
EVALUATION OF FLY ASH IN PORTLAND CEMENT CONCRETE PAVEMENT IN MONONA COUNTY, IOWA

FINAL REPORT FOR IOWA HIGHWAY RESEARCH BOARD PROJECT HR-200

IN COOPERATION WITH

ORVILLE D. IVES, P.E. MONONA COUNTY ENGINEER JANUARY 1980

HIGHWAY DIVISION

Disclaimer

The contents of this report reflect the views of the author and do not necessarily reflect the official views of Monona County or the Iowa Department of Transportation. This report does not constitute a standard, specification or regulation.

FINAL REPORT

FOR

IOWA HIGHWAY RESEARCH BOARD PROJECT HR-200

EVALUATION OF FLY ASH

IN

PORTLAND CEMENT CONCRETE PAVEMENT

IN

MONONA COUNTY, IOWA

ΒY

ORVILLE D. IVES, P.E. MONONA COUNTY ENGINEER

JANUARY 1980

TABLE OF CONTENTS

A second s

And A. S. Andrewson, A. S. Martin, and and A. S. Martin, and A. S. Mart

and the second sec

INTRODUCTION	1
OBJECTIVES	2
PROJECT LOCATION	2
PROJECT FUNDING	3
TEST SECTION AND MIX PROPORTIONS	3
TESTING AND EVALUATION	5
EQUIPMENT	5
PHYSICAL MIX CHARACTERISTIC	10
TEST RESULTS	11
OBSERVATIONS	13
CONCLUSIONS	14
RECOMMENDATIONS	15
ACKNOWLEDGEMENTS	16
18 MONTH EVALUATIONS	17
SUMMATION OF TESTS	18
CONCLUSIONS & RECOMMENDATIONS	18
APPENDICES	20
Appendix A - Fly Ash Test Report Appendix B - Special Provision 212 Appendix C - Flexural Breaks; Slump,	21 22
Air, W/C Ratio Appendix D - Cylinders, Compressive	25
Strengths	27
Appendix E - Core Strengths Appendix F - Average Compressive	29
Strengths, Cores and Cylinders Appendix G - Test Data	35 37
Appendix H - Special Provision 285	38

FLY ASH IN PORTLAND CEMENT CONCRETE PAVEMENT

MONONA COUNTY PROJECT HR-200

FM-67(3)--55-67

INTRODUCTION

In today's era of spiraling costs, environmental regulations and shortages of various raw materials, it is interesting to note that we may not be utilizing all available materials. One of the underused materials is fly ash. Although it has been used in some asphalt work, I doubt that this use of fly ash is utilizing it to its full potential.

In this project we were utilizing this material as a cement substitute and not as a mineral filler. Iowa has had very limited use of fly ash in portland cement concrete so we can benefit some from the experience of other states. Both Minnesota and North Dakota have used fly ash with good results.

Nationwide, fly ash is available in large quantities from hundreds of power plants, but we, as engineers, using this for paving material must note that the principal product of a generating plant is electrical power. Much fly ash produced is not of suitable quality for use as a cementing agent.

The fly ash used in this project was uniform and of high quality.(Appendix A) This fly ash was produced by Port Neal Plant #3 in Sioux City, Iowa. This plant produces approximately 181,000 tons per year.

Usually only plants which burn coal from a single source, ground finely and uniformly for combustion, and collected by an electrical precipitator can deliver the quality of fly ash required.

As Monona County is close to Sioux City, I have at different times considered the use of fly ash and welcomed the opportunity to pursue a research project utilizing fly ash as a cementing agent.

I believe if we, as engineers, are willing to incorporate some of these by-products where it is advisable to do so, we can help the nation save energy. The savings will be in transportation of raw materials, the cost of the disposing of fly ash as a waste material and in the processing of portland cement.

OBJECTIVES

The primary objectives of this research project were:

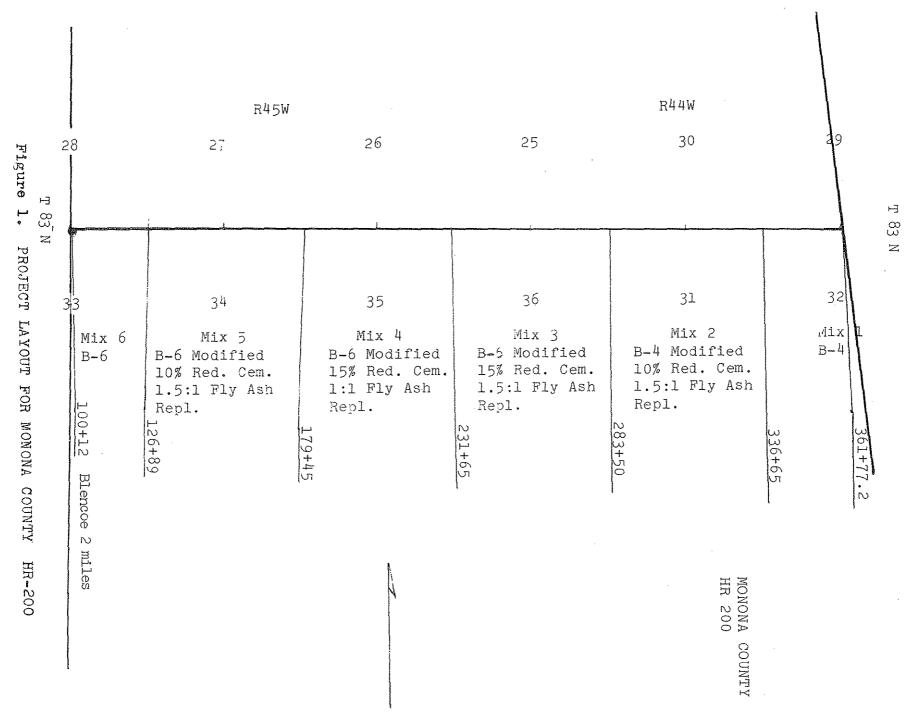
- Determine and recommend solutions for problems relating to shipping, storing and batching of fly ash.
- Establish a procedure for batching, mixing and placing uniform concrete with specified air content and consistency.
- 3. Demonstrate that concrete of comparable quality can be produced.

PROJECT LOCATION

The project is located on Monona County Road E-54, beginning two miles north of Blencoe, Iowa, at Old 75 and extending

easterly for five miles. It is incorporated in Monona County Project FM-67(3)--55-67.

PROJECT FUNDING


The project was funded with Monona County Farm-to-Market funds. Funding for additional costs to the project were approved by the Research Board as follows:

Administration and Testing	\$ 3,000.00
(excluding core testing)	
Coring and core testing	6,300.00
Additional Contractor Set-Up Costs	4,000.00
Contingency for Maintenance	3,000.00
Total	\$16,300.00

TEST SECTION AND MIX PROPORTIONS

The project was constructed by the Irving F. Jensen Co., Inc. of Sioux City and included six sections (Figure 1) with different mix proportions. (Appendix B) They are as follows:

- Standard B-4 mix (approximately ½ mile) Referred to in this report as Mix #1.
- Standard B-6 mix (approximately ½ mile) Referred to in this report and Mix #6.
- 3. Modified B-4 mix with a 10% cement reduction and fly ash replacement at 1.5 times that weight (approximately 1 mile) Referred to in this report as Mix #2.
- 4. Modified B-6 mix with a 15% cement reduction and fly ash replacement at 1.5 times that weight (approximately 1 mile) Referred to in this report as Mix #3.

- 5. Modified B-6 mix with 15% cement reduction and replacement with equal weight of fly ash (approximately 1 mile) Referred to in this report as Mix #4.
- Modified B-6 mix with 10% cement reduction and fly ash replacement at 1.5 times that weight (approximately 1 mile) Referred to in this report as Mix #5.

TESTING AND EVALUATION

ļ.

Additional testing done on this project by Monona County was as follows:

- Determine the modulus of rupture at 7, 14, 28 and 56 days (4-6" x 6" x 33" beams per section)
- 2. Cylinders $(6-4\frac{1}{2}" \times 9"$ per section) for compressive strength determination at 3, 7 and 14 days
- Coring (5 per section) for compressive strength determination at 7 days, 14 days, 28 days, 6 months and 1 year.

The Iowa Department of Transportation obtained and tested 3-4" x 4" x 18" durability beams per section.

EQUIPMENT

The equipment used on the project was essentially the same as a normal paving project. A Rexnord Model S plant with a single 9 yard drum produced the concrete.

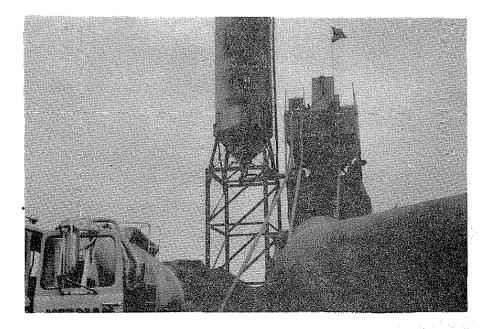
The major change was a 100 ton silo adjacent to the mixing tower for storage of the fly ash (see page 7) with an air slide pipe for feeding fly ash into the cement weigh bin. A second

limit switch was added to the cement scales and the batching was automatically controlled. (see page 8)

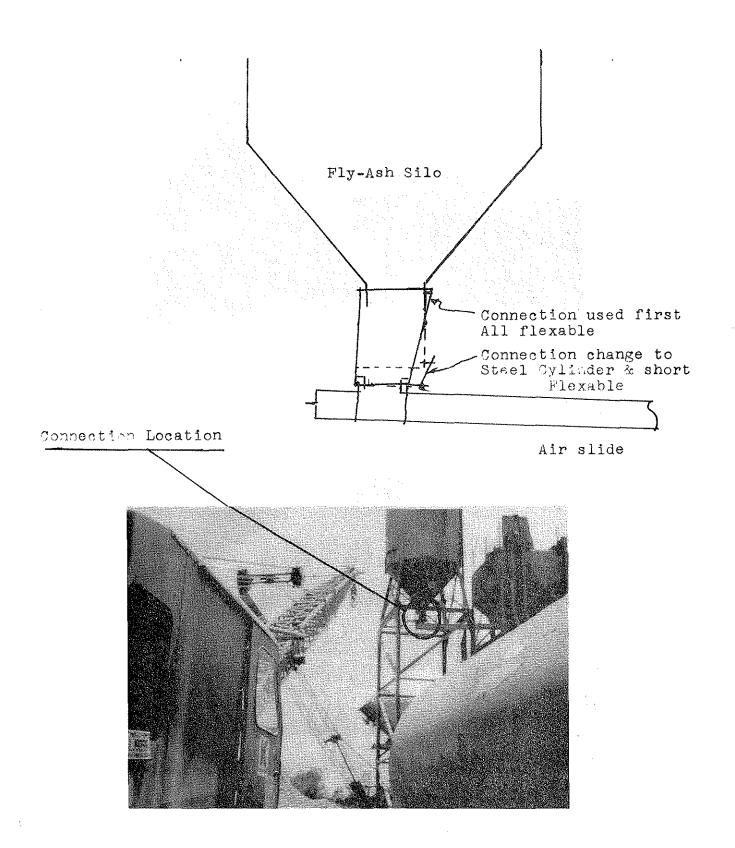
Some problems were encountered with the boot between the silo and the air slide in early operations. This boot was modified with a steel cylinder connection. I believe if the steel cylinder had been cone shaped, it would have provided a better connection. (see page 8)

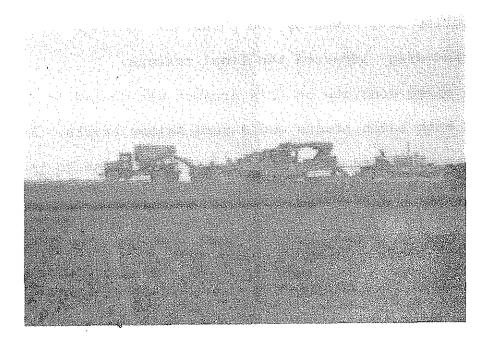

Initial air volume was not enough for the fly ash silo and another air compressor was provided to furnish more air.

No special problems occurred in controlling plant dust with the Buffalo Forge dust control unit. Some problems were encountered with fly ash dust in the connection between the silo and the air slide. It might be noted that fly ash is very fine and will almost leak out where water will not. (18% is retained on a 325 wet sieve).


The fly ash was hauled to the plant site in regular cement delivery trailers.

Out on the grade a CMI "Iowa Special" Autograde trimmed the subgrade just ahead of the Rex Town and Country paver. (see page 9)


Plastic subgrade sheeting was used on this project along with 12 foot transverse bars alternating on 4 foot centers each side of centerline.



ERECTING FLY ASH SILO

FLY ASH SILO IN PLACE

PAVING TRAIN

MIX IN FRONT OF PAVER

FINISHED SLAB

MIX #2

A burlap drag towed by the paver and followed by an astro-grass drag imparted the final texture.

The mixed concrete on this project was hauled to the paver in both batch trucks and 9 yard Agitor trucks. No difference was noted in the mix's workability due to the manner of delivery.

PHYSICAL MIX CHARACTERISTICS

We encountered no problems in controlling the air or slump on the project. Edge raveling was diminished with the use of fly ash. Also the finishers did state that the fly ash mix finished easier. This was probably due to the lubricating qualities of the fly ash. Hand finishing could be done earlier or later with no change in the finish ability of the concrete.

We had no difficulty in the sawing, experienced no raveling at the saw cuts, and had no random cracking on the project. Transverse joints were sawed at 40 foot intervals. All of the cuts were made within 24 hours of placement of the concrete.

Temperature during construction ranged from the low 60's at night to the mid 80's in the day time. I feel this ideal temperature may have some effect on the random cracking and the sawing. Gilmore time of set laboratory testing on mortar made with a standard cement yielded an initial set of 3.17 hour and a final set of 5.00 hour. Using one part fly ash and four parts standard cement, the results were 5.50 hour for initial set and 7.33 hour for final set or a 58% retardation in initial set and 33% retardation on final set. This retardation characteristic yielded beneficial results in the paving operations.

TEST RESULTS

A summary of test results are in Appendix G. Flexural testing was done on 6" x 6" x 30" beams. Each beam was tested twice. The 7 day average mid-point flexural breaks varied from the low of 434 psi on Mix #5 to high of 601 psi on Mix #1. These 7 day flexural breaks indicated that we were not going to have any problem developing a desirable flexural stength of 550 psi for the normal 14 day opening of the road to traffic. Average mix breaks at 14 days varied from 592 psi on Mix #5 to 686 psi on Mix #6.

All mixes continued to show increases in flexural strength through the 56 day break. The maximum difference in the average flexural strength of the mixes was 167 psi at 7 days; 94 psi at 14 days; 83 psi at 28 days and 68 psi at 56 days. The twentyeight day break on beam 4-4 was disregarded for average breaks as it broke 2 3/4" off center.

In checking with past records of pavement placed in Monona County, the following can be noted: The B-4 mix has had higher beam breaks, on the average, than the B-6 or B-8 mixes. Some of this I feel is due to the aggregate used. Most B-6 and B-8 mixes in Monona County use a different source of aggregate than was used in this project. The same source as usually used for B-4 mixes was used for this project. The aggregate used on this project was gravel produced by Peters Construction at Rodney.

Cylinders and cores (Appendix D and E) were tested for compressive strength also and the control and fly ash mixes all were good. (Appendix F) As of this writing, the cores on Mix #2 are the highest on a 28 day core. You might note, howevery, that this mix produced the lowest strength of all the mixes on the 14 day cylinders.

Durability beams were run on each mix. The results are as follows: Mix #1 (86); Mix #2 (86); Mix #3 (88); Mix #4 (92); Mix #5 (92); Mix #6 (92). Air tests and slump tests on the grade indicated no control problems in the fly ash mixes. We also encountered no problems in switching from one mix to another mix.

When we look at the water-cement ratio, we find the design water-cement ratio was lower on fly ash mixes than on the conventional B-4 or B-6 mix. All mixes except Mix #5 were placed at a water-cement ratio below design mix. (See Appendix G)

All test reports received to date indicate that fly ash used with a reduction of cement and a good sound aggregate will produce a good quality of concrete.

OBSERVATIONS

With the projected amount of fly ash that is and will be available in the State of Iowa, I feel that it is advisable that we continue the use of fly ash in portland cement concrete pavements and also develop the use of fly ash in structural concrete. Due to the workability of the fly ash concrete, it should leave less porous wall finishes and should require less effort for a good finish on flat work.

I do feel from all that I have heard and read on fly ash concrete that entrained air is an important item (approximately 6% - 6.5%) to assure a good product.

The contractor on this project indicated to me that if only one fly ash mix had been used throughout the project, a cost savings of 20 to 30 cents per square yard would have been realized. On this particular project, he indicated a savings of approximately 8 to 10 cents per square yard.

This savings, due to transportation costs, would vary from county to county. With the shortages of cement encountered last summer and the projected increase in the cost of cement and hauling, I believe that future savings will be greater.

Considering a compromise on the designs used in this project, I would recommend reducing cement content 12% and a fly ash replacement of 1.25 to 1.0. The amount of concrete available for use will increase. This represents a mix that appears very comparable to our present paving mixes. I do not believe that we need the 1.5 to 1 replacement on any work.

Development for use of fly ash in portland cement will depend on the ability of the power plants to produce a consistent quality fly ash at all times. If this can be done, I believe we can then recognize fly ash as a by-product and not a waste product.

CONCLUSIONS

The primary objectives of this research project have been achieved. On this project, it was shown that fly ash could be shipped, stored and batched in the same manner as portland cement. Some additional equipment was needed for the storage of fly ash. This included an additional storage silo for the fly ash and a second limit switch on the cement scales.

We were, under field conditions with the use of present specifications for portland cement concrete, able to batch, mix and place a concrete with specified air content and a consistent slump.

The concrete produced has shown to date that it is of comparable quality to standard portland cement concrete.

RECOMMENDATIONS

I would recommend that the use of fly ash be continued and specifications be developed for a fly ash portland cement concrete for paving and structural work.

At the present time, I would recommend this mix be placed only during warm weather.

The control of the quality of the fly ash should be the responsibility of the producer. This would require some type of acceptable test monitoring be established to provide production sampling with test results being provided from each individual producer and plant.

In cool weather, the sawing of the concrete may have to be delayed due to the retarding action of the fly ash in the mix.

For an earlier strength, the use of an admixture should be considered. This would be desirable for formed concrete or cold weather pours.

It might be noted at this point that in the past, we have had problems with excessive heat in large mass concrete pier pours. The slower set of the fly ash concrete could be highly advantageous in this type of usage.

It is my hope that fly ash can be used in future work throughout the State of Iowa. With the results Monona County has on its project, we will be willing to use it in the future.

ACKNOWLEDGEMENTS

The author wishes to extend appreciation to the Monona County Board of Supervisors, to my staff and to all personnel of the Iowa Department of Transportation that made this project possible.

18 MONTHS

(

t U

EVALUATIONS

SUMMARY OF TEST REPORTS

The final test results are found in Appendices E, F and G.

The test results indicate that the fly ash mixes will have some lower strengths in the first 30 days after placement. By the end of 56 days, the flexual strengths are about equal. The cores indicate a continual growth in strength in all mixes to six months. Very little strength was gained between six months and one year.

Six month cores show very little difference in strength between the various mixes.

Of the mixes used, the B-6 was low on both the six month and one year cores.

The tests on this project indicate that fly ash can be used as a replacement for cement in Portland Cement Pavement. CONCLUSIONS & RECOMMENDATIONS

At the end of 18 months of service, the different test sections show no difference in wear. Some difference in color is noted between the fly ash and the standard mixes.

The fly ash mix has a tighter wearing surface than the standard mix. The texture depth of the fly ash mix is equal to the texture depth of the standard mix; however, while driving on the surface the fly ash texture appears to have less depth.

With results as satisfactory as we had on this project, Monona County has written special provisions allowing the use of either Class F or Class C fly ash (see Appendix H) on two paving projects for the 1980 construction season. These special provisions call for the removal of 10% of cement by weight and replacing with 1.25 parts of fly ash of the Class C type.

I feel that we could have gone as high as 15% reduction in cement on the mix without sacrificing any strength or durability.

Due to the workability of the fly ash mixes, I feel they will have use in formed concrete and in concrete used for slope protection in various structure applications.

I feel some testing with the use of admixtures for an earlier initial set would be advisable.

The wearability of this project will continue to be monitored for the next 5 to 10 yrs. and compared to other adjacent pavement.

It might be noted here that in 1979, two and three fourths miles of B-4 Portland Cement were added onto the east end of this slab. The traffic on this addition would be about the same as the test sections.

I hope that with these projects and continued research, that we can start utilizing more of our locally available resources thus helping to cut down on the use of energy, both in manufacturing and trucking.

APPENDIX A

IOWA DEPARTMENT OF TRANSPORTATION OFFICE OF MATERIALS TEST REPORT - MISCELLANEOUS MATERIALS LAB LOCATION AMES

MATERIAL FLY ASHLAB NO. ACM8-13INTENDED USE FC PAVINGCOUNTY MONONAPROJ NO. FM-67(3)--55-67DESIGNCONTRACT NO. 14660PRODUCER IOWA PUBLIC SERVICECONTRACTOR I. F. JENSENSOURCE PORT NEAL #3. WOODBURY CO.UNIT OF MATERIAL SAMPLED FROM TRUCK. TICKET #2766. 48,680 LBS.SAMPLED BY DICK BEEDLESENDER'S NO. 3DB8-1525D_E SAMPLED 5/25/78REC'D 5/30/78REFORTED 8/11/78

CHEMICAL ANALYSIS

MOISTURE	0.0%
LOSS ON 800 DEG. C IGNITION	0.09%
203	0.65%
SILICON DIOXIDE) ALUMINUM OXIDE) IRON OXIDE)	79.67%
PHYSICAL RESULTS ASTM 311	
325 MESH	78.2% PSG.

AUTOCLAVE

POZZLANIC ACTIVITY

86.3%

.09%

COPIES: /MISC. CONC. J. BUMP O. IVES M. I. SHEELER FM-67(3)--55-67, MONONA

DISPOSITION: COMPLIES WITH SP-212

21 SIGNED: BERNARD C. BROWN TESTING ENGINEER

SP-212

IOWA DEPARTMENT OF TRANSPORTATION

Ames, Iowa

SPECIAL PROVISION

for

PORTLAND CEMENT CONCRETE PAVING

USING FLY ASH

March 28, 1978

THE STANDARD SPECIFICATIONS, SERIES 1977, ARE AMENDED BY THE FOLLOWING SPECIAL PROVISIONS. THESE SHALL PREVAIL OVER THOSE PUBLISHED IN THE STANDARD SPECIFICATIONS.

ADD the following to 2301.01: The location, class, and mix proportion number of concrete to be used shall be as indicated on the plans or the proposal.

ADD the following to 2301.03:

When fly ash is required and used in the mix proportions, the fly ash shall meet the requirements of ASTM C 618 Class C except that the loss on ignition shall be a maximum of 5 percent, the available alkalies shall be limited to a maximum of 1.5 percent, and the total silicon dioxide (S_10_2) plus aluminum oxide (Al203) plus iron oxide (Fe203) shall be not less than 70% by weight. Approval of the source of fly ash will be required. Fly ash will not be subject to certified gradation testing by the contractor. Inspection will be arranged by the engineer.

ADD the following proportions to 2301.04:

ADD the following	proportions		solute Volum	ues Per Volu	ume of Concre	te	
	<u>B410-1.5</u>	B610-1.5	<u>B615-1.5</u>	<u>B615-1</u>	<u>C410-1.5</u>	C415-1.5	<u>C415-1</u>
Coarse Aggr.	.346770	.275217	.273324	.278943	.329192	.324530	.331826
Fine Aggr.	.346770	.412825	.409987	.418415	.329192	.324529	.331825
Air	.06	.06	.06	.06	.06	.06	.06
Water	.144231	.143637	.143637	.139482	.151947	.155508	.152540
Cement	.083928	.089031	.084117	.084117	,106422	.100562	.100562
Fly Ash	.018301	.019290	.028935	.019043	.023247	.034871	.023247
Approximate Quanti	ties of Mate	rials per Cu	bic Yard of	Concrete:	(Pounds)		
Coarse Aggr.	1548	1229	1220	1245	1470	1449	1482
Fine Aggr.	1548	1843	1830	1868	1470	1449	1482
Cement	444	471	445	445	563	532	532
Fly Ash	74	78	117	77	94	1.41	94
Water	243	242	242	235	256	262	257
Design W/C							
Ratio	.47	.44	.43	.45	.39	.39	.41
Max. W/C							
Ratio	.53	.50	.49	.51	.45	.45	.47

Note: Fly Ash is included in the water/cement ration calculation.

Those quantities are based on the following assumptions:

Specific Gravity of Cement - 3.14

Specific Gravity of Fly Ash - 2.40

Specific Gravity of Coarse

and Fine Aggregate - 2.65

Weight of one cu. ft. of water - 62.4 lbs.

DELETE the second and third paragraphs of 2301.04H. It is not the intention to increase cement content or to adjust proportions to correct the yield for this project. The mixture characteristics are to be controlled within the limits specified in 2301.04H and I and within the specified maximum water-cement ratio; these are to be modified only with specific, prior authorization of the engineer. Page 2

ADD the following to 2301.06A: Fly ash shall be transported, stored, and batched in such a manner as to keep it dry. Pro-portioning equipment for the fly ash shall meet requirements of 2001.20, either Paragraph A, Manual Batching Equipment, or Paragraph B, Automatic Batching Equipment.

ADD the following:

Certain aspects of the work on this project are of a research nature. Because of this, the engineer may modify requirements in order to assure that meaningful research results are obtained.

PCC Pavement

Monona County FM-67(3) - 55-67

(Special Provisions Continued)

The concrete shall be Class "B" and fly ash modified Class "B" with proportions and production in accordance with the supplemental specification. The mix proportions and location shall be:

Station to	Station	Area sq.yd.	Mix Proportion No.
100+12.0	126+20	6355.8	в6
126+20	179+40	13004.4	B610 - 1.5
179+40	231+50	12735.6	B615 - 1
231+50	283+70	12760.0	B615 - 1.5
283+70	336+40	12882.2	B410 - 1.5
336+40	361+77.2	6202.0	B4

A transition of \pm 50 feet will be allowed on the stations above when changing mix proportions.

PLEXURAL BEAM DATA

Monona	County	Project	FM-67(3)	55-67
--------	--------	---------	----------	-------

HR-20)

Besm	Mix	Air	Slump	W/C	Mod	. of rupt	ure (Da	ays)	Loc. Break off CL.
No.	No.	%	inches	Ratio	7	14	28	56	inches
1-1	1	5.6	2.50	•531	629	616	-		l 1.5
1-2	1	7.2	2.00	•503		660		711	.25 .875
1-3	1	5.7	1.25	.497			681	835	l .75
1-4	1	6.4	1.75	.497	574		740		.25 .375
Average		6.2	1.88	.507	601.	638	71.0	773	
2-1	2	6.5	1.25	.481	547		681		.5 1.125
2-2	2	6.4	2.75	.440	573	653*			0 0
2-3	2	5.5	1.5	.434	535			714	.5
2-4	2	6.5	1.75	.409		659		734	1.625
2-5	2	5.3	1.5	.413		584	624		.5 1.75 0
Average		6.0	1.75	.435	552	632	652	724	
3-1	3	6.0	1.00	.450			688	776	1
3-2	3	5.3	1.50	.442	608	689			.5 .25
3-3	<u>1</u> 3	5.5	.75	.445	559	646			.5 1.5
3-4	3	7.2	2.00	.418			629	759	.5.875
3-5	3	6.2	1.75	.418	587*		614		-375 .125
Average		6.0	1.4	•435	585	668	643	768	
4-1	4	6.5	2.00	.441	608	672			.625 1
4-2	4	5.9	1.50	.441			671	710	.5
4-3	4	6.3	1.5	.460	481	544	·		1.5
4-4	4	6.0	1.00	.466			477#	700	2.75 1
Average		6.2	1.5	.452	544	608	671	705	

* 6 or 13 day break

Broke too far off center to use

Appendix C Cont.

ļ

FLEXURAL BEAM DATA

HR-200

Monona	County	Project	FM-67(3)	55-67
--------	--------	---------	----------	-------

Beam	Mix	Air	Slump	W/C	Mod.	of Ruptu	re (Days)	LOC. Break
No.	No.	%	inches	Ratio	7	14	28	56	.off CI inches
5-1	5	6.6	2.00	.466			685	723	1.75
5-2	5	6.4	1.5	.457	431	594			.50
5-3	5	6.4	1.75	.459	437		678		·125 1.375
5-4	5	6.4	1.75	.486		590		708	0.25
Average		6.4	1.75	.462	434	592	682	716	
6-1	6	6.4	1.75	.522	515	676			0
6-2	6	5.0	1.00	.495		696	<u>}</u>	756	1.5
6-3	6	7.3	2.00	.505			736	761	1.125
6-4	6	7.9	2.00	.505	589		716		0
6-5	6	7.5	1.75	.525	521@	572@			·375 0
Average		6.8	1.70	.511	552	686	726	758	1
		<u>↓</u> } 			1				
·····			<u> </u>						
	······								
									1
}									
									1
						}		<u></u>	1
						 			1
									1
<u> </u>		E		3	I	1	.1	£	

@ Fillet beam - Do not use

.

COMPRESSIVE STRENGTH DATA - CYLINDERS

Monona County Project FM-67--55-67

HR-200

Cylinder No.	Date Taken	Date Tested	% Air	Slump In's.	W/C Ratio	Comp.	Str. (d	lays) 14
Cl-1 Cl-2 Cl-3 Cl-4 Cl-5 Cl-6	5-19-78 5-22-78 5-22-78 5-22-78 5-22-78 5-22-78 5-22-78	5-26-78 5-25-78 5-25-78 5-29-78 6- 5-78 6- 5-78	5.6 7.6 5.5 5.7 6.3 6.4	2.5 2.0 1.25 1.25 1.75 1.75	•531 •503 •503 •511 •511 •499	2070 2770	2770* 3580	4670 4870
		Average	6.18	1.75	. 501	2420	3175	4770
C2-1 C2-2 C2-3 C2-4 C2-5 C2-6	5-22-78 5-23-78 5-24-78 5-24-78 5-24-78 5-24-78	5-25-78 5-26-78 5-31-78 5-31-78 6- 7-78 6- 7-78	6,505537 756537 55	1.25 1.75 1.5 1.75 1.5 1.75	.481 .481 .434 .409 .409 .409	2200 2700	3400 3400	3790 3430
		Average	6.08	1,58	•437	2450	3400	3610
03-1 03-2 03-3 03-4	5-24-78 5-25-78 5-25-78 5-26-78	5-31-78 5-28-78 5-28-78 5-28-78 6- 2-78	6.0 6.6 5.3	1.0 1.75 1.5	•405 •445 •445	2580 2890	3900	
C3-5 C3-6	5-26-78 6- 2-78	6- 9-78 6-16-78	5.3 5.5 5.7 7.2	0.75 1.0 2.0	•445 •445 •418		3580	4650 4020
		Average	6.05	1.33	•434	2735	3740	4335
C4-2 C4-3 C4-4 C4-5	6- 2-78 6- 2-78 6- 2-78 6- 3-78 6- 3-78 6- 3-78	6- 5-78 6- 5-78 6- 9-78 6-10-78 6-17-78 6-17-78	6.5 5.5 5.5 .5 6.0 6.0	2.0 1.25 1.5 1.5 2.0 1.0	.441 .441 .441 .460 .460 .466	2360 2300	3710 3400	3770 3840
		Average	6.12	1.54	•452	2330	3555	3805
							*vəry	porous

AFFENDIX D Cont.

COMPRESSIVE STRENGTH DATA - CYLINDERS

Monona County Project FM-67--55-67

HR-200

Cylinder		Date	K	Slump	w/c	j	Str. (
No.	Taken	Tested	Air	In's.	Ratio	3	ļ	14
C5-1 C5-2 C5-3 C5-4 C5-5 C5-6	6- 3-78 6- 5-78 6- 5-78 6- 5-78 6- 5-78 6- 6-78	6- 6-78 6- 8-78 6-12-78 6-12-78 6-19-78 6-20-78	6.6 5.6 6.4 6.4 6.4	2.0 2.0 1.5 1.75 1.5 1.75	.466 .466 .457 .459 .459 .486	2640 2830	3520 3400	ЦЦ00 3960
		Average	6.30	1.75	.465	2735	3460	4180
C6-1 C6-2 C6-3 C6-4 C6-5 C6-6	6- 6-78 6- 6-78 6- 6-78 6- 6-78 6- 6-78 6- 6-78	6- 9-78 6- 9-78 6-13-78 6-13-78 6-20-78 6-20-78	5.7 5.0 5.0 7.3 7.1 7.9	1.75 0.75 1.0 2.0 2.0 2.0	•522 •495 •495 •505 •505	2520 2520	3770 4090	4780 4150
		Average	6.33	1.58	•505	2520	3930	4465

		c1-6	B-4 /
		c2-6	B410-1.5
		c3-6	B615-1.5
		c4-6	B615-1
CŠ-1		c5-6	B610-1.5
c6-1	-	c6-6	B6

.

CORING DATA - LAB. NO.ACE8-581-677

Monona County Project FM-67(3) -- 55-67

1

HR-200

Mix No.	Station	Lab. Core Di No. No. f		Dist. £	Age at Test	Corr. Str.	Comput	ed Str.	% Air Hard	Uncut Length
					Days	PSI	28 day	l year		ر ب
1	355+00 351+00 347+00 343+00 339+00	0584 0585 0586 0587 0588	3-2181 3-2182 3-2183 3-2184 3-2185	9.0R 3.0L 6.0R 9.0L 3.0R	7 7 7 7 7	3760 3800 4040 4740 3470	5125 5180 5510 6470 4730	6660 6735 7160 8405 6150	7.58 7.8 9.9 5.6 5.8	6.00 6.55 5.80 6.10 6.25
			Average			3962	5403	7022	7.34	
2	334 +00 329 +00 315 +00	0581 0582 0583	3-2178 3-2179 3-2180	9.0L 3.0R 6.0L	7 7 7	3055 3660 3230	4170 4990 4410	5420 6490 5730	6.3 7.5 7.7	6.00 5.75 6.15
			Average			3315	4523	5880	7.17	
3	257 +52 257 +52 242 +00 237 +00 233 +00	0600 0601 0605 0606 0607	3-2197 3-2198 3-2202 3-2203 3-2204	5.0L 4.0R 9.0L 6.0R 3.0L	7 7 7 7 7	2695 2525 3050 3005 3060	3675 3445 4160 4095 4175	4775 4480 5405 5325 5425	9.2 10.2 5.9 8.4 8.0	6.15 6.35 6.00 6.10 6.30
			Average			2867	3910	5082	8.34	
4	223 +00 212 +00 202 +00 192 +00 182 +00	0608 0609 0610 0611 0612	3-2205 3-2206 3-2207 3-2208 3-2209	9.0R 6.0L 3.0R 9.0L 6.0R	7 7 7 7	3240 2845 3490 2945 2390	4420 3880 4760 4015 3260	5745 5045 6190 5215 4235	8.3 8.6 8.8 6.9 9.4	5.85 6.00 6.30 6.45 6.05
			Average			2982	4067	5286	8.40	
5	175+00 166+00 156+00 146+00 136+00	0613 0614 0615 0616 0617	3-2210 3-2211 3-2212 3-2213 3-2213 3-2214	3.0L 9.0R 6.0L 3.0R 9.0L	7 7 7 7 7	2745 3080 2775 3140 3165	3745 4205 3785 4285 4320	4865 5465 4920 5570 5615	8.5 6.9 9.6 7.2	5.85 6.60 6.30 6.10 5.75
			Average			2981	4068	528 7	7.64	
6	125+00 126+00 124+00 119+00 114+00 105+00 100+00	0618 0619 0620 0621 0622 0623 0624	*3-2215 E3-2216 E3-2217 3-2218 3-2219 3-2220 3-2221	6.0R 6.0R 3.0L 9.0R 6.0L 3.0R	7 7 7 7 7 7	3130 3100 2850 3055 3220 3520	4270 4230 4350 3885 4170 4390 4805	5550 5495 5055 5050 5420 57405 6245	9.6 9.2 8.1 9.0 8.6 8.0 6.5	50 50 50 50 55 55 55 55 55 55 55 55 55 5
		1	Average			3152	i4300	5588	8.43	

INFORMATIONAL TESTS

APPENDIX E Cont.

CORING DATA - LAB. NO.ACE8-581-677

Monona County Project FM-67(3) -- 55-67

HR-200

INFORMATIONAL TESTS

*****	·				. :					
Mix No.	Station	Lab. No.	Core No.	Dist. L	Age at Test Days	Corr. Str. PSI	Comput PS 28 day	and the second se	Hard	Uncut Length
l	361* 00 356+00 353+00 347+00 340+00	0589 0590 0591 0592 0593	3-2286 3-2187 3-2188 3-2189 3-2190	9.0L 6.0R 3.0L 4.0R 7.0L	17 14 14 14 14 14	4215 3675 4060 3900 4585	4815 4195 4635 4455 5240	6255 5455 6020 5790 6805	6.1 5.6 7.4 8.0 5.3	9.40 6.65 5.80 5.90 6.05
			Average			4107	4668	6065	6.48	
S	333+00 319+00 305+00 292+00	0594 0595 0596 0597	3-2191 3-2192 3-2193 3-2194	3.9R 4.0L 6.0R 3.0L	15 15 14 14	4085 4880 3920 3720	4665 5570 4475 4250	6065 7240 5815 5520	6.6 5.1 7.9 7.3	5.60 6.50 6.50 6.70
			Average			4151	4740	6160	6.73	
3	280 +00 272 +00 262 +00 253 +00 24.7 +00 238 + 0 0	0598 0599 0602 0603 0604 0625	3-2195 3-2196 3-2199 3-2200 3-2201 3-2222	1.5R 6.0L 3.0R 9.0L 6.0L 9.0L	15 15 14 14 14	4265 3525 3590 3980 3690 3490	4870 4025 4100 4545 4215 3990	6325 5225 5330 5905 5475 5180	6.9 7.6 9.1 7.8 7.5 9.5 4	5.60 6.15 5.95 6.30 6.65
			Average			3757	4291	5573	7.88	
4	228 +00 218 +00 208 +00 198 +00 188 +00	0626 0627 0628 0629 0630	3-2223 3-2224 3-2225 3-2226 3-2227	6.8R 8.0R 9.0R 6.9L 3.0R	14 14 14 13 13	2585 3880 3585 2040 3215	2955 4430 4090 2330 3670	3840 5670 5315 3025 4770	8.8 7.5 6.6 9.1 12.5	5.90 6.30 6.20 5.80 5.85
			Average			3061	3495	4542	8.90	
5	178+00 168+00 158+00 148+00 138+00	0631 0632 0633 0634 0635	3-2228 3-2229 3-2230 3-2231 3-2232	9.0L 6.0L 3.0L 9.0R 6.0L	14 14 14 14 14 14	3140 3195 3150 3340 2965	3585 3650 3600 3810 3390	4610 4740 4675 4955 4405	8.7 10.6 9.5 8.0 9.0	6.20 5.95 5.90 6.45 5.90
			Average			3158	3607	4687	9.16	
6	118+00 114+00 106+00 103+00 100+91	0636 0637 0638 0639 0640	3-2233 3-2234 3-2235 3-2236 3-2236 3-2237	3.0R 9.0L 6.0R 3.0L 9.0R	14 14 14 14 14 14	3080 3615 4255 3930 3790	3520 4125 4860 4490 4330	4575 5365 6315 5835 5625	9.1 7.1 7.6 7.9 7.1	5.80 5.90 6.40 5.80 6.80
17001Wie // 1			Average			3734	4265	5543	7.76	

APPENDIX E Cont.

CORING DATA - LAB. NO.ACE8-581-677

Monona County Project FM-67(3) -- 55-67

HR-200

Mix No.	Station	Lab. No.	Core No.	Dist. £	Age at Test	Corr. Str.	<u> </u>		Hard	Uncut Length
1	358+00 348+00 337+00 340+00	0641 0643 0644 0645	3-2238 3-2239 3-2240 3-2241	6.0R 3.0L 9.0R 6.0L	Days 28 28 28 28 28	PSI 3440 5005 3990 4365	28 day 3440 5005 3990 4365	1 year 4470 6510 5185 5675	Conc. 7.5 5.8 11.5 11.9	6.00 6.15 6.45 6.10
			Average			4200	4200	5460	9.18	
2	310+00 327+00 317+00 318+00 316+00 307+00 296+00 286+00	0642 0646 0647 0648 0649 0650 0651 0652	3-2242 3-2243 *3-2244 E3-2245 E3-2246 3-2247 3-2248 3-2249	3.0R 6.0L 3.0R 3.0R 3.0R 9.0L 6.0R 3.0L	27 28 29 29 28 28 28 28 28	5045 4125 5510 5300 5125 4630 4565 4825	5045 4125 5510 5300 5125 4630 4565 4825	6555 5365 7165 6890 6660 6020 5930 6270	5.54 9.01 96.18 96.14 66.9 66.14 6.7	6.60 6.15 5.50 6.30 6.20 6.40 6.40 6.35 5.90
			Average			4891	4891	6357	6.98	
3	276+00 266+00 255+00 245+00 235+00	0653 0654 0655 0656 0657	3-2250 3-2251 3-2252 3-2253 3-2253 3-2254	9.0R 6.0L 3.0R 9.0L 6.0R	29 28 28 28 28 28	3350 4690 4190 3610 2770	3350 4690 4190 3610 2770	4355 6095 5445 4695 3600	8.7 6.8 7.9 6.6 7.7	6.60 6.20 6.05 5.80 6.30
			Average			3720	3720	4840		
4	225+00 21/4÷00 204 + 00 19/4+00 18/4+00	0658 0659 0660 0661 0662	3-2255 3-2256 3-2257 3-2258 3-2258 3-2259	3.0L 9.0R 6.0L 3.0R 9.0L	28 28 28 28 28 28	3520 4450 3700 3390 3380	3520 4450 3700 3390 3380	4575 5785 4810 4405 4395	9.7 8.7 8.8 9.2 8.9	5.90 6.10 6.25 5.85 6.35
			Average			3690	3690	4795		
5	173+00 174+00 172+00 171+00 163+00 153+00 143+00 132+00	0663 0664 0665 0666 0667 0668 0669 0670	*3-2260 E3-2261 E3-2262 E3-2263 3-2264 3-2265 3-2265 3-2265 3-2267 Average	6.0R 6.0R 6.0R 3.0L 9.0R 6.0L 3.0R	28 28 28 28 28 28 28 28	4970 3800 4060 4210 3280 3250 3930	4970 3800 4060 4210 3280 3250 3930	6404 4940 5280 5478 4264 4225 5105	6.2 8.4 7.8 6.8 9.0 7.8	5.65 6.10 5.70 5.95 5.90 6.15 6.60 6.10

INFORMATIONAL TESTS

APPENDIX E Cont.

CORING DATA - LAB. NO.ACE8-581-677

Monona County Project FM-67(3) -- 55-67

HR-200

INFORMATIONAL TESTS

Mix No.	Station	Lab. No.	Core No.	Dist. £	Age at Test Days	Corr. Str. PSI	Comput PS 28 day	ed Str. I 1 year	% Air Hard Conc.	Uncut Length
6	122+00 115+00 107+00 102+00 103+00 101+00	NO. 0671 0672 0673 0674 0675 0676 0677	NO. 3-2268 3-2270 3-2271 *3-2272 E3-2273 E3-2274 Average	L 9.0L 6.0R 3.0L 6.0L 6.0L 6.0L		Str. PSI 4240 3650 4780 4530 4630 4365	28 day 4240 3650 4780 4530 4630 4365	1 year 5510 4745 6215 5890 6020 5675	5.8 8.2 5.7 6.9 4.6	6.75 6.10 6.30 6.60 5.50 6.00 6.60

CORING DATA _ LAB. NO.

Monona County Project FM-67(3)--55-67

HR-200

Ι	Ν	F	0	R	М	А	Ŧ	I	0	Ν	А	L	\mathbf{T}	Ε	S	\mathbf{T}	S

Mix No.	Station	Lab No.	Core No.	Dist. C.L.	Test		Comput PS		% Air Hard	Uncut Lgth
1	360+00 355+00 350+00 345+00 339+00 Average	0900 0901 0902 0903 0904	3-2739 3-2740 3-2741 3-2742 3-2743	3.0L 6.0R 9.0L 3.0R 6.0L	Days 185 184 184 184 184	PSI 6275 5705 5920 5970 6035 5981	28 day 5045 4585 4760 4800 4850 4808	1 yr. 6560 5960 6190 6240 6305 6251	Conc. 7.4 7.0 6.6 5.5 7.3	6.55 5.70 6.05 5.75 6.30
2	334+00 324+00 314+00 304+00 294+00 Average	0905 0906 0907 0908 0909	3-2744 3-2745 3-2746 3-2747 3-2748	9.0R 9.0L 6.0R 9.0L 3.0R	184 184 184 184 184	$5015 \\ 6450 \\ 4590 \\ 5780 \\ 4905 \\ 5348$	4030 5195 3890 4650 3940 4341	$5240 \\ 6750 \\ 4800 \\ 6040 \\ 5725 \\ 5711$	6.8 5.4 8.5 5.7 6.5	6.25 5.75 5.90 6.30 5.95
	280+00 270+00 260+00 250*00 240+00 Average	0910 0911 0912 0913 0914	3-2749 3-2750 3-2751 3-2752 3-2753	6.0L 9.0R 3.0L 6.0R 9.0L	184 184 184 184 183	5590 5200 5585 6030 4600 5401	$\begin{array}{r} 4575\\ 4180\\ 4490\\ 4845\\ 3700\\ 4358\end{array}$	5945 5435 5840 6300 4810 5666	7.1 7.9 8.6 6.2 6.1	5.75 6.15 6.25 6,25 6.00
	230+00 219+00 209+00 199+00 189+00 Average	0915 0916 0917 0918 0919	3-2754 3-2755 3-2756 3-2757 3-2758	3.0R 6.0L 9.0R 3.0L 6.0R	183 183 183 183 183 183	$4165 \\ 4765 \\ 6160 \\ 4955 \\ 5105 \\ 5030$	3350 3830 4955 3985 4105 4045	4355 4980 6440 5175 5335 5257	8.7 8.8 8.6 6.9	5.80 6.55 6.50 5.70 6.20
5	178+00 168+00 158+00 148+00 136+00 Average	0920 0921 0922 0923 0924	3-2759 3-2760 3-2761 3-2762 3-2763	9.0L 3.0R 6.0L 9.0R 3.0L	183 183 183 183 183	5880 5630 5285 5065 6075 5587	4730 4525 4250 4070 4885 4492	6145 5885 5520 5290 6345 5837	9.0 5.0 8.1 6.9 7.7	5.30 5.70 6.00 6.50 5.65
6	125+00 120+00 114+00 108+00 102+00 Average	0925 0926 0927 0928 0929	3-2764 3-2765 3-2766 3-2767 3-2768	6.0R 8.0L 8.0L 6.0R 9.0L	183 183 183 183 183	4790 4830 4915 5350 5205 5018	3850 3880 3950 4705 4185 4114	5005 5045 5135 6115 5440 5348	7.2 7.4 9.1 6.8 5.7	6.05 5.90 5.70 5.5 9.4

CORING DATA LAB. NO.

Monona County Project FM-67(3)--55-67

. HR-200

INFORMATIONAL TESTS

Mix No.	Station	Lab No.	Core No.	Dist. C.L.	Age (Test Days		Comput PS 28 day	and the second	% Air Hard Conc.	Uncut Lgth
	359+00 354+00 349+00 344+00 338+00 Average	0348 0349 0350 0351 0352	03-2812 03-2813 03-2814 03-2815 03-2816	6.0L 9.0R 3.0L	369 366 366 366 366 366	6150 5670 4975 5390 6340 5705	4730 4360 3825 4145 4875 4387	6150 5670 4975 5390 6340 5705	7.1 7.3 7.0 7.3 6.5	5.90 6.70 6.70 5.80 6.70
2	333+00 323+00 313+00 303+00 293+00 Average	0353 0354 0355 0356 0357	03-2817 03-2818 03-2819 03-2820 03-2821	3.0R 6.0L 9.0R	365 365 365 364 364	6500 5665 5805 5285 6445 5940	$5000 \\ 4355 \\ 4465 \\ 4065 \\ 4955 \\ 4568$	6500 5665 5805 5285 6445 5940	5.9 7.6 6.4 7.1 5.3	5.90 5.90 6.40 6.50 7.10
	282+00 272+00 262+00 252+00 241+00 Average	0358 0359 0360 0361 0362	03-2822 03-2823 03-2824 03-2825 03-2826	9.0L 3.0R 6.0L	364 363 362 362 364	5610 6505 5850 6365 5205 5907	4315 5005 4495 4895 4005 4543	5610 6505 5850 6365 5205 5907	6.3 8.1 6.1 7.2	6.70 6.20 5.85 6.50 6.40
	227+00 217+00 207+00 197+00 187+00 Average	0363 0364 0365 0366 0367	03-2827 03-2828 03-2829 03-2830 03-2831	6.0R 9.0L 3.0R	364 364 363 363 363	4880 5370 5940 4370 5120 5136	3750 4130 4570 3360 3935 3949	4880 5370 5940 4370 5120 5136	9.3 8.9 6.8 9.2 8.4	5.80 6.20 6.10 6.30 5.90
5	177+00 167+00 157+00 147+00 137+00 Average	0368 0369 0370 0371 0372	03-2832 03-2833 03-2834 03-2835 03-2836	3.0L 6.0R 9.0L	363 361 361 361 361 361	4905 5460 5225 4845 6490 5385	3770 4200 4020 3725 4990 4141	4905 5460 5225 4845 6490 5385	7.9 8.1 6.3 7.4 3.6	7.30 6.40 5.90 6.50 6.00
6	126+00 121+00 116+00 111+00 105+00 Average	0373 0374 0375 0376 0377	03-2837 03-2838 03-2839 03-2840 03-2841	9.0R 3.0L 6.0R	360 360 360 360 360	4775 5110 5570 4515 5060 5006	3670 3930 4285 3470 3890 3849	4775 5110 5570 4515 5060 5006	6.6 6.7 6.3 8.3 7.0	6.10 6.60 5.90 6.20 6.20
	_	} 								- -

CYLINDER AND CORES HR-200, "Fly Ash in P.C. Pavement-Monona County"

Compression Strength in PSI

Appendix F

Mix 1	Ave.	Calcula	ted Ave.
······································	۵ 	28 day	l yr.
3 day cylinders	2420		
7 day cylinders	3175		
14 day cylinders	4770		
7 day cores	3962	5403	7022
14 day cores	4107	4668	6065
28 day cores	4200	4200	5460
6 month cores	5981	4808	6251
1 year cores	5705	4387	5707
Mix 2			
3 day cylinders	2450		
7 day cylinders	3400		
14 day cylinders	3610		1999 - Y. ang Later, strendard, wordd 4944, 1444 - Later, parlan ar an ar
7 day cores	3315	4523	5880
14 day cores	4151	4740	6160
28 day cores	4891	4891	6357
6 month cores	5348	4341	5711
l year cores	5940	4568	5940
Mix 3			
3 day cylinders	2735		1
7 day cylinders	3740		
14 day cylinders	4335		
7 day cores	· 2867	3910	5082
14 day cores	3757	4291	5573
28 day cores	3720	3720	4840
6 month cores	5401	4358	5666
1 year cores	5907	4543	5907

CYLINDER AND CORES

HR-200, "Fly Ash in P.C. Pavement-Monona County"

Compression Strength in PSI

Appendix Cont.

Compression	Strength	in PSI	
Mix 4	Ave.	Calcula	ited Ave.
·		28 day	<u>l yr.</u>
3 day cylinders	2330		
7 day cylinders	3555		
14 day cylinders	3805		
7 day cores	2982	4067	5286
14_day cores	3061	3495	4542
28 day cores	3690	3690	4795
6 month cores			
1 year cores	5136	3949	5136
Mix 5			
3 day cylinders	2735		
7 day cylinders	3460		
14 day cylinders	4180		
7 day cores	2981	4068	5287
14 day cores	3158	3067	4687
28 day cores	3930	3930	5105
6 month cores	5587	4492	5837
<u>1 year cores</u>	5385	4141	5385
Mix 6			
3 day cylinders	2520		
7 day cylinders	3930		
14 day cylinders	4465		
7 day cores	3152	4300	5588
14 day cores	3734	4265	5543
28 day cores	4365	4365	5675
6 month cores	5018	4114	. 5348
1 year cores	5006	3849	5006

SUMMARY CONCRETE TEST DATA Monona County Fly Ash Research FM-67-(3)--55-67 HR-200

	Mod. of Rupt Days			Days	Cylinders Days				ays	Co	res	Days			
Mix*	7	14	28	56		3	7		14	7	14	28	184	365	
1	601	638	710	773		2420	3175		4770	3962	4107	4200	5981	5705	
2	552	632	652	724		2450	3400		3610	3315	4151	4891	5348	5940	
3	585	668	643	768		2735	3740		4335	2867	3757	3720	5401	5907	
4	544	608	671	705		2330	3555		3805	2982	3061	3690	5030	5136	
5	434	592	682	716		2735	3460		4180	2981	3158	3930	5587	5385	
6	552	686	726	758		2520	3930		4465	3152	3734	4365	5018	5006	
	*1	B-4	2 в-4	10-1.5	3	B-6 15	-1.5	4	в-6 15-1	5 B	-6 10-1		Б в-б		

Average Water-Cement Ratios - Air - Slump

Design Mix No.	1	2	3	4	5	6
Design W/C	.536	.469	.430	.441	.450	.537
Ave. W/C @ beams	.507	.435	.440	.452	.462	,511
Ave. Field W/C	.513	.428	.440	.448	.457	.506
Ave. % Air - Field	6.2	6.0	6.0	6.2	6.4	6.8
Ave. Slump - Inches	1.88	1.75	1.30	1.50	1.75	1.70
Durability	86	86	88	92	92	92

APPENDIX

ĥ

and the second second

37

APPENDIX G

SP-285

IOWA DEPARTMENT OF TRANSPORTATION Ames, Iowa

PORTLAND CEMENT CONCRETE PAVING USING FLY ASH

Monona County Projects: RS-3090(2)--61-67 and L-37-2--73-67

February 26, 1980

THE STANDARD SPECIFICATIONS, SERIES 1977, ARE AMENDED BY THE FOLLOWING SPECIAL PROVISIONS. THESE SHALL PREVAIL OVER THOSE PUBLISHED IN THE STANDARD SPECIFICATIONS.

On these projects, the contractor may use a concrete mixture utilizing fly ash as a substitute for a portion of the portland cement. This substitution is an option of the contractor. The option includes use of either class of fly ash. With reasonable notice to the engineer, the contractor may change to or from the mixture with fly ash or change the class of fly ash used; however, fly ash of different classes shall not be intermixed. Fly ash may not be substituted for portland cement after September 30th.

ADD the following to 2301.03: When fly ash is used in the mix proportions, the fly ash shall meet the chemical and physical requirements of ASTM C 618 for the class of fly ash specified, with the following exceptions:

	<u>Class F</u>	<u>Class C*</u>
Loss on ignition Available Alkalies, as Na ₂ C Silicon Dioxide plus Aluminum Oxide plus	5.0% max. 1.5% max.	5.0% max. 1.5% max.
Iron Oxide	65% min.	50% min.

*Class C fly ash, in addition to meeting the above requirements, shall have sufficient cementiticus qualities, as determined by the Office of Materials, Iowa D.O.T.

Approval of the source of fly ash will be required. Fly ash produced at plants where the limestone injection process is used will not be considered acceptable for use in concrete pavement. Fly ash for use in concrete pavements will only be considered from utility plants that use coal from a single source.

A potential source of fly ash shall furnish the Office of Materials, Iowa D.O.T., test results from an independent laboratory indicating compliance with the above mentioned ASTM specification. This test data shall represent material produced within sixty (60) days of the submittal. The material will then be tested to verify the independent laboratory test data. Upon satisfactory verification, project acceptance will be on a lot-by-lot basis. Inspection of the fly ash will be arranged by the engineer.

ADD the following to 2301.04:

When a fly ash mixture is used, the substitution shall be as follows:

Class F fly ash ~ 10 percent of the cement, by weight, shall be removed and replaced with Class F fly ash at a 1½ to 1 basis. (1½ pounds of fly ash for each pound of cement removed).

Class C fly ash - 15 percent of the cement, by weight, shall be removed and replaced with an equal amount of Class C fly ash, on a pound per pound basis.

The water/cement ratios for the fly ash mixtures are as follows for Class B concrete:

	<u>Class F</u>	<u>Class</u> C
Design w/c ratio - lb./lb.	0.43	0.50
Maximum w/c ratio - lb./lb.	0.49	0.56

Note: Fly ash is included in the water/cement ratio calculation as portland cement.

The change in absolute volumes, due to the fly ash substitution, shall be applied to each aggregate in the same ratio as the ratio of aggregates for that particular mix number (e.g. B-3, 45% Fine Aggr., 55% Coarse Aggr.). For estimating quantities, the specific gravity of Class F fly ash is assumed to be 2.40 and for Class C fly ash, 2.68 is assumed.

ADD the following to 2301.06: Fly ash shall be transported, stored and batched in such a manner as to keep it dry. Pro-portioning equipment for the fly ash shall meet the requirements of 2001.20, either Paragraph A or Paragraph B.

ADD the following to 2301.40:' Furnishing and incorporating fly ash in the concrete will be considered incidental; no separate payment will be made therefor.