METRIC TRAINING

FOR THE TRANSPORTATION INDUSTRY

MODULE III Road and Bridge Design

A Series of Programs Offered via the lowa Communications Network to prepare lowa Transportation Personnel for Implementation of the International System of Measurement

Sponsored by the lowa Highway Research Board, lowa Department of Transportation
and
IOWA STATE UNIVERSITY

ABSTRACT
 IHRB PROJECT HR-376

"Metric Training For The Highway Industry", HR-376 was designed to produce training materials for the various divisions of the Iowa DOT, local government and the highway construction industry. The project materials were to be used to introduce the highway industry in lowa to metric measurements in their daily activities. Five modules were developed and used in training over 1,000 DOT, county, city, consultant and contractor staff in the use of metric measurements.

The training modules developed, deal with the planning through operation areas of highway transportation. The materials and selection of modules were developed with the aid of an advisory personnel from the highway industry. Each module is design as a four hour block of instruction and a stand along module for specific types of personnel. Each module is subdivided into four chapters with chapter one and four covering general topics common to all subjects. Chapters two and three are aimed at hands on experience for a specific group and subject. The modules include:

Module 1 - Basic Introduction to the Use of International Units of Measurement. This module is designed for use by all levels of personnel, primarily office staff, and provides a basic background in the use of metric measurements in both written and oral communications.

Module 2 - Construction and Maintenance Operations and Reporting. This module provides hands on examples of applications of metric measurements in the construction and maintenance field operations.

Module 3 - Road and Bridge Design. This module provides hands on examples of how to use metric measurements in the design of roads and structures.

Module 4 - Transportation Planning and Traffic Monitoring. Hands on examples of applications of metric measurements in the development of planning reports and traffic data collection are included in this module.

Module 5 - Motor Vehicle Enforcement. Examples from Iowa and Federal Motor Vehicle Codes are used as examples for hands on training for the vehicle enforcement type personnel using this module.

Each of the modules utilizes visual aids in the form of video tapes and others that can be projected by an overhead projector or through the use of computer aided methods. The course can be self administered or is best done through the use of a group session and the use of a class leader.

Metric Training for the Transportation Industry Module 3 - Road \& Bridge Design

Table of Contents

Unit 1 - History of SI Basics Brief Metric History 1
Motivation to Use SI in the U.S. 1
Recent History of SI in the Federal Government 3
Units of Measure Video Outline 3
Visualizing Metric 8
Worksheet 10
Unit 2 - SI Applications in Road Design Activities Types of Conversion 12
Conversion Factors 13
Road Design Problems 14
Unit 3 - SI Applications in Bridge Design Activities Bridge Design Problems 24
Unit 4 - SI Applications in Record Keeping Reading, Writing, Rules Video Outline 31
Intended Precision 35
Rounding Rules 35
Importance of Estimating 36
Worksheet 37
SI Tables
SI Base Units 39
SI Supplementary Units 39
SI Derived Units 39
Acceptable Units to Use with SI 40
Prefixes 40
Conversion Factors 41
References 42

This part of the workshop will introduce you to the basics of SI Metric. Topics covered will include:

- A brief history of the metric system and SI
- The seven SI base units
- Derived units
- Supplemental units
- Prefixes
- Additional units to use with SI

At the end of this unit you will have the opportunity to complete a worksheet which will help you demonstrate your grasp of the metric covered in this part of the workshop.

Brief Metric History

Contrary to many people's beliefs the metric system is not a "new" measurement system. The original metric system was developed in the 1670's by a French Clergyman. In 1795 France officially adopted the Metric System as their system of measurement. Even within the United States the metric system has a lengthy history. Thomas Jefferson and John Quincy Adams were early promoters of the metric system in the U.S. In fact, the metric system has been a legal measurement system in the U.S. since 1866. By 1893 all standard U.S. measures were defined in metric terms. In 1902, Congressional legislation requiring the Federal Government to use metric exclusively was defeated by just one vote. At the General Conference on Weights and Measures held in 1960, a resolution was adopted which officially named the modern version of metric measurement to be the "International System of Units", abbreviated SI.

Motivation to Use SI in the U.S.

In recent decades there have been several efforts to convert the U.S. from the current measurement systems to the metric or SI system. Most of those efforts have met considerable resistance from the general public. However, the metric system has slowly progressed into everyday life in the U.S. Most people are actually already familiar with many metric terms. The following listing provides some examples of "everyday metric" that are already in use in the U.S.

- light bulbs: 100 watt, 75 watt
- electric bill: 800 kWh used
- voltage ratings: $\mathbf{1 1 0}$ volts, $\mathbf{2 2 0}$ volts
- camera film: 35 mm
- beverages: 2-liter bottle of soda
- medicine: 500 mg aspirin
- nutritional label: 10 grams of fat
- athletic events: 100 meter dash, 10 K run
- automobile engine sizes: 3.2 liter, 3.8 liter
- radio stations: KGGO-94.9 MHz, WOI - 90.1 MHz
- skis: 225 centimeter
- time: seconds

The transition to metric usage in the U.S. has been very slow. However, there are several reasons why the U.S. should accelerate the shift to metric usage.

International communication and competitiveness

The myth that the U.S. is a self-sufficient, super-power country is quickly disappearing. We live in a "global" economy. In order to survive and prosper in this global economy, the U.S. must be able to easily trade and communicate with other countries. The U.S. is the only industrialized country (and one of only three countries total) in the world which does not use SI. People in other countries are not familiar with the U.S. system of measurements which makes trade and communication difficult. Trade with other countries is hampered due to the need for translation of measurements, or other countries simply refusing to purchase our non-SI designed products. If the U.S. is to maintain its leadership in the global economy it must seriously consider a rapid change to SI.

Increased Efficiency

Many companies are reluctant to change to SI because of the inefficiencies that will result due to time lost in learning the new system, and getting up to speed with it. In Canada, which converted to SI in the 1970's, companies have actually shown an improved efficiency due to decreased design costs and simplified dimensioning. A few U.S. firms (Otis Elevator and IBM) have also reported similar benefits.

Simplicity

The structure of the metric system, with base units and prefixes designating powers of 10 , is a more straight forward system than the English system used in the U.S. Whether a person is discussing length (meters) or mass (kilograms) the prefix names and meanings are consistent. For example in the U.S. there are 12 inches in a foot, 3 feet in a yard, and 5280 feet in a mile. Each factor has different
numbers, increasing the likelihood for error between translations. Using metric, when describing larger distances, everything is just a power of $10: 10 \mathrm{~mm}$ in a $\mathrm{cm}, 1000 \mathrm{~mm}$ in a m , and 1000 m in a km . Due to the simplified conversions, there is less chance for mathematical errors. In addition to the simplified conversions, because of the use of prefixes with base units there are fewer "names" to learn or get confused. There are also standardized methods for writing the terms, which leads to less confusion over abbreviations.

Recent History of SI in the Federal Government

On July 25, 1991 President George Bush signed Executive Order 12770 which provides guidelines for departments and agencies in the Federal Government to use metric measures to the extent economically feasible by the end of fiscal year 1992 or by such other date as established in consultation with the Secretary of Commerce.

The Department of Commerce requires federal agencies to use metric and to establish target dates for full implementation of the metric system.

The Department of Transportation and the Federal Highway Administration have established the following target dates for implementation of metric: 1994 - conversion of FHWA manuals, documents and publications, 1995 - data collection and reporting in metric, and September 30, 2000 - all Federal lands Highways and Federal-aid construction contracts must be in metric. This last date is the date which is causing the Iowa State Department of Transportation to also convert to the metric system no later than September 30, 2000. (Note: Recent legislation has shifted the date from September 30, 1996 to September $30,2000$.

Units of Measure For Construction Video - Goals

Understand the base units and common prefixes
Know SI seven base units
Describe standard for length - meter
Describe standard for mass - kilogram
Learn about derived units
Describe force - newton
Describe pressure/stress - pascal
Learn about additional units
Describe temperature - degree Celsius
Describe fluid volumes - liter
Describe volume - m^{3}
The following pages contain an outline/guide which should be used as you view thevideo entitled Units of Measure. Please write any additional notes from the videodirectly on these sheets.
Units of Measure Video Outline
Le Systeme International d"Unites(The International System of Units)Metric system adopted as international standard in 1960Commonly referred to as SI or SI Metric
Seven Base Units
Length
Mass
Time
Electric current
Temperature
Amount of matter
Luminous intensity
meter kilogram second ampere kelvin mole candela

A closer look at length
Base Unit - meter
Definition of a meter - distance light travels in a vacuum in a time interval of $1 / 299,792,458$ of a second

Symbol for a meter - m

Other length measurements used by Iowa DOT
millimeter
Definition of a millimeter - $1 / 1000$ of a meter Symbol - mm
kilometer
Definition of a kilometer - 1000 meters
Symbol - km

Area measurements

$$
\begin{aligned}
& \text { Symbol } \\
& \mathrm{m}^{2} \\
& \mathrm{ha} \\
& \mathrm{~km}^{2} \\
& \mathrm{~mm}^{2}
\end{aligned}
$$

square meters
hectare
square kilometers
square millimeters

A closer look at mass

Base unit - kilogram

Definition - set by a specific physical weight (prototype) held at the International Bureau of Weights and measures

Symbol - kg

Other unit of mass
gram
Definition-1/1000 of a kilogram
Symbol - g

Derived Units

Definition of a derived unit - a unit which is a unique combination of base (or other derived) units which identify a common phenomenon.

Listing of common derived units

frequency
force
pressure energy power quantity of electric charge electric potential electric capacitance electric resistance electric conductance magnetic flux flux density inductance luminous flux illumination radioactivity absorbed dose dose equivalent
hertz
newton
pascal
joule
watt
coulomb
volt
farad
ohm
siemens
weber
tesla
henry
lumen
lux
becquerel
gray
sievert
A closer look at force
unit is the newton
replaces pounds-force in the English system
force $=$ mass x accelerationnewton $=$ kilograms x meter/(square seconds)
$\mathrm{N}=\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}$
Example using "approximate calculations"
(acceleration is used as 10 , which is a rounded number)
$1 \mathrm{~kg} \times 10 \mathrm{~m} / \mathrm{s}^{2}=10 \mathrm{~N}$
Other units of force
kilonewton
Definition - 1000 newtons
Symbol - kN
meganewton
Definition - 1,000,000 newtons
Symbol - MN
A closer look at pressure
unit is the pascal
replaces pounds per square inch (PSI) in the English system
pressure $=$ force/area
pascal = newton/(square meter)
$\mathrm{Pa}=\mathrm{N} / \mathrm{m}^{2}$
Other units of pressure
kilopascal
Definition - 1000 pascals
Symbol - kPa
megapascal
Definition - 1,000,000 pascals
Symbol - MPa
Additional Units

Units that have been approved to be used with SI, even though they are not SI units.

A closer look at temperature
degree Celsius
water freezes $=0^{\circ} \mathrm{C} \quad 32^{\circ} \mathrm{F}$
water boils $=100^{\circ} \mathrm{C} \quad 212^{\circ} \mathrm{F}$
replaces Centigrade from older metric systems
room temperature $=20^{\circ} \mathrm{C}$
normal body temperature $=37^{\circ} \mathrm{C}$

A closer look at volume
Liter - used for fluid volume
Definition - one cubic decimeter
Symbol - L
one liter is approximately 1 quart $+1 / 4$ cup

Other units of volume
milliliter
Definition - $1 / 1000$ of a liter Symbol - mL

Other volumes (non-fluid)

	Symbol cubic meters
m^{3} cubic centimeters	cm^{3}
cubic decimeters	dm^{3}
cubic millimeters	mm^{3}

NOTES FOR IOWA DOT

1) Angular measurements do not change and remain in degrees, minutes and seconds. Even though SI standard is the radian.
2) Measurements made relative to ROW takings, railroad agreements and utility construction will be identified in both English and SI.

Visualizing Metric

Length

1 meter is just a little longer than a yard
1 millimeter, which is 0.001 meters, is about the width of the wire in a paper clip
Length of my hand $=$ \qquad mm or \qquad m

My height = \qquad mm or \qquad m

Dimensions of a 8-1/2" $\times 11^{\prime \prime}$ sheet of paper $=$ \qquad mm x \qquad mm

One pace for me $=$ \qquad m

Height Table (Converted to nearest mm)

Ht	mm	$5^{\prime} 1^{\prime \prime}$	1549	$5^{\prime} 9 \prime \prime$	1753	$6^{\prime} 5^{\prime \prime}$
$4^{\prime} 6^{\prime \prime}$	1372	$5^{\prime} 2^{\prime \prime}$	1575	$5^{\prime} 10^{\prime \prime}$	1778	$6^{\prime} 6^{\prime \prime}$
$4^{\prime} 7^{\prime \prime}$	1397	$5^{\prime} 3^{\prime \prime}$	1600	$5^{\prime} 1981$		
$4^{\prime} 8^{\prime \prime}$	1422	$5^{\prime} 4^{\prime \prime}$	1603	$6^{\prime} 7^{\prime \prime}$	2007	
$4^{\prime} 9^{\prime \prime}$	1448	$5^{\prime} 5^{\prime \prime}$	1651	$6^{\prime} 0^{\prime \prime}$	1829	$6^{\prime} 8^{\prime \prime}$
$4^{\prime} 10^{\prime \prime}$	1473	$5^{\prime} 6^{\prime \prime}$	1676	$6^{\prime} 1^{\prime \prime}$	1854	$6^{\prime} 9^{\prime \prime}$
$4^{\prime} 11^{\prime \prime}$	1499	$5^{\prime} 7^{\prime \prime}$	17032	$6^{\prime} 2^{\prime \prime}$	1880	$6^{\prime} 10^{\prime \prime}$
$5^{\prime} 0^{\prime \prime}$	1524	$5^{\prime} 8^{\prime \prime}$	1727	$6^{\prime} 3^{\prime \prime}$	1905	$6^{\prime} 11^{\prime \prime}$
2108						

Mass
1 nickel (5 cents) has a mass of 5 grams
100 pounds is about 45 kilograms
A long ton is about equal to a metric tonne (t) which is equal to a megagram $(\mathrm{Mg}$).
My mass = \qquad kg

Mass table (Converted to nearest $0.1 \mathbf{~ k g}$)

$\mathbf{w t (l b})$	$\mathbf{k g}$	130	59.0	190	86.2	250	113.4
75	34.0	135	61.2	195	88.5	255	115.7
80	36.3	140	63.5	200	90.7	260	117.9
85	38.6	145	65.8	205	93.0	265	120.2
90	40.8	150	68.0	210	95.3	270	122.5
95	43.1	155	70.3	215	97.5	275	124.7
100	45.4	160	72.6	220	99.8	280	127.0
105	47.6	165	74.8	225	102.1	285	129.3
110	49.9	170	77.1	230	104.3	290	131.5
115	52.2	175	79.4	235	106.6	295	133.8
120	54.4	180	81.6	240	108.9	300	136.1
125	56.7	185	83.9	245	111.1		

Temperature

Degree Celsius	
177	Equals
100	Wategree oven
37	Normalls body temperature of 98.6
22	room temperature (72)
10	spring or fall day (50)
0	Water freezes (32)
-12	Typical Iowa winter temperature (10)
-18	Zero degrees Fahrenheit (0)
-30	Frigid winter night in Iowa (-22)

Pressure

Auto tire pressure of 28 (PSI) equals roughly 200000 Pa
or 200 kPa or 0.2 MPa

Area

A hectare is about 2.5 acres.
A square mile is about 2.5 square kilometers.

Volume

A quart is a little smaller than a liter.
1 teaspoon is about 5 mL .
A concrete mixer truck holds about 7 cubic meters of ready-mix concrete (about 9 cubic yards).
A typical straight truck holds about 8.5 cubic meters of gravel (about 11.5 cubic yards).

Worksheet Review

1. Which of the following metric units is used to express fluid volume?
A. liter
B. cubic centimeter
C. pascal
D. hectare
2. Which unit of measuring temperature would be used in construction situations?
A. degree Fahrenheit
B. degree Centigrade
C. kelvin
D. degree Celsius
3. Newton replaces which unit in the English system?
A. pounds per square inch
B. pound force
C. pounds per cubic inch
D. pound mass
4. Iowa DOT drawings should use which of the following units? (Circle all that apply.)
A. meter
B. centimeter
C. millimeter
D. megameter
5. On the Celsius scale, water freezes at what temperature?
A. $\quad 32^{\circ} \mathrm{C}$
B. $\quad 100^{\circ} \mathrm{C}$
C. $0^{\circ} \mathrm{C}$
D. 0 K
6. Which SI metric unit listed here would be appropriate to use for expressing the volume of concrete or fill?
A. cubic decimeter
B. cubic meter
C. liter
D. ton
7. Which of the following is the same as 200 meters?
A. $\quad 0.02 \mathrm{~km}$
B. $\quad 2 \mathrm{~km}$
C. $\quad 0.2 \mathrm{~km}$
D. 20 km

Worksheet Review

8. Which is the same as 3 meters?
A. $\quad 0.03 \mathrm{~km}$
B. $\quad 3000 \mathrm{~mm}$
C. $\quad 300 \mathrm{~mm}$
D. 0.3 km
9. Which of the following represents the longest length?
A. $\quad 3.0 \mathrm{~m}$
B. $\quad 450 \mathrm{~mm}$
C. $\quad 0.05 \mathrm{~km}$
D. $\quad 20.0 \mathrm{~cm}$
10. SI refers to:
A. The system interfaces necessary to implement metric in computers.
B. The internationally accepted metric system used today.
C. The governing organization that establishes metric rules and policies.
D. The international strategies that created the first metric system.
11. On the moon, acceleration of a falling object caused by gravity is about $1.7 \mathrm{~m} / \mathrm{s}^{2}$. Using the proper metric unit, what is the gravity force of a two kilogram object?
A. $\quad 3.4$ pascals
B. $\quad 1.7$ pascals
C. $\quad 3.4$ newtons
D. $\quad 1.7$ newtons
12. Which SI unit replaces PSI in the English measurement system?
A. $\quad \mathrm{kg} / \mathrm{m}^{2}$
B. $\quad \mathrm{N}$
C. Pa
D. $\quad N \cdot m$

Road Design

Unit 2

This part of the workshop will provide a brief introduction to the basic of converting measurements from English units to SI Metric. The majority of the time in this unit will be dedicated to working sample conversion and SI metric road design problems. Topics covered will include:

- Hard vs. Soft Conversion
- Use of Conversion Tables
- SI Road Design Problems

Types of Conversions

Hard Metric Conversion

original design done in metric (use metric standards)
steps required:
calculate measurement in metric (use conversion factors if "thinking" in English)
select a preferred metric dimension that meets design performances needed
Example: to design a product that needs a bolt.... if this was originally designed in English units you would have selected a $3 / 4^{\prime \prime} \times 4^{\prime \prime}$ hex cap bolt. Determine what standard metric bolt you will want to use in this new metric design.

First determine "equivalent" diameter
1 inch $=25.4 \mathrm{~mm}$
$3 / 4^{\prime \prime}=>(3 / 4)(25.4)=.75(25.4)=19.05 \mathrm{~mm}$
closest common (standard) metric diameter screw is 20 mm called an M20
Next determine "equivalent" length
1 inch $=25.4 \mathrm{~mm}$
$4^{\prime \prime} \Rightarrow 4(25.4)=101.6 \mathrm{~mm}$
closest common (standard) metric length is 100 mm
Metric screw to use would be M20 x 100

Soft Metric Conversion

original design in English (use English Standards)
steps required:
use conversion factors to translate English unit to metric measurement round measurement to intended precision
examples:
if English design calls for 1 lb use conversion factor and specify 454 g (0.454 kg)
if English design calls for 1 qt use conversion factor and specify 0.9463 L

Conversion Factors

When converting English units to SI units you will need to use conversion factors. Conversion tables can come in many different formats. For this workshop we will be using conversion tables that look like this:

Quantity	From	To	Multiply by
Length	ft	m	0.3048
	in	m	25.4×10^{-3}
	yd	m	0.9144
Mass	lbm	kg	0.4536

EXAMPLES:

A. Convert 1000 yards to meters using the conversion table above:

1000 yards $\quad \mathbf{x} \quad 0.9144$ meters $/$ yard $=914.4$ meters
B. Convert $5^{\prime} 7$ " to SI units

First convert 5^{\prime} to inches... must have all one unit only to convert
So $5 \times 12=60^{\prime \prime}$ plus the $7^{\prime \prime}=67^{\prime \prime}$
Now convert the 67" to meters
67 inches $\times 25.4 \times 10^{-3} \mathrm{~m} / \mathrm{inch}=1.7018 \mathrm{~m} \Rightarrow 1.7 \mathrm{~m}$

Road Design Problems

A. A horizontal curve is being designed for a relocated roadway. What it the minimum length of radius required for each of the following design speeds, a maximum rate of superelevation of 8% and a frictional factor of 0.11 ?
$\mathrm{R} \mathrm{m}(\mathrm{min})=\mathrm{V}^{2} / 127[(\mathrm{e} \max / 100+\mathrm{f}$ maximum $)]$

1. $80 \mathrm{~km} / \mathrm{h}$
2. $100 \mathrm{~km} / \mathrm{h}$
3. $110 \mathrm{~km} / \mathrm{h}$
B. What length of spiral curve would be required for the $110 \mathrm{~km} / \mathrm{h}$ curve radius in question A? Round to nearest 5 m .
$\mathrm{L} \mathrm{m}=0.0702\left(\mathrm{~V}^{3}\right) / \mathrm{RC}$ where $\mathrm{C}=1$
C. Calculate the Length of Curve, Tangent and External distances for the $110 \mathrm{~km} / \mathrm{h}$ curve with a delta angle of 6 degrees.
$\mathrm{L}=3.1416$ (R) (delta angle)/ $/ 80$
$T=R(T a n(1 / 2$ delta))
$E=R[(1 / \operatorname{Cos}(1 / 2$ delta $))-1]$
D. What is the minimum length of stopping sight distance required to provide adequate distance for design speeds of $100 \mathrm{~km} / \mathrm{h}$, a friction factor of 0.28 and a maximum grade of -3% ?
$\mathrm{d}_{2}=\mathrm{V}^{2} / 254\left(\mathrm{f}_{ \pm} \mathrm{G}\right)$
$\mathrm{d}_{1}=0.278 \mathrm{tl} \mathrm{V} \quad$ assume $\mathrm{t}_{1}=2.5 \mathrm{~s}$
E. Passing sight distance is to be designed for a given highway. Calculate the total distance required to complete the pass safely from the equations below.
$D=d_{1}+d_{2}+d_{3}+d_{4}$
$\mathrm{d}_{1}=0.278 \mathrm{t}_{1}(\mathrm{~V}-\mathrm{m}+\mathrm{at} 1 / 2) \quad \mathrm{d}_{2}=0.278\left(\mathrm{vt}_{2}\right)$
$\mathrm{d}_{3}=30$ to $90 \mathrm{~m} \quad \mathrm{~d}_{4}=2 / 3 \mathrm{~d}_{3}$

Assume: $\mathrm{t}_{1}=3-4.5 \mathrm{~s}, \mathrm{~m}=5 \mathrm{~km} / \mathrm{h}, \mathrm{a}=1$, $\mathrm{t}_{2}=9.3-11.3 \mathrm{~s}, \mathrm{~V}=80 \mathrm{~km} / \mathrm{h}$
F. The designer of a given horizontal curve desires to use a superelevation transition runoff. What length (nearest 5 m) is required for the runoff to accommodate a $100 \mathrm{~km} / \mathrm{h}$ design speed, friction factor of 0.4 and a C value of 1.0 ?
$\mathrm{L}=2.72 \mathrm{f}_{\mathrm{V}} / \mathrm{C}$
G. Using the values from Table III-35 (AASHTO Green Book) for crest vertical curves, determine the difference in desirable length required to provide stopping sight distance for the following grades of $+2.0 \%$ and -2.5% if the designer changes from a $100 \mathrm{~km} / \mathrm{h}$ to $110 \mathrm{~km} / \mathrm{h}$ design speed?

Design Speed (km/h)	Assumed Speed for Condition (km / h)	Cocflicient of Friction f	Stopping Sight Distance for Design (m)	Rate of Vertical Curvature, K (length (m) per \% of A)	
				Computed	Rounded for Design
30	30-30	0.40	29.6-29.6	2.17-2.17	3-3
40	40-40	0.38	44.4-44.4	4.88-4.88	5-5.
50	47-50	0.35	57.4-62.8	8.16-9.76	9-10
60	55-60	0.33	74.3-84.6	13.66-17.72	14-18
70	63-70	0.31	94.1-110.8	21.92-30.39	22-31
80	70-80	0.30	112.8-139.4	31.49-48.10	32-49
90	77-90	0.30	131.2-168.7	42.61-70.44	43-71
100	85-100	0.29	157.0-205.0	61.01-104.02	62-105
110	91-110	0.28	179.5-246.4	79.75-150.28	80-151
120	98-120	0.28	202.9-285.6	101.90-201.90	102-2012

Table lll-35. Design controls for crest vertical curves.

When $S<L \quad L=A S^{2 / 404}$
When $S>L \quad L=2 S$ - 404/A
H. A minimum length of vertical crest curve is usually defined by the equation: $\mathrm{L} m=0.6 \mathrm{~V}$. Calculate the minimum length of curve for a design speed of $100 \mathrm{~km} / \mathrm{h}$.
I. You are being asked to revise the length of curve calculated in problem G to allow for passing sight distance for the $110 \mathrm{~km} / \mathrm{h}$ design speed using the following equations and Table III-36.

Design Speed $(\mathbf{k m} / \mathrm{h})$	Minimum Passing Sight Distance for Design (\mathbf{m})	Rate of Vertical Curvature, K, Rounded for Design (length (m) per \% of A)
30	217	50
40	285	90
50	345	130
60	407	180
70	482	250
80	541	310
90	605	390
100	670	480
110	728	570
120	792	670

Table III-36. Design controls for crest vertical curves based on passing sight distance.

When $\mathrm{S}<\mathrm{L} \mathrm{L}=A \mathrm{~S}^{2 / 946}$
When $S>L \quad L=2 S$ - 946/A
J. An access road connection with the mainline design requires a sag curve be designed. The limiting grades in this case are -2.8% and $+0.5 \%$ and the design speed is $90 \mathrm{~km} / \mathrm{h}$. Using the given information and Table III-37, compute the required desirable length of curve.

Assumed Design Speed (km / h)	Speed for Condition (km/h)	Coefficient of Friction f	Stopping Sight Distance for Design (m)	Rate of Vertical Curvature, K (length (m) per \% of A)	
				Computed	Rounded for Design
30	30-30	0.40	29.6-29.6	3.88-3.88	4-4
40	40-40	0.38	44.4-44.4	7.11-7.11	8-8
50	47-50	0.35	57.4-62.8	10.20-11.54	11-12
60	55-60	0.33	74.3-84.6	14.45-17.12	15-18
70	63-70	0.31	94.1-110.8	19.62-24.08	20-25
80	70-80	0.30	112.8-139.4	24.62-31.86	25-32
90	77-90	0.30	131.2-168.7	29.62-39.95	30-40
100	85-100	0.29	157.0-205.0	36.71-50.06	37-51
110	91-110	0.28	179.5-246.4	42.95-61.68	43-62
120	98-120	0.28	202.9-285.6	49.47-72.72	50-73

Table III-37. Design controls for sag vertical curves.

```
S < L L = AS }\mp@subsup{}{}{2}/(120+3.5S
S > L L = 2S -[(120+3.5S)/A]
```

K. What minimum length of sag curve would be allowed in problem J to meet the comfort criteria outlined by AASHTO?
L m $=\mathrm{AV}^{2} / 395$
L. A drainage site requires obtaining a permanent easement for storm water detention of 1 square mile. How many hectares of easement will you ask the ROW Department to purchase?
M. Bridge clearances noted on last years' inspection record were identified as 14.5 feet. What is the clearance (0.1 m)?

N . The needs study crew has indicated that an existing roadway consists of a 22 foot wide pavement and 8 foot granular shoulders. What metric pavement and shoulder dimensions will you use to connect the existing roadway to you extension?

Unit 2-SI Applications in Road Design Activities

O. Sketch a typical cross section of a roadway that you might be designing. Include a cut situation on one half and a fill situation on the other side of the roadway. Identify each of the key horizontal and vertical dimensions on the sketch, including any subbase, base and pavement dimensions in international units.
P. You have been assigned a project to design using international units of measure. The End of Project Station (English) from the previous project is $675+50.25$. Convert the EOP station to international units and then express both stations as an equation.
Q. Utilizing selected portions of pages from a set of Sioux County Highway 18 plans answer the following questions:

1. Sheet A. 01 Title Sheet - What is the total length of the project (Divisions I and II) in meters?
2. Sheet A. 01 Title Sheet - Assume that the project is extended through the city of Hull to the East Corporate Line. Estimate the revised End of Project Station for Division II.
3. Sheet B. 01 Standard Sections - What is the total volume of granular surfacing to be applied in accordance with Plate 2108 ? Assume a depth of 155 mm .

What mass of material does this represent in Mg if the material has a mass of $4100 \mathrm{~kg} / \mathrm{m}^{3}$?
4. Sheet B. 03 Standard Sections - What is the length of the granular subbase placement in Plate 2211 in kilometers?

5. Sheet B. 03 Standard Sections - What is the volume of special backfill to be placed in accordance with Plate 2209?
6. Sheet B. 03 Standard Sections - Calculate the m^{2} of concrete to be placed in accordance with Plate 2201.
7. Sheet C. 01 Quantities Estimate - Note the units of measure for the common items of work and the associated level of accuracy.
8. Sheets C. 01 and C. 02 Estimate Details - Assuming that the seeding will be accomplished between May 21 and July 20, calculate the amount of each seed that will be required for the rural portion of the project.
9. Sheet C. 04 Drainage Structures - How many meters of type $1601,750 \mathrm{~mm}$ diameter pipe should be ordered?

| $\begin{array}{l}\text { For Traffic Control Plan } \\ \text { Refer to Sheet No. C. } 03\end{array}$ |
| :--- | :--- |

SIOUX coanir \quad matce muar STTP-18-1(999)--2C-84
sefit miner
C. 04
10. Sheet D. 01 Plan and Profile - What volume of class 10 and unsuitable material is identified for excavation in the balance represented on this page?
11. Sheet D. 01 Plan and Profile - What are the elevations of the beginning and end of the special ditch (left side) between stations $5+00$ and $6+00$?

I
 Bridge Design

Introduction:

The bridge structures area is one that can cause serious problems in the conversion of existing inch-pound (English) values to international units. The problem stems from the fact that the conversion can seem deceptively simple because most measurements have implied, not expressed, tolerance. Many of these products are identified in easy-to-use nominal sizes, rather than actual sizes. Designers working in structural design have an intuitive knowledge of allowable tolerances in measurements that they use daily and know how the difference between nominal and actual sizes effects the product. Remember the following points when converting and rounding to metric units.

1. Conversion should be performed by experienced professionals. Any Automated conversion program should be used with care.
2. Understand the allowable tolerance for the measurements you are converting.
3. Always convert with the end application or us in mind. Remember, dimensional tolerance on the job are rarely less than a few millimeters and that it is considerably easier for field personnel to measure in 10 mm increments.
4. The most common conversion error is under-rounding which implies more precision than is inherent in the inch-pound number. If your linear conversions are accurate to 0.1 mm or even 1 mm , you are probably doing them incorrectly. Any dimension over a few inches, can usually be rounded to the nearest 5 mm and any dimension over a few feet, can be rounded to the nearest 10 mm .

Hard Conversion Concerns:

Concrete strength is one of the areas that can result in design problems associated with hard conversion of values. Some agencies have converted 4000 psi concrete to 30 MPa . A 30 MPa concrete soft converts to 4350 psi concrete - nearly 9% higher than the old design strength. The rounding results in concrete that may not have the same strength properties as originally tested. This type of problem is under consideration by the ACI organization. A compromise is the use of at least two and more commonly used three significant digits to create the value of 3.45 MPa .

Example Problems

A. A three span bridge was originally designed in English units with span lengths of 30'-6", 39'-0" and $30^{\prime}-6^{\prime \prime}$ for a total length of $100^{\prime}-0^{\prime \prime}$.

1. Determine the length of the bridge by soft converting each span and by converting the entire length.
2. Is there a difference in the results and if so what is the significance?
B. Concrete was originally designed for a compressive strength of 4000 psi . If this is hard converted to international units and the concrete is redesigned, will the strength requirement increase or decrease and by what amount?
C. A reinforced concrete section requires 4.0% steel area per m^{2}. Using the tables on the following page, determine:
3. Number of 10 M bars to be placed per m^{2} :
4. Number of 30 M bars to be placed per m^{2} :
D. You are being asked to design several culverts for an upcoming project. Utilizing culvert standard MRCB-1800-1-95 determine the following quantities:
5. Volume of concrete required to build the barrel section of culvert 20 m in length, 1800 mm in width and 900 mm in height and under a fill height of 4300 mm .
6. What mass of steel is required for the culvert barrel identified in question 1 ?
7. If the height of fill is increased to 6500 mm , what difference will result in the mass of steel required?

ASTM A615 CHART FOR REINFORCING STEEL BARS					
Inch-Pound Bar Size Designation	Nominal Weight $\mathrm{lb} . / \mathrm{ft}$. $\quad(\mathrm{kg} / \mathrm{m})$	Nominal Dimensions			
		$\begin{gathered} \text { Diameter } \\ \text { in. } \quad(\mathrm{mm}) \\ \hline \end{gathered}$		Cross Sectional Area $\mathrm{in}^{2} \quad\left(\mathrm{~mm}^{2}\right)$	
\#3	0.376 (.560)	0.375	(9.5)	0.11	(71)
\#4	0.668 (.994)	0.500	(12.7)	0.20	(129)
\#5	1.043 (1.552)	0.625	(15.9)	0.31	(200)
\#6	1.502 (2.235)	0.750	(19.1)	0.44	(284)
\#7	2.044 (3.042)	0.875	(22.2)	0.60	(387)
\#8	$2.670 \quad$ (3.974)	1.000	(25.4)	0.79	(510)
\#9	$3.400 \quad$ (5.060)	1.128	(28.7)	1.00	(645)
\#10	4.303 (6.404)	1.270	(32.3)	1.27	(819)
\#11	5.313 (7.907)	1.410	(35.8)	1.56	(1006)
\#14	7.65 (11.39)	1.693	(43.0)	2.25	(1452)
\#18	13.60 (20.24)	2.257	(57.3)	4.00	(2581)

ASTM A615M CHART FOR REINFORCING STEEL BARS				
Metric Bar Size Designation	Nominal Mass kg/m	Nominal Dimensions		Comparison To A615
		Diameter mm	Cross Sectional Area mm^{2}	
10M	0.785	11.3	100	20\% < \#4
15M	1.570	16.0	200	SAME AS \#5
20M	2.355	19.5	300	6.8\% > \#6
25M	3.925	25.2	500	1.3\% < \#8
30M	5.495	29.9	700	9\% > \#9
35M	7.850	35.7	1000	0.6\% < \#11
45M	11.775	43.7	1500	3.5\% > \#14
55M	19.625	56.4	2500	$3 \%<\# 18$

E. The allowable working stress compression for douglas fir, coast type wood piling, parallel to the grain is 1200 psi according to AASHTO. What stress value will be used on the metric plans to obtain this same compression capability?
F. A hooked bar requires that the outer radius of the bend be $4 \times$ bar diameter for the 15 M bar. Using the information on the following page:

1. Describe the length of inner and outer radius in terms of mm.
2. The same specification requires 4 bar diameters of length from the end of the 180 degree turn to the short end of the bar. In this case, identify the length of bar represented by this requirement.

CONCRETE REINFORC STEEL INSTITUTE 933 N. Plum Grove Road, Schaumburg, IL 60173 Phone: (708) 517-1200				
AN Grades D-Finished db = Nomin	ANDA HOOK accordan inside bend diam bar dlameter	ARD D e with ter Hook A or G	ACl 318 D - 6 db for 4 $D-8 \mathrm{do}$ for $D=10 \mathrm{ds}$ for	RIC S M through $\boldsymbol{\$ 2 5 M}$ M and 35 M 5 M and $\$ 55 \mathrm{M}$
RECOMMENDED END HOOKS, ALL GRADES				
$\begin{aligned} & \hline \text { BAR } \\ & \text { SIZE } \end{aligned}$	D	$180^{\circ} \mathrm{HOOKS}$		$90^{\circ} \mathrm{HOOKS}$
		A or G	J J	A or G
\#10M	70	140	90	180
*15M	100	180	130	260
\#20M	120	220	160	320
*25M	150	280	200	400
*30M	240	400	300	500
*35M	290	460	360	600
\#45M	440	660	520	780
\#55M	560	860	680	1020
NOTE: All dimensions are in milmmeters (mm).				
$\begin{aligned} & \hline \text { STEEL } \\ & \text { TYPE } \end{aligned}$	baR SIZE RANGE	GRADE	$\begin{aligned} & \text { MINIMUM } \\ & \text { YELD, MPa } \end{aligned}$	$\begin{aligned} & \text { MINIMUMM } \\ & \text { TEUSILE, MPI } \end{aligned}$
$\begin{aligned} & \text { Billet } \\ & \text { A615M } \end{aligned}$	$\begin{aligned} & \begin{array}{l} \# 10 \mathrm{M}-+20 \mathrm{M} \\ +10 \mathrm{M}-\# 55 \mathrm{M} \\ +35 \mathrm{M}-+55 \mathrm{M} \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & 300 \\ & 400 \\ & 500 \\ & \hline \end{aligned}$	$\begin{aligned} & 300 \\ & 400 \\ & 500 \\ & \hline \end{aligned}$	$\begin{aligned} & 500 \\ & 600 \\ & 700 \\ & \hline \end{aligned}$
$\begin{aligned} & \text { Rail } \\ & \text { A616M } \end{aligned}$	$\begin{aligned} & \# 10 \mathrm{M}-* 35 \mathrm{M} \\ & \# 10 \mathrm{M}-\# 35 \mathrm{M} \\ & \hline \end{aligned}$	$\begin{aligned} & 350 \\ & 400 \end{aligned}$	$\begin{aligned} & 350 \\ & 400 \\ & \hline \end{aligned}$	$\begin{aligned} & 550 \\ & 600 \end{aligned}$
$\begin{gathered} \text { Axle } \\ \text { A } 617 \mathrm{M} \end{gathered}$	$\begin{aligned} & \text { \#10M-\#35M } \\ & \text { \# } 10 \mathrm{M}-\# 35 \mathrm{M} \end{aligned}$	$\begin{aligned} & 300 \\ & 400 \\ & \hline \end{aligned}$	$\begin{aligned} & 300 \\ & 400 \\ & \hline \end{aligned}$	$\begin{aligned} & 500 \\ & 600 \end{aligned}$
$\begin{aligned} & \text { Low-Alloy } \\ & \text { A706M } \end{aligned}$	\#10M- 55 M	400	400	550
OCTOBER 1993				

COMBINED ASTM A615/A615M CHARTFOR REINFORCING STEEL BARS			
$\begin{array}{\|c} \text { Bar Size } \\ \text { Designation } \\ \hline \end{array}$	Nominal th.ft.	Nominal Dimensions	
		Diameter in.	Cross Sectional Area in?
\#3	0.376	0.375	0.11
10M	0.527	0.445	0.16
\% 4	0.668	0.500	0.20
75	1.043	0.625	0.31
15M	1.055	0.630	0.31
\%	1.502	0.750	0.44
20 M	1.582	0.768	0.47
\#7	2.044	0.875	0.60
25M	2.637	0.992	0.78
\#8	2.670	1.000	0.79
\#9	3.400	1.128	1.00
30M	3.692	1.177	1.09
\%10	4.303	1.270	1.27
35M	5.275	1.406	1.55
\#11	5.313	1.410	1.56
\#14	7.65	1.693	2.25
45M	7.91	1.720	2.33
55M	13.19	2.220	3.88
\#18	13.60	2.257	4.00
91015 M 3			CP16A

G. An existing culvert site (as built plans) has identified flow line elevations of 842.50 ft . and 840.00 ft . You have been asked to convert the elevations to metric and lower the inlet 25.4 mm and the outlet 10 mm . What are the design elevations to be placed on the plans?
H. The Iowa DOT Specifications indicate that a prestressed, precast unit may not vary in length \pm 6 mm per 8 m or $\pm 25 \mathrm{~mm}$ maximum. A 28.01 m beam is measured at the casting yard. Is this beam acceptable for shipment to the project?
I. Specifications indicate that the Engineer shall compute the mass of the structural steel elements to be incorporated into the structure assuming masses of steel at $7850 \mathrm{~kg} / \mathrm{m}^{3}$ and cast iron at $7210 \mathrm{~kg} / \mathrm{m}^{3}$. Compute the mass of the following rectangular bar stock:

1. Cast Iron bar -10 mm by 5 mm by 30 m
2. Steel bar -22 mm by 0.10 m by 25.50 m
J. A bridge deck is to be built as part of a superelevated curve. The centerline elevation at Station $25+65.00$, in full superelevation is 474.25 m . Assuming an 8% superlevation rate, what will the elevation be at each gutter line 5600 mm from centerline?
K. A wood deck is to be placed on a residential drive access bridge. It will consist of a double layer of 0.075 m thick wood planking. Specifications indicate a need for nails that are not less than 2.5 times the nominal thickness of the decking. What length mm nails will you specify for use in this work?
L. Concrete bridge floors are to be placed only when the temperature is below $32^{\circ} \mathrm{C}$. The contractor has misplaced the Celsius thermometer and the Fahrenheit thermometer indicates a temperature of $95^{\circ} \mathrm{F}$. Should you allow the concrete to be placed in the bridge floor?
M. Bridge decks are to be covered with curing compound at the rate of not more than $3.3 \mathrm{~m}^{2} / \mathrm{L}$. It the deck dimensions are 55.40 m by 13.50 m , what is the maximum volume of curing compound that is acceptable for use?

N . A two slab bridge, 40 m in length by 13.5 m width, is to be built on a $+2 \%$ longitudinal grade with a cross slope of 2% from centerline. If the finish elevation of the center cap is 248.60 m and the depth of deck is 250 mm , what will the elevations of be at each gutter line at the four corners of the deck?
O. A roadway crosssection consisting of a 13 m width, $3: 1$ foreslopes and a centerline grade elevation of 848.50 m at Sta $49+00$ is the location for a culvert. The 2700 mm diameter culvert is to be placed with an invert elevation of 838.00 m and an outlet elevation of 837.50 m . What is the length of the culvert in meters?
P. Specifications indicate that multiple pipe culvert structures must be spaced at 50% of the pipe diameter and not more than 1 m apart. Two 1200 mm diameter pipes are being placed. What spacing will be specified?

Unit 3 - SI Applications in Bridge Design Activities

Q. The bearing capacity for gravity hammers of a piling (wood, steel H or shell pile) where the wave equation is not required is computed by the formula:
$\mathrm{P}=[2.5 \mathrm{WH} /(\mathrm{S}+8.9)][\mathrm{W} /(\mathrm{W}+\mathrm{M})]$
where $\quad \mathrm{P}=$ The bearing value in kilonewtons
$\mathrm{W}=$ The mass of the gravity hammer, or the ram of the air hammer or diesel hammer in kilograms
$\mathrm{H}=$ The height of free fall or the hammer or ram in meters
$\mathbf{M}=$ The mass in kilograms of the pile plus the mass in kilograms of the cap plus (for diesel hammers) the mass of the anvil in kilograms.
$\mathrm{S}=$ The average penetration in millimeters of the pile per blow for the last 5 blows for gravity hammers and the last 10 blows for air or diesel hammers.

Assuming the mass of the hammer is 2500 kg , the height of free fall is 600 mm , mass of pile and cap is 1200 kg , and the average penetration per blow is 0.022 m . What is the bearing capacity of the piling?

I
 Record Keeping

This part of the workshop will introduce you to the basic reading and writing rules of SI Metric and some of the standard conventions used in the Iowa DOT. Following these few simple rules will make it easier for us to understand each other, and lessen the chance for errors or misinterpretation. Topics covered will include:

- Proper notation
- Prefixes
- Separating digits
- Spacing
- Capitalization
- Intended Precision
- Rounding
- Spelling
- Singular/Plurals
- Decimal markers
- Powers of ten

At the end of this unit you will have the opportunity to complete a worksheet which will help you demonstrate your grasp of the metric concepts covered in this part of the workshop.

The following pages contain an outline/guide which was extracted from a video entitled SI Metric: Reading, Writing, Rules. Although you will not be viewing this video as part of this workshop, the information in the outline may be helpful to you in the future.

Reading, Writing, Rules Video Outline

Reasons for correct usage

avoid mistakes
eliminate need for translation

SI Symbols
 most are lower case
 exceptions - when the symbol is derived from a proper name
 no periods - these are not abbreviations!
 no plurals or " s " on symbols

unit names	symbols
meter	m
kilogram	kg
newton	N
pascal	Pa
square meter	m^{2}
cubic meter	m^{3}
liter	L
degree Celsius	${ }^{\circ} \mathrm{C}$

Prefixes

no space between prefix and unit
no hyphen between prefix and unit
all prefixes below $1,000,000$ (mega) have lower case symbols all prefixes from mega and above the prefixes are uppercase symbols
never mix with abbreviations
examples:

name	symbol
kilogram	kg
meganewton	MN
kilopascal	.

Prefixes continued:

only one prefix allowed
No -- kMN or Mmm

Spelling, Capitalizing, and Plurals

Unit names when written out are all lower case... even those derived from proper names such as pascal and newton. The only exception is degree Celsius

In the U.S. use meter and liter (not metre and litre)
Plural may use an optional " s " don't need it
kilogram or kilograms
between the prefix and the unit: no separation (not milli meter) no hyphens (not milli-meter)
millimeter is correct
degree Celsius or degrees Celsius

For area or volumes.... square and cubic are written first in name, but shown as an exponent in symbol

name	symbol
square meter	m^{2}
cubic meter	m^{3}

(Not meters square)

Spacing

leave a space between the numerical value and the SI unit symbol
Examples:
35 mm
7.63 kPa

NOTE: The video is wrong when it discusses degrees Celsius. There is NOT a space between the numeric value and the degree symbol.

Example:
Wrong ---- $37^{\circ} \mathrm{C}$
Correct --- $37^{\circ} \mathrm{C}$

Unit 4 - SI Applications in Record Keeping

Obsolete Metric

Old	Correct SI
10K	10 km
K	kg
KPH	km / h
kilos	kilograms
grm or gm	g
Newton	newton
cc, ccm	cm^{3}

Decimal Points, Commas, and Groups of Three

if number is a decimal less than 1 , use a leading " 0 " (Example: 0.1234)
outside of the U.S. many people use a comma instead of a period to indicate the decimal point. this can be confusing
1.33 US $=1,33$ Outside US
rather than grouping every three numbers with a comma, as we do in the US, SI uses a small space
$\begin{array}{ll}\text { old US English system } & 1,365,020.034589 \\ \text { SI } & 1365020.034589\end{array}$
SI system (using decimal point) 1365020.034589
group all numbers in three except when it is only a four digit number

Correct:	4567.987
Incorrect:	4567.987

NOTE: The Iowa DOT will continue to use the standard English system method of grouping. The period will still be used for the decimal point, and commas will be used to separate every three digits.

Powers of Ten

sometimes people prefer to represent values as powers of ten of the base unit rather than using the prefixes

Examples:	
power of 10 representation equivalent SI prefix $123.4 \times 10^{-3} \mathrm{~m}$ 123.4 mm $12.34 \times 10^{6} \mathrm{~N}$ 12.34 MN $1.234 \times 10^{3} \mathrm{~Pa}$ 1.234 kPa.	

Intended Precision

"Wat does the number really reflect, and how will it be used"
Example of a quart of oil
$1 \mathrm{qt}=0.9463529 \mathrm{~L}$
however, when you add oil to your car... would substitute 1 L for 1 qt (you are not going to measure to 0.0000001 L to get 0.9463529 L)

All conversions must reflect an intended precision of the original quantity which can be implied by significant digits (and/or tolerance)

Examples:
1.54 quarts has 3 significant digits
intended precision is $+/$ - one-half of the last significant digit
1.54 +/- 0.005
1.535 ... $1.54 \ldots 1.545$ (true measurement somewhere between 1.535 and 1.545)

given number	probable intended precision	range number between
5.14	$+/-0.005$	$5.135 \ldots 5.145$
645.117	$+/-0.0005$	$645.1165 \ldots 645.1175$
10.	$+/-0.5$	$9.5 \ldots 10.5$
10	$+/-1$	$9 \ldots 11$

Be cautious with decimals... could represent fractions and mislead you on the number of significant digits. For example: 3.1875 could mean 3.1875 or $3-3 / 16$. Would have different "intended precision" with these two.

Be cautious of numbers with no decimal places... " 5 " could mean approximately 5 or could mean 5.0000

Knowledge of the circumstances related to the measurement are important
understand accuracy of measuring equipment
origination of the measurement
purpose of the original measurement
purpose of the conversion
(all of the above give you information about the intended precision)

Rounding Rules

If number after last significant digit to be saved is less than 5 , drop the numbers
4.763534 round to 2 after decimal place $=4.76$
234.8732 round to 3 after the decimal place $=234.873$

87632 round to nearest hundred $=87600$
If the number after last significant digit to be saved is greater than 5 , add one to last number
4.763534 round to 1 after the decimal place $=4.8$
234.8732 round to 1 after the decimal place $=234.9$

87632 round to nearest thousand $=88000$

Unit 4 - SI Applications in Record Keeping

Rounding Rules (continued)

If the number after the last significant digit to be saved is exactly equal to 5 (with nothing after it) then
... Make the number an even number.....
If the last significant digit is odd... round up If the last significant digit is even... do nothing (drop 5)
476.55 round to 1 after decimal $=476.6$
445.25 round to 1 after decimal $=445.2$

Importance of Estimating

When doing conversion calculations, it is easy to hit the wrong key on the calculator therefore it is important to do two things:

1) double check the answer (punch the numbers again) to see if you get the same answer
2) verify your answer using estimations and common sense

For example if you are converting 25 miles per hour to kilometers per hour....
Your answer should be $25 \times 1.609=40.225 \mathrm{~km} / \mathrm{h} \Rightarrow 40 \mathrm{~km} / \mathrm{h}$
However if you typed 16.09 instead of 1.609 your answer would say 402.25 or $402 \mathrm{~km} / \mathrm{h}$
When you get your answer stop and think... use your visualizing metric rules of thumb, does the answer seem logical???

We know that a kilometer is a little more than half a mile (about .6). Therefore in the same amount of time (one hour) we would expect to go almost twice as many kilometers as miles (or 50). An answer of 402 is obviously not the correct. The correct answer of 40 is reasonable.

The more familiar you become with SI metric units, the easier it will be for you to recognize when you have made a mathematical error. Until then... double check your work!

Worksheet Review

1. What is the correct symbol for megapascals?
A. Mpa
B. MPa
C. mPa
D. mPA
2. What is the correct symbol for cubic millimeter?
A. $\mathrm{cu} . \mathrm{mm}$.
B. mm^{3}
C. cmm
D. mm^{3}
3. Which of the following is not a correct SI plural?
A. $\quad 44.65 \mathrm{~m}$
B. $\quad 5.4$ kilopascal
C. Eighteen cubic millimeters
D. 149 MNs
4. Which of the following is the correct representation of temperature in degree Celsius?
A. $\quad 42.5^{\circ} \mathrm{c}$
B. $\quad 42.5^{\circ} \mathrm{C}$
C. $\quad 42.5^{\circ} \mathrm{C}$
D. $42.5^{\circ} \mathrm{C}$
5. Which of the following is correct?
A. $19 \mathrm{~mm}^{3}$
B. 448 cmm
C. $\quad 18 \mathrm{Mn}$
D. $\quad 55.7 \mathrm{kPa}$
6. Which of these expressions is a proper expression for kilometers per hour?
A. $\quad 75 \mathrm{KPH}$
B. $\quad 75 \mathrm{Km} / \mathrm{H}$
C. $75 \mathrm{~km} / \mathrm{h}$
D. $\quad 75 \mathrm{~km} / \mathrm{hr}$
7. Which of the following expressions is equivalent to 1×10^{4} square millimeters?
A. $\quad 10000 \mathrm{~mm}^{2}$
B. $\quad 1000 \mathrm{~mm}^{2}$
C. $\quad 0.0001 \mathrm{~mm}^{2}$
D. $\quad 0.001 \mathrm{~mm}^{2}$

Worksheet Review

8. Which of the following pairs of symbols and unit names is correct?
A. $\quad 17 \mathrm{MPa}$
17 Megapascals.
B. $\quad 3434.6 \mathrm{~N}$
3434.6 Newtons
C. $\quad 1.67 \mathrm{~kg}$
1.67 kilograms
D. $\quad 2.3 \mathrm{~mm}$
2.3 milli-meters
9. Which of the following is a correct sentence for temperature?
A. The temperature outside was ten Degrees Celsius.
B. The temperature outside was ten degrees celsius.
C. The temperature outside was ten degrees Celsius.
D. The temperature outside was ten Degrees celsius.
10. Which of the following is correct?
A. $\quad .78 \mathrm{~kg} / \mathrm{m}^{2}$
B. $\quad 3.9 \mathrm{~L}$'s
C. $\quad 4.539 \mathrm{KPa}$
D. $\quad 3.87 \mathrm{ha}$
11. Round the following numbers as specified

a) 34.876	$\frac{\text { Round to }}{2 \text { after decimal place }}$
b) 87.565	2 after decimal place
c) 1234	10 's place
d) 876.52	whole number
e) 0.2347	3 after decimal place

SI Tables

SI Metric Tables

SI Base Units

Quantity	Name	Symbol
length	meter	m
mass	kilogram	kg
time	second	s
electric current	ampere	A
temperature	kelvin	K
amount of substance	mole	mol
luminous intensity	candela	cd

SI Supplementary Units

Quantity	Name	Symbol
plane angle	radian	rad
solid angle	steradian	sr

SI Derived Units with Special Names

Quantity	Name	Symbol	In terms of Other Units
frequency	hertz	Hz	s^{-1}
force	newton	N	$\mathrm{kg} \cdot \mathrm{m}^{2} \cdot \mathrm{~s}^{-2}$
pressure, stress	pascal	Pa	$\mathrm{N} / \mathrm{m}^{2}$
energy, work	ioule	J	$\mathrm{N} \cdot \mathrm{m}$
power	watt	W	J / s
electric charge	coulomb	C	$\mathrm{s} \cdot \mathrm{A}$
electric potential	volt	V	W / A
capacitance	farad	F	C / V
electric resistance	ohm	Ω	V / A
electrical conductance	siemens	S	A / V
magnetic flux	weber	Wb	$\mathrm{V} \cdot \mathrm{s}$
magnetic flux density	tesla	T	$\mathrm{Wb} / \mathrm{m}^{2}$
inductance	henry	H	Wb / A
luminous flux	lumen	lm	$\mathrm{cd} \cdot \mathrm{sr}$
illuminance	lux	Ix	$\mathrm{lm} / \mathrm{m}^{2}$
activity (radio)	becquerel	Bq	s
absorbed dose	gray	Gy	J / kg
dose equivalent	sievert	Sv	J / kg

SI Metric Tables

Acceptable Units to Use with SI Units

Quantity	Name	Symbol	In terms of Base Units
temperature	degree Celsius	${ }^{\circ} \mathrm{C}$	K (${ }^{\circ} \mathrm{C}=\mathrm{t} \mathrm{K}-273.15$)
volume	liter	L	$10^{-3} \mathrm{~m}^{3}$
mass	tonne (metric ton)	t	$10^{3} \mathrm{~kg}$
time	minute	min	60 s
time	hour	h	3600 s
time	day	d	86400 s
angle	degree	0	($\pi / 180$) rad
angle	minute	,	($\pi / 10800$) rad
angle	second	"	($\pi / 648000$) rad
area	hectare	ha	$100 \mathrm{~m} \times 100 \mathrm{~m}$ or $10^{4} \mathrm{~m}^{2}$

Commonly Used Prefixes

Multiple of 10	Prefix	Symbol
$1000000000=10^{9}$	giga	G
$1000000=10^{6}$	mega	M
$1000=10^{3}$	kilo	k
$0.001=10^{-3}$	milli	m
$0.000001=10^{-6}$	micro	μ
$0.000000001=10^{-9}$	nano	n

Additional Prefixes

Multiple of $\mathbf{1 0}$	Prefix	Symbol
10^{24}	yotto	Y
10^{21}	zetta	Z
10^{18}	exa	E
10^{15}	peta	P
10^{12}	tera	T
10^{2}	hecto	h
10^{1}	deka	da
10^{-1}	deci	d
10^{-2}	centi	c
10^{-12}	pico	p
10^{-15}	femto	f
10^{-18}	atto	a
10^{-21}	zepto	z
10^{-24}	yocto	y

SI Metric Tables

Conversion Factors: English to SI Metric

Quantity	From English Unit:	To SI Metric Unit:	Multiply by:
length	mile	km	1.609347
	yard	m	0.9144
	foot	m	0.3048006 (See note)
	inch	mm	25.4
area	square mile	km^{2}	2.5989998
	acre	m^{2}	4047
	acre	hectare	0.4046873
	square yard	m^{2}	0.8361274
	square foot	m^{2}	0.09290304
	square inch	mm^{2}	645.16
volume	acre foot	m^{3}	1233
	cubic yard	m^{3}	0.7645549
	cubic foot	m^{3}	0.02831685
	cubic foot	L	28.32
	100 board feet	m^{3}	0.2360
	gallon	L	3.785412
	cubic inch	cm^{3}	16.39
	cubic inch	mm^{3}	16387.06
	fluid ounce	milliliter	29.57353
mass	lb	kg	0.4535924
	kip (1000 lb)	metric ton	0.4536
	ton (2000 lb)	megagram	0.9071847
	ounce	gram	28.34952
force	lb	N	4.448
	kip	kN	4.448
pressure, stress	pound per sq. ft (psf)	Pa	47.88
	pound per sq. inch (psi)	kPa	6.895
bending moment or torque	ft-lb	$\mathrm{N} \cdot \mathrm{m}$	1.356
density	lb per cubic yard	kg/m ${ }^{3}$	0.5933
	lb per cubic foot	$\mathrm{kg} / \mathrm{m}^{3}$	16.02
velocity	fu / s	m / s	0.3048
	mph	m / s	0.4470
	mph	km/h	1.609
power	ton (refridg)	kW	3.517
	BTU/h	W	0.2931
	hp (electric)	W	745.7
volume flow rate	cubic ft per sec.	$\mathrm{m}^{3} / \mathrm{s}$	0.02832
	cfm	$\mathrm{m}^{3 / \mathrm{s}}$	0.0004719
	cfm	L/s	0.4719
angles	degree	radian	0.01745329
temperature	${ }^{\circ} \mathrm{F}$.	${ }^{\circ} \mathrm{C}$	$\left(t^{\circ} \mathrm{F}-32\right) / 1.8$

Note : 39.37 inch $=1 \mathrm{~m} \quad$ (For US Survey foot, 12 inches per foot)

Reference

References

1. STANDARD SPECIFICATIONS FOR HIGHWAY BRIDGES, Fifteenth Edition, AASHTO, 1992.
2. A POLICY ON GEOMETRIC DESIGN OF HIGHWAYS AND STREETS, AASHTO, 1994.
3. T.J.Wipf, F.W.Klaiber, H.El-Arabaty, METRIC SHORT COURSE FOR THE OFFICE OF BRIDGES AND STRUCTURES, IHRB HR-378, February 1995.
4. METRIC STANDARD SPECIFICATIONS FOR HIGHWAY AND BRIDGE CONSTRUCTION, Series 1995, Iowa Department of Transportation.
5. IOWA DEPARTMENT OF TRANSPORTATION POLICIES AND PROCEDURES MANUAL, Metric Style, Policy 030.02, 1994.

Answers

Metric Training for the Transportation Industry Module 3-Road \& Bridge Design Answers

Unit 1

1. A - liter
2. D - Degree Celsius
3. B - Pound force
4. A - meter and C millimeter
5. C $-0^{\circ} \mathrm{C}$
6. B - cublc meter
$7 . C$ - 0.2 km
7. B -3000 mm
8. C - 0.05 km
9. B - Metric system used today
10. C - 3.4 N
11. C - Pa

Unit 2
C. Curve Lm, Tm, Em lengths
$\mathrm{Lm}=\mathbf{3 . 1 4 1 6}(\mathrm{R}) \times$ delta/180 $=3.1416(501.45) \times 6 / 180=52.51 \mathrm{~m}$
Tm $=\mathbf{R}$ (Tan (delta/2))
$=501.45\left(\operatorname{Tan}\left(3^{\circ}\right)\right)$
$=501.45(0.05241)=\mathbf{2 6 . 2 8} \mathrm{m}$
Em = R[1/cos(delta/2)-1]
$=501.45\left[1 / \cos \left(3^{\circ}\right)-1\right]$
$=501.45[(1 / 0.99863)-1]=0.69 \mathrm{~m}$

Unit 2
A. Minimum radius value
$R(\mathrm{~m})=(\mathrm{Vkm} / \mathrm{h})^{2} /[127 \times(\mathrm{e}+\mathrm{f})]$

1. $=80^{2} /[127 \times(0.08+0.11)]=265.23 \mathrm{~m}$
2. $=400^{2} /[127 \times(0.08+0.11)]=414.42 \mathrm{~m}$
3. $=110^{2} /[127 \times(0.08+0.11)]=501.45 \mathrm{~m}$
B. Spiral Curve length to nearest 5 m
$\mathbf{L m}=0.0702 \mathrm{~V}^{3} / \mathrm{RC}$ ($\mathbf{C = 1 , R} \mathbf{R}$ radius in m)
$\mathrm{Lm}=0.0702 \times 110^{3} /(501.45)(1)$
$=186.33 \mathrm{~m} \sim 190 \mathrm{~m}$
(round up)

Unit 2

Unit 2
F. Superelevation transition length $L m=2.72 \mathrm{f}$ VIC assume $\mathrm{C}=1$ $=2.72(0.4)(100) 1 \pm 108.8 \mathrm{~m} \sim 110 \mathrm{~m}$

Metric Training for the Transportation Industry
 Module 3 - Road \& Bridge Design Answers

Unit 2
G. Desirable curve length difference between 100 and $110 \mathrm{~km} / \mathrm{h}$
Given $g_{1}=2 \% \quad g_{2}=-2.5 \% \quad V_{1}=100 \mathrm{~km} / \mathrm{h}$ $V_{2}=110 \mathrm{~km} / \mathrm{h}$
$A=\left[\left(g_{2}-g_{1}\right]=[-2.5-2]=4.5 \%\right.$
$S_{100}=205.0 \mathrm{~m} \quad \mathrm{~S}_{110}=246.4 \mathrm{~m}$
$K_{100}=105 \mathrm{~m} / \% A \quad K_{110}=161 \mathrm{~m} / \% A$
$L=K A=105(4.5) \quad L=K A=151(4.5)$ $=472.5 \mathrm{~m} \quad=697.5 \mathrm{~m}$
Assume $\mathrm{S}<\mathrm{L} \mathrm{L}=$ AS $^{2} / 404$
$\mathrm{S} 100=\sqrt{472.5(404) / 4.5} \mathrm{~S} 110=\sqrt{697.5(404) / 4.5}$ $=205.96 \mathrm{~m}$ ok $\quad=\mathbf{2 5 0 . 2 3} \mathrm{m}$ ok
Difference $=\mathbf{6 9 7 . 5} \mathbf{- 4 7 2 . 5}=\mathbf{2 2 5 . 0} \mathrm{m}$

Unit 2

H . Minimum curve length
$\mathbf{L m}=0.6 \mathrm{Vm}=0.6(100)=60 \mathrm{~m}$
I. Length of curve In " \mathbf{G} " for $\mathbf{V = 1 1 0} \mathbf{k m} / \mathrm{h}$ to allow passing sight distance?
Assume S<L L=AS²/946
$L=4.5(728)^{2} / 946=2521.07 \mathrm{~m}$

Unit 2

J. Desirable length of curve
$A=\lceil 0.5-(-2.8)]=3.3$
assume $\mathrm{S}<\mathrm{L}$
L= AS ${ }^{2} /(120+3.5 S)$
$=3.3(168.7)^{2} /(120+3.5(168.7))$
= 93916.977 / 710.45 = 132.19 m ~ $\mathbf{1 3 2 ~ m ~}$
$K_{90}=40 \mathrm{~m} / \mathrm{K}$
$L=K A=40(3.3)=132$

Use 135 m

Unit 2
K. Minimum length of sag curve in " J " $\mathrm{Lm}=\mathrm{AV} / 395=3.3(90)^{2 / 395}$ $=67.67 \mathrm{~m}$
L. Drainage area in hectares
$1 \mathrm{mi}^{2} \times 640 \mathrm{ac} / \mathrm{ml}^{2} \times 0.4047 \mathrm{ha} / \mathrm{ac}=259.01 \mathrm{ha}$
M. Bridge Clearance (nearest 0.1 m)
$14.5 \mathrm{ft} \times 0.3048 \mathrm{~m} / \mathrm{ft}=\mathbf{4 . 4 1 9 6 \mathrm { m } \sim 4 . 4 \mathrm { m }}$

Unit 2

N. Pavement and shoulder widths

Pavement $22 \mathrm{ft} \times 0.3048 \mathrm{~m} / \mathrm{ft}=6.7 \mathrm{~m}$
Shoulder $8 \mathrm{ft} \times 0.3048 \mathrm{~m} / \mathrm{ft}=\mathbf{2 . 4} \mathrm{m}$
O. No particular answer
P. Station Conversion

1. $67560.25 \mathrm{ft} \times 12 \mathrm{in} \times 1 \mathrm{~m}=205+89.36 \mathrm{~m}$ $1 \mathrm{ft} \quad 39.37 \mathrm{in}$
2. $\mathbf{6 7 5 + 5 0 . 2 5}(E)=\mathbf{2 0 5 + 8 9 . 3 6 (m)}$

Unit 2
Q. Lengths of Div I and II

Div I 2269.50	Div II 2350.00	
	$\frac{-243.84}{2025.66}$	$\frac{-2269.50}{80.50}$

1. Total $=\mathbf{2 0 2 5 . 6 6 + 8 0 . 5 0}=\mathbf{2 1 0 6 . 1 6} \mathrm{m}$
2. Revised EOP Sta. Div II
$1.5 \mathrm{mi} \times 1.609 \mathrm{~km} / \mathrm{ml}=2.4135 \mathrm{~km}$ Sta $2350.00+2413.50=4763.50$ $=47+63.50(\mathrm{~m})$

Metric Training for the Transportation Industry Module 3 - Road \& Bridge Design Answers

Unit 2
Q. Continued
3. Granular surfacing plate 2108
volume $\Rightarrow 104607.63-101530.00=77.63 \mathrm{~m}$ $77.63 \mathrm{~m} \times 0.156 \mathrm{~m} \times 6 \mathrm{~m}=72.20 \mathrm{~m}^{3}$
mass $\Rightarrow 4100 \mathrm{~kg} / \mathrm{m}^{\mathbf{3}} \times 72.20 \mathrm{~m}^{\mathbf{3}}=\mathbf{2 9 6 , 0 2 0} \mathbf{~ k g}$ $=296.02 \mathrm{Mg}$
4. Granular subbase plate 2211
2269.50
-243.84
2025.66 m

Unit 2
Q. Continued
8. Seed quantitles (May 21 - July 20)

Oats $15.6 \mathrm{ha} \times 108 \mathrm{~kg} / \mathrm{ha}=1684.8 \mathrm{~kg}$
Rye $\quad 15.6 \mathrm{ha} \times 39 \mathrm{~kg} / \mathrm{ha}=608.4 \mathrm{~kg}$
Clover $15.6 \mathrm{ha} \times 6 \mathrm{~kg} / \mathrm{ha}=\quad 93.6 \mathrm{~kg}$
Tlmothy 95.6 ha x $6 \mathbf{k g} / \mathrm{ha}=\mathbf{9 3 . 6} \mathbf{~ k g}$
9. Length of type $\mathbf{1 6 0 1 , 7 5 0} \mathbf{~ m m}$ pipe $\mathbf{= 2 5 . 0} \mathbf{~ m}$
10. Volume of class 10 and unsuitable

Class $10=6819 \mathrm{~m}^{3}$
Unsuitable $=1921 \mathrm{~m}^{3}$
A. Bridge length

2 (0) $30^{\prime} 6^{\prime \prime} \Rightarrow 30 \mathrm{ft} \times 12 \mathrm{in} / \mathrm{ft}+6=366 \mathrm{ln}$ $2 \times(366 \mathrm{in} \times 25.4 \mathrm{~mm} / \mathrm{in})=18592.8 \mathrm{~mm}$

1e $399^{\prime \prime} \Rightarrow 39 \mathrm{ft} \times 12 \mathrm{in} / \mathrm{ft} \times 25.4 \mathrm{~mm} / \mathrm{ln}$

$$
=11887.2 \mathrm{~mm}
$$

total $=30480.0 \mathrm{~mm}$
B. Concrete strength
$4000 \mathrm{psi} \times 6.895 \mathrm{kPa} / \mathrm{psi}=27580 \mathrm{kPa}$ $=27.58 \mathrm{MPa}$
Rounded to $\mathbf{3 0}$ MPa overstates by $\mathbf{+ 9 \%}$

Unit 2
Q. Continued
5. Volume of special backfill plate 2209
2350.00-2269.50 $=80.50 \mathrm{~m}$
$80.50 \mathrm{~m} \times 0.3 \mathrm{~m} \times 5.7 \mathrm{~m} \times 2=275.31 \mathrm{~m}^{3}$
6. Area of concrete plate 2201
102900.00
-101618.33
$1281.67 \mathrm{~m} \times 7.2 \mathrm{~m}=9228.02 \mathrm{~m}^{2}$
7. See quantliy sheet

Unit 2
Q. Continued
11. Speclal ditch elevations

Sta $5+00$ elev $=\mathbf{4 4 3 . 1 0} \mathrm{m}$
Sta $\mathbf{6 + 0 0}$ elev $=441.10 \mathrm{~m}$

Unit 3

C. Rebar
$4 \% / \mathrm{m}^{2}=0.04 \times 1000 \times 1000=400 \mathrm{~mm}^{2}$

1. $\# 10 \mathrm{M} 400 / 100=4 / \mathrm{m}^{2}$
2. $30 \mathrm{M} 400 / 700=1 / \mathrm{m}^{2}$
D. Culvert Quantities
3. Concrete volume $1.610 \mathrm{~m}^{3} / \mathrm{m} \times 20 \mathrm{~m}=32.2 \mathrm{~m}^{3}$
4. Steel mass $176.4 \mathrm{~kg} / \mathrm{m} \times 20 \mathrm{~m}=3528 \mathrm{~kg}$
5. Steel mass change $183.3 \mathrm{~kg} / \mathrm{m} \times 20 \mathrm{~m}=3666 \mathrm{~kg}$ $3666 \mathbf{k g}-3528 \mathbf{k g}=138 \mathbf{k g}$

Metric Training for the Transportation Industry
 Module 3 - Road \& Bridge Design Answers

Unit 3

E. Formwork stress
$1200 \mathrm{psl} \times 6.895 \mathrm{kPa} / \mathrm{psi}=8274 \mathrm{kPa}$ $=8.27 \mathrm{MPa}$
F. Rebar dimensions

1. Outer R
$4 \times 0.63 \ln \times 25.4 \mathrm{~mm} / \mathrm{in}=64.01 \mathrm{~mm}$ Inner \mathbf{R} $64.01 \mathrm{~mm}-(0.63 \mathrm{ln} \times 25.4 \mathrm{~mm} / \mathrm{n})$ $=48.00 \mathrm{~mm}$
2. Bar length $4 \times 0.63 \mathrm{in} \times 25.4 \mathrm{~mm} / \mathrm{n}=64 \mathrm{~mm}$

Unit 3

G. Culvert Inlet and outiet elevations

Inlet
[($842 \mathrm{ft} \times 12 \mathrm{In} / \mathrm{ft})+6 \mathrm{ln}](25.4 \mathrm{~mm} / \mathrm{nn})-25.4 \mathrm{~mm}$
$=\mathbf{2 5 6 7 7 0} \mathrm{mm}=\mathbf{2 5 6 . 7 7} \mathrm{m}$

Outlet
($840 \mathrm{ft} \times 12 \mathrm{In} / \mathrm{ft}$) ($25.4 \mathrm{~mm} / \mathrm{in}$) - $\mathbf{1 0 . 0} \mathrm{mm}$
$=\mathbf{2 5 6 0 2 0} \mathbf{m m}=\mathbf{2 5 6 . 0 2} \mathbf{m}$

Unit 3

I. Bar mass

1. Cast Iron
$0.010 \mathrm{~m} \times 0.005 \mathrm{~m} \times 30 \mathrm{~m} \times 7210 \mathrm{~kg} / \mathrm{m}^{3}$
$=10.82 \mathrm{~kg}$
2. Steel
$0.022 \mathrm{~m} \times 0.10 \mathrm{~m} \times 25.5 \mathrm{~m} \times 7850 \mathrm{~kg} / \mathrm{m}^{3}$ $=440.38 \mathrm{~kg}$

Unit 3

J. Gutter Elevation
$0.08 \times 5.60 \mathrm{~m}=0.448 \mathrm{~m} \sim 0.45 \mathrm{~m}$
Elev $=474.25-0.45=473.80 \mathrm{~m}$
Elev $=474.25+0.46=474.70 \mathrm{~m}$
K. Nail length
$2 \times 2.5 \times 75 \mathrm{~mm}=375 \mathrm{~mm}$
L. Concrete temperature
(950F-32)/1.8 = $35^{\circ} \mathrm{C}>32^{\circ} \mathrm{C}$ no, reject
M. Curing compound amount
$55.40 \mathrm{~m} \times 13.5 \mathrm{~m} / 3.3 \mathrm{~m}^{2} / \mathrm{L}=226.64 \mathrm{~L}$

Unit 3

N. Gutter elevations

Top of slab centerline elevation $248.60 \mathrm{~m}+0.250 \mathrm{~m}=248.85 \mathrm{~m}$ Centerline elevations at each end $248.85 \mathrm{~m}+20 \mathrm{~m}(0.02)=\mathbf{2 4 9 . 2 5} \mathrm{m}$ $248.85 \mathrm{~m}-20 \mathrm{~m}(0.02)=248.45 \mathrm{~m}$ Gutter elevations $249.25 \mathrm{~m}-6.75 \mathrm{~m}(0.02)=249.11 \mathrm{~m}$ $248.45 \mathrm{~m}-675 \mathrm{~m}(0.02)=248.31 \mathrm{~m}$

Metric Training for the Transportation Industry

Module 3 - Road \& Bridge Design Answers

Unit 3

O. Pipe length

$$
\begin{aligned}
\mathrm{L} & =13+(848.5-838.0)(3)+(848.5-837.5)(3) \\
& =13+10.5(3)+11(3) \\
& =77.5 \mathrm{~m}
\end{aligned}
$$

P. Pipe spacing
$1.2 \mathrm{~m} \times 0.5=0.60 \mathrm{~m}$
$0.60 \mathrm{~m}<1 \mathrm{~m}$ use 0.6 m spacing

Unit 3

```
Q. Pile Bearing
P = [2.5WH/(S+8.9)][W/(W+M)]
    = [ 2.5 (2500)(0.6)(22+8.9)][2500)(2500+1200)]
    = 121.359(0.67567)
    =81.9986 kN
    ~82 kN
```

Unit 4

1) B	(1 a) 34.88
2) B	b) 87.56
3) D	c) 1230
4) D	d) 877
5) D	
6) C	
7) A	
8) C	
9) C	
10) D	

Introduction to SI Metric Module 3

Created by:
Karen Zunkel \&
Jim Cable
Iowa State University

Workshop Overview

-Unit 1 - History and SI Basics
-Unit 2 - SI Applications in Road Design
-Unit 3 - SI Applications in Bridge Design
\& Unit 4 - Record Keeping

Why Use SI Metric?

\downarrow To join the global marketplace (only 3 countries don't use SI metric)
\uparrow We already use many SI units

- International communication
- International competitiveness
- Simplicity / Efficiency

- Sept. 30, 2000 - all highway/lands receiving federal aid must be bid, designed, \& constructed using SI

SI Basics

Topics Covered
*Seven base units of SI
\downarrow Derived units

- Supplemental units
- Prefixes
- Additional units to use with SI

SI Base Units

Quantity
length
mass
time
electric current
temperature
amount of matter
luminous intensity

Name Symbol meter m
kilogram kg
second s
ampere A
kelvin K
mole mol
candela cd

Mass versus Weight

We are familiar with "weight"
We say... "I weigh 130 pounds"
Pounds are actually units of force ($\left(\mathrm{lb}_{\mathrm{i}}\right)$
Force = mass x acceleration of gravity
Acceleration due to gravity varies
Easiest diet ... move to the moon! Even though I have the same body, I weigh less (about $1 / 5$ as much).

Mass versus Weight (cont.)

English

$\mathrm{lb}_{\mathrm{f}}=\mathrm{lb}_{\mathrm{m}} \times 32.2$ (where $32.2 \mathrm{ft} / \mathrm{s}^{2}$ is common acceleration of gravity)

SI Metric

newtons = kilograms x 9.806
(where $9.806 \mathrm{~m} / \mathrm{s}^{2}$ is common acceleration of gravity)

Mass versus Weight (cont.)

To ease the "transition"... conversion tables will list "from pounds force" to "kilograms"

$$
\begin{aligned}
& 1 \mathrm{lb}_{\mathrm{f}}=0.4536 \mathrm{~kg} \\
& \text { (force) to (mass) }
\end{aligned}
$$

This conversion uses the standard acceleration of gravity on earth to translate a force back to a mass.

SI Supplementary Units

Quantity
Name
plane angle
solid angle
radian
Symbol
rad
steradian
sr

Note: lowa DOT will continue to use degrees for surveying. However, other angular measurements will likely be in radians.

SI Derived Units

\& A combination of base units and prefixes

- Example: meters per second = m/s
- Some derived units have special names (Ex: newtons => force)
\uparrow See table in handout for a listing

Other Acceptable Units

Quantity temperature volume mass angle angle angle

Name
degree Celsius
liter tonne(metric ton)
degree
minute
second

Symbol
${ }^{\circ} \mathrm{C}$
L
t
0

6

66

Other Acceptable Units

Quantity
time
time
time
area

Name
minute
hour
day
hectare

Symbol min h
d ha

Note: hectare is shortened from square hectometer . Hecto is prefix for 100... so a hectare is 100 m by 100 m

Common Prefixes

Prefix	Symbol	Power of 10
giga	\mathbf{G}	10^{9}
mega	M	10^{6}
kilo	k	10^{3}
milli	m	10^{-3}
micro	μ	10^{-6}
nano	n	10^{-9}

Prefix Example Conversions

$1000 \mathrm{~mm}=1 \mathrm{~m}$
$1000 \mathrm{~m}=1 \mathrm{~km} \quad$ So for example....
$1 \mathrm{~km} \times 1000 \mathrm{~m} \times 1 \underline{000 \mathrm{~mm}}=1,000,000 \mathrm{~mm}$ $1 \mathrm{~km} \quad 1 \mathrm{~m}$
Ex. 1) $250 \mathrm{~mm} \times 1 \mathrm{~m}=0.250 \mathrm{~m}$ 1000 mm
Ex. 2) $35 \mathrm{~km} x \frac{1000 \mathrm{~m}}{1 \mathrm{~km}}=35,000 \mathrm{~m}$

Visualizing Metric

Sample answers

\uparrow Height: $5^{\prime} 6^{\prime \prime}=1676 \mathrm{~mm}=1.676 \mathrm{~m}$
\uparrow Pace: $53 \mathrm{~cm}=530 \mathrm{~mm}=0.53 \mathrm{~m}$

Worksheet Answers

1) Which of the following expresses fluid volume?
A. liter
B. cubic kilogram
C. pascal
D. hectare

Worksheet Answers

2) Which unit of temperature is used at construction sites?
A. degree Fahrenheit
B. degree Centigrade
C. kelvin
D. degree Celsius

Worksheet Answers

3) Newton replaces which unit?
A. pounds per square inch
B. pound force
C. pounds per cubic inch
D. pounds mass

Worksheet Answers

4) lowa DOT drawings will use which measurements? (circle all that apply)
A. meter
B. centimeter
C. millimeter
D. megameter

Worksheet Answers

5) On the Celsius scale, water freezes at what temperature?
A. $32^{\circ} \mathrm{C}$
B. $100^{\circ} \mathrm{C}$
C. $0 \circ \mathrm{C}$
D. 0 K

Worksheet Answers

6) Which SI Unit listed here would be used to express volume of concrete or fill?
A. cubic decimeter
B. cubic meter
C. liter
D. ton

Worksheet Answers

7) Which of the following is the same as 200 meters?
A. 0.02 km
B. 2.0 km
C. 0.2 km
D. 20.0 km

Worksheet Answers

8) Which of the following is the same as 3 meters?
A. 0.03 km
B. 3000 mm
C. 300 mm
D. 0.3 km

Worksheet Answers

9) Which of the following represents the longest length?
A. 3.0 m
B. 450 mm
C. 0.05 km
D. 20 cm
3.0 m
0.45 m

50 m
0.2 m

Worksheet Answers

10) SI refers to:
A. The system of interfaces necessary to implement metric in computers.
B. The metric system used today.
C. The governing organization that establishes metric rules.
D. The international strategies that created first metric system.

Worksheet Answers

11) On the moon the acceleration of gravity is about $1.7 \mathrm{~m} / \mathrm{s}^{2}$. What is the gravity force of a 2 kg object on the moon?
A. 3.4 pascals
B. 1.7 pascals
C. 3.4 newtons
D. 1.7 newtons

Worksheet Answers

12) Which SI unit replaces PSI?
A. $\mathrm{kg} / \mathrm{m}^{2}$
B. N
C. Pa
D. newton-meters

Unit 2 - Road Design Topics

Topics Covered

\uparrow Conversion Types and Factors

- Road Design Problems

Soft Conversion

\downarrow Use factors on English units to get metric equivalent-1 step
\star Often will lead to long, "strange" numbers
\downarrow Going "soft" on us... use new measurement system, but don't change physical value

- Example: $16.0 \mathrm{ft}=\mathbf{4 . 8 8} \mathrm{m}$

Hard Conversion

- Use factors on English units to get metric equivalent ... then round to "reasonable" metric number-2 steps
- Going "hard" or tough on us... use new measurement system, and probably even change physical value
- Example: $16.0 \mathrm{ft}=\mathbf{5 . 0} \mathbf{~ m}$

Hard Conversion

Pipe diameter $30 "=\mathbf{7 6 2} \mathbf{~ m m}$
hard conversion $=\mathbf{= 7 5 0} \mathbf{~ m m}$
Lane width 12' == 3.6576 m
hard conversion $==3.6 \mathrm{~m}$
Pavement thickness 10 " $=\mathbf{2 5 4 m m}$ hard conversion $=\mathbf{=} \mathbf{2 6 0} \mathbf{~ m m}$

Long Form

Feet to Meters

	0	.1	.2	.3
0	0	0.03048	0.06096	0.09144
1	0.30480	0.33528	0.36576	0.39624
2	0.60960	0.64008	0.67256	0.70104
3	0.91440	0.94488	0.97536	$\ldots .$.

Example: $\mathbf{2 . 2}$ feet equals $\mathbf{0 . 6 7 2 5 6}$ meters

Short Form

Length

	\underline{m}	$\underline{\text { in }}$	$\underline{f t}$	$\underline{y d}$
m	1	39.370	3.2808	1.0936
in	25.4×10^{-3}	1	$83.333 \times 10-3$	27.0778×10^{-3}
ft	0.3048	12	1	0.3333
yd	0.9144	36	3	1

Example: 1 foot $=0.3048$ meters $2 \mathrm{ft} \times 0.3048=0.6096 \mathbf{m}$

Conversion Factors

Quantity
Length

From
ft
in
yd
m
lbm

Multiply by
0.3048
25.4×10^{-3}
0.9144
0.4536

Example: 2ft $\mathbf{x} 0.3048=0.6096 \mathrm{~m}$

34

Rounding Rules

Less than 5 - Drop the numbers

Number Place Rounded
4.7635342 after decimal 4.76
234.87323 after decimal 234.873
87632 hundreds 87600

Rounding Rules (cont)

Greater than 5 - Raise (Add 1 to) the number

Number Place Rounded
4.7635341 after decimal 4.8
234.87321 after decimal 234.9
87632 thousands 88000

Rounding Rules (cont)

Exactly equal to 5 (With nothing after it!)

- Make the number even

If last significant digit is odd... round up
If last significant digit is even.. drop number
Number Place Rounded
$476.55 \quad 1$ after decimal 476.6
445.25 1 after decimal 445.2

Rounding Rules - standards

DOT establishing standards for "rounding"/precision for many items
Examples:

- Reinforced concrete boxes - to tenth of a meter ($1.8 \times 1.2 \times 9.8$)
- Horizontal alignments, tie-ins, etc. to closest 0.001 m (tolerances $\pm 3 \mathrm{~mm}$)

Rounding Rules - standards

More examples:
\& Entrance locations - closest 0.01 m
-Culvert locations - closest 0.1 m
(Note: many other standards, such as scales on plans, etc... see DOT metric conversion guidelines and AASHTO green book. etc...)

Verifying Answers

- Humans aren't perfect
\uparrow Double check your answers
\& Use common sense and estimates

Verifying Answers (cont.)

Example: Convert 25 mph to $\mathbf{k m} / \mathrm{h}$
Correct Answer: 25x1.609 = 40.225
40 km/h

What if you mistyped 1.609 as 16.09 on your
calculator??? 25x16.09 = 402.25
402 km/h

Station Conversion

$492+00.00 \mathrm{ft} \times \frac{12 \mathrm{in} \mathrm{x}}{1 \mathrm{ft}} \quad \frac{1 \mathrm{~m}}{39.37 \mathrm{in}}=149+96.190 \mathrm{~m}$

Station Equation

Sta 149+96.190 (m) This survey/sta 492+00.0(E) as built

OR

Sta $149+96.19(m)=$ Sta $492+00.0(E)$

US Foot Conversion

$\frac{39.37 \text { in }}{1 \mathrm{~m}} \times \frac{1 \mathrm{ft}}{12 \mathrm{in}}=\frac{39.37 \mathrm{ft}}{12 \mathrm{~m}}=3.28083 \mathrm{ft} / \mathrm{m}$

Unit 2

A. Minimum radius value

$$
\begin{aligned}
& R(\mathrm{~m})=(\mathrm{Vkm} / \mathrm{h}) 2 /[127 \times(\mathrm{e}+\mathrm{f})] \\
& 1 .=80^{2} /[127 \mathrm{x}(0.08+0.11)]=265.23 \mathrm{~m} \\
& 2 .=1002 /[127 \mathrm{x}(0.08+0.11)]=414.42 \mathrm{~m} \\
& 3 .=1102 /[127 \times(0.08+0.11)]=501.45 \mathrm{~m}
\end{aligned}
$$

B. Spiral Curve length to nearest 5 m

$$
\begin{aligned}
\mathrm{Lm} & =0.0702 \mathrm{~V} 3 / \mathrm{RC}(\mathrm{C}=1, \mathrm{R} \text { radius in } \mathrm{m}) \\
\mathrm{Lm} & =0.0702 \times 110^{3} /(501.45)(1) \\
& =186.33 \mathrm{~m} \sim 190 \mathrm{~m} \quad \text { (round up) }
\end{aligned}
$$

Unit 2

C. Curve Lm, Tm, Em lengths

$$
\text { Lm = } 3.1416(R) \times \text { delta/180 }
$$

$=3.1416(501.45) \times 6 / 180=52.51 \mathrm{~m}$
Tm $=$ R(Tan (delta/2))
$=501.45\left(\operatorname{Tan}\left(3^{\circ}\right)\right)$
$=501.45(0.05241)=26.28 \mathrm{~m}$
Em = R[1/cos(delta/2)-1]
$=501.45[1 / \cos (3 \circ)-1]$
$=501.45[(1 / 0.99863)-1]=0.69 \mathrm{~m}$

Unit 2

D. Stopping sight distance

$$
\begin{aligned}
\mathrm{d}_{1} & =0.278 \mathrm{t}_{1} \mathrm{~V} \quad \text { assume } \mathrm{t}_{1}=2.5 \mathrm{~s} \\
& =0.278(2.5)(100)=69.5 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
d_{2} & =V^{2} /\left[254\left(f^{+}+\mathrm{g}\right)\right] \\
& =1002 / 254(0.28-0.03)=157.5 \mathrm{~m}
\end{aligned}
$$

Total distance $=$
227.0 m

Unit 2

E. Passing sight distance

$$
\begin{aligned}
\mathrm{d}_{1} & =0.278 \mathrm{t}_{1}\left(\mathrm{~V}-\mathrm{m}+\mathrm{at}_{1} / 2\right) \\
& =0.278(4)(80-5+1(4 / 2)) \\
& =77.22 \mathrm{~m} \\
\mathrm{~d}_{2} & =0.278 \mathrm{t}_{2}(\mathrm{~V}) \\
& =0.278(10)(80)=222.40 \mathrm{~m}
\end{aligned}
$$

Assume:

$$
t_{1}=3-4.5 \mathrm{~s}
$$

$$
\mathrm{m}=5 \mathrm{~km} / \mathrm{h}
$$

$$
\mathrm{a}=1 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
\mathrm{V}=80 \mathrm{~km} / \mathrm{h}
$$

$$
\mathrm{t}_{2}=9.3-11.3 \mathrm{~s}
$$

$\mathrm{d}_{3}=$ assume 55 m
$d_{4}=2 / 3\left(d_{3}\right)=2 / 3(55)=36.67 \mathrm{~m}$
Total $=391.91 \mathrm{~m} \sim 395 \mathrm{~m}$

Unit 2

F. Superelevation transition length
$\mathrm{Lm}=2.72 \mathrm{f}$ V/C assume $\mathrm{C}=1$
$=2.72(0.4)(100) / 1=108.8 \mathrm{~m} \sim 110 \mathrm{~m}$

Unit 2

G. Desirable curve length difference between 100 and $110 \mathrm{~km} / \mathrm{h}$
Given $g_{1}=2 \% \quad g_{2}=-2.5 \% \quad V_{1}=100 \mathrm{~km} / \mathrm{h}$

\[

\]

Unit 2

G. continued...

Assume S<L L = AS2/404
$\mathrm{S} 100=\sqrt{472.5(404) / 4.5} \quad \mathrm{~S} 110=\sqrt{697.5(404) / 4.5}$ $=205.96 \mathrm{~m}$ ok $\quad=250.23 \mathrm{~m}$ ok
Difference $=697.5-472.5=225.0 \mathrm{~m}$

Unit 2

H. Minimum curve length

$$
\mathrm{Lm}=0.6 \mathrm{Vm}=0.6(100)=60 \mathrm{~m}
$$

I. Length of curve in " G " for $V=110 \mathrm{~km} / \mathrm{h}$ to allow passing sight distance? Assume S<L L= AS2/946

$$
\mathrm{L}=4.5(728)^{2} / 946=2521.07 \mathrm{~m}
$$

Unit 2

J. Desirable length of curve

$$
\begin{aligned}
& \mathrm{A}=[0.5-(-2.8)]=3.3 \\
& \text { assume } \mathrm{S}<\mathrm{L} \\
& \mathrm{~L}=\mathrm{AS} 2 /(120+3.5 \mathrm{~S}) \\
& \\
& =3.3(168.7)^{2} /(120+3.5(168.7)) \\
& \\
& =93916.977 / 710.45=132.19 \mathrm{~m} \sim 132 \mathrm{~m}
\end{aligned}
$$

$K_{90}=40 \mathrm{~m} / \mathrm{K}$
$L=K A=40(3.3)=132 \ldots$ use 135 m

Unit 2

K. Minimum length of sag curve in "J"

$$
\begin{aligned}
\mathrm{Lm} & =\mathrm{AV} 2 / 395=3.3(90)^{2} / 395 \\
& =67.67 \mathrm{~m}
\end{aligned}
$$

L. Drainage area in hectares
$1 \mathrm{mi}^{2} \times 640 \mathrm{ac} / \mathrm{mi}^{2} \times 0.4047 \mathrm{ha} / \mathrm{ac}=259.01$ ha
M. Bridge Clearance (nearest 0.1 m)
$14.5 \mathrm{ft} \times 0.3048 \mathrm{~m} / \mathrm{ft}=4.4196 \mathrm{~m} \sim 4.4 \mathrm{~m}$

Unit 2

N. Pavement and shoulder widths

Pavement $22 \mathrm{ft} \times 0.3048 \mathrm{~m} / \mathrm{ft}=6.7 \mathrm{~m}$
Shoulder $8 \mathrm{ft} \times 0.3048 \mathrm{~m} / \mathrm{ft}=2.4 \mathrm{~m}$
O. No particular answer
P. Station Conversion
$1.67550 .25 \mathrm{ft} \times \frac{12 \mathrm{in}}{1 \mathrm{ft}} \times \frac{1 \mathrm{~m}}{39.37 \mathrm{in}}=205+89.36 \mathrm{~m}$
2. $675+50.25(E)=205+89.36(m)$

Unit 2

Q. Lengths of Div I and II

Div I	2269.50
Div II 2350.00	
$\frac{-243.84}{2025.66}$	$\frac{-2269.50}{80.50}$

1. Total $=2025.66+80.50=2106.16 \mathrm{~m}$
2. Revised EOP Sta. Div II
$1.5 \mathrm{mi} \times 1.609 \mathrm{~km} / \mathrm{mi}=2.4135 \mathrm{~km}$ Sta $2350.00+2413.50=4763.50$
$=47+63.50(\mathrm{~m})$

Unit 2

Q. Continued
3. Granular surfacing plate 2108 volume $=>$. $101607.63-101530.00=77.63 \mathrm{~m}$ $77.63 \mathrm{~m} \times 0.155 \mathrm{~m} \times 6 \mathrm{~m}=72.20 \mathrm{~m}^{3}$
mass $=>4100 \mathrm{~kg} / \mathrm{m}^{3} \times 72.20 \mathrm{~m}^{3}=296,020 \mathrm{~kg}$
$=296.02 \mathrm{Mg}$
4. Granular subbase plate 2211

$$
\begin{array}{r}
2269.50 \\
-\quad 243.84 \\
\hline 2025.66 \mathrm{~m}
\end{array}
$$

Unit 2

Q. Continued
5. Volume of special backfill plate 2209
$2350.00-2269.50=80.50 \mathrm{~m}$
$80.50 \mathrm{~m} \times 0.3 \mathrm{~m} \times 5.7 \mathrm{mx} 2=275.31 \mathrm{~m}^{3}$
6. Area of concrete plate 2201 102900.00
-101618.33 $1281.67 \mathrm{~m} \times 7.2 \mathrm{~m}=9228.02 \mathrm{~m}^{2}$
7. See quantity sheet

Unit 2

Q. Continued
8. Seed quantities (May 21 - July 20)

Oats 15.6 ha $\times 108 \mathrm{~kg} / \mathrm{ha}=1684.8 \mathrm{~kg}$
Rye $\quad 15.6$ ha $\times 39 \mathrm{~kg} / \mathrm{ha}=608.4 \mathrm{~kg}$
Clover 15.6 ha $\times 6 \mathrm{~kg} / \mathrm{ha}=93.6 \mathrm{~kg}$
Timothy 15.6 ha $\times 6 \mathrm{~kg} / \mathrm{ha}=93.6 \mathrm{~kg}$
9. Length of type $1601,750 \mathrm{~mm}$ pipe $=25.0 \mathrm{~m}$

Unit 2

Q. Continued
10. Volume of class 10 and unsuitable Class $10=6819 \mathrm{~m}^{3}$ Unsuitable $==1921 \mathrm{~m}^{3}$
11. Special ditch elevations

Sta $5+00$ elev $=443.10 \mathrm{~m}$
Sta $6+00$ elev $=441.10 \mathrm{~m}$

Unit 3 - Bridge Design

- Topic Covered
\uparrow Hard Conversion Concerns
\uparrow Practical Bridge Design Applications

Unit 3

A. Bridge length

2 @ 30 '6" $=>30 \mathrm{ft} \times 12 \mathrm{in} / \mathrm{ft}+6=366 \mathrm{in}$
$2 \times(366 \mathrm{in} \times 25.4 \mathrm{~mm} / \mathrm{in})=18592.8 \mathrm{~mm}$
1 @ 39 '0" => $39 \mathrm{ft} \times 12 \mathrm{in} / \mathrm{ft} \times 25.4 \mathrm{~mm} / \mathrm{in}$

$$
\begin{aligned}
& =11887.2 \mathrm{~mm} \\
\text { total } & =30480.0 \mathrm{~mm}
\end{aligned}
$$

B. Concrete strength 4000 psi $\times 6.895 \mathrm{kPa} / \mathrm{psi}=27580 \mathrm{kPa}$ $=27.58 \mathrm{MPa}$

62 Rounded to 30 MPa overstates by +9\%

Unit 3

C. Rebar
$4 \% / \mathrm{m}^{2}=0.04 \times 1000 \times 1000=400 \mathrm{~mm}^{2}$

1. $\# 10 \mathrm{M} 400 / 100=4 / \mathrm{m}^{2}$
2. $\# 30 \mathrm{M} 400 / 700=1 / \mathrm{m}^{2}$

Unit 3

D. Culvert Quantities

1. Concrete volume
$1.610 \mathrm{~m} 3 / \mathrm{m} \times 20 \mathrm{~m}=32.2 \mathrm{~m}^{3}$
2. Steel mass
$176.4 \mathrm{~kg} / \mathrm{m} \times 20 \mathrm{~m}=3528 \mathrm{~kg}$
3. Steel mass change
$183.3 \mathrm{~kg} / \mathrm{m} \times 20 \mathrm{~m}=3666 \mathrm{~kg}$
$3666 \mathrm{~kg}-3528 \mathrm{~kg}=138 \mathrm{~kg}$

Unit 3

E. Formwork stress

1200 psi x $6.895 \mathrm{kPa} / \mathrm{psi}=8274 \mathrm{kPa}$

$$
=8.27 \mathrm{MPa}
$$

F. Rebar dimensions

1. Outer R
$4 \times 0.63 \mathrm{in} \times 25.4 \mathrm{~mm} / \mathrm{in}=64.01 \mathrm{~mm}$
Inner R
$64.01 \mathrm{~mm}-(0.63 \mathrm{in} \times 25.4 \mathrm{~mm} / \mathrm{in})=48.00 \mathrm{~mm}$
2. Bar length

65

$$
4 \times 0.63 \text { in } \times 25.4 \mathrm{~mm} / \mathrm{in}=64 \mathrm{~mm}
$$

Unit 3

G. Culvert inlet and outlet elevations

Inlet
[(842 ft x $12 \mathrm{in} / \mathrm{ft})+6 \mathrm{in}](25.4 \mathrm{~mm} / \mathrm{in})-25.4$ mm
$=256770 \mathrm{~mm}=256.77 \mathrm{~m}$

Outlet
($840 \mathrm{ft} \times 12 \mathrm{in} / \mathrm{ft}$) ($25.4 \mathrm{~mm} / \mathrm{in}$) -10.0 mm
$=256020 \mathrm{~mm}=256.02 \mathrm{~m}$

Unit 3

H. Beam Acceptability $28.01 \mathrm{~m} / 8 \mathrm{~m}=3.5$ segments
$3.5 \times 0.006=0.021 \mathrm{~m}$
$28.01<28.021$ beam is okay
$21 \mathrm{~mm}<25 \mathrm{~mm}$

Unit 3

I. Bar mass

1. Cast Iron
$0.010 \mathrm{~m} \times 0.005 \mathrm{~m} \times 30 \mathrm{~m} \times 7210 \mathrm{~kg} / \mathrm{m}^{3}$
$=10.82 \mathrm{~kg}$
2. Steel
$0.022 \mathrm{~m} \times 0.10 \mathrm{~m} \times 25.5 \mathrm{~m} \times 7850 \mathrm{~kg} / \mathrm{m}^{3}$
$=440.38 \mathrm{~kg}$

Unit 3

J. Gutter Elevation
$0.08 \times 5.60 \mathrm{~m}=0.448 \mathrm{~m} \sim 0.45 \mathrm{~m}$
$\mathrm{Elev}=474.25-0.45=473.80 \mathrm{~m}$
Elev $=474.25+0.45=474.70 \mathrm{~m}$
K. Nail length
$2 \times 2.5 \times 75 \mathrm{~mm}=375 \mathrm{~mm}$

Unit 3

L. Concrete temperature
$\left(95^{\circ} \mathrm{F}-32\right) / 1.8=35^{\circ} \mathrm{C}>32^{\circ} \mathrm{C}$ no, reject
M. Curing compound amount
$55.40 \mathrm{~m} \times 13.5 \mathrm{~m} / 3.3 \mathrm{~m}^{2} / \mathrm{L}=226.64 \mathrm{~L}$

Unit 3

N. Gutter elevations

Top of slab centerline elevation $248.60 \mathrm{~m}+0.250 \mathrm{~m}=248.85 \mathrm{~m}$
Centerline elevations at each end
$248.85 \mathrm{~m}+20 \mathrm{~m}(0.02)=249.25 \mathrm{~m}$
$248.85 \mathrm{~m}-20 \mathrm{~m}(0.02)=248.45 \mathrm{~m}$
Gutter elevations

$$
\begin{aligned}
& 249.25 m-6.75 m(0.02)=249.11 m \\
& 248.45 m-675 m(0.02)=248.31 m
\end{aligned}
$$

Unit 3

O. Pipe length

$$
\begin{aligned}
\mathrm{L} & =13+(848.5-838.0)(3)+(848.5-837.5)(3) \\
& =13+10.5(3)+11(3)=77.5 \mathrm{~m}
\end{aligned}
$$

P. Pipe spacing
$1.2 \mathrm{~m} \times 0.5=0.60 \mathrm{~m}$
$0.60 \mathrm{~m}<1 \mathrm{~m}$ use 0.6 m spacing

Unit 3

Q. Pile Bearing

$$
\begin{aligned}
P & =[2.5 \mathrm{WH} /(\mathrm{S}+8.9)][\mathrm{W} /(\mathrm{W}+\mathrm{M})] \\
& =[2.5(2500)(0.6) /(22+8.9)][2500 /(2500+1200)] \\
& =121.359(0.67567) \\
& =81.9986 \mathrm{kN} \\
& \sim 82 \mathrm{kN}
\end{aligned}
$$

Unit 4 - Record Keeping

+ Topics Covered
- Notation
- Prefixes
- Spacing and Capitalization
- Spelling and Pluralization
- Decimal markers and Spacing
- Powers of Ten

Rules review

\& name vs. symbol meter m
\uparrow prefix mega or bigger
\checkmark symbol is capital, name is small letter
-combine prefix with name or symbol
\checkmark no hyphen or spaces
\uparrow plurals at end of names not symbols
↔ spacing: 37.5 km

Rules review continued

- volume and area
\checkmark square meter(s) not meters squared
\checkmark symbol use superscript number m^{2}
- decimal and commas
\checkmark lowa DOT will use period for decimal and commas to group by threes
\checkmark Example: 123,456.789
(Note: SI would be 123 456,789)

Rules review continued

- powers of ten examples $1300 \mathrm{~m}=1.3 \times 10^{3} \mathrm{~m}=1.3 \mathrm{~km}$
$17,500,000 \mathrm{~Pa}=17.5 \times 106 \mathrm{~Pa}=17.5 \mathrm{MPa}$
$0.075 \mathrm{Mg}=75 \times 10^{-3} \mathrm{Mg}=75 \mathrm{~kg}$

Multiplication and Division

Multiplication
\checkmark use dot in middle of symbol
\checkmark use hyphen in written text
\rightarrow Example:
$\mathrm{N} \circ \mathrm{m}$
newton-meter

Division
\checkmark use slash in middle of symbol
\checkmark use slash in written text (or per)
\rightarrow Example:
m / s
meters/second
meters per second

Practice Writing In Pairs

Write in both number symbol and number written name format:
number
34 and 1/3
75.3
237657.5

107000000
0.0076
unit of measure
KILOMETERS
millimeters cubed per sec
PASCALS
GRAM in MEGAGRAMS
LITERS in terms of
MILLILITERS

Practice Writing Solutions

$34.33 \mathrm{~km} \quad 34.33$ kilometers
$75.3 \mathrm{~mm} 3 / \mathrm{s} \quad 75.3$ cubic millimeters per second
237,657.5 Pa 237,657.5 pascals
237.6575 kPa 237.6575 kilopascals
$107 \mathrm{Mg} \quad 107$ megagrams
7.6 mL
7.6 milliliters

Worksheet Answers

1) Which is the correct symbol for megapascals?
A. Mpa
B. MPa
C. mPa
D. mPA

Worksheet Answers

2) What is the correct symbol for cubic millimeters?
A. cu. mm.
B. mm^{3}
C. cmm
D. mm^{3}

Worksheet Answers

3) Which is not a correct SI plural?
A. 44.65 m
B. 5.4 kilopascal
C. Eighteen cubic millimeters
D. 149 MNs

Worksheet Answers

4) Which of the following is the correct representation of degrees Celsius?
A. $42.5^{\circ} \mathrm{C}$
B. $42.5^{\circ} \mathrm{C}$
C. $42 .{ }^{\circ} \mathrm{C}$
D. $42.5^{\circ} \mathrm{C}$

Worksheet Answers

5) Which of the following is correct?
A. $19 \mathrm{~mm}^{3}$
B. 448 cmm
C. 18 Mn
D. 55.7 kPa

Worksheet Answers

6) Which is the proper expression for kilometers per hour?
A. 75 KPH
B. $75 \mathrm{Km} / \mathrm{H}$
C. $75 \mathrm{~km} / \mathrm{h}$
D. $75 \mathrm{~km} / \mathrm{hr}$

Worksheet Answers

7) Which of the following is equivalent to 1×10^{4} square millimeters?
A. $10,000 \mathrm{~mm}^{2}$
B. $1000 \mathrm{~mm}^{2}$
C. $0.0001 \mathrm{~mm}^{2}$
D. $0.001 \mathrm{~mm}^{2}$

Worksheet Answers

8) Which of the following pairs of symbols and unit names is correct?
A. $17 \mathrm{MPa} \quad 17$ Megapascals
B. $3434.6 \mathrm{~N} \quad 3434.6$ Newtons
C. $1.67 \mathrm{~kg} \quad 1.67$ kilograms
D. $2.3 \mathrm{~mm} \quad 2.3$ milli-meters

Worksheet Answers

9) Which of the following is a correct sentence for temperature?
A. The temp ... ten Degrees Celsius.
B. The temp ... ten degrees celsius.
C. The temp ... ten degrees Celsius.
D. The temp ... ten Degrees celsius.

Resources

- George Sisson, DOT Metric Coordinator, 239-1461
\rightarrow AASHTO Green Book
- DOT Interim Metric Guide
\uparrow Conversion Calculators
\downarrow Numerous books, industry magazine articles, etc.

Worksheet Answers

9) Which of the following is a correct sentence for temperature?
A. The temp ... ten Degrees Celsius.
B. The temp ... ten degrees celsius.
C. The temp ... ten degrees Celsius.
D. The temp ... ten Degrees celsius.

Worksheet Answers

10) Which of the following is correct?
A. $.78 \mathrm{~kg} / \mathrm{m}^{2}$
B. 3.9 L's
C. 4.539 KPa
D. 3.87 ha

Worksheet Answers

11) Rounding
a) 34.876
34.88
b) 87.565
87.56
c) 1234
d) 876.52
e) 0.2347
0.235

Resources

\star George Sisson, DOT Metric Coordinator, 239-1461

- AASHTO Green Book
-DOT Interim Metric Guide
- Conversion Calculators
\& Numerous books, industry magazine articles, etc.

