studies on utilization of both natural 

and synthetic fibers for reinforcing sandy soils at predetermined fiber 

orientations. This study showed that shear strength was dependent on 

fiber type, fiber length, fiber orientation and fiber volume fraction. 

Fiber Composites 

Constituents of a fiber composite are fibers coupled with a matrix 

material. The mechanical behavior of fiber composites is thus influenced 

by the type of interactions occurring between the individual constituents. 

In an introduction to fiber composites, Krenchel (17) classified matrix 

materials into organic and inorganic. Organic matrixes are comprised of 

polymeric materials such as epoxy, polyester, plastics, etc. Most 

available literature on fiber composites is on the interaction of fibers 

and such matrixes. Procedures for interfacing organic matrixes and fibers 

range from mixing to liquid infiltration. In general, the interfacial bond 

developed between fibers and organic matrixes produces composite materials 

of high strength and stiffness, low weight and high resistance to corrosion. 

Composite failure is usually characterized by break.age of the high content 

of fibers. 

Inorganic matrixes are composed of granular particulate materials such 

as aggregates, concrete, cement, soil, etc. (17). Fabrication of these 

composites presents some technical problems, and no universal technique 

has yet been adopted. One of the methods that have been used in fiber con­

crete involves adding fibers and aggreg~te into a concrete mixer, then 

mixing thoroughly prior to adding water and cement. Another technique 
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involves fiber pretreatment, in order to separate individual fibers, so 

that the matrix material can penetrate into the fibers. The developed 

interfacial bond is mainly frictional, and these composites usually 

experience a progressive type of failure, characterized by cracking of the 

matrix material, followed by fiber debonding and pullout. Fiber debonding 

and pullout signifies a weak interfacial bond between fibers and matrix. 

Therefore, the composite fails before the tensile strength of the fibers 

is fully mobilized. The quantity of fibers required for such composites 

is usually low; between 1% and 20% by volume (17). Such composites are 

less expensive than those containing an organic matrix, since the cost of 

matrix materials such as cement and soil is lower than that of an organic 

matrix, and the required quantity of fibers is smaller. 

Fibers are added into inorganic matrixes to improve their ductility, 

tensile strength, flexural strength and impact resistance (16). Fibers 

improve such properties since extra energy is required to debond and 

stretch the fibers, thus absorbing more energy prior to experiencing failure. 

Fibers 

Characteristics of fibers that play a dominant role in determining 

the integrity of fiber composites are type, geometry, amount, and orient­

ation in the matrix (24). Generally, fibers are broadly classified into 

synthetic and natural. 

Synthetic fibers are produced by various chemical processes, and are 

classified into high modulus, high strength fibers, and low modulus, high 

elongation fibers. The former includes fibers such as steel, fiberglass, 

carbon, etc., while the latter includes fibers such as polypropylene and 
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and polyethelene (20). Low modulus fibers are generally more expensive, 

and have not been used extensively in the construction industry (15). 

Synthetic fibers have two advantages over natural fibers. First, 

these fibers can be produced according to desired specifications; for 

example, geometry of fibers can be controlled, shape of fibers and surface 

conditions can be altered in order to enhance the frictional properties of 

the fibers (17). Second, most synthetic fibers do not biodegrade when sub­

jected to variable environments of moisture, heat, cold or sunlight (17). 

Natural fibers can be classified into cellulose fibers and asbestos. 

Cellulose fibers are the reinforcing fibers found in vegetation, and in 

their crystalline form, form the backbone of various wood and natural 

textile fibers (23). They are usually classified according to that part of 

the plant from which they are derived (23). Cellulose fibers usually have 

lower values of Young's modulus and tensile strength than most synthetic 

fibers, but are available in large quantities and are replenishable (17). 

High quantities of these fibers can be used without incurring excessive 

costs. A disadvantage of natural fibers is that they may be affected by 

varying environments (23). In addition, fiber geometry is not a constant 

parameter, thus complicating any design procedure. Such fibers may also be 

susceptible to microbiological attack and rotting, and biodegrade in alka­

line environments (23, 17). 

Asbestos fibers have high chemical resistance and good mechanical 

properties, such as high tensile strength and Young's modulus (17). They 

can also withstand severe pretreatment conditions during mixing and are 

available at low cost in large quantities. These fibers have been used 
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extensively for reinforcing cement mortars, but in recent years their 

usage has declined due to the discovery that asbestos may be responsible 

for some forms of human cancer (17). Properties of fibers frequently used 

in civil engineering are sunnnarized in Table 1. 

Fiber content is usually expressed in terms of volume fraction or 

weight fraction, either term representing the amount of fiber in a composite 

as a percentage of total volume and total weight of the composite 

respectively, (1). 

Fiber geometry 

Length is a major criteria used to classify fibers. Composites pro-

duced with fibers shorter than 3 inches are usually classified as short 

fiber composites. Composites made up of longer fibers are referred to as 

continuous fiber composites since in most cases the fibers extend through-

out the mass of the matrix (1). The mechanics of stress transfer differ 

in both classifications. For short fiber composites, applied stresses are 

first transferred to the matrix material, then to the fibers through the 

fiber ends, and the surfaces of fibers near the fiber ends. For continuous 

fiber composites, applied stresses are transferred to the fibers and 

matrix at the same time (1). 

For short fiber composites, load transfer length (Lt) and critical 

length (L ) may be defined (1). Load transfer length denotes the minimum er 

fiber length in which maximum fiber stress can be achieved. The maximum 

fiber stress is dependent on the stress applied to the composite. The 

limiting value of this stress is the stress that would be accepted by a 

fiber of continuous or infinite length, for a given stress applied to the 



Table 1. Properties of fibers commonly used in civil engineering materials (15) 

Dens!ty Young's Tensile Elongation Typical 
Fiber Diameter Length Kg/m x Modulus Poisson's Streng~h at Volume in 
Type µm mm 103 MN/M2 Ratio MN/M Break % Composite % 

Asbestos 

Chysotile 0. 02-30 40 2.55 164 0.3 200-1800 2-3 10 

Crocidolite 0.1 -20 3.37 196 3500 2-3 

Cellulose 
Fibers 1.2 10 300-500 10-20 

E-Fiberglass 8-10 2.54 72 0.25 3500 4.8 00 

Polypropylene 

Monofilament 100-200 5-50 0.9 5 0.29-0.46 400 18 0.1-6 

Fibrillated 500-4000 20-75 0.9 8 0.29-0.46 400 8 0.1-6 
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composite (1). Critical fiber length is the minimum fiber length in which 

the fiber ultimate strength is achieved. The ultimate fiber strength is 

independent of the stress applied to the composite, and therefore the 

critical fiber length is also independent of applied stress, representing 

the maximum value of load transfer length (1). 

A parameter closely associated with fiber length is the aspect ratio, 

obtained by dividing length by diameter (L/d). The aspect ratio plays a 

role in determining the magnitude of interfacial shear developed during 

loading. The larger the aspect ratio, the smaller the amount of interfacial 

shear developed and hence the stronger must be the fiber matrix interf acial 

bond (1). 

Fiber orientation 

In the fabrication of fiber composites, fibers may be arranged in one, 

two, or three dimensional orientations. One dimensional orientation in­

volves aligning the fibers parallel to one another and in the direction of 

any applied stresses (2). The principle of reinforced earth approximates 

the concept of unidirectional long-fiber reinforcement (26). For two and 

three dimensional arrangements, the fibers may be randomly oriented, or 

ordered in some way during fabrication. In recent years the introduction 

of soil-fabric composites has developed a form of soil reinforcement bearing 

a resemblance to fiber composite technology (12, 27). The difference 

between two dimensional and three dimensional orientation is that in the 

former, fibers lie approximately in a plane, while in the latter, fibers 

extend in space in all directions (2) . The principles of reinforcement 

are the same in all three cases, except that for the two and three 
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dimensional cases some strength reduction factors occur. In fiber com­

posites, only the fibers aligned normal to the applied stress, carry any 

stress. Therefore, for two and three dimensional orientations, some 

fibers do not carry any stress at all and this is accounted for by strength 

reduction factors, more commonly termed efficiency factors. Figure 1 

summarizes the classification of fiber composites based on fiber length and 

orientation. 

Unidirectional filament composites 

In fiber composite technology, the simplest and oldest form of rein­

forcement is the employment of long filaments in strategic alignment with 

the direction of anticipated principal stresses. Aspect ratios of these 

filaments are taken to be infinity. This assumption greatly simplifies 

analysis of the system by eliminating the concentration of stresses occurring 

at the ends of more discreet fibers. The basic assumption which allows for 

modeling of other fiber reinforced systems, is that the bond established 

between the fiber and matrix is perfect. This allows for complete 

transfer of load from the matrix to the fibers. The basic expression for 

the reinforcing mechanism is 

R 
c 

Where R denotes the load, and c, m, f denote the composite, matrix and 

fiber respectively. This equation is the simplest form of the Law of 

Mixes, the principal theorem of composite technology (7). As is typical 

(1) 

of nearly all theorems, the basic simplicity of the general equation belies 

considerable complexity when employed in actual practice. Equation 1 is 
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more commonly adapted to the terms of stress (cr) and area (A) by assuming 

that the cross sectional area of the matrix and fiber combination remains 

constant. Equation 2 is the product of this substitution. 

(2) 

Similarly, the constant cross section assumption allows for the substitution 

of a volume term (V) into the Law of Mixes thereby producing an expression 

for stress in the composite in terms of easily controlled quantities. 

(3) 

In practical situations, where disparity between the unit densities of the 

matrix and fibers is great, the substitution of weight fraction for volume 

fraction is made. The level of stress in the composite is therefore 

controlled by the relation of the fiber properties, in comparison with 

properties of the matrix. Manipulation of these properties allows for 

control of the mode of failure that the composite will demonstrate. 

The assumption of perfect bonding further allows for the determination 

of a value of Young's Modulus (E) for the composite. Given this bonding 

condition and linearly elastic components, Hooke's Law applies. 

(4) 

Application of these elastic relations to the Law of Mixes results in 

E E V = E E V + Ef Ef Vf c c c m m m 
(5) 

The assumption of a perfect bond further allows for division of the strain 

term throughout the equation. This is based upon the perfect transfer of 
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load from the matrix to the fibers resulting in the more connnon form of 

this expression. 

E V 
c c 

The secondary effects of elasticity due to varying Poisson's ratio are 

( 6) 

most frequently neglected in composite design, since the error induced by 

this assumption is quite small (23) 

It is of benefit at this point to qualitatively examine the effects 

of unidirectional reinforcement and to establish some frame of reference 

for the trends related to it. The enhancement of coaxial tensile strength 

properties and moduli is the primary benefit gained from unidirectional 

reinforcement. Improvement of these properties appears to be independent 

of the matrix properties,yet highly dependent upon the quality of the bond 

developed between the fiber and the matrix. Volume fraction also bears 

significantly into the overall strength of unidirectional filament composites 

(23). 

Figure 2 illustrates the relation between composite tensile strength 

versus volume fraction of reinforcing agent. Parratt (23) has shown that, 

particularly in ductile matrixes, there exists a critical volume fraction 

of fibers below which the effects of fiber reinforcement are nil and very 

often detrimental due to the reduction of matrix brought about by the 

addition of fiber. Quantitative generalities in regard to these values can-

not be achieved without the evaluation of specific systems, although this 

trend appears to be widespread among similar composites. 
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Mechanical properties at angles other than those corresponding to the 

direction of the principally applied load are characteristically low, 

Figure 3. Experimental determination of the composite stresses oL, OT, and 

o1T (lateral, transverse and interlaminate respectively) allows for 

determination of the composite strength parameters at an angle e from the 

axial direction. This is done by taking into account the cross sectional 

areas and resolution of forces. 

Details of the derivation of the above relationship are not relevant; 

however, descriptive results of the work of Cooper and Kelly (8) in this 

regard are pertinent. Quality of the bond, classically assumed to be 

perfect for the sake of determinancy of the original composite model, is 

the critical factor in determination of strength in any direction. 

Thus, it can be illustrated from the literature that the parameters of 

greatest importance in the formation of a unidirectional fiber reinforced 

composite are the volume fractions of reinforcing agent and the quality 

of bond developed between the fiber and matrix. Geometry of the fiber cross 

section does not appear to greatly influence the analysis, nor does the 

ductility of the matrix (1). The effects brought about by the introduction 

of discrete fiber length necessitate considerably more analysis. 

Short fiber composites 

Long fiber reinforced composites perform well when the application of 

loading direction and magnitude is known. When the load and its direction 

is not known, or can change, long fiber composites do not perform as well. 

In such cases, short, randomly oriented fiber reinforced composites may be 

preferred (1). Short discreet fibers, however, mean that the fiber's 

geometry will influence composite performance much more than in long fiber 
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composites. The load transfer length of short fibers is a critical 

determination, and is related to the matrix shear strength, fiber diameter, 

and fiber stress by the following expression (1): 

(7) 

where 

it load transfer length; the minimum length to mobilize maximum 

fiber stress, 

d fiber diameter (d = a/b for fiber taper where a and b are the 

long and short sides of a rectangular cross section respectively), 

(a ) - maximum measured stress of the fiber, f max -

T = interfacial shear strength. 

Through a rigorous derivation based upon equation 7, Agarwal and 

Broutman related ultimate fiber strength (af)ult to critical fiber length 

(£) independent of experimentally determined values (1). 
c 

(8) 

This approach is generally used in composite analysis due to the 

difficulty in measuring actual fiber stress (1). As ~ is based on ulti­
c 

mate fiber stress, so long as the bond with the matrix is perfect, the 

composite will fail by fiber rupture rather than fiber pullout if fiber 

length is greater than, or equal to, ~ . 
c 

Use of short fibers means that fiber end stress conditions can not be 

neglected, and stress distributions along the fiber will vary. Assuming 

that the matrix is ideally plastic, Figure 4 indicates fiber stress dis-

tributions for various lengths of fibers. These stress distributions are 

only approximate, as most matrices actually exhibit elastic-plastic be-

havior (1). 
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It is often convenient, and without serious error, to consider the 

average stress (uf) as expressed by the following equation (1). 

where 

I I 
L __ J 

9., = t t 

I I 
1_ ___ 1 

> tt 

I I 
L - - ..J 

Figure 4. Varaiations of fiber stress and interface shear 
stress (L) for different fiber lengths (1). 

l f ,Q, Gf d 
,Q, 0 z 

,Q, fiber length 

Gf fiber stress, and 

d incremental fiber length. 
z 

Thus for the approximate stress distributions shown in Figure 4: 

- 1 
(Gf)max Gf 2 

-
Gf (0 ) 

f max 
(1 -

Tm,Q, 
d 

,Q, 
t 

z,Q,) 

where ,Q, < ,Q,t 

where ,Q, > ,Q, 
t 

(9) 

(10) 

(11) 

It is important to remember that the above relationships were based on the 

assumption of linear elasticity, perfect fiber-matrix bonding, and 

ideally plastic behavior of the matrix. Numerical solutions and finite 

element analyses have been applied to specific complex problems but the 

approximate values are usually sufficient for design purposes (1). 
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A more generalized means of determining moduli for short fiber com­

posites was developed by Halpin and Tsai (11). Expressions were derived 

for longitudinal and transverse moduli (E) of unidirectionally oriented 

fibers. Based on laboratory results, the moduli expressions were accept­

able when the fiber volume fraction was less than unity. Unfortunately, 

this method of moduli calculation is not applicable to randomly oriented 

fiber composites, as irrational values are generated. Halpin and Tsai then 

developed an empirical relation for Young's Modulus of random fiber com­

posites. 

Where E is Young's Modulus, R, L, and T represent the randomly oriented 

fiber composite, longitudinal direction and transverse direction, 

respectively (11). 

(12) 

Short fiber composite theory thus illustrates several important 

assumptions, concepts and trends. Foremost is the basic assumption of 

perfect fiber-matrix bonding, which is approached in some plastic and resin 

matrix composites but not in fiber reinforced concrete. The concept of 

critical fiber length and the increasing role of fiber geometry becomes 

important in composites with randomly oriented, discreet fiber reinforce­

ment. Trends involved with the fiber volume fraction present in the com­

posite influences the composite performance. 

Fatigue properties 

In general, the resistance of fiber composites to fatigue damage 

depends on the type of fibers, type of matrix, fiber volume fraction, 

fiber orientation, interfacial bond strength, type of loading system, 
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frequ~ncy of loading, fiber length and environment (1). Fiber length is 

an important parameter due to its effect on the mechanism of fiber 

strengthening. In continuous fiber composites, the fibers carry a larger 

proportion of the fatigue load; in short fiber composites the fatigue load 

is shared between the matrix and the fibers (1). Short fiber composites 

made up of inorganic matrixes are generally less resistant to fatigue 

damage because the weak matrix sustains a larger portion of any cyclic 

load. Failure occurs by initiation of localized failures in the matrix, 

which eventually spread through the whole matrix (1). 

In randomly oriented short fiber composites, fatigue damage is in­

itiated by debonding of the fibers that lie perpendicular to the direction 

of loading, but propagation of fatigue cracks is controlled by the tough­

ness of the matrix material (1). In brittle matrixes, cracks propagate 

easily and fast. For ductile matrixes, very few cracks are usually ob­

served and failure is caused by massive debonding of the fibers and matrix. 

In most cases, fatigue cracks increase the degree of water permeability, 

which can lead to accelerated material deterioration (1). 

In contrast to continuous fiber composites, very few fatigue studies 

have been done on discontinuous fiber composites, though it appears that 

fatigue damage is a function of the fiber volume fraction (1). Usually, 

the higher the fiber volume fraction, the more resistant the composite is 

to fatigue damage. 

Compressive characteristics 

Dow (28) suggested that the failure of a fiber composite under com­

pressive load was due to the elastic buckling of the fibers. In his study, 
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he used an E glass fiber-epoxy resin system which was cured at a tempera-

ture of 250° F, and then allowed to cool to room temperature. Cooling of 

the system produced a shrinkage of the matrix which led to the development 

of compressive strain on the fiber. Photoelasticity studies were conducted 

on the system, and it was found that the stress pattern along the length 

of the fiber was repetitious, an indication that the fibers had buckled. 

It was also found that the wave length and amplitude of the buckling varied 

with fiber diameter (28). This phenomenon was found to be analogous to the 

buckling of a column on an elastic foundation. 

In the above case, only one fiber was considered whereas an actual uni-

directional fiber composite contains a series of parallel fibers. Therefore, 

an analytical model was developed (29). The model was considered to be two 

dimensional, having a series of parallel, equi-spaced, continuous fibers, 

and the load was assumed to be applied to the fibers only. For this model, 

two buckling modes were possible. Either all the fibers buckle at the same 

wavelength with the adjacent fibers out of phase, or all fibers buckle at 

the same wavelength and in phase with one another. The first was referred 

to as the extension mode, because the predominant form of deformation was 

extension. The latter was referred to as the shear buckling mode since 

the predominant form of deformation was shear (29). 

In evaluating buckling stresses, an energy method was adopted wherein 

(13) 

where 

lluf = change in strain energy of fiber 

flu change in strain energy of matrix 
m 

llT work done by fiber loads. 
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It can be recalled that loads were applied to the fibers only. Therefore, 

the work done by the fiber loads was the energy required to buckle the 

fibers and strain the matrix as the composite changed from the compressed 

but unbuckled state, to the buckled state. 

From the basic energy relationship given above, the compression 

strength and critical vertical strain could be obtained for either the ex-

tension or shear mode from mathematical relationships given by Dow (28). 

Actual derivations of these relationships is beyond the scope of the study 

herein, therefore only the final equations are presented. 

Within the extension mode 

fvf Em EfJ1'2 a = 2Vf 3(1 - V ) c f t vf ] 1/2 E 1/2 

£ 
2 

2 (1 - v f) 
( ___!!!.) 

er Ef 

whereas within the shear mode 

where 

G m a = ---­
c 

(1 - v f) 

"er• Ef {11- Vf~ 
a = compressive stress in the composite at time of failure 

c 

G = shear modulus of the matrix 
m 

£ = critical strain or strain at which failure occurs. 
er 

From equations 14 and 15 it is apparent for the extension mode, that 

compressive stress and critical strain are a function of the fiber volume 

(14) 

(15) 

(16) 

(17) 
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fraction, and Young's modulus of both fiber and matrix. Equations 16 and 

17 show that for the shear mode, the compressive stress varies with the 

fiber volume fraction and the shear modulus of the matrix material, and 

critical strain is a function of the fiber volume fraction, matrix shear 

modulus, and Young's modulus of the fibers. 

Figure 5 (1) illustrates the variation of compressive strength with 

fiber volume fraction, for a composite made up of glass fibers incorporated 

into an epoxy matrix. Compressive strength increased with increasing fiber 

volume fraction to an optimum of 50%. Beyond this point, a decrease in 

compressive strength was observed. At low fiber weight fractions, the 

extension mode of buckling was critical, while at high fiber volume fractions 

the shear mode governed failure of the composites (1). 

Fiber Reinforced Concrete 

Serious evaluation of random fiber reinforced concrete has accelerated 

since the forming of the American Concrete Institute Committee 544 in 

1966 (3). Determination of strength and various design moduli have evolved 

around fiber concentrations, orientation, and geometry, as well as the 

usual water-cement ratio, air content, density and other related factors. 

Development of a bond between the matrix and fiber is of critical im­

portance (16). Experimental verification of fiber reinforced concrete has 

led to the application of classical composite theory. 

Fiber reinforced concrete exhibits a failure pattern of a brittle 

matrix with tensile reinforcement (18) . The stress-strain failure curve 

is linear up to a proportional limit, then non-linear to the ultimate 

strength value. There have been two traditional approaches employed in 

evaluating fiber reinforced concrete. The first relates the proportional 
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limit to fiber spacing, while the second employs the Law of Mixes. A 

recent report by the American Concrete Institute (ACI) concluded that the 

ultimate strength of fiber reinforced concrete is relatively insensitive 

to fiber spacing but depends upon fiber volume, geometry and bonding 

characteristics (3). 

Application of fiber composite theory follows that of short fiber 

composites. The basic assumption of perfect bonding, linear elasticity, 

and negligible effects of Poisson's Ratio are applied. However, the 

introduction of randomly oriented fibers coupled with the reality of non-

perfect bonding and differing Poisson's Ratios of fiber and matrix, results 

in the addition of an efficiency factor, A, into the Law of Mixes equation: 

E = AE Vf + E V c f m m (18) 

A varies from A= 1 for fibers oriented parallel to the force,to A= O 

for fibers oriented perpendicular to the applied force (16) . For randomly 

oriented fibers uniformly distributed over all directions, Krenchel, cited 

in Hoff (16), concluded that A= 1/5. Stress distribution on fiber ends 

was considered by Pakotiprapha, cited in Hoff (16), which reduced A by 

0.52 to 0.64 times that of Krenchel (16). The range of values of A appears 

related to the volume and type of fibers found in the composite. Appli-

cation of classical composite theory to fiber reinforced concrete post 

cracking failure, follows a similar derivation to that of critical length, 

and determination of various moduli. However, in the ACI report, a third 

set of efficiency factors were introduced that accounted for the type of 

fiber used, and the matrix properties of various concretes. This led to 

a range of 0.17 to 0.80 for the overall efficiency factor (3). 

Critical fiber length is also determined for fiber reinforced concrete. 
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The same approach is taken as with classical short fiber composite analysis. 

Equation 7 is applied with one important difference. If bond failure 

occurs, L then represents the frictional bonding force between matrix 
m 

and fiber, rather than the matrix shear strength, as the bonding is not 

perfect (24). 

Investigations of fiber reinforced concrete indicate general trends 

that are of interest in evaluating fiber reinforced soil. Addition of 

fibers increased the tensile strength of concrete, up to a peak fiber 

volume fraction, beyond which no increase in tensile strength was observed 

(16). Bonding between the matrix and fibers,varied with fiber types and 

geometries. Round polypropylene fibers developed weak bonds, while 

employment of fibrillated polypropylene tape allowed the cement paste 

to work into the twists, developing a better bond. Increasing the 

length of polypropylene fibers also improved bond strength. Fiberglass 

fibers developed an even better bond with the matrix as indicated by 

significant increases in flexural strengths (up to 4.9 times greater 

than unreinforced concrete), as well as increased tensile strengths. The 

wide range of previously mentioned efficiency factors reflects the 

difficulty of attaining suitable bond strength between fiber and concrete. 

To improve this bond, it was found that increasing the fiber length 

generally attained a better bond and hence better reinforcing. One draw 

back to this trend is that increased length of fiber adversely affects 

the workability of the mix (16). 
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Soil-Fiber Composites 

As previously mentioned, early work in earth reinforcement consisted 

of utilizing high modulus steel strips for reinforcing retaining walls (10). 

Other forms of reinforcement such as woven and nonwoven fabrics have more 

recently attracted attention and are finding wider applications in practice. 

Unlike metal strips, reinforcing fabrics have a much lower modulus (10). 

McGown, et al. (21) recognized these differences and classified earth rein­

forcement into two major categories, ideally inextensible and extensible 

inclusions. The former include the high modulus metal strips and bars; the 

soil reinforced with these materials being known as reinforced earth. The 

latter includes relatively low modulus natural and synthetic fibers, plant 

roots, and polymeric fabrics. Soil reinforced with these materials has 

been termed "Plysoil" (10). Properties of these two types of reinforced 

soil are summarized in Table 2. 

Gray and Ohashi (10) conducted a study to ascertain the contribution 

of fiber reinforcement to the shear strength of sand, and how fibers 

modify the stress-strain response of sand. A related objective was to 

determine the consequence of fiber reinforcement on the stability of sandy 

slopes. A mathematical model based on limiting equilibrium of forces 

was developed, which identified important test parameters and fiber/sand 

variables. Direct shear tests were then run on dry fiber reinforced sand 

to confirm validity of the model. 

The fiber reinforcement mathematical model was based on assumption 

that the fibers to be used were long, elastic, and extending an equal 

length on either side of a potential shear plane in the sand (10). Fibers 

were oriented either perpendicular to the shear plane, or at some arbitrary 



Table 2. Comparative behavior of earth reinforcement (21) 

Type of 
Reinforced 

Soil 

Reinforced Earth 
(Vidal, 1978) 

"PLY-SOIL" 
(McGown, et al, 
1978) 

Type of 
Reinforcement 

Ideally inextensible 
inclusions (Metal 
strips, bars, etc.) 

E /E > 3000a 
R S 

Ideally extensible 
Inclusions (natural 
and synthetic fibers, 
roots, fabrics, geo­
textiles) 

Stress Deformation 
Behavior of 

Reinforcement 

Inclusions may have rupture 
strains which are less than 
the maximum tensile strains 
in the soil without in­
clusions, under the same 
operating stress conditions, 
i.e., (ER)R < (Es) up max 

Depending on the ultimate 
strength of the inclusion, 
in relation to the imposed 
loads these inclusions may 
or may not rupture. 

Inclusions may have rupture 
strains larger than the 
maximum tensile strains in 
the soil without inclusions, 
i.e., 
(ER)Rup > (ES)max 

These inclusions can not 
rupture no matter their 
ultimate strength or the 
imposed load. 

Role and Function 
of 

Reinforcement 

Strengthens soil (increases 
apparent shear resistance) 
and inhibits both internal 
and boundary deformations. 
Catastrophic failure and 
collapse of soil can occur 
if reinforcement breaks. 

Some strengthening, but more 
importantly provides greater 
extensibility (ductility) 
and smaller loss of post 
peak strength compared to 
soil alone or to reinforced 
earth. 

aE /ES is the ratio of reinforcement modulus (longitudinal stiffness) to average sand modulus. 
The lim!ts shown are tentative; reinforcement/sand modulus ratios for all materials tested ranged 
from 71-2940. 

N 
00 
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angle, i. Shearing distorted the fiber orientation, thereby mobilizing 

tensile resistance in the fiber. The tensile force in the fiber was divided 

into components normal and tangential to the shear plane. The normal 

component increased the confining stress on the failure plane, while the 

tangential component directly resisted shear. The fiber was assumed to be 

thin enough that it offered little if any resistance to shear displacement 

from bending stiffness. 

The model showed that development of a fiber's tensile stress depended 

on a number of parameters and test variables; i.e., the fibers must be 

long enough and adequately frictional to avoid pullout, or conversely, 

the confining stress must be high enough so that pullout forces did not 

exceed skin friction along the fiber (10). This study also showed that 

distribution of tensile stress along the length of the fiber could be 

either linear or parabolic, with tensile stress being a maximum at the 

shear plane and decreasing to zero at the fiber ends. 

Several equations were obtained from the model for computing shear 

strength of fiber reinforced sand at different fiber orientations (10). 

All equations used the mobilized tensile strength, instead of the actual 

tensile strength of the fibers. In practice, actual fiber tensile strength 

is seldom realized, because composites fail before the fibers break. But 

if a limiting upper boundary estimate for shear strength is desired, the 

actual tensile strength of fibers can be substituted for mobilized tensile 

strength. Also, using the actual tensile strength of fibers, the minimum 

fiber length necessary to prevent fiber pullout could be defined as follows: 

L . min 
(19) 
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where 

1 . min 
minimum length required for full mobilization of fiber 

tensile strength 

TR actual tensile strength of fiber 

DR = diameter of fiber 

TR skin friction stress along fiber. 

The type of soil used for the laboratory investigation was a clear 

quartz beach sand, which had a mean grain diameter of 0.23 mm and a 

coefficient of uniformity of 1.5. Minimum and maximum void ratios were 

0.50 and 0.73, the corresponding friction angles measured in direct shear 

were 39° and 31°, respectively (10). The types of fibers used were both 

natural and synthetic and were selected in such a way as to give a range 

of elastic moduli (longitudinal stiffness). Fiber diameters ranged from 

1-2 mm, lengths from 2 to 25 cm, and their several properties are 

summarized in Table 3. 

Table 3. Properties of fibers used to reinforce sand (10) 

Diameter Skin Friction Tensile Young's 
Type of D Angle, S Strength, TR Modulus, ER 

Reinforcement en!) (degrees) (psi) a (psi) x •106 

II 2 Reed b 1.8 30 4860 0.22 

Plastic (PVC) 2.2 23 4500 0.30 

Polmyra c 1.2 30 25800 2.4 

Copper Wire 1.0 21 29000 8.5 

al psi= 6.89 kN/m2 . 

bCommon basket reed (phragmites communis). 

cA tough fiber obtained from the African polmyra palm (Borassus 
flabelliformis) often used as a heavy duty broom fiber. 

Laboratory testing was conducted using a standard laboratory direct 
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shear apparatus. The sand was tested dry, with and without reinforcement, 

in both the loose and dense states. Fibers were placed in a regular 

pattern at approximately equal spacings from each other, and from the sides 

of the shear box, and in either a perpendicular orientation to the shear 

plane or at some other predetermined orientation (10). The shear tests 

were strain controlled, both shear stress and vertical deformation being 

recorded as a function of shear or horizontal displacement up to a total 

displacement of 0.2 in (0.5 cm). Tests were run at a number of vertical 

confining stresses up to 144 kN/m2 in order to completely define the shear 

strength envelope. 

The theoretical model showed that six test parameters considerably 

influenced the behavior of fiber reinforced materials (10). These param­

eters were, (1) fiber length, (2) fiber diameter, (3) modulus of longitudinal 

stiffness of fibers, (4) angle of initial fiber orientation, (5) fiber 

concentration, and (6) vertical confining stress or shear strength of the 

matrix. During the laboratory investigation, as many of these parameters 

as possible were varied in a systematic fashion to ascertain their influence 

and determine the validity of the theoretical models. 

The laboratory shear test investigation showed that fiber reinforcement 

of sand increased the ultimate shear strength of the composite and limited 

the reduction in post peak shearing resistance (10). Presence of fibers 

across the shear plane limited the amount of vertical deformation or 

dilatation of a dense sand. There was a minimum amount of fibers that were 

necessary for any increase in shear strength to be realized. Beyond this 

fiber content, the shear strength increased linearly with increasing fiber 

weight fraction up to a maximum fiber content where a levelling occurred, 

and further increase in fiber content did not enhance the shearing strength. 
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Maximum shear strength increase was obtained when the fibers were oriented 

at ~n angle of 60 degrees from the horizontal plane of failure in the 

direction of shear. This behavior was attributed to the tensile axis in a 

direct shear apparatus being at an angle of 60°, so full mobilization of a 

fiber's tensile strength occurred when the fibers were oriented at 60°. 

At an angle of 120°, a reduction in shear strength was observed. Fibers 

oriented at an angle of 90° portrayed the same characteristics as 

randomly oriented fibers. These findings suggested that a simpler per­

pendicular fiber reinforcement model could be used as a satisfactory mean 

approximation for predicting shear strength increases across a shear surface 

crossed by randomly oriented fibers (10). None of the tested fibers broke 

in tension. Fibers either pulled out, or stretched, depending upon con­

fining stress, length and type of fiber. This behavior was consistent to 

what would be expected of plysoils (21), since the fibers have a higher 

modulus than the soil, and experience a considerable amount of elongation. 

Therefore, before the fibers break, the composite must experience a con­

siderable amount of deformation which may not be possible since the soil 

matrix can not sustain large strains. In most fiber reinforced sand 

composites, it was found that less than 25% of the actual tensile strength 

of the fiber was usually mobilized. 

MATERIALS 

Soil Selection 

The principle guideline for selection of soil matrices revolved 

around the employment of fiber reinforcement in potential field test 

sections. The overall project schedule for the investigation of soil fiber 

composites called for the construction of the first group of test sections 



Table 4. Engineering properties of soils 

Particle Size Distribution (%) 
........ 

........ 
~ ~ If) 

0 ........ 
........ If) 0 

~ ~ " . MSHTO T-99 0 0 
MSHTO . I If) Liquid Plasticity Maximum Optimum r-l 0 0 If) 0 
Classi- (I) 0 I " 0 Limit, Index, Dry Moisture :> . "CJ 0 .µ 0 :>... • 

Location fication CO N i:: r-l . rd 0 % % Density, Content, 
~6-

CO N •no r-l v 
U} '-' U} '-' U'-' cf % 

Linn County; 

Troy Mills 
Section 1 A-6(2) 20 35 24 21 30.0 13.2 115.0 13.2 

Troy Mills VJ 
VJ 

Section 2 A-2-4 (0) 24 47 14 14 20. 5 4.7 122.5 11.0 

Prairieburg A-4 (0) 4 49 27 20 23.2 4.4 114 .0 12.0 

Story County; 

Mortenson A-6(3) 18 38 24 20 34. 0 13. 7 114 .5 14.5 
Road 

Sioux City; 

West 3rd St. A-4(2) 2 6 65 27 30.8 1.5 109 .4 17 .4 

38th Street A-4 (O) 14 27 39 20 25.5 2.1 115 .5 13.4 

Borrow Pit A-4 (8) 0 1 82 17 33.0 6.4 103.5 17.9 



34 

in 1980. Coordination with the county engineers in Linn and Story Counties, 

plus the Director of Public Works in Sioux City, resulted in the selection 

of several secondary roads and streets as potential field test sites. 

Table 4 provides a synopsis of the soil/aggregate materials encountered in 

these sites. It should be noted that the sites were selected so as to 

represent a relatively wide range of soil properties. 

Fiber Selection 

As originally envisioned and proposed, the project reported herein 

included selection and testing of both natural and synthetic fibers. 

Natural fibers included wood chips, corn stalks and ground corn cobs, oat 

and flax straws, and manilla fibers. Initial laboratory results of 

natural fiber reinforcement were negative. In addition, such products 

were considered potentially degradable in an Iowa roadway environment, 

and as such were removed from further study by mutual consent of the Iowa 

Highway Research Board and ISU. Thus the project was concentrated on the 

availability and use of synthetic or man-made fibers. 

Synthetic fiber selection involved a degree of familiarity with 

terminology utilized within the fiber industry. A brief summary of the 

most pertinent terms follows: 

1. Fiber - As utilized in this project, a general term encompassing 

all filaments, yarns, bristles, staples and non-woven entities. 

2. Filament - An untwisted, individual fiber. Filaments have a 

characteristically high length/diameter ratio and may be either crimped 

or uncrimped. Crimping is used to prevent filament separation when bundles 

are formed. 

3. Yarn - Refers to a bundle or series of filaments twisted to 
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produce a single fiber in which the individual filaments cannot be separated. 

4. Tow - A long continuous roll of a single filament, groups of 

filaments, or yarns. 

5. Staple - A cut length of fiber, measured and expressed in inches; 

i.e., a one-inch staple refers to a cut length of one inch. 

6. Denier - The weight in grams of 9000 meters of a fiber. Denier 

is an indirect measure for fiber diameter. For examrle, if 9000 meters of 

nylon filament weigh 100 grams, it is classed as a 100 denier filament. 

All subsequent fiber properties such as tenacity, elongation at break, 

elastic properties etc., are based upon the denier of the fiber. It is 

possible to convert denier to more conventional diametric measure by 

relating denier (grams/meter) to specific gravity, through the volumetric 

relation for a circular cylinder. As an example, a 75 denier filament 

would have a diameter corresponding to a fine textured human hair, while 

a 2500/250 denier yarn would correspond in size to packing twine. Finally, 

in regard to denier measure, a 2500/250 yarn of fiber denotes a fiber with 

a 2500 total denier measure but composed of 250 individual filaments each 

of which is 10 denier. 

7. Aspect Ratio - In order to present fiber dimensions in a more 

conventional manner, an aspect ratio consisting of length divided by 

diameter is used herein. This is not terminology from the fiber industry, 

but appeared applicable to the purposes of this research project. 

8. Tenacity - A measure of tensile strength expressed in terms of 

grams/denier. A 100 denier filament that breaks under a 250 gram load is 

rated at 2.5 grams/denier. 

9. Elongation at break - Refers to the strain characteristic of the 

fiber; i.e., a measure of the amount of longitudinal deformation that 
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occurs prior to rupture, and expressed as a percentage. 

10. Regain - Tendency of the material to absorb moisture. 

An extensive literature search (including Corps of Engineers Water­

ways Experiment Station, Fort Belvoir Engineer School Library, etc.) 

yielded no information on fiber-reinforced soil, other than that presented 

in the Review of Literature. Because of the absence of information on 

this type of research, fiber selection for use in the project was quite 

arbitrary. Based on discussions with fiber industry representatives, it 

was realized that potential economic success of fiber-reinforced soil might 

possibly depend on employment of random length waste products, and a range 

of cut lengths were thus selected such that the impact of this variable 

could be evaluated. Also, different materials (i.e. nylon, polypropylene, 

etc.) possessing a variety of physical and chemical properties were 

evaluated. Some typical physical properties are given in Table 5, and a 

listing of fibers that were evaluated is presented in Table 6. In general, 

the nylon represented high strength and rigidity, while less of either 

property was displayed by the polyesters. The polypropylene, currently 

used in many geofabrics, is comparable to the lower range of the polyester 

strength/rigidity scale. It was hoped that by evaluating these varied 

fiber properties., some general criteria regarding strength and stiffness 

could be established. 

Other factors which appeared significant in terms of successful soil 

reinforcement were: (1) fiber surface properties; (2) whether or not the 

fibers were crimped; and (3) rate of biochemical degradation. Based on 

available manufacturers literature and discussion with industry represent­

atives, the best estimate of influence of these factors was that crimped 



Table 5. Typical Fiber Material Propertiesa 

Tensile Tensile Elongation 
Specific Str., psi, Modulus, At Break, Elastic 

Fiber Type Gravity x 103 psi % Recovery 

Nylon b 1.14 131.3 6 x 105 10 - 15 High 

Polypropylene .91 64.1 1.1 x 106 70 High 

Polyester c 1.39 103.2 d 30 Low 

1. 39 92.5 45 Low 

1.39 71.2 60 Low 

1.39 58.7 43 Low 

Type E Fiberglass 2.54 300 10 x 106 2 - 3.5 Low 

~alues obtained from manufacturers for fiber samples provided. 

bValues for monofilament (whiskers) .9 mil diameter. 

cSusceptible to alkaline decomposition. 

Approximate 
Cost, 

Survivability $/lb. 

Mod. 2 - 4 

High .75 - 1. 5 

Mod. 2 - 7 

Mod. 2 - 7 

Mod. 2 - 7 

Mod. 2 - 7 

High <1.0 

dAverage polyester tensile modulus 1.6 x 106 psi. Exact tensile moduli not provided by 
manufacturer. 

w 
-....J 
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Table 6. Synthetic fibers evaluated. 

Manufacturer Type Denier 

Allied Chemical Nylon 6 
Company 

7 

Celanese Polypropylene 1. 5 
1.5 

3 
6 

Chevron Chemical Polypropylene 6 
Co., Vectra Corp. 

15 

E.I. DuPont de Dacron 54 3 
Nemours & Co. 6 

Nylon 54 6 
Kevlar 

Lycra 3-6 
Tynex 3 (mills) 

Hoechst Fiber Polyester Tl21 1.5 
T221 1. 5 

3 

15 

Phillips Petroleum 
Co. Polypropylene 3 

Mini Fibers, Polypropylene 15 
Inc. 

360 

Owens Corning .008 
Fiberglass Type E .009 

.008 

Staple, 
Inches 

Tow 

Tow 

.75 
1.5 

3 
4 

1.25 
2.5 
3.5 

6 
1.5 
3.5 

6 
7 

Tow 
Tow 
Tow 

.5 

.75 
Tow 
Tow 
1. 5 
1.5 

2 

6 

.25 

.5 

.75 
1.00 

.25 

.75 
1.5 

.25 

.50 
1.0 
1.5 

.25 

.50 
1.25 

Remarks 

1260/204 
Uncrimped Fiber 

2 600/ 384 
Uncrimped Fiber 

Crimped 
Crimped 
Crimped 
Crimped 
Crimped 
Crimped 
Crimped 
Crimped 
Crimped 
Crimped 
Crimped 
Crimped 

Yarn 

High Intensity 
High Modulus 
Normal Tenacity, 

normal modulus 
Pentalobal Cross 
section 

Uncrimped 
Uncrimped 
Uncrimped 
Uncrimped 

Fibrillated Tape 

Tape 
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fibers might be less effective than uncrimped versions, since (a) 

crimped fibers could potentially ball-up during mixing, and (b) an un-

known portion of the crimping could be lost in a reinforced soil during 

compaction and before the fiber reinforcing contribution could be realized. 

Also, it was known that at least some of the synthetic fibers being 

evaluated were coated with various lubricants, used as an aid to fabric 

manufacturing processes. These lubricants ranged from water soluble, 

naturally derived coatings, to petroleum based products, and their influence 

was checked by testing washed fiber. Due to proprietary reasons, manu­

facturers did not divulge the coatings constituents, but provided in­

structions for their removal. In the initial selection of fiber types, the 

chemical and biological degradation characteristics were not considered. It 

was soon noted however, that most synthetic fibers are quite resistant to 

bio-chemical degradation. 

As a consequence of the above evaluations, a series of arbitrary 

guidelines was initiated to select a group of fibers suitable to long term 

employment in a roadway soil system. Of considerable concern was the 

survivability of the material within the soil. The varying nature of the 

soil-water system in regards to alkalinity, chemical composition, temperature 

and environmental variations were taken into consideration. 

Second, was the importance of procurement cost for the fibers. It was 

determined that high cost materials such as polyesters, Kevlar, and nylon, 

Table 5, should be eliminated as potential reinforcing agents based upon 

low cost effectiveness. 

Third, was the ready availability of these materials in fiber cuts 
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that would allow for the range of length evaluation desired. All fibers 

listed in Table 6 represented those cuts available from manufacturers on 

an "off the shelf" basis. The fibers of Table 6 also represented a range 

of denier and maximum range of acceptable geometries. It should be noted 

that variations in these lengths and denier could be made commercially 

available. However, manufacturers required a minimal order of 1500-2000 

lbs of fiber in order to justify resetting of their cutters to supply 

specially requested lengths. 

A fourth consideration in the fiber material selection process was 

the range of mechanical properties of the materials. While this consider­

ation might normally be of paramount importance, it was not felt to be a 

critical determinant for use in a soil-fiber composite. This was due to 

the suspected lack of strong interfacial bonding between the fiber and 

soil. As presented earlier, the quality of bond of a fiber to the matrix 

renders the matching of fiber properties to those of the matrix more 

critical. It was qualitatively determined that the degree of excellence 

of the soil-fiber interfacial bond would be considerably below that found 

in reinforced plastics, or fiber reinforced concrete. This assumption 

reduced the criticality of matching fiber properties to those of the soil 

as a means of controlling the mode of failure that might occur. All 

materials ultimately considered, possessed tensile strengths and moduli far 

in excess of any comparable properties encountered in soil systems, Table 5. 

A fifth guideline in the final fiber selection involved the potential 

inability to properly incorporate fibers into the soil to a random state 

of orientation. Such inability would prohibit evaluation of the 

performance of fibers as a soil reinforcement. Therefore, it was decided 
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that mix-ability to produce a random orientation and uniform distribution 

would be a major guide in fiber selection. Fibers listed in Table 6 

were combined with the Linn and Story County soils so as to determine 

incorporation feasibility. Mixing was accomplished in the laboratory by 

a hand folding mixing process to simulate blade grader incorporation, and 

by mixing with a laboratory pugmill mixer to simulate higher speed incor­

poration anticipated in the field if conventional travelplant processing 

were used. 

In this series of testing, two pound batches of soil were separated, 

and varying weight fractions of fiber combined into the soil specimens. 

In cases involving the incorporation of fibers of less than 15 denier 

diameter, excessive fiber matting occurred regardless of fiber length or 

cross sectional configuration. The .009 inch diameter nylon whiskers, 

15 dpf x 1.5 in. polypropylene monofilaments, 360 dpf x 1.0 in. fibrillated 

polypropylene tape, and .009 inch diameter Type E fiberglass fibers 

demonstrated acceptable mixing potential. Incorporation of these fibers 

at lengths varying from .25 inch to 1.5 inches resulted in uniformly 

random fiber distribution, in general without regard to type of mixing 

procedure used. Pug mill mixing did not effectively blend longer length 

fibers, mainly because the tines gathered and balled the fibers. Distri­

bution of long relatively stiff fibers was as good as that achieved for 

shorter fibers, but appeared to influence compaction. 

Based upon the results of the mixing study and upon the qualitative 

parameters expressed earlier, polypropylene and Type E fiberglass fibers 

were selected for extensive evaluation. These materials are currently 
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marketed in mat or fabric form for employment in geotechnical 

engineering problems, and have demonstrated a satisfactory resistance 

to biochemical degradation based upon field tests (11). In addition, 

fiber cuts of varying sizes and lengths, including fibrillated fibers 

of polypropylene, appear readily obtainable. Table 7 lists those fibers 

thus selected for detailed evaluation. 

Fly ash can be melted at high temperatures and a fiberglass-like 

fiber can be produced. Fly ash is pozzolanic to cementitious, though it 

was unknown if fibers produced from fly ash would retain such qualities. 

Attempts were made to produce fly ash fibers in cooperation with the 

Materials Science and Engineering Department at ISU. Using ash obtained 

from the Neal IV power plant near Sioux City, results of fiber production 

were relatively poor since the process used was unable to control either 

size or quality of the resulting fiber. A small sample of fibers was 

received from a connnercial firm that was also investigating fly ash fiber 

production. The fibers were of better quality, but length and diameter 

still varied considerably. Such fibers were used however in limited 

portions of the laboratory study. 

LABORATORY INVESTIGATION 

Selection of testing procedures was based on their relevance to the 

research proposal of effects of fiber reinforcement on roadway soils, 

and the need for a relatively rapid evaluation of data for (1) selection of 

fibers showing potential for field trials, and/or (2) more detailed 

laboratory investigations. 



Table 7. Fibers selected for primary evaluation, 

Fiber Fiber Cost per 
Diameter, Length, Pound, 

Fiber Type in in $a Manufacturer Remarks 

Type E 885BB 1/4 in. .008 .25 0.69 Owens Corning Fibers come as chopped 
Fiberglass 832BB 1/2 in. .008 1.25 0.69 Fiberglass strand tape and break 

453BB 1/2 in. .009 .50 0.69 into individual fibers 
upon mixing. 

Polypropylene 15 dpf x 1/4 in. .002 .25 .92 Mini Fibers, Round cross-section, 
15 dpf x 1/2 in. . 002 .50 • 92 Inc. monof ilaments 
15 dpf x 1°5 in. .002 1.50 • 92 

Polypropylene 15 dpf x 1. 5 in. . 002 1.50 Chevron Crimped, monofilament 
Chemical Co., 
Vectra Corp. .+:-

VJ 

Polypropylene 360 dpf x 1/4 in. .009 .25 • 65 Mini Fioers, Multifilamentary tapes 
Fibrillated 360 dpf x 1.0 in. .009 1.0 . 65 Inc. twisted in manufacture to 
Tape 360 dpf x 1.5 in. .009 1.5 .65 maintain cross section 

upon mixing. Employed in 
fiber reinforced concrete 
evaluations. 

Fly Ash Fiber Not com- Fiber diameter and 
mercially length varied 
available 

a Per pound costs noted herein are 1980-81 quotations and are presented as a means of relative 
cost comparison only. 1982 costs appear to be higher, but only fragmentary information is available. 
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Due to the variable length of fibers employed in this study, most 

of the test procedures utilized Proctor size specimens (4.56 inches deep 

by 4 inches in diameter) to insure random dispersion of fibers within 

each compacted specimen. Mixing of fibers was generally accomplished by 

a combination of hand and scraper folded machine mixing. All Proctor 

size specimens were molded with an automatic compactor in accordance with 

ASTM D698, wrapped and sealed, and placed in a controlled environment at 

about 72° F and near 100% relative humidity for a minimum of 24 hours 

prior to testing, the length of cure depending on the type of test being 

conducted. 

Calculations of much of the data were performed on a Sol remote 

computer, with ICOM magnetic disc reader. Raw test data were entered into 

the system, checked for accuracy of entry, and subjected to required 

calculations discussed within the test descriptions. Where needed, P­

plot capabilities of the SOL computer were also utilized. 

Iowa K-Test 

The Iowa K-Test employed Proctor size specimens placed into a split 

restraining, constant elasticity mold, and vertically loaded (30). The 

test is essentially a rapid stress-path triaxial test in that the 

constantly changing lateral deflecti.on of the split mold is monitored as 

well as the applied vertical load and deformation. Through knowledge of 

the elastic stress-strain calibration of the mold coupled with the measure­

ment of vertical and horizontal strains for specific loadings, values of 

engineering properties can be continuously calculated. The ratio of 
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horizontal to vertical stress yields K, the nominal uncorrected lateral 

pressure ratio. The vertical deformation modulus, E, and Poisson's 

Ratio, µ, as defined in soil mechanics, are obtained from manipulation of 

the vertical deformation of the specimen and the tangential expansion of 

the mold. The shear parameters of cohesion, c, and friction angle, ¢, 

are calculated through a linear regression of the p-q diagram, the latter 

representing the plots of peaks of Mohr's Circles constructed for each 

loading condition. Shear parameters c and ¢ were also utilized for com-

putation of ultimate bearing capacity (Q ), rendering each test result more 
0 

readily comprehensible in terms of composite strength, and more able to be 

correlated to the unconfined compressive strength values obtained for like 

specimens. To this purpose, Terzaghi's classic equation for the calculation 

of bearing capacity of soil under a circular footing was applied. A 12 

inch diameter bearing area was selected as representative of the bearing 

area of a set of dual tires thereby reducing the classical equation from 

to 

which included the shape factors for a circular footing and where 

c cohesion 

Df = depth of footing; 0 inches in this case 

y soil unit weight 

(20) 

(21) 

Nc' Nq' and Ny are empirical bearing capacity factors dependent on ¢. 
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In more conventional composite materials, the number of variables 

introduced into the system is of a relatively low level due to the ability 

to predict and control properties of the matrix. Given the variable 

nature of soil, coupled with random orientation of the reinforcing fibers, 

plus the variations by addition of different fiber types and sizes, 

moisture contents, etc., the difficulty of data analysis for a soil-fiber 

composite became evident. To this latter effect, the Statistical Analysis 

System (SAS) available at the Iowa State University Computer Center was 

employed. That program of greatest value to this initial phase of soil-

fiber composite analysis was the SAS procedure determining the best least 

squares regression based upon correlation coefficients and levels of 

confidence. In addition, the SAS capability to perform multivariable as 

well as single variable regression analysis was employed in an attempt to 

develop some form of predictive relationships. Analysis was performed on 

the data gleaned from combinations of the several soils, 10 fibers, and 

varying moisture contents. For each specimen produced, the variables of 

dry density, moisture content, fiber content, and fiber geometry were 

evaluated. 

To illustrate the SAS technique employed, the following example is 

provided. The input of raw data was made and graphically represented as 

in Figure 6. The response in this case was bearing capacity, Q , compared 
0 

to the single variable of moisture content. SAS analysis indicated that 

the best correlation between the response, Q , and moisture content of the 
0 

2 specimens was the quadratic equation Q = 1920 - 17.8 w , where w = specimen 
0 

moisture content. The correlation coefficient, R, equaled 0.85, signifying 
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that 85% of the variation observed in this data was attributed to the 

functional relationship, and the remaining 15% was due to experimental 

error, variability in test procedures and/or materials. The greater the 

value of the correlation coefficient, the more representative the relation-

ship of the raw data. Similarly, the confidence level, CL, was 93%. In 

short, the confidence level provides an indication of the worth of overall 

analysis. 

The addition of fibers to the matrix however, introduced a multivariable 

system requiring a three dimensional solution. The raw data display for a 

system where the response, R , is a function of two variables, x and y, 
e 

is represented as a plane surface as hypothetically illustrated in 

Figure 7. In the example case, the response was Q0 and the variables x 

and y were moisture and fiber contents. The SAS multivariable regression 

provided a relationship for the response produced from the desired 

variables, for whatever level of confidence or correlation coefficient was 

deemed acceptable. A general form of this relation would appear as 

where 

R 
e 

R response (bearing capacity, cohesion, friction angle, etc.) 
e 

S constants determined from the SAS analysis 

Cf = fiber weight fraction by dry unit weight, % 

w moisture content, %. 

Figure 8 represents a raw data plot for a single soil with varying 

moisture contents and fiber weight fractions. The presentation in two 

(22) 
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dimensions, of the three dimensional system, presents a picture of con-

siderable scatter, as Figure 8 represents in two dimensions the 

theoretical ~urface described in Figure 7. The SAS response having 

the highest correlation coefficient, R, for this data was Q0 = 32726.0 + 

2 
747Cf - 6174w + 29lw , where R = .90 and CL = 99.99 for a sample size of 

17 observations. With this relationship known, the data were then presented 

in a more understandable manner by setting either the fiber content or 

moisture content equal to a constant value. Doing this for moisture 

content produced a plot in the form of Figure 9. The presence of only 

three variables in the response, Cf' w, w2 , indicated that other terms did 

not appreciably effect the accuracy of the model. 

Additional variables, if desired, could be added into the SAS model 

thereby raising the dimensionality of the equation with each additional 

term. 

For purposes of this study, the minimum criteria for acceptance of 

any model were that the model possess a correlation coefficient, R, of 

not less than .75, since it was felt that in order to justifiably support 

conclusions drawn from the examination of test results, the model must 

describe at least 3/4 of the data presented. 

Results from 276 Iowa K-Tests performed on the Linn County A-2-4(0) 

soil, were analyzed utilizing the methodology and qualifications noted in 

the previous paragraphs. Of these tests, 186 were performed after a 

minimum cure time of 24 hours while the remaining 90 tests were performed 

after termination of a 10 day freeze-thaw subjection. The analysis of 

K-Tests and KF-Tests (K-Tests conducted after subjection to freeze-thaw) 
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was performed separately. Modeling was attempted for the four test 

parameters of E, ¢, c, and K, and for the calculated bearing capacity, Q . 
0 

Moisture content utilized in the evaluation was of the sample at the time 

of test. Results of the SAS analysis for each parameter are listed in 

Table 8 by fiber type and size. Values of R included in the table re-

present the highest correlation coefficients attained from the statistical 

analysis regression. No K-Tested soil-fiber composite series produced any 

appreciable correlation for the model employed, thereby indicating a 

randomness in the data that would preclude the establishment of any pre-

dictable trends, utilizing the chosen model. 

In spite of considerable care taken to insure uniformity of specimen 

preparation and test performance, it was decided that a highly controlled 

series of K-Tests were to be conducted in order to eliminate experimental 

error as a possible source of lack of data correlation. To this effect, 

a series of 23 specially prepared specimens was molded. Moisture content 

was kept as close to standard optimum as possible, and 360 dpf x 1.0 in. 

fibrillated polypropylene fibers were incorporated into the soil at varying 

percentages. Results were then subjected to the same SAS modeling as were 

the original K-Tests. Table 9 illustrates the fruits of this evaluation. 

A similar special series of specimens were constructed, subjected to 

freeze-thaw action, K-Tested, and analyzed. Tables 10 and 11 illustrate 

the statistical modeling results obtained from these, as well as from 

the original KF-Test data. Tables 10 and 11 indicate that various test 

responses for the K and KF Tests approached or exceeded the minimum 

correlation coefficient required for further analysis. 
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Table 8. SAS results of K-Test specimen modeling, soil type A2-4(0) 
Linn County, Iowa 

Fiber Type Response R CL Sample Size N 

Polypropylene Qo .48536 .9201 64 
15 dpf x . 7 5 in. cf> .39266 .6171 

c .41924 .7310 
K .43931 .8039 
E .54931 .9854 

15 dpf x 1.5 in. Qo .47382 .8615 60 
cf> .43311 .7303 
c .47357 .8609 
K .45752 .8152 
E .56651 • 9857 

360 dpf x 1.0 in. Qo .56165 .9967 72 
cf> .36339 .5743 
c .46777 .9364 
K .39446 .7289 
E .54513 .9938 

360 dpf x 1.5 in. Qo .69483 .9995 63 
<I> .54 779 .9366 
c .55637 • 94 79 
K • 59972 . 9832 
E .55784 .9496 

Type E Fiberglass Qo .43989 .8870 73 
. 008 in. x .25 in . cf> .35840 .5745 

c .49915 .7900 
K .36004 .5827 
E .58848 .9991 

. 009 in. x .50 in . Qo .50198 .9590 
¢ .48385 .9355 
c .59451 .9981 
K .43153 .8111 
E .63787 .9997 

.008 in. x 1.25 in. Qo .65143 .9999 
¢ .44440 .8681 69 
c .53759 .9869 
K .42073 .7958 
E .52706 .9839 
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Table 9. SAS evaluation results of special series Iowa K-Tests for 
360 dpf x 1.0 in. fibrillated polypropylene fibers, and soil 
type A2-4(0), Linn County, Iowa 

Response R CL N 

Qo .69096 68 .53 23 

<P .63683 50.56 23 

c .63542 50.10 23 

K .61182 42.31 23 

E .70699 73.48 23 

Table 10. SAS evaluation results of KF-Test conducted after freeze-thaw 
subjection, soil type A2-4(0), Linn County, Iowa 

Fiber Response R CL N 

Polypropylene 
15 dpf x 1.5 in. Qo . 721936 99.98 34 

<P . 72420 98.67 34 
c .72423 98.67 34 
K .78432 99.76 34 
E .68530 96.90 34 

Fibrillated tape 
360 dpf x 1.0 in. Qo • 74460 99.86 50 

<P .88560 99.99 50 
c .56110 88.50 50 
K Not evaluated 
E • 74220 99.78 50 

Fiberglass Type E 
.008 in. x 1.25 in. Qo Not evaluated 34 

<P .90010 99.99 34 
c . 39260 33.90 34 
K Not evaluated 34 
E . 75640 99.43 34 
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Table 11. SAS evaluation results of special series Iowa KF-Tests 
conducted after freeze-thaw evaluation, soil type A2-4(0) 
Linn County, Iowa 

Response R CL N 

360 dpf x 1.0 in. fibrillated polypropylene fibers 

Qo .53124 14.05 22 

<P .78859 86.31 22 

c .49007 8.20 22 

K • 70804 63.66 22 

E .56818 32.34 22 

A series of sixty-one specimens were prepared using the Sioux City 

West 3rd St. soil and fiber weight fractions from 0 to 0.5 percent of 360 

dpf fibrillated polypropylene fibers, one inch length, over a range of 

moisture contents. Results of the SAS model are summarized in Table 12 and 

presented graphically in Figures 10 through 13. 

The generated models, as well as the raw data points, appeared to 

indicate that addition of this fiber was detrimental to the performance of 

the soil-fiber composite. Values of c, ¢, and E decreased from the un-

treated soil specimens for fiber weight fractions up to about 0.2 percent. 

A slight increase was then observed up to the maximum 0.5 percent. Values 

of stress ratio, k, slightly increased with increasing fiber weight fraction. 

The SAS model for Q did not meet the correlation coefficient criteria. 
0 

K-Test results of the Sioux City soil were checked by utilizing the 

unconfined compression test with the same fiber and soil at the same 

moisture contents. Unconfined strengths were improved at fiber weight 
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Table 12. SAS regression modelsa of Iowa K-Test results of 1 inch, 360 dpf fibrillated polypropylene 
fiber composites, West 3rd Street soil, Sioux City, Iowa 

B7 Moisture 
b 

R B Bl B2 B3 B4 BS B6 r 
e 0 Measure 

Qo o. 7209 M 

Qo 0. 7041 A 

¢ -134.4 -65.1 23.9 235.7 -0.9 -238.0 0.005 0.3 0.9037 M 

¢ -105.6 -31.9 17.9 216 .o -0.4 -260.1 -0.006 -0.9 0.9106 A 

c -234.1 -54.4 43.9 140.l -2.6 -93.8 0.05 0.5 0.8355 M 

"' c -365.6 -36.8 68.0 110.8 -4.0 -82.4 0.08 0.15 0. 8411 A I-' 

E 17,070.5 -6365.4 -2557.1 -15,272.1 -218.2 29,437.4 -6.0 275.4 0.8260 M 

E -73,330.6 1133.0 13289.5 -27,756.5 -694.5 36,973.8 11.2 79.1 0.8510 A 

k 2 .11 0.63 -0.25 -2.34 0.01 2.05 0.9108 M 

k 0.36 0.24 0.08 -2.27 -0.01 2.51 0.02 0.9123 A 

aConfidence limit = 99.9 for all models. 

bM = moisture measured at molding; A = moisture measured after testing; moisture contents 
range 12.5 to 21.l percent. 
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fractions above 0.1 percent. 

Further expenditure of resources on the evaluation and subsequent 

testing required to define modeling problems encountered with the K-Test 

did not appear warranted. However, the general lack of correlation among 

the K-Test results, and to a lesser extent those results from the KF-Test 

series, necessitated some form of cause-effect analysis at a macroscopic 

level. 

The lack of predictability in the test results was thus felt to have 

occurred due to one or a combination of four factors: 

1. A randomization induced in the soil matrix due to incorporation 

of fibers. 

2. A randomization induced through experimental error and lack of 

conformity in the test procedure. 

3. The inability of the test to measure phenomena occurring within 

the stressed specimen. 

4. A randomization induced due to variability between specimens re­

garding fiber distribution and specimen preparation. 

While each of these hypotheses undoubtedly contributed in part to 

the lack of correlation in the data, the inability of the stiff constant 

elasticity K-Test mold, to accurately measure tensile reinforcement of the 

soil-fiber composite was most probably the weighted factor. The strict 

control in specimen preparation, fiber mixing and testing exercised during 

the special series of K and KF tests did not significantly improve the 

quality of data as reflected by the SAS modeling. Random orientation of 

fibers in a specimen would induce a certain randomness to the data, provided 
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this composite system followed the trends established by more conventional 

fiber reinforced materials; however, subsequent SAS analysis of unconfined 

compression test data tended to discredit this assumption. The answer 

appeared to lie in the confining nature of the semirigid constant 

elasticity mold, which did not allow sufficient radial strains to develop 

within each specimen. Were the interfacial bonding between fiber and soil 

perfect, a limitation of radial strain would not affect the ability of the 

matrix to transfer induced stresses to the fibers, thereby utilizing their 

greater tensile strength properties. However, the bond between the fibers 

and soil was far from perfect if analyzed in the composite technology sense. 

This relatively poor bonding coupled with the confined nature of the test, 

combined to render this form of K-Test inapplicable to the evaluation of 

fiber reinforced soil specimens. 

To place the above hypothesis in a somewhat different perspective, 

any reinforcing mechanism of fiber seemed to require large strains in order 

to become apparent. The stiff constant elasticity laboratory K-Test mold 

prohibited the amount of radial strain necessary to mobilize fiber rein­

forcement. Addition of fibers reduced maximum dry density of the composite 

when compared to untreated soil. The stiff mold then caused the K-Test to 

act more like a consolidation test, with the soil matrix failing in shear 

prior to mobilizing fiber reinforcement. 
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Unconfined Compression Testing 

In view of the Iowa K-Test results, the unconfined compression test 

was selected as an evaluative procedure for screening of fiber reinforcement 

of the several soils. Standard Proctor specimens were tested in accordance 

with ASTM D2166 on a Soil Test AP-170 unconfined compression testing unit 

at a deformation rate of 0.1 inch per minute. Failure was defined as the 

maximum load achieved during the test. Sufficient readings of vertical 

deformation versus load were taken to obtain data for complete stress-strain 

analysis. Values of the unconfined compressive strength, q , Young's 
u 

Modulus, E = cr/£, and strain at failure, £, were obtained from the stress-strain 

p~ots. Application of the SAS procedures and models, resulted in a number 

of satisfactory correlations for models involving each of the preceeding 

responses. 

Several specimens were prepared for each selected fiber weight 

fraction over a spread of moisture contents, generally ranging from below to above 

standard optimum moisture. In this manner, any trends in fiber reinforce-

ment could be observed when compared to the results of similarly prepared 

untreated soil specimens. 

Linn County soil 

Utilizing the Linn County A-2-4(0) soil, 134 unconfined compression 

tests were performed with seven different fibers. Two of these fibers, 

.008 in. x .25 in. and .009 in. x .50 in., Type E fiberglass were not sub-

jected to the statistical analysis as they failed to demonstrate any improve-

ment in unconfined compressive strength regardless of fiber weight fraction. 
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Figure 14 is a plot of the raw data values for unconfined compressive 

strength versus fiber weight fraction for the 0.25 inch Type E fiberglass 

fibers. Taking the average value of compressive strength for untreated 

specimens within the same· moisture range as the treated specimens, and 

superimposing this value onto the raw data plots, illustrated the deleterious 

effects of adding these short fibers to the soil. Figure 15 however, 

illustrates the raw data plot of unconfined compressive strength versus fiber 

weight fraction for polypropylene 15 dpf x .75 in. monofilaments in the 

same soil. This lack of improvement in <lu with the shorter fibers would 

tend to indicate that .75 inches might be a minimum length of fiber 

required to achieve some form of strength enhancement for this particular 

sandy soil. 

Of the seven fibers evaluated with the Linn County A-2-4(0) soil, only 

those listed in Table 13 produced improvement in test results that could 

be modeled within the established SAS minimum guidelines. 

Table 13. Fibers demonstrating satisfactory SAS modeling for unconfined 
compression test results, Soil A2-4(0), Linn County, Iowa. 

Manufacturer Diameter Length 
Fiber Type Designation (Inches) (Inches) 

Polypropylene 
Mono filament 15 dpf x . 75 in. .002 0.75 

15 dpf x 1.5 in. .002 1.50 

Polypropylene 
Fibrillated Tape 360 dpf x 1.0 in. .009 1. 00 

360 dpf x 1.5 in. .009 1.50 

Fiberglass 
Type E 
Monof ilament 832 BB 1 1/4 in. .008 1.25 
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Table 14 lists the above fibers and corresponding results of regres-

sion modeling. Figures 16 through 19 illustrate plots of raw data for 

two of the above fibers followed by plots of the SAS model normalized for 

the moisture content range applicable to each test series. It must be 

noted at this point, that the reliability of the SAS model lies solely 

within the range of moisture contents and fiber weight fractions of the 

raw data. This stage of analysis did not eliminate those statistical out-

liers of moisture content that adversely influenced accuracy of the model. 

Moisture contents utilized in the normalization of the three dimensional 

models were those representative of the majority of specimens. Normal-

ization employing values outside the range of moisture contents most 

representative of the data resulted in nonsensical plots. 

Evaluation of the numerous modeling plots substantiated the 

Statistical Analysis System as a viable means of interpreting data gathered 

from the UCS testing. Plots of unconfined compressive strength versus 

fiber weight fraction each indicated increased strength with the addition 

of various fibers. The increase in strength began to level off for the 

15 dpf x .75 in. polypropylene monofilament and the 360 dpf x 1.5 in. 

polypropylene fibrillated fibers. Figure 17 at fiber weight fractions of 
'' ' . 

• 1%. Indicators were that those plots illustrating a leveling trend were 

the more representative of occurring reinforcing phenomena. Plots for the 

15 dpf x 1.5 in. polypropylene monofilament and 360 dpf x 1.0 in. poly-

propylene fibrillated fiber indicated an unattainable maximum fiber weight 

fraction, beyond which reinforcement was not realized; i.e., unconfined 

strength continued to increase with increasing fiber content. 



1 ra0 

380DPF X t .SIN FIBRILLATED POLYPROPYLENE 
90 

SOIL TYPE A2-4C0) I"\ 

H 
(/) 

a.. 60 v 

::t: 
r-
<I> 70 z 
UJ 
0:: r-

60 (/) 

~ UJ v 
> \-1 \-1 H 50 (/) 
(/) \-1 v UJ 
0:: 0\ a.. 40 

~ 
\0 

~ 
a 
CJ 

a 30 
~ 
H u.. z 20 a 
CJ 
z 
::J 

10 

0 
0 0. 1 0.2 0.3 0.4 0.S 0.6 0.7 0.8 0.9 

FIBER WEIGHT FRACTION 00 

Figure 16. Unconfined compressive strength versus fiber weight fraction 



360DPF X 1 .SIN FIBRILLATED POLYPROPYLENE 

SOIL TYPE A2-4C0) 

0. 1 0.2 

W=10.5X 

W=9.80X 

W=9.50% 

0.3 0.4 0.S 0.6 0.7 
FIBER WEIGHT FRACTION C%) 

Figure 17. Unconfined compressive strength versus fiber weight fraction 

0.8 0.9 



ara 

.008IN X , .25IN TYPE E FIBERGLASS 
54 

I"'\ SOIL TYPE A2-4(0) 
H 

\:/ en 
a. 48 v 

:::c 
I-
(!) 42 z 
UJ \:/ a! 
I-

36 en 
w 

9 
\:/ 

> v H v en 30 
en 
UJ v -...J 

a! f-' 

a. 24 
~ 

Yl L 
a 
u 
Cl ts UJ z 

Yl ~ \:/ z ,2 0 
u z 
:::> 

6 

0 
0 0. 125 0.25 0.375 0.5 0.625 0.75 0.875 1 . 125 

FIBER WEIGHT FRACTION C%) 

Figure 18. Unconfined compressive strength versus fiber weight fraction 



150 

135 
,..... 
H 
Cl) 

a.. 120 v 

r 
I-
(.!) 105 z 
llJ 
Ct'. 
I-
Cl) 91() 

w 
> 
H 

75 Cl) 
Cl) 
llJ 
Ct'. 
n. 60 L 
a u 
c 45 w z 
H 
LI-z 30 a u z 
::> 

15 

0 
0 

.008IN X I .25IN TYPE E FIBERGLASS 

SOIL TYPE A2-4C0) 

~-----

W=9.50Y. 

W=10.0% 

W=10.5% 

W=1 I .0% 

0. 1 0.2 0.3 0.4 0.5 . 0.6 0.7 0.8 

FIBER WEIGHT FRACTION CY.) 

Figure 19. Unconfined compressive strength versus fiber weight fraction 

0.9 

-...J 
N 



Table 14. Summary of SAS modeling for unconfined compression testing, soil A2-4(0), Linn County, 
Iowa 

Line No. ResEonse R CL N 

Pol~EroE~lene Monofilament 

15 dpf x . 7 5 in. q = 31.276-1041.9325(Cf 2)+1004.9116(Cf 3)-0.0018(w3) u 
+ 30.376 (Cf x w) .86862 99.99 41 

E: = 0.02046-5.242(Cf2)+13.405(cf 3)+0.00002(w3)+ 
111 .52998(cf2xw)-l.29l(cf3xw) .86083 99.99 41 

15 dpf x 1.50 in. ~= 54. 71448+29. 765 (Cf)-3. 3983(w)+83. 7894 (Cf 2) .94890 99.99 26 

E: = 0.0450 + 0.216l(Cf) . 96250 99.99 26 
m 

PolyEroEylene Fibrillated TaEe 

360 dpf x 1.0 in. q = 34.1243-0.012836(w3)+7763.5492(Cf3)-727.31588 u 
(cf3 x w) .95781 99.99 28 

0.0451176-37.80665(Cf2)+7.48638(Cf3)+3.80185 E: = 
m 

(cf2 x w) .96081 99.99 28 

360 dpf x 1. 5 in. q = 35.4824-914.92l(Cf)+l222.686(Cf 3)-0.01444 u (w3)+122.917(Cf x w)-102.315(cf2 x w) .90810 99.99 42 

TyEe El Fiberglass 

-008 in. x 1.25 in. q 16.2+1012.7(Cf)+20.85(w)-3857.99(Cf2)-2.813 u (w2)+4076.4(cs3)+.lo3(w3)-l03.5(cfxw)+4o4.5 
(cf2xw)-424.9 (cf3xw) .75390 99.99 42 

= l.167+.9359(Cf)+.3669(w)-4.147(cf2)-.0372(w~)+ 
m 3.356(cf3)+.0013(w3)-.0907(Cfxw) + .4131 

42 (cf2xw)-.3347(cf3xw) .75430 99.95 

Notes: qu = Unconfined compressive strength, psi; E:m = Maximum unconfined compressive axial 
strain at failure, in/in; Cf = Percent fiber by dry unit weight of soil, % ; w = Percent 
moisture content of specimen at testing, %. 

-...J 
UJ 
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In general, increases in unconfined compressive strength on the order 

of 2.0 to 2.5 times that of the untreated soil could be realized. This 

increase occurred at percentages of approximately .1% fiber weight 

fraction. Subsequent addition of shorter monofilaments did not increase 

measured strength; however, results for the 1.5 inch fibrillated polypropy­

lene fiber indicated that the leveling off of unconfined compressive 

strength may not be so drastic, given a fiber of greater length and larger 

cross section. These conclusions appeared to be verified by the results of 

the California Bearing Ratio Tests presented later in this report. 

Results gained from the incorporation of Type E fiberglass fibers of 

1.25 inch in length, Figures 18 and 19, did not appear to follow either 

trend established by the polypropylene fibers. The increase in unconfined 

compressive strength appeared nearly linear with the addition of greater 

amounts of fiber, although magnitude of the strength increase was con­

siderably lower at corresponding percentages of fibers than those for the 

polypropylene. Comparable strength increases were not gained for the 

fiberglass-soil composite until fiber weight fractions of .7% were realized. 

This high fiber weight fraction was difficult to handle in the laboratory 

preparation of specimens. Indications of preliminary field incorporation 

were that this high percentage was equally unworkable in the field. 

A trend of interest with the A2-4(0) soil is as illustrated in Figure 

17, and regards the effects of small increases in moisture content upon 

the SAS modeled plots. As fiber weight fractions increased, the difference 

between the plots normalized at different moisture contents also tended to 

increase. Indications were that at higher fiber percentages (.4% and 
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higher) the unconfined compressive strength increased with increasing 

moisture content of the composite specimens. The inflection point where 

this phenomenon occurred lay between .05% and .10% fiber content. This 

trend was not demonstrated however, by the Type E fiberglass fibers, 

Figure 19. In fact, the fiberglass fibers reflected the more intuitive 

conception of what ought to occur with increasing moisture content. The 

investigation of this phenomenon will be of interest in the pursuit of 

developing soil-fiber reinforcing technology; however, such analysis and 

testing was beyond the scope of the project. 

Analysis of modeling for strain at failure versus fiber weight 

fraction indicated that the addition of fibers to the A-2-4(0) soil in­

creased maximum axial strain at which ~' the unconfined compressive 

strength, was measured. Plots of strain versus fiber weight fraction for 

the 1.0 inch and .75 inch polypropylene fibers both presented a similar 

concave upwards trend as illustrated in Figure 20. The initial increase 

in strain at failure for both fibers was small until a fiber weight 

fraction of about .3% was attained, after which a radical increase in 

strain at failure was produced. The concave nature of this trend tended 

to decrease with increasing moisture content as shown in Figure 20 for the 

15 dpf x .75 in. polypropylene monofilament. At fiber lengths of 1.50 

and 1.25 inches, the strain versus fiber weight fraction plots were very 

nearly linear with little variation in slope for both the 15 denier poly­

propylene monofilament and the Type E fiberglass. 

For the 1.0 inch fibrillated polypropylene fibers, maximum unconfined 

compressive strength occurred at .274 in.fin. strain, or 27% deformation 
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of the original 4.56 inch tall specimens. However, for the 1.5 inch 

fibrillated fiber, maximum strain at failure never occurred. Specimens 

containing this fiber at moisture contents of 9.1%, 9.9%, and 10.2%, and 

fiber weight fractions of .45% did not fail based upon the defined 

failure criteria. Peak ~ values of 59.9, 58.8, and 52.3 psi were 

respectively attained and continued to hold while undergoing in-

creasing strain. These tests were ultimately terminated at strains in 

the 30-35% range to avoid damage to the test apparatus. Strain phenomena 

thus observed, might be explained by recalling that fibers used in fiber 

reinforced concrete enhance the ductility thereof (16). This increase in 

ductility has been attributed to the energy that is spent stretching the 

fibers, and breaking the matrix-fiber interfacial bond. In addition, in 

fiber concrete, crack propagation is slowed, since the crack path is 

increased, allowing the composite to absorb more energy than the matrix 

material only, and thus experiencing larger deformations without attaining 

failure. Therefore, the 1.5 inch, 360 dpf fibrillated polypropylene 

fiber specimens appear to have sustained larger unit strains than their 

1.0 inch counterparts due to their length being able to continue stress 

transfer from the matrix material. 

Figure 21 is a raw plot of strains at failure versus fiber weight 

fraction for unconfined compression tests involving 1.5 inch, 360 dpf fib­

rillated polypropylene fibers. All test moisture contents, with the 

exception of the .083 in.fin. strain at .3% fiber weight fraction, fell 

within the 9.7 - 10.7 percent range. The graph was essentially linear up 

to .4% fiber content then underwent a rapid increase in strain between .4% 



Figure 21. Strain at failure versus fiber weight fraction 
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and .45% fiber weight fraction. The trend for horizontal linearity in the 0%­

.4% fiber content range and the lack of defined failure occurring in the 

specimens at .45% fiber weight fraction discredited a hypothesis that 

any of these points were statistical freaks. Furthermore, the concavity 

expressed in the 15 dpf x .75 in. and 360 dpf x 1.0 in. fiber reinforced 

specimens, coupled with the data reflected for the 360 dpf x 1.5 in. fib­

rillated fiber reinforced specimens, showed increasing strains at the .3%-

.4% fiber content range. Such trends appear too predictable to be coinci­

dental, and may again relate to the soil-fiber interfacial bonding, an area 

in need of further research. 

Qualitative observations were made from the stress-strain curves of 

the Linn County soil regarding Young's Modulus, E = 0/E, and the strain 

level at which specimens appeared to leave the linear and enter into the 

plastic range of deformation. Statistical modeling for E did not result 

in a model that approached the standard for correlation set in the 

research. However, in many of the treated specimens, an inflection point 

was detectable at an initial strain of about 0.08 in.fin., at which the 

linear slope of the stress-strain curve changed, thereby producing two 

possible values for E. Table 15 presents the average experimental moduli 

values for those specimens showing inflections in the stress-strain plots. 

As may be noted, some significant improvements occurred in E, apparently 

due to incorporation of the fibers. However, due to the number of 

specimens exhibiting this phenomenon, no statistical evaluation could be 

made as to whether or not the phenomenon occurred as a direct result of the 

test, was due to initial compression densification of the specimens, or 
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was a definitive outgrowth of the fiber reinforc~ng mechanism. If the 

result of compression densification, then stiffness of the composite 

would probably be defined by the stress-strain slope E after inflection. 

Table 15. Average of Young's Modulus from specimens exhibiting inflection 
point and dual linear paths, soil type A2-4(0), Linn County, Iowa. 

Young's Moduli 
Fiber Untreated Before Inflection After Inflection 

15 dpf x . 75 in. 524.5 752.8 1060 

15 dpf x 1.50 in. 524.5 564.0 859.0 

360 dpf x 1.0 in. 524.5 818.0 1632. 

360 dpf x 1.5 in. 524.5 698.0 1062. 

At this stage of developmental research however, the only major conclusion 

was, and would appear to be substantiated from the lack of correlation 

achieved utilizing the Iowa K-Test, that a certain amount of vertical 

strain must develop prior to the fibers beginning to appreciably pick up 

any applied load. Further investigation into this area is needed. 

Sioux City Soil 

Table 16 lists the fibers selected for use in unconfined compression 

testing with Sioux City soils. Selection of these fibers was partially 

based on results and observations obtained from similar lab tests with the 

Linn County soil. All Proctor size test specimens were prepared as 

previously noted over a range of moisture contents from below to above 

untreated standard optimum. Values of unconfined compressive strength, qu' 

strain at failure, E, and Young's modulus, E, of the fiber reinforced 
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Table 16. Soil-fiber combinations, Sioux City soils 

Fiber 

15 dpf polypropylene 
monofilament, 1 1/2 
inches 

15 dpf crimped 
polypropylene 
monofilament, 1 1/2 
inches 

832 bb Type E 
Fiberglass 
1 1/4 inches 

360 dpf 
fibrillated 
polypropylene, 
1 inch 

360 dpf 
fibrillated 
polypropylene, 
1 1/2 inches 

Fly Ash Fiber 

Source 

Borrow 
Pit 

Borrow 
Pit 

West 3rd 
Street 

Borrow Pit 

West 3rd 
Street 

Borrow Pit 

Borrow Pit 

West 3rd 

Fiber Weight 
Fraction % 

0.1, 0.17, 0.2, 0.3 

0.05, 0.1, 0.2 

0.02, 0.08, 0.15, 0.3, 0.5 

0.1, 0.17, 0.2, 0.3 

0.02, 0.04, 0.06, 0.08, 0.15 
0.3, 0.5 

0.1, 0.17, 0.2, 0.3 

0.1, 0.2, 0.3 

Street 0.1 

Borrow Pit 0.17 
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specimens were compared to those of the untreated soil. Values of E 

were determined by linear regression of data comprising the initial 

straight line portion of the stress-strain curve. Criteria for acceptance 

of any value of E was that the regression coefficient was 0.98 or greater. 

In general, examination of the data and graphical outputs indicated 

several trends for fiber reinforcement of the loessial soils. Most fibers 

exhibited a critical fiber weight fraction, below which <Iu of the composite 

was not particularly improved. The composites generally attained a 

slightly higher strain at failure than the untreated specimens, indicating 

that the composite could undergo larger deformations without fracture or 

crumbling which could be beneficial in some roadway performance. Consistent 

with those fiber weight fractions producing higher values of q , they also 
u 

produced higher values of E than the untreated soil. Regardless of fiber 

content, dry densities of treated specimens were lower than those of the 

untreated soil. Figure 22 through 27 illustrate the general range of 

data obtained from unconfined compression testing of the Sioux City materials. 

Unconfined compressive strength of the borrow pit loess was enhanced 

by the addition of 15 dpf polypropylene monofilament, 1 1/2 inch length. 

Increasing fiber weight fraction tended to increase q to a maximum u 

observed value about 1.4 times greater than the untreated. The maximum 

fiber weight fraction tested was 0.3 percent, a quantity found difficult 

to mix in order to obtain a discreet, random distribution of fiber. 

Several specimens at the 0.3% fiber weight fraction did not attain a 

maximum ~ during testing, but continued to support increased load with 

increased strain. Addition of this fiber increased the composite strain 
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at failure for all fiber weight fractions. Even though ~ values were 

higher at all fiber weight fractions, values of E were not consistent. 

All aspects considered, this fiber appeared to perform well with the loessial 

soil. 

Addition of the 15 dpf crimped polypropylene monofilament, 1 1/2 inch 

length fiber produced the most dramatic increases in strength of any fiber 

tested with the Sioux City soils, even though much lower fiber weight 

fractions were used. Maximum increase in q was about 1.8 times that of 
u 

untreated soil at 0.2 percent fiber weight fraction, Figure 22, including 

above optimum moisture content. Strains at failure and E values were 

generally higher than the untreated soil, Figures 23 and 24. However, the 

crimping of the fiber coupled with its fineness made mixing somewhat 

difficult. To achieve complete random distribution of these fibers, the 

specimens were mixed for several minutes with a Hobart Model S-601 mixer 

prior to compaction. The overall good performance of this crimped fiber 

warranted continued investigation. It was also observed that a larger 

diameter crimped polypropylene fiber of similar length should be evaluated, 

but such was not obtainable from the various manufacturers noted in Table 6. 

Lower fiber weight fractions of 832 BB type E fiberglass, 1 1/4 inch 

length fiber did not improve the unconfined strength of either West 3rd 

Street or borrow pit soils. However, as the fiber weight fraction was in-

creased, q values also increased. Maximum enhancement of strength was about 
u 

1.5 times the untreated qu for the West 3rd Street soil at 0.5% fiber 

weight fraction, and about 1.3 times for the borrow pit soil at 0.3 per-

cent fiber weight fraction. Regardless of fiber quantity, strains at 

failure were not markedly different from the untreated specimens. Young's 
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Modulus values were somewhat improved for West 3rd Street specimens, but 

improved only slightly for the borrow pit specimens. Since the specific 

gravity of fiberglass is almost three times that of polypropylene, many 

less fiberglass fibers comprise a given fiber weight fraction when compared 

to polypropylene fibers. As a result, maximum fiber content may not have 

been achieved with the fiberglass fibers, but any content above 0.5% was 

considered uneconomical. 

The 360 dpf fibrillated polypropylene, 1 inch length, was used with the 

West 3rd Street and borrow pit soils. Above 0.1 percent fiber weight 

fraction, values of ~ increased as the amount of fiber increased in the 

composite. Maximum improvement was about 1.4 times the untreated value 

for borrow pit specimens at 0.3 percent fiber weight fraction, Figure 25, 

and about 1.7 times for West 3rd Street specimens at 0.5 percent fiber 

weight fraction. This fiber also produced good q improvement above 
u 

optimum moisture content with the borrow pit soil. With increasing uncon-

fined compressive strength, strains at failure, Figure 26, and values of 

Young's Modulus, Figure 27, were also slightly increased over untreated 

specimens. 

The 360 dpf fibrillated polypropylene, 1 1/2 inch length fiber did 

not appear to improve the comparative parameters any more than the 1 inch 

length of the same fiber discussed above. However, it is important to 

remember that the longer fiber means that fewer fibers are present at 

equal fiber weight fractions when compared to the shorter length fiber. 

Addition of fly ash fiber to specimens of both the West 3rd Street 

and borrow pit loess did not appreciably increase unconfined compressive 
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strength, strain at failure, or values of Young's Modulus, above those 

obtained with the untreated specimens. Due to a limited supply of fibers, 

only small fiber weight fractions were used, but considerable effort was 

required to adequately mix this fiber with the soil. In light of dif­

ficulties for controlled fiber production and no indication of composite 

strength enhancement, further study of this fiber as a singular type of 

reinforcement additive was suspended. 

As with the Linn County soil, the soil-fiber bond appeared critical 

to enhancement of Sioux City soil-fiber composite strength. In an effort 

to improve this bonding, two series of specimens were prepared, one 

utilizing hydrated lime as an additional additive, the other, Type I 

Portland cement. Both of these additives are capable of stabilizing the 

Sioux City soils alone. Normally, in excess of 7% Portland cement for 

example, would be required for full stabilization of these soils. However, 

only small amounts of each, 1% and 3% by soil dry weight, were chosen for 

this series of tests. Specimens were prepared (1) untreated, (2) treated 

with lime or cement alone, and (3) with lime or cement plus various 

fibers. The Borrow pit loess was used exclusively as the soil matrix for 

specimen preparation. The fiber weight fraction was held constant at 0.17% 

for all fibers, since this content appeared to provide some strength 

enhancement regardless of fiber type with the borrow pit soil. In addition, 

this fiber content allowed for a maximum number of specimens to be prepared 

utilizing the small remaining supply of fly ash fibers, with lime treatment. 

All specimens were prepared near optimum moisture content and maximum 

standard density, wrapped and sealed, then subjected to a set curing 
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schedule in a controlled environment of about 72° F and near 100 percent 

relative humidity. As soil-lime reaction occurs over a long time period, 

all lime treated specimens were tested after 7 and 28 days moist curing. 

Since Portland cement hydration is much quicker, these specimens were 

tested after 24 hours and 7 days moist curing. Duplicate or more specimens 

were made for each treatment and curing time so that average values could 

be used for comparison. 

Figures 28-30, illustrate comparative ratios of ~· strain at failure, 

and E, of the 3% lime and various fiber treatments after 28 days curing. 

Ratios were calculated by dividing the average treated specimen response, 

by the response of the untreated soil. Ratios for composites of soil plus 

fiber only are also shown for comparison. Points of reference for actual 

values of q , s and E can be made in Figures 22-27 at a moisture content of u 

17.9%. 

As anticipated, addition of small percentages of lime to the soil 

appreciably increased the unconfined compressive strength. The slow 

reaction between lime and soil was apparent by the increase in strength 

between the 7 and 28 day tests. One percent lime treatment increased qu by 

about 1.2 times, and 1.6 times that of the untreated soil after 7 and 28 days 

curing, respectively. Three percent lime treatment produced a more 

dramatic increase of q , about 4 times after 7 days, and about 7 times 
u 

after 28 days, Figure 28A. Lime treated specimens behaved in a brittle 

manner, attaining significantly higher values of Young's Modulus than the 

untreated soil, Figure 30A. 
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Specimens produced using fly ash fibers and 1 percent lime showed no 

improvement in q , strain at failure, and E. Examination of these 
u 

specimens after testing, revealed unchanged fibers, indicating that the 

fly ash fibers were not pozzolanic. 

Fly ash, 15 dpf polypropylene, 832 bb fiberglass, and one inch 360 

dpf fibrillated polypropylene fibers were employed with 3 percent lime 

treated soil specimens. After 7 days curing, strength of all fiber rein-

forced composites except the fibrillated polypropylene specimens was 

greater than lime treatment only. However, after 28 days curing, <lu values 

of fiber reinforced specimens were not appreciably improved over the 3 per-

cent lime treatment only, Figure 28, indicating that the addition of lime to 

the composite did not further improve the soil-fiber bond. Addition of 

fiber produced a slightly less brittle behavior, with strains at failure 

increasing over lime treatment only, Figure 29. Values of E were in the 

same range for both lime treatment only and fibers plus lime, Figure 30. 

Addition of lime increased the unconfined strength and modulus much greater 

than fiber alone, but the strain at failure was decreased. 

Both straight and crimped 15 dpf polypropylene, 832 bb fiberglass, and 

both 360 dpf fibrillated polypropylene fibers were utilized in the Portland 

cement treated series. 

Specimens treated with 1 percent Type I Portland cement only/attained 
/, 

unconfined strengths slightly lower than the untreated soil after both 24 

hour and 7 day curing periods. Addition of all fibers to those specimens 

nearly doubled unconfined strengths, but cement treatment made the soil 

behave in a brittle manner, with strain at failure for cement treatment 
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only, less than that of the untreated soil. Addition of all fibers in-

creased the strain at failure to levels near that of the untreated soil, 

indicating a more ductile response to loading. However, the composite 

could undergo more deformation without cracking which may be more suitable 

for roadway use. Young's Modulus was improved by the addition of 1 percent 

cement, with addition of fiber further enhancing E. 

After 24 hours, all fiber reinforced specimens performed somewhat 

better than those treated with 3 percent cement only. Values of 'lu• strains 

at failure and E were each greater, Figures 31, 33, and 35. After 7 days 

curing, only those specimens reinforced with 15 dpf crimped polypropylene 

fiber attained a significant improvement over those with 3 percent cement 

treatment only, attaining higher values of q and E, Figures 32 and 36. 
u 

Other fibers attained values of q and E near or lower than cement treat­u 

ment only. However, all fibers imparted some measure of ductility to the 

composite as indicated by the greater strains at failure. Specimens 

treated with 3 percent cement only, displayed very brittle failure with 

development of large cracks and failure surfaces, while fiber reinforced 

specimens failed without development of visibly noticeable failure surfaces. 

This observation further demonstrated the increased ductility of fiber-soil-

cement composites over cement modified soils only, and indicated a 

potential for control of reflective cracking in a base or subbase con-

structed of low cement contents. Further investigation of this increased 

ductility should be undertaken. 
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Figure 31. Unconfined compressive strength ratios, 3 percent cement 
treatment, 24 hour cure 
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Figure 32. Unconfined compressive strength ratios, 3 percent cement 
treatment, 7 day cure 
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Figure 34. Strain at failure ratios, 3 percent cement treatment, 
7 day cure 
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Figure 35. Modulus ratios, 3 percent cement treatment, 24 hour cure 
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Figure 36. Modulus ratios, 3 percent cement treatment, 7 day cure 
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Story County, Mortenson Road Soil 

Based on data and observations from the Linn County and Sioux City 

soils, the 360 dpf fibrillated polypropylene, 1.5 inch length fibers were 

used in conjunction with the more plastic A-6(3) Mortenson Road soil. All 

Proctor size unconfined compression test specimens were prepared and cured 

as previously discussed. 

The first series of tests consisted of duplicate specimens molded to 

near untreated optimum moisture content with varying fiber weight fractions. 

Figure 37 presents the stress-strain relationships produced at the varying 

fiber weight fractions. Stiffness and q of the composites increased as 
u 

fiber content increased up to a fiber weight fraction of 0.3%. At 0.5%, 

~ and stiffness tended to decrease, thus indicating an optimum fiber 

weight fraction at 0.3-0.5 percent. As may be noted from Figure 37, the 

strain at maximum q increased with increasing fiber content, once again u 

implying that fiber inclusion into a soil matrix produces greater ductility. 

In a quantitative sense, toughness is defined as the area under a 

stress-strain curve for either compressive or tensile loading conditions 

(16). In some respects, toughness is related to the ductility of a material, 

because the more ductile a material, the larger is the area under the curve. 

Fiber inclusion in concrete makes it more ductile since fibers inhibit 

crack growth and extra energy is required to propagate cracks. In addition, 

energy is required to debond and stretch the fibers. Therefore, the strain 

energy required to fail a fiber concrete specimen is much greater than that 

required to fail a specimen made of plain concrete. 
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Concrete toughness increases with increasing fiber weight fraction 

(16). Shah and Rangan (31) showed that up to an aspect ratio of 75, in­

creasing the length of fiber resulted in an increase in toughness both in 

flexure and in direct tension. They also found that fiber alignment and 

orientation influences the toughness of concrete. Therefore, the same 

parameters that were found to be important in determining tensile and com­

pressive strengths of fiber concrete, also greatly influences the toughness 

of fiber concrete. 

Shah and Rangan (31) noted a relationship between ultimate flexural 

stress and toughness of the composite as a function of fiber weight fraction. 

Both parameters increased with increasing fiber weight fraction, though the 

increase in toughness was far more drastic than the increase in flexural 

strength. One case was quoted wherein a fiber volume fraction of 1.25% 

increased toughness twenty times that of the untreated. and the corresponding 

increase in flexural strength was less than two times. This phenomenon was 

attributed to the fact that fiber addition into a concrete matrix con­

siderably enhances the ductility of the matrix, since fibers stretch or 

elongate when tensile stresses are imposed. Therefore, in fiber concrete, 

energy is spent on stretching the fibers as well as deforming the composite, 

increasing the amount of energy required to fail the composite. 

The relationships just noted for toughness and flexure of fiber rein­

forced concrete are not unlike those which may occur in fiber reinforced 

soil. Using the definition of toughness as the area under the stress­

strain curve to the point of maximum compressive stress, this parameter was 

determined for each curve presented in Figure .37. Results are noted in 
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Figure 38 and Table 17 for each fiber weight fraction with the Mortenson 

Road soil. 

Stress-strain relationships noted in Figure 37 indicate a straight 

line portion followed by a curve. In elastic theory, the point at which 

curvature begins is the proportional limit. Stress at the proportional 

limit was determined for each of the fiber composite specimens and is also 

presented in Figure 38. 

Figure 38 was plotted in terms of ratios of the fiber treated versus 

untreated, and illustrates the variation of each abovementioned parameter 

with fiber weight fraction. The maximum increase in <lu was about 60% at a 

fiber content of 0.3 - 0.5%. The strain modulus, E, also produced a maxi-

mum improvement of about 60%, but at a fiber weight fraction of 0.2%, beyond 

which E reduced. 

The stress at proportional limit, Figure 38, increased with increasing 

fiber weight fractions, showing a maximum stress at about 0.3% content, then 

reducing at 0.5%. This appears contrary to what occurs in fiber concrete 

(16). Inclusion of fibers in a concrete matrix does not significantly in-

crease the proportional limit stress, since the tensile strength of fibers 

in concrete is not mobilized until after first crack strength, which is 

beyond the proportional limit. The phenomenon is thus different in soil, 

and may be related to the fact that soil is less brittle than concrete. In 

soil, large vertical strains occur even at stresses below the proportional 

limit, indicating the possibility that tensile stresses of the fiber may be 

mobilizing prior to attaining the proportional limit stress. 

The modulus of toughness produced the same trend as q but magnitudes 
u 
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Table 17. Average unconfined compression values for 360 dpf fibrillated polypropylene (1. 5 in) 
specimens at varying fiber weight fractions, Mortenson Road soil 

Fiber Unconfined Vertical Modulus 
Weight Moisture Dry Compressive Strain at Strain of 
Fraction, Content, Density, Strength, Failure, Modulus, E, Toughness, 

% % pcf q , psi E, in/in psi lb-in/in3 
u 

0 13.8 116.3 21.10 0.071 400 212.6 

0.1 13 .4 119.3 25.97 0.077 520 323.1 

0.2 12.9 119. 8 31.37 0.082 680 476.2 

0.3 14.6 118.3 36. 71 0.090 596 659.l t-' 
0 
l..O 

0.5 13.6 120.3 36.38 0.125 556 648.4 
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differed tremendously. At a fiber weight fraction of 0.3%, the modulus 

of toughness increased by a factor greater than 3, implying that the amount 

of work, or energy, required to fail the fiber treated soil specimens was 

3 times greater than that required to fail untreated specimens. In fiber 

treated specimens, energy is spent on breaking interfacial bonding between 

the soil and fiber, stretching and pulling the fibers as the matrix 

material fails, and fiber pullout is taking place. This same phenomenon 

was previously noted as having been observed in fiber concrete (31). 

The concept of strain energy, or toughness, of a material is related 

to its ductility. If highly ductile, the material will require increased 

energy or work to cause complete failure. The more ductile a material, the 

greater its capability to resist impact stresses, since it can absorb more 

energy before rupture than its less ductile counterpart. 

A second series of Mortenson Road specimens was molded at a constant 

fiber weight fraction of 0.4% using the 1.5 inch 360 dpf fibrillated poly­

propylene, but with moisture content being varied between about 8 and 16 

percent. The 0.4% content was an arbitrary compromise based on maximum 

beneficiations noted in the first test series. Table 18 summarizes the average 

values obtained from this series of specimens. 

Figure 39 illustrates the variation of dry density with varying 

moisture content for both the untreated and fiber treated specimens. 

Maximum dry density and optimum moisture content for the untreated specimens 

were respectively about 125 pcf and 10.5% while for the treated specimens 

about 121 pcf and 12.5%. Differences in maximum dry density and optimum 

moisture content between untreated and fiber treated specimens occurs 

due to displacement of soil particles caused by the addition of fibers. 



Table 18. Average unconfined compression test values for 360 dpf fibrillated polypropylene (1. 5 in) 
specimens at varying moisture contents, Mortenson Road soil 

Fiber Unconfined Vertical Modulus 
Weight Moisture Dry Compressive Strain at Strain of 

Fraction, Content, Density, Strength, Failure, Modulus, E, Toughness3 
% % pcf qu' psi E, in/in psi lb-in/ in 

0 8.0 120.4 23.4 0.038 770 268.4 

0 9.6 123.4 20.9 0. 044 440 197.4 

0 11.0 124.7 15.0 0.060 300 109. 6 

0 13.0 119.4 7.1 0.100 82 24.3 

0 14.9 114.9 2.5 0.165 17 2.8 
1--' 

0.4 8.9 115 .5 44.8 0.098 643 988.7 1--' 
1--' 

0.4 10.5 118.3 52.5 0.132 674 1372.4 

0.4 12.5 120.9 35.6 0.52 332 622.3 

0.4 14.4 116 .4 13.8 0.222 100 93.1 

0.4 16.0 113.8 7.3 0.217 62 25.9 
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In addition, the specific gravity of soil is higher than that of the 

fibers, resulting in a fiber treated specimen weighing less than an un-

treated specimen of equal volume. Also, fiber inclusion in a soil matrix 

increases the amount of voids, thus increasing the amount of water required 

to reach standard AA.SHTO T-99 optimum. 

At a moisture content of 9%, the increase in qu due to fiber addition 

was 120%, while at 14% moisture the increase was 230%, Figure 40. At 8% 

moisture content, the untreated soil had a q of about 23 psi, while the 
u 

fiber treated material produced the same ~ at better than 5% additional 

moisture. Both examples illustrate that at higher moisture contents, 

significant increases in unconfined compressive strength were obtained. 

Figure 41 illustrates the variation of vertical strain modulus, E, 

versus moisture content for both untreated and fiber treated specimens of 

the Mortenson Road soil. For the untreated specimens, E decreased with in-

creasing moisture content. For fiber treated specimens, a slight increase 

in strain modulus was observed when moisture content was increased from 9-11 

percent, then decreased with increasing moisture content. Strain moduli 

for the fiber treated specimens was always higher than the untreated; at 

14% moisture content the increase was 300%, demonstratingthat fiber rein-

forcement was effective at moisture contents above optimum. 

Figure 42 shows that unit strain at maximum stress increased with in-

creasing moisture content, and that unit strain was generally higher for the 

fiber treated specimens. Unit strain appeared to level off however at 14-

16% moisture. 

Magnitude of increase in the modulus of toughness was significantly 

greater than the magnitude of strength gained due to inclusion of the 
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fibers, Figure 43. For example, at a moisture content of 9%, increase 

in modulus of toughness due to fiber inclusion was about 300% while at 

14% moisture the increase was by more than 10 times. The increase in q 
u 

obtained at the same moisture contents was 120% and 230%, respectively. 

In order to observe the influence of a higher degree of compactive 

energy on the mechanical properties of soil fiber composites, a series of 

Mortenson Road soil specimens were molded at different fiber weight 

fractions, using 1.5 inch 360 dpf fibrillated polypropylene, 1.5 inch 15 

dpf crimped polypropylene, and 1.5 inch 15 dpf polypropylene monofilament. 

Moisture contents were maintained at approximately modified compaction 

optimum, and compaction was accomplished using the AASHTO T-180 procedure. 

All specimens were wrapped and stored as previously noted. Unconfined com-

pression test results are summarized in Table 19 and Figures 44-47; in the 

latter, all values are expressed as ratios of values obtained for untreated 

specimens molded under the standard T-99 compaction procedure. 

In general, the unconfined compressive strength increased with in-

creasing fiber weight fractions for each fiber, Figure 44. An exception 

occurred at 0.1% with the 15 dpf crimped polypropylene, where increased 

compaction did not improve q . The 15 dpf polypropylene monofilament u 

produced the highest increase in <Iu· 

Similar trends were portrayed for modulus of toughness as shown in 

Figure 45, but magnitudes of change were significantly greater. For un-

treated specimens, the increase was of an order of magnitude of about 14, 

while at 0.2% 15 dpf polypropylene monifilament fiber treated specimens, 

the increase was about 30 times. Such increases in toughness further shows 
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Table 19. Unconfined compression test results for specimens molded under modified AASHTO T-180 
compaction procedure at optimum moisture content (modified OMC = 10.4%, maximum dry 
density = 127 lb/ft3 

Fiber 
Weight 
Fraction, 

% 

Moisture 
Content, 

% 

Dry 
Density, 

pcf 

15 dpf polypropylene straight (1.5") 

0 
0.1 
0.2 
0.3 

9.9 128.2 
10.0 126.2 
10.l 125.2 

9.9 124.6 

Unconfined 
Compressive 
Strength, 
qu, psi 

78.7 
108.0 
113.5 
116.8 

360 dpf fibrillated polypropylene (1.5") 

0 
0.1 
0.2 
0.3 

15 dpf 

0 
0.1 
0.2 
0.3 

9.9 
9.8 

10.4 
10.4 

128.2 
127.9 
127.1 
126.4 

crimped polypropylene (1. 5") 

9.9 128.2 
10.9 122.4 
10.4 124.6 
10.6 124.2 

78.7 
86.8 
99.l 

107.6 

78.7 
77. 5 
82.7 
93.8 

Vertical 
Strain at 
Failure, E: 

in/in 

0. 046 
0.064 
0.074 
0.073 

0. 046 
0.056 
0.069 
0.087 

0.046 
0.060 
0 .071 
0.085 

Strain 
Modulus, E, 

psi 

2480 
2900 
2280 
2375 

2480 
2500 
2400 
2380 

2480 
1852 
1706 
1869 

Modulus 
of 

Toughnes3 
lb-in/ in 

3061.2 
5818.6 
6433.7 
6868.6 

3061.2 
3712 .3 
4828.5 
5760 .1 

3061.2 
2990.0 
3453. 0 
4417.0 
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the previously noted observation that inclusion of fibers in a soil matrix 

improves strain energy absorption. 

In general, no major differences occurred in strain modulus, E, 

between untreated and fiber treated specimens due to the increased com-

pactive effort, since increased compaction apparently caused a significant 

increase in brittleness of the composites~ Figure 46. When vertical stresses are 

applied, only small vertical strains are mobilized prior to reaching the 

proportional limit stress, and as such, there may not be sufficient lateral 

movement to mobilize the tensile strength of the fiber. 

The above hypothesis is further confirmed in Figure 47. Unit strain 

at maximum stress was reduced by nearly 40% for the untreated specimens, 

then slightly increased with increasing fiber weight fractions. At a 

fiber weight fraction of about 0.2%, the unit strain at peak stress for 

all fibers was basically equal to that of the specimens compacted at standard 

T-99 energy. All fibers appeared to increase the unit strain of the com­

posites by about equal proportions. 

Comparison of unconfined test data for the 1.5 inch 360 dpf fibrillated 

polypropylene fiber treated Mortenson Road soil under standard and modified 

compaction indicates significant improvements from increased compactive 

energy, Tables 17, 18, and 19. Increased compaction reduced the quantity 

of voids in the composites, bringing the soil particles and fibers closer 

together, increasing the number of contact points, and consequently in­

creasing the frictional resistance provided by the composite. As noted 

from the literature review, the strength of interfacial bonding depends on 

strength of the matrix and fibers. Increasing the degree of compaction did 
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not apparently alter strength of the fibers, but significantly increased 

the strength of the matrix, implying that a better interfacial fiber­

matrix bond was obtained. 

California Bearing Ratio Test 

The California Bearing Ratio Test (CBR) is occasionally employed in the 

field of pavement design. While modifications to the test were necessary 

based upon available equipment, the procedures employed generally complied 

with specifications outlined in ASTM Dl883 and AASHTO Tl93. The only 

variations in test technique employed from that prescribed was the increase 

of rate of loading from the required .05 inches per minute to .1 inches per 

minute and elimination of the soaked form of test. Due to the comparative 

nature of the analysis performed, the increased rate of strain was felt to 

have little effect upon the overall quality of results. 

CBR tests were performed on both the Linn County A2-4(0) soil from 

Troy Mills, and the more plastic A-4(0) soil from Prairieburg, Table 4. 

Though nearly 100 CBR tests were performed on these two soils, the quantity 

of such tests were significantly less than the duplication of specimens 

performed in the K-Test and unconfined compression tests; therefore, a 

statistical analysis model of the data was not obtained. 

Figures 48 through 53 illustrate average California Bearing Ratios 

versus fiber weight fractions obtained with various fibers for the two 

Linn County soils at near their respective standard optimum moisture contents. 

It should be noted that while moisture contents of these specimens were 

controlled, some variation was unavoidable. The CBR test demonstrated a 
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high sensitivity to very small moisture content fluctuations among un­

treated specimens of the same soil type, Figure 54. Consequently, this 

sensitivity was probably carried over into the treated specimens and com­

pounded by the additional variability induced by randomization of fiber 

reinforcement. 

In spite of the possible moisture s_ensitivity, Figures 48 through 53 

reflect several definite trends. Fiber reinforcement in both soils 

illustrated some of the same general leveling of values as did results of 

the unconfined compression test results. CBR increases with the 15 dpf 

1.5 inch polypropylene monofilament and the 360 dpf 1.0 inch fibrillated 

polypropylene in the A2-4(0) soil began to level off at the .1% fiber weight 

fraction,-·Figures 48 and 49, and were of the order of 2.5 - 3.0 times CBR 

of the untreated specimens. Bearing ratio improvements 1~creased nearly 

linearly to a maximum of 6 times that of the untreated at .8% fiber weight 

fraction for the 1.5 inch long 360 dpf fibrillated polypropylene fibers, 

Figure 50, illustrating some of the previously noted effects of length on 

matrix-fiber interlock. 

Figures 51 through 53 illustrate the results of CBR tests performed 

utilizing the same polypropylene fibers plus the .008 in. x 1.25 in. Type 

E fiberglass monofilaments, conducted with the more plastic A-4(0) soil. 

Test conditions and methods along with specimen preparation did not vary 

between this series of tests and the series run on the sandier less plastic 

A-2-4(0) soil; however, results of the testing varied greatly. Only two 

of the fibers, 1.5 inch fibrillated polypropylene and the 1.25 inch Type E 

fiberglass, reflected any improvement in CBR and then generally at higher 
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fiber weight fractions than in the A-2-4(0) soil; a maximum improvement 

of about 1.5 times that of the untreated for the .008 in. x 1.25 in. Type 

E fiberglass. Variability of CBR improvement with the same fiber under 

nearly identical test conditions within two soils indicates the variability 

of soil fiber bonding due to the change in soil matrix properties. 

Figures 55 and 56 present CBR data from an evaluation of the effects 

of increasing moisture contents for the Linn County A-4(0) soil. At 

moisture contents of 18.5% and 15.5% (OMC = 11.0%), the effects of fiber 

addition were nil for the polypropylene monofilament and fibrillated 

fibers respectively, both of 1.5 inches length. Such loss of CBR versus 

moisture content indicates either or both of (1) a significant weakening 

of the soil-fiber bond, and (2) susceptibility of the CBR test to changes 

in moisture; the latter being shown in Figure 54. 

Cyclic Load Test 

Imposition of cyclic stresses may cause a material to 

experience fatigue failure after a period of time, even though applied 

stresses are below the material's ultimate static strength. This 

phenomena is important in the integrity of a roadway structure which 

depends on any materials capacity to resist cyclic, rather than static 

stresses. To more fully understand the behavior of randomly oriented 

fibers in roadway soils, a cyclic load test was devised to examine several 

properties of the soil fiber composites not normally ascertained through 

static tests such as the unconfined compression or CBR. 

Using the concepts of constant cyclic stress (stress controlled), the 
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cyclic load test procedure utilized standard Proctor specimens of un-

treated or fiber treated materials, at moisture contents equal to or ex-

ceeding optimum. Each specimen was wrapped with Paraf ilm paper in order 

to reduce soil/mold friction, placed in a variable expansion thin-walled 

Iowa K-Test unit, and subjected to cyclic loading. All loadings were 

cycled from zero to maximum vertical stress, the latter being held for 0.3 

sec. dwell time. Vertical and circumferential deformations were measured 

with linear variable differential transducers (LVDT) while vertical stresses 

were monitored with a pressure transducer. All measurement outputs were 

tied to a SOL computer equipped with plotter and printer. A computer 

program automatically provided for processing and printout of data at 

specified numbers of load cycles during testing. All calculated data at 

maximum vertical stress was stored in a disc for later plotting of the 

various responses versus number of cycles. Since the test was stress 

controlled, the required vertical stress was established and maintained by 

the operator. All results were obtained as the average of tests performed 

on duplicate untreated and fiber treated specimens. 

Characterization of the soil or soil-fiber composite material under 

constant vertical load was expressed in terms of vertical strain, horizontal 

strain, horizontal stress, stress ratio, vertical strain modulus, volumetric 

strain, and permanent set, and computed as follows: 

6H 
Ev H , in/in 

t.c 
EH C , in/in 



where 
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aH = E:H (MC), psi 

K 
aH 

= a v 

/J.V 
-= v 

a maximum vertical stress, psi 
v 

aH horizontal stress, psi 

E: vertical strain, in/in 
v 

E:H = horizontal strain, in/in 

/J.H = change in height, in 

H initial height of specimen 

K = stress ratio 

MC = mold constant (approximately equal to the strain modulus, E, 

obtained from the unconfined compression test of untreated soil) 

!J.C = initial circumference of specimen, in 

V initial volume of specimen, cu. in. 

/J.V change in volume, cu. in. 

Cyclic loading comprised both a loading and unloading phase. A vertical 

strain modulus, E, was obtained by regression of the loading phase stress-

strain data at each recorded cycle and assumed as the slope of the re-

gression. At each recorded cycle, utilization of a regression of the un-

loading phase stress-strain data and the intercept of the regression line 

with the vertical strain axis, provided an evaluation of permanent set. 

Permanent set may be defined as the non-recoverable, non-elastic strain, or 

cumulative permanent deformation of the soil or soil-fiber composite 
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following each recorded load repetition. 

Story County, Mortenson Road Soil 

Preliminary tests were conducted on the Mortenson Road material to 

develop a uniform testing procedure. Vertical stress levels of 75, 100 

and 125 psi were selected. All specimens were molded at optimum moisture 

content, the treated specimens containing 0.2% 15 dpf polypropylene 

straight fibers, 1.5 in. length. 

Figures 57 through 63 present the average measured responses obtained 

from each of the three stress levels noted above. Each response was 

expressed in terms of the ratio of treated versus untreated values. In 

interpreting these graphs it should be recognized that if the ratio is 

equal to one, fibers had no effect on the composite. If the ratio was less 

than or greater than one, the fibers had either adverse or beneficial 

effects, depending on the parameter. For example, a vertical strain modulus 

ratio greater than 1.0 indicated an increase in composite stiffness due to 

fiber inclusion. For all other parameters, a ratio greater than 1.0 

indicated composite deterioration, while a ratio less than 1.0 implied that 

fiber inclusion enhanced the composites resistance to mobilization of 

vertical unit strain, horizontal strain, volumetric strain, horizontal 

stress, stress ratio, and permanent set. Occassional variations in the 

plotted responses occurred due to erroneous recording of data by the LVDT's. 

Figure 57 illustrates that at 75 psi, the treated soil generally 

experienced higher vertical strains than the untreated soil. Both the un­

treated and treated specimens showed an increase in vertical strain for 

the first 200 cycles at 75 psi but thereafter the untreated specimens 

attained complete equilibrium while the treated specimens continued to 
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experience minor increases in vertical unit strain. At 100 and 125 psi, 

the ratios were approximately equal to one. 

Figure 58 illustrates that at 75 psi, permanent set of the treated 

specimens was about 88% that of the untreated soil after about 100 cycles. 

This reduction in set implied that the treated soil experienced a larger 

amount of elastic rebound than the untreated soil. At 100 and 125 psi, the 

permanent set ratio experienced in both the untreated and treated soil 

was basically unity beyond about 50 cycles, indicating a loss of elastic 

rebound and a probable loss of fiber-soil matrix bonding at such stress 

levels. 

Figure 59 illustrates that at 75 psi the vertical strain modulus for 

the treated soil was about 30% smaller than that of the untreated soil, im­

plying a decrease in material stiffness due to the addition of fibers. 

At 100 and 125 psi, erratic variations in ratios were observed, but 

generally, the vertical strain modulus for the treated soil was greater 

than that of the untreated. Observations made from Figure 59 indicate that 

fibers were capable of enhancing vertical strain modulus as higher vertical 

stress levels were applied. 

Figure 60 illustrates the variation of horizontal unit strain with 

the number of cycles for different vertical stress levels. At 75 psi 

the treated specimens experienced an average reduction in horizontal strain 

of about 3%; the general trend being a slight decrease in ratios with 

increasing number of cycles. At 100 psi the reduction in horizontal strain 

was about 10%. At 125 psi horizontal strain was reduced by nearly 20%, 
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the trend being basically similar to that portrayed at 100 psi. The ob­

servations in Figure 60 imply that the effectiveness of fibers in reducing 

horizontal strain increases with increasing applied vertical stress. This 

could be attributed to the fact that at higher vertical stresses, larger 

vertical unit strains were mobilized (Figure 57), and it was observed that 

large vertical strains produced large horizontal strains. Therefore, fibers 

reduced lateral strain at higher stresses because sufficient lateral strains 

necessary to mobilize the fiber's tensile strength were obtained. 

Horizontal stress is a function of lateral strain and the mold con­

stant. Since the mold constant did not change, this means that the hori­

zontal stress is a function of lateral strain only. As a consequence, 

horizontal stress exhibited trends similar to those of lateral strain. 

Stress ratio, K, is a function of both horizontal and vertical 

stresses. Since the repetitive load Iowa K-Test is a stress controlled 

test, the stress ratio was a function of horizontal stress, and the trends 

obtained for stress ratio were similar to those obtained for both 

horizontal stress and horizontal strain, Figure 61. 

Volumetric strain is a function of both vertical and horizontal 

strains. This parameter measured the total amount of deformation experienced 

by the material in three dimensions. As illustrated in Figure 62, the 

volumetric strain obtained in the treated specimens was slightly greater 

than that of the untreated specimens at all vertical stress levels. This 

phenomenon could be explained by observing that fiber inclusion into the 

soil matrix increases the amount of voids. Therefore, when stresses are 

applied, treated specimens experience larger vertical deformations than the 
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untreated. Volumetric strain was generally sensitive to the vertical 

strain in this study, primarily because the magnitude of vertical strain 

was always approximately ten times that of the horizontal strain. As a 

consequence, any difference in vertical strain would show up in volumetric 

strain. 

The foregoing established basic response relationships between the 

various parameters and different levels of vertical stress. The next stage 

of cyclic load testing involved evaluating the effect of different types 

of fibers when the soil fiber composites were subjected to dynamic stresses. 

Types of fibers used, were 15 dpf crimped polypropylene (1.5"), 360 dpf 

fibrillated polypropylene (1.5"), and 15 dpf polypropylene straight (1.5"). 

A constant fiber weight fraction of 0.2% was used, and specimens were molded 

at standard optimum moisture content. Throughout the remainder of the 

cyclic load tests, all specimens were tested at a constant vertical stress 

of 75 psi coupled with 0.3 sec. dwell time. 

Figure 63 illustrates the variation of vertical strain versus number 

of load repetitions for the three types of fibers. Composites molded 

with the 15 dpf crimped polypropylene showed the best response; vertical 

strains averaging about 93% of the untreated, or a 7% reduction. Although 

the 360 dpf fibers did not enhance the resistance of the soil fiber com­

posite to vertical deformation, neither did they affect it in a detrimental 

way. The 15 dpf polypropylene straight did not enhance the resistance 

of the composites to vertical deformation, experiencing about 5% higher 

vertical strains than the nontreated specimens. 
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Figure 64 illustrates the variation of permanent set versus number of 

cycles for the three types of fibers. The 15 dpf polypropylene straight 

fibers provided about 13% reduction in set, while the 15 dpf crimped 

polypropylene produced about 6% reduction. A near 5% increase in permanent 

set was produced by the 360 dpf fibrillated polypropylene. Recalling that 

the 15 dpf crimped polypropylene fibers provided a 7% reduction in vertical 

strain, demonstrates that these fibers did not basically affect the degree 

of vertical elastic rebound of the soil. The percent reduction in vertical 

strain was about equal to that obtained for permanent set. Therefore, it 

is apparent that the crimped fibers reduced the amount of vertical defor­

mation, but did not appear to affect the degree of elasticity or 

plasticity of the soil. In a like manner, the 15 dpf polypropylene straight 

fibers did not affect the degree of elasticity or plasticity, and indeed, 

further reduced the magnitude of permanent set of the composite. 

Trends exhibited in vertical strain modulus (E) by the 15 dpf crimped 

polypropylene and the 360 dpf fibrillated polypropylene fibers were 

generally similar, Figure 65. The vertical strain modulus increased with 

increasing number of cycles and at 500 cycles, the increase was approximately 

35% greater than the untreated. This trend implies that a cyclic dependent 

material hardening occurred; a phenomena having significant implications in 

roadway soils, in that these materials would greatly strengthen with time 

and increasing number of load applications. The 15 dpf polypropylene 

straight however, portrayed a cyclic dependent material softening. 

Lateral stability of the fiber composites was quantified in terms of 

horizontal strain, horizontal stress, and stress ratio, Figure 66. The 
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15 dpf crimped polypropylene fibers produced a reduction of about 16% 

in all three parameters, with the other fibers producing lesser values. 

This would imply that fiber reinforcement is effective in reducing the 

amount of lateral strain mobilized within a soil-fiber composite. 

Rutting in most pavements is caused by excessive lateral movements that 

occur when the road base or sub-base provides insufficient lateral re­

straint to deformations. 

The 15 dpf crimped fibers provided a reduction in volumetric strain, 

while the other two fibers showed increases, Figure 67. This again 

illustrated the sensitivity of volumetric strain of a soil and/or soil­

fiber composite to changes in vertical strain. 

Unconfined compression testing showed that fiber reinforcement was 

more effective at higher levels of moisture. Therefore, a series of 

specimens were molded at 2% above optimum, utilizing the same three fibers 

of the previous section at a fiber weight fraction of 0.2%. In general, 

results obtained from this series of tests showed that all parameters ex­

hibited definite changes when compared to similar properties at optimum 

moisture content. 

The 15 dpf crimped polypropylene and 360 dpf fibrillated polypropylene 

fibers were effective in reducing the amount of vertical strain experienced 

by the soil specimens. The crimped fibers reduced vertical strain by 

about 10%, a greater reduction than the 7% obtained at optimum moisture 

content, Figure 63. The 360 dpf fibrillated polypropylene reduced 

vertical strain by about 7%; again better than the no change obtained at 

optimum moisture content. The 15 dpf polypropylene straight experienced 
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a 3% increase in vertical strain, still slightly better than the 5% in­

crease at optimum moisture content. These results thus implied that fiber 

reinforcement was considerably more effective in resisting vertical 

deformation at the higher moisture. 

The 15 dpf crimped polypropylene and 360 dpf fibrillated polypropylene 

fibers reduced permanent set by percentages similar to those achieved with 

vertical unit strain. Crimped polypropylene fibers reduced the permanent 

set by about 10%, almost the same amount as that observed for vertical 

strain. This same trend was observed for crimped fibers at optimum 

moisture content, tending to confirm that these fibers did not alter the 

amount of elastic rebound experienced by the soil. The 360 dpf fibrillated 

polypropylene reduced permanent set by about 7%, but it should be recalled 

that at optimum moisture content a 5% increase was observed for this 

fiber; i.e., a reversal in permanent set trends due to increased moisture 

content. The 15 dpf polypropylene straight increased permanent set by 

about 5%, contrary to what was observed at optimum moisture content where 

these fibers showed about a 13% reduction in permanent set. Positive im­

provements were thus obtained in permanent set by the crimped and fibril­

lated polypropylene fibers, indicating improved soil matrix-fiber contact. 

The increased permanent set obtained with the straight fiber indicated a 

reduction in matrix-fiber contact due to increased moisture content. 

Above OMC, the 15 dpf crimped and 360 dpf fibrillated polypropylene 

fibers showed a general decrease in vertical strain modulus with number of 

cycles. The 15 dpf polypropylene straight showed a general increase in 

vertical strain modulus after an initial decrease in this parameter. 
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These results would imply that the crimped and fibrillated polypropylene 

soil-fiber composites experienced some cyclic dependent softening, while 

with the 15 dpf polypropylene straight, some cyclic dependent hardening 

occurred. This was contrary to what was observed for specimens tested at 

optimum moisture content, where for example, the vertical strain modulus, 

E increased with increasing number of cycles for 15 dpf crimped and 360 dpf 

fibrillated polypropylene, and decreased with increasing number of cycles 

for the 15 dpf polypropylene straight. 

In general, above optimum moisture each of the fibers reduced the 

amount of horizontal strain but not in similar proportions. The 15 dpf 

polypropylene straight produced a 16% or greater reduction in horizontal 

strain. The 15 dpf crimped fibers produced an average of less than 9% 

reduction, while the 360 dpf fibrillated polypropylene initially provided 

about a 10% reduction but generally increased to a unity ratio at about 

150 cycles. At optimum moisture content, the 15 dpf crimped and 360 dpf 

fibrillated polypropylene fibers produced about a 16% and 13% reduction 

in horizontal strain respectively, showing that at higher moisture 

contents, reinforcement with these fibers was not as effective as at 

optimum moisture content. This behavior is potentially attributable to 

the interfacial soil-fiber bond above OMC being at least partially 

destroyed initially, then remobilizing as additional cyclic loading occurred. 

In the case of the 15 dpf polypropylene straight there was only a 3% re­

duction in lateral strain at optimum moisture content, implying that at 

higher moisture contents, this fiber is more effective in resisting the 

mobilization of lateral strain, than at lower moisture contents. 
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Horizontal stresses and stress ratios of the three fibers above OMC, 

followed trends similar to those noted for horizontal strain. 

Above optimum moisture, the 15 dpf crimped and 360 dpf fibrillated 

polypropylene fibers produced a reduction between 10 and 15% in volumetric 

strain when compared to the untreated. A 12% increase in volumetric 

strain was observed for the 15 dpf polypropylene straight. In comparison 

with volumetric strains obtained at optimum moisture content, there was a 

significantly greater reduction of volumetric strain at the higher, than at 

the lower moisture contents. 

Based on the preceeding data obtained from cyclic load Iowa K-Tests of 

the fiber treated Mortenson Road material, the following general observations 

were obtained: 

1. Increases in vertical stress appear to have the same effect as 

increasing the moisture content, in that the introduction of fibers showed 

improved performance at both higher vertical stresses and moisture contents 

above optimum. This observation appears to be due to the fact that at 

higher moisture contents and stresses, larger vertical deformations were 

obtained. Higher vertical deformations appear to produce higher lateral 

displacements necessary to mobilize tensile strength of the fibers. Also, 

there appears to be a critical stress and moisture content beyond which 

fiber reinforcement becomes ineffective. This phenomenon can be attributed 

to the fact that at a critical moisture content and vertical stress, the 

interfacial shear stress exceeds the interfacial shear strength, thus 

initiating fiber debonding. The efficiency of soil-fiber reinforcement 

depends largely on the integrity of the soil-fiber interfacial bond. 
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2. The greatest potential for fiber reinforcement appears related 

to parameters associated with horizontal or lateral stability. This was 

evidenced by the observations that all parameters related to the strength 

of the composites in a horizontal direction were enhanced by addition of 

fibers into the soil matrix. This could have far reaching implications 

for roadway soils, since the problem of rutting is attributable to lack of 

sufficient lateral restraint. 

3. The 15 dpf crimped polypropylene fibers provided the best overall 

performance among the three fibers considered, and may be due to the im­

proved frictional properties between these fibers and the soil as derived 

from the crimping. The 360 dpf fibrillated polypropylene produced the 

second best results, followed by the 15 dpf polypropylene straight fibers. 

Although the 15 dpf crimped polypropylene fibers showed good performance in 

the laboratory, they were difficult to mix into the plastic Mortenson Road 

soil. From a workability point of view, the 360 dpf fibrillated poly­

propylene fibers were the easiest to mix in the laboratory. 

Sioux City Soil 

Cyclic load K-Tests were performed on the A-4 Sioux City borrow soil 

in order to obtain further mechanistic evaluations due to soil material 

differences. Specimens were molded at varying fiber weight fractions 

using both the loess soil or a loess plus type I portland cement matrix. 

Fibers used in this series of tests were the same as used with the Mortenson 

Road material. The first series of cyclic load tests were performed on 

duplicate specimens of the untreated and fiber treated loess molded at 

optimum moisture content. 
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Figure 68 presents the actual vertical unit strain versus number of 

cycles for each weight fraction of the 15 dpf polypropylene straight 

fibers. Vertical strain data obtained with the 360 dpf fibrillated poly­

propylene and 15 dpf crimped polypropylene fibers were similar to that 

illustrated in Figure 68. In general, vertical unit strain increased up to 

about 200 cycles, and then tended to level thereafter. The 360 dpf fib­

rillated polypropylene indicated an optimum fiber content of about 0.2% 

producing in excess of a 10% reduction in vertical strain. All specimens 

incorporating the 15 dpf crimped polypropylene produced lower vertical 

unit strains than the untreated, with the optimum 0.1% fiber content showing 

about a 12% reduction from that of the untreated average. As noted in 

Figure 68, 0.3% fiber weight of the 15 dpf polypropylene straight was 

required to produce similar reductions in vertical unit strain. The re-

duction of fiber content due to the effect of crimping of the 15 dpf fiber 

is therefore obvious. 

Figure 69 illustrates actual average permanent set as recorded for 

varying percentages of the 15 dpf crimped polypropylene. Magnitude of 

permanent set for the other two fibers were similar to that shown in 

Figure 69. The optimum fiber weight fraction for each of the three fibers 

was assumed as the maximum reduction of permanent set relative to the un­

treated and were thus noted as identical to that obtained with vertical 

unit strain; i.e., 360 dpf fibrillated polypropylene, 0.2%, 15 dpf poly­

propylene straight, 0.3%, and 15 dpf crimped polypropylene, 0.1%. Maximum 

reduction of permanent set at each optimum fiber weight fraction was about 

0.01 in/in implying that fibers within the loess soil matrix did not 

I 
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appreciably influence the elastic-plastic behavior of the soil. 

Figure 70 illustrates the behavior of actual vertical strain modulus 

versus number of cycles using varying fiber weight fractions of the 360 

dpf fibrillated polypropylene. Once again, patterns of strain modulus 

versus fiber type were quite similar, tending to increase with increasing 

number of cycles, and implying that cyclic strain hardening was occurring. 

In general, each fiber type produced strain moduli lower than the untreated 

soil. However, after 500 cycles, the vertical strain modulus at 0.2% of 

each fiber was nearly identical to that of the untreated soil. 

Figure 71 presents actual horizontal unit strain versus number of 

cycles for varying fiber contents of the 15 dpf crimped polypropylene. 

Magnitude of reduction of actual values of horizontal unit strain of the 

loess, due to incorporation of the three fiber types, was not as large 

as observed with the more plastic Mortenson Road material at its optimum 

moisture content since actual lateral strains of the Mortenson Road 

material was considerably greater than with the loess. Fiber tensile 

strength of the Mortenson Road composites were thus probably mobilized to 

a larger extent than within the loessial composites. The largest reductions 

in horizontal unit strain produced with the 15 dpf crimped fibers were 

obtained at about 0.3% fiber content, Figure 71. Figure 71 also indicates 

that 0.1% of the crimped fibers produced slightly larger horizontal 

strain than the untreated. Recalling that the crimped fibers indicated an 

optimum fiber treatment of 0.1% relative to vertical unit strain, it thus 

appears that the useable optimum fiber content would be dependent on the 

parameter of interest to the roadway designer. If 0.3% of the 15 dpf 
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crimped fibers were utilized within a loessial roadway test section, both 

vertical and horizontal strain parameters would potentially be improved 

from that of the untreated soil. 

The 360 dpf fibrillated polypropylene produced optimum reduction in 

horizontal unit strain at a fiber weight fraction of 0.2 to 0.3%. The 

15 dpf polypropylene straight fibers provided maximum reduction in 

horizontal unit strain at a fiber contentof 0.3%; i.e., identical to that 

obtained from the vertical unit strain parameter. 

Since the measurement of horizontal stress is directly related to 

horizontal unit strain, the trends of horizontal stress observed for the 

loess-fiber composites at optimum moisture content were very similar to 

those obtained for horizontal unit strain. Regardless of fiber type, the 

magnitude of measured horizontal stresses ranged from about 1.1 to about 

1.25 psi. 

Trends observed with the stress ratio parameter were quite similar to 

those obtained with both the horizontal stress and unit strain. Based on 

reduction of stress ratio from that of the untreated loess, the optimum 

fiber weight fraction for all three fiber types appeared to be about 0.3%. 

Figure 72 illustrates actual volumetric strain versus number of cycles 

for varying fiber contents of the 360 dpf fibrillated polypropylene. 

Regardless of fiber type, volumetric unit strain of the loess-fiber composites 

were considerably reduced from that of the untreated soil. Maximum volu­

metric strains at optimum fiber contents were reduced by 15% or more from 

the untreated. Optimum fiber weight fractions based on volumetric strain 

were respectively 0.2t 0.1, and 0.3% for the 360 dpf fibrillated polypropylene. 
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15 dpf crimped polypropylene, and 15 dpf straight polypropylene. 

The second series of cyclic load tests were performed on duplicate 

specimens of untreated and fiber treated borrow pit loess molded at a 

moisture content 3% above optimum. Fiber types and contents were identical 

to those performed on the optimum moisture specimens. 

Figure 73 presents the variation of vertical unit strain versus number 

of cycles for the three fiber weight fractions of 15 dpf straight poly­

propylene. Comparison of Figures 68' and 73 typify the average increase in 

vertical unit strain observed for each fiber type and content. Optimum 

fiber weight fraction appeared to be about 0.2% for each fiber type, with 

the 15 dpf straight polypropylene producing the largest reduction in vertical 

unit strain, i.e., a reduction in excess of 20%. 

Figure 74 illustrates the variation of permanent set (cumulative plastic 

strain) for each fiber weight fraction of the 360 dpf fibrillated poly­

propylene. At 0.1% fiber content both the 360 dpf and the 15 dpf crimped 

polypropylene fibers exhibited a considerable increase in permanent set. 

Permanent set with both the 360 dpf and 15 dpf crimped fibers at 0.2 and 

0.3% weight fraction were similar to the untreated loess soil. In general, 

none of the fibers indicated an appreciable positive alteration of permanent 

set when compared to the untreated loess. 

Increased moisture content lowered the vertical strain moduli of both 

the untreated and fiber treated loess soil regardless of fiber type, 

Figures 75 and 70. However, as illustrated in Figure 75, 0.2% of the 15 dpf 

straight fiber increased strain modulus from the untreated condition by 

about 50%. A similar increase of vertical strain modulus was obtained with 
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the incorporation of 0.2% fiber weight fraction of the 360 dpf fibrillated 

polypropylene. Some improvement of vertical strain modulus occurred due to 

incorporation of the 15 dpf crimped fiber at both 0.1 and 0.2% weight 

fraction. Incorporation of 0.3% of each of the three fibers significantly 

reduced the vertical strain modulus from that of the untreated soil above 

optimum moisture. 

As shown in Figure 76, the 15 dpf straight fiber produced in excess of 

20% reduction of horizontal unit strain at 0.3% fiber weight fraction. For 

both the 360 dpf fibrillated and 15 dpf crimped fibers, a slight reduction 

in horizontal unit strain was also obtained at 0.3% content. All other fiber 

weight fractions produced little or no change of horizontal unit strain from 

that of the untreated soil above optimum moisture content. 

As might be anticipated, measured horizontal stresses and stress ratios 

of both the untreated and fiber treated loess were slightly greater than 

those produced at optimum moisture content. Only the 15 dpf straight poly­

propylene, at 0.3% fiber weight fraction, produced an appreciable reduction 

in stress ratio from that of the untreated loess above optimum moisture. 

At 21% moisture, volumetric strains were somewhat greater than at 

optimum as indicated by comparison of Figures 72 and 77. However, volumetric 

strains were significantly reduced due to incorporation of the fibers in the 

higher than optimum moisture content loess, Figure 77. Incorporation of the 

360 dpf fibrillated or 15 dpf crimped fibers produced nearly identical 

volumetric strains at each of the three fiber contents, each being 

quantitatively similar to that shown in Figure 77 at 0.2 and 0.3% fiber 
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weight fraction. In general, volumetric strains produced within the 

optimum fiber treated specimens was about 40% less than that of the un­

treated loess, a significant improvement for a material above optimum 

moisture. 

As noted with the unconfined compression tests, the soil-fiber bond 

appeared critical to enhancement of composite loess-fiber strength. As a 

consequence, a third series of cyclic load K-Tests were conducted on the 

loess, using a cement modified matrix, through incorporation of 3% Type I 

portland cement. 

Four fiber types were selected for this study; 15 dpf polypropylene 

straight (1.5 in), 360 dpf fibrillated polypropylene (1.5 in), 15 dpf crimped 

polypropylene (1.5 in), and No. 832BB Type E fiberglass (1.25 in). For 

purposes of this series of tests, all fiber weight fractions were 0.2% 

only. Duplicate cement modified specimens, with and without fibers, were 

molded under AASHTO T-99 compaction at the optimum moisture of the untreated 

soil, wrapped, sealed, and cured for 7 days in a constant temperature room 

at 100% relative humidity. 

With the exception that the cyclic load K-Tests were run for 2000, 

rather than 500 cycles, the test procedure was identical to that used with 

all other cyclic testing of the loess and loess-fiber composites. 

Figure 78 presents the vertical unit strain versus number of cycles for 

the cement modified loess, with and without 0.2% 360 dpf fibrillated poly­

propylene fiber. Regardless of fiber type, incorporation of fiber with the 

cement modified loess produced a slight increase in vertical unit strain 



ra.ra18 

~ 0.016 
H 

" :z 
H 
v 

0 . ca I 

176 

BORROW PIT LOESS 

ra 20ra 400 6rara sra0 11ara0 1 200 1 4ra0 t 600 t s00 2000 

NUMBER OF CYCLES 
A - NO F'lBER 

~ - 0.2Y. ~68 DPf flBRILLA1ED POLYPROPYLENE ( I .S lN.) 

Figure 78. Vertical unit strain versus number of cycles for cement 
modified loess 



177 

when compared with the fiberless matrix material; all increases being of 

about the magnitude shown in Figure 78. Vertical strains increased during 

the first 600 cycles, remaining constant thereafter for the fiber treated 

material, whereas the cement modified only material began to show some 

fracturing after about 1500 cycles. Comparisons of Figures 68 and 78 

illustrate that the magnitude of actual vertical strains however, were 

only about one-third of those accompanying the untreated and fiber treated 

loess. 

Permanent set of the four fiber treatments of cement modified loess 

exhibited trends similar to those for vertical unit strain, Figure 79. 

Comparison of Figures 69 and 79 illustrate that the magnitude of actual 

permanent set however, was about one-fourth to one-third of that produced 

in the untreated and fiber treated loess without cement modification 

of the matrix. Particularly noticeable in Figure 79 are slight variations 

of permanent set in the fiberless specimens. Such variations may be 

indicative of slight fracturing, followed by a reconstitution of frictional 

resistance once fracturing occurs. 

Figure 80 presents the variation in vertical strain modulus versus 

number of cycles for the cement modified loess with and without 0.2% 15 

dpf straight polypropylene fibers. Strain moduli of the fiberless, as 

well as with each of the four fiber treatments was quite erratic. As with 

the non-modified loess, Figure 70, all fiber treated specimens produced 

lower values of strain modulus than the cement modified material, an 

indicator of loss of composite stiffness through fiber inclusion. In 

general, vertical strain moduli with each of the four fibers increased 
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with increasing number of cycles, an indication of cyclic dependent 

strain hardening. As may be noted through comparison of Figures 70 and 

80, the vertical strain moduli due to cement modification was generally 

doubled from that of the non-modified matrix loess. 

Figure 81 presents actual horizontal strain versus number of cycles 

for the cement modified loess with and without 0.2% 15 dpf crimped poly­

propylene. Comparison with Figure 71 illustrates the significant modi­

fications in actual values, as well as patterns of horizontal strain, due 

to the inclusion of 3% cement in the soil matrix. The Type E fiberglass 

was the only fiber that did not improve horizontal strain, actually 

showing greater strain from 0 to about 1000 cycles than the cement 

modified only specimens. The 360 dpf fibrillated polypropylene fibers 

reduced horizontal strain by nearly 100%, while the 15 dpf crimped fibers, 

Figure 81, approached a 200% reduction in horizontal unit strain. 

Results of the horizontal strain measurements were consistent with 

the previously noted observation that the most beneficial effect of random 

fiber reinforcement of a soil may be related to laterally oriented 

parameters. Figure 81 also illustrates the occurrence of fiber tensile 

mobilization in the lateral dimension. Such mobilization occurred within 

the first 150 cycles of 75 psi vertical loading, producing only about 

0.0004 in/in of lateral strain within the fiber treated specimens. 

Horizontal strain of the fiberless cement modified loess increased to 

near 0.002 in/in at about 500 cycles before tending to equilibrate. At 

about 600 to 800 cycles of loading, both the fiber treated and fiberless 
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cement modified loess apparently produced additional fracturing, but 

recovery due to fiber tensile mobilization was quicker and of less 

magnitude. Tensile mobilization of the 360 dpf fibrillated fibers 

occurred within the first 25 cycles and remained equillibrated at 0.0007 

in/in horizontal strain through 2000 cycles. 

Due to their interrelationship, trends observed with horizontal 

stresses were nearly identical to those of horizontal strain. The 15 dpf 

crimped fiber produced the greatest lowering of horizontal stress; actual 

values were less than 0.1 psi during 2000 cycles of loading. 

Actual stress ratio values followed the trends established within 

the horizontal stress and strain measurements due to their direct 

relationship, Figure 82. However, because of the magnitude of horizontal 

stresses produced within the cement modified specimens, the consequent 

values of stress ratio were extremely small when compared to the values 

obtained for the non-modified matrix untreated and fiber treated specimens. 

As noted in Figure 82, stress ratio for the 0.2% 15 dpf crimped poly­

propylene cement modified specimens was generally equilibrated at about 0.0012. 

At optimum moisture content, incorporation of 0.2% of the 15 dpf crimped 

fiber within the non-modified loess produced a stress ratio of 0.017 

(14 times greater), while at greater than optimum moisture an actual 

stress ratio of 0.019 was observed (nearly 16 times greater). 

Figure 83 presents actual values of volumetric strain of the 0.2% 

weight fraction 15 dpf polypropylene fiber treated cement modified 

specimens. The magnitude of actual volumetric strain was significantly 
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improved due to matrix modification with 3% cement, as may be seen by 

comparison of Figure 83, 72, and 77. 

Based on the preceeding data obtained from the cyclic load Iowa 

K-Tests of the fiber treated Sioux City loess material, the following 

general observations were obtained: 

1. Potential of fiber reinforcement predominantly appears related 

to horizontal or lateral stability, although vertical and volumetric 

strain characteristics of the fiber treated non-modified loess was 

appreciably enhanced, both at optimum as well as greater than optimum 

moisture contents. Modification of the loess soil matrix through the 

addition of 3% Type I portland cement further enhanced the lateral 

stability of the soil-fiber composites. 

2. As with the Mortenson Road soil, the 15 dpf crimped and 360 

dpf fibrillated polypropylene fibers provided the best overall performance 

among the fibers considered. From the point of view of workability, the 

360 dpf fibrillated fibers were easiest to mix in the laboratory, though 

the 15 dpf crimped fibers were not as difficult to mix into the more 

friable loess as with the Mortenson Road soil. 

Freeze-thaw, K-Tests, Sioux City loess 

Two series of Sioux City borrow pit loess specimens were molded in 

order to conduct combined freeze-thaw, static K-Tests and cyclic load K­

Tests of the untreated and fiber composites. One series combined the 

fiber and non-modified soil, while the second series consisted of the 

fibers and a modification of the soil matrix with 3% Type I portland 
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cement. Two-tenths percent fiber weight fraction of the 360 dpf fibril­

lated polypropylene (1.5 in) and 15 dpf crimped polypropylene (1.5 in) 

were used in each test series. All specimens for each series were molded 

at optimum moisture content under AASHTO T-99 compaction. 

Freeze-thaw tests were performed using the Iowa Freeze-thaw apparatus. 

Each specimen is placed in a plexiglass container, in a Dewar flask, and 

allowed to freeze from the surface for a period of 16 hours, while in 

contact with liquid water at its base for capillary absorption. Thawing 

is then allowed for a period of 8 hours. During 10 cycles of freeze-thaw, 

average vertical elongation measurements of each specimen are made after 

each freeze and thaw period. 

Following freeze-thaw, all specimens were tested through either the 

static Iowa K-Test or the cyclic loading K-Test. Selection of the K-Test 

performed was dependent on the condition of each specimen following freeze­

thaw. 

Figures 84 and 85 present average calculated volumetric change during 

freeze-thaw for duplicate specimens of the non-modified loess, untreated 

and treated with the respective fibers. During the first few cycles, all 

specimens expanded. During the freezing phase of the fourth cycle, the 

untreated specimens expanded severely indicating a breakdown of soil 

particle to particle bonding. From the fourth through tenth cycles, the 

untreated specimens continued a slight volumetric expansion. Following 

initial expansion, all fiber treated specimens stabilized if not slightly 

decreased in volume. It may be hypothesized that the fibers were mobilized 

during initial expansion and then resisted further volume change due to the 



3 

2.8 

2.6 

2.4 

2.2 

" ~ 2 v 

w 
1 . 8 (!} 

z 
<( 
J: 1 . 6 u 
u 1. 4 H 
a:'. 
I- 1. 2 w 
i: 
:::::> 
-1 .1.. 0 FREEZE 
0 
> 

IJ.8 A e THAl.J 

0.6 G---9 UNTREATED 

f21. 4 tJ,,,..--A 0.2~ 360 DPF FIBRILL. POLY C 1 .5 IN.) 

121.2 

ra 
ra 2 3 4 5 6 7 g 1 I 

NUMBER OF FREEZE-THAW CYCLES 

Figure 84. Volumetric change versus number of freeze-thaw cycles, non-modified loess soil 



3 

2.6 

2.6 

2.-4 

2.2 
"" ~ 2 v 

UJ 
1. 8 (!) 

:z 
c( 
:z: 1. 6 u 
u 1. -4 H 

~ 1. 2 UJ 
s: 
::::> 
_J 
a 
> 

rJ.8 

ta.6 

!21. 4 

rJ. 2 

ta 
g 2 

.1 0 FREEZE 

A e THAU 

G---e UNTREATED 

'1.----A 0.2X tS DPF CRIMPED POLY C t .5 IN.) 

3 4 5 6 7 8 9 

NUMBER OF FREEZE-THAW CYCLES 

Figure 85. Volumetric change versus number of freeze-thaw cycles, non-modified loess soil 

1 1 

...... 
00 
00 



189 

fiber tensile strength. Figures 84 and 85 indicate that use of the fibers 

decreased volumetric change on the order of 40% as compared with the 

untreated soil, an important factor in reinforcement and/or reduction of 

heave-boil characteristics of a frost susceptible roadway soil. 

Following freeze-thaw, all specimens were static K-Tested, the 

average results of which are presented in Table 20. The untreated 

specimens appeared to produce a slightly higher value of friction angle 

than the fiber treated specimens, while the latter produced some improve­

ment in the modulus E, but were coupled with slight increases in stress 

ratio K. Based on such values, it would appear that the fiber treated 

specimens would not produce gains in stability. This observation however, 

is contrary not only to the freeze-thaw data but also to visual as well 

as handling observations of both the untreated and fiber treated specimens 

following freeze-thaw. Prior to static K-testing the untreated specimens 

were extremely difficult to handle and easily spalled; the reverse was 

noted with the fiber treated specimens. The apparent discrepancy between 

observations and static K-test data again appeared due to the incapability 

of the static K-Test to measure the lateral stability properties of the 

soil-fiber composites. 

Average volumetric changes produced during freeze-thaw of the cement 

modified loess, and cement modified plus fiber treatment, are presented 

in Figures 86 and 87. As noted, the cement modified loess experienced a 

gradual increase in expansion coupled with increasing expansion and 

contraction between freezing and thawing. The latter phenomena indicated 
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Table 20. Static K-Test results of loess soil-fiber composites 

Friction Cohesion Stress Strain 
Angle, c, Ratio, Modulus, 

Treatment cpo psi K E, psi 

0% fiber 42.4 2.3 0.216 1710 

0.2% 360 dpf 
fibrillated 
polypropylene 20.1 0.6 0.244 2402 

0.2% 15 dpf 
crimped 
polypropylene 37.6 2.3 0.251 1849 

a general debonding of cementing action between soil particles. The fiber 

treated specimens portrayed totally different trends, slightly contracting 

during initial freeze-thaw and remaining in relative equilibrium there-

after. In general, fiber inclusion in the cement modified loess soil 

matrix produced in excess of a three-fold residual volumetric change 

during the 10 cycles of freeze-thaw. When compared to the untreated soil, 

Figures 84 and 85, the fiber-cement modified composite specimens reduced 

volumetric characteristics by a factor of about 15, indicating that fiber 

incorporation into this type of modified soil matrix, may produce an 

extremely stable composite material, significantly minimizing frost suscept-

ibility characteristics. 

All cement modified specimens were subjected to the cyclic load 

K-Test following freeze-thaw. Figures 88 and 89 present average actual 

vertical unit strains for the cement modified and fiber treated cement 

modified loess specimens. Both fibers produced less vertical strain than 
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the fiberless cement modified specimens; the 15 dpf crimped polypropylene 

showing a reduction in vertical strain in excess of one-half and the 360 

dpf fibrillated producing about a 20% reduction. The latter reduction 

is quite different from the vertical strain noted for the non-freeze-thaw 

testing performed with the 360 dpf fibrillated fibers, Figure 78, and is 

partially related to the effect of additional curing of the specimens 

producing additional matrix bonding during the 10 days of freeze-thaw 

testing. Shapes of the vertical strain curves of Figures 88 and 89 reveal 

fracturing potential of the cement modified loess, whereas the fiber treat­

ment illustrates slight fracturing coupled with fiber mobilization and 

recovery. Due to the foregoing, it will be noted that the two sets of 

curves become more widely separated with increasing number of cycles, in­

dicating an increased breakdown of the fiberless cement modified material. 

Measurements of permanent set followed patterns identical to those 

of vertical strain. As with the vertical strain moduli of Figure 80, 

moduli produced after freezing and thawing were also erratic. Median 

and one standard deviation of vertical strain moduli of the freeze-thaw 

cement modified specimens was 20,000 ± 1770 psi, of the 360 dpf fibrillated 

polypropylene treated specimens, 22,000 ± 2200 psi, and for the 15 dpf 

crimped polypropylene treated specimens, 28,600 ± 4000 psi. In general, 

the 15 dpf crimped fibers increased the composite stiffness about 40%. 

Figures 90 and 91 show that fiber treatments significantly reduced 

average horizontal strains from those of the fiberless cement modified 

loess specimens, the values being nearly negligible. Comparison of Figures 

81, 90 and 91, shows an increased separation of the fiberless cement 
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modified curve from that of the specimens containing fibers, indicating 

that freeze-thaw of the fiberless material affected the ability of the 

matrix to resist horizontal straining. 

The effect of freeze-thaw on horizontal stress and stress ratio of 

the cement modified and fiber treated loess followed nearly identical 

patterns to those produced for horizontal strain. 

Following freeze-thaw, the 360 dpf fibrillated fiber treatment of 

the cement modified loess did not alter volumetric strain of the fiberless. 

material, whereas the 15 dpf crimped fiber reduced volumetric strain about 

30%. On first observation, the lack of alteration of volumetric strain 

by the 360 dpf fiber appears somewhat incongruous since large reductions 

in both vertical and horizontal strain were observed. However, it should 

be kept in mind that there is a cancelling effect within the volumetric 

strain computations. With the fiberless specimens, large values of vertical 

and horizontal strains were measured, thus the net change was small. With 

the 360 dpf fibrillated fiber specimens low values of both vertical and 

horizontal strains occurred, with a resulting net change again being small, 

and in this case nearly equal to the fiberless material. 

Within the confines of this combined freeze-thaw, cyclic load testing 

study of the cement modified loess, both the 360 dpf fibrillated and 15 

dpf crimped polypropylene fibers performed quite well, the 15 dpf being 

somewhat superior. The study again illustrates (1) the critical importance 

of soil-fiber matrix bonding, and (2) that the primary mechanism of 

random fiber reinforcement of a roadway soil is predominantly through im­

proved lateral stability. 
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Micro-Properties of Soil-Fiber Composites 

The overall integrity of a soil-fiber composite depends on the 

interaction occurring between the fiber and soil matrix. In order to more 

fully define the mechanism(s) of soil-fiber reinforcement, several micro­

investigations involving the soil-fiber interface were conducted. Through 

the following investigations, trends were exhibited which could be 

correlated with either previous studies of fiber concrete, or the macro­

properties of soil-fiber composites presented in preceeding sections of 

this report. 

An overall fiber efficiency factor, A, was calculated using an 

approach taken in fiber reinforced concrete, as expressed through the 

following modification of equation 18: 

where E = Young's Modulus, V = volume, A = overall efficiency factor, and 

subscripts c, f, and m refer to the composite, fiber and matrix moduli 

respectively (16). For analysis of soil-fiber composites, untreated Sioux 

City soils were considered as the matrix, the fiber reinforced soils as 

the composite. One difficulty in applying this equation was in determining 

the volume of fibers in a soil-fiber specimen. Since the fiber was added 

as a weight fraction, it was essential to know the number of fibers present 

in a given weight. To obtain this information, several small amounts of 

each fiber type were weighed to the nearest 0.0001 gram and the number of 

fibers was counted. Dividing the number of fibers by the weight, resulted 

in number of fibers per gram. Determining the median and standard deviation 
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of several trials for each fiber resulted in a reasonable estimate of 

number of fibers per gram for each fiber type, Table 21. 

Table 21. Number of fibers per gram for each fiber type 

Fiber Type Number of Fibers Per gram 

15 dpf polypropylene monofilament, 1 1/2 inch 
length 9720 + 175 

15 dpf crimped polypropylene monof ilament 1 1/2 
inch length 13470 + 345 

832 bb Type E fiberglass, 1 1/4 inch length 438 + 7 

360 dpf fibrillated polypropylene, 1 inch 
length 962 + 8 

360 dpf fibrillated polypropylene, 1 1/2 inch 
length 861 + 8 

Comparing the results of Table 21 with calculations involving the fibers 

specific gravity and manufacturers dimensions did not match the counting 

results. Reasons for this lack of correlation include; 1) individual 

fiber dimensions appear to slightly vary; 2) contamination of counted fibers 

with dust particlulates; and 3) absorption of moisture by the fibers. 

Knowing the number of counted fibers per gram and using fiber 

dimensions provided by the manufacturers, the volume of fibers were calcu-

lated for various weight fractions. Volume of the composite was chosen 

as one cubic foot. For ease of calculation, soil dry density was assumed 

as a constant 100 pcf and 105 pcf for the borrow pit and West 3rd Street 

soil specimens, respectively. Only E values from specimens near optimum 

moisture content were utilized. 



201 

Table 22. Fiber efficiency factors for loess-fiber composites 

Fiber 

Borrow Pit Loess Em = 750 psi 

15 dpf polypropylene monofilament, 
1 1/2 inch 

15 dpf crimped polypropylene, 
1 1/2 inch 

832 bb fiberglass type E, 
1 1/4 inch 

360 dpf fibrillated polypropylene, 
1 inch 

360 dpf fibrillated polypropylene, 
1 1/2 inch 

West 3rd Street Loess Em = 530 psi 

832 bb fiberglass type E, 
1 1/4 inch 

360 dpf fibrillated polypropylene, 
1 inch 

Ef, psi 

6 
1.lxlO 

6 l.lxlO 

6 l.lxlO 

6 
l.lxlO 

10xl06 

6 l.lxlO 

Fiber 
Weight 

Fraction, 
% Ec,psi 

.1 

.17 

.2 

.3 

.05 

.1 

.2 

.1 

.17 

.2 

.3 

.1 

.17 

.2 

.3 

.1 

.2 

.3 

.02 

.08 

.15 

.3 

.5 

. 02 

.04 

.06 

.08 

.15 

.3 

.5 

825 
1090 

900 
850 

1100 
1170 

960 

885 
1100 
1005 

955 

1000 
1050 

905 
945 

840 
910 
935 

955 
1100 
1070 
1030 
1085 

750 
570 
535 
655 
690 
905 
860 

.057 

.152 

.057 

.026 

.383 

.230 

.058 

.019 

.029 

.018 

.010 

.142 

.101 

.045 

.037 

.039 

.034 

.027 

.280 

.104 

.048 

.022 

.015 

.145 

.013 

.001 

.021 

.041 

.017 

.009 
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Table 22 presents the results of the overall efficiency factor of the 

loessial soil-fiber composites. These results must not be considered 

fully conclusive. Values of E varied widely, and at several fiber weight 

fractions only one specimen was near optimum moisture. Further, the 

random orientation of the fiber and testing procedure may have caused E 

to fluctuate. In spite of these reservations, the 15 dpf crimped poly­

propylene fiber composites had the highest efficiency factors which is con­

sistent with highest improvement in unconfined compression and other parametric 

values. Without exception, the efficiency factor decreased as the fiber 

weight fraction increased, yet unconfined compressive strength generally 

increased. This phenomena may be due to the increased number of fibers 

randomly distributed in a specimen. Many fibers probably do not reinforce 

against unconfined failure, yet at the same time more are oriented to resist 

failure than at lower fiber weight fractions. 

Efficiency factors for cement treatments were calculated in the same 

manner, though the matrix was considered as the cement-modified soil. 

Table 23 presents the results for 1 percent type I Portland cement treat­

ment. Again the smaller 15 dpf polypropylene fibers were the better 

performers, with the crimped fiber attaining the highest efficiency factor. 

These results are consistent with improvements of 'lu• strain at failure 

and E, noted earlier for 1 percent cement and fiber composites. 

Calculation of overall efficiency factors for the 3 percent type I 

Portland cement were also accomplished with the cement modified soil 

providing the matrix values. After 7 days curing, only the 15 dpf crimped 

polypropylene fiber composite had a value of E greater than the matrix, 
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Table 23. Fiber efficiency factors for loess, 1 percent type I Portland 
cement and fiber composites. 

Em, psi 

Fiber added, 
0.17% FWF 

15 dpf polypropylene 
monofilament, 1 1/2 inch 

15 dpf crimped poly­
propylene, 1 1/2 inch 

832 bb fiberglass 
1 1/4 inch 

360 dpf fibrillated 
polypropylene, 1 inch 

360 dpf fibrillated 
polypropylene, 1 1/2 inch 

E 
c 

995 

1260 

1225 

1005 

1020 

24 hour cure 
820 

0.079 

0.142 

0.033 

0.062 

0.050 

E 
c 

7 day cure 
910 

1200 0.130 

1480 0.184 

1265 0.029 

1150 0.081 

1050 0.037 

meaning that A would become negative for the remaining fiber treatments, 

Table 24. 

In an effort to better understand bonding characteristics between the 

loessial soils and fiber, two approaches were taken. First, incorporation of 

fibers into the soil system was analyzed in terms of surface area ratios of 

fiber to soil particles, coupled with examination by Scanning Electron Micro-

scope of fiber surfaces before and after compaction in the soil. Second, 

the relative magnitude of soil-fiber bond strength was obtained by use of 

an improvised fiber-pull-out test. 

Soil-fiber composites are systems that may have very high void ratios, 

especially when compared to plastic or resin fiber composites. Typical 

values of void ratios of the compacted Sioux City borrow pit loess-fiber 
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Table 24. Fiber efficiency factors for loess, 3 percent type I Portland 
cement and fiber composites 

E ' psi 24 hour cure 7 day cure m 4525 9435 Fiber added, 
E It E It 0.17% FWF c c 

Borrow Pit Loess treated with 3% Portland cement Type I 

15 dpf polypropylene 
1 1/2 inch 5005 0.218 7790 

15 dpf crimped poly-
propylene 1 1/2 inch 7915 1.00 11175 0.567 

832 bb fiberglass 
1 1/4 inch 6680 0.175 8925 

360 dpf fibrillated 
polypropylene 1 inch 6055 0.5134 8500 

360 dpf fibrillated 
polypropylene 1 1/2 inch 5875 0.339 7210 

composites were higher than untreated soil and ranged from 0.6 to 0.7. 

Such void ratios imply that fiber does not occur in the soil voids only, 

but may separate soil particles, thus increasing the void ratio. In 

addition, bonding between the soil and fiber may occur within relatively 

small areas of the fiber surface. The fairly uniform particle size 

gradation of the loess contributes to high void space in the matrix. It 

is hypothesized that to be more reinforcement effective, fibers should fill 

void spaces rather than create additional void space; a condition probably 

explaining why the smaller diameter 15 dpf polypropylene fibers displayed 

the better performance. 
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Surface area of the fibers was calculated using fiber dimensions 

provided by the manufacturers. When coupled with the number of fibers per 

unit weight, Table 21, the surface area exposed by fibers of a selected 

fiber weight fraction could be calculated. Surface area of the soil 

particles was much more complex. Handy (13) showed that the area of loess 

particles, similar to those of the Sioux City borrow pit, presented about 

1.37 square centimeters of area per gram of dry soil. Assuming a dry 

density of 100 pcf, this information was transformed to a standard proctor 

size specimen, comparing the soil particle surface area to fiber surface 

area for a given fiber weight fraction as shown in Table 25. End areas 

of fibers were neglected. 

Table 25 shows significant variation in surface area between fiber 

types at the same fiber weight fractions. The smaller diameter 15 dpf 

fibers exhibited better strength enhancement at lower fiber weight fractions 

than the larger diameter fibers. Perhaps this is related to the ratio of 

the soil particles' surface area to fibers' surface area being close to 

unity. Comparison of surface area ratios of the various fibers at the 

weight fraction achieving maximum unconfined compressive strengths, 

supported a previous observation of increasing fiber content producing in-

creasing strengths. As area ratios decreased, fiber weight fraction in-

creased and the composite attained a higher q • The highest increase was 
u 

achieved with the crimped 15 dpf polypropylene at about 0.8 surface area 

ratio. In addition, the 0.2 and 0.3 percent fiber weight fractions of both 

15 dpf polypropylene fibers were relatively difficult to adequately mix 

with the loess soil. These fibers produced surface area ratios between 

0.8 and 1.2 indicating a possible limiting surface area ratio near unity 
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Table 25. Ratio of soil particle surface area to fiber surface area of 
standard proctor specimens, dry density = 100 pcf 

Fiber Weight Fraction, % 0.05 0.1 0.17 0.2 0.3 

Fiber 

15 dpf polypropylene 
monofilament 1 1/2 inch 2.3 1.4 1.2 0.8 

15 dpf crimped polypropylene 
monof ilament, 1 1/2 inch 3.3 1. 7 1.0 0.8 

832 bb type E fiberglass, 
1 1/4 inch 15.4 9.1 7.7 5.1 

360 dpf fibrillated 
polypropylene, 1 inch 7.8 4.6 3.9 2.6 

360 dpf fibrillated 
polypropylene, 1 1/2 inch 5.8 3.4 2.9 1. 9 

must not be exceeded if workability (mixing) of a soil-fiber composite is 

to be accomplished. 

Three randomly selected fresh, undamaged fiber specimens of 15 dpf 

polypropylene monofilament, 360 dpf fibrillated polypropylene and 832 bb 

type E fiberglass were examined in a JEOL JSM-U3 Scanning Electron Micro-

scope (SEM). In addition, three specimens of the same fiber types were 

randomly selected from a number recovered following unconfined compression 

testing of soil-fiber composite standard Proctor size specimens and also 

examined by SEM. 

Comparison of the three types of fiber before and after compacted in-

corporation in the loess soil revealed several conditions. Both the mono-

filament and fibrillated polypropylene fibers showed fairly smooth surfaces 

prior to incorporation in the soil. Type E fiberglass was observed to be 
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composed of a bundle of smooth, very small diameter strands. Manufacturer's 

information indicated that both fiberglass and polypropylene fibers were 

nearly chemically inert. Since the fibers exhibited no signs of chemical 

alteration after incorporation in the soil, it must be assumed that any 

bonding occurring between the fibers and soil was primarily frictional in 

mechanism. 

The 15 dpf fiber exhibited severe surficial damage after compaction 

and testing in the soil, probably as a result of soil particles scratching 

and indenting the surface. The fibrillated polypropylene also incurred 

surface damage, though not as extensive as the smaller diameter polypropylene. 

The harder fiberglass fiber did not appear to be damaged after incorporation, 

compaction, and UCS testing in the loess soil. The more extensive 

surficial damage to the 15 dpf polypropylene fiber tends to support its 

reinforcing performance as evidenced through potentially greater frictional 

contact with the soil particles. Such mechanism might be enhanced even 

further by the crimped 15 dpf polypropylene fiber, whose geometric config­

uration would (1) allow for tight soil particle to fiber packing, as well 

as (2) filling the void spaces as indicated by its lower composite void ratios. 

A fiber-pull-out test was devised to measure the average frictional 

strength of the soil-fiber bond under varying soil stress conditions. A 

direct shear mold was modified by cutting a small keyway between the top 

and bottom half of the mold. This allowed for a measured length of fiber 

to be horizontally embedded in the soil within the mold, yet adequately 

protrude so that a tensile force could be applied to pull the fiber from 

the soil. The known volume of the mold was filled with a measured amount 
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of soil near optimum moisture content, then compacted to attain 95 percent 

maximum standard T-99 density. The soil was vertically loaded to varying 

stress states, each state of stress being allowed to equalize for 5 minutes. 

The exposed length of fiber was passed over a pulley and attached to a 

plastic container, which was slowly siphon filled with water until the fiber 

pulled out or broke. At that instant, water flow was halted, and the con-

tainer plus water was weighed to determine the force required to pull out 

or break the fiber for each state of vertical stress on the soil specimen. 

The 15 dpf polypropylene monofilament and the 360 dpf fibrillated 

polypropylene fibers were used with borrow pit loess for this testing. 

Both fibers were obtained in tow (spool) form for use in this test in 

order to obtain adequate exposed length for attachment to the plastic con-

tainer. The average frictional bond strength T , was calculated as the avg 

force required to pull out, or break the fiber, divided by the surface area 

of fiber exposed to the soil, neglecting end area. 

The fibrillated tape posed unique problems in performing this test 

due to its rectangular like cross section. Some tests were conducted with 

the long side of the rectangle vertically oriented. These tests resulted 

in lower values of frictional bond strength than when the fiber was 

oriented with the long dimension horizontal. For ease of testing and com-

parison, all remaining tests were conducted with the crosssection oriented 

horizontally. Also, the fibrillated fiber occasionally split apart, 

slightly increasing the exposed surface area over that of the monof ilament 

fiber that did not split. Regardless of these conditions, the manufacturers 

equivalent diameter was used to calculate embedded surface area of each fiber. 
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The 15 dpf polypropylene monofilament also posed a problem in that 

the exposed fiber tended to easily break. However, as the embedded part 

of the fiber resisted pull-out up to the break load, the bond strength 

was apparently equal to or greater than the break force. Therefore, for 

any tests wherefibers broke, that force divided by the fiber surface area 

was considered the bond strength. Though the embedded length of the 15 dpf 

fiber was reduced from 2 to 0.75 inches, the exposed fiber continued to 

break when vertical soil pressures were equal to or greater than 30 psi. 

Although the test procedure was subject to experimental errors, 

several repetitions yielded comparative·results for various vertical stress 

levels on the soil, Table 26. 

Table 26. Average soil-fiber frictional bond strength 

Vertical Stress, T 15 dpf polypropylene 
avgmonof ilament, 

T 360 dpf fibrillated avg 
psi psi polypropylene, psi 

0.11 10.1 + 1.4 17.9 + 2.6 

0.95 10.0 + 0.9 17.9 + 0.9 

5 11.9 + 1.5 16.3 + 0.9 

10 14.6 + 1.0 20.l + 2.4 

20 19.9 + 2.8 35.0 + 3.5 

30 20.4 + 2.6a 

so 24.5 + 2.la 62.3 + 1.1 

63.4 94. 6 + 3.2 -
75 30.3 + 3.la 84.5 + 15.4a 

aAll fibers broke during tests at this level of soil stress and 
length of embedded fiber. 
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Results of Table 26 present a logical trend. After vertical loading 

was applied, 5 minutes elapsed for stresses in the soil to equilibrate, 

during which time the loading cap was observed to lower, indicating soil 

specimen consolidation. This confined consolidation means that the void 

ratio of the soil decreased, and in turn, potentially increased the number 

of points of contact between soil and fiber. This would result in higher 

normal forces at all points of contact, providing for stronger frictional 

bond between the soil and fiber. The amount of consolidation was not 

measured as the configuration of the test apparatus prohibited monitoring 

vertical strain. 

The data of ~able 26 was applied within equation 8 adapted from 

Agarwal and Broutmann (1) for determination of critical load transfer length 

(CJf)ultd 
of short fibers:£ 

c 2T avg 
where £ = critical fiber length, CJf 

c ult 
maximum fiber stress, d = fiber diameter, and T = average frictional avg 

bond strength. Results of the determination of £ are presented in Table c 

Table 27. Critical fiber length for various soil stress conditions 

15 dEf 360 dEf 

Vertical Soil T £c, T £c, avg., avg., 
Stress, psi psi inches psi inches 

0.11 10.1 6.3 17.9 16.1 

0.95 10.0 6.4 17.9 16.1 

5 11. 9 5.4 16 .3 17.7 

10 14. 6 4.4 20.1 14.4 

20 19.9 3.2 35.0 8.2 

30 20.4 3.1 

50 24.5 2.6 62.3 4.6 

63.3 94.6 3.0 

75 30.3 2.1 84.5 3.4 

27. 
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The results of Table 27 demonstrate that as soil-fiber bond is in­

creased, the length of fiber required to effectively transfer matrix 

stress to the fibers ultimate stress capacity tends to decrease. Since 

fiber lengths used in this study were less than the £e's calculated above, 

the soil-fiber composite should not fail by fiber fracture, but by sliding 

along the soil-fiber interface. Examination of soil-fiber composite 

specimens following maximum unconfined compressive loadings supported this 

mode of failure, and indicated that the frictional soil-fiber bond force 

was adequate to impart increases in composite strength properties discussed 

previously. In addition, this mode of failure may potentially explain the 

previously observed ductility (toughness) of the soil-fiber composites. 

Trafficability Test 

The trafficability test utilized replicate Marshall size specimens 

(4.00 in. diameter by 2.75 in. height), subjected to simulated conditions 

of repetitive traffic loading and adverse environment. The trafficability 

apparatus consists of a rigid steel frame with electric powered travelling 

carriage moving longitudinally along the frame. Within the carriage, an 8 

inch diameter by 1 1/4 inch wide solid rubber tired wheel is positioned to 

roll along a wheel track containing six specimens still within their 

respective molds. Contact pressure of the wheel is adjusted through a 

vertical pneumatic cylinder to which the wheel is attached. The cylinder 

also serves to automatically lift the wheel at the end of each loading pass. 

A water spray device is attached to the carriage, providing the capability 

of rain simulation either during, or without traffic loading. 
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Quantitative data consisted of measuring wheel path rut depth to 

the nearest 0.001 inch, at intervals of wheel load repetitions. The dif­

ference between the average of triplicate wheel path readings prior to and 

following load repetitions provided the quantity of rut depth, failure 

being defined as equal to 0.5 inch. The following test procedure was used 

at 75 psi wheel contact pressure for all specimens: 

1. 1000 passes without rain. 

2. 1000 passes with a simulated rain of about 0.15 in/hr. 

3. Two hour fogging period consisting of a fine water mist. 

4. 1000 passes with a simulated rain of about 0.15 in/hr. Rut depth 

measurements at prescribed intervals or until achievement of 0.5 in_._ rut 

depth, whichever might first occur. 

All specimens were molded at near their respective optimum moisture 

contents. All specimens were tested immediately following molding, with 

the exception of the Sioux City specimens containing 3 percent portland 

cement which were wrapped, sealed and moist cured for 7 days prior to 

testing. 

Rut depth measurements presented in Figures 92 through 96 should be 

viewed from the mechanisms occurring during the testing process. Initially 

a densification and seating of each specimen within the holding ring 

occurred, but appeared to be dependent on both the matrix (soil or soil and 

cement) and fiber. For example, in Figure 92 a very small densification 

occurred within the Sioux City specimens containing cement during the first 

50 cycles, and remained constant throughout the first 1000 cycles. The 
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crimped fiber produced somewhat larger rut depth at 50 cycles but again 

remained constant at about 0.025 inch for the remainder of 1000 cycles. The 

untreated soil rapidly densified during the first 100 cycles to about 0.05 

in. depth, then slowly continued densification to about 0.06 in depth at 

1000 cycles. The 360 dpf fibrillated specimens showed a greater densification 

than the untreated which continued to 0.15 in. rut depth at 1000 cycles. 

Substantial densification during the first 300 cycles was observed 

through average rut depth with the Mortenson Road specimens, Figure 93. 

Fiber contents from 0.05 to 0.3% produced no basic change in rutting and 

were slightly higher in average rut depth than the untreated soil. 

During the first 1000 cycles, the 0.1 and 0.3% 15 dpf x 1 inch straight 

and 0.1% 360 dpf x 1.5 inch fibrillated polypropylene fibers produced some 

reduction in rutting densification with the Linn County Prairieburg soil, 

Figures 94 and 96. Regardless of content, the 1.25 inch Type E fiberglass 

produced no basic variation in rut depth, Figure 95. 

During the initial period of rain, 1000 to 2000 cycles, there is a near 

innnediate "tracking out" of any unbound fines. As a distinct rut is formed, 

water puddles in the wheel path, resulting in further flushing and 

tracking-out of fines, a process which occurs to lesser degrees with 

effectively stabilized soil matrixes as compared to untreated. This process 

may continue at varying rates until the wheel path surface appears composed 

of coarse particles with fines removed (most evident in untreated or un­

stable specimens), or where fibers are exposed among coarse particles 

though portions may still be embedded within the yet stable finer matrix. 

During the period of rain, unstable materials may also produce one or more 
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forms of shear failure. Initially, a general bulging and upheaval along 

the wheel path edges, indicative of plastic flow or local shearing; a 

process which may continue to progress to development of full shear away 

from the wheel path at or into the wall of the holding mold. This latter 

development may produce failure surfaces similar to those of the classic 

Prandtl-Terzaghi bearing capacity failure geometry due to reduction of c-¢ 

characteristics by intruding water. 

Each of the untreated Sioux City and Prairieburg soils produced all 

actions noted in the preceeding paragraph during the period of rain, in­

cluding bulging, upheaval and shear failure. Sioux City specimens containing 

cement and cement plus fiber produced an increased quantity of rut depth, 

Figure 92, through 2500 cycles, but showed only limited signs of bulging 

and no signs of shear failure. The 360 dpf fibrillated polypropylene and 

Sioux City soil composite without cement treatment, showed definite signs 

of bulging, upheaval and shear failure up to less than 1500 cycles while 

the 0.2% crimped fiber composite remained much more stable. 

Between 1000 and 2000 cycles, rut depths of the Prairieburg fiber 

treated specimens tended to react similarly to the untreated soil, Figures 

94, 95, and 96. In general bulging was not as great with fiber treatment 

as with the untreated. However, during this period of rain, little variation 

of tracking-out of fines was visible between the untreated and fiber 

treated specimens, though the latter showed loose unbonded fiber ends in 

the wheel path. Between 1000 and 1400 cycles the 15 dpf x 1 inch straight 

polypropylene exhibited somewhat less average rut depth than the untreated, 

Figure 94. At about 1500 cycles, a definite debonding appeared to develop, 
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and was accompanied with some shear failure to the point at which testing 

was halted at 1600 cycles. 

As illustrated in the preceeding discussion, the trafficability test 

provided some quantitative measurements of the effect of fibers in the 

three soil matrices, as well as qualitative indications of the composite 

materials stability under a heavy moving load and the imposed environmental 

conditions. Both the measurements and observations indicate that the 

untreated soils are incapable of sustained traffic support at the level of 

loading and environmental conditions imposed when utilized as surface course. 

Under identical test conditions however, the 15 dpf x 1.5 in. crimped poly­

propylene fiber provided improved vertical load stability for the Sioux 

City soil, and the 15 dpf x 1 in. straight polypropylene provided some 

sustained stability for a greater number of cycles with the Linn County 

Prairieburg soil. Inclusion of each of the above fibers prevented lateral 

shear and/or displacement for a greater number of cycles than their untreated 

counterparts, not unlike the lateral actions described under the cyclic load 

tests. Further improvement of stability under the traffic simulation test 

was provided by modification of the soil matrix through addition of 

cement, once again noting the interrelatonship of soil matrix and fiber 

interfacial bonding. 

Tensile Test 

Methods for evaluating the tensile strength of materials may be con­

ducted by applying direct tensile force to a specimen, or through indirect 
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techniques such as flexure of a beam or splitting a cylindrical specimen 

by applying opposing strip loads along the sides of a test cylinder. The 

direct test is difficult to perform because of undesirable stress concen-

trations which occur at the point of applied loading. The flexural test 

was deemed undesirable because of difficulties associated with molding 

beam specimens, particularly inconsistencies in reproducing proper densif i-

cation. Thus it was decided that a trial study of tensile properties of 

fibrous reinforced soil be measured using the splitting technique on 

Proctor sized specimens, compacted under AASHTO T-99 energy, and evaluated 

through the following relation for tensile stress. 

where st 

2 p 
max 

TI L d 

= tensile stress, P = the load at failure, L = specimen length, 
max 

and d = specimen diameter. Results of a series of tests on the Prairie-

burg A-4(0) and Mortenson Road A-6(3) soils are presented in Figures 97 

through 99. At a constant 0.4 percent fiber content, tensile strength 

increased independent of fiber type or moisture content with the Prairie-

burg soil, Figure 97. The Mortenson Road soil showed slight improvement 

with the 360 dpf polypropylene only at higher moisture contents, Figure 99. 

When fiber content was varied in the Prairieburg soil at a constant 

moisture content near optimum, Figure 98, a difference in fiber type and 

diameter was particularly noticeable at fiber weight fractions below the 

0.3 percent level; the small diameter, 15 dpf polypropylene caused the most 

improvement at about 0.2 percent concentration. Similar results were 

obtained for the Mortenson Road soil with varying amounts of 360 dpf poly-

propylene. However, tensile strength increase was only slight, but did 

occur at fiber contents as low as 0.05%. 
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Results of this study illustrate that improved tensile properties 

may be attained with a soil due to the introduction of randomly oriented 

fibers but appear dependent on soil and fiber types, and the accompanying 

interfacial bond. In addition, tensile properties of a soil-fiber 

composite may be improved at moisture contents above the untreated optimum. 

FIELD INVESTIGATIONS 

Field Test Sections 

During the fall of 1980, seven test sections were constructed in Linn 

and Story Counties using three types of fibers showing some potential from 

the laboratory compression testing evaluation. Test section description 

is contained in Table 28. 

Linn County (Prairieburg) construction 

This first attempt of field application illustrated that the main 

difficulty associated with practical application of fibers was dispersal 

at the site. Mixing did not appear to be a problem. The initial plan for 

the six Linn County Sections was to air inject the fiber into the 

shroud of a rotary mixer, but finding a suitable air delivery system proved 

to be a problem. Both a 2 inch diameter coIIIIllercial insulation blower, and 

a fabricated 4 inch diameter blower proved useless because of clogging 

in the ports and tubing. However, a coIIII!lercial mulch spreader owned by 

Linn County provided adequate capacity, and the simple addition of an 

eight inch diameter flexible tube to the discharge spout offered a unit 

which could amply deliver as well as separate the boxed and compressed 

fibers. This technique was used during the initial phase of construction, 

but breakdown of the rotary mixer and the nonavailability of parts, or a 



Table 28. Test section descriptions. 

Section Applied 
Length AASHTO Fiber Distribution 

Test Section Fiber Type (ft.) Classification Con ten ta Method 

Linn County 
(Prairieburg) 

1 15 dpf x 1 in. 
Polypropylene 200 A-4 (0) 0.06 Pneumatic 

2 15 dpf x 1 in. 
Polypropylene 200 A-4 (0) 0.13 Pneumatic 

3 Type E Fiberglass 
1.25 in. 200 A-4 (0) 0.1 Pneumatic 

4 Type E Fiberglass 
1.25 in. 200 A-4 (0) 0.29 Pneumatic 

5 360 dpf x 1. 5 in. 
Fibrillated 
Polypropylene 200 A-4 (0) 0.29 Hand Distribution 

6 360 dpf x 1.5 in. 
Fibrillated 
Polypropylene 200 A-4(0) 0.10 Hand Distribution 

Story County 360 dpf x 1. 5 in. 
Mortenson Road Fibrillated 

630b A-6(3)b Polypropylene 0.05 Hand Distribution 

a Percent by dry weight of soil, computed as weight of number of boxes of fiber within 6 inch 
depth and 28 ft width. 

bSoil was found to vary over the length of test section. This classification was determined 
from a composite sample. 

N 
N 
\JI 



226 

replacement mixer, resulted in blowing the fiber on the 6 inch depth 

scarified roadway, mixing with a blade grader, and compaction with a 

rubber tired roller. A crushed rock surface was applied to all sections. 

Story County (Mortenson Road) construction 

Available equipment included a rotary mixer, rubber tired and sheeps­

foot rollers, and a motor grader. Since a machine suitable for pneumatic 

distribution was not available, this phase of the operation was performed 

by hand spreading of the fiber following preparation of the 6 inch depth of 

roadway soil. The clayey nature of the bulk of the roadway soil made it 

necessary to devote considerable effort to preparation or break-up of 

clods in major portions of the test section; the construction operation 

revealing that two and possibly three changes of soils may have been re­

presented on the site, depending upon topography. For performance evaluation, 

the 630 ft. section was sampled and tested at six locations, all test data 

generally being averaged. A single seal coat wearing surface was applied 

to this section and its comparison controls. 

Field Tests and Observations 

In-Situ Moisture-Density 

Measurements taken, and sampling performed at time of construction, 

included moisture content prior to mixing, moisture content and density 

after compaction, depth of fiber distribution, and samples of the fiber/ 

soil composite prior to compaction. The objective was to achieve a six-inch 

lift of treated material compacted to 95 percent of standard AASHTO density, 

and near optimum moisture content. Field density measurements were made 
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with a nuclear gage. To avoid error in the nuclear moisture measurements, 

potentially caused by hydrocarbons in some of the fibers, a speedy 

moisture tester was also used to minotor moisture content. 

In situ compaction achieved during construction was compared to samples 

of the soil-fiber composite collected at the site then later subjected to 

the standard AASHTO laboratory compaction test. For example, the following 

means and standard deviations were measured for the Mortenson Road section: 

Field moisture content - 12.2 ± 1.5 percent 

Field density 

Laboratory density 

- 105.8 + 5.7 pcf 

- 104.6 + 7.1 pcf 

An 11.5 percent laboratory optimum moisture content for the treated 

Mortenson Road soil-fiber composite indicated that construction moisture 

conditions were slightly wet, while the similarity in field and laboratory 

densities suggested that a reasonable degree of compaction of the soil 

fiber composites could readily be achieved with conventional equipment. 

Similar comparative achievements in density were attained in the Linn 

County Prairieburg sections at time of construction. 

Table 29 illustrates the mean and one standard deviation of in-situ 

moisture-density tests of the Mortenson Road sections as obtained during 

1981. As noted above, at time of construction, field densities were above 

100% of laboratory standard AASHTO T-99 compaction of 104.6 pcf. Densities 

of the succeeding series of tests indicated increases of 10 pcf or greater 

as compared to either the initial field compaction and/or standard laboratory 

density of the fiber treated soil. Moisture contents of the fiber base 

were reduced about 2.0% from time of construction to the spring 1981 tests, 
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Table 29. Mean of in situ moisture density tests, Story County, Mortenson 
Road 

Section 

Control: 

Base equivalent 

Sub grade 

Treated: 

Fiber base 

Subgrade 

Control: 

Base 

Sub grade 

Treated: 

Fiber base 

Subgrade 

Control: 

Base 

Subgrade 

Treated: 

Fiber base 

Sub grade 

Date 

May, 1981 

May, 1981 

May, 1981 

May, 1981 

July, 1981 

July, 1981 

July, 1981 

July, 1981 

Dry Density, yd' 
pcf 

116.7 + 6.7 

119.3 + 3.2 

116.2 + 2.5 

115.6 + 4.5 

114.5 + 4.9 

119.5 + 1. 9 

119.5 + 9.4 

123.7 + 7.3 

October, 1981 117.7 + 5.8 

October, 1981 118.3 + 7.5 

October, 1981 117.8 + 6.3 

October, 1981 118.1 + 6.8 

Moisture Content 
w, % 

12.5 + 2.0 

12.1 + 1.5 

10.3 + 2.0 

10.4 + 2.2 

9.4 + 1.6 

8.6 + 1.5 

9.6 + 2.4 

9.3 + 2.0 

9.8 + 1.3 

9.8 + 1.3 

8.8 + 2.6 

8.7 + 2.4 

~alues of y and w represent the mean and one standard deviation. 
Number of data po~nts for each value range from 7 to 27. 
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with less than two percent further reduction to late fall. Normally it 

would be anticipated that spring moisture contents would increase from the 

preceeding late fall conditions, followed by reductions of moisture during 

the late spring and early summer. Such conditions are not apparent in 

the data, and may be attributable to the below normal moisture conditions 

which prevailed in this region during 1980-81. 

Table 30 presents the mean and one standard deviation of in-situ 

moisture-density tests of the Linn County Prairieburg sections from time of 

construction through late fall 1981. Tests were conducted in such a 

manner as to provide data within the granular surfacing, each fiber treated 

base, and the top of the subgrade. Part of the reasoning for such a format 

of M-D testing was due to (1) the fact that the test sections were in­

corporated as a portion of a new grade, the latter having been completed 

only a few weeks prior to construction of the fiber treated sections, and 

(2) most new construction will tend to consolidate and densify over a period 

of time. The data of Table 30 indicates the occurrence of such physical 

actions. Subgrade densities at time of construction averaged about 126 pcf, 

increasing to about 134 during the late spring and summer but decreasing 

slightly to about 133, Fall 1981. Average fiber treated base densities 

were about 123 pcf immediately following construction, increasing to about 

134 pcf in early June, then decreasing about 2 pcf to 132 pcf in July 

through October. Granular surface densities averaged about 122 pcf at time 

of construction, then jumped to about 136 pcf in early June, decreasing to 

about 129 pcf in July and increasing to about 131 pcf in October. Average 

moisture contents of the subgrades, fiber incorporated bases, and 



* Table 30. In-situ moisture-density tests, Linn County, Prairieburg. 

October 1980 June 1981 Jul;y 1981 October 1981 
Dry Moisture Dry Moisture Dry Moisture Dry Moisture 

Density Content,w Density, Content,w Density, Content,w Density, Content ,w 
Section yd' pcf % yd' pcf % yd' pcf % yd' pcf % 

Control: Granular 
surface 123.8+4.8 6.8+1.0 136.0+3.8 7 .l+l. 9 130.2+2.4 5.4+0.6 135.4+5.6 4.7+0.8 

Base equivalent 128.3+5.0 6.5+0.8 133.9+4.5 7 .4+1.8 136 .3+1. 3 5.0+0.5 136 .3+5. 0 4.4+0.6 

Sub grade 131.3+4 .4 6.3+0.6 133.0+4.3 7 .4+1. 9 137.1+2.3 4.9+0.7 135.9+3.6 4.5+0.7 

Section 1: Granular 
surface 122.4+2.8 6.9+1.0 136.2+0.2 8.9+0.7 131. 8+2.0 6.o+0.9 131. 0+6.1 4.4+0.4 

Base, 0.06% 15 dpf 
x 1.0 in. Poly. 123.9+2.7 6. 6+0.8 135.8+1. 7 8.8+0.8 135.3+2.3 5.7+0.7 134. 5+2. 0 4.1+0.2 N 

\,;.) 

Subgrade 125.5+4.l 6.5+0.8 135.2+2.6 9.0+0.7 136.4+0.8 5.4+0.7 136.4+0.7 4.1+0.3 0 

Section 2: Granular 
surf ace 118.0+l.6 6.5+0.5 133.1+5.2 6.0+0.5 127.0+4.5 6.1+0.6 124. 6+1.1 5.8+0.4 

Base, 0.13% 15 dpf 
x 1.0 in. Poly. 120.4+2.8 6.4+0.5 128.o+2.7 6.3+0.2 127.8+4.7 5.8+0.7 125. 9+1. 7 5.3+0.2 

Subgrade 125.6+2.9 6.0+0.4 129.6+4.9 6.2+0.2 127. 7+1.4 5.8+0.4 127 .8+1.8 5.4+0.2 

Section 3: Granular 
surface 122.3+2.2 5.8+1.2 140.4+1.3 5.4+0.8 128.1+1. 7 5.4+0.6 130.2+2.3 5. 2+1.1 

Base, 0.10% 1.25 in 
Type E Fiberglass 124. o+2. 5 5.7+0.9 136 .8+1.1 5.8+0.4 133.1+2.9 4.9+0.7 132.9+2.l 5.0+1.0 

Subgrade 124.8+4.7 5.9+0.7 136 .3+1. 3 5.6+0.2 137. o+3 .1 4.8+0.7 131. 2+0. 6 5.o+l.l 

Section 4: Granular 
surface 125.9+0.6 6.3+2.8 138.0+0.7 6.2+0.2 125.3+0.7 6.2+1.0 131. 2+0. 6 4.6+0.4 

Base, 0.29% 1.25 in 
Type E Fiberglass 125.3+2.6 6.1+2.2 137. 6+1. 0 5.8+0.2 130. 7+1. 6 5.8+0.8 133.3+3.4 4.6+0.5 



Subgrade 126.0+3.0 6.2+2.5 139.2+1.8 5. 6+0. 6 131. 9+1. 6 5.4+0.6 133. 2+3. 5 4.7+0.5 

Section 5: Granular 
surface 117. 3+4. 7 7.4+2.3 133.3+6.5 6.8+0.l 128.2+0.6 6.2+0.8 131.4+3.l 4.8+0.8 

Base, 0.29% 360 dpf 
x 1. 5 in Fib. Poly. 121. 3+1. 9 6. 9+1. 9 133.3+2.5 6.8+0.2 130.9+0.8 6.2+0.4 132.l+0.4 4.6+0.6 

Subgrade 124.4+3.7 6. 6+1. 7 132.4+0.8 6.8+0.3 132. 0+1. 6 5.9+0.3 131.4+1. 7 4. 6+0.8 

Section 6: Granular 
surface 124.2+3.6 6. 6+1. 0 135.1+2.8 6.8+0.2 130.5+0.l 6. 4+0 .1 132.0+5.4 4. 9+0.1 

Base, 0.10% 360 
dpf x 1.5 in Fib. 
Poly. 123.7+3.2 6.7+0.8 135. 7+1.5 6.5+0.6 134. o+o. 9 5.9+0.l 136 .2+0. 7 4. 6+0. 2 

Subgrade 127. 9+1.4 6.2+0.9 135.8+1.l 6.7+0.4 133.9+0.7 5.9+0.7 136. 5+0 .4 4. 6+0. 2 
N 

* 
(,,..) 

Values of y and w represent the mean and standard deviation. Number of data points for each I-' 

value range from ~ to 12. 
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granular surface remained relatively constant over the measurement 

periods though slight reductions are apparent for the October tests. 

The slight decline of average density of the fiber bases, coupled with a 

rather significant decrease in average granular surfacing density may be 

indicative of (1) granular surface degradation, (2) intrusion and/or 

intermixing of surfacing and base materials, or (3) a combination thereof. 

Table 30 also illustrates the variability of densities between fibers, 

fiber contents, and the untreated control. Average density of the un­

treated base equivalent for the three series of tests is about 134 pcf. 

Similar averaging for the 15 dpf x 1.0 inch polypropylene (sections 1 and 2) 

illustrate about 132 pcf at 0.06% fiber, and 128 pcf at 0.13% fiber content. 

The 1.25 inch length Type E fiberglass produced average densities of about 

131 pcf regardless of the fiber weight fractions of 0.10 and 0.29%, 

respectively sections 3 and 4. The 360 dpf x 1.5 inch length fibrillated 

polypropylene (sections 5 and 6) produced average densities of about 128 

(0.29%) and 131 pcf (0.10%) respectively, i.e., very similar to those 

averages obtained with the 15 dpf x 1.0 inch polypropylene. 

At least a portion of the above variability of densities appears 

associated with fiber diameter and weight. Diameter of the 15 dpf and 360 

dpf polypropylene fibers are respectively about 0.002 and 0.009 inch, while 

the Type E fiberglass is about 0.008 inch diameter. As illustrated 

previously, the weight of each fiber type varies considerably. Thus the 

size and weight of each fiber produces a significant variation in numbers 

of fibers associated with each fiber weight fraction, or content, within 

the soil. As based on numbers of fibers, per gram weight of fiber type, 

the 360 dpf fibrillated polypropylene contains about twice as many fibers 
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per gram of fiber weight as does the fiberglass. The 15 dpf polypropylene 

produces about fifteen times the number of fibers per gram of fiber 

weight when compared to the fiberglass. Thus, as the number of individual 

fibers are increased within the soil-fiber matrix, the greater is the 

potential for reduced densities of the mixture with increasing fiber 

contents. 

In-Situ Samples 

During construction, samples of all field mixed materials were randomly 

obtained over the full depth of each fiber section following in-place mixing 

and immediately prior to compaction. These samples were returned to the 

laboratory where specimens were molded under AASHTO T-99 compaction at 

field moisture content,wrapped, sealed, and stored in the controlled 

temperature humid room. These specimens were utilized for unconfined 

compression testing and for cyclic load K-Test; the latter at 75 psi vertical 

pressure and 0.3 sec. dwell time as noted in the cyclic load test section 

of this report. 

Table 31 presents the average unconfined compressive strength data from 

the field mixed Mortenson Road specimens, while Table 32 presents the 

mean and standard deviation of all unconfined compressive strength tests 

performed on the field mixed Prairieburg specimens. The maximum initial 

Young's modulus of Tables 31 and 32 represent E as observed within the 

initial straight line portion of the unconfined stress-strain curve. Unit 

strain at maximum unit stress represents the unit strain occurring at 

maximum q , and is indicative of the toughness of each mix as described 
u 

in the laboratory section of this report. Since toughness is expressed 



Table 31. Average unconfined compressive strength data of field mixed specimens, Story County 
Mortenson Road 

Unconfined Maximum Unit Strain 

Moisture Compressive Initial at Max. 

Dry Density Content, w, Strength, qu, Young's Unit Stress, 

Section Ya' pcf % psi Modulus, in/in 
E si 

Untreated-
Control 117 .5 10.7 32.0 1260 0.028 

0.05% Fib. 
Poly. Fiber 108.7 10.2 37.4 1428 0.046 



Table 32. Median unconfined compressive strength data of field mixed specimens, Linn County, 
Prairieburg. 

Section 

Untreated-near laboratory 
optimum moisture content 

Untreated - at field 
moisture content 

Section 1, 0.06% 15 dpf 
x 1.0 in. polypropylene 

Section 2, 0.13% 15 dpf 
x 1.0 in. polypropylene 

Section 3, 0.10%, 1.25 in. 

Dry Density 
Ya, pcf 

118.6 + 0.6 

117.4 + 0.9 

114.4 + 0.8 

113.2 + 1.1 

Type E Fiberglass 113.3 + 0.4 

Section 4, 0.29%, 1.25 in. 
Type E Fiberglass 113.3 + 1.7 

Section 5, 0.29%, 360 dpf 
x 1.5 in. Fib. Poly. 

Section 6, 0.10%, 360 dpf 
x 1.5 in. Fib. Poly. 

117 .2 + 3.1 

117.1 + 0.1 

Moisture 
Content, w, 

% 

11.8 + 0.3 

7.4 + 0.4 

6.3 + 0.2 

7 .2 + 1.3 

5.6 + 0.3 

7.1 + 0.9 

6.3 + 2.0 

7.3+1.0 

Unconfined 
Compressive 

Strength, qu, 
psi 

24.7 + 2.1 

49.6 + 1.2 

47.7 + 8.2 

48.0 + 7.8 

43.2 + 3.5 

42.8 + 8.4 

56.9 + 13.0 

49.9 + 21.4 

Maximum 
Initial 
Young's 

Modulus, 
E, psi 

532 + 87 

594 9 + 2936 

1658 + 104 

1571 + '287 

3083 + 1579 

1927 + 651 

1050 + 386 

1150 + 292 

Unit Strain 
at max. 

Unit Stress, 
in/in 

0.071 + 0.008 

0.014 + 0.004 

0. 034 + 0. 004 

0.037 + 0.009 

0.022 + 0.009 

0. 031 + 0. 008 

0.080 + 0.025 

0.058 + 0.011 

N 
w 
U1 
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the modulus may crudely represent a capacity for 

resisting impact loading when determined from a gradually applied static 

loading, as in an unconfined compression test. Thus a fiber-soil mixture 

producing both higher ~ and unit strain at qu than its untreated soil 

counterpart, would indicate a definite degree of improved toughness 

coupled with reduced brittleness. 

Though field-mixed Mortenson Road fiber specimens were less dense than 

the untreated control, average ~' unit strain at maximum unit stress, and 

E values were higher. Each would be indicative of somewhat improved 

stability through increased stress and elasto-plastic characteristics. 

From Table 32 it may be seen that each of the Prairieburg fiber field 

mixes showed significantly improved q and E characteristics as compared to 
u 

their laboratory untreated counterpart at optimum moisture content. How-

ever, it may also be ascertained from Table 32 that each of the fiber field 

mixes were several percentage points of moisture less than the lab untreated 

specimens. Comparison of the fiber field mixes with the untreated field 

mixed control, each at similar moisture contents, shows that the untreated 

produced a significantly higher initial E and lower unit strain at q than 
u 

any of the fiber mixes; i.e., indicative of somewhat greater brittleness 

and rigidity. However, at field moisture content, the untreated showed 

little or no improvement of ~ from that of five of the six fiber sections, 

and was considerably less than the ~ obtained with 0.29% fiber weight 

fraction of 360 dpf fibrillated polypropylene. Unit strain at maximum unit 

stress of each fiber field mix was greater than the untreated. Thus each 

field mix appeared to show a greater degree of plastic toughness coupled 

with reduced brittleness than the untreated control. 
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Based on the properties noted in Table 32, it appeared that the fiber­

glass and 360 dpf fibrillated polypropylene may have produced the better 

stress-strain characteristics of the three fiber types used in the 

Prairieburg site; a condition not unlike that which will be noted within 

the in-situ tests reported in succeeding sections of this report. 

Figure 100 illustrates actual average vertical unit strains for each 

fiber weight fraction and fiber type of the Prairieburg sections containing 

15 dpf polypropylene fibers as obtained from cyclic load tests. Vertical 

unit strains were improved from those of the untreated at the higher 

content of 15 dpf fiber. A slight improvement was obtained with the lower 

content Type E fiberglass. 

Incorporation of the 360 dpf fibrillated polypropylene fibers in­

creased vertical strains regardless of fiber content. Average deformations 

at 75 psi under in-situ plate bearing test data, indicated a few similarities 

to the reduction of vertical unit strain in the cyclic load tests. 

As anticipated, permanent set of the Prairieburg composites followed 

the same trends as illustrated with vertical unit strain, Figure 101. 

Fiber types and optimum fiber weight fractions showing maximum reduction 

of permanent set were identical to those noted under vertical strain. Com­

parison of average permanent deformations during in-situ plate tests 

showed some similarities to the reduction of permanent set from the cyclic 

load tests. 

Figure 102, illustrates the calculated values of strain modulus for 

the field mixed, laboratory molded, fiberglass specimens. Though strain 

modulus data appeared rather erratic, in broad generalities, a slight 
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improvement in strain moduli occurred through incorporation of the 0.06% 

15 dpf straight and 0.1% 360 dpf fibrillated polypropylene fibers. All 

other fiber contents showed either no improvement or a possible reduction 

of strain modulus. After about 250 cycles of loading, the 0.1% Type E 

fiberglass exhibited some characteristics of strain softening. 

Horizontal strains and stresses, as well as stress ratios of the field 

mixed Prairieburg soil-fiber composites, were significantly improved from 

those measurements obtained in the untreated soil due to incorporation of 

the 15 dpf straight and 360 dpf fibrillated polypropylene fibers, as 

illustrated in Figure 103. Horizontal stress-strain and stress ratio of 

the soil-Type E fiberglass composites were neither basically increased or 

reduced from those values obtained with the untreated soil. Optimum benefit 

of the 15 dpf straight and 360 dpf fibrillated fibers was respectively 

achieved at 0.06 and 0.29% fiber contents for each of these lateral 

stability measurements. As previously noted, the fiberglass did not 

particularly enhance any lateral stability of the cement modified loess, 

thus raising some question as to its suitability for use as a randomly 

oriented reinforcement material. 

Figure 104 illustrates actual average values of volumetric strain 

versus number of cycles for the 360 dpf fibrillated polypropylene field 

mixed fibers. In general, none of the fibers provided substantially im­

proved volumetric strain characteristics from that of the untreated soil. 

The 0.06% 15 dpf straight polypropylene and 0.1% Type E fiberglass produced 

some slight reductions in volumetric strain which may be associated with 

their respective reductions of vertical strain. 
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Figure 103. Horizontal strain versus number of cycles for varying field 
mixed fiber contents, Linn County Prairieburg. 
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In summary, cyclic load testing of the field mixed Linn County 

Prairieburg soil provided substantially the same conclusion as that pre-

viously observed with the Mortenson Road and Sioux City soils; i.e., 

random fiber reinforcement is predominantly oriented to improvement in 

lateral stability characteristics of a soil. In general, the finer of 

the three fibers, i.e., the 15 dpf polypropylene straight, appeared to 

provide maximum lateral reinforcement benefits coupled with some improve-

ments in vertical stability. 

Benkelman Beam Deflection Test 

Table 33 presents average in situ Benkelman beam data of both the 

Story and Linn County sections. The data for each section includes 

average maximum deformation under a tire contact pressure of 75 psi, 

average residual deformation remaining in the section after passage of 

the 75 psi pressure, and a computed deformation modulus, E. The deform-

ation modulus was calculated from 

lation for E from a plate bearing 

a modification of the Burmister 

. _ TipD (1 - v2) 
test, E - 4W , where E 

re-

deformation modulus, p = plate stress, D =plate diameter, v =Poisson's 

ratio, and W = plate settlement. Poisson's ratio was assumed as 0.33, a 

value commonly used for unsaturated soils. The tire contact pressure of 

75 psi was assumed as the plate stress, an equivalent tire diameter of 12 

inches was assumed for D, and W was taken as the maximum deformation. 

Variability of each of the values obtained from the Benkelman beam 

test versus time, test section location, and fiber type are noted in 

Table 33, the magnitudes of variation ranging from slight to significant. 

Immediately following construction, the 0.05% fibrillated polypropylene 

incorporated in the Mortenson Road section, showed an average decrease 
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Table 33. * Average Benkelman Beam test results. 

Section 

Story County, Mortenson Road 

Control 
0.05% Fib. Poly. Fiber 
Control 
0.05% Fib. Poly. Fiber 
Control 
0.05% Fib. Poly. Fiber 
Control 
0.05% Fib. Poly. Fiber 

Linn County, Prairieburg 

Control 
Sect. 1, 0.06% 15 dpf 
x 1. 0 in. Poly. 

Sect. 2, 0.13% 15 dpf 
x 1.0 in. Poly. 

Sect. 3, 0.10% 1.25 in. 
Type E Fiberglass 

Sect. 4, 0.29% 1.25 in. 
Type E Fiberglass 

Sect. 5, 0.29% 360 dpf 
x 1.5 in. Fib. Poly. 

Sect. 6, 0.10% 360 dpf 
x 1.5 in. Fib. Poly. 

Control 
Sect. 1, 0.06% 15 dpf 
x 1.0 in. Poly. 

Sect. 2, 0.13% 15 dpf 
x 1. 0 in. Poly. 

Sect. 3, 0.10% 1.25 in. 
Type E Fiberglass 

Sect. 4, 0.29% 1.25 in. 
Type E Fiberglass 

Sect. 5, 0.29% 360 dpf 
x 1.5 in. Fib. Poly. 

Sect. 6, 0.10% 360 dpf 
x 1.5 in. Fib. Poly 

Control 
Sect. 1, 0.06% 15 dpf 
x 1.0 in. Poly. 

Sect. 2, 0.13% 15 dpf 
x 1.0 in. Poly. 

Date 

Oct. 1980 
Oct. 1980 
May, 1981 
May, 1981 
July 1981 
July 1981 
Oct. 1981 
Oct. 1981 

Oct. 1980 

Oct. 1980 

Oct. 1980 

Oct. 1980 

Oct. 1980 

Oct. 1980 

Oct. 1980 
June 1981 

June 1981 

June 1981 

June 1981 

June 1981 

June 1981 

June 1981 
July 1981 

July 1981 

July 1981 

Maximum 
Deformation 
at 75 psi, 

in. 

0.125 
0.099 
0.082 
0.106 
0.113 
0.142 
0.102 
0.094 

0.038 

0.083 

0.053 

0.077 

0.077 

0.04 7 

0.063 
0.074 

0.050 

0.036 

0.078 

0.089 

0.080 

0.040 
0.072 

0.051 

0.074 

Deformation 
Modulus, 

E, psi 

5048 
7423 
7682 
6206 
5645 
4652 
6234 
7202 

21,360 

7585 

11, 879 

8176 

8176 

13,395 

9993 
8598 

12,591 

17,488 

8071 

7074 

7870 

15,739 
8717 

12,344 

8508 

Residual 
Deformation 

in. 

0.024 
0.015 
0.009 
0.007 
0.008 
o. 016 

0.012 

0.013 

0.018 

0.015 

0.021 

0. 013 

0.010 
0.033 

0.017 

0.023 

0.040 

0.052 

0.042 

0.016 
0.041 

0. 017 

0.021 



Table 33. aontinued 

Section 

Sect. 3, 0.10% 1.25 in. 
Type E Fiberglass 

Sect. 4, 0.29% 1.25 in. 
Type E Fiberglass 

Sect. 5, 0.29% 360 dpf 
x 1.5 in. Fib. Poly. 

Sect. 6, 0.10% 360 dpf 
x 1.5 in. Fib. Poly. 

Control 
Sect. 1, 0.06% 15 dpf 

x 1.0 in. Poly. 
Sect. 2, 0.13% 15 dpf 
x 1.0 in. Poly. 

Sect. 3, 0.10% 1.25 in. 
Type E Fiberglass 

Sect. 4, 0.29% 1.25 in. 
Type E Fiberglass 

Sect. 5, 0.29% 360 dpf 
x 1.5 in. Fib. Poly. 

Sect. 6, 0.10% 360 dpf 
x 1.5 in. Fib. Poly. 

* 
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Date 

July 1981 

July 1981 

July 1981 

July 1981 
Oct. 1981 

Oct. 1981 

Oct. 1981 

Oct. 1981 

Oct. 1981 

Oct. 1981 

Oct. 1981 

Maximum 
Deformation 
at 75 psi, 

in. 

0.062 

0.051 

0.087 

0.079 
0.033 

0.029 

0.044 

0.028 

0.027 

0.022 

0.027 

Deformation 
Modulus, 

E, psi 

10,154 

12,344 

7236 

7969 
19,090 

21, 720 

14,316 

22,496 

23,330 

28,632 

23,330 

Mortenson Road data is average of 7 to 10 tests per section. 
Prairieburg data is average of 3 to 8 tests per section. 

Residual 
Deformation 

in. 

0.022 

0.023 

0.066 

0.042 



248 

in maximum and residual deformations, coupled with a near 50% increase 

in deformation modulus as compared to the untreated control. Succeeding 

tests through July showed a slight reversing of the data, though visual 

inspection of the fiber section indicated superior performance as compared 

with the control. A further reversal appeared in the October 1981 data 

indicating that treated average deformations were slightly reduced from 

those of the control, thus creating a slight increase in deformation 

Modulus E. As noted previously, the 360 dpf fibrillated polypropylene fiber 

treatment of the Mortenson Road soil produced a slight improvement in 

vertical unit strain, horizontal stress and strain, and stress ratio, from 

that of the untreated during cyclic load testing. 

Immediately following construction, average Benkelman beam data from 

the Linn County fiber sections indicated lower support capacities than the 

untreated control, Table 33. However, maximum deformation, deformation 

modulus, and residual deformation indicated distinct differences between 

type of fiber and fiber content. The 0.13% 15 dpf and 0.29% 360 dpf poly­

propylene sections indicated considerably greater stability than any of 

the other fiber sections. Regardless of fiber content the two fiberglass 

sections produced nearly equal results. 

Successive Prairieburg Benkelman beam tests produced variations from 

that noted following construction, particularly in that several of the 

sections indicated rather significant performance improvement as compared 

with the untreated control. The 0.06% 15 dpf polypropylene provided im­

proved parameters during succeeding series of tests. Definite improve­

ment was observed in the early summer tests with 0.29% Type E fiberglass. 
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While the 360 dpf fibrillated polypropylene exhibited improved performance 

immediately following construction, beam data on these two sections 

suggested a lessening of performance during the summer. Such increases or 

decreases in performance data versus time may often be attributed to variations 

in moisture content with other types of incorporated materials or products. 

However, examination of the moisture data of Table 30 does not provide 

such a correlation since moisture contents between sections were relatively 

similar. 

From time of construction through the July 1981 Benkelman beam tests, 

deformations were obtained through a so called maximum deflection technique 

in which the beam was inserted between the dual tires, the probe being 

5 ft. ahead of the centerline of axle, and deflection calculated as the 

difference between an initial reading and the maximum dial reading taken 

as the tires moved adjacent to the probe. The October 1981 data, Table 33, 

was obtained through a so called rebound technique, in which the probe 

is placed immediately between the tires at axle centerline, an initial 

dial reading obtained, the truck moved forward, and a maximum rebound 

dial reading recorded. Deflection was obtained as the difference in dial 

readings, and is often assumed as being more indicative of the elastic 

properties of the roadway material. Use of the rebound technique indicated 

the greatest decrease in deformation and accompanying increase in modulus 

occurred with the 0.29% 360 dpf fibrillated polypropylene. This decrease 

in maximum deformation was in conflict with each of the vertically 

oriented measurements of the 360 dpf fiber observed from cyclic load tests. 

Vertically oriented measurements within the Prairieburg cyclic load tests 
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indicated that correlations might occur with the 0.13% 15 dpf straight 

polypropylene (Section 2) and the 0.10% Type E fiberglass (Section 3). 

Of these two sections a vertically oriented correlation occurred only 

with Section 3, the fiberglass treatment. However, horizontally oriented 

correlations were apparent from cyclic load test measurements of 

horizontal strain for each of the three fiber types in that the 0.06% 

15 dpf polypropylene, 0.1% Type E fiberglass, and both percentages of 

the 360 dpf fibrillated polypropylene produced both decreased rebound 

deformation and reduced horizontal strain when compared to the untreated. 

This correlation suggests the benefication mechanism of fiber rein-

forced soil, in that lowering of in situ rebound deformation and horizontal 

strain relates to the tensile properties of the soil-fiber composite. 

Thus the prime measurement systems for evaluation and performance of a 

soil-fiber composite roadway material should be associated with a tensile 

rather than a compression mode. 

Plate Bearing Test 

Table 34 illustrates the average results of in-situ plate-bearing tests 

performed on both the Story and Linn County sections. Modulus of Subgrade 

p 
Reaction is defined as K = ~· where P = plate stress and ~ = the corres-

ponding stable deformation value. K is normally obtained at a plate 

stress of 10 psi. Table 34 however, presents K as calculated at plate 

pressures of both 10 and 75 psi, the latter as a means of correlation with 

Benkelman beam deflections and moduli obtained at 75 psi tire contact 

pressure. The plate-bearing deformation modulus E was calculated in 



* Table 34. Average plate-bearing test results. 

Modulus of Subgrade Deformation Deformation Permanent 
Reaction at 75 psi, Modulus, Deformation 

Date K10 , pci K75 , pci in. E, psi. in. 

Story County, Mortenson Road 
Control Oct. 1980 592 444 0.178 3824 0.054 
0.05% Fib. Poly. Fiber Oct. 1980 534 415 0.192 3481 0.092 
Control May, 1981 759 585 0.122 4677 0.037 
0.05% Fib. Poly. Fiber May, 1981 725 524 0.144 4402 0.053 
Control July 1981 859 609 0.126 5112 o. 043 
0.05% Fib. Poly. Fiber July 1981 677 537 0.157 4509 0.059 

Linn County, Prairieburg 
Control June 1981 1430 1361 0.056 11,422 0.027 
Sect. 1, 0.06% 15 dpf N 

\J1 
x 1.0 in. Poly. June 1981 14 76 1420 0.049 11, 917 0.021 f-" 

Sect. 2, 0.13% 15 dpf 
x 1.0 in. Poly. June 1981 1381 1163 0.060 9766 o. 018 

Sect. 3, 0 .10% 1.25 in. 
Type E Fiberglass June 1981 1181 1203 0.058 10,095 0.025 

Sect. 4, 0.29% 1.25 in. 
Type E Fiberglass June 1981 1476 1583 0.047 13,286 0.022 

Sect. 5, 0.29% 360 dpf 
x 1.5 in. Fib. Poly. June 1981 2250 1628 0.043 13' 665 0. 017 

Sect. 6, 0.10% 360 dpf 
x 1.5 in. Fib. Poly. June 1981 2143 1443 0.049 12'115 0. 016 

Linn County, Prairieburg 
Control July 1981 1586 1408 0.059 11, 820 0.032 
Sect. 1, 0.06% 15 dpf 

x 1.0 in. Poly. July 1981 1027 887 0.098 7444 0.060 
Sect. 2, 0.13% 15 dpf 
x 1.0 in. Poly. July 1981 1875 1457 0.053 12,231 0.022 

Sect. 3, 0 .10% 1.25 in. 
Type E Fiberglass July 1981 2083 1565 0.048 13,138 0. 023 



Sect. 4, 0.29% 1.25 in. 
Type E Fiberglass July 1981 1500 1358 0.057 11,396 

Sect. 5, 0.29% 360 dpf 
x 1.5 in. Fib. Poly. July 1981 1288 1365 0.055 11,462 

Sect. 6, 0.10% 360 dpf 
x 1.5 in. Fib. Poly. July 1981 1833 1602 0.047 13,450 

* Mortenson Road data is the average of 4 to 6 tests per section. Prairieburg data is the 
average of 2 to 4 tests per section. 

0.028 

0.023 

0.021 

N 
Vl 
N 
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accordance with the previously noted Burmister relation at a plate stress 

of p = 75 psi. The permanent deformation value represents the intersection 

of the unloading curve with the abscissa of the plate stress versus 

deformation plot and suggests the permanent or plastic deformation that 

the materials experienced versus time. 

As noted in Table 34, the parameters obtained from plate bearing tests 

on Mortenson Road indicate little variation between comparable control and 

0.05% 360 dpf fibrillated polypropylene sections. The various parameters 

however, tend to reflect the previously noted reduction in moisture content 

from time of construction to spring/sununer tests, in that each parameter 

produced similar gains in performance with the reduction in moisture. 

When compared with the untreated control, the Prairieburg fiberglass 

and 360 dpf fibrillated polypropylene sections show some improvement of 

plate bearing test parameters, Table 34. As with the Benkelman beam data, 

plate bearing parameters reflect variations between succeeding test times. 

The early June tests showed improved performance of the 0.29% fiberglass 

and both percentages of 360 dpf fibrillated polypropylene. A month later 

only the 0.10% fiberglass and 360 dpf polypropylene showed improved perform­

ance. In addition, slight improvements were observed in parameters 

associated with the 0.13% 15 dpf polypropylene section. 

No correlative relationships were noted between deformation moduli 

obtained from the plate bearing and Benkelman beam tests. However, some 

anomalies within the plate bearing data suggest characteristics concerning 

the tensile mechanism of soil-fiber reinforcement. The moduli of subgrade 
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reactions at 75 psi (K75) were often less than that obtained at 10 psi 

(K10). Where such lessening of K values occurred, the fiber sections 

often produced a lowering of deformation at 75 psi, coupled with improved 

deformation modulus E and lowering of permanent deformation, as compared 

to the untreated control. This action was particularly evident with the 

noted improvements within the Prairieburg fiberglass and 360 dpf fibrillated 

polypropylene sections. Such variations of data between the control and 

fiber sections suggest that larger applied stresses must be associated with 

the in situ soil-fiber composite before the fiber will begin to activate 

any tensile forces; the latter thus increasing E and reducing deformation 

at the larger vertical stress, coupled with a greater proportion of re­

bound as evidenced in reduced permanent deformation. 

California Bearing Ratio Test 

From time of construction through Fall 1981, visual inspections of all 

fiber test sections indicated improved performance as compared with their 

untreated controls. However, in-situ Benkelman beam and plate bearing 

tests appeared to only partially correlate with visual performance, in 

that data generally provided signs of variable performance. As an example 

of this lack of visual versus quantitative correlation, an examination was 

made of the Story County Mortenson Road section the morning following a two 

inch rain. Control sections adjacent to both the east and west ends of the 

fiber treated section were deeply rutted, the ruts ponded with water, severe 

shoving had occurred, little or no surface aggregate was visible, and in 

general each control area was difficult to drive a vehicle through. No 

similar characteristics were observed in the fiber section; in fact, a very 

distinct transition was noted from the control to the stable fiber 
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section. Since it was impossible to get load test equipment into the 

control sections at that point of time, in situ testing was postponed 

for a period of 24 hours in order to allow at least some surf ace drying 

of the untreated materials. The following morning a replication of six 

in-place California Bearing Ratio and moisture-density tests were con­

ducted in each of the east control and fiber treated sections, all tests 

being performed within a length of fifty feet either side of the previously 

noted fiber/control demarcation. The CBR test was used as a means of 

providing a punching shear action, rather than a deformed bowl as normally 

associated with either Benkelman beam or plate bearing tests. 

Table 35 presents the CBR test results as obtained about 36 hours 

following the two inch rain. Density of the untreated control was con­

siderably less than that of the fiber section. Moisture content of the 

control was about one percent greater than the fiber section. However, 

CBR values of the fiber section were less than one percentage greater than 

the control, regardless of penetration, but showed considerably less 

scatter as indicated by the standard deviation. 

The lack of considerably improved CBR values for the soil-fiber base 

may be associated with the CBR test as well as the mechanism of activation 

of the tensile component of the fiber within the composite. The CBR 

test produces a cone shaped punching shear, dependent on the compression 

developed immediately beneath the penetrometer, as well as shearing 

action immediately adjacent to the penetrometer and developing cone. Con­

finement of fibers within the upper 0.5 inch of the base matrix coupled 

with potential shear and/or pull out of individual fibers did not appear 



Table 35. In situ California Bearing Ratio tests, Story County, Mortenson Road, approximately 36 
hours following a two inch rain 

Dry Moisture 
Density Content, CBR @ 

Section yd' pcf w, % 0.1" pen. 0.2" pen. 0.3" pen. 0.5" pen. 

Control 

Base equivalent 120.2 + 4.6 9.7 + 0.5 28.2 + 4.2 27.8 + 4.8 24.8 + 5.1 20.6 + 4.7 

Subgrade 120.3 + 0.8 9.3 + 0.5 

Fiber Base 

0.05% Fib. Poly. 127.7+4.5 8.2 + 1.0 29.4 + 4.4 28.4 + 2.6 25.5 + 2.0 21.1 + 2.7 

Subgrade 124.2 + 6.3 8.5 + 1.5 N 
V1 

"' 
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to produce data which would be indicative of actual performance as 

related to CBR values. 

Spherical Bearing Value Tests 

Due to lack of significant correlation between laboratory and field 

test data, it was decided to try a testing procedure which might mobilize 

stresses in a lateral direction. The Spherical Bearing Value Test (SBV) 

appeared appropriate since stresses have been shown to mobilize in a 

radial direction from point of vertical compressive loading. This test 

procedure was developed under Iowa Highway Research Board project HR-117 

(6). During penetration of a sphere into the roadway surface, contact 

area of the sphere is determined as TIDh, where D = diameter of the sphere, 

and h depth of penetration. A plot of load versus contact area is made, 

and a linear regression analysis is performed on the data points; SBV being 

defined as the slope of the regression line. In a number of the initial 

plots of load versus contact area however, two regression lines were ob­

served, particularly with the fiber treated materials. At low values of load­

contact area the regression line was steep, providing a high SBV value. 

At higher load-contact area a reversal was noted. Since the point at which 

the curves fell into two regression lines could denote a potential failure 

stress, SBV data was thus analyzed for the three conditions of (1) SBV 

before failure, (2) SBV after failure, and (3) breakpoint stress. Results 

are presented in Table 36. 

Average conventional SBV results for the steeper portion of the re­

gression of the Mortenson Road sections were 342 and 341 psi respectively, 

for the fiber treated and control. No basic difference was thus noted 
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Table 36. Average Spherical Bearing Value (SBV) test results 

SBV Before SBV After Breakpoint 
Failure, Failure, Stress, 

Section psi psi psi 

Story County, Mortenson Road 

Control 341 340 377 
0.05% Fib. Poly. Fiber 342 234 417 

Linn County, Prairieburg 

Control 1100 712 1178 
Sect. 1, 0.06% 15 dpf 

x 1.0 in. Poly. 1252 653 1249 
Sect. 2, 0.13% 15 dpf 
x 1.0 in. Poly. 597 443 662 

Sect. 3, 0.10% 1.25 in. 
Type E Fiberglass 740 529 803 

Sect. 4, 0.29% 1.25 in. 
Type E Fiberglass 810 501 836 

Sect. 5, 0.29% 360 dpf 
x 1. 5 in . Fib. Poly. 960 578 1012 

Sect. 6, 0.10% 360 dpf 
x 1.5 in. Fib. Poly. 1312 718 1417 

between the control and fiber sections, implying that inclusion of randomly 

oriented fibers in the soil did not affect the strength of the roadway 

soils either adversely or beneficially. For the section of the curve 

where incipient failure was occuring, average SBV values were 340 and 234 

psi for the control and fiber sections respectively. This difference was 

caused by an extreme variation between the west and east control sections, 

a variation that was not seen in any of the other in-situ testing. In this 

case, west control SBV plots were significantly steeper than those of the 

east control section. Therefore, the SBV values obtained were very high, 

thus producing very high average control values. If SBV values for the 

west control were omitted, average SBV's were then 239 and 234 for the 
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control and fiber sections respectively, again indicating no basic dif­

ference between control and fiber sections. 

Average breakpoint stresses of the Mortenson Road fiber section were 

greater than that of the untreated control by about 10%, Table 36, indi­

cating that higher stresses were required to initiate failure in the fiber 

section than in the untreated roadway soil. Beyond the breakpoint stress, 

however, the fiber treated soil appeared incapable of sustaining higher 

stresses, a situation potentially indicating occurrence of fiber pullout 

and/or debonding. 

Similar analyses may be observed from the average SBV data obtained 

within the Prairieburg sections, Table 36. Sections 1 and 6 however, 

appeared to provide some positive improvements in conventional SBV's as 

well as breakpoint stresses when compared to the untreated control. 

As a consequence of the conventional SBV tests, it appeared that two 

or more mechanisms of stress-deformation characteristics were occurring 

and should be further investigated as to the test sections performance. 

Therefore a modified SBV test was instituted which coupled SBV vertical 

loading and deformations with an accompanying measurement of lateral defor­

mation. Lateral deformations were measured with a device essentially con­

sisting of a bar mount having (1) a fixed end point inserted into the 

roadway outside the influence of all loading, and (2) a moveable pivot arm 

attached to a horizontally mounted 0.001 in. dial gage. The latter moved 

forward or backward depending on whether horizontal deformations were com­

pressive or tensile respectively, and such deformations were monitored at 

2, 3 and 4 inches from the centerline of vertical load application. 
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Horizontal deformation measurements were magnified by a factor of 2.6 due 

to the lever-arm ratio of the moveable pivot arm and were thus adjusted 

for actual values. Due to the configuration of the device, lateral com­

pression deformations were expressed as negative values while tensile de­

formations were expressed positively. 

Table 37 is a summary of average lateral deformations obtained within 

the six arbitrarily selected locations of the Mortenson Road test section, 

plus two adjacent control sections. In general, the amount of lateral 

deformation decreased with increasing distance from point of load application, 

and in most cases tensile deformations were observed. 

Ratios of horizontal to vertical deformation were plotted versus 

energy, as illustrated in Figures 105 and 106. Energy was defined as the 

amount of work required to cause a vertical deflection. Work is defined as 

force times distance. In this case, force was the applied load in pounds, 

and distance was the corresponding amount of vertical deformation measured 

in inches. Therefore, the units of energy were lb-in. 

As illustrated in Figure 106, six of the eight plots appeared to 

define at least three types of material behavior. At low energy values, 

the horizontal to vertical deformation ratios generally decreased with 

increasing energy. This was followed by an energy region in which the ratio 

remained relatively constant. At higher energy levels, the ratio increased 

with increasing amounts of energy. In two of the plots, as illustrated in 

Figure 105, the ratio increased with increasing energy during the entire 

test. 

The primary behavior noted above, illustrates that only minor lateral 

deflections occur initially, even though accompanied by considerable 
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Table 37. Summary of average spherical bearing value data obtained June, 1982. 

East Control Location 1 Location 2 Location 3 
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Q) 4-< 4-< Q) 4-< 4-< 4-< Q) 4-< 4-< 4-< Q) 4-< 4-< 4-< 
k Q) ...... Q) ,..., Q) ,..., k Q),..., Q) ,..., Q) ,..., k Q) ,..., Q) Q) k Q) ,..., Q) ,..... Q) ,..., 

< Q .;:\ Q .;:\ Q .;:\ <ti Qi:: Qi:: Qi:: <ti Qi:: Q Q <ti Q .;:\ Q .~ Q -~ .,., .,., .,., .,., 
.µ .-!'-' ..... ,_, .-!'-' .µ .-!'-' .-!'-' .-!'-' .µ .-!'-' ..... ..... .µ .-!'-' ..... '-' ..... '-' 
u <ti <ti <ti u <ti <ti <ti u <ti <ti <ti u <ti <ti <ti 

Load 
<ti,..., k: k: k: <ti,..... k: k: k: <ti,..., k: k: ).<: <ti,..., k: k: k: 
+.JN Q) N Q) <'"\ Q) .... +.JN <l>N Q) <'"\ Q) .... +.JN <li N Q) <'"\ Q) .... +.JN Q) N Q) <'"\ Q) .... 

(lb) § .~ .µ .µ .µ i:: i:: .µ .µ .µ i:: i:: .µ .µ .µ § .~ .µ .µ .µ 
<ti .µ <ti .µ <ti .µ 0 .,., <ti .µ <ti .µ <ti .µ 0 .,., <ti .µ <ti .µ <ti .µ <ti .µ <ti .µ <ti .µ 

U'-' ,..:i <ti 
,..:i "' 

,..:i <ti U'-' ,..:i <ti ,..:i <ti ,..:i <ti U'-' ,..:i <ti ,..:i <ti ,..:i <ti U'-' ,..:i <ti ,..:i <ti ,..:i <ti 

447 0.37 0.003 0 0 0.31 0 0 0 0.26 0.003 0 0 0.35 0 0 0 

894 1.83 0.003 0.002 0 0.95 0 0.002 0 1.37 0.006 0.002 0 0.81 0 0 0.003 

1340 3.37 0.005 0.002 0 2.09 0.002 0.003 0.002 2.88 0.008 0.005 0.004 1.48 0.002 0.002 0.003 

1787 5.07 0.011 0.001 -0.003 3.42 0.003 0.004 0.002 5.10 0.012 0.009 0.007 2.42 0.003 0.002 0.004 

2234 6.77 0.015 0.002 -0.004 4 .94 0.0041 0.006 0.002 6. 75 0.016 0.013 0.008 3.90 0.003 0.004 0.004 

2681 8.59 0.024 0.003 -0.007 6.75 0.007 0.008 0.004 8.73 0.025 0.018 0.011 5.89 0.005 0.007 0.003 N 
a-
w 

3128 10. 71 0.038 0.003 -0. 007 8.52 0.011 0.010 0.005 10.96 0.037 0.023 0.015 8.15 0.007 0.008 0.004 

3574 12.64 0.051 0.005 -0.009 11.49 0.023 0.015 0.009 13.44 0.054 0.028 0.017 10.17 0.010 0.009 0.005 

4021 15.31 0.072 0.005 -0.007 14.57 0.043 0.018 0.012 16.34 0.075 0.029 0.022 12.44 0.013 0.012 0.005 

4468 18.25 0.125 0.010 -0.004 18.22 0.091 0.022 0.013 20.63 0.107 0.036 0.025 14 .43 0.021 0.013 0.007 

4915 17.07 0.033 0.017 0.007 

5362 20.98 0.152 0.018 0.008 

5808 

6255 

6702 

7149 



Table 37. continued 

Location 4 Location 5 Location 6 West Control 

Cl! ...; ...; Cl! Cl! ...; ...; Cl! Q) .... Q) .... .... .... Q) .... Q) .... .... .... 
H Q)'""' Q) '""' Q)'""' H Q) '""' Q) '""' Q)'""' H Q)'""' Q) '""' Q)'""' H Q) '""' Q) '""' Q) '""' Cl! 0 i:: O.;:j 0 .;:\ Cl! 0 .;:\ O.;:j 0 .;:\ Cl! O.;:j O.;:j 0 .;:\ Cl! 0 .;:\ 0 .;:\ 0 i:: •rl •rl ... .--l'-' .--l'-' .--l'-' ... .--l'-' .--l'-' .--l'-' ..... .--l'-' .--l'-' .--l'-' ... .--l'-' .--l'-' .--l'-' u Cl! Cl! Cl! u Cl! Cl! Cl! u Cl! Cl! Cl! u Cl! Cl! Cl! 
Cl!'""' H: H: H: Cl!'""' H: H: H: Cl!'""' H: H: H: Cl!'""' H: H: H: .j.JN Q) N 

Q) "" Q) ~ .j.JN Q) N Q)"" Q)~ .j.JN Q) N 
Q) "" 

Q)~ .j.JN Q) N 
Q) "" 

Q) ~ 
i:: i:: ..... ..... ... § .;:\ ..... ..... ..... i:: i:: ..... ..... ..... § .;:\ ..... ..... ..... 0 'ri Cl! ..... Cl! ..... 

j~ Cl! ..... Cl! ..... Cl! ..... 
8~ j~ Cl! ..... Cl! ..... Cl! ..... Cl! ..... Cl! ..... U'-' ....i Cl! ....i Cl! U'-' ....i Cl! ....i Cl! ....i Cl! ....i Cl! ....i Cl! U'-' ....i Cl! ....i Cl! ....i Cl! 

0.40 0 0.002 0 0.10 0 0 0 0.58 0 0 0 0.09 0 0 0.002 

1.22 0.002 0.002 0.002 0.60 0 0 0 1.17 0.002 0 0 0.45 0 0.003 0.003 

2.22 0.003 0.003 0.002 1.08 0 0 0 2.35 0.003 0.002 0.002 0.89 0.002 0.004 0.003 

3.45 0.004 0.003 0.003 1.63 0 0 0 3. 77 0.007 0.002 0.002 1.51 0.003 0.006 0.004 

4.69 0.004 0.004 0.004 2.30 0 -0.002 0 5.43 0.014 0.002 0.003 2.37 0.004 0.007 0.006 
N 

6.55 0.005 0.006 0.004 3.02 0 -0. 002 0 7 .16 0.021 0.002 0.003 3.55 0.007 0.007 0.006 °' -I'-

8.18 0.007 0.008 0.005 3.92 0 -0.002 0 9.09 0.032 0.003 0.004 5.01 0.007 0.008 0.007 

10.33 0.012 0.009 0.007 4.96 0 -0.002 0 11.36 0.047 0.004 0.006 6.83 0.009 0.008 0.007 

12.35 0.016 0.013 0.008 5.84 0 0.000 0 14.10 0.073 0.008 0.008 9.03 0.009 0.013 0.007 

14.38 0.027 0.016 0.010 6.79 0 0.000 0 16.88 0.108 0.015 0.012 11.78 0.012 0.013 0.008 

16.11 0.044 0.017 0.010 7 .94 0.003 o.ooo 0 19.97 0.158 0.018 0.017 15.70 0.020 0.013 0.008 

19.06 0.072 0.018 0.011 9.26 0.004 0.000 0 24.90 0.223 0.022 0.020 19.28 0.057 0.012 0.007 

22.56 0.099 0.018 0.012 10.60 0.007 0.000 0 23.27 0.090 0.012 -0.002 

12.22 0.011 0.000 0 

14.04 0.017 0.000 0.002 

16.33 0.030 0.003 0.002 
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vertical deflection of the SBV sphere at the point of loading. Such 

phenomena takes place due to an initial compaction of the road materials, 

with subsequent deflections mainly in the vertical direction due to 

greater particle to particle contact and densification. As the vertical 

load continues to increase during the second stage of behavior, Figure 106, 

compaction ceases and lateral deflections are initiated. Deformation 

ratios remained approximately constant because the material was predominantly 

in the elastic state. 

At this point, it should be noted that Poisson's ratio is defined as 

the ratio of horizontal to vertical strain; i.e., sH/sv. 
6H 

If SH = II' 

( 
v 

6L 
L 

deflection in the lateral direction, H = original width, 

61 change in length (height), and 1 =original length (height), then 

6H 6H 1 
µ = Jl/61/1 or 61 x "H· 

In a vertically loaded field test situation, 1 and H are unknown, and 

Poisson's ratio is thus difficult to define due to the influence of the 

unknown area and depth of influence of the test equipment. However, 1/H 

remains relatively constant, regardless of the applied load, and Poisson's 

ratio might therefore be defined as 6H/61, or the ratio of horizontal to 

vertical deformations. Since Poisson's ratio is only valid in the elastic 

range, it does not remain constant when a material begins to experience 

plastic deformation. Therefore the range in which the horizontal to 

vertical deformation ratio remained constant, most likely represented the 

elastic range of the in-situ field materials. 

It is also likely that in-situ elastic properties occur prior to 

rupturing of the surface crust of layered road materials. After the 
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surface is fractured, larger lateral deformations are mobilized relative 

to vertical deflections, and hence the deformation ratio increases with 

increasing amounts of applied energy; the third stage of behavior, Figure 

106. 

Data obtained from the conventional SBV test is generally presented in 

the form of a load vs. contact area plot as previously noted. In a uniform 

single layered material, a linear relationship is generally obtained between 

load and contact area and the spherical bearing value is defined as the 

slope of this line. 

In a multilayered system, a different behavior should be expected. 

The load capacity of a multilayered system depends on the summation of stiff­

nesses of the various layers, and the number of layers that have not 

experienced some form of failure. For example, consider a system con­

sisting of three different layers (a, b, and c) in which layer stiffnesses 

decrease from the top downward. If the SBV test is conducted on such a 

system, all three layers should resist applied stresses during early 

stages of loading and prior to any layer failure or fracturing. When layer 

"a" fractures, it no longer continues to resist the applied stress; only 

layers b and c would then resist any stress applications. Following the 

same argument, when layer b experiences failure, only layer c would be 

capable of resisting applied stresses. Therefore, slopes of load vs. con­

tact areas (SBV) obtained during increased stages of loading should vary 

depending on the number of layers that have, or have not, experienced any 

form of failure. Ideally, SBV's should be higher initially, and should 
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decrease as successive layers experience failure. 

The above hypothesis thus suggested possible stages of stress defor­

mation characteristics, particularly for the in-situ soil-fiber composites. 

Further Mortenson Road spherical bearing value tests were conducted 

on May 10th and June 24th, 1982. Since the results of each were similar, 

and utilizing the preceeding concepts, all data were averaged and plotted 

as shown in Figure 107. It can be observed that all load vs. contact area 

plots could be broken into at least three distinct lines of differing SBV 

slopes. The only exception was the west control, where four slopes were 

obtained. This anomaly could be attributed to the variation of surfacing 

material, and degree of compaction within the upper crust of the stone 

surfacing, and occurring within a vehicular stopping zone. 

SBV's of the various slopes in each plot were computed and are summarized 

in Table 38, being denoted as 1, 2 and 3, representing the surfacing 

material, fiber base, and subgrade, respectively. Thus SBV (1) should re­

present the stiffness of the three layered system, SBV(2) should represent 

stiffness of the fiber base plus subgrade material, and SBV(3) should re­

present stiffness of the subgrade material only. As expected, SBV(l) > 

SBV(2) > SBV(3), in all cases. Examination of the data in Table 38, 

indicates that the western half of the Mortenson Road fiber test section 

was stronger than the eastern half, primarily due to the fact that the 

road materials were more granular towards the western half. 

On close examination of SBV(3), it was observed that subgrade support 

varied considerably within the fiber test section. Subgrade support of 

the two control sections was approximately the same. Test locations 1, 2 
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Table 38. Mean SBV results for Mortenson Road Test Section 

Testing Locations 

East Control 

Location 1 

Location 2 

Location 3 

Location 4 

Location 5 

Location 6 

West Control 

Ratio of Mean Value of 
Locations 1, 2, 6 vs. 
Mean Value for Controls 

Ratio of Mean Value of 
Locations 3 & 4 vs. Mean 
Value for Controls 

Ratio of Mean Value of 
Location 5 vs. Control 

Fiber 
Content, 

% 

0.00 

0.076 

0.003 

0.029 

0.010 

0.035 

0.034 

0.00 

Ratio of Mean Value for 
all Fiber Locations Except 
Location 5 vs. Control 

Ratio of Mean Value for 
all Fiber Treated Locations 
vs. Control 

SBV(l) 
Surfacing 
Material, 

psi 

314 

315 

349 

472 

606 

525 

606 

370 

423.3 
342.0 

1.24 

539.0 
342.0 

1.58 

525 
342 

1.54 

469. 6 
342.0 

1.37 

478.8 
342.0 

1.40 

SBV (2) 
Fiber 
Base, 
psi 

223 

216 

205 

253 

269 

321 

304 

255 

241.7 
239.0 

l.Oll 

261 
239 

1. 09 

321 
239.0 

1.34 

249.4 
239.0 

1.04 

261.3 
239.0 

1.09 

SBV(3) 
Subgrade 

psi 

163 

126 

125 

194 

180 

257 

137 

156 

129.3 
159.5 

0.8ll 

187 
159.5 

1.17 

257 
159.5 

1. 61 

152.4 
159.5 

0.956 

109. 8 
159.5 

1.06 
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and 6 indicated a subgrade support which was about 80% that of the two 

controls. Subgrade support of locations 3 and 4 was about 17% higher 

than that of the controls, while location 5 was about 61% greater than the 

controls. When subgrade values for each fiber location were averaged, then 

compared to the average control, it was observed that the fiber section 

subgrade was only about 6% higher than that of the control. 

Further analysis of results of Table 38 showed that overall SBV(l) 

for the fiber section was 40% greater than the control, while SBV(2) was 

9% greater than the control. Initially, the three layers were completely 

intact, but when the surfacing material began to fracture, base fiber 

debonding started to occur. By the time the fiber base experienced failure, 

most of the fibers had debonded, and were thus rendered ineffective as 

reinforcement, insignificantly contributing to the enhancement of the re­

maining base-subgrade layered support. This explains why only a 9% in­

crease, due to fiber inclusion, was observed for SBV(2). It should be 

noted that the 40% increase in overall composite layered strength was com­

parable to the increases obtained for unconfined compressive strength and 

vertical strain modulus during the laboratory investigation. 

Laboratory data have also indicated greater increases in fiber com­

posite strengths where more granular materials were utilized. An equiva­

lent condition is noted in the average field data of Table 38. Only about 

a 24% increase in support was obtained for the finer grained material 

locations 1, 2 and 6, while a 58% increase in support was observed for the 

more granular locations 3 and 4. 

Spherical bearing values have been correlated with other tests commonly 

used for evaluating in-situ characteristics of highway materials, Figure 



271 

108. Two more commonly used parameters for estimating required pavement 

thickness are CBR and Modulus of Subgrade reaction, K. Applying the 

average SBV(l) data from Table 38 (342 for the untreated and 479 for the 

fiber treated Mortenson Road materials) to Figure 108, produced an esti­

mated unsoaked CBR value for the untreated of 39, while that of the treated 

material was 60; a 54% increase in CBR. Again applying the average SBV(l) 

data from Table 2 produced an estimated modulus of subgrade reaction for 

the untreated Mortenson Road material of 1020 psi, while that of the 

treated material was about 1440 psi, a 40% increase in K. Such suggested 

increases in both CBR and K are within the range observed for various 

parameters obtained during the laboratory investigations. 

SBV contact area is a direct function of vertical deformation. A load 

vs. SBV contact area plot is essentially a plot of load vs. vertical de­

flection, since TI and d remain constant during the test. The SBV results 

discussed above, thus represent the stiffness of the material in the 

vertical direction. As was noted in the laboratory investigation however, 

primary benefits may be achieved in the lateral direction. As a con­

sequence, vertical loads versus corresponding lateral deformations were 

plotted and analyzed. Figure 109 presents the plot of average vertical 

load versus average lateral deformation obtained two inches from the center 

of load application for the various Mortenson Road SBV locations. 

It can be observed in Figure 109, that each plot may again be broken 

into three states of mechanical behavior. The first is characterized by 

mobilization of little or no horizontal deformation. The second shows 

increasing horizontal deformation with increasing load. The third is 
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Figure 108. Spherical bearing value versus CBR, modulus of subgrade 
reaction, unconfined compressive strength, and ultimate 
bearing capacity (circular loaded area) of a silty clay 
subgrade (from Butt et al., 6). 
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characterized by large increases in lateral deformation at relatively 

constant loads; i.e., a state of near plastic flow. Within the second 

state however, there appears a region of load versus lateral deformation 

where the rate of deformation begins to exceed the rate of loading; a 

stage not unlike the proportional limit from the stress-strain plot of a 

purely elastic material, indicating incipient failure. In-situ failure of 

the soil-fiber composite was thus defined from Figure 109 as the point 

at which the rates of lateral deformation and loading were about equal 

and thus failure would be starting. This condition would also be analogous 

to a roadway where a rate of increase of lateral deformation greater than 

the rate of increase of loading would be indicative of a considerable 

amount of rutting. 

Table 39 presents data obtained from Figure 109 for the above noted 

failure condition. At the assumed point of failure, each load, vertical 

deformation, and horizontal deformation were obtained, and the ratio of 

horizontal to vertical deformation, contact area and failure stress were 

computed. 

Vertical deformation is a function of the initial degree of compaction 

as well as the deformation characteristics of a material. Therefore the 

variation of vertical deformation may not be totally indicative of a soil­

f iber composite material's properties, since the degree of compaction as 

well as the soil-fiber in-situ properties have already been noted to vary 

within the Mortenson Road test section. On the other hand, horizontal 



Table 39. Average in-situ SBV deformations and stresses at defined failure, Mortenson Road 

Ratio of 
Vertical Horizontal Horizontal to Failure Moisture 

Testing Fiber Wei~ht Deformation, Deformation, Vertical Stress, Content, 
Locations Fraction, % in. in. Deformation psi % 

Control East o.o 0.456 0.024 0.053 312 8.9 

Location 1 0.076 0.452 O.Oll 0.024 367 8.7 

Location 2 0.003 0.410 0.020 o. 049 319 9.0 

Location 3 0.029 0.906 0.032 0.035 288 7.6 

Location 4 0 .010 0.655 0.016 0.024 326 5.6 
N 
-...J 
lJl 

Location 5 0.035 0.745 0.017 0.023 477 6.9 

Location 6 0.034 0.200 0.008 0.040 474 6.1 

Control West o.o 0.833 0.020 0.024 313 5.2 

Average Fiber Section 0.561 0.017 0.033 375 7.33 
Average Control 0. 645 0.022 0.039 312.5 7. 04 

Ratio of Fiber to Control 0.87 0. 77 0.85 1.20 1. 04 

* As determined by random screening tests of in-situ samples. 
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deformations begin to take place when the compaction process is virtually 

complete. Consequently, lateral deformation may be a more reliable 

parameter for predicting the integrity of soil-fiber composite materials. 

Ratio of horizontal to vertical deformation at the defined point of failure 

may be indicative of the overall stability of the entire roadway structure, 

since if a material is strong in the lateral direction it should resist 

a considerable amount of vertical deformation prior to failure; for a 

stronger material, this ratio should be lower than that of a weaker material. 

Failure stress defines the vertical stress at point of failure and was 

computed by dividing load at the point of failure with the corresponding 

contact area. 

Examining Table 39, it is observed that the average vertical deformation 

at the defined point of failure for the fiber treated materials was 87% that 

of the control. Locations having higher moisture contents tended to fail 

at lower vertical deformations than locations with lower moisture contents; 

a normally anticipated condition, since a moisture softened soil would be 

more susceptible to large vertical deformations. 

Horizontal deformations appeared to be influenced by quantity of the 

fiber. For example control east, and locations 1 and 2, Table 39, each 

experienced approximately the same average vertical deformation, but 

horizontal deformation in location 1 was 0.011 inch while that in location 

2 and control east were 0.020 and 0.024 inch respectively. Noting that 

location 2 and control east apparently had lower percentages of fiber, the 

significant improvement in horizontal deformation in location 1 should be 

attributed to the 0.076%, 360 dpf fibrillated polypropylene that was present. 
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Moisture contents in each of these three locations was equivalent. 

As may be seen in Table 39, the inclusion of fibers reduced the 

amount of horizontal deformation by about 23%. Results from the laboratory 

repetitive load Iowa K-Test showed that 0.2%, 360 dpf fibrillated poly­

propylene, reduced horizontal strain at optimum moisture content by about 

13%, suggesting that such a laboratory test procedure may be valid in pre­

dicting field or in-situ lateral stability response. 

Ratio of horizontal to vertical deformation at the defined failure 

appeared to be a reasonable parameter for expressing an overall stability 

related to strain characteristics of the Mortenson Road soil-fiber composite. 

Table 39 suggests that this parameter was influenced by both soil type and 

fiber content. Variation of moisture content did not suggest any marked 

effect on deformation ratios. Overall, inclusion of the fiber appeared to 

reduce this ratio by about 15%. 

The defined failure stress expressed a contact stress at which plastic 

flow starts to occur. Again, this parameter appeared to be influenced more 

by fiber weight fraction and type of soil material than by moisture 

content, Table 39. The ratio of fiber treated failure stress to untreated 

control failure stress, indicated a general 20% improvement due to fiber 

inclusion. This parameter also tends to express the overall stability of 

a roadway soil fiber composite material. For example, if a weak material 

is encountered, contact area will increase considerably, while the 

corresponding increase in load would be negligible, therefore producing a 

low contact or failure stress. 
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Table 40 is a summary of the Linn County Prairieburg SBV data for 

average lateral deformations obtained within the various fiber and control 

sections. Sections 1, 3, 4 and control west experienced both compressive 

and tensile deformations. Compressive deformations resulted from initial 

compaction of roadway materials that occur at the beginning of load 

application. Section 3 experienced the lowest amount of lateral deformation 

while control west experienced the highest amount of lateral deformation. 

Section 2 appeared to be an exception,since failure apparently occurred 

within very early stages of the testing and prior to full mobilization of 

lateral deformations. Upon comparison with the average lateral deformations, 

the fiber treated sections produced lesser amounts of lateral deformation 

than either control, with the exception of sections 2 and 4. 

Ratios of horizontal to vertical deformation were plotted versus 

energy, as illustrated in Figures 110 and 111. The plots appeared to define 

at least two, and in most cases, three types of material behavior. How­

ever, the trends of the plots were not similar to the trends observed with 

the finer grained Mortenson Road, Figures 105 and 106. In the case of the 

more sandy Prairieburg sections, ratios tended to increase with increasing 

energy implying the possibility of utilizing the concept of Poisson's ratio. 

In the Mortenson Road data, the deformation ratios initially decreased 

with increasing energy and then levelled. With the more sandy Prairieburg 

material, the initial densification deformation was not generally observed 

during the early stage of loading. There was generally good agreement 

between the two roadway materials during the latter stages of loading. It 

was thus apparent that the two materials professed different in-situ load-



0. 19 
(/) 
z a 

0. t 7 H 
I-
< s: ra. t 5 ~ a 

~ 0. t 3 

...J 
~ ra. t t 
~ 
ffi ra. rag 
> 
g ra. ra7 
...J 
~ 0.05 
z 
~ ra. ras 
a 
r ra.rat 
U-
0-ra .ia t 

~ 
<-0.03 
Q! 

1000 

GI 

a 

3000 

t:1 

~000 5000 6000 

ENERGY CL6-IN) 

e CONTROL EAST, NORTH 

~ CONTROL EAST, SOUTH 

1rara0 8000 9fa00 

Figure 110. Insitic Deformation Ratios Versus Energy, Linn County 
Prairieburg. 

t 0rarara 

N 
-...J 
l.O 



ra. t9 
ti) 

z a ra. t 7 
~ 
< s: ra.1s ~ 
a u.. 
~ g. t 3 

..J 
(3 ra.tt 
t::! 
ffi ra.0s 
> 
g ra .01 

..J 
~ ra.ras 
z 
a 
~ Q.Q3 

a 
J: fa.Qt 
u.. 
0 -0.0t 

~ <-ra.ras 
~ 

A SECTION S SOUTH 

8 SECTION S NORTH 

ra t rarara 2rarara 3ggg -4rarara srarara ararag 1rarara srarara srarara t rararara t t iarara t 2ra1ara 
ENERGY CL8-IN) 

Figure 111. Insitic Deformation Ratios Versus Energy, Linn County 
Prairieburg. 

N 
o:> 
0 



Table 40. SBV load vs. lateral deformation at 2" from load centerline, Linn County, Prairieburg 

Average Lateral Deformation 2 in. 
Control Section Section Section Section Section Section Control Control 

Load, lbs. East 1 2 3 4 5 6 West Average 

447 0 0 0 -0.001 0 0.000 0 0 0 
894 0 -0.001 0.002 -0.001 0 0.000 0 0 0 

1340 0.002 -0.003 0.002 -0.001 -0. 501 0.000 0 0 0 
1787 0.003 -0.004 0.001 -0.001 -0.001 0.001 0.001 -0. 001 0.001 
2234 0.003 -0.006 0.001 0.000 -0 .001 0.001 0.001 -0.001 0.001 
2681 0 .004 -0.007 0.003 0.000 -0.001 0.001 0.001 -0.001 0.002 
3128 0.005 -0.008 0.004 0.000 0.000 0.002 0.002 0.000 0.003 
3574 0.007 -0.005 0.006 0.001 0.002 0.003 0.003 -0.001 0.003 
4021 0.009 -0.008 0.010 0.001 0.006 0.004 0 .004 0.001 0.005 N 

o:i 

4468 0.014 -0.008 0.013 0.001 0.010 0.005 0.005 0.003 0.009 t-' 

4915 0.014 -0.005 0.017 0.002 0.014 0.007 0.009 0.006 0.010 
5362 0.016 -0.002 0.021 0.004 0.020 0.009 0.010 0.010 0.013 
5808 0.019 0.004 0.005 0.025 0.011 0. 011 0.014 o. 017 
6255 0.020 0.010 0.007 0.028 0.014 0.012 o. 020 0.020 
6702 0.022 0.021 0.009 0.033 0.021 0.015 0.027 0.025 
7149 0.025 0.032 0.010 0.038 0.029 0.020 0.035 0.030 
7598 0.029 0 .046 0.014 0. 049 0.037 0. 025 0.044 0.037 
8042 0.033 0.058 0.019 0.061 0. 04 7 0.035 0.056 0.045 
8489 0.038 0.082 0.025 0 .068 0.059 0.042 0.073 0.056 
8936 0.045 0.110 0.033 0.072 0.073 0.047 0.106 0.076 
9383 0.051 0.046 0.084 0.085 0.140 0.096 
9830 0.057 0.067 0.097 

10276 0 .065 
10723 0.074 
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deformation characteristics. 

Although trends exhibited by the Prairieburg results were somewhat 

different from those of Mortenson Road, breakpoints in the plots still 

tended to provide corresponding techniques of analysis. Table 41 

summarizes the average load and contact areas obtained for the various 

Prairieburg fiber and control sections, and Figure 112 presents the 

average load versus contact area plots. 

The plots of Figure 112 were broken into three sections, and SBV(l), 

SBV(2) and SBV(3) were again computed, Table 42. SBV(l) values exhibited 

a considerable amount of variation. SBV(l) for the fiberglass Section 3 

was 1396.0 psi while that of the 15 dpf polypropylene Section 2 was 472.0 

psi. This widespread variation between adjacent Sections 2 and 3 was 

attributed to the extremely weak subgrade within portions of Section 2, 

which was reflected in both the SBV(2) and SBV(3) data. In addition, it 

was visually observed that portions of Section 2 showed more rutting than 

any other section. All fiber sections except Section 3 produced lower 

SBV(l) values than either control, implying that fiber reinforcement 

might not be effective. SBV(2) values portrayed the same general trends 

as SBV(l). However, comparative use of the SBV values only~,may be mis­
/ 

leading for analytical purposes. 

As noted previously, SBV(3) represented the potential stability of 

the subgrade material. Therefore, ratios of SBV(2)/SBV(3) and SBV(l)/ 

SBV(3) were computed for each section and are summarized in Table 42. 

The ratio of SBV(2) to SBV(3) represents the improvement in stability 

produced by incorporation of the fibers into the roadway materials. The 

average ratio for the controls was 1.53. Comparing 1.53 with the ratios 
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Table 41. Average SBV load vs. contact area, Linn County, Prairieburg for tests conducted May 12, 
June 2, and June 16, 1982 

Average SBV Contact Area~ sg. in. 
Control Section Section Section Section Section Section Control 

Load, lbs. East 1 2 3 4 5 6 West 

447 0.29 0.34 0.65 0.18 0.36 0.22 0.43 0.27 
894 1.00 0.93 1. 74 0.58 1.29 0.94 1.30 0.76 

1340 1.45 1.71 3.11 0.93 2.09 1.59 1. 99 1.23 
1787 1.88 2.60 4.14 1.41 2.82 2.26 2.22 1. 64 
2234 2.35 3.59 5.28 1.88 3.55 2.91 3.35 2.15 
2681 2.87 4.49 6.38 2.39 4.30 3.54 4.06 2.76 
3128 3.33 5.40 7.67 3.00 5.09 4.23 4. 77 3.41 
3574 3.91 6.27 9.02 3.62 5.03 4.93 5.49 ' 4. 07 
4021 4.46 7.28 11.08 4.43 6.68 5. 71 6.32 4.75 N 

4468 4.99 8.36 11. 73 5.12 7.59 6.38 7.07 5.53 00 
+:'-

4915 5.51 9.35 13.09 5.82 8.48 7. 08 7.89 6.25 
5362 6.05 10.35 14.89 6.96 9.45 7.89 9.19 7.08 
5808 6.56 11.51 16.13 7.79 10.44 8.65 9.74 7. 96 
6255 7.17 12.44 8. 72 11.51 9.51 10.64 9.09 
6702 7.74 13.59 9.85 12. 64 10.43 11. 60 10.16 
7149 8.84 14. 72 10.87 15.84 11.24 14.63 11.20 
7596 8 .96 15.98 11.77 14.89 12 .11 13.58 12.52 
8042 9.66 17.37 16.13 12.97 14.61 13.70 
8489 10.31 18.88 17 .54 13.99 15.67 15.09 
8936 11.13 20.49 19.47 15.02 16.80 16.76 
9383 11.89 16.03 18. 08 18.05 
9830 12.58 17.03 19.67 

10276 13.4 7 
10723 



* Table 42. Mean of SBV results for Prairieburg Test Sections 

Fiber SBV Ratios Average 
Content SBV(l) SBV(2) SBV (3) SBV(l) SBV(2) SBV (1) Moisture 

Section % psi psi psi SBV (3) SBV (3) SBV(2) Content, % 

Control East 0 1063. 5 + 441.2 711.6 + 176 517.5 + 149.2 2.06 1.38 1.46 6.10 
-

Section 1 0.06 547.7 + 235 466.0 + 171.2 266.2 + 119.7 2.06 1. 75 1.18 6.50 

Section 2 0.13 472.0 + 196 343. 7 + 134 .8 252.2 + 123.8 1.87 1.36 1.37 6.42 

Section 3 0.10 1396.0 + 874.8 705.8 + 375.8 392.5 + 167.3 3.56 1.80 1.98 5.47 

Section 4 0. 29 589. 5 + 76.0 429 + 86.3 293.8 + 68.3 2.01 1.46 1.37 5.83 - N 
CXl 

1.24 1. 30 6.16 
\J1 

Section 5 0.29 643.8 + 116.5 495.2 + 57.5 400.8 + 66.3 1. 61 

Section 6 0.10 643. 7 + 77.4 446 .2 + 85.7 250.3 + 87.4 2.57 1. 78 1.44 5.92 

Control West 0 736.0 + 189 508.2 + 125.9 304.3 + 102.7 2.42 1. 67 1.45 5.37 

* All values are the mean from combining tests taken May 12, June 2, and June 16, 1982. 
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obtained for each fiber section, shows that Sections 1, 3, and 6 

performed better than the controls. The stability increase appeared to 

be independent of type of fiber, but was dependent on the fiber weight 

fraction. Only those sections treated with low fiber weight fractions 

produced any stability increase. 

Ratios of mean SBV(l) to SBV(3) represent the increase in stability 

due to addition of fiber and the surfacing material. The average SBV 

ratio for the controls was 2.24, Table 42. Comparing this with the ratios 

obtained for the fiber sections, it was observed that only sections 3 

(fiberglass) and 6 (fibrillated polypropylene) produced improved stability. 

Noting that the SBV(l) to SBV(3) ratio for Section 3 was very high, it 

might be concluded that this large increase in ratio was potentially due 

to a larger quantity of surfacing material than in the other sections. 

Ratios of mean SBV(l) to SBV(2) shown in Table 42, serve as an in­

dicator of the effect of surfacing material support in relation to support 

provided by each individual base. With the exception of Section 3, support 

provided by the surfacing material was not as pronounced as support provided 

by the fiber bases, as obtained through the SBV(2) to SBV(3) ratios. 

As previously discussed, conventional load vs. SBV contact area plots 

are essentially plots of load vs. vertical deformation, since TI and d 

remain constant during the test. Such SBV results represent only the 

stiffness of an in-situ material in the vertical direction. Consequently, 

vertical loads versus corresponding lateral deformations were plotted and 

analyzed for the Prairieburg sections, Figure 113. 

As may be observed in Figure 113, each plot could again be broken into 
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three states of mechanical behavior; the first characterized by mobili­

zation of little or no horizontal deformation, the second showing 

increasing horizontal deformation with increasing load, and the third 

characterized by large increases in lateral deformation at relatively 

constant loads; i.e., a state of near plastic flow. Such trends were 

very similar to those noted with the Mortenson Road in-situ modified SBV 

tests, thus confirming that vertical load versus lateral deformation analyses 

might better describe actual material behavior. 

Table 43 presents data obtained from Figure 113 for the state of in­

situ failure previously discussed with the Mortenson Road section. At 

the assumed point of failure, each load, vertical deformation and horizontal 

deformation were obtained, and the ratio of horizontal to vertical defor­

mation contact area and failure stress were computed. In general the 

fiber treated sections appeared to experience higher vertical deformation 

than the controls, a condition consistent with observations made in the 

laboratory investigations. However, with the exception of Section 4, all 

fiber treated sections experienced smaller amounts of lateral deformations 

than the controls, again consistent with observations from the laboratory 

investigation. 

Ratio of horizontal to vertical deformation at the defined failure 

point was assumed to be a reasonable parameter for expressing the overall 

stability related to strain characteristics of the roadway soil-fiber 

composite. All fiber treated sections produced lower ratios than the 

controls, implying an improvement in stability of the roadway materials. 

Sections 1, 3, and 6 produced the lowest ratios, confirming that fiber 



Table 43. Average in-situ SBV deformations and stresses at defined failure, Prairieburg 

Ratio of 
Vertical Horizontal Horizontal Failure 

Fiber Type and Deformation, Deformation, to Vertical Stress, 
Testing Location Weight Fraction in. in. Deformation psi 

Control East None 0.51 0.03 0.059 828 

Section 1 0.06% 15 dpf polypropylene 0.78 0.02 0.026 476 

Section 2 0.13% 15 dpf polypropylene 

Section 3 0.1% Type E Fiberglass 0.62 0.02 0.033 680 

Section 4 0. 29% Type E Fiberglass 0.74 0.035 o. 04 7 520 N 
00 
~ 

Section 5 0.29% 360 dpf fib. polypropylene 0.50 0.02 0. 040 652 

Section 6 0.1% 360 dpf fib. polypropylene 0.56 0.015 0. 02 7 582 

Control West None 0.54 0.025 0. 046 639 
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reinforcement was most effective at the lower fiber weight fractions. 

The ratios for sections 1, 3, and 6 were 0.026, 0.033 and 0.027, 

respectively, indicating that the 360 dpf fibrillated and 15 dpf mono­

filament polypropylene fibers produced almost equal amounts of lateral 

to vertical deformation ratios, and again confirming that in-situ fiber 

reinforcement potential may be more sensitive to fiber weight fraction 

than to types of fiber. 

Since the Linn County Prairieburg soil-fiber composite sections were 

covered with six inches of portland cement concrete pavement in late 

June, 1982, no further modified SBV tests could be conducted therein 

during the fall season. However, a series of tests were conducted on the 

Story County Mortenson Road section in September. In order to render 

further credibility to the testing and analytical procedure adapted with 

the modified SBV test, 8 tests were conducted on the east and west controls, 

while 14 tests were performed on the fibrillated polypropylene fiber 

section. In addition, lateral deformations were measured in duplicate at 

2 inches from center of load application only. 

Plots of this data could again be broken into the three mechanical 

states of load-deformation previously noted as SBV(l), SBV(2), and SBV(3), 

used to indicate respective stabilities and stiffnesses of the full depth 

structure, fiber base plus subgrade, and subgrade only, Table 44. In­

corporation of the 360 dpf fibrillated polypropylene fibers increased 

the overall SBV(l) by 32%. Earlier SBV(l) results noted that the fibers 

improved stability by about 37%, indicating that the modified SBV test is 

reproducible. The September 1982 results however should be more 
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Table 44. Mean of SBV results for Mortenson Road section, September 1982 

Untreated Fiber x Treated 
Control* Treated** x Untreated 

SBV(l) 403.4 + 133.3 530.8 + 162.7 1.32 

SBV(2) 232.1 + 53.7 259. 2 + 62.7 1.12 

SBV(3) 135. 9 + 37.3 133.7 + 27.2 0.98 

Ratio SBV(l) 3.03 + 0.79 4.18 + 1.75 1.38 SBV(3) 

Ratio 
SBV(2) 1.78 + 0.43 1.97 + 0.46 1.11 SBV(3) 

Stress at (1) ' psi 474.1 + 128.5 612.0 + 188.5 1.29 

Stress at (2) ' psi 326.3 + 90.4 346. 9 + 75. 6 1.06 

Stress at (3) ' psi 278.4 + 79.9 286.2 + 55.5 1.03 

* Mean and standard deviation of 8 values. 
** Mean and standard deviation of 14 values. 
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representative of performance improvement since a larger number of tests 

were involved, each being conducted at the same point of time. The 

increase in SBV(l) due to fiber treatment was also similar to data 

observed from several of the laboratory tests. 

Improvement of SBV(2), base plus subgrade, was only about 12%. The 

earlier observation of SBV(2) was about 9%, further confirming reproducibility 

of the test data. Representing the stability and stiffness of the sub-

grade, SBV(3) for the untreated and fiber treated sections were basically 

identical, confirming the potential for use of SBV(3) as a common 

denominator for any performance ratio analysis. 

Ratios of SBV(l) to SBV(3), and SBV(2) to SBV(3),.are also presented in 

Table 44. Percentages of improvement were quite similar to those noted 

above. 

Stresses for each break point at which the slopes of the individual 

load versus contact curves changed are presented in Table 44. The stress 

at break point (1) represented the stress condition at which the 

surfacing material lost most of its load capacity. Similarly the stress 

conditions were defined for the fiber base (stress at (2)) and the subgrade 

(stress at (3)). The latter may represent the stress at which the sub­

grade, as well as the roadway structure tends to fail, or at least 

experiences considerable plastic flow. As may be noted from the table, 

the potential percentages of improvement of breakpoint stresses due to 

fiber incorporation into the Mortenson Road material were not unlike those 

noted above. 
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SUMMARY AND CONCLUSIONS 

The purpose of the study reported herein was to conduct a laboratory 

and field investigation into the potential of improving (a) soil­

aggregate surfaced and subgrade materials, and (b) localized base course 

materials, through fibrous reinforcement. The study was also directed to 

determining (a) what type or types of fibers were effective as reinforce­

ment agents, (b) were workable fibers commercially available, and (c) 

whether such fibers would be effectively incJrporated with conventional 

construction equipment and employed in practical field applications. 

A review of literature demonstrated that fiber composites are com­

prised of a matrix material, plus fibrous materials. Matrix materials 

could be classified into organic and inorganic, while fibers could be 

classified into synthetic and natural depending on their origin. Param­

eters influencing the integrity of fiber composites were fiber volume 

fraction, fiber diameter, fiber length, fiber orientation, and strength of 

the fiber-matrix interfacial bond. The two most important parameters 

appeared to be fiber volume fraction and fiber-matrix interfacial bond. 

Short fiber composite efficiency factors appeared to account for the 

effects of length and orientation. What sparse studies of soil fiber 

composites that could be found showed behavior similar to fiber reinforced 

concrete. Therefore techniques applied in fiber concrete might be 

appropriate in regard to a study of soil-fiber composites. 

Types of fibers that were initially screened for possible investi­

gation included nylons, polypropylenes, dacron, kevlar, lycra, polyesters 

and fiberglass. Configurations of these fibers ranged from 1.5 to 360 
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denier, 0.25 to 6 inch lengths, monofilaments, crimped and uncrimped, 

pentalobal cross section, tape, yarn, and fibrillated tape. Costs, 

survivability in a soil, availability, geometry, mechanical properties, 

and ability for incorporation by conventional mixing techniques into a 

soil reduced the final fiber selections to Type E fiberglass, polypropylene 

monofilament (both uncrimped and crimped), and fibrillated polypropylene 

tape. Diameters and lengths of these fibers were 0.002 - 0.009 inch and 

0.25 to 1.5 inch respectively. Laboratory mixing of such selected fibers 

could easily be accomplished by either hand or mechanical mixing techniques. 

Fibers longer than 2-3 inches were extremely difficult to laboratory mix 

with any soil. Crimped fibers were somewhat more difficult to mix than 

the uncrimped fibers. 

Guidelines for selection of soils for this investigation involved 

the potential for field test sections of selected fibers. Roadway sites, 

and their respective soils, were sampled from Sioux City, Story County, 

and Linn County. AASHTO classifications of the sampled soils ranged from 

A-2-4(0) to A-6(3). Ultimately, test sections were constructed in Linn 

County near Prairieburg, Iowa, and in Story County, on Mortenson Road 

near the southwest corner of Ames. 

In the laboratory investigation, Iowa K-Test data was analyzed 

through the computer aided Statistical Analysis System (SAS). While some 

relationships were attained between the untreated and fiber treated soils, 

no basic improvements were noted. Any reinforcing mechanism of fiber 

which tended to show improvement in c, ¢, E, K or Q required large 
0 

vertical strains in order to become apparent. The stiff constant elasticity 
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K-Test mold prohibited the amount of radial strain necessary to mobilize 

fiber reinforcement, causing the more conventional K-Test to act like a 

consolidation test, with the soil matrix failing in shear prior to fiber 

reinforcement mobilization. 

Results from unconfined compression testing of the untreated soils and 

soil-fiber composites provided considerable input into selection of fibers 

for use in the field test sections. 

Incorporation of fibers within each soil tended to decrease maximum 

dry density and increase optimum moisture content of the composites, due to 

increased voids caused by fiber seperation of the soil· particles. 

Unconfined compressive strengths generally increased with increasing 

fiber weight fraction up to a maximum, with no further increase due to 

increased fiber contents. In most cases, optimum fiber weight fraction was 

between 0.05% and 0.4% by dry soil weight. Greater percentage increases in 

unconfined compressive strengths were generally obtained at higher rather 

than at lower moisture contents. 

Unit strain at failure of unconfined compressive strength specimens, 

generally increased with increasing fiber weight fraction, indicating 

improved ductile properties. In some instances, failure did not occur 

with the higher fiber weight fractions and UCS testing was stopped to avoid 

causing damage to equipment. 

No consistent trends were obtained regarding vertical strain moduli 

within the UCS testing. E varied from positive improvement to 

reduction. This parameter exhibited such large variability that statistical 

modelling was not possible. 



296 

Fibers significantly increased the modulus of toughness as determined 

from the UCS testing, serving as an indicator of how fibers influenced the 

ductility of the soil-fiber composites. 

Compressive strength improvements due to fiber incorporation appeared 

dependent on gradation characteristics of the soils. While the A-2(4), A-4(0), 

and A-6(2) soils were all fairly well graded, they did not provide equal 

amounts of strength increase with equal, or variable, fiber weight fractions. 

The A-2(4) produced the best results, followed by A-4(0) and A-6(2) soils 

in that order, and tended to correlate .with plasticity of the soils. 
' 

Smaller diameter fibers tended to provide the best increases in 

compressive strength parameters. Overall, the 15 dpf crimped polypropylene 

fibers appeared to produce the most benef iciation in compressive strength 

characteristics. L~rger aspect ratios, coupled with crimped configurations, 

thus appeared to .most influence integrity· of the soil fiber composites. 

Modification of the soil matrix through the introduction of low 

percentages of hydrated lime ox type 1 portland cement provided improved 

matrix-fiber interfacial bonding, resulting in improvements in 

compressive characteristics, ductility, and control of cracking through 

brittle failure. 

Increased compactive effort, from standard to modified AASHTO, resulted 

in increased soil matrix strength and somewhat improved interfacial fiber-

matrix bond. 

Laboratory California Bearing Ratio values indicated improved ratios 

with the soil-fiber composites, being the most effective in the sandy 

A-2-4(0) soil and less effective in the finer grained soils. 
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Cyclic load tests were conducted using a thin-walled variable 

expansion Iowa K-Test mold in order to study portions of the mechanistic 

behavior of the soil-fiber composites. In general, the composites showed 

improved performance at both high vertical stresses and moisture contents 

above optimum, but appeared due to increased vertical deformations 

producing higher lateral displacements needed to mobilize tensile properties 

of the fibers. The efficiency of soil-fiber reinforcement appeared largely 

dependent on the integrity of the soil-fiber interfacial bond. Maximum 

beneficiations of fiber reinforcement appeared associated with parameters 

of horizontal or lateral stability which were sizeably enhanced by addition 

of fibers into the soil matrix. The 15 dpf crimped polypropylene fibers 

provided the most improvement in cyclic load test stability parameters, 

followed by the 360 dpf fibrillated polypropylene and the 15 dpf monofilament 

fibers. Modification of the Sioux City loessial soil matrix through the 

addition of 3% Type I portland cement further enhanced the lateral 

stability characteristics of the soil-fiber composites. 

Combined freeze-thaw and cyclic load K-Tests were conducted on Sioux 

City loessial soil and soil-fiber composites. Use of the fibers decreased 

freeze-thaw volumetric change on the order of 40% as compared with the 

untreated soil. When the soil-fiber matrix was modified with a low 

percentage of cement, freeze-thaw volumetric expansion was eliminated, 

indicating an extremely stable composite material. Compared to the 

modified soil matrix, the modified soil-fiber matrix provided up to 40% 

improvement in composite stiffness as evaluated through the cyclic load 

test following 10 cycles of freeze-thaw. 
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Utilizing data from unconfined compression tests, and a concept 

from fiber reinforced concrete, an overall efficiency factor for several 

fibers was calculated. The 15 dpf crimped polypropylene fiber composites 

had the highest efficiency factors, a condition consistent with most of 

the laboratory investigations. 

Ratios of soil particle surface area to fiber surface area were 

calculated for various fiber weight fractions within the Sioux City loessial 

soil. These ratios ranged from as high as 15.4 for the. fiberglass to less 

than 1.0 for the 15 dpf polypropylene monofilament fibers. In general, 

the study suggested a surface area ratio of near 1.0 as probably producing 

the most beneficial compressive strength and workability (mixing) 

characteristics. 

Through Scanning Electron Microscopy, three types of fibers were 

compared before and after compacted incorporation and UCS testing within 

the Sioux City loessial soil. The 15 dpf straight polypropylene exhibited 

severe surficial damage after compaction and testing, the 360 dpf fibrillated 

polypropylene incurred ·1ess surficial damage, and the fiberglass appeared 

undamaged. This examination coupled with the UCS testing, suggested that 

surface damage may relate to greater frictional contact with the soil 

particles with an accompanying improved reinforcement capability. 

A fiber pull-out test was designed to assist in understanding some of 

the micro-properties of a soil-fiber composite. Utilizing a concept from 

fiber composite technology and the determined frictional bond strengths 

from the pull-out test, critical fiber lengths were calculated for the 15 

dpf monofilament and 360 dpf fibrillated polypropylene under vertical 

stresses up to 75 psi. The study demonstrated that as soil-fiber bond was 
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increased, the length of fiber required to effectively transfer matrix 

stress to the fibers ultimate stress capacity decreased. Since fiber 

lengths used in most of the laboratory investigations were less than the 

calculated critical lengths, the soil-fiber composites should not fail by 

fiber fracture, but by sliding along the soil-fiber interface. This mode 

of failure may explain the observed ductility (toughness) of the soil-fiber 

composites. 

Trafficability testing of untreated Sioux City, Mortenson Road and 

Prairieburg soils indicated that each were incapable of sustained 75 psi 

wheel loadings when utilized as surface course. Incorporation of fibers 

in each soil indicated varying degrees of improved stability through rut 

depth measurements. Further improvement in stability was observed when 

cement modification of a soil matrix provided increased soil-fiber inter­

f acial bonding. 

Results of a study of tensile properties of fiber reinforced soil 

illustrated that improved tensile properties may be attained when compared 

to the untreated soil. The magnitude of improvement however appeared 

dependent on soil and fiber types, though tensile properties may be 

improved at moisture contents above the untreated optimum. 

Construction of the Linn County Prairieburg, and Story County Mortenson 

Road test sections, demonstrated that fibers could readily be incorporated 

into a scarified soil material using conventional construction equipment. 

The most satisfactory mixing technique was provided by blowing fiber into 

a rotary mixer chamber with a mulch spreader equipped with a flexible hose. 

Blade mixing provided a reasonably satisfactory random distribution of 

fibers. 
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Immediately prior to field compaction, random samples of each 

Prairieburg and Mortenson Road section were obtained over their full 

depth and returned to the laboratory, where Proctor size specimens of 

each were prepared under standard AASHTO T-99 conditions. Average q , and 
u 

E values of the Mortenson fiber section showed distinct improvement over 

the untreated control during UCS testing, indicative of somewhat 

improved stability. Each Prairieburg field mix appeared to produce a 

greater degree of toughness, coupled with reduced brittleness than the 

untreated control, but only the 360 dpf fibrillated polypropylene specimens 

showed a definite gain in compressive strength. 

Specimens of the Prairieburg field mixed, laboratory compacted 

materials, were subjected to the cyclic load test. In general, the 

finer of the three fibers (15 dpf monofilament polypropylene) provided 

lateral reinforcement benefits coupled with some improvements in vertical 

stability. 

Benkelman beam, plate bearing, and CBR tests were initially used to 

measure in situ influence and performance of the fiber incorporated test 

sections versus their adjacent control sections. Results obtained with 

these tests were considerably varied, and were relatively limited in 

correlation with the laboratory studies. The reason for this anomaly 

appeared due to the laboratory tests primarily indicating improved lateral 

stability characteristics, while each field test was more associated with 

vertically oriented parameters. 

Due to results obtained with the three aforementioned in situ tests, 

the Spherical Bearing Value (SBV) test was then employed since it has 

previously been shown to mobilize stresses in a radial direction. While 



301 

the conventional SBV test utilizes vertical deformations only, the 

procedure was modified to also provide measurement of horizontal defor­

mations. 

Results obtained from the modified SBV field test were analyzed by 

several processes. Ratios of measured horizontal to vertical deformations 

were plotted versus energy, the latter defined as applied vertical loading 

times the corresponding vertical deflection. Such plots showed three 

states of material mechanical behavior. Each plot could be associated 

with properties of the three layered roadway structure of aggregate 

surface, fiber base and subgrade. SBV(l) represented stability of the 

composite three layers, SBV(2) the fiber base plus subgrade, and SBV(3) 

the subgrade only. Results of SBV(l) from several series of such tests 

of the fiber treated sections showed roughly 30% improvement from that of 

the untreated controls. SBV(2) data illustrated about a 10% gain, while 

SBV(3) was essentially equal for subgrade stability values. SBV(l) 

stability improvements due to fiber incorporation in the Prairieburg 

sections appeared somewhat independent of fiber type, but dependent on 

fiber weight fraction. Improvements were noted at fiber weight 

fractions of 0.1% or less, while poorer performance was obtained at the 

higher contents of each of the three fibers. Results of SBV(2) did not 

appear significant and may be attributed to initiation of fiber debonding 

following rupture of the surfacing. Thus fiber reinforcement of roadway 

soils should be associated with base or subbase courses having adequate 

surfacing. 
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RECOMMENDATIONS 

1. In order to validate laboratory investigations with the loessial 

soils, test sections should be instituted for long duration evaluation in 

the Sioux City area, and should consist of an untreated base, soil-fiber 

base, cement modified base, and cement modified soil-fiber base. 

2. Laboratory studies should be expanded to include soil moisture 

contents well into the plastic range and/or approaching their respective 

liquid limits. Such testing should at least include freeze-thaw durability 

and cyclic loading, the latter, both with and without subjection of freeze­

thaw. In addition, this study should also examine the effects of soil 

matrix modification with low contents of cement, lime, or fly ash. 

3. Though implied in both items above, methods to improve soil-fiber 

bond should be further investigated, including lengths of fibers that 

approach or exceed the critical length required for soil stress conditions 

present in roadway bases and subbases. 

4. Utilizing data and techniques developed in HR-211, coupled with 

information obtained from items 1-3 above, analytical models should be 

developed for roadway thickness design procedures incorporating fiber 

reinforced base and/or subbase courses. 
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