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EXECUTIVE SUMMARY 

Background 

Asphalt binder used for high-performing pavements needs sufficient properties to resist cracking 

at low temperatures and rutting caused by shear forces from sustained loads at high temperatures. 

To produce an asphalt binder with these performance characteristics, the binder is commonly 

modified with elastomeric polymers to improve its rheological properties and lower its 

temperature susceptibility over a range of in-service pavement temperatures. 

The most common elastomeric polymers used for asphalt modification are styrenic block 

copolymers (SBCs). SBCs are composed of blocks of polybutadiene and polystyrene to produce 

styrene-butadiene (SB) diblock polymers and styrene-butadiene-styrene (SBS) triblock 

polymers. 

Recent advances in polymerization techniques have led to the development of elastomeric block 

copolymers produced with polystyrene and polymerized soy-derived triglycerides. While the 

past two decades of plant-oil based polymer research has yielded only thermosets, the newly 

produced polymers are thermoplastic elastomers that are processable at high temperatures. 

Research Methodology 

The thermoplastic elastomers were produced using a controlled radical polymerization technique 

to create the block copolymers. 

Soybean oil triglycerides were first acrylated and epoxidized, creating acrylated epoxidized 

soybean oil (AESO). This process made them suitable to polymerize via controlled radical 

polymerization techniques, such as reversible addition-fragmentation chain-transfer 

polymerization (RAFT). 

SBS-like triblock copolymers were then synthesized by polymerizing AESO and styrene 

monomer in the presence of a free radical initiator and a chain transfer agent to create 

polystyrene-b-polyAESO-b-polystrene (PS-PAESO-PS). The polymerizing step was carried out 

under conditions effective to achieve a number-average degree of polymerization (Nn) for the 

thermoplastic block copolymer of up to 100,000 repeat units per molecule without gelation. 

Following the same process, SB diblock copolymers were also produced. 

Laboratory Investigation 

A laboratory investigation was conducted to characterize the PS-PAESO-PS and PS-PASEO 

biopolymers and to evaluate their effectiveness as a liquid asphalt modifier. Asphalt modified 

with the biopolymers was compared to asphalt modified with two commercially available Kraton 

polymers, D1101 (SBS) and SB D1118 (SB). 
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Key Findings 

Rheology test results showed the biopolymer has the ability to widen the grade range of asphalt 

and reduce its temperature susceptibility. The base asphalt tested as a continuous PG 51.1-37.7 

for a grade range of 88.8C. Adding two percent D1101 to the base asphalt increased its 

continuous high PG to 57.2 without changing its -34 grade qualification on the low temperature 

side. Adding two percent PS-PAESO-PS to the base asphalt changed its continuous PG to 70.4-

33.0 for a 103.4C grade range. With the addition of two percent PS-PAESO, the base asphalt 

changed to a continuous PG of 69.1-32.8 for a 101.9C grade range. 

Thus, biopolymers significantly enhanced the performance properties of the base asphalt. By 

adding two percent of either biopolymer to an asphalt binder, the rutting resistance and 

temperature performance range of an asphalt pavement will improve. 

Implementation Readiness and Benefits 

Soybean oil is the world’s most abundant vegetable oil and currently costs 40 percent less than 

butadiene. These lower costs will translate into lower costs of polymer-modified asphalt. 

Polymerized triglycerides are also intrinsically renewable, environmentally friendly, and safer to 

handle than butadiene. 

With future implementation of the developed biopolymers, Iowa source materials (e.g., soybean 

oil) can be utilized to produce polymers for use in Iowa. This can create improved economic 

opportunities for soybeans resulting in economic value to Iowa and maintaining soil qualities 

through a balanced crop rotation with corn. 

Future Work 

Currently, at a polymer content of two percent, a base asphalt’s low temperature PG may 

increase one grade, which may warrant the use a softer base asphalt to compensate for that effect. 

As additional data from asphalt-modification experiments become available, additional or 

improved polymer formulation designs may be developed. Future research can improve upon the 

biopolymers molecular architecture, styrene content, and molecular weight distribution. 

A larger reactor has been purchased that is capable of making two kilogram samples, 

substantially larger than the approximately 100 gram samples produced in this study. In addition, 

a pilot plant is currently being designed that can produce even larger quantities of the 

biopolymers for future research. 

Further work evaluating asphalt mixtures for rutting, low temperature cracking, and moisture 

susceptibility should be done while the pilot plant is being constructed. Based upon the 

evaluation of the mixture, an additional phase of research should include a field demonstration 

project that tests the performance of asphalt pavement containing terminally blended asphalt 

binder modified with the soy-based block copolymers.  
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CHAPTER 1 INTRODUCTION 

1.1 Problem Statement 

The performance of asphalt pavements at in-service temperatures depends on the grade of 

asphalt binder used in the paving mixture. In many cases, the characteristics of asphalt binder 

need to be altered to improve its rheological properties. Asphalt binder needs sufficient 

properties to resist cracking at low temperatures and rutting caused by shear forces from 

sustained loads at high temperatures. The physical properties of asphalt binder are typically 

modified with elastomeric polymers to produce an improved performance grade. The most 

common elastomeric polymers used for asphalt modification are styrenic block copolymers 

(SBC). SBCs are composed of blocks of polybudiene and polystyrene to produce styrene-

butadiene (SB) diblock polymers and styrene-butadiene-styrene (SBS) triblock polymers. 

In 2008, there was a shortage of SB and SBS polymers for use in the asphalt industry. The 

shortage was due to a lack of global butadiene supply, the principal component of SBC grades 

for asphalt modification. Butadiene is a by-product of the production of ethylene, which is 

produced from the steam cracking process of petroleum based feedstocks. Steam cracker 

facilities can use either liquid petroleum products or gaseous products such as ethane, butane, or 

propane as the raw material to produce ethylene. The by-products that result from the steam 

cracking reaction depend on the composition of the raw material. Butadiene is only a by-product 

when liquid feeds, not gaseous feeds, are used as the raw materials. 

As shale gas supplies become more abundant, crackers are more commonly using lighter 

petrochemical feeds such as ethane to produce ethylene and its by-products. However, using 

lighter feeds lowers butadiene production and tightens the supply (Foster 2011). This in-part led 

to the 2008 butadiene shortage as well as short term closure of some facilities. Although the 

butadiene supply has rebounded since then, it remains volatile and has been susceptible to rapid 

price increases. The butadiene market in the United States is particularly sensitive to global 

supply since butadiene is not substantially produced domestically but primarily imported from 

Asian and European countries. 

As the asphalt industry continues to grow, it will increasingly need SBCs to modify asphalt 

binder. The global asphalt market is projected to reach 118.4 million metric tons by 2015, 

according to a January 2011 report by Global Industry Analysts, Inc. With increasing growth in 

the developing markets of China, India, and Eastern Europe, asphalt will be needed to construct 

their roadway infrastructure well into the next decade and beyond. The demand for asphalt, along 

with the need for improved asphalt pavement performance, will put pressure on butadiene 

supplies that have already experienced shortages. As a result, there is a growing need in finding 

sustainable and renewable SBC alternatives.  

The successful synthesis of elastomeric SBCs requires a polymer like polybutadiene for its soft 

and rubbery properties. With the advent of new polymerization technologies that can produce 

polymers from biorenewable sources rather than petroleum, it may be possible to synthesize a 
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biopolymer from plant-based feedstocks that mimics the properties of polybutadiene. A bio-

based alternative that could replace the petrochemically based polybutadiene in SBCs would help 

solve the economic and environmental concerns of using them. 

Indeed, many advances have been made in this area, most notably in the production of vegetable-

oil-based thermosets via both traditional cationic and free radical polymerization routes. Lu and 

Larock (2009) have shown that a variety of plant oils may be successfully polymerized via 

cationic polymerization into thermosets with a broad spectrum of physical properties and 

aesthetic appearances. While these thermoset materials may supplant a number of 

petrochemically-derived thermosets, the vast majority of commodity polymers, including SB and 

SBS, are thermoplastic materials that can be reheated and processed at high temperatures. 

In laboratory studies, the research team has identified soybean oil as a viable renewable and 

biodegradable feedstock that can be polymerized into a material with similar properties as 

polybutadiene. This report documents the recent advances toward developing a formulation for a 

thermoplastic elastomer using the polymerized soybean oil as a replacement for butadiene. By 

replacing butadiene with the polymerized soybean oil in the SB and SBS block copolymer 

structure, this research has the potential to create a new class of renewable SB block copolymers 

that can be used for the asphalt industry as well as many others. 

1.2 Objectives 

This project supports the development of an innovative route to thermoplastic-elastomeric SBCs 

based largely on soybean oil, a renewable and biodegradable feedstock. The new class of SBCs 

contains a biopolymer derived from triglycerides in soybean oil that replaces the “B” block 

polymer (polybutadiene) in the block copolymer structure of SB and SBS. The efficacy these 

soy-based block copolymers as an alternative to the traditional polymer modifiers used in the 

asphalt industry are evaluated for this project. The objectives of this project are as follows: 

 Identify the most promising polymerization chemistries for forming linear-chain polymers 

from vegetable oils. 

 Synthesize soy-based biopolymers with blocks of polystyrene (PS) and polymerized soybean 

oil (PAESO) to create block copolymers with diblock (PS-PAESO) and triblock (PS-

PAESO-PS) structures that use PAESO as a replacement for polybutadiene. Characterize the 

thermal, rheological, and morphological properties of these materials. 

 Formulate blends of the diblock and triblock biopolymers with asphalt binder and 

quantitatively evaluate their influence on asphalt binder performance; compare these results 

with commercially available SB and SBS polymers. 

 Evaluate the economics of the biopolymers as asphalt modifiers. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Polymer-Modified Asphalt 

Asphalt binder is commonly modified with polymers to improve its rheological properties in a 

paving mixture and to lower its temperature susceptibility over a range of in-service 

temperatures. Figure 1 compares the stiffness of a conventional asphalt binder to an ideal 

modified asphalt binder at different in-service temperatures. At high temperatures, polymer 

modification increases binder stiffness and elasticity, as a result of an increased storage modulus 

and a decreased phase angle. Both increasing the storage modulus and decreasing the phase 

angle improves rutting resistance of the pavement (Bahia and Anderson 1995). At low 

temperatures, polymer modification lowers creep stiffness of the asphalt which improves 

resistance to thermal cracking (Isacsson and Lu 1999).  

 

Figure 1. Effects of polymer modification in asphalt binder (after Epps, J. A.) 

Polymers are very large molecules formed by linking together multiple small molecules called 

monomers. When a polymer consists of more than one repeating monomer unit, either in a 

random or block arrangement, it is termed a copolymer. The length of the polymer chain, 

monomer sequence, and chemical structure determine the physical properties of the resulting 

polymer. Polymers with blocks of repeating homopolymer chains are termed block copolymers 

(Odian 1991). 

2.2 Thermoplastic Elastomers 

The most important block copolymer used in commercial practice is the ABA triblock (Hiemenz 

2007). The A block is usually polystyrene, and the B block is an elastomer such as isoprene or 

butadiene. Such polymers are known as thermoplastic elastomers. SBS is the most widely used 

thermoplastic elastomer for asphalt modification. It is comprised of polystyrene-polybutadiene-
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polystyrene chains that create an ordered morphology of cylindrical glassy polystyrene block 

domains within a rubbery polybutadiene matrix (Bulatovic et al. 2012). The polystyrene end-

blocks provide strength to the polymer, while the polybutadiene mid-block gives the material its 

elasticity (Figure 2). SBS polymers are thermoplastic, meaning that they can be easily processed 

at high temperatures due to the linear nature of their chains. When heated above the polystyrene 

glass transition temperature (100C), the crosslinked structure breaks down allowing the polymer 

to flow. Upon cooling, the rigid polystyrene end-blocks vitrify and act as anchors for the liquid 

rubbery domains by providing a restoring force when stretched (Fried 2008). 

 

Figure 2. SBS polymer structure 

The mechanism that allows SBS to possess the dual properties of thermoplasticity and elasticity 

in styrenic block copolymer arises from polymer thermodynamics and the chain architecture of 

the polymer. Flory-Huggins theory illustrates that nearly all polymers are mutually immiscible, 

due to the drastic loss of mixing entropy. The chemically dissimilar monomer sequences found 

in the block copolymers may be thought of conceptually as immiscible homopolymers bound 

covalently end-to-end. Due to this constraint, when a block copolymer phase separates, 

incompatible polymer types form meso-domains with a well-defined geometry dictated by the 

block composition and with a size governed by the overall molecular weight (Bates et al. 1999). 

In a typical SBS elastomer, the styrene composition is about 10-30 wt% such that spherical or 

cylindrical styrene domains form in a matrix of butadiene. When the temperature is below the 

glass transition temperature of polystyrene (Tg =100°C), the polybutadiene matrix is liquid (Tg < -

90 °C) but is bound between the vitreous polystyrene spheres, which serve as physical 

crosslinks. When the temperature is above the glass transition temperature of polystyrene, the 

entire elastomer system is molten and may be processed easily. Crosslinked poly(soybean oil) 

has been reported to have Tg values as low as -56 °C (Yang et al. 2010). Comparatively, 

polybutadiene has a Tg of -90°C. Thus, the poly(soybean oil) is an excellent candidate to serve as 

the liquid component in thermoplastic elastomers based on styrenic block copolymers. 

Stiff polystyrene domains serve 
as anchors 

Soft polybutadiene domains 
provide elasticity  
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SBS is incorporated into asphalt binder, normally between 2 and 5 percent by weight of the total 

binder, through mixing and shearing at high temperatures to uniformly disperse the polymer. 

When blended with asphalt, the polymer swells within the asphalt maltene phase to form a 

continuous tridimensional polymer network (Lesuer 2009). At high temperatures, the polymer 

network becomes fluid yet still provides a stiffening effect that increases the modulus of the 

mixture. At low temperatures, a linked network within the asphalt redevelops without adversely 

affecting the low temperature cracking performance due to the elastic properties of the 

polybutadiene (Airey 2004). The resulting performance properties widen the working 

temperature range of the asphalt/polymer system. 

2.3 SBS and Asphalt Compatibility 

The differences in properties such as molecular weight, density, viscosity, and solubility 

coefficients between SBS and asphalt result in two distinct phases when using mechanical 

mixing to obtain SBS-modified asphalt (Sun et al., 2006). This can lead to thermodynamically 

unstable blends that have a tendency to segregate during hot storage (160C). For polymers to 

impart desirable properties to asphalt binder, the binder and the polymer must be compatible. 

Incompatible asphalt-polymer blends lack a homogenous network of polymer chains throughout 

the blend, thereby reducing the polymer’s effectiveness, and from a practical perspective, face 

handling issues.  

Masson et al. (2003) showed that asphalt binder and polymer composition affect the stability of 

the blends. Asphalt binder consists of a complex system of hydrocarbon molecules that can be 

fractionated into asphaltene and maltene components (Hoiberg 1979). Asphaltenes are the 

heaviest components of the asphalt binder matrix and contribute to the stiffness of the asphalt, 

whereas maltenes are the lightest components and consist of compounds known as saturates, 

aromatics, and resins. The asphaltenes are dispersed throughout the maltene components in the 

asphalt matrix. Since the molecular weights of the polymeric chains are higher than or similar to 

those of the asphaltenes, they compete for the solvency of the maltene fraction and a phase 

separation may occur if there is an imbalance between the components (Fernandes et al. 2008). 

Therefore, it is recognized that asphalts with a lower asphaltene content and higher aromatics 

content are more compatible with SBS polymers (Alonso et al. 2010). 

Several polymer parameters determine how a polymer will be effective in asphalt modification; 

these include chain architecture, composition, and the molecular weight distribution. Lu and 

Isacsson (1997) compared branched SBS polymer to linear SBS polymer-modified asphalt. They 

concluded that linear SBS polymers displayed a finer dispersion in modified asphalt which 

results in a lower phase separation during hot storage. Masson et al. (2003) concluded that the 

lower stability of branched SBS in asphalt was not necessarily due to its branched structure but 

its high molecular weight. SBS modified asphalt studies have reported linear SBS polymers to 

have molecular weights between 130,000 to 170,000 daltons and radial SBS polymers to have 

molecular weights between 210,000 to 350,000 daltons. 
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SBS copolymers should also meet several requirements to be compatible with asphalt: they 

should be rich in butadiene (generally 60-70%) and the molecular weight of the styrene fraction 

must exceed 10,000 daltons to obtain polystyrene rich domains (Lewandowski 1994). 

The interaction between asphalt and SB is different from that with SBS (Martinez-Estrada et al. 

2010). Maltenes have a more favorable interaction with the polybutadiene block compared with 

the PS block due to maltenes swelling the polybutadiene block and not the polystyrene block. In 

contrast, asphaltenes are incompatible with both polybutadiene and polystyrene. Therefore, 

interactions between asphalt and SB are more favorable than interactions between asphalt and 

SBS since SB only has one polystyrene block compared to the multiple end blocks of SBS. 

However, SBS is more commonly used for asphalt modification due to its ability to form an 

elastic network through physical entanglements in the polymer rich phase. 

2.4 Commercially Available SBS and SB Polymers 

Commercially available SBS and SB copolymers used for modifying asphalt binders in the 

United States are supplied by Kraton Performance Polymers, Inc. (Kraton). D1101 and D1118 

are commonly used grades of Kraton for asphalt modification. D1101 is a clear, linear triblock 

copolymer (SBS), and D1118 is a clear, diblock copolymer (SB). Other SB and SBS polymers 

are produced by LG Chem, Korea Kumho Petrochemical Co., Taiwan Synthetic Rubber 

Corporation (TSRC), and others. 

2.4 Polymers Synthesized from Vegetable Oils 

Vegetable oils have been considered as monomeric feedstocks for the plastics industry for over 

20 years. Polymers from vegetable oils have obtained increasing attention as public policy 

makers and corporations alike have been interested in replacing traditional petrochemical 

feedstocks due to their environmental and economic impact.  

To date, moderate success has been achieved through the application of traditional cationic and 

free radical polymerization routes to vegetable oils to yield thermoset plastics (i.e., plastics 

which, once synthesized, permanently retain their shape and are not subject to further 

processing). For example, a variety of polymers, ranging from soft rubbers to hard, tough plastics 

were made by using cationic copolymerization of vegetable oils, mainly soybean oil (SBO), 

using boron triflouridediethyletherate (BFE) as initiator (Andjelkovic et al. 2006, Pfister & 

Larock 2010). Soybean oil-based waterborne polyurethane films were synthesized with different 

properties ranging from elastomeric polymers to rigid plastics by changing the polyol 

functionality and hard segment content of the polymers (Lu et al. 2005, Lu et al. 2011). 

Moreover, soybean oil was used to synthesize different bio-based products such as sheet molding 

composites, elastomers, coatings, foams, etc. (Zhu et al. 2006). Bunker et al. synthesized 

pressure sensitive adhesives using mini-emulsion polymerization of acrylatedmethyloleate, a 

monoglyceride derived from soybean oil (Bunker et al. 2002, Bunker et al. 2003). The polymers 

produced were comparable to their petroleum counterparts. Zhu et al. generated an elastic 

network based on acrylated oleic methyl ester through bulk polymerization using ethylene glycol 

as the crosslinker, obtaining a high molecular weight linear polymer using mini-emulsion 
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polymerization (Zhu et al. 2006). Lu et al. created thermosetting resins synthesized from soybean 

oil that can be used in sheet molding compound applications by introducing acid functionality 

onto the soybean and reacting the acid groups with divalent metallic oxides or hydroxides, 

forming the sheet (Lu et al. 2005). Bonnaillie et al. created a thermosetting foam system using a 

pressurized carbon dioxide foaming process of acrylated epoxidized soybean oil (AESO) 

(Bonnaillie et al. 2007).  

Uncontrolled chain branching and crosslinking is inevitable by using these conventional 

polymerization routes due to the multifunctional nature of triglycerides, multiple initiation sites 

along the chain backbone, and chain transfer/termination reactions. While these thermoset 

materials may indeed supplant a number of petrochemically-derived thermosets, the vast 

majority of commodity polymers are highly processable thermoplastic materials. There is thus a 

need to develop highly processable thermoplastic and elastomeric polymers from vegetable oils 

with a wide range of applications and physical properties. 
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CHAPTER 3 TEST PLAN AND PROCEDURE 

3.1 Research Plan 

The research plan included the following specific tasks: 

1. Synthesize soy-based styrenic block copolymers, with blocks of polymerized styrene (PS) 

and polymerized acrylated epoxidized soybean oil (PAESO), through the use of reversible 

addition-fragmentation chain transfer (RAFT). Triblock copolymers will contain outer blocks 

of polystyrene with an interior block of PAESO to form PS-PAESO-PS. Diblock copolymers 

will contain a block architecture of PS-PAESO.  

2. Characterize the thermal, rheological, and morphological properties of the block copolymers. 

3. Formulate blends of PS-PAESO-PS and PS-PAESO with bitumen and quantitatively evaluate 

their influence on asphalt performance; compare these results with commercially available 

SBS and SB block copolymers. 

4. Evaluate the economics of soy-based polymers as bitumen modifiers. 

Specific details of each task are outlined below. 

Task 1: PS-PAESO-PS copolymers via RAFT polymerization 

Reversible addition-fragmentation chain transfer (RAFT) polymerization was applied to 

acrylated epoxidized soybean oil, comprised predominantly of triglyceride mixtures. The 

distinctive feature of this chemistry is that it allows the design of the molecular architecture of 

the resultant polymers such that they are predominantly non-crosslinked linear or lightly 

branched chains. The chains behave as elastomers/rubbers at room temperature, but reversibly 

melt, and are susceptible to common processing techniques at elevated temperatures. RAFT has 

received a great deal of attention with respect to petrochemical feedstocks, but it has not been 

successfully applied to biofeedstocks such as soybean oil. The success of the technology on 

vegetable oils such as soybean oil is surprising, as conventional radical polymerization typically 

brings the polymerization of triglycerides into thermoset materials. RAFT successfully controls 

the polymerization of triglyceride so that it terminates at a desired molecular weight and block 

composition and produces thermoplastic polysoybean oil. 

RAFT polymerization limits the number of initiation sites and drastically reduces the rate of 

polymer-to-polymer chain transfer and termination reactions, and also introduces the capability 

to produce custom chain architectures such as block copolymers (BCPs) and statistical 

copolymers. This degree of control is superior to that offered by other controlled radical 

polymerization methods — that is, polymers of higher molar mass may be obtained over a 

shorter period of time with less rigorous purification. 
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Task 2: Characterize the thermal, rheological, and morphological properties of the block 

copolymers. 

Initial experiments during the project focused on the establishment of a reproducible procedure 

for the preparation of PS-PAESO-PS materials. In these experiments, reactions were allowed to 

progress for 12 hr, and gel permeation chromatography (GPC) was used to assess the degree of 

polymerization. In successful polymerizations, polymerization kinetics were assessed and fine-

tuned such that polyAESO compounds with minimal polydispersity and of targeted molecular 

weight were produced. As structure-property relationships for the different PS-PAESO-PS 

systems were catalogued, composition and molecular weight ranges that were best suited as 

bitumen modifiers were rationally identified. 

Presented in this report, are test results of two biopolymers (PS-PAESO-PS and PS-PAESO) that 

were developed specifically for this project as asphalt modifiers. These two materials represent 

the culmination of over fifty preliminary polymerizations that solidified our understanding of the 

reaction kinetic data and the processing parameters required to reproducibly synthesize polymers 

of designated composition and molar mass. As more data from asphalt-modification experiments 

become available, additional or improved formulation designs may be developed. The final soy-

based block copolymers developed for the project were subjected to the following of 

characterization techniques with a focus on the symmetric PS-PAESO-PS triblock copolymers.  

Thermal Characterization: Differential scanning calorimetry (DSC) was used to assess the 

glass transition temperature of each material and also its thermal stability.  

Spectroscopy: Hydrogen-1 Nuclear Magnetic Resonance (
1
H-NMR) was used to show the 

spectra of the PS-PAESO-PS triblock.  

Rheology: Master curves were developed from oscillatory shear testing in a temperature-

controlled parallel plate rheometer. These data serve as a “fingerprint” for structural information, 

indicate the processablility of the material, are strongly correlated to their performance as asphalt 

modifiers, and serve as a direct point-of comparison with commercially available SBS materials.  

Tensile Elongation: The PS-PAESO-PS materials were hot-pressed into “dogbones” for tensile 

elongation experiments yielding stress-strain curves. These experiments provideed direct 

measurements of the strength, toughness, and (reversible) elasticity of these materials. These 

data also served as a direct point-of-comparison with the SBS family.  

Transmission Electron Microscopy (TEM): The PS-PAESO-PS specimens were stained with 

OsO4 (Os will attach selectively to double bonds on the polyAESO domains), and imaged to 

gain a real-space image of how PS domains are distributed within the polyAESO matrix. 
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Task 3: Blended PS-PAESO-PS polymers with asphalt binders and rheological testing 

The PS-PAESO-PS and PS-PAESO biopolymers were blended with asphalt binder to evaluate 

the rheological properties of the biopolymer-asphalt blend. Two commercially available Kraton 

polymers were also blended with the same asphalt binder to compare the biopolymer-modified 

asphalt to commercially used polymer asphalt modified. The two Kraton polymers selected for 

the study were D1101 (SBS triblock) and D1118 (SB diblock). 

A soft asphalt from Flint Hills Resources’ Pine Bend Refinery in Rosemount, Minnesota graded 

as a PG XX-34 was used as the base asphalt. All asphalt-polymer blends were prepared in the 

laboratory with a Silverson L4RT shear mixer at 3000 rpm and 180°C. For each polymer-asphalt 

batch, 500 grams of asphalt was poured into a 1 quart aluminum can. Polymer was added to each 

can at two percent by total weight of the asphalt-polymer blend. The high shear mixing process 

was carried out for 1.5 hours.  

A control batch of asphalt binder was also prepared to compare the properties of the base asphalt 

to the polymer-asphalt blends. It was processed following the same procedure as the polymer-

asphalt batches where a 1 quart can of the base asphalt was mixed in the shear mixer at 180°C for 

1.5 hours. In total, five polymer-asphalt batches were prepared; they are as follows: 

 XX-34 base asphalt processed in shear mill 

 XX-34  +  SBS Kraton D1101 

 XX-34  +  SB Kraton D1118 

 XX-34  +  PS-PAESO-PS 

 XX-34  +  PS-PAESO 

The subsequent rheological testing of the blends is outlined below in Figure 3 and will follow the 

American Association of State Highway and Transportation Officials (AASHTO) M 320 testing 

for determining the performance grade of the modified asphalt binders. The polymer-asphalt 

blends were tested a dynamic shear rheometer (DSR) at high and intermediate temperatures and 

tested in a bending beam rheometer at low temperatures (BBR). A rolling thin film oven (RTFO) 

and pressure aging vessel (PAV) were used to conduct simulated aging of the blends 

representative of the aging of binders that occurs during production of asphalt mixtures and the 

in-situ aging, respectively.  
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Figure 3. Rheological testing of asphalt-polymer blends 

Task 4: Economic evaluation of soy-based polymers as bitumen modifiers 

An economic analysis of the raw material costs for the biopolymers will be benchmarked to 

typical raw material costs for SBS polymers used in the asphalt paving industry. 

  

1. Blend asphalt and 
polymer in high speed 

shear mill at 180C for 90 
minutes 

2. Evaluate 
high-temperature 

rheological properties of 
unaged blends with DSR 

3. Short-term age blends 
with a RTFO 

4. Evaluate 
high-temperature 

rheological properties of 
RTFO aged blends with 

DSR 

5. Long-term age blends 
with a PAV 

6. Evaluate inter-
temperature rheological 
properties of PAV aged 

blends with DSR 

7. Evaluate low-
temperature rheological 

blends with a BBR 

8. Calculate continuous 
performance grade of 

blends 

9. Compare results of 
asphalt-polymer blends 
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CHAPTER 4 BIOPOLYMER SYNTHESIS 

4.1 Chemical Modification of Soybean Oil 

Soybean oil is the most abundant vegetable oil, which accounts for almost 30% of the world’s 

vegetable oil supply. It is particularly suitable for polymerization, because it possesses multiple 

carbon-carbon double bonds that allow for modifications such as conjugation, epoxidation of the 

double bonds, etc. Soybean oils are mixtures of triglycerides (a representative structure appears 

in Figure 4), containing a number of double bonds that may serve as candidates for 

polymerization. 

 

Figure 4. A representative structure of a triglyceride 

In unprocessed oils these are located in the middle of the alkyl chains, and have only limited 

reactivity towards propagation reactions due to steric hindrance and unfavorable stability of the 

free radical. This reactivity improves dramatically when the double bonds are conjugated (Li et 

al. 2001, Henna et al. 2007, Valverde et al. 2008, and Robertson et al. 2010). Evidently, this may 

be readily achieved to nearly 100% conversion with homogeneous Rh catalysis (Larock et al. 

2001).  

A conjugated triglyceride may contain one or more conjugated sites. For instance, a conjugated 

triglyceride may contain a single conjugated site per triglyceride. Alternatively, each fatty-acid 

chain of the triglyceride may contain one or more conjugated sites. Exemplary conjugated 

triglycerides are shown in Figure 5. Acrylation of soybean oil is achieved by epoxidation of the 

soybean oil’s carbon-carbon double bonds, followed by acrylation of the epoxy rings to yield 

acrylated epoxidized soybean oil (AESO) monomer which is radically polymerizable and used as 

the monomer for the block copolymer polymerizations. 
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Figure 5. Conjugation of triglyceride molecule followed by two examples of AESO 

4.2 Synthesis of Thermoplastic Block Copolymers 

A radically polymerizable triglyceride monomer (AESO) was polymerized with polystyrene via 

reversible addition-fragmentation chain-transfer (RAFT) polymerization, in the presence of a 

free radical initiator and a chain transfer agent, to form a thermoplastic block copolymer. The 

polymerizing step was carried out under conditions effective to achieve a number average degree 

of polymerization (Nn) for the thermoplastic block copolymer of up to 100,000 repeat units per 

molecule without gelation. 

RAFT polymerization is a type of living polymerization or controlled polymerization, utilizing a 

chain transfer agent (CTA). Conventional RAFT polymerization mechanism consists of a 

sequence of addition-fragmentation equilibria, as shown in Figure 6 (Moad et al. 2006). 

 

 
 

 
 

 
  

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
  

  
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
  

 

 
  

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
  

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 



14 

 

Figure 6. RAFT polymerization mechanism 

The RAFT polymerization reaction starts with initiation. Initiation is accomplished by adding an 

agent capable of decomposing to form free radicals; the decomposed free radical fragment of the 

initiator attacks a monomer yielding a propagating radical (P•n ), in which additional monomers 

are added producing a growing polymer chain. In the propagation step, the propagating radical 

(P•n) adds to a chain transfer agent (CTA), such as a thiocarbonylthio compound (RSC(Z)=S), 

(1), followed by the fragmentation of the intermediate radical (2) forming a dormant polymer 

chain with a thiocarbonylthio ending (PnS(Z)C=S), (3) and a new radical (R•). This radical (R•) 

reacts with a new monomer molecule forming a new propagating radical (P•m). In the chain 

propagation step, (P•n) and (P•m) reach equilibrium and the dormant polymer chain (3) provides 

an equal probability to all polymers chains to grow at the same rate, allowing polymers to be 

synthesized with narrow polydispersity. Termination is limited in RAFT, and, if occurring, is 

negligible. Targeting a specific molecular weight in RAFT can be calculated by multiplying the 

ratio of monomer consumed to the concentration of the CTA used by the molecular weight of the 

monomer.  

To synthesize the soy-based block copolymers, AESO was purchased from Fisher Scientific and 

was used as received. High-performance liquid chromatography (HPLC)-grade toluene was 

purchased from Fisher Scientific and used without further purification. Styrene was purchased 

from Fisher Scientific and purified over basic alumina followed by three freeze-pump-thaw 

cycles. RAFT synthesis was performed in a similar manner to the procedure described by Moad 

et al. (Moad et al. 2006, Moad et al. 2009). Briefly, azobisisobutyronitrile (AIBN) was used as 
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the initiator. 1-phenylethyl benzodithioate was used as the chain transfer agent (CTA), and was 

synthesized according to established procedures (Moad et al. 2006, Moad et al. 2009).  

Reversible Addition-Fragmentation Chain Transfer Polymerization (RAFT) of Styrene 

Monomer (styrene), initiator, CTA, and solvent were mixed under argon in a round-bottomed 

flask with various mass ratios of monomer: solvent, 1:5 molar ratio of initiator to CTA, and 10:1 

molar ratio of monomer to CTA. The reaction flask was bubbled with argon for 30 minutes to 

remove oxygen from the system before the temperature was increased. The reaction was run at 

100 °C and the reaction time varied according the desired molecular weight (Mn). The molecular 

weight (number average) increase of the styrene homopolymer as a function of time is shown in 

Figure 7. 

 

Figure 7. Molecular weight of polystyrene in RAFT reaction 

RAFT of Acrylated Epoxidized Soybean Oil 

Monomer (AESO), initiator, CTA, and solvent (1,2-dioxane) were mixed under argon in a 100 

mL round-bottomed flask with various mass ratios of monomer: solvent, 1:5 molar ratio of 

initiator to CTA, and 10:1 molar ratio of monomer to CTA. This monomer to CTA ratio 

represents an excess of CTA compared to a typical RAFT synthesis. In a typical RAFT reaction, 

a N:1 ratio would yield polymers with an average of N repeat units. In RAFT polymerization of 

AESO, however, the multifunctional character of the AESO monomer tends to crosslink, which 

is mitigated by the use of excess CTA, as described herein. The reaction flask was bubbled with 

argon for 30 minutes to remove oxygen from the system before the temperature was increased. 

The reaction was run at 70 °C and the reaction time varied according the desired molecular 

weight (Mn). 
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Synthesis of P(Styrene-B-AESO) 

For synthesis of P(styrene-b-AESO), AESO monomer dissolved in toluene (or dioxane) was 

transferred to the reaction vessel containing the styrene homopolymer. The reaction proceeded 

for 5-6 hours, and the product was cooled down and precipitated three times in excess methanol 

and water. Mn was monitored as a function of time for the diblock copolymer (Figure 8). The 

product was stirred in a 2:1 volume ratio of methanol to ethanol solution to remove unreacted 

AESO monomer. The final product was vacuum dried for 24 hours at room temperature. In 

Figure 9, the gel permeation chromatography (GPC) curves show a decrease in elution time 

(increase in molecular weight) from the AESO monomer, to polystyrene homopolymer (PS), and 

to the diblock copolymer (PS-PAESO). 

 

Figure 8. Molecular weight of PS-PAESO in RAFT reaction 
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Figure 9. Molecular weight distribution of AESO, polystyrene (PS), and PS-PAESO 

Synthesis of P(Styrene-B-AESO-B-Styrene) 

For P(styrene-b-AESO-b-styrene), the P(styrene-b-AESO) diblock was redissolved in toluene (or 

dioxane), styrene, and AIBN. The reaction vessel was bubbled with argon for 1 hour and the 

reaction proceeded for 1-2 hours at 70°C. The final product was precipitated two times in excess 

methanol and water. The product was then stirred in a 2:1 volume ratio of methanol to ethanol 

solution for 15 minutes to remove the unreacted AESO monomer. The product was filtered and 

vacuum dried at room temperature for 24 hours. 

Reaction Time 

RAFT reaction times were varied according the desired molecular weight (Mn) (see Figure 8). 

Most reactions were stopped after 24 hours. Mn of poly(styrene-b-AESO) was also monitored as 

a function of time, as shown in Figure 6. The GPC curves in Figure 9 show a decrease in elution 

time (increase in molecular weight) from the monomer, to homopolymer, to the diblock can be 

seen. After the addition of the final styrene block, the final product p(styrene-b-AESO-b-styrene) 

was subjected to different characterization techniques. 
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CHAPTER 5 TEST RESULTS AND ANALYSIS 

5.1 Characterizations of the Polymers 

The final soy-based, thermoplastic, elastomeric, block copolymers are presented in Figures 10 

and 11. The PS-PAESO diblock is shown in Figure 10, and the PS-PAESO-PS triblock is shown 

in Figure 11. 

   

Figure 10. PS-PAESO diblock  Figure 11. PS-PAESO-PS triblock 

The PS-PAESO and PS-AESO-PS block copolymers were subsequently characterized for their 

molecular weight and polydispersidy index using gel permeation chromatography (GPC) and for 

their polystyrene content using hydrogen-1 nuclear magnetic resonance 
1
H-NMR (Table 1). The 

results show 33 percent styrene in the PS-PAESO diblock and 49 percent styrene in the PS-

PAESO-PS triblock. 
1
H-NMR results are presented in Figure 12. 

Table 1. Biopolymer molecular weights and styrene contents  

 M.W.
a
 PDI

b
 %Styrene

c
 1

st d
 2

nd e
 

PAESO 29,500 1.39 0 - - 

PS-PAESO 40,980 1.34 33 13,900 - 

PS-PAESO-PS 53,300 1.84 49 13,900 12,200 
a 
Total molecular weight of block copolymer 

b
 Polydispersity 

c 
Percent styrene in block copolymer 

d 
Molecular weight of styrene in first block 

e 
Molecular weight of styrene in second block 
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Figure 12. Nuclear magnetic resonance spectra results of PS-PAESO-PS 

Figure 13 is a transmission electron microscopy (TEM) image of a PS-PAESO-PS sample. The 

image shows a semi-ordered structure where the black islands are the styrene (hard) blocks and 

the lighter regions are the AESO (soft) blocks. 

 

Figure 13. Transmission electron microscopy image of PS-PAESO-PS 
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DSC testing provided a glass transition temperature for the PAESO and polystyrene blocks 

(Figure 14). The lower curve in the figure represents the PAESO block and the upper curve 

represents the polystyrene block. The glass transition of the PAESO is at -10°C; no apparent 

glass transition is present for the polystyrene block. 

 

 

 

Figure 14. Differential scanning calorimetry results for PAESO and polystyrene blocks 

Isothermal frequency scans with a frequency range of 0.1-100 rad/s were conducted on the PS-

PAESO-PS biopolymer within the linear viscoelastic regime using a strain of 2.5%. The initial 

temperature was set to 120°C, and the final temperature was set to 220°C. Temperature was 

changed in 20 °C decrements, allowing 3 minutes as an equilibration time. The elastic modulus, 

G'', shows no apparent change with change in frequency or temperatures below about 200 °C. 

The rheology results are shown in Figure 15.  
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Figure 15. Isothermal frequency scans of PS-PAESO-PS 

Tensile testing was performed in an Instron 5569 using a speed of 60 mm/minute (Figure 16). 

The results show that the maximum stress that can be applied to the RAFT synthesized triblock 

copolymer was about 1.3 MPa (Figure 17). 

 

Figure 16. Tensile strain (mm/mm) vs. load (MPa) for PS-PAESO-PS 
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Figure 17. Tensile strain (mm/mm) vs. tensile stress (MPa) for PS-PAESO-PS 

The characteristics of the soy-based polymers as presented in this chapter, demonstrate they 

should be suitable as an asphalt modifier. In addition to asphalt, they may also be used in various 

applications for other industries, such as viscosity modifiers for consumer care products, 

adhesives, sealants, rubber compositions, products for the automobile industry, footwear, 

packaging, products for consumer electronics, etc. 

5.2 Evaluation of Asphalt Modified with Kraton Polymers 

Prior to evaluating blends of asphalt with the soy-based block copolymer, the XX-34 base 

asphalt was blended with Kraton D1101 SBS triblock and Kraton D1101 SB diblock at different 

percentages of polymer. The high PG failing temperature for each blend was evaluated using the 

DSR. The high performance grade (PG) temperature of an asphalt represents the temperature in 

degrees Celsius where the phase angle () divided by the complex shear modulus (G*) is equal to 

1kPa for unaged binders and 2.2kPa for rolling thin film oven aged binders. Lower phase angles 

increase the elastic component of an asphalt binder, and higher complex shear modulus values 

increase the stiffness of the material. Thus, the higher the PG failure temperature of an asphalt 

binder, the greater its ability will be to resist pavement rutting from vehicular loading. 

In Table 2, the DSR results show the unaged XX-34 base asphalt contained a continuous high 

PG of 51.09. Kraton D1101 SBS polymer was then added to the base asphalt at levels of 1, 2, 3, 

4, and 5 percent, to evaluate how the percentage of D1101 would change the PG of the binder. 

As expected, the continuous high PG increased as the polymer content increased. Similar results 

were obtained for the RTFO aged D1101 polymer-asphalt blends (Table 3). 
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Table 2. DSR results for unaged asphalt modified with Kraton D1101 

Temp Measurement 
Base 

Asphalt 

w/ 1% 

Kraton 

D1101 

w/ 2% 

Kraton 

D1101 

w/ 3% 

Kraton 

D1101 

w/ 4% 

Kraton 

D1101 

w/ 5% 

Kraton 

D1101 

46C 

|G*| (Pa) 2023 2816 4500 5152   

 (degrees) 86.36 84.05 79.40 76.44   

G*/sin() (kPa) 2.03 2.83 4.58 5.30   

52C 

|G*| (Pa) 879 1205 1962 2361 3560 4790 

 (degrees) 87.75 85.85 81.85 79.38 64.64 60.63 

G*/sin(Δ) (kPa) 0.88 1.21 1.98 2.40 3.94 5.50 

58C 

|G*| (Pa)  569 928 1141 1946 2703 

 (degrees)  87.01 83.48 81.44 68.8 64.77 

G*/sin() (kPa)  0.57 0.93 1.15 2.09 2.99 

64C 

|G*| (Pa)    588 1076 1532 

 (degrees)    82.36 71.78 68.65 

G*/sin() (kPa)    0.59 1.13 1.65 

70C 

|G*| (Pa)      614 902 

 (degrees)      75.8 70.50 

G*/sin() (kPa)       0.64 0.96 

PG Failing Temp (C) 51.09 53.67 57.42 59.45 65.59 69.7 

 

Table 3. DSR results for RTFO aged asphalt modified with Kraton D1101 

Temp Measurement 
Base 

Asphalt 

w/ 1% 

Kraton 

D1101 

w/ 2% 

Kraton 

D1101 

w/ 3% 

Kraton 

D1101 

w/ 4% 

Kraton 

D1101 

w/ 5% 

Kraton 

D1101 

46C 

|G*| (Pa) 5449 7038 9619 11395   

 (degrees) 81.66 78.49 73.95 70.27   

G*/sin() (kPa) 5.51 7.18 10.01 12.11   

52C 

|G*| (Pa) 2250 2998 4276 5230 6944 8541 

 (degrees) 84.13 81.33 77.59 74.14 67.80 62.57 

G*/sin() (kPa) 2.26 3.03 4.38 5.44 7.50 9.62 

58C 

|G*| (Pa) 994 1349 1973 2475 3359 4516 

 (degrees) 86.09 83.87 81.03 78.36 73.11 65.74 

G*/sin() (kPa) 1.00 1.36 2.00 2.53 3.510 4.95 

64C 

|G*| (Pa)    1198 1653 2442 

 (degrees)    82.06 77.11 70.00 

G*/sin() (kPa)    1.21 1.70 2.60 

70C 

|G*| (Pa)      1331 

 (degrees)      73.61 

G*/sin() (kPa)      1.39 

PG Failing Temp (C) 52.38 54.45 57.22 59.20 61.89 65.60 
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Tables 4 and 5 show the DSR results of the unaged and RTFO aged XX-34 base asphalt 

modified with Kraton D1118 SB polymer, respectively, at polymer contents of 1, 2, 3, 4, and 5 

percent. The D1118 polymer did not increase the grade of the base asphalt as much as the D1101 

polymer. For example, when 5 percent D1118 polymer was blended with the base asphalt, the 

continuous grade of the base asphalt increased to 62.2C; whereas when 5 percent D1101 

polymer was blended with the base asphalt, the continuous grade of the base asphalt increased to 

65.6C. The high PG temperatures for the D1101 modified asphalt was expected since SBS is 

known to have a greater ability than SB to from an elastic network of physical chain 

entanglements in the polymer rich phase of an asphalt-polymer blend. 

Table 4. DSR results for unaged asphalt modified with Kraton D1118 

Temp Measurement 
Base 

Asphalt 

w/ 1% 

Kraton 

D1118 

w/ 2% 

Kraton 

D1118 

w/ 3% 

Kraton 

D1118 

w/ 4% 

Kraton 

D1118 

w/ 5% 

Kraton 

D1118 

46C 

|G*| (Pa) 2023 2674 3170 4745   

 (degrees) 86.36 83.89 81.14 75.27   

G*/sin() (kPa) 2.03 2.69 3.21 4.91   

52C 

|G*| (Pa) 879 1162 1438 2242 2229 2870 

 (degrees) 87.75 85.73 83.54 77.96 75.86 72.95 

G*/sin() (kPa) 0.88 1.17 1.45 2.29 2.299 3.00 

58C 

|G*| (Pa)  546 689 1102 1126 1488 

 (degrees)  87.14 85.49 80.80 77.34 74.26 

G*/sin() (kPa)  0.55 0.69 1.12 1.15 1.55 

64C 

|G*| (Pa)    565 601 812 

 (degrees)    82.42 78.04 74.57 

G*/sin() (kPa)    0.57 0.61 0.84 

Failing Temp (C) 51.09 53.37 55.03 59.12 59.51 62.30 
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Table 5. DSR results for RTFO aged asphalt modified with Kraton D1118 

Temp Measurement 
Base 

Asphalt 

w/ 1% 

Kraton 

D1118 

w/ 2% 

Kraton 

D1118 

w/ 3% 

Kraton 

D1118 

w/ 4% 

Kraton 

D1118 

w/ 5% 

Kraton 

D1118 

46C 

|G*| (Pa) 5449 7233 8100 10065   

 (degrees) 81.66 78.39 75.76 72.06   

G*/sin() (kPa) 5.51 7.38 8.36 10.58   

52C 

|G*| (Pa) 2250 3091 3575 4666 5079 6319 

 (degrees) 84.13 80.74 77.60 73.72 72.2 68.68 

G*/sin() (kPa) 2.26 2.13 3.66 4.86 5.34 6.78 

58C 

|G*| (Pa) 994 1418 1695 2271 2540 3231 

 (degrees) 86.09 83.05 79.90 76.07 73.96 70.22 

G*/sin() (kPa) 1.00 1.43 1.72 2.34 2.64 3.43 

64C 

|G*| (Pa)    1142 1311 1731 

 (degrees)    78.84 76.43 72.41 

G*/sin() (kPa)    1.16 1.35 1.82 

Failing Temp (C) 52.38 54.74 56.02 58.65 59.67 62.20 

 

The low temperature creep stiffness and the m-value of the base asphalt and Kraton polymer-

asphalt blends were evaluated using a bending beam rheometer (BBR) (Table 6). Three percent 

Kraton D1101 and D1118 each increased the continuous low temperature PG only by about three 

degrees which kept the low PG at -34C. 

Table 6. BBR results for PAV aged asphalt modified with Kraton D1101 and D1118 

  

Base Asphalt 
w/ 3% Kraton 

D1101 

w/ 3% Kraton 

D1118 

Temp Measurement PAV Aged PAV Aged PAV Aged 

-24C 
Stiffness (MPa) 182 -  245 244 245 237 

m-value 0.346 -  0.310 0.306 0.311 0.307 

-30C 
Stiffness (MPa) 479 -  520 489 492 495 

m-value 0.271 -  0.239 0.241 0.244 0.235 

Continuous 

Low Grade (C) 
-37.68 -34.71 -34.78 

 

5.3 Evaluation of Asphalt Modified with the Biopolymers 

PS-PAESO and PS-PAESO-PS were blended with the base asphalt to determine how the 

biopolymers affected the base asphalt’s PG. Each biopolymer was added to the base asphalt at a 

polymer content of 2 percent. (The biopolymers were not evaluated in the asphalt at multiple 

contents similarly to the Kraton polymers, due to limited laboratory production capabilities. 

Since the completion of this study, a larger reactor has been purchased which allows for larger 
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biopolymer production capacity.) The blends were compared to the base asphalt as well as the 

base asphalt processed in the shear mill without polymer. The results in Table 7 highlight the 

high heat levels that occur during shear mill processing which cause the asphalt to age, resulting 

in a 2.5 to 3 degree increase of the high PG temperature. Although a continuous high PG of 

51.09C was measured in the base asphalt with the DSR, 53.64C should be used as the base 

asphalt PG for a proper comparison to respective polymer-modified asphalt blends since all 

polymer-asphalt blends were processed in a shear mill.  

When 2 percent PS-PAESO diblock was added to the base asphalt, the base asphalt’s continuous 

high PG increased from 53.64C to 69.08C. The PS-PASEO-PS triblock at 2 percent increased 

the continuous high PG to 70.4C. Both PG values are higher than the asphalt modified with 2 

percent D1101 and D1118, which were 57.22C and 55.03C respectively. The higher PG values 

in the biopolymer-modified asphalt are a result of a lower phase angle and higher shear modulus 

value than the Kraton polymer-modified asphalt. 

Table 7. DSR results for asphalt modified with biopolymers 

  

Base Asphalt 

Base Asphalt 

processed in shear 

mill w/o polymer 

Base Asphalt w/ 

2%PS-PAESO 

Base Asphalt w/ 

2%PS-PAESO-PS  

Temp Measurement Unaged 
RTFO 

Aged 
Unaged 

RTFO 

Aged 
Unaged 

RTFO 

Aged 
Unaged 

RTFO 

Aged 

46C 

|G*| (Pa) 2023 5449 2843 8219         

 (degrees) 86.36 81.66 84.37 79.35         

G*/sin() (kPa) 2.027 5.51 2.857 8.362         

52C 

|G*| (Pa) 879 2250 1214 3383 9599 18900 11250 21275 

 (degrees) 87.75 84.13 86.03 82.24 73.92 67.98 73.12 67.56 

G*/sin() (kPa) 0.88 2.26 1.216 3.414 9.988 20.39 11.76 23.02 

58C 

|G*| (Pa)   994 557.2 1494 4323 8646 5100 9893 

 (degrees)   86.09 87.26 84.55 77.01 71.39 76.34 70.85 

G*/sin() (kPa)   1.00 0.5579 1.501 4.436 9.124 5.248 10.48 

64C 

|G*| (Pa)         2012 4043 2384 4680 

 (degrees)         79.85 74.90 79.40 74.34 

G*/sin() (kPa)         2.04 4.19 2.43 4.86 

70C 

|G*| (Pa)         983 1941 1157 2233 

 (degrees)         82.24 78.23 82.11 77.72 

G*/sin() (kPa)         0.99 1.98 1.17 2.29 

76C 

|G*| (Pa)             583 1094 

 (degrees)             84.44 80.76 

G*/sin() (kPa)             0.59 1.11 

PG Failing Temp (C) 51.09 52.38 53.64 55.26 69.82 69.08 71.42 70.42 
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The asphalt properties from DSR testing at intermediate pavement temperatures on PAV aged 

blends are presented in Table 8. The intermediate PG temperature is calculated as the 

temperature in degrees Celsius where the complex shear modulus multiplied by the phase angle 

equals 5000 kPa. Lower intermediate PG temperatures indicate an asphalt binder has a greater 

ability to deform without building up large stresses. A more compliant material will help reduce 

structural fatigue cracking in pavements. The biopolymers increased the intermediate PG 

temperatures four to six degrees Celsius. The PS-PAESO-PS modified asphalt contained a lower 

continuous PG intermediate temperature (12.96C) than the PS-PAESO modified asphalt 

(15.11C). The main factor contributing to this difference was the larger G* value component in 

the PS-PAESO modified asphalt. Although both PS-PAESO and PS-PAESO-PS asphalt blends 

possess similar elastic properties at intermediate temperatures as evident from the phase angles, 

the presence of the second polystyrene block in the PS-PAESO-PS may be contributing the 

polymers ability to form a network of physical entanglements throughout the asphalt binder to 

create a more compliant material at intermediate temperatures. 

Table 8. DSR results for PAV aged asphalt modified with biopolymers 

  

Base Asphalt 

Base Asphalt 

processed in shear 

mill w/o polymer 

Base Asphalt w/ 

2%PS-PAESO 

Base Asphalt w/ 

2%PS-PAESO-PS  

Temp Measurement PAV Aged PAV Aged PAV Aged PAV Aged 

22C 

|G*| (Pa) 8.22E+05   3.24E+06 2.49E+06 

 (degrees) 57.71   43.42 43.77 

G*/sin() (kPa) 694.5   2228 1725 

19C 

|G*| (Pa) 1.35E+06   4.80E+06 3.72E+06 

 (degrees) 55.17   41.42 41.77 

G*/sin() (kPa) 1110   3177 2476 

16C 

|G*| (Pa) 2.20E+06 2.47E+06 7.08E+06 5.49E+06 

 (degrees) 52.51 50.26 39.37 39.77 

G*/sin() (kPa) 1748 1894 4490 3510 

13C 

|G*| (Pa) 3.61E+06 3.93E+06 1.03E+07 8.07E+06 

 (degrees) 49.61 47.49 37.39 37.76 

G*/sin() (kPa) 2746 2900 6248 4937 

10C 

|G*| (Pa) 5.80E+06 6.21E+06   1.18E+07 

 (degrees) 46.7 44.68   35.75 

G*/sin() (kPa) 4216 4366   6884 

6C 

|G*| (Pa) 9.13E+06 9.76E+06     

 (degrees) 43.73 41.78     

G*/sin() (kPa) 6310 6495     

PG Failing Temp (C) 8.78 9.02 15.11 12.96 
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After intermediate temperature testing, the long-term aged biopolymer-asphalt blends from the 

PAV were evaluated for their low temperature properties (Table 9). When the base asphalt was 

processed in the shear mill without polymer, the creep stiffness increased and the m-value 

decreased at low temperatures which resulted in a higher critical cracking temperature. The 

critical cracking temperature is the temperature at which an asphalt binder’s creep stiffness is 

greater than 300 MPa or m-value is less than 0.300. Both the creep stiffness and m-value are 

determined from BBR testing after 60 seconds of loading. Adding two percent biopolymers to 

the base asphalt resulted in the critical cracking temperature increasing from -36.3C to -32.8C 

for the PS-PAESO modified asphalt and -33.0C for the PS-PAESO-PS modified asphalt. 

Table 9. BBR results for PAV aged asphalt modified with biopolymers 

  

Base Asphalt 

Base Asphalt 

processed in shear 

mill w/o polymer 

Base Asphalt w/ 

2%PS-PAESO 

Base Asphalt w/ 

2%PS-PAESO-PS  

Temp Measurement PAV Aged PAV Aged PAV Aged PAV Aged 

-18C 
Stiffness (MPa) -  -  - -  117 -  128 -  

m-value -  -   - -  0.360 -  0.336 -  

-24C 
Stiffness (MPa) 182 -  190 223 267 279 271 274 

m-value 0.346 -  0.319 0.327 0.291 0.280 0.296 0.290 

-30C 
Stiffness (MPa) 479 -  444 479 471 -   - -  

m-value 0.271 -  0.261 0.267 0.214 -  - -  

Continuous 

Low Grade (C) 
-37.68 -36.34 -32.83 -33.02 

 

A PG temperature grade comparison of the base asphalt, asphalt modified with Kraton polymers, 

and asphalt modified with the biopolymers, is shown in Figures 18 and 19. The charts highlight 

the differences among base asphalt modified with different polymers at two percent. The D1101 

and D1118 polymers increased the high PG temperature approximately one grade, from 51.1C 

to 57.2C and 55.0C, respectively. For the biopolymers, when two percent PS-PAESO was 

added to the base asphalt, the high PG temperature increased from 51.1C to 69.1C; and when 

two percent PS-PAESO-PS was added to the base asphalt, the high PG temperature increased to 

70.4C. These increases equate to approximately three grade bumps and demonstrate the 

effectiveness of the biopolymers. By adding two percent of either biopolymer to the base asphalt, 

the increase in high temperature PG will enhance the rutting resistance of an asphalt pavement. 

While the biopolymers were more effective than the Kraton polymers at increasing the high 

temperature performance grade, the biopolymers increased the low temperature PG of the base 

asphalt one grade while the Kraton polymers did not (Figure 2). This increase in the low 

temperature PG caused the asphalt binder to be more susceptible to low temperature cracking at -

34C. The benefit of adding two percent Kraton polymers was increasing the high PG 

temperature one grade without changing the low PG. Thus, the Kraton polymers were effective 

in reducing the temperature susceptibility of the base asphalt. (The Kraton modified asphalt 

samples that were tested for low temperature properties contained three percent polymer, not two 
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percent polymer. Since additional polymer will increase the low temperature PG, the extra 1% 

polymer in these samples should not affect the analysis.) 

Therefore, the biopolymers were more effective than the Kraton polymers in increasing the high 

temperature, but not as effective in retaining the low stiffness modulus of the base asphalt. 

Adding two percent of either biopolymer to the base asphalt, increased the low temperature PG 

one grade (from -34 to -28C). Even so, adding two percent PS-PAESO-PS increased the grade 

range (the high PG minus the low PG) from 88.8 to 103.4 which substantially increases the 

performance temperature range of the base asphalt.  

  

Figure 18. Comparison of high temperature continuous performance grades 

 

Figure 19. Comparison of low temperature continuous performance grades 
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CHAPTER 6 ECONOMIC ANALYSIS 

The most significant cost in manufacturing SBS polymers is the price of butadiene. For the last 

decade butadiene has been subject to large price fluctuations from crude oil price increases and 

global market shifts in supply and demand. Butadiene supply has been tightening due to the 

abundance of shale gas supplies. Since shale gas has become more available, lighter 

petrochemical feeds such as ethane have been more commonly used as a feedstock at cracking 

facilities to produce ethylene and its co-products that include butadiene. However, butadiene is 

only a co-product when heavier liquid feeds, not lighter feeds, are used. The effects this has had 

on the price of butadiene over the last several years are shown in Figure 20. 

In contrast, polymerized triglycerides, such as those found in soybean oil, are intrinsically 

renewable, are environmental friendly, and may also be shown to exhibit biodegradability. The 

research presented in this report indicates the elastomeric properties of soybean oil polymer 

appear to be competitive with modern commodities such as polybutadiene (synthetic rubber). 

Furthermore, the cost of the soybean oil monomer has become highly competitive in recent 

years. As shown in Figure 20, soybean oil as a biomonomer is more economical than butadiene 

monomer feedstocks (e.g., a ton of soybean oil costs less than $1,000, whereas a ton of butadiene 

has cost up to $3,500). The lower raw materials costs of soybean oil translate into lower costs of 

polymer-modified asphalt. The handling of vegetable oils in producing the bioelastomers and 

subsequent linking with styrene is also much safer and has less impact on the environment. Thus, 

the novel soy-based, thermoplastic, elastomeric, block copolymers provide a cost-effective, 

environment-friendly, viable alternative for the conventional petrochemically-derived polymeric 

SBS and SB. With future implementation of the developed biopolymers, Iowa source materials 

(e.g., soybean oil) can be utilized to produce polymers for use in Iowa. This can create improved 

economic opportunities for soybeans resulting in economic value to Iowa and maintaining soil 

qualities through a balanced crop rotation with corn.  

 

Figure 20. Commodity costs comparison 
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CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS 

Recent advances in polymerization technology have led to the development of elastomeric block 

copolymers produced with polystyrene and polymerized soy-derived triglycerides. While the 

past two decades of plant-oil based polymer research has yielded only thermosets, the produced 

polymers are highly processable thermoplastics. They were produced by first polymerizing 

acrylated, epoxidized triglyceride molecules in soybean oil to yield PAESO. SBS-like triblock 

copolymers were then synthesized by replacing the “B” block (typically polybutadiene) in the 

ABA triblock structure with PAESO to create polystyrene-b-polyAESO-b-polystrene (PS-

PAESO-PS). Styrene and AESO monomer were polymerized using reversible addition-

fragmentation chain-transfer polymerization (RAFT), in the presence of a free radical imitator 

and a chain transfer agent, to form the block copolymers. The polymerizing step was carried out 

under conditions effective to achieve a number average degree of polymerization (Nn) for the 

thermoplastic block copolymer of up to 100,000 without gelation. Following the same process, 

SB diblock copolymers were also produced using polystyrene and polyAESO. 

A laboratory investigation was conducted to characterize the PS-PAESO-PS and PS-PASEO 

biopolymers and to evaluate their effectiveness as a liquid asphalt modifier. Asphalt modified 

with the biopolymers was compared to asphalt modified with two commercially available Kraton 

polymers, D1101 (SBS) and SB D1118 (SB). Rheology test results showed the biopolymer has 

the ability to widen the grade range of asphalt and reduce its temperature susceptibility. The base 

asphalt tested as a continuous PG 51.1-37.7 for a grade range of 88.8C. Adding two percent 

D1101 to the base asphalt increased its continuous high PG to a 57.2C without changing its -

34C grade qualification on the low temperature side. Adding two percent PS-PAESO-PS to the 

base asphalt changed its continuous PG to a 70.4-33.0 for a 103.4C grade range. With the 

addition of two percent PS-PAESO, the base asphalt changed to a continuous PG of 69.1-32.8 

for a 101.9C grade range. Thus, biopolymers significantly enhanced the performance properties 

of the base asphalt. By adding two percent of either biopolymer to an asphalt binder, the rutting 

resistance and temperature performance range of an asphalt pavement will improve.  

Currently, at a polymer content of two percent, a base asphalt’s low temperature PG may 

increase one grade, which may warrant the use a softer base asphalt to compensate for that effect. 

As additional data from asphalt-modification experiments become available, additional or 

improved polymer formulation designs may be developed. Future research can improve upon the 

biopolymers molecular architecture, styrene content, and molecular weight distribution.  

A larger reactor has been purchased that is capable of making two kilogram samples, 

substantially larger than the approximately 100 gram samples produced in this study. In addition, 

a pilot plant is currently being designed that can produce even larger quantities of the 

biopolymers for future research. Further work evaluating asphalt mixtures for rutting, low 

temperature cracking, and moisture susceptibility should be done while the pilot plant is being 

constructed. Based upon the evaluation of the mixture, an additional phase of research should 

include a field demonstration project that tests the performance of asphalt pavement containing 

terminally blended asphalt binder modified with the soy-based block copolymers.
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