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ABSTRACT 

Precast prestressed concrete panels have been used as subdecks in bridge construction in Iowa 

and other states. To investigate the performance of these types of composite slabs at locations 

adjacent to abutment and pier diaphragms in skewed bridges, a research project which involved 

surveys of design agencies and precast producers, field inspections of existing bridges, analytical 

studies, and experimental testing was conducted. 

The survey results from the design agencies and panel producers showed that standardization 

of precast panel construction would be desirable, that additional inspections at the precast plant and 

at the bridge site would be beneficial, and that some form of economical study should be undertaken 

to determine actual cost savings associated with composite slab construction. 

Three bridges in Hardin County, Iowa were inspected to observe general geometric 

relationships, construction details, and to note the visual condition of the bridges. Hairline cracks 

beneath several of the prestressing strands in many of the precast panels were observed, and a slight 

discoloration of the concrete was seen beneath most of the strands. Also, some rust staining was 

visible at isolated locations on several panels. Based on the findings of these inspections, future 

inspections are recommended to monitor the condition of these and other bridges constructed with 

precast panel subdecks. 

Five full-scale composite slab specimens were constructed in the Structural Engineering 

Laboratory at Iowa State University. One specimen modeled bridge deck conditions which are not 

adjacent to abutment or pier diaphragms, and the other four specimens represented the geometric 

conditions which occur for skewed diaphragms of 0, 15, 30, and 40 degrees. The specimens were 

subjected to wheel loads of service and factored level magnitudes at many locations on the slab 

surface and to concentrated loads which produced failure of the composite slab. The measured slab 

deflections and bending strains at both service and factored load levels compared reasonably well 

with the results predicted by simplified finite element analyses of the specimens. To analytically 
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evaluate the nominal strength for a composite slab specimen, yield-line and punching shear theories 

were applied. Yield-line limit loads were computed using the crack patterns generated during an 

ultimate strength test. In most cases, these analyses indicated that the failure mode was not flexural. 

Since the punching shear limit loads in most instances were close to the failure loads, and since the 

failure surfaces immediately adjacent to the wheel load footprint appeared to be a truncated prism 

shape, the probable failure mode for all of the specimens was punching shear. 

The development lengths for the prestressing strands in the rectangular and trapezoidal shaped 

panels was qualitatively investigated by monitoring strand slippage at the ends of selected 

prestressing strands. The initial strand transfer length was established experimentally by monitoring 

concrete strains during strand detensioning, and this length was verified analytically by a finite 

element analysis. Even though the computed strand embedment lengths in the panels were not 

sufficient to fully develop the ultimate strand stress, sufficient slab strength existed. 

Composite behavior for the slab specimens was evaluated by monitoring slippage between a 

panel and the topping slab and by computation of the difference in the flexural strains between the 

top of the precast panel and the underside of the topping slab at various locations. Prior to the 

failure of a composite slab specimen, a localized loss of composite behavior was detected. 

The static load strength performance of the composite slab specimens significantly exceeded the 

design load requirements. Even with skew angles of up to 40 degrees, the nominal strength of the 

slabs did not appear to be affected when the ultimate strength test load was positioned on the 

portion of each slab containing the trapezoidal-shaped panel. At service and factored level loads, 

the joint between precast panels did not appear to in!luence the load distribution along the length 

of the specimens. Based on the static load strength of the composite slab specimens, the continued 

use of precast panels as subdecks in bridge deck construction is recommended. 
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NOMENCIATURE 

A. tributary cross-sectional area of the concrete for each prestressing strand 

A.. · cross-sectional area of a prestressing strand 

B bond modulus for the elastic portion of the bond stresses (recommended value of 300 psi/in.) 

b width of the rectangular cross section for a prestressed member 

b0 perimeter of the critical vertical shear section for punching shear strength 
I 

b1 short dimension for the load footprint 

b2 long dimension for the load footprint 

CR, prestress loss due to concrete creep 

CR, prestress loss due to strand relaxation 

D nominal diameter of the prestressiiig strands 

d effective depth for a non-prestressed reinforced concrete member 

ct, effective depth from the com press ion face of the cross section to the centroid of the 
prestressing steel 

E, modulus of elasticity of the concrete 

E" modulus of elasticity of the concrete when the prestress force is applied to the concrete 
section 

E,, modulus of elasticity of the concrete in a precast panel 

E, modulus of elasticity of the prestressing strands 

ES prestress loss due to elastic shortening 

f', concrete compressive strength at 28 days 

f00, concrete stress at the centroid of the tendons caused by the superimposed permanent dead 
loads which are applied to the section 

f'" concrete compressive strength when the prestress force is applied to the concrete section 

f,;, net compressive stress at the centroid of the tendons immediately after detensioning of the 
strands 

f, modulus of rupture strength of the concrete 
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f', ultimate strength of the prestressing strands 

f,. effective strand prestress 

f,; initial strand prestress 

f,. strand stress at the nominal flexural strength of the member 

F.S. factor of safety 

g; dimensions to yield-line intersection points (i=l,13) 

L. strand development length 

Ln, strand flexural bond length 

L, strand transfer length 

L,; initial strand transfer length 

e precast panel span 

e, strand embedment length from the end of the prestressing strand to the midspan of the 
precast deck panel 

LF. load factor 

Me.. longitudinal nominal negative moment strength of the composite slab 

Me,P longitudinal nominal positive moment strength of the composite s.lab 

M,,. transverse nominal negative moment strength of the composite slab 

M1np transverse nominal positive moment strength of the composite slab 

P, maximum elastic load 

P" load at which the first crack was observed on the top surface of the composite slab 

P;, load at which interface-slip was detected 

P;.m miminum P;, load 

P, nominal limit load for yield-line analysis 

P" load at which strand-slip was detected 

P .. m minim um P" load 

P,. load at which topping slab-slip was detected 
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P•m minimum P. load 

P. ultimate experimental load 

Pw HS-20 AASHTO wheel load including 30 percent impact (20.8 kips) 

P0.1 load corresponding to a deflection equal to 0.10 in. 

RH mean ambient relative humidity, expressed in percent 

SH prestress loss due to concrete shrinkage 

S, analytical transverse stress at the extreme fibers of the slab 

Sy analytical longitudinal stress at the extreme fibers of the slab 

s prestressing strand spacing 

t composite slab thickness 

tP precast panel thickness 

xm,x30 x-axis dimensional parameters for yield-line analysis of Pattern G 
Ji'.ro,X7G 

X90 

x2 x-axis dimensional parameter for yield-line analysis 

y1,y2 y-axis dimensional parameters for yield-line analysis 

y10,y30 y-axis dimensional parameters for yield-line analysis of Pattern G 
Y6G>Y7G 

Y9G 

U, plastic bond stress along the plastic zone of the strand flexural bond length 

U ', non-dimensionalized bond stress along the plastic portion of the strand flexural bond length 
(recommended value of 1.32 for uncoated strands) 

U, plastic bond stress along the plastic zone of the strand transfer length 

U', non-dimensionalized bond stress along the plastic portion of the strand transfer length 
(recommended value of 6.7 for uncoated 7-wire strands) 

V00 nominal punching shear strength of the concrete 

a longitudinal span for a two-way slab 

~ transverse span for a two-way slab 
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~' ratio of the long dimension to the short dimension of the loaded rectangular area 

l:t" maximum elastic deflection (deflection at the load P,) 

.6., deflection at the nominal strength of the slab (deflection at the load P ,) 

e"' precast panel strain induced by the dead loads 

e,P precast panel strain induced by the prestressing strands 

c., modulus of rupture strain 

e, maximum panel tensile strain 

p • prestressing steel reinforcment ratio 
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1. INTRODUCTION 

1.1. Background and Previous Research 

Precast prestressed concrete panels have been used as permanent formwork in bridge deck 

construction on secondary roads in Iowa, and on both secondary and primary roads in other states. 

The panels are fabricated to span between the bridge girders and to serve as a permanent form for 

a poured topping slab. Initially, the panels support the weight of the construction loads, reinforcing 

bars, and the wet weight of the topping slab. After the topping concrete has cured, both the panels 

and topping slab become composite to resist the applied live loads. When panels are used, the 

bottom layer of reinforcement in both the transverse and longitudinal directions that is present in 

a conventional full-depth reinforced concrete bridge deck is eliminated. 

Previous research on these slab systems has involved various aspects of behavior and 

performance of rectangular shaped precast panels at locations removed from abutment or pier 

diaphragms. In 1975, Barker [4] presented an overview of research findings involving precast 

prestressed panel forms in bridge deck construction. During that same year, Kluge and Sawyer [24] 

performed a feasibility study on using composite decks for slab and girder bridges. They concluded 

that panels could be used as a composite part of the bridge decks. 

Jones and Furr [19] examined prestress strand development length. They also studied the 

effects of cyclic loading on the development length for strands and panel stiffness. Twenty panels, 

utilizing two lengths of 68 in. and 108 in., two different sizes of strand, and either light- or normal

weight concrete types were considered. The strands, which were released gradually during 

detensioning of the panels, were clean and rust free. Test results showed that an average of 22 in. 

of development length was required for 3/8 in.-diameter, 7-wire strands with the initial stress of 162 

ksi. They concluded that the type of concrete used has little effect on the development length. 

Cyclic loading was found to have negligible effect on strand development length and panel stiffness. 
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The influence of concrete strength, diameter of strand and effect of time on transfer length 

of strands in prestressed panels were studied by Kaar, LaFraugh and Mass [22]. They concluded that 

an initial concrete strength of 5,500 psi or more at the time of detensioning prestressing strands has 

little influence on the transfer length of clean seven-wire strands of up to and including 1/2 in. 

diameter. Also, the average increase in transfer length over a period of one year following prestress 

transfer was about 6% for all sizes of strand tested. 

A new equation for transfer and development lengths which accounts for the effects of strand 

size, initial prestress and concrete type was proposed by Zia and Mostafa [34] based on their 

literature survey. Those equations differ from equations in the ACI Specification [2] Sec. 12.9.1. and 

from the AASHTO Specification [1] Eq. (9-32), which are based on Kaar and Hanson's research 

[21]. 

The development length for prestressed strands has recently become a subject of controversy 

[30]. In October of 1988, the Federal Highway Administration (FHWA) issued a memorandum [16) 

to the Regional Federal Highway Administrators regarding application of revised multiplication 

factors for the AASHTO development length equation and limitations on strand diameters that were 

to be applied for federally funded projects. This memorandum revised a previous FHW A directive 

which had placed even higher safety factors on strand development lengths. The October 1988 

memorandum specified that:. 

"(1) The use of 0.6 inch diameter strand in a pretensioned application shall not be 
allowed; 

(2) Minimum strand spacing (center-to-center of strand) will be four times the nominal 
strand diameter; 

(3) Development length for all strand sizes up to and including 9/16 inch special strand 
shall be determined as 1.6 times AASHTO equation 9-32; and, 

(4) Where strand is debonded (blanketed) at the end of a member, and tension at 
service load is allowed in the precompressed tensile zone, the development length 
shall be determined as 2.0 times AASHTO equation 9-32, as currently required by 
AASHTO article 9.27.3. 
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Exceptions to the above criteria are as follows: 

(1) Development length for prestressed piling subjected to flexural loading shall be 
determined as indicated above. Development length for em bedded piling not 
subjected to flexural loading shall be determined as per AASHTO equation 9-32, and 
the use of 0.6 inch strand will be allowed. 

(2) Development length for pretensioned precast sub-deck panels or precast 
pretensioned voided deck plank, shall be determined as outlined above, or 
alternatively, by utilizing AASHTO equation 9-32 for development length and 
designing and tensioning on the basis of a guaranteed ultimate tensile strength 
(GUTS) of 250 ksi and release of prestress at 70 percent of GUTS regardless of the 
type of strand used (i.e., 250 or 270 ksi strand)." 

An article by Lane [25] states that the FHWA's actions were prompted by the fact that the 

270 ksi, low-relaxation strands which are now commonly used in construction are not the same type 

of strands (250 ksi, stress-relieved) which were used in the research projects that lead to the 

development of the AASHTO development length equation (AASHTO Eq. 9-32). Recent work by 

Cousins, Johnston, and Zia [13) has shown that the required development length for 270 ksi low

relaxation strands is actually greater than the length predicted by AASHTO Eq. 9-32. According to 

Lane [25], research on strand developme~t length are currently under investigation by the FHW A, 

several universities, and the Prestressed Concrete Institute (PCI). 

Jones and Furr [20] also studied three existing bridges which are located in Grayson County, 

Texas. The panels used in those bridges were 6 ft- 9 in. long, varied in width from 1 ft- 5 in. to 5 

ft- 2 in., and were 3 in. thick. The study included mapping of crack patterns in the top of the cast-in-

place deck, soundings to detect potential delamination between the precast panel and the topping 

slab, corings and load tests. They recommended that the width of the panels for future bridge 

construction should be greater than 5 ft- 2 in. 

Barnoff and Rainey [5] examined composite behavior between precast panels and topping 

slabs with and without mechanical shear connector at the interface betwen the two slab elements. 

Also, various configurations of the longitudinal panel joints perpendicular to the bridge span were 

tested to compare deck behaviors. They noted that a scored surface on the planks was sufficient to 
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develop composite action between panel and topping slab, and that all joint configurations behaved 

similarly in load transfer characteristics. 

Testing of a full-scale, two span, non-skewed experimental bridge containing four deck forming 

methods was conducted by Barnoff et al [6]. The first span involved a conventional cast-in-place slab 

constructed with removable wood forms for one-half of the span and with permanent steel forms on 

the other half of the span. The second span involved precast prestressed concrete panels and a cast

in-place reinforced concrete topping slab. The deck panels for one-half of the span had plain butt 

joints between adjacent panels, while the panels on the remainder of the second span had keyed 

joints between adjacent panels. The bridge deck, which was supported by precast prestressed 

concrete girders, was part of a pavement test track. Over one million cycles of an equivalent 18-kip 

axle load were applied by driving a five-axled vehicle across the bridge at about 45 miles per hour. 

Other loads included the standard HS20 load produced by an FHWA test vehicle and progressive 

overloads applied by a trailer. The precast panels, which· were 3 in.-thick, 4 ft.-wide, and 6 ft.-2 in. 

long were reinforced with 11-7/16 in. diameter, 270 ksi, prestressing strands and one layer of 6x12 -

3/3 WWF. The spacing of the strands was not uniform across the panel width, and the strands 

extended beyond the ends of the panels by 6 in. A 4 1/2 in.-thick, reinforced concrete topping slab 

was cast over the precst panels. Some of the conclusions relating to the precast panels, which were 

formulated by Barnoff et al., were as follows: 

• Composite behavior between the panels and the topping slab can be achieved with scoring 

the top surface of the panels. 

• The type of joint between adjacent panels did not affect behavior, and the longitudinal 

wheel load distribution was not affected by the panel joints. 

• The bridge deck can be assumed to be continuous across the girders. 

• A 6-in. strand extension was adequate to anchor the panels to the topping slab and to 

provide continuity across the girders. 
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• Composite panel and slab decks are more flexible than conventional bridge decks. 

• The composite deck possesses significantly more strength than design calculations indicate. 

• A diagonal tension failure of the bridge deck constructed with precast panels occurred at 

a 60 kip wheel load on tandem axles spaced at 4 ft. on center. 

Bieschke and Klingner (7,23] conducted an experimental test of a full-scale bridge with a series 

of static and fatigue loads. The north half of the single span bridge contained panels having 

prestressing strand extensions beyond the panel ends. The south half of the bridge span contained 

panels without any prestressing strand extensions. They concluded that panels without prestressing 

strand extensions performed similar to those panels having strand extensions. 

Buckner and Turner (8,9] examined the performance of precast panels which spanned between 

bridge substructure elements. The length and width of the panels were 20 ft- 6 in. and 3 ft- 5 1/2 

in., respectively. The thickness of the panels varied from 5 1/2 to 10 in. These researchers 

presented a_ design procedure· for full span precast panels based on the results of their study. 

The effect of deck cracking on slab behavior of a specific composite deck bridge has been 

investigated by Callis, Fagundo and Hays Jr. [10,17]. Field testing of the Peace River Bridge, 

constructed · using 8 ft span panels, was undertaken to determine the structural adequacy and 

composite behavior of the deck. Also, panels left over from the construction of the bridge were 

tested in the laboratory using cyclic loads to determine the fatigue shear strength. The shear stresses 

in the deck were substantially higher than those associated with a conventional bridge deck. The 

investigators raised serious doubts about the structural adequacy of the bridge due to observed 

corrosion of the reinforcement in the top of the bridge deck and of the prestressing strands in the 

panels. 

Another experimental field and laboratory testing program involving composite, precast panel 

subdecks was conducted by Fagundo et al. [14]. These researchers studied the load versus deflection 

behavior of bridge decks constructed with panels, which were supported on fiberboard as the 
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permanent bearing material, of bridge decks constructed with panels having strand extensions and 

supported on a grout bed, and of bridge decks constructed using a conventional cast-in-place slab. 

Two of their conclusions were that solid bearing for the precast panels and the presence of strand 

extensions appeared to have improved the performance of the bridge deck. 

Ross Bryan Associates, Inc. has presented recommendations [31] on the design, production, 

handling and shipping, and erection of the panels. A design example using the AASHTO 

Specifications and several design aids were included in their report. 

A recent paper (1990) by Fang et al. [15] describes arching action in bridge decks constructed 

as conventional full-depth, cast-in-place slabs and as composite slabs involving precast, prestressed 

concrete panels. Their research included testing of a 40 ft-span, steel girder bridge. The bridge 

deck contained the two slab types. The composite slab portion of the deck had 4 in.-thick by 6 ft.-6 

in. wide by either 7 or 8 ft-long prestressed panels, reinforced with 3/8 in. diameter, 270 ksi, 7-wire, 

stress-relieved prestressing strands. A 3 1/2 in.-thick reinforced concrete topping slab was cast over 

the panels. Some of the conclusions formulated by Fang et al are: 

• The failure mechanisms was punching shear for both a single and tandem wheel load 

arrangement. The flexural strength for the composite decks was not reached during the 

load tests, as correctly predicted by yield-line analyses. 

• The experimental testing revealed that the bridge deck constructed with precast panels was 

stronger, stiffer and more crack resistant than the full-depth, cast-in-place slab. 

To the authors' knowledge, no studies have been undertaken involving the behavior of the 

precast, prestressed panels close to abutment or pier diaphragms on non-skewed or skewed bridges. 

1.2. Objectives 

This report addresses the research performed to evaluate the behavior of composite, bridge 

deck slabs at locations not adjacent to and adjacent to abutment or pier diaphragms on both non

skewed and skewed bridges. The composite behavior of the precast panels was investigated by 
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considering five panel configurations, resembling a portion of a bridge deck at various locations. The 

performance of the deck system was obtained by evaluation of the following items: 

1. Transverse strain and ·displacement distributions along panel length and specimen length. 

2. The effect of the longitudinal panel joint on the vertical load transfer between panels. 

3. Failure mechanism of the specimens compared to yield-line and punching shear theories. 

4. Panel bearing condition of the specimens. 

5. Composite behavior of the panel and topping slab. 

6. Transfer and flexural bond lengths of the prestressing strands. 

13. Scope 

The research involved four tasks. Task 1 cons.isted of a review of the literature and surveys 

of design agencies and panel producers. Field investigations of three bridges constructed with 

precast panel subdecks in Iowa were contained in Task 2. Task 3 involved an extensive experimental 

testing program of full-scale specimens, and analytical investigations were contained in Task 4. 
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2 QUESTIONNAIRES 

21. Design Agency Questionnaire 

A questionnaire was distributed to the 50 state departments of transportation, the District 

of Columbia, tollway authorities, two United States provinces, and eight Canadian provinces. This 

survey addressed topics related to general bridge geometry and conditions, general panel geometry 

and conditions, panel bearing details, prestressing strand description and conditions, design criteria, 

economy, experiences with panel usage, panel details and specifications. The complete results for 

this survey are given in Appendix A 

Sixty-nine out of 121 questionnaires that were sent to the design agencies were returned. 

Twenty-nine of those agencies which returned the survey, or about 42 percent, stated that they allow 

or have allowed the use of precast panels °in bridge deck construction. Many of the remaining 40 

design agencies, which have not specified precast panels, provided reasons for not using the 

subdecks. Concerns about bridge deck and panel performance, economy of panel useage, lack of 

demand for the product, the AASHTO Specification not providing criteria for composite slab design, 

and cautions from FHW A Region 10 regarding the serviceability of decks constructed with panels 

were expressed by design agencies. Twelve design agencies, which had previously permitted precast 

panel usage, now prohibit or discontinued the use of the subdecks. Some of the reasons for the 

change in design philosophy included: concerns about panel quality control, occurrence of reflective 

cracking in the topping slabs, questions about economic benefits with panel-slab systems, completion 

of an experimental program, and discontinued use on steel girder bridges. 

Some of the results from the questionnaire are given in Table 2.1. The number in the 

parentheses represents the number of design agencies having that particular answer. The total of 

the responses to a given question may not equal 29, since multiple responses may have been given 

or the question may have been skipped by some of the respondents. Sixteen out of the 29 design 

agencies, who at some time permitted the use of prestressed concrete panels, are currently allowing 
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Table 2.1. Selected survey results from design agencies 

1. Is your state or agency currently using or specifying panels for bridge deck construction? 

(16) Yes (13) No 

2. What type of panel support is provided for typical panels spanning perpendicular to the bridge 
span? 

( 1) Panels are not used to span in this direction · 
(16) Precast prestressed concrete girders only 
( 3) Steel girders only 
( 9) Either precast concrete or steel girders 
( 3) Other 

3. Panel construction at skewed abutment or pier locations: 

( 8) Panels not used at these locations 
( 4) Panels sawn to match the skew only 
( 2) Panels cast to match the skew only 
(12) Panels sawn or cast to match the skew 
( 4) · Other 

4. Maximum panel width used: 

( 3) Not specified 
(18) 8 ft. 

5. Minimum panel thickness used: 

( 1) Not specified 
(11) 3 1/2 in. 

(5)4ft. 
( 0) 10 ft. 

( 4) 2 1/2 in. 
( 3) 4 in. 

6. Total diameter of the strand that is used most often: 

( 0) 1/4 in. 
( 0) 5/16 in. 

7. Are strand extensions used? 

(18) Always 

(23) 3/8 in. 
( 2) 7/16 in. 

( 2) Sometimes 

( 0) 6 ft. 
( 4) Other 

(7)3in. 
( 1) Other 

( 3) 1/2 in. 
( 0) Other 

( 8) Never 

8. Is the bridge deck designed as a continuous span across the girders when panels are used? 

(24) Always ( 3) Sometimes ( 1) Never 
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Table 2.1. (Continued) 

9. Is two-way plate action considered in the design of the deck when the panels are supported 
along three edges? 

(10) Three edge panel support not permitted ( 1) Yes (16) No 

10. Is fatigue considered in the design of the deck when panels are used? 

( 1) Yes (26) No 

11. What are the approximate cost savings realized (including costs associated with construction 
time), when panels are used for subdecks on a typical bridge compared to a conventional full 
depth bridge deck? 

(18) Cost savings not known 
( 6) No cost savings 
( 3) $0 - $1.00/ft2 of deck area 
( 0) Over $1.00/ft2 of deck area 

12. Which of the following items related to the performance of the panel and cast top slab bridge 
deck have your state or agency experienced more than just a few times or occasionally? 

(12) Can not really comment since we have not used panels often enough 
( 7) Reflective cracks in the top of the cast-in-place slab above the transverse panel joints 
( 7) Reflective cracks in the top of the cast-in-place slab above the longitudinal paner joints 
( 3) Cracks in the top of the cast-in-place slab that are not above the panel joints 
( 3) Cracks in the top of the cast-in-place slab at the abutment or pier diaphragm 
( 3) Cracks in the bottom of the panels parallel to the panel span 
( 1) Cracks in the bottom of the panels transverse to the panel span and near the midspan 

of the panel 
( 1) Strand slippage 
( 0) Some loss of composite behavior between panels and cast-in-place slab 
( 3) Apparent loss of panel bearing at some locations 
( 5) Other 

13. How does your state or agency classify any problems associated with panel usage for bridge deck 
construction? 

(12) Can not really comment since we have not used panels often enough 
( 1) Non-existent ( 7) Minor ( 6) Moderate ( 6) Significant 
( 0) Major 

14. Considering all aspects of manufacturing, transportation, erection, and performance of panels 
for bridge deck construction, how does your state or agency rate panel usage? 

(11) Can not really comment since we have not used panels often enough 
( 1) Excellent ( 3) Very Good ( 7) Good ( 5) Fair ( 5) Poor 
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panel usage. Considering the bridge girders, 16, 3, and 9 agencies have specified that the panels are 

to be supported by precast concrete girders only, steel girders only, and either concrete or steel 

girders, respectively. Eight agencies have stated that they prohibit panels at skewed abutment or 

pier diaphragm locations. When non-rectangular panels are permitted, 4, 2, and 12 agencies specify 

that the panels may be sawn to match the skew only, cast to match the skew only, and either sawn 

or cast to match the skew, respectively. 

A majority of the design agencies limit the maximum panel width to 8 ft. The panel thickness 

varies for the design agencies from a minimum of 2 1/2 in. thick to a maximum of 4 in. thick. The 

most common strand diameter is 3/8 in., and most agencies required strand extensions. 

Regarding the behavior of the composite slab system, most agencies assume that the full-

depth bridge deck acts as a continuous slab spanning between the bridge girders. However, the 

response by most of the design agencies which specify precast panels to the three questions in the 

survey which followed the continuity question, revealed that special or additional reinforcement is 

never provided across the girders; beyond the top layer of reinforcement specified for full-depth cast~ 

in-place slabs. Evidently, the assumption made by the designers is that the concrete which is cast 

between the ends of the panels does not shrink away from the ends of the panels or cracks do not 

form within this concrete filler. The validity of this assumption may require additional verification, 

particularly when strand extensions may not be used, or when strand extensions are used but they . . 

do not overlap significantly. 

When panels are used, 26 of the 27 agencies who specified panels do not consider fatigue 

in the design of the bridge deck. Also, two-way plate bending is considered only by one design 

agency and neglected by 16 agencies when panels are supported along three edges. Ten agencies 

do not permit panels to be supported along three edges. 

The survey revealed that five design agencies have performed some form of an economical 

analysis to evaluate the advantages of using composite, precast panel slabs instead of a conventional 
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full-depth, reinforced concrete slab. When asked to place an approximate dollar value on any 

savings, all of the design agencies responded that the cost savings were either unknown or less than 

$1.00/ft2 of the bridge deck area. 

Each design agency was asked to classify any problems associated with precast panel usage 

for bridge deck construction. Twelve of the 29 agencies, which had specified panels, responded that 

they could not really comment on their experiences, since they had not used panels often enough. 

For those agencies that did reply, cracking in the top of the cast-in-place slab has been experienced 

by a significant number of design agencies, and several agencies noted cracking in the bottom surface 

of the precast panels and problems with panel bearing. However, no agency thought that major 

problems existed with the panels. Twelve agencies categorized problems as either moderate or 

significant, while 8 agencies classify problems as either non-existent or minor. Another question on 

the survey asked the respondent to rate panel usage, considering all aspects of manufacturing, 

transportation, erection, and performance of panels for bridge deck construction. Ten agencies gave 

panel usage only a fair or poor rating and 11 agencies gave the panels an excellent, very good, or 

good rating. Another 11 agencies stated that they could not really comment since they had not used 

panels often enough. 

Each design agency was given the opportunity to provide additional comments related to any 

aspect of precast panel usage. Sixteen agencies provided comments which addressed topics of 

quality, economy, design limitations, maintenance, and specifications. Both positive and negative 

comments were expressed, with many agencies expressing caution by implying that evaluation of 

existing deck panel slabs will establish future use. 

22 Precaster Questionnaire 

Survey questionnaires were distributed to 192 precast prestressed concrete producers who 

are members of the Prestressed Concrete Institute. This questionnaire addressed topics related to 

the producers background, general bridge panel conditions and geometry, bridge panel bearing 
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details, prestressing strand conditions and description for bridge panels, design criteria, economy, 

inspection, experience with panel usage, and panel details and specifications. The complete results 

for this survey are given in Appendix B. Seventy-two out of 192 questionnaires that were sent to the 

precast manufacturers were returned. Twenty-seven of the precasters which returned the survey, or 

about 38 percent, stated that they have produced precast panels for bridges. Many of the remaining 

45 precast concrete manufacturers, which do not produce precast panels, provided reasons for not 

casting subdecks. Some of the reasons included: no opportunity to bid a panel bridge prtj ect, 

precast panels are not cast by this producer, the department of transportation does not permit bridge 

deck panels, local preference exists for cast-in-place slabs, panel manufacturing is too hard to control 

and be profitable, and too many producers are in the market. Eight of the 27 companies which had 

produced precast panels no longer cast panel subdecks. When asked why panel production was 

discontinued, some of the reasons stated included: Usage by the state department of transportation 

has been prohibited, panel production is not economically feasible, casting tolerances require<l can 

not be realistically obtained, and panel cracking and poor quality control by some producers has 

caused panel use to decline. 

Some of the results from the questionnaire that was sent to the manufacturers of precast, 

prestressed concrete panels are given in Table 2.2. The number in the parentheses represents the 

number of precast panel m!lnufacturers having that particular answer. The total of the responses 

to a given question may not equal 27, since multiple responses may have been given or a question 

may have been skipped by some of the respondents. Twenty of the 27 precasters who have 

manufactured precast panels have provided panels or submitted a bid to provide panels for bridge 

prtj ects within the last two years (1987 and 1988), which indicates that many designers and bridge 

contractors believe that precast panels provide a viable option for bridge deck construction. The 

treatment of the top surface of the precast panels to obtain composite behavior between the panels 

and the cast-in-place reinforced concrete slab varies amongst the panel producers. A raked finish 
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Table 2.2. Selected survey results from panel producers 

1. Top slab roughness and projection (not including lifting hooks): 

( 0) Smooth finish without bar projections 
( 0) Smooth finish with U-shaped bars or dowels 
( 3) Broom finish without bar projections 
( 1) Broom finish with U-shaped bars or dowels · 
(14) Raked finish without bar projections 
(17) Raked finish with U-shaped bars or dowels 
( 2) Other 

2. What is the direction of the raked depression with respect to the panel span? 

( 1) Raked depression not used 
( 6) Parallel to panel span only 
(17) Transverse to panel span only 
( 1) Both parallel and transverse to the panel span 
( 2) Diagonal to panel span 
( 0) Other 

3. Is additional steel provided in the panel ends to prevent splitting due to bond transfer: 

( 8) Always ( 8) Sometimes 

4. Temporary bearing material used to support panels: 

( 2) Temporary bearing material riot used 
( 3) Unknown 

(11) _Never 

(18) Fiberboard, neoprene, polystyrene, or similar material only 
( 2) Mortar, grout or concrete bed only 
( 2) Steel shims only 
( 2) Other 

5. What is the minimum length of permanent bearing parallel to the panel span? 

( 3) Unknown 
( 6) 1 in. 

( 7) 1 1/2 in. 
( 3) 2 in. 

( 3) 2 1/2 in. 
( 4) Other 

6. What method is used to release the bridge panel prestressing strands? 

(20) Acetylene torches 
( 6) Abrasive saw blades 
( 3) Wire (bolt) cutters 

( 2) Slow release of hydraulic pressure 
( 0) Other 

7. Does the state or agency for which your company is casting panels have a representative at your 
plant to observe strand detensioning, form stripping, and panel handling and storage? 

( 1) Not their responsibility (19) Always ( 6) Sometimes ( 0) Never 
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8. Does your company send a representative to the bridge jobsite to inspect the panels after 
erection for cracks and proper bearing? 

( 5) Not our responsibility ( 5) Always (12) Sometimes ( 4) Never 

9. Which of the following items of panel damage has your company directly experienced more than 
just a few times or occasionally? 

( 4) Can not really comment since we have not cast panels often enough 
( 6) Have not experienced any problems 
( 8) Broken corners 
( 9) Spalled or chipped edges 
( 9) Cracking parallel to strands along a significant portion of the panel length 
(10) Cracking parallel to strands near the ends of the panel only 
( 2) Cracking transverse to the strands near panel midspan 
( 3) Diagonal cracks across panel surface 
( 1) Strand slippage 
( 4) Skew panels are difficult to detension properly 
( 1) Other 

10. Which of the following casting techniques has your company established to minimize problems 
in panel fabrication? 

( 4) Can not really comment since we have not cast panels often enough 
( 4) Provide strand tie downs along prestress bed 'length 
(10) Clean out header strand slots after each casting 
(19) Allow for concrete preset prior to heat application for accelerated curing 
(11) Institute special strand cutting sequence 
(14) Provide steel headers 
( 2) Allow strands to oxidize by exposure to the weather for a few days 
( 2) Increase concrete release strength above minimum specified 
( 4) Increase concrete ultimate strength above minimum specified 
(13) Provide a reinforcing bar transverse to the strands at panel ends 
( 0) Apply com pressed air when stripping panels 
( 2) Cast panels inside a structure to avoid exposure to weather 
( 1) Other 

11. Considering all aspects of manufacturing, transportation, erection, and performance of panels 
for bridge deck construction, how does your company rate panel usage? 

( 1) Can not really comment since we have not cast panels often enough 
( 7) Excellent ( 7) Very Good ( 5) Good ( 3) Fair ( 2) Poor 
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is most common with the direction of the raking usua!Iy transverse tO the panel spa~. U-shaped bars 

or dowels across the interface between the two slabs appears to be used about 50% of the time.' To 

prevent splitting of the panels during strand release, some precasters place additional steel in the 

ends of the panels. 

A large majority of the panel producers use a temporary panel bearing material that is 

somewhat compressible. The length of permanent bearing, measured parallel to the panel span, 

varied considerably amongst the precasters. Lengths of 1 or 1 1/2 in. were the most common. 

Most of the panel producers use acetylene torches to release prestressing strands. Acetylene 

torches applied at a single point on a strand, abrasive saw blades, and wire cutters are all associated 

with quick strand release techniques. If the strands are heated along a portion of their length before 

final torch cutting, the release of the prestress force will not be as sudden. Two producers indicated 

that they release strands slowly by using hydraulic pressure. 

The responses to the two inspection questions listed in Table 2.2 indicate that additional 

inspection by both design agencies and panel producers may be beneficial. 

Experiences with panel usage were addressed by eight questions in the survey. Three of 

these questions along with the producers responses are given in Table 2.2. The four types of panel 

damage experienced by the most panel producers were broken corners, spalled or chipped edges, 

cracking parallel to strands along a significant portion of the panel length, and cracking parallel to 

the strands near the ends of the panel only. To help eliminate problems with panel manufacturing, 

a variety of production techniques have been employed by panel producers. The items which 

received the greatest number of responses were to clean out header strand slots after each casting, 

allow for concrete preset prior to heat application for accelerated curing, institute special strand 

cutting sequence, provide steel headers, and provide a reinforcing bar transverse to the strands at 

panel ends. The manufacturers were also asked to rate panel usage, considering all aspects of 
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manufacturing, transportation, erection, and performance. Five producers rated precast panel usage 

as fair or poor, while 19 manufacturers rated panel usage as either ·excellent, very good or good. 

Each precaster had the opportunity to include any additional comments related to precast 

panel bridge deck construction. Several of these comments strongly address the differences of 

opinion that exists between inspectors from state departments of transportation and panel producers 

concerning quality control. For precast panels to become a more economical product, several 

producers mentioned that standardization of panel configurations and details will be necessary. 
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3. FIEI.D INSPECTIONS 

3.L Bridge Descriptions 

On October 19, 1989 field inspections of three Iowa bridges located in Hardin County near 

Eldora, Iowa were performed. All three prestressed concrete girder bridges are on the farm to 

market system and involve water crossings. The first bridge inspected was Bridge No. 9066 that is 

located 900 ft. south of the east 1/4 corner of Section 8-87-19 in Eldora Township of Hardin County 

over the Iowa River. This bridge has a 30 ft. roadway width, three spans (72 ft.-5 in. 81 ft.-6 in., and 

72 ft.-5 in.), and no skew. The horizontal alignment is straight and the vertical alignment is at a 

0.5% grade. The second bridge inspected was Bridge No. 8401 that is located 140 ft. north of the 

southwest corner of Section 36-88-19 in Clay Township of Hardin County over Pine Creek. This 

bridge has a 28 ft. roadway width, a single 80 ft. span, and no skew. The horizontal alignment is 

straight and the vertical alignment is at a 0.375% grade. The third bridge inspected was Bridge No. 

7022 that is located 1320 ft. south and 1320 ft. east center of Section 12-88-20 in Jackson Township 

of Hardin County over the Iowa River. This bridge has a 30 ft. roadway width, three spans (68 ft.-3 

in., 77 ft.-6 in., and 68 ft.-3 in.), and a 30 deg. skew angle. The horizontal alignment is straight and 

the vertical alignment is on a curve having grades of± 1.000%. 

The precast prestressed concrete panels for these bridges were cast by Precast Concrete 

Operations, a Division of Wheeler Consolidated, Inc., Iowa Falls, Iowa. The panels which span 

between the prestressed girders and extend along the entire length of each bridge were cast during 

the months of June 1983, March 1983, and June 1982 for Bridge Nos. 9066, 8401, and 7022, 

respectively. All three bridges have the same type of details for the precast panels. The 2 1/2 in. 

thick by 8 ft. wide panels were set on 3/4 in. thick by 1 in. wide fiberboard strips to permit the 

concrete from the topping slab to flow under the panel ends for permanent bearing. The condition 

and extent of the concrete bearing could not be confirmed since the detail is hidden from view. At 

the abutment and pier diaphragms, the precast panels are supported along three edges. Steel 
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channel intermediate diaphragms are provided at approximat.ely the girder midspan locations. These 

diaphragms are attached to the precast girder webs and do not support the precast panels. 

3.2 Inspection Results 

The condition of the precast prestressed concrete panels in each of the three bridges is 

essentially the same. The slope of the grade beneath each bridge, the height of the bridge, and the 

presence of the waterways prevented inspection of the underside of the panels within the center span 

and many panels within the end spans of the three span bridges (Bridge Nos. 9066 and 7022) and 

the panels within about the center third of the single span bridge (Bridge No. 8401 ). ~any of the 

inspected panels for all three bridges have single and sometimes multiple hairline cracks running 

parallel to the panel span. These cracks, which are located within the center half of the. affected 

panels, usually extend along the entire panel length and occur below prestress strands. Also, for all 

three bridges, most of the observed panels had a slight discoloration (darker gray color) beneath the 

strands. For Bridge No. 9066, rust discoloration on the underside of the panels within the bridge end 

spans was not observed. For bridge No. 8401, one panel located. above the steel channel 

intermediate diaphragm along the west side of the bridge has rust strains about 3 in. long near the 

midspan of the panel. In addition, a diagonal crack at the southwest corner of the second panel 

from the south abutment along the west side of this bridge was observed. For Bridge No. 7022, 

several panels have rust discoloration about 6 in. to 12 in. long beneath strand locations. Two panels 

were observed to have significant rust staining. One of these panels, located along the north side 

of the bridge in the west end span, is the fourth panel from the west bridge abutment. The other 

panel with significant rust stains is the fourth panel from the· east bridge abutment and is located 

along the south side of the bridge. 

The top surface of the cast-in-place reinforced concrete slab for all bridges had been raked 

parallel to the panel span. The concrete deck on Bridge Nos. 9066, 8401, and 7022 was completely 

exposed, covered entirely by a sand and gravel layer, and partly covered by sand and gravel, 
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respectively. The grooves from the raking and the presence of the sand and gravel fill prevented the 

observation of any reflective cracking in the topping slab. 
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4. EXPERIMENTAL PROGRAM 

4.1. Composite Slab Specimens 

An extensive experimental program which involved testing five full-scale composite slab 

specimens was conducted. These specimens represented different geometric configurations for a 

portion of a bridge deck. 

Specimen No. 1 represented an interior deck condition with the composite slab simply 

supported at the ends of the panels as shown in Fig. 4.1. Four specimens were constructed to model 

a composite deck at locations adjacent to an abutment or pier diaphragm. At these locations, one -

of the precast panels within a specimen was supported along the two ends as well as along one 

longitudinal panel edge. Specimen Nos. 2, 3, 4, and 5 incorporated a bridge skew angle of 0, 15, 30, 

and 40 degrees, respectively, as shown in Figs. 4.2, 4.3, 4.4, and 4.5, respectively. 

Each of the composite specimens contained two 2 1/2-in. thick, precast, prestressed concrete 

panels which had a reinforced concrete slab, approximately 5 1/2-in. thick, cast directly on the ·panels. 

Figure 4.6 shows a typical section for the composite slabs taken parallel to the panel span. The two 

concrete supports shown in the figure represent precast concrete bridge girders. To accommodate 

the geometrical configuration for the five specimens, eight concrete supports were constructed with 

appropriate angles at the ends to account for the required skew angles, when the supports were 

assembled in various U-shaped patterns (Figs. 4.1-4.5). The concrete supports forming the bottom 

of the U-shape represented an abutment or pier diaphragm in the modeled bridge deck construction. 

All joints between the concrete support segments were located to prevent matching the joint between 

the two precast panels in a given specimen. The 6' -6" clear span between the faces of the concrete 

supports matched the maximum clear span permitted when precast panels are used by the Iowa 

Department of Transportation. 
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To establish a level bearing surface for the panels, a grout bed having a minimum thickness 

of 1 in. was cast on top of the concrete supports. Temporary bearing for the precast panels 

consisted of 3/4 in. thick by 1 in. wide fiber-board strips which were glued to the top surface of the 

grout bed along the inside edges of the concrete supports. Permanent 2 1/2 in. wide bearing for the 

panels was provided by the concrete from the topping slab which flowed beneath the ends of the 

panels during the casting of the poured-in-place slab. 

4.1.2. Precast Prestressed Concrete Panels 

All of the precast panels which were used to construct the test specimens were 2 1/2 in. thick 

and 7 ft.-1 in. long. As shown in Fig. 4.7, each rectangular shaped panel was 8 ft. wide. The three 

trapezoidal shaped panels, each represented in Fig. 4.8, varied in width. Each of these panels had 

a maximum width of 8 ft. The minimum widths were 6 ft.-1 1/4 in., 3 ft.-10 7/8 in., and 2 ft.-0 5/8 

in. for the panels associated with bridge skew angles of 15, 30, and 40 deg., respectively. The top 

surface for all of the panels had a raked finish with the grooves ·orientated perpendicular to the 7 

ft.-1 in. dimension of the panel. The .mix quantities per cubid yard of concrete were 705 lb of 

cement (Portland Cement Type I), 1850 lb of course limestone aggregate with a 1/2 in. maximum 

size, 1100 lb of fine aggregate (natural sand with a 3/8 in. maximum size), and 300 lb of water. An 

entrained air content was 6%, and the concrete slump was 4 in. All of the panels contained sixteen 

·3/8 in. diameter, 7 wire, 270 ksi Grade, low-relaxation prestressing strands positioned at the mid

depth of each panel. The strands, which were spaced at 6 in. on center, extended 5 in. beyond the 

ends of the panels and extended 6 in. beyond any diagonal edge. Before the concrete was cast, the 

strands were prestressed to about 17.2 kips, approximately 75% of the strand tensile strength. Each 

panel had a single layer of 6x6-W5.5xWS.5 welded wire fabric located directly on top of the 

prestressing strands. The trapezoidal shaped panels had two No. 3 reinforcing bars placed along the 

diagonal edge of each panel. Some of the short strands in the trapezoidal shaped panels were 

sleeved along their entire length to prevent bonding with the concrete. For the trapezoidal-shaped 
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panels adjacent to the 15, 30, and 40 degree skewed modeled diaphragms, the two, three, and four 

shortest strands, respectively, were sleeved. This debonding was done to prevent the triangular 

shaped corner of a panel from breaking during the detehsioning of the prestressing strands. The 

panels were cast on October 5, 1988 at Precast Concrete Operations, a Division of Wheeler 

Consolidated, Inc., in Iowa Falls, IA The concrete compressive strength, f'" modulus of elasticity, 

E" and modulus of rupture, fn at various ages for the concrete used in the precast panels are given 

in Section 6.1.1. 

4.1.3. Reinforced Concrete Topping Slabs 

A reinforced concrete slab approximately 5 1/2-in. thick was cast on top of the 2 1/2-in. thick 

precast panels for each of the specimens. The total composite slab thicknesses at various locations 

along the midspan of the panels for each specimen are listed in Table 4.1. These slabs contained 

Table 4.1. Composite slab thicknesses. 

Total mid-span slab thickness (in.) 

Location Specimen Specimen Specimen Specimen Specimen 
No. 1 No. 2 No.3 No.4 No. 5 

EE' - - 8.53 8.37 8.23 

EPb 8.17 7.51 8.581 8.24 8.15 

]' 8.08 7.40 8.62 8.45 8.11 

WPd 8.22 7.47 8.29 8.60 7.93 

WE• 8.18 7.34 8.30 8.55 7.69 

•East edge of east panel dMid-width of west panel 
bMid-width of east panel •West edge of west panel 
•Joint between east and west panels £Average of EE and J 

a single layer of reinforcement which had the same bar sizes, bar spacings and locations as the top 

layer of reinforcement specified for a conventional 8 in.-thick bridge deck. Number 5 bars, which 

were positioned transverse to the span of the panels were spaced at 9 in. on center and were 
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supported on 1 1/2 in.-high individual bar chairs spaced at approximately 3 ft. on center in both 

directions. The bar chairs rested directly on the top surface of the precast panels. Number 6 bars 

spaced at 10 in. on center were positioned parallel to the span of the panels and were directly above 

the No. 5 bars. All reinforcing bars were A615 Grade 60 bars. Epoxy coated bars were not used. 

The concrete cover above the No. 6 bars was about 2 1/2 in. The concrete for the topping slab was 

the Iowa Department of Transportation Mix No. D57 [18] with the course aggregate satisfying 

Gradation No. 5 and the fine aggregate satisfying Gradation No. 1. The approximate quantities of 

dry materials per cubic yard of concrete were 710 lb of cement (Portland Cement Type I), 1413 lb 

of course aggregate (limestone with a 1" maximum size), 1413 lb of fine aggregate (natural sand with 

a 3/8 in. maximum size), and 291 lb of water. The amount of air entrainment for the topping slabs 

was about 6%, and the slump was between 2 and 4 in. The concrete compressive strength, f'" 

modulus of elasticity, E" and modulus of rupture, f" at various ages for the concrete used in the 

fopping slabs for each of the specimens are given in Section 6.1.l. 

4.2 Elq>erimental Testing 

4.2.1. Test and Instrumentation Frames 

A three-dimensional structural steel test frame was fabricated to load the composite deck 

specimens. The main elements of the frame consisted of four W30 x 108 columns, two W30 X 108 

girders, three W30 x 108 diaphragms, four W21 x 62 tie-down girders, sixteen S15 x 42.9 tie-down 

beams, a W21 x 62 stiffened load beam, and four S15 x 42.9 diagonal braces. The ends of the test 

frame were fastened to the floor of the structural laboratory using eight 1 3/8 in.-diameter Dywidag 

bars which were prestressed to 60 kips each using a hydraulic ram. 

A three-dimensional aluminum and steel instrumentation frame was used to support the dial 

gauges for measuring the vertical deflections of the top surface of the composite deck specimens. 

Several 2 x 2 x 1/4 steel angles, which held the dial gauge rod attachments, were connected to the 

frame's aluminum rectangular tubes. These angles could be moved to any position along the alum-
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inum tubes, depending on the load position. Steel angle corner bracing in both horjzontal and 

vertical planes provided stability to the frame. 

4.2.2. Loads 

Initially, all of the composite deck specimens were subjected to a series of service loads 

positioned at various locations on the slab surface as shown in Figs. 4.9 through 4.13. The number 

and letter within the rectangularly shaped wheel footprint corresponds to a load or wheel load 

position number. Both single and double wheel loads were applied to the specimens. When 

multiple loads were used, the 4 ft. spacing between the two loads is the distance between the wheels 

on two trucks located adjacent to each other. The maximum magnitude for these service loads was 

eqaal to an HS-20 wheel load (16 kips) plus a 30% impact load (4.8 kips). This 20.8 kips load was 

applied through an AASHTO wheel footprint [1 ], having a rectangular area equal to 160 in.2 (8 in. 

by 20 in.). After completion of the service load test series for a particular specimen, factored and/or 

ultimate load tests were conducted. Specimen Nos. 4 and 5 were subjected to factored loads near 

the modeled abutment or pier diaphragm. A maximum factored load, equal to 3 times the HS-20. 

wheel load without impact or 48 kips, was applied through a stronger wheel footprint (9 1/8 in. by 

18 1/2 in.) to these specimens. Ultimate strength tests were performed on all five specimens. Except 

for Specimen No. 1, the ultimate strength tests were conducted using the 9 1/8 in. by 18 1/2 in. 

footprint. Specimen No. 1 was loaded through the 8 in. by 20 in. footprint. Table 4.2 lists the wheel 

load positions for each specimen for the three load levels. The numbers in the table correspond to 

the wheel load positions shown in Figs. 4.9 through 4.13. 

All loads were applied by hydraulic rams. For the service load tests, 1 kip load increments 

were applied until a 6 kip wheel load was reached. After this load, the load increments were about 

2 kips until the 20.8 kip wheel load was achieved. Unloading of a specimen involved about 5 kip 

load decrements. For the factored load tests, 4 kip load increments were applied until a total wheel 

load equal to 48 kips was reached. Load decrements for the factor load tests equalled 12 kips. 
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Figure 4.9. Load positions for Specimen No. 1. 
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Figure 4.10. Load positions for Specimen No. 2. 
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Figure 4.11. Load positions for Specimen No. 3. 
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Except for Specimen No. 1, the ultimate load tests involved 5 kip load increments throughout the 

entire load range. The load increments for Specimen No. 1 were 5 kips until the first crack 

appeared in the specimen and 3 kips between the load at initial cracking and failure of the specimen. 

Table 4.2. Wheel positions for service, factored and ultimate load levels. 

Specimen Service Loads Factored Ultimate 
No. 

Single Double 
Loads Loads 

1 1A-1E 3A-3E None lC 
2A-2E 

2 1A-1E 3C-3E None lD .. 2C-2E lA 

3 lA-lF 3C-3F None lE 
2C-2G 1 '-6" above lA 

4 lA-lD 3A-3C lC, lD lC 
2A-2E 2C-2E lA 

3C (Bottom) 

5 1A-1F 3A-3D lA, 1C-1F lD 
2A-2D 2C,2D 1 '-4" above lA 
4A-4D 4C,4D 

4.2.3. Instrumentation 

Service and factored loads were monitored with a load cell having a capacity of 50 kips. The 

loads applied during the ultimate strength tests were measured by a load cell with a capacity of 300 

kips. 

Several types of displacements were monitored during the testing of a composite slab 

specimen. Vertical deflections at selected points on the top surface of the slab were measured by 

dial gauges which were suspended from the instrumentation framework. Potential slip (strand-slip) 

between selected prestress strands and a precast panel were monitored by dial gauges or direct 

current displacement transducers (DCDTs) attached to the strand extensions, which were left 

exposed by block-outs used during casting of the reinforced concrete topping slab. To detect 

possible slippage (topping-slip) between a precast panel and the topping slab, dial gauges or DCDTs 
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were mounted on steel rods, which were set in holes drilled into the vertical face of the topping slab 

within the block-out locations at the bearing ends of the panels. For both types of slip measurement, 

the instrumentation stem was set against the partially exposed panel end. The displacement devices 

had an accuracy of 0.001 in. Figures 4.14 through 4.18 show the locations for the vertical 

displacement gauges for a particular wheel load position, and for the slippage measurement devices. 

The prefix notations (S) and (T) refer to the devices used to monitor strand-slip and topping-slip, 

respectively. 

For the composite slab specimens, concrete strains were measured by electrical resistance 

strain gauges which were located at selected points on the top surface of the reinforced concrete slab 

and on the top and bottom surface of the precast panels. Most of the strain gauges were PL-90 

strain gauges having a gauge length of 90 mm; however, some PL-60 strain gauges with a 60 mm 

gauge length were used when length limitations occurred. Ideally, the gauge length should be at least 

3 times the maximum concrete aggregate size. These gauges were standard wire strain gauges 

utilizing a backing material impregnated with a polyester resin. The location and orientation of the 

surface mounted strain gauges are shown in Figs. 4.19 through 4.23 for Specimen Nos. 1 through 5, 

respectively. 

Before these gauges were mounted on the concrete surfaces of the slab elements, the cast 

concrete surface was prepared to provide a smooth surface. At the gauge locations on the top of 

the reinforced concrete slab and on the bottom of the precast panels, the concrete surface was 

ground smooth to eliminate any roughness that was present. The surfaces were treated with a 

conditioner and a neutralizer. An epoxy resin adhesive (M-bond AE 10/15) and its compliment was 

mixed in a 10 gram to 1.5 gram ratio and spread over the ground concrete surface to fill any voids 

that were present. Fifty pounds of pressure at each gauge location was applied during the curing 

of the epoxy glue. After the glue had cured, the hardened epoxy was ground down to the concrete 

surface, and the smooth surface was treated with a conditioner and neutralizer. Each strain gauge 
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and its solder tab was glued to the prepared surface with an adhesive (RP-2). Again, 50 lb of 

pressure was applied during the curing of the adhesive. For the strain gauges located on the top of 

the precast concrete panels, a mortar bed was spread over the raked surface at the gauge locations 

to fill the deep grooves in the surface. After the grout had cured, gauge installation followed the 

same procedure as previously described. Since these gauges would be encased in the concrete of 

the topping slab, moisture and abrasion resistance was provided by a polysulfide coating (M-Coat 

J). 

For monitoring concrete strains within the precast panels during strand detensioning, PML-30 

strain gauges were used. These gauges, which had a 30 mm gauge length, were standard wire gauges 

with wire leads hermetically sealed between thin resin plates. The plates had been coated with a 

course grit to facilitate bonding with the concrete which enveJoped these gauges during casting of 

the topping slab. The PML gauges were initially wired between adjacent strands to position the 

gauges at the mid-thickness of the panels and midway between two strands. Figure 4.24 shows the 

locations for the embeddment gauges in the four precast panels which were used in the construction 

of Specimen Nos. 2 through 5. 

The PL and PML strain gauges and the RP-2 adhesive were manufactured by Tokyo Sokki 

Kenkyujo Co., Ltd. and distributed by Texas Measurements, Inc. The neutralizer, conditioner, epoxy 

adhesive, and polysulfide coating were distributed by Measurements Group, Inc. a Division of Micro 

Measurements, Inc. 

During the loading of a test specimen, concrete strains monitored by the PL and PML strain 

gauges and displacements obtained from the DCDTs were recorded by a Hewlett-Packard (HP) 110 

channel data acquisition system (DAS). The displacements measured by the dial gauges were 

recorded manually. 
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5. ANALYTICAL STUDIES 

5.1. Strand Embedment Models 

The prestressing strands and the concrete within a member interact through bond stresses 

that are developed along the interface between the two materials. The basic concepts concerning 

strand embedment lengths needed for flexural strength are discussed in textbooks on prestressed 

concrete, such as the book by Lin and Burns [26]. One part of the strand development length is the 

strand transfer length, L,, which is the strand embedment length required to develop the effective 

strand prestress, f..,. For a pretensioned bonded tendon, this stress is the stress remaining in a strand 

after it has been released from the prestressing bed anchorages and after all prestress losses for 

elastic. shortening, ES, creep, CR" and shrinkage, SH, of the concrete and relaxation, CR., of the 

strands have occurred. For a low-relaxation prestressing strand, the effective prestress, f..,, without 

considering frictional losses, is given by 

I .. = 0.75 /. - (ES + CRC + SH + CR) (5.1) 

where, f', = ultimate strength of the prestressing strands. 

In 1979, Zia et al [34] presented emperical expressions for each of these prestress losses. 

Some of these expressions have been directly adopted, while others have b.een modified for use in 

the AASHTO Specification (1985 Interim Supplement) [1 ]. For members pretensioned with 270 ksi 

Grade, low-relaxation strands, the concrete elastic shortening Joss (AASHTO Eq. 9-6) can be 

expressed as 

(5.2) 

where, E, = modulus of elasticity of the prestressing strand, f,;, = net compressive stress at the 
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centroid of the tendons immediately after detensioning of the strands, and E,; = modulus of elasticity 

of the concrete when the prestress force is applied to the concrete. For low-relaxation strands, the 

stress f,.. has been approximated in the AASHTO Specification as 

(53) 

where, A·, = cross-sectional area of the prestressing strand and A. = tributary cross-sectional area 

of the concrete for each prestressing strand. The concrete creep prestress loss (AASHTO Eq. 9-9) 

is given by 

CRc = 12 fc1r - 7 feds (5.4) 

where, f00, = concrete stress at the centroid of the tendons caused by the superimposed permanent 

dead loads which are applied to the concrete section. For pretensioned members, the concrete 

shrinkage prestress Joss (AASHTO Eq. 9-4) can be expressed as 

SH = 17,000 - 150RH (5.5) 

where, RH = mean ambient relative humidity, expressed in percent. For low-relaxation prestressing 

strands in pretensioned members, the strand relaxation prestress loss (AASHTO Eq. 9-lOA) is given 

by 

CR. = 5000 - 0.10 ES - 0.05 (SH + CRC) (5.6) 

Once the effective prestress, f.., has been determined from Eq. (5.1 ), the transfer length, L0 

can be established from the ACI Code Commentary [3] expression as 

L, = (/S )v (5.7) 

where, D = nominal diameter of the prestressing strand. 
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Other expressions for the transfer length have been proposed. Cousins et al [11,13] have 

developed a simple analytical model to represent the mechanics of force transfer between 

prestressed strands and the surrounding concrete. The model was calibrated by correlations to 

experimental results conducted by themselves and other researchers.· For calculating the transfer 

length, Cousins et al proposed the expression 

(5.8) 

with the additional terms defined as: B = bond modulus for the elastic portion of the bond stresses 

occurring along the transfer length, f,;' = concrete compressive strength when the pres tress force 

is applied to the concrete, and U', = non-dimensionalized bond stress along the plastic portion of 

the transfer length given by 

/ U, u, = 

lli 
(5.9) 

where, U, = plastic bond stress along the plastic zone of the transfer length. For uncoated seven-

wire strands, Cousins et al recommended that B be set equal to 300 psi/in. and that U', be set equal 

to 6.7. 

Considering the strand transfer length immediately after the prestress force is applied to the 

concrete, the only prestress losses which have occurred are due to elastic shortening of the concrete 

and strand relaxation during the placing and curing of the concrete. Neglecting the prestress loss 

associated with the relaxation of the tendons, since the time interval involved is extremely short (1 

to 2 days), and using an equation similar to Eq. (5.7), the initial transfer length, L,;, can be expressed 

as 
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(5.10) 

where, f,; = initial strand prestress. For low-relaxation strands, the stress f., can be approximated 

by 

!" = 0.75 /. - ES (5.11) 

Another expression for the initial strand prestress can be developed by equating the changes 

in length for the concrete and prestressing strand along a unit length of member. Considering the 

elastic shortening beyond the initial transfer length and applying the statical equilibrium condition 

which states that the internal concrete compression force equals the internal strand tension force, 

the initial strand prestress, f,0 for low-relaxation strands, can be expressed as 

(5.12) 

Zia and Mustafa [33] have proposed that the initial strand transfer length should be given 

by 

L• = 1.5 (/") D - 4.6 
/., 

(5.13) 

This expression was obtained from a linear regression analysis of experimentally derived transfer 

lengths from several researchers. 

5.1.2. Strand Flexural Bond Length 

The strand flexural bond length, I.ii,, is the additional embedment length beyond the transfer 

length, L,, required to provide for an increase in the prestressing strand stress from the effective 

prestress, f,., to the stress r,. associated with the nominal (ultimate) flexural strength of the member. 
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The ACI Code Commentary [3] discusses the contribution of the flexural bond length to the strand 

development length. This commentary specifies that the flexural bond length of a prestressing strand 

is given by 

(5.14) 

Even though the AASHTO Specification [1] does not distinguish between the strand transfer or 

flexural bond lengths within the strand development length, the approach used to establish the 

relationship between the strand prestress and strand embedment length is similar to the ACI Code 

method. For bonded tendons, the AASHTO Specification (Eq. 9-16) permits the calculation of the 

ultimate strand stress, f,. *, by the expression 

(5.15) 

provided that an appropriate stress versus strain relationship exists for the prestressing strands, the 

effective pres tress, f.., is not less than one-half of the ultimate strength, f'., of the strand, and 

sufficient strand development length exists. The term f', = concrete compressive strength at 28 days 

and the prestressing steel ratio, p ', is given by 

(5.16) 

where, b = width of the rectangular cross-section for the prestressed member and dP = effective 

depth from the compression face of the cross section to the centroid of the prestressing steel. To 

ensure a ductile failure mode, consisting of yielding of.the tension reinforcement, AASHTO Eq. (9-

20) requires that 

p' < 0.30 lc 
t:,, 

(5.17) 
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Other expressions for the flexural bond length, Ln,, have been proposed by several 

researchers. Cousins et al [12,13] have suggested that 

(5.18) 

where, U' d = non-dimensionalized bond stress along the plastic portion of the flexural bond length 

is given by 

(5.19) 

with, Ud = plastic bond stress along the plastic zone of the flexural bond length. For uncoated 

strands, Cousins et al recommended that U 'd be set equal to 1.32. 

Zia and Mostafa (33] have suggested that the. flexural bond length, Ln,, should be established 

by the following equation: 

L/b = 1.25 ((.,, - f ,.JD (5.20) 

This expression will provide flexural bond lengths 25 percent greater than the length established by 

the ACI Code approach (Eq. 5.14). 

5.1.3. Strand Development Length 

The strand development length, Ld is the prestressing strand embedment length in the 

concrete re9uired to permit the obtainment of the ultimate strand stress, f',., associated with the 

nominal strength of the precast member. This length is equal to the sum of the transfer length and 

the flexural bond length, as given by 

(5.21) 

If the actual strand embedment length from the end of the member to the point of maximum 
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moment is less than the strand development length, the nominal flexural strength of the member 

cannot be obtained, since strand slippage would occur due to a bond failure between the strand and 

the surrounding' concrete. 

By adding Eqs. (5.7) and (5.14), the ACI Code [2] expression for the strand development 

length (ACI Sec. 12.9.1) is given as 

(5.22) 

This expression is AASHTO [1] Eq. (9-32) and an alternate form of the AASHTO Eq. (9-19), which 

expresses the ultimate strand stress as a function of the available embedment length, Q,, measured 

from the end of the prestressing st~and to the center of the precast deck panel, the strand diameter, 

and the effective stress in the prestressing strand after losses. Rewriting AASHTO Eq. (9-19), 

(5.23) 

If the length t, in Eq. (5.23) is replaced by the development length, Ld, a~d if Eq. (5.23) is solved 

for the length Ld, Eq. (5.22) is obtained. An upper limit on the stress f,. obtained by applying Eq. 

(5.23) is established by Eq. (5.15). When sufficient strand embedrnent length exists (q, > Ld), the 

bond resistance between the prestressing strands and the surrounding concrete will not limit the 

flexural strength of the corn posite slab. 

5.2 Finite Element Models 

5.2.1. Trapezoidal Shaped Panel Model 

The finite element panel model shown in Fig. 5.1 was developed to analytically establish the 

concrete strains induced in a trapezoidal shaped panel as a result of prestressing the panel. This 

model of a panel for a 40° skewed diaphragm condition contains 201 nodes and 180 elements. Node 

Nos. 79, 95, 110, and 125 shown in Fig. 5.1 represent locations at the mid-length of four strands. 
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These nodes were used for strain comparisons between the analytical and experimental results which 

are discussed in Section 6.2.1. Thin plate elements (ANSYS Stiff 63) were used to represent the 

concrete within the panel. The prestressing strands, welded wire fabric, and the two additional No. 

3 reinforcing bars along the diagonal edge of the actual panel were not included in the analytical 

model. Since the embedment lengths for the strands located within the triangular region of the 

trapezoidal panel varied, the prestressing forces induced in the panel were not constant across the 

panel width. To simplify the analytical loading on the trapezoidal panel, loads representing the 

maximum strand forces, after elastic shortening of the panel but before concrete creep and shrinkage 

and strand relaxation had occurred, were applied only at the exterior nodes which were in alignment 

with the strands in the actual panel. The magnitudes for the individual strand forces was based on 

the transfer length available. Once the required strand transfer length was established from the 

concrete strains measured with embedded PML-30 polyester mold strain gauges in the four 

monitored panels during panel prestressing, the strand forces were calculated assuming that the 

strain in the concrete adjacent to a strand was the same as the strand strain. Analytical and 

experimental results for the strand transfer length are given in Section 6.2.1. 

5.2.2. Bridge deck models 

Finite element models were developed to analytically establish displacements and strains in 

the five configurations of composite bridge decks, each having a different support condition along 

one of the longitudinal precast panel edges. To simplify each model, the composite slab was 

approximated as a slab of homogeneous material having the properties of the topping slab cast for 

the experimental studies. The reinforcing bars, prestressing strands, and welded wire fabric were not 

included as separate elements in a model. Each slab was modeled by a single layer of thin isotropic 

plate elements (ANSYS Stiff 63 elements). The thickness of the plate elements was based on the 

measured thickness of the composite slab specimens. 
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The minimum number of nodes and elements selected for the bridge deck models were 

established from a mesh size sensitivity study for an 8 in. thick by 8 ft wide by 16 ft long rectangular 

shaped slab which was simply supported along the four edges. For this study, several mesh models 

containing a different number of elements and nodes were generated to represent a homogenous 

slab. Each of the models were analyzed for a 20.8 kip load distributed over an MSHTO wheel 

footprint (8 in. by 20 in. area) located at center of the model. Near the wheel footprint, a finer mesh 

was introduced to improve the accuracy of the analytical solution in the vicinity of the load. The 

magnitude of the analytical longitudinal stress, SY' and transverse stress, S,, at the extreme slab fibers, 

located at the center of the partial distributed load, were affected by the number of nodes used in 

the finite element model, as shown in Fig. 5.2. Classical plate theory was also applied to obtain the 

longitudinal and transverse stresses for the same location. These stresses are shown as dotted lines 

in the figure. Figure 5.2 shows that convergence of the calculated stress values towards the classical 

plate solution occurred when the finite element mesh contained between 225 and 250 nodes. 

Addiiional analyses were performed on the rectangular slab model, which contained 231 

nodes and 200 elements, to evaluate the accuracy of the computed longitudinal stress, Sy, and 

transverse stress, S, at specific locations on the slab surface, when a 20.8 kip wheel load was applied 

over the MSHTO footprint area and when the load was considered to be concentrated at a point. 

For both loading conditions the center of the load was located at center of the rectangular slab. The 

accuracy of the finite element stress results were verified by comparing these computed stresses with 

the corresponding stresses established by classical plate bending theory. Tables 5.1 and 52 list the 

stresses S, and Sy, obtained from both the finite element method (FEM) and the classical plate 

theory (CPT), at various points on the slab surface which were measured from the load position 

along the longitudinal span, a, at the mid-width of the slab and along the transverse span, p, at the 

mid-length of the slab. The stresses associated with the partially distributed load induced by the 
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Table 5.1. Stresses for partial distributed loading. 

· Location from FEM CPT FEM CPT 
the load point s, s, Sy Sy 

(psi) (psi) (psi) (psi) 

Along the longitudinal direction 

0 534 531 473 473 

O.la 425 427 272 275 

0.3a 106 106 5 6 

Along the transverse direction 

0 534 531 473 473 

O.lP 507 505 450 451 

0.3P 132 136 137 140 

Table 5.2. Stresses for concentrated loading. 

Location from FEM CPT FEM CPT 
the load point s, s, Sy Sy 

(psi) (psi) (psi) (psi) 

Along the longitudinal span direction 

0 899 1083 815 1092 

0.la 465 475 260 272 

0.3u 108 109 5 5 

Along the transverse span direction 

0 899 1083 815 1092 

O.lp 502 502 539 512 

0.3P 129 136 136 142 
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AASHTO wheel footprint are given in Table 5.1 and the stresses caused by a concentrated point 

load are given in Table 5.2. 

The stress results along the longitudinal and transverse axes of a rectangular slab for a finite 

element model containing 231 nodes and 200 elements that was subjected to a partial distributed 

load at center of the slab are in close agreement with solutions obtained by classical plate bending 

theory. The stresses obtained from the finite element solution and from the classical plate theory 

for the concentrated load case are not in agreement close to the load point. At locations removed 

from the concentrated load point, the stresses established by the two analytical procedures are 

almost the same, and these stresses are essentially identical with the calculated stresses obtained 

when the load was applied through the AASHTO wheel footprint. 

Based on the results of the mesh size sensitivity study and on the comparison of the stresses 

obtained by the finite element method and classical plate theory, a finite element model containing 

242 nodes and 200 elements was used to model Specimen Nos. 1 and 2 when a single wheel load was 

applied to the specimen, as shown in Fig. 5.3. The model for Specimen No. 1 was simply supported 

along both longitudinal edges, and the model for Specimen No. 2 was simply supported along both 

longitudinal edges and along one transverse edge. The presence of the skewed end in Specimen 

Nos. 3, 4, and 5 required a finer mesh for this slab region. Figures 5.4, 5.5, and 5.6 show a typical 

finite element mesh that was selected for Specimen Nos. 3, 4, and 5, respectively, when a single 

wheel load was applied to the slab. The models for Specimen Nos. 3 and 4 involved 288 nodes and 

255 elements, while the model for Specimen No. 5 required 322 notes and 307 elements. Each of 

these models was simply supported along both longitudinal edges and along the diagonal edge. 

When the composite slabs were analyzed for two wheel loads acting simultaneously, additional nodes 

and elements were required for the models. The largest finite element model, containing up to 488 

nodes and 470 elements, was used to analyze the double wheel load conditions on Specimen No. 3. 

· The shaded portion shown in Figs. 5.3 through 5.6 represents the load area associated with the 
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AASHTO wheel load. Similar element arrangements were generated for the other wheel load 

positions on each of the five specimen configurations. Since uplift along the supported edges of the 

slabs constructed for the experimental testing was not restrained, several nodes along these edges 

of the finite element models had the vertical restraint released when a significant hold-down reaction 

occurred. For a rectangular slab configuration, uplift occurred at the corners of the slab when 

concentrated loads were applied to the specimens. The uplift conditions became more complex as 

the specimens became more non-rectangular. Several cycles of analysis were required to correctly 

model the support conditions for the finite element models. 

Comparisons of displacement and strain results obtained from the finite element analyses and 

the experimental testing of the full-scale composite bridge deck specimens are discussed in Sections 

6.4 and 6.5. 

S.3. Yield-Line Models 

A limit load strength for each slab configuration was evaluated by applying yield-line analysis 

methods. This approach, which is based on flexural strength, involves the following four basic 

assumptions [32]: 

1. The tension steel reinforcement which intersects a yield-line has yielded when the 

limit load is reached. 

2. At failure, the slab behaves plastically along the yield lines, which separate the slab 

into segments. 

3. Bending moments normal to the yield-lines and torsional moments parallel to the 

yield-lines are uniformly distributed along the yield lines. These moments are 

statically equivalent to the nominal bending moments for the slab along the directions 

of orthogonal reinforcement present in a two-way slab. 
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4. The elastic deformations of the slab are negligible when compared to the plastic 

deformations; therefore, the slab segments between the yield-lines and axes of 

rotation are rigid plates that displace as rigid bodies. 

Yield-line patterns for the limit load analysis were established from the cracks which occurred 

in the experimental specimens during the ultimate load test.s. The yield-lines chosen for a particular 

pattern represented either the center of the crack bands when multiple cracks occurred or a single 

crack. The cracks for the positive and negative moment yield-lines occurred in the bottom and top 

surfaces, respectively, of a slab specimen. The edge boundaries for the analytical model correspond 

to the edge conditions which were present in the test specimens. Figures 5.7a through 5.7g show the 

yield-line patterns (Patterns A through G, re.spectively) that were selected to mathematically 

represent the collapse mechanisms associated with a yield-line analyses .. Yield-line Patterns A and 

B were obtained by observing the cracks shown in Fig. 6.37, which shows the top and bottom 

surfaces of Specimen No. 1. Yield-line Patterns C and D were established to represent the failure 

mechanism corresponding to the crack patterns which developed in the top and bottom slab surfaces 

as a result of the ultimate load test on both the east and west panels of Specimen No. 2, as shown 

in Figs. 6.38 and 6.39, respectively. These two yield-line patterns also provided mechanisms to 

analyze the flexural limit load for the east panel of Specimen Nos. 3, 4, and 5. The crack patterns 

for these specimens are shown in Figs. 6.41, 6.43, and 6.45, respectively. Yield-line Pattern E 

represents another potential collapse mechanism for a concentrated load on the east panel of 

Specimen Nos. 2 through 5. For this pattern, the negative moment yield-line corresponds to the 

negative moment resistance at the joint between the two precast panels, while the positive moment 

yield-lines represent the approximate center of the cracks within a band width as shown in Figs. 

6.39b, 6.41b, 6.43b, and 6.45b for the bottom surface of Specimen Nos. 2, 3, 4, and 5, respectively. 

Yield-line Patterns F and G were selected to evaluate the limit load for the portion of the slabs 

adjacent to the experimentally modeled abutment or pier diaphragm in skewed and non-skewed 
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Figure 5.7. Yield-line patterns (continued): (e) Pattern E, (f) Pattern F, (g) Pattern 

G, (h) Key. 
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bridges. These two patterns can be visualized from the crack patterns for the top and bottom 

surfaces of the west panel of Specimen Nos. 3, 4, and 5, as shown in Figs. 6.40 and 6.42 and 6.44, 

respectively. The dimensions g; shown in the figures and listed in Table 5.3, locate the yield-line 

intersection points for the various yield-line patterns. A dash (-) shown in Table 5.3 for a yield-line 

pattern indicates that the pattern does not contain that particular g-dimension. 



Specimen Ulti- Yield-
No. mate line 

test pattern 
No. 

g1 

1 1 A 42 

B 24 

2 1 c 51 

D 41 

2 A 50 

c 45 

D 21 

E 50 

3 1 F 36 

2 c 48 

D 24 

E 48 

4 1 F 36 

G 13 

2 c 48 

D 17 

E 48 

Table 5.3. Yield-line dimensions. 

Dimensions (in.) 

g2 gl g4 gs g. g7 gg 

30 25 30 25 - - -
20 18 13 20 12 19 -
41 31 17 32 - - -

41 31 17 32 12 56 12 

45 32 19 29 - - -

50 32 19 29 - - -
50 32 19 29 26 39 28 

45 38 - 42 - - -

60 41 0 41 - - -

48 20 20 40 - - -

48 20 20 40 30 20 30 

48 64 - 16 - . -

60 35 12 35 - - -
60 35 12 35 19 35 28 

48 35 12 35 - - -
48 35 12 35 . 18 46 18 

48 41 - 41 - - -

gg g10 

- -
- -

- -
10 -

- -

- -
13 -

- -
. 22 

- -

8· . 

- . 

- 48 

12 48 

- -

16 -

- -

gll g12 

- -

- -

- -
- -

- -
- -
- -
- . 
. . 

- . 

. . 

. . 
- -

13 17 

- . 

- -
- -

gl3 

-

-

-
-

-
-

-
. 

. 

-

-
. 

-
4 

-

-
-

°' 01 



Table 5.3. Yield-line dimensions (continued). 

Specimen Ulti- Yield-
No. mate line Dimensions (in.) 

test pattern 
No. 

gi g2 ~. g. gs & g1 gg 

5 1 F 30 66 34 0 46 - - -
G 30 66 34 0 46 24 32 24 

2 c 48 48 19 12 49 - - -
D 48 48 19 12 49 36 20 24 

E 48 48 55 - 25 - - -

g9 g!O gu 

- 67 -
16 67 -9 

- - -
20 - -
- - -

g12 

-
28 

-
-
-

g13 

-
20 

-
-
-

O> 
O> 
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. Application of the third yield-line theory assumption requires that the nominal flexural 

strengths for both positive and negative moments in orthogonal directions be evaluated. Since the 

composite bridge decks are orthogonally anisotropic slabs (orthotropic slabs), the bending moment 

strengths are different for the transverse and longitudinal directions of the bridge. The transverse 

direction was parallel to the precast panel span, while the longitudinal direction was perpendicular 

to the panel span. The nominal moment resistances were calculated by applying strength design 

principles. The neutral axis locations for each unit-width cross section was established by considering 

the effects of all of the reinforcement (prestressing strands, welded wire fabric, and reinforcing bars); 

the concrete strength of the compression zone; the panel joint, when the yield-line pattern involved 

this discontinuity; slab thickness; and reinforcement depths. For transverse and longitudinal positive 

moment strengths (M.,p and M,,P, respectively) the extreme compression fiber of a cross section was 

the top surface of the topping slab, while for transverse and longitudinal negative moment strengths 

(M.,, and M,.., respectively) the extreme compression fiber was normally the bottom surface of the 

precast prestressed panel. For Specimen No. l, the presence of the joint between the two precast 

panels significantly affected both M,,P and M,,. strengths. Table 5.4 lists the nominal moment 

resistances which were used for the yield-line analyses of the ultimate load tests. 
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Table 5.4. Nominal moment resistances. 

Nominal Moments (ft-kips/ft) 

Specimen Ultimate M1np M ... M•,.P Matan Mh,.P Mb.,. 
no. test no. 

1 1 30.14 15.33 7.'28 3.40 12.26 9.71 

2 1 26.46 15.33 6.41 3.39 10.77 9.71 

2 26.77 15.32 10.83 9.71 

3 1 33.03 15.29 6.63 3.40 12.82 9.68 

2 32.22 15.23 12.83 9.67 

4 1 32.04 15.'28 7.84 3.41 13.02 9.67 

2 31.75 15.30 12.96 9.69 

5 1 28.06 15.30 6.63 3.40 11.35 9.68 

2 28.20 15.21 11.38 9.66 

•Near panel joint 
hNot near panel joint 

The nominal limit load, P,, for a yield-line analysis was calculated by applying work 

expressions for the collapse mechanism formed by the various yield-line patterns shown in Fig. 5. 7. 

For each yield-line pattern, the expressions for the limit load were obtained by equating the external 

work done by the limit load in moving through a virtual displacement to the internal work done by 

the nominal moment resistances in moving through the inelastic rotations about the yield-lines. Eqs. 

(5.24) through (5.30) are the expressions for P. which were derived for yield-line Patterns A through 

G, respectively. 
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(5.25) 

(5.26) 

\ 

(5.27) 

(5.28) 
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+ (M1np) (g3 + g4 + gs) + (M1np + M,.,J (g3 + g4 + gs)} (5.29) 

. ·-~ ~ 

. ( Y1 + g5 ) · With, g9 = g1 
Y1 + g4 + gs 

~ - g ( g10 ) 
- 3 g3 + g4 + g5 

P. = (
2

(y10 + g4 + gs)] { (M..,) f(g1 + g2) + (g10) + (g,, + g,2) ( Y10 + gs )] 
2(y10 + gs) + g4 [ g3 Yw gs Y10 + g4 + gs 

with, 
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x9G = 

5.4. Punching Shear Model 

When a reinforced concrete slab is subjected to a concentrated load, a punching shear failure 

may occur before a yield-line mechanism can become fully developed. According to the AASHTO 

Specification [l ], the nominal punching shear strength of the concrete, v • ., in a non-composite slab 

is expressed as 
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Table 6.1. Concrete strengths, modulus of elasticity, and modulus of rupture (continued). 

Concrete Age f' 
' 

E,' Eb 
' f' ' 

f,b 
Element (days) (psi) (ksi) (ksi) (psi) (psi) 

Topping 28 6,451 4,530 4,578 - 602 

#3 West 85' 7,186 5,574 4,832 632 636 

Topping 8 5,629 4,213 4,276 - 563 

#4 East 21 6,332 4,075 4,536 - 597 

113' 7,462 4,665 4,924 608 648 

Topping 15 6,624 4,828 4,639 - 610 

#4 West 28 7,202 4,437 4,837 - 636 

113' 8,165 4,827 5,151 586 678 
.,.. ___ : __ ,., A l:!l'\O ~ ,,,,.. .., 0£1:! ,,.,,,., 
J.upp1u~ I 4t,.J:t0 .:>,'+7k .:J,ou.J - .JV/ 

#5 East 14 5,949 3,775 4,396 - 578 

21 6,132 4,216 4,464 - 587 

28 6,251 4,1% 4,507 - 593 

62 7,197 4,285 4,836 - 636 

88' 7,520 4,591 4,943 628 639 

Topping 7 4,504 3,864 3,825 - 503 

#5 West 14 5,518 4,309 4,234 - 557 

21 6,109 4,012 4,455 - 586 

28 6,447 4,306 4,577 - 602 

62 6,950 4,438 4,752 - 625 

88' 7,229 4,533 4,846 668 638 

'Experimental result. 
hComputed value. 
'Topping slab age for the ultimate load test. 
'Questionable test result. 
'Precast panel age for the ultimate load test on Specimen No. 1. 
1Precast panel age for the ultimate load tests on Specimen No. 3. 
•Precast panel age for the ultimate load tests on Specimen No. 4. 
'Precast panel age for the ultimate load tests on Specimen No. 5. 
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Also listed in Table 6.1 are the computed values for the modulus of elasticity and modulus of rupture 

obtained from the expressions 

EC = 57,000 Jl (6.1) 

/, = 7.5 Jl (6.2) 

A dash(-) shown in the table indicates that an experimental test was not conducted to establish that 

particular parameter for the concrete age listed. 

The east and west designations shown in the first column of Table 6.1 corresponds to the 

directional orientation in the laboratory for the region of the reinforced concrete topping slab where 

concrete cylinders and prisms were made during the casting of the concrete for the topping slab in 

Specimen Nos. 2 through 5. For these specimens, the first ultimate strength test was performed on 

the west end of the composite slab, and the second ultimate strength test was conducted on the east 

end of the composite slab. Specimen No. 1 was loaded directly over the joint between the two 

precast panels during the ultimate load test; therefore, an east end or west end designation was not 

required. 

6.1.2. Prestressing Strand Modulus of Elasticity 

Modulus of elasticity values for the prestressing strands were determined by performing tensile 

tests on three segments of strand that were approximately 20 feet long. The tests were conducted 

in a horizontal test frame. For safety reasons, the strands were tensioned up to a maximum stress 

of 190 ksi (70% of the ultimate strength). Loads were monitored with a load cell and the 

displacements at the ends of the strands were measured with displacement transducers. For the 

three tests, the experimentally based values for the modulus of elasticity, E., were 27,955, 27,946, and 

29,282 ksi. The average value of E., equal to 28,394 ksi, was in good agreement with the published 

magnitude of 28,000 ksi for 7-wire, low-relaxation, 270 Grade prestressing strand. 
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6.2. Strand Embedment Lengths 

6.2.1. Strand Transfer Lengths 

The precast, prestressed, concrete panels were constructed with normal-weight concrete and 

low-relaxation, 270 Grade, prestressing strands which were pres tressed to 0. 75 f', prior to casting 

the panels. The material properties and panel cross-sectional parameters described in Section 4.1 

are summarized in Table 6.2. 

Table 6.2. Panel parameters related to strand transfer length. 

Prestressing Strand Reinforced Concrete 

Parameter Magnitude Parameter Magnitude 

f' • 270 ksi f' . a 4,810 psi 

E, 28,000 ksi Eci 3.95xl 06 psi 

A.. 0.085 in.2 A. 14.915 in.2 

D 0.375 in. 

Substituting the appropriate parameters from Table 6.2 into Eq. (5.3), the computed compressive 

stress, f,.., at the centroid of the strands and mid-depth of the panels is given by 

f, . = 0.69(270,000)(0.085) = 1 062 si 
CIT 14,915 ' p 

The prestress loss, ES, due to elastic shortening of a precast panel can be evaluated by Eq. (5.2) as 

ES = (28xJo8)( 1•
062 

) = 7,526 psi 
3.95xJ06 

The initial strand prestress, f,., for a panel with an adequate strand transfer length is obtained from 

Eq. (5.11) as 

fs1 = (0.75)(270,000) - 7,526 = 195,000 psi 

Applying an alternate method for evaluating the stress, f," which is based on equating the change 
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in lengths of the strands and the concrete panel, the initial strand prestress according to Eq. (5.12) 

is given by 

f,; = (0.75)(270,000) = 194,600 psi 

[1 ( 28xJ0
6 V 0.085 )] 

+ 3.95x1 oe A 14.915 

Both approaches produced essentially the same strand prestress. Substituting the stress f,i equal to 

195,000 psi for the 3/8 in. diameter strands into the modified ACI Code Commentary expression Eq. 

(5.10), the initial strand transfer length, L,;, for the precast panels used in this research was calculated 

to be 

Lti = [ 195,000 l (0.375) = 24.4 in. 
3(1,000) 

Other analytically derived initial strand transfer lengths can be established from expressions 

presented ·in Sec. 5.1. Applying the empirical equation (Eq. 5.13) suggested by Zia and Mustafa 

[33], the initial strand transfer length can be computed as 

L• = (1.5)( 19S,OOO) (0.375) - 4.6 = 18.2 in. 
4,810 

Also, by substituting the initial strand prestress, f,;, for the effective prestress, f .. , in Eq. (5.8), 

an initial transfer length can be calculated from the expression proposed by Cousins et al [13] as 

Ltt = [ (0.5)(6.7)v'4,81Ql + [ (195,000)(0.085) l 
300 1t(0.375)(6.7)J4810 

Lu = 30.3 in. 

Returning to the modified ACI Code Commentary approach for strand transfer length, Fig. 6.1 

illustrates the relationship between the initial strand prestress and the embedment length of a strand 
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measured from the end of a precast panel. Point A corresponds to the condition at which the 

maximum initial prestress of 195 ksi is obtained when the initial strand transfer length is equal to 

24.4 in. The bi-linear curve (solid lines) represents the behavior associated with the modified ACI 

Code Commentary expression in which the initial strand prestress, f,0 is substituted for the effective 

strand prestress, f,.. The data points shown in Fig. 6.1 were established from experimentally 

measured concrete strains at known locations in the four monitored precast panels. The strain 

readings, obtained from the PML-30 gauges which were embedded in the concrete, were taken 

before, during, and after the strands were cut at the prestress plant. Since the gauges were 

positioned between adjacent strands, visual curvalinear interpolations and extrapolations were useo 

to establish concrete strains at the prestressing strand locations. Assuming that strand slippage did 

not occur between the concrete and the prestressing strands within the interior regions of the panels 

where the strain gauges were located, the change in the strand stress was evaluated by multiplying 

the induced concrete strain adjacent to a strand by the modulus of elasticity of the prestressing 

strand. Knowing the stress in the strands from the strand elongation before the strands were 

released, the final strand stress after transfer was computed and plotted in Fig. 6.1. The dotted 

curve shown in Fig. 6.1 was visually established as a "best-fit" curve through the computed data 

points. The experimental strain obtained from one of the strain gauges in the 15 deg. skewed panel 

was low, since this gauge was located between a bonded and an unbonded (sleeved) strand. As Fig. 

6.1 shows, the correlation between the experimental and analytical behavior was excellent. 

An experimentally derived initial strand transfer length, Lw of about 28.5 in. was established by 

observing where the dotted curve becomes tangent with the dotted horizontal line, corresponding 

to an initial prestress of about 193 ksi. To obtain the maximum initial prestress, the total panel 

length at a strand location would have to be at least twice as long as L,; or about 57 in. If a shorter 

length of panel along a strand existed, a decrease in the initial strand prestress would occur as shown 

by the dotted curve in Fig. 6.1. 
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Other researchers have experimentally. established initial strand transfer lengths. Table 6.3 lists 

experimental results obtained by Kear et al [22], Cousins et al [13], Over and Au [27], and 

Abendroth et al (reported herein) for 3/8 in. diameter, uncoated, 1:wire prestressing strands. 

Table 6.3. Initial strand transfer lengths for 3/8 in. diameter, 
7-wire uncoated prestressing strands. 

r.. f' ei Li. Researcher 
(ksi) (psi) (in.) 

177.1 1,690 24.5 Kear et al 

169.7 3,400 28.5 

158.2 5,000 25.5 .. 

164.8 3,250 32.0 

141.5 3,450 26.0 

119.1 3,400 23.0 

146.0 3,150 33.0 

187.0 4,190 26.0 Cousins et al 

182.8 4,190 35.0 

183.7 4,190 36.0 

184.2 4,190 42.0 

199.9 4,120 34.0 

194.9 4,120 34.0 

195.9 4,120 38.0 

200.1 4,120 38.0 

199.4 4,120 36.0 

195.9 4,120 38.0 

194.5 4,120 38.0 

194.8 4,120 38.0 

193.9 4,810 30.0 

194.8 4,810 30.0 

194.3 4,810 26.0 
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Table 6.3. Initial strand transfer lengths for 3/8 diameter, 7-wire uncoated 
prestressing strands (continued). 

f,; f'. 
" 

L,; Researcher 
(ksi) (psi) (in.) 

195.5 4,810 ' 26.0 Cousin~ et al 

133.0 4,180 30.0 Over and Au 

195.0 4,810 28.5 Abendroth et al 

Significant variation occurred for the experimentally derived initial strand transfer lengths shown in 

Table 6.3. The average transfer length, L,;, for the tests conducted by Kear et al, in which the initial 

strand stress was larger than 150 ksi and the concrete strength at the time of transfer was greater 

than 3,000 psi, was equal to 28.7 in. For the lower and higher strength concrete tests performed by 

Cousins et al, the average transfer lengths were equal to 36.1 in. and 28.0 in., respectively. 

The initial strand transfer length of 28.5 in. obtained from the experimental work of this 

research is in agreement with the lengths obtained by these other researchers. The experimentally 

established transfer length of 28.5 in. is about 17 and 34 percent larger and 6 percent smaller than 

the analytically derived transfer lengths predicted by the modified ACI Code [3] Commentary 

expression, Zia and Mustafa's [33] proposed equation, and Cousins et al's [13] recommended 

formula, respectively. 

A confirmation of the accuracy of the experimentally derived strand prestress versus strand 

embedment length relationship was obtained from a finite element analysis of the trapezoidal-shaped 

precast panel which was used in 40 degree skewed specimen configuration. Knowing that the 

available strand transfer length was equal to one-half of the total strand embedment length, the 

initial prestress for each bonded strand in the panel was established from the curve (dotted line) 

shown in Fig. 6.1. The strand prestress forces were obtained by multiplying the initial prestress for 

each strand by the strand area, A;. These forces were applied to the nodes representing the ends 

of the strands in the finite element model (Fig. 5.1 ), and the resulting concrete strains at Nodes 79, 
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95, 110, and 125 were computed. Table 6.4 shows that excellent correlation occurred between the 

analytical and experimentally measured strains at these points. 

Table 6.4. Concrete strains in 40 degree skewed panel. 

Analytical Experimental 
Node Strain Strain 
No. (µ inJin.) (µ in.fin.) 

79 -229 -228 

95 -260 -254 

110 -270 -270 

125 -281 -286 

To calculate the final transfer length, L., the additional prestress loss due to concrete creep, CR, 

and shrinkage, SH, and strand relaxation, CR., were evaluated. For the precast panels used in this 

research, these strand stress losses, established from Eqs. (5.4), (5.5) with a 70 percent mean ambient 

relative humidity, and (5.6), are computed as 

f""ID - 1'111 f\t::'l\ '710\ - 1"'> '7AA ........ : 
'-'.l'-c - .i..:..\.1.,vv..:..J - '\VJ - .L .... ,,..,..,. pil1 

SH = 17,000 - 150 (70) = 6,500 psi 

CR, = 5,000 - (0.10)(7,526) - 0.05 (6,500+12,744) 

CR, = 3,285 psi 

The total prestress loss (ES+CR,+SH +CR,), excluding friction, was calculated to be equal to 30,055 

psi, which is less than the estimated prestress loss of 45,000 psi listed in the AASHTO Specification 

(1) Table 9.16.2.2. Once the prestress losses have been established, the effective prestress, f.., can 

be computed from Eq. (5.1) as 

f.. = 0. 75(270,000) - 30,055 = 172,400 psi 

Substituting f,. into Eq. (5. 7), the transfer length, L., becomes 
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L, = [ ~~~: l (0.375) = 21.6 in. 

Applying the transfer iength expression presented by Cousins et al [13] the transfer length for 

the prestressing strands in the precast panel used in this research was computed from Eq. (5.8) as 

L, = [(0.5)(6.7)/4,810] + [ (172,400)(0.085) l = 27.5 in. 
300 1t(0.375)(6.7)J4,810 

This length is about 27 percent longer than the length obtained by applying the ACI Code [3] 

Commentary approach. 

6.2.2. Strand Flexural Bond Strength 

As shown by Eqs. (5.14), (5.18), and (5.20), the flexural bond length is a function of the strand 

stress, f .. , corresponding to the nominal flexural strength of the section; the effective strand 

prestress, f,.; the nominal strand diameter, D; the reinforcement ratio, p", or area, A'., of the 

prestressing steel within the cross section; and the concrete compressive strength; f' ,,, for the cross 

section. Since each slab specimen tested was a composite deck consisting of two precast prestressed 

concrete panels and a reinforced concrete topping slab, the parameters f ,., p •, and f'. were different 

for each specimen. The concrete strength, f' ., should be the strength associated with the topping 

slab, since positive bending moments place the upper portions of the topping slab in compression. 

Table 6.5 lists the composite slab parameters needed to calculate the flexural-bond lengths and the 

lengths L,,, computed from Eq's (5.14), (5.18), and (5.20) required to develop the maximum nominal 

strength for each ultimate load test. The effective depth, d., to the centroid of the prestressing 

strands was obtained by subtracting 1 1/4 in. (one-half of the panel thickness) from the mid-span slab 

thicknesses listed in Table 4.1. 
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Table 6.5. Computed flexural-bond lengths. 

Specimen Ultimate f', dp 
. r .. L'lb Lbtb L<lb p 

No. Test No. (psi) (in.) (x1Q·3) (ksi) (in.) (in.) (in.) 

1 1 7,346 6.83 2.074 259.7 32.7 55.7 40.9 

2 1 6,990 6.22 2.278 258.1 32.1 56.0 40.2 

2 7,596 6.26 2.263 259.1 32.5 54.4 40.6 

3 1 7,186 7.04 2.012 259.8 32.8 56.4 41.0 

2 7,257 7.33 1.933 260.3 33.0 56.4 41.2 

4 1 8,165 6.99 2027 261.0 33.2 53.6 41.5 

2 7,462 7.35 1.927 260.6 33.1 55.8 41.3 

5 1 7,229 6.68 2.121 259.3 32.6 55.9 40.7 

2 7,520 6.90 2.053 260.0 32.9 55.2 41.1 

•Computed from Eq. (5.14). 
'Computed from Eq. (5.18) with U' d = 1.32. 
'Computed from Eq. (5.20). 

6.2.3. Strand Development Length 

Analytical solutions for the strand development length, Ld, were obtained by adding together 

the strand transfer and flexural bond lengths. Table 6.6 lists the development lengths established 

by applying the ACI Code expression, Eq. (5.22), or the AASHTO Eq. (9-19); the equation proposed 

by Cousins et al (Eq. (5.8) + Eq. (5.18)); and the formulas suggested by Zia and Mustafa (Eq. (5.13) 

+ Eq. (5.20)). 

The development lengths listed in Table 6.6 can be applied to establish the minimum precast 

panel lengths for midspan wheel loads. Assuming that the 5 in. strand extension length that projects 

from each end of a precast panel (Fig. 4.6) are fully encased by the concrete from the topping slab 

and contribute to the total development length of a strand, the minimum precast panel lengths would 

have to be about 8.2, 13.0, and 9.0 ft, according to ACI or AASHTO Specifications, Cousins et al, 

and Zia and Mustafa, respectively, to fully develop the nominal flexural stength of the composite 

deck. If only the strand embedment length within the precast panel are considered effective in 
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Table 6.6. Computed strand development lengths. 

Development Lengths (in.)' 

Specimen Ultimate ACI/AASHTO Cousins et al Zia and 
No. Test No. Mustafa 

1 1 54.3 83.2 59.1 

2 1 53.7 , 83.5 58.4 

2 54.1 81.9 58.8 

3 1 54.4 83.9 59.2 

2 54.5 83.9 59.4 

4 1 54.8 81.1 59.7 

2 54.7 83.3 59.5 

5 1 54.2 83.4 58.9 

2 54.5 82.7 59.3 

Average 54.4 83.0 59.1 

developing a strand, the panel lengths would have to be 9.1, 13.8, and 9.9 ft. for the same three 

approaches. The length established by applying the recommended expressions of Cousins et al are 

significantly longer than the lengths obtained from the other two methods. If the criteria specified 

by the Federal Highway Administration memorandum [16] is applied, the development length for 

the 3/8 in. diameter, 270 Grade, prestressing strand would have to be 1.6times the length established 

by AASHTO [1] Eq. (9-32), since the strands used in this research were stressed to 70 percent ,of 

their guaranteed ultimate tensile strength of 270 ksi. Then, the minimum precast panel length should 

not be less than 9.1 ft. times 1.6 or 14.6 ft. This length is close to the minimum panel length 

established by applying the expressions proposed by Cousins et al. The rectangular panel lengths 

used in the experimental test specimens were 7.1 ft. The trapezoidal-shaped panels had much 

shorter concrete lengths available for the strands which intersected the diagonal panel edge. 

Therefore, based on analytically established development lengths, the full nominal flexural strength 
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of the composite slab specimens would not be obtainable, since a bond failure between the 

prestressing strands and the surrounding concrete would occur before the strands would reach the 

stress f,;. 

6.2.4. Strand-Slip Results 

The experimental tests of the composite slab specimens did not provide explicit strand 

development lengths, due to the three dimensional behavior of the slabs. A qualitative evaluation 

of the strand development lengths was performed by monitoring the ends of selected strands, as 

discussed in Section 4.2.3, for movement relative to the ends of the panel. Any relative strand 

movement would represent strand slippage. Strand slippage can only occur after the actual bond 

stresses between the strand and the surrounding concrete, along the entire strand embedment length 

from the point of maximum strand force to the end of the panel, have exceeded the nominal bond 

stress resistance. If strand slippage occurred, the bond strength at the location of the strand would 

have been reached. 

To establish if slippage of a particular monitored strand occurred, graphs of load versus slip 

were developed. Due to the sensitivity of the monitored movements, some of the extraneous raw 

data results were adjusted or eliminated. For the plotted data, "best-fit" curves were drawn to match 

the experimental results. After the load versus slip relationship had been graphically represented, 

measurable strand-slip was considered to have occurred when the "best-fit" curve digressed from the 

initial vertical line that represented no strand-slip. Figures 6.2, 6.3, 6.4, and 6.5 show representative 

load versus strand-slip relationships for an ultimate strength test on Specimen Nos. 1, 2, 4, and 5, 

respectively. Strand-slip at the monitored locations did not occur during the service level or factored 

level load tests. 

The slippage characteristics associated with movement of the end of a prestressing strand 

involved either a sudden slip, as illustrated by the graph of the S3 strand-slip in Fig. 6.4 for Specimen 
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No. 4, or as a gradual slip, as shown by the Sll or S12 strand-slip curves in Fig. 6.5 for Specimen 

No. 5. The strand-slip locations Sll and S12 were on opposite ends of the same strand as shown 

in Fig. 4.18. The magnitudes of an initial strand-slip was normaily around a few thousandths of an 

inch. As the loading continued, the amount of slip increased and in many instantaneous reached well 

over a tenth of an inch before the slab failed. 

Table 6. 7 lists the load, P "' at which strand-slip was initiated at a particular location, based on 

an interpretation of a graph showing load versus strand movement at the end of a panel, for the five 

composite slab specimens. The strand-slip location (Sl through S20) refers to the displacement 

instrumentation designation shown in Figs. 4.14 through 4.18 for Specimen Nos. 1 through 5, 

respectively. The odd numbers for the strand-slip corresponded to the north end of the strands and 

the even numbered strand-slip locations were on the south end of the strands. Both ends of the 

same strand were monitored for movement. A superscript shown in the table designates the location 

of that particular strand with respect to the wheel load position. A dash (-)indicates that strand-slip 

at that particular location did not occur during the ultimate load test. The letter "M" shown in the 

table represents an erratic result attributed to a transducer malfunction. 

Listed at the bottom of Table 6.7 are the minimum load, P .. m, causing slip in any of the 

monitored strands for A particular ultimate load test; the ultimate experimental load, P., for the slab; 

the ratio of P "m to P ,; and the ratio of P .. m to the HS-20 AASHTO wheel load, P w> including 30 

percent impact. The maximum ratio of P .. m to P, for all of the slab specimens was 0.73, which 

indicates that even after strand slippage occurred in the stiand(s ), a significant reserve strength still 

existed for these composite slabs. The minimum ratio of P .. m to P w for all of the slab specimens was 

2.64, which indicates that strand-slip did not initiate in any of these slabs until a load equal to 

approximately two and one-half times the design load, P w, had been placed on the slab. 



Specimen No. 

Ultimate Test 
No. 

= 0 

.. 
u 
0 

...:I 

Sl 

S2 

S3 

S4 

SS 

S6 

S7 

S8 

S9 

SlO 

Sll 

S12 

= S13 

P,.., 

P, 

S14 

S15 

S16 

S17 

Sl8 

S19 

S20 

90 

Table 6. 7. Strand-slip loads (kips). 

1 2 3 4 

1 1 2 1 2 1 2 

-· -· ... 125' 
_, -· 

-· 105' 
_ .. -' 70' 

100h 135• 

_i lOOh .• 

85• _h 

90• . 110' 

65 110 105 115 125 55 70 

145 150 155 175 175 170 165 

0.45 0.73 0.68 0.66 0.71 0.32 0.42 

3.13 5.28 5.05 5.53 6.01 2.64 3.37 

M represents a transducer malfunction. 

•o in. •6 in. 
h42 in. '48 in. 

Distance Between Monitored Strand and the Load Point 

'12 in. 
i72 in. 

dJ8 in. 
k76 in. 

'24 in. 
178 in. 

'30 in. 
"'84 in. 

'36 in. 
•%in. 

5 

1 2 

-· 
105' 

j -· 

75 105 

160 153 

0.47 0.69 

3.61 5.05 
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63. Composite Deck Slabs 

6.3.1. Composite Behavior 

For the precast concrete panels and the cast-in-place reinforced concrete slab to behave as a 

composite deck, relative movement between the two slab elements must not occur. As shown in 

Figs. 4. 7 and 4.8, the top surface of the panels had longitudinal grooving to develop an interlock with 

the cast-in-place topping slab. The effectiveness of this grooving to obtain composite action was 

evaluated by inspecting core samples and by investigating the load versus slip behavior between the 

panels and the topping slab at various points within the deck span and at the ends of the panel span. 

6.3.2. Core Samples 

A visual inspection of the interface between the precast panels and the topping slab was 

accomplished by drilling 3 in. diameter core samples through selected locations in Specimen Nos. 3 

and 4. These samples revealed that good bonding between the two concrete eleinents had taken 

place. Some of the cores, which were drilled through a slab reinforcing bar and a panel prestressing 

strand, showed that the concrete in both portions of the total slab thickness had enveloped the steel 

completely. 

6.3.3. Interface-Slip Results 

When composite interaction between two slab elements begins to deteriorate due to flexural 

loading, the initial distress will occur within the length of the span. As additional loading is applied, 

the propagation of the discontinuity between the strain at the top of the preca:st panel and the strain 

at the bottom of the topping slab will progress towards the supports in a wave-front type of action. 

If the strain discontinuity condition extends to the end of the slab, composite behavior between the 

two slab elements will be lost in this region of the deck, and physical movement between the topping 

slab and precast panel will occur at the end(s) of the span. 
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To detect the initiation of composite behavio~ deterioration, the strain condition at the interface 

between the precast panels and the reinforced concrete slab was investigated by analyzing the strain 

distribution through the total slab thickness. At several locations for each of the composite slab 

specimens, three strain gauges were positioned in vertical alignment. Strain gauges were mounted 

on the top and bottom surfaces of the precast panel and another strain gauge was attached to the 

top surface of the topping slab, as shown in Figs. 4.19 through 4.23 for Specimen Nos. 1 through 5, 

respectively. Unfortunately, many of the strain gauges which were glued to the top surface of the 

precast panels malfunctioned due to moisture penetration of the waterproofing barrier placed over 

the strain gauges and lead wire connections. 

For those locations where a set of three vertically aligned strain gauges recorded reliable 

bending strains, a graph of the strain distribution through the depth of the slab could be drawn. If 

complete composite behavior existed, the three measured strain values would lie along a straight line. 

When a deterioration of composite interaction had begun, the three measured strains would not be 

co-linear. 

The difference in the bending strains between the top of a precast panel and the bottom of the 

reinforced concrete slab was obtained by realizing that the curvature for both the panel and the 

topping slab has to be the same at a given cross section, if vertical separation between the two slab 

elements does not occur at the point of horizontal strain discontinuity. Therefore, for a given load 

application, a straight line connecting the measured concrete strains at the top and bottom surfaces 

of the precast panel must be parallel to a straighf line constructed through the measured concrete 

strain at the top surface of the reinforced concrete slab. Knowing that the topping slab thickness 

was equal to the total slab thickness less the panel thickness, the strain at the bottom of the 

reinforced concrete slab was calculated. The numerical difference between the bending strains in 

the two slab elements at their common plane has been termed the interface-slip·. 
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Figures 6.6, 6.7, 6:8, and 6.9 show representative load versus interface-slip relationships for an 

ultimate strength test on Specimen Nos. 1, 2, 5, and 5, respectively. Interface-slip at the monitored 

locations involving three properly functioning strain gauges did not occur during the service load or 

factored load tests. Since the calculated interface-slip amounts are not "precise" magnitudes, visually 

obtained, "best-fit", curves were drawn through the computed data points. Interface-slip was 

considered to have occurred when a significant change from the initial load versus slip behavior was 

observed. Theoretically, the initial load versus interface-slip relationship should be a vertical line. 

However, the strain calculations for the initial behavior produced an inclined line. This difference 

ha:s been attributed to computational errors which were induced by the sensitivity of the calculations. 

A small error in a thickness measurement would produce large differences in computed strains. 

Therefore, even though the initial behavior was not represented by a vertical line in these figures, 

the initial linear relationship still represents a no-slip condition. The interface-slip can occur 

gradually as shown in Fig. 6.8 for the slip at Location 19 on Specimen No. 5, or the interface-slip can 

occur suddenly as illustrated in Fig. 6.6 by the slip at Location 13 on Specimen No. 1. 

The magnitudes of the interface-slip can be small as shown by the abscissa values in the graphs. 

For Location 14 on Specimen No. 1 (Fig. 4.19) the magnitude of the interface-slip shown in Fig. 6.6 

was less than 10 micro in.fin. (0.000010 in.fin.) when the initial break-down of composite behavior 

was considered to have begun. 

Table 6.8 lists the interface-slip load, P;., for a given location obtained from a graphical 

interpretation as to wlfen slippage was initiated in the load versus interface-slip behavior for the 

ultimate load tests conducted on the five composite slab specimens. The interface-slip location (11 

through 116) refers to the strain gauge numbering designations shown in Figs. 4.19 through 4.23 for 

Specimen Nos. 1 through 5, respectively. A superscript shown in the table designates the lateral 

position of the interface gauge location with respect to the wheel load position. A dash (-) indicates 

that slippage at the interface between the topping slab and the precast panel did not occur at that 
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Table 6.8. Interface-slip loads (kips). 

Specimen No. 1 2 3 4 5 

Ultimate Test 1 1 2 1 2 1 2 1 2 
No. 

II M' Mi 40' Ms _k 60' 

I2 851 Mi _k 55• 

I3 . 40r 70" -· 60' 

= 14 _k 70' 
0 

- IS 
"' c.> 
0 

16 

~ 17 
Cl. 

18 
<Zl 

19 

0 IlO c.> 

"' ..... Ill ... 
0 112 -= ...... I13 

I14 

I15 

I16 

Psm 

P, 145 150 155 160 153 

P.,,/P, 0.28 0.47 0.26 0.38 0.36 

P;.mPw 1.92 3.37 1.92 2.88 2.64 

M represents a strain gauge or system malfunction. 

Distance Between Measured Strain and the Load Point 

'6 in. b7 in. «J in. 411 in. •12 in. rrn in. 
824 in. h30 in. ;54 in. i66 in. "72 in. 1102 in. 
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location during the ultimate load test. The letter "M" shown in the table represents a strain gauge 

or system malfunction. 

Listed at the bottom of Table 6.8 are the minimum load, P•m• causing interface-slip at any of 

the monitored locations for the particular ultimate load test; the ultimate experimental load, p" for 

the slab; the ratio of P•m to P ,; and the ratio of P•m to the HS-20 AASHTO wheel load, P w• including 

30 percent impact. The maximum ratio of P•m to P, for Specimen Nos. 1, 2, and 5 was 0.47, which 

indicates that even after initial break-down of composite behavior had begun at some internal 

regions of the composite slab, a substantial reserve strength still existed for these slabs. The 

minimum ratio of P•m to Pw for Specimen Nos.1, 2, and 5was1.92, which indicates that interface-slip 

did not initiate in any of these slabs until a load equal to approximately two times the design load, 

P w• had been placed on the slab. Since malfunctions occurred for the instrumentation associated with 

all of the interface-slip measurements for Specimen Nos. 3 and 4, conclusions regarding this type of 

slip can not be made for those specimens; however, similar results would have been expected. 

6.3.4. Topping-Slip Results 

As discussed in Sec. 6.3.3, once the interface-slip had progressed to an end of the span for a 

slab specimen, a relative movement between the precast panel and the reinforced concrete slab 

occurred at that end of the specimen. This relative displacement was termed topping-slip. 

Measurements of the relative horizontal movement between the two slab elements were taken at 

various locations along the ends of the span, as shown in Figs. 4.14 through 4.18 for Specimen Nos. 

1 through 5, respectively. 

To determine if topping-slip occurred, graphs of load versus slip were generated. As mentioned 

in the discussion on strand-slip (Sec. 6.2.4), data reduction of experimental results required 

elimination or adjustment of some of the scatter of the recorded measurements. After the data point 

pairs (load and slip amounts) were plotted, visually established, "best-fit" curves were drawn to 

represent the load versus topping-slip behavior. Measureable topping-slip was considered to have 
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occurred with the "best-fit" curve digressed from the initial vertical line that represented no topping

slip. Figures 6.10, 6.11, 6.12, and 6.13 show representative load versus topping-slip relationships for 

ultimate strength tests on Specimen Nos. 1, 2, 3, and 5, respectively. Topping-slip did not occur 

during the service or factored level load tests. 

When topping-slip occurred, the movement was either gradual or sudden. Figure 6.13 

illustrates both types of behavior for Specimen No. 5, during the ultimate strength test on the portion 

of the slab near the skewed diaphragm support. Topping-slip T4 occurred gradually, commencing 

at a load of about 105 kips; white, topping-slip T3 began more suddently at a load of about 85 kips. 

These movements were measured at opposite ends of the slab, as shown in Fig. 4.18. The initial 

magnitudes for the topping-slip were a few thousandths of an inch. When a slab specimen reached 

its ultimate load capacity, some of the topping-slip amounts were equal to about two-tenths of an 

inch. 

Table 6.9 .lists the load, P "' at which slippage between one of the precast panels and the 

reinforced concrete slab was obtained for each ultimate strength test on the five composite slab 

specimens. The topping-slip location (Tl through T6) refers to the displacement instrumentation 

designation shown in Figs. 4.14 through 4.18 for Specimen Nos. 1 through 5, respectively. The odd 

numbers for the topping-slip correspond to the north end of a specimen and the even numbers for 

the slip relate to the south end of a specimen. A superscript shown in the table refers to the 

location of the slip measurement with respect to the wheel load position. A dash (-) indicates that 

topping-slip did not occur at that particular location during the ultimate load test. 

Listed at the bottom of Table 6.9 are the minimum load, P ""'' causing relative movement 

between the two slab elements at any of the monitored locations along the ends of a specimen; the 

ultimate experimental load, P., for the slab; the ratio of P•m to P,; and the ratio of P.,, to the HS-20 

AASHTO wheel load, Pw, including 30 percent impact. The maximum ratio of P.,, to P, for all of 

the slab specimens was 0.82, which indicates that even after a partial loss of composite behavior 
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occurred a reasonable amount of slab strength still existed before a complete failure of this portion 

of the specimen was obtained. The minimum ratio of P,.., to Pw for all of the slab specimens was 

2.16, which indicates that a load of over two times the design wheel load, Pw. was required before 

topping-slip occurred. 

Table 6.9. Topping-slip loads (kips). 

Specimen No. 

Ultimate Test 
No. 

Tl 

T2 

T3 

T4 

TS 

T6 

1 

1 

85b 

75' 

50 

145 

0.34 

2.40 

2 

1 2 

_r 

_r M• 

_b 

_b 

45' 

95' 

45 

150 155 

0.30 0.58 

2.16 4.33 

M represents a transducer malfunction. 
•Measurement in line with load point. 
bMeasurement offset 48 in. from load point. 
'Measurement offset 78 in. from load point. 

1 

-· 
-· 

60 

175 

0.34 

2.88 

3 4 5 

2 1 2 1 2 

150' _d -· _, 125' 

_d 85• _, -· 

90 115 85 85 125 

175 170 165 160 153 

0.51 0.68 0.52 0.53 0.82 

4.33 5.53 4.09 4.09 6.01 

dMeasurement offset 84 in. from load point. 
•Measurement offset 90 in. from load point. 
'Measurement offset 96 in. from load point. 
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6.4. Load Versus Deflection Relationships 

6.4.1. Service Level Loads 

A measure of the stiffness of the composite slab specimens was obtained by establishing load 

versus deflection relationships for several load ranges. As discussed in Section 4.2.2., concentrated 

loads were placed at many locations on the top surface of the slab. The majority of the loads were 

confined to be within the service level load range of from zero to 20.8 kips. For this load range, the 

load versus deflection behavior for a single wheel load placed above the mid-width and midspan 

(Position No. lA) of the east precast panel (Fig. 4.9) of Specimen No. 1 is shown in Fig. 6.14. The 

·deflections are the average of the deflections measured on each side of the wheel footprint (Fig. 

4.14). The graph shows both the experimental displacements and the deflections obtained from a 

finite element analysis, involving a model similar to the one shown in Fig. 5.3. The experimental 

results were adjusted to account for small vertical movements at the bearing ends of the slab. The 

displacement behavior was linear as can be observed from the figure and remained elastic 

throughout the entire load range. The correlation between the analytical solution for the load versus 

deflection behavior and the experimental deflection amounts was excellent, considering the potential 

test scatter associated with deflection measurements of concrete structures and the small magnitudes 

of deflections involved. The maximum deflection at the load point was about 0.012 in. when the 20.8 

kip load was acting. This displacement represents about one-seven thousandth of the span length. 

Similar load versus deflection relationships were established for other wheel load positions on 

all specimens. As anticipated, the finite element results showed greater divergence from the 

experimental results near the regions of a slab adjacent to and at the joint between the two precast · 

panels and when the geometry of the slabs became more complex near a skewed diaphragm support 

condition. 

Figure 6.15 shows the vertical deflections along the precast panel span for a single 20.8 kips 

wheel load applied over Position No. 1A (Fig. 4.9) of Specimen No. 1 for both the experimental and 
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finite element results. The midspan deflection corresponds to the maximum deflection shown in Fig. 

6.14. As shown in Fig. 6.15, very good correlation occurred between the analytical and experimental 

results. For the other wheel load positions on this specimen and the other four specimens, similar 

results were obtained. · 

Double wheel loads spaced 4 ft. apart were also applied to the composite slab specimens. A 

four foot spacing was selected, since this is the minimum spacing to be considered by the AASHTO 

Specification [1 J when two trucks are adjacent to each other. For the service level load range, each 

concentrated load had a minimum value of zero and a maximum magnitude equal to 20.8 kips. The 

loads were simultaneously applied through AASHTO footprints (8 in. by 20 in.). Figure 6.16 is a 

plot of the load versus the vertical deflection at the midspan for a double load at Position Nos. 3C 

on Specimen No. 3 (Fig. 4.11). The loads were located over the joint between the two precast 

panels. The analytical and experimental results for this load case are very similar to the results 

shown in Fig. 6.14 for a single load at the mid-width and midspan panel location on Specimen No. 

1. The maximum midspan deflection of the composite slab for the double load condition was also 

equal to approximately 0.012 in. For the same load positions, the slab deflections along the panel 

span when the two loads were at their maximum magnitude of 20.8 kips each are shown in Fig. 6.17. 

Excellent correlation between the analytical and experimental results occurred. 

6.4.2. Factored Level Loads 

Specimen Nos. 4 and 5 were subjected to factored loads at selected locations on the slab surface 

as listed in Table 4.2. These two specimens experienced a load range of from zero to 48 kips. Load 

versus deflection relationships for two wheel load locations (Position Nos. lD and 2E in Fig. 4.12) 

on Specimen No. 4 are shown in Figs. 6.18 and 6.19 and for one wheel load location (Position No. 

lD in Fig. 4.13) on Specimen No. 5 is shown in Fig. 6.20. The slab deflections shown in these figures 

for the experimental results are the average of the deflections on each side of the load point. Figure 

6.18 illustrates that the analytical model closely predicted the displacement behavior for the 
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composite slab specimen when the load was incremented through the factored load range. The 

presence of the slab support along the skewed edge of the specimen significantly reduced the slab 

deflection from the amounts which occurred at locations not near a longitudinal edge support. 

Recall that a maximum deflection of 0.012 in. occurred for Specimen No. 1 when a service level load 

equal to 20.8 kips was applied over the mid-width and midspan of the east panel. Figure 6.18 shows 

that for the same load magnitude the deflection at Position No. ID on Specimen No. 4 is about 

0.0035 in. or approximately 30 percent of the previous amount of deflection. 

The experimentally measured load versus deflection relationships shown in Figs. 6.19 and 6.20 

as the dashed lines involves two distinct displacement behaviors. For low magnitudes of load (less 

. than about 6 kips), the slab stiffness appears to be small; while for larger loads, the slab stiffness 

appears to have increased significantly. This anomaly was caused ·by a change in the slab support 

conditions as load was applied to Specimen Nos. 4 and 5 in the region of the slabs adjacent to the 

skewed support. Prior to placing any loads on a composite slab specimen, the corners of the slabs 

were observed to have lifted up off the concrete supports. Since the speicmens were not anchored 

to the supports, upward vertical movement was not restrained. This movement was attributed to the 

shrinkage of the concrete in the cast-in-place topping slab. The shrinkage was restrained along the 

bottom of the specimens by the precast panels, which had become composite with the topping slab. 

Since the concrete in the precast panels was substantially older than the concrete in the topping 

slabs, most of the panel shrinkage had already occurred prior to casting the topping slabs. The panel 

restraint caused the specimens to distort with a concave upward curvature, which caused the corners 

of the slabs to displace upwards. This effect was more pronounced at the acute corners of Specimen 

Nos. 4 and 5, representing the 30 and 40 degree skewed configurations, respectively. When low 

magnitudes of load were applied near this region of a composite slab specimen, the edges of the slab 

near the corners still were not bearing on the concrete supports. As the load was increased, these 
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slab edges eventually began to bear on the supports, which caused the apparent increase in the slab 

stiffness. 

The finite element analysis did not model this uplift condition; therefore, the load versus 

deflection relationships shown in Figs. 6.19 and 6.20 for the analytical results involve a single straight 

line representing linearly elastic behavior. A comparison of the slopes of the load versus deflection 

relationships between the finite element solutions and the experimental results (above a load of 

about 10 kips) revealed that the analytical model closely matched the stiffness of the slab when the 

load was applied at Position No. 10 (Fig. 6.18) and 2E (Fig. 6.19) on Specimen No. 4, but 

underestimated the slab stiffness when the load was applied at Position No. lD (Fig. 6.20) on 

Specimen No. 5. 

An actual composite bridge deck should not experience the uplift conditions caused by shrinkage 

of the concrete in the topping slab, since the slab is anchored to the bridge girders and the abutment 

and pier diaphragms. Shrinkage of the concrete will still occur; therefore, with large skew angles, 

significant residua! stresses -..viH be induced into the bridge deck in these regions of the composite 

slabs. 

Figure 6.21 shows the midspan deflections for Specimen No. 4 when a single 48 kips load was 

applied to Positi9n No. lC (Fig. 4.12). For this case and others (not shown), the finite element 

model realistically predicted the displacement behavior along the specimen length. The load point 

was located 132 in. from the left side of the graph, which placed the load about 5 in. to the right of 

the maximum displacement established by the analytical solution. The east end of the specimen (left 

side of the graph) was not supported; therefore, vertical movements at this point occurred. The west 

end of the specimen (right side of the graph r was supported by the modeled skewed abutment 

diaphragm; therefore, downward vertical movement was prevented at this point. As shown in the 

figure, the displacement magnitudes were quite small. 
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6.4.3. Ultimate Loads . 

All of the specimens were subjected to loads which caused a failure of a portion of the 

composite slab. Figures 6.22 through 6.26 show the load versus deflection relationships obtained 

during the experimental testing of Specimen Nos. 1 through 5, respectively. The deflections shown 

are the average of the displacements on each side of the load footprint. In the key of each of the 

figures, the letter U refers to an ultimate load test, the prefix number represents the specimen 

number, and any suffix number refers to the ultimate strength test number. The position of the 

concentrated loads, referred to in the figure titles, corresponds to the wheel load positions shown 

in Figs. 4.9 through 4.13. Each of the figures show that the initial portion of the load versus 

deflection relationship is linear, and that each specimen was capable of resisting substantial increases 

in load after the limit of the elastic range had been obtained, as indicated by the continuously rising 

curve on the load versus displacement graphs. The failure of each specimen was sudden once the 

nominal strength of a slab was reached. The maximum elastic load, P,; the load, Po.1> which caused 

a deflection equai to 0.10 in~ at the ioad point; the ioad, Pc,, corresponding to the first observed crack 

on the top surface of the slab; the ultimate experimental load, P ,; the maximum elastic deflection, 

A., at the load point and occurring at the load P,; the maximum deflection, A., at the load point and 

occurring at the load, P ,; the ratio of P, to P ,; the ratio of P, to P,,; and the ratio of A, to A, are 

listed in Table 6.10. 

Except for Specimen No. 1, which had the load placed directly above the joint between the two 

precast panels, the ratio of P, to P, was at least equal to two. After the ·first crack was detected on 

the top surface of the composite slab, each specimen was able to resist a significant increase in load. 

Ratios of P, to P .. less than 1.75 occurred for Test Designations lU, 2Ul, 2U2, and 3U2. 

Recall that Specimen No. 1 had the load over the panel joint, Specimen No. 2 was inadvertently 

cast about three-fourths of an inch too thin, and the second ultimate load test on Specimen No. 3 

had the wheel footprint position close to one of the supports to induce a definite punching shear 
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failure of the specimen. The second strength test on Specimen No. 3 produced the lowest ratio of 

P, to P" equal to 1.35. 

In a relative sense each composite slab specimen sustained a significant amount of inelastic 

deformation after the elastic limit had been obtained. The smallest ratios of A, to A. were equal to 

9.1 and 9.2 for the specimens with Test Designations 5U2 and 3U2, respectively. Even though the 

ratios of A, to A. were large, the magnitudes of the maximum load point deflection which occurred 

just prior to the failure for the specimens were between about one-third of an inch and one inch. 

Table 6.10. Load and deflection magnitudes for strength tests. 

Test P. Po.1 P., P, A. A, P,IP. P,/P., A,/A. 
(kips) (kips) (kips) (kips) (in.) (in.) 

1U 90 100 105 145. 0.046 0.459 1.61 1.38 10.0 

2U1 65 100 90 150 0.035 0.710 2.31 1.67 20.3 

2U2 70 90 90 155 0.050 1.000 2.21 1.72 20.0 

3Ul 85 110 90 175 0.041 0.518 2.06 1.94 12.6 

3U2 85 130 130 175 0.041 0.379 2.06 1.35 9.2 

4U1 65 120 80 170 0.038 0.511 2.62 2.13 13.4 

4U2 70 95 70 165 0.065 0.679 2.36 2.36 10.4 

5U1 70 130 70 160 0.023 0.385 2.29 2.29 16.7 

5U2 65 95 85 153 0.052 0.475 2.35 1.80 9.1 

6.S. Load Ven;us Strain Relationships 

6.5.1. Service Level Loads 

To determine whether the behavior of the composite slab specimens was affected by the joint 

between the precast panels, the distribution of the transverse midspan, flexural strains along the 

specimen length were investigated for various midspan wheel load positions. The strains were 

measured at the top of the cast-in-place slab and at the bottom of the precast panels in the direction 
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parallel to the panel span (transverse to the specimen length). The strain gauge locations are shown 

in Figs. 4.19 through 4.23 for Specimen Nos. 1 through 5, respectively. 

For the maximum service level load of 20.8 kips, Figs. 6.27 and 6.28 show the experimental and 

. finite element strain results for the transverse, midspan, strain distribution along the specimen length 

when a single wheel load was placed on Specimen No. 2 at Position Nos. lC and lE, respectively. 

Considering the experimental results, the measured strains at the top of the slab were slightly larger 

than the corresponding strains at the bottom of the precast panels, indicating that the neutral axis 

(axis of zero strain bending) occurred slightly below the mid-thickness of the composite slab. This 

relative location of the neutral axis is correct for the composite slabs, which had a iarger modulus 

of elasticity for the concrete in the precast panels than for the concrete in the cast-in-place topping 

slab. The concrete properties for the panels and the cast-in-place slabs are listed in Table 6.1. 

Figures 6.27 and 6.28 show that the transverse experimental strains appear to be continuous 

functions across the panel joint which was located at 96 in. from either end of the specimen. 

Therefore, the joint between the two precast panels did not appear to affect the service level load 

distribution along the length of the specimen. Similar results were obtained for other wheel load 

positions on Specimen No. 2 and for loads applied on the other four composite slab specimens. 

The magnitude of the induced midspan, transverse strains were small when service level loads 

were applied to the specimens. For Specimen No. 1, the maximum, measured, experimental strain 

(not shown herein) at the top and bottom of the composite slab were equal to 84 x 10 .. in./in. and 

82 x 10 .. in.fin., respectively, when a 20.8 kip load was placed at Position No. 1A (Fig. 4.9). These 

strains were the largest recorded strains for the service load tests on Specimen No. 1. The lack of 

continuity of the slab at 4 ft. to the one side of the load position produced the larger strains. From 

Fig. 6.27, the maximum measured strain was equal to 67 x 10 .. in.fin. As the loads were moved 

closer to the modeled abutment or pier diaphragm, the experimental, midspan, transverse strains 

decreased. Figure 6.28 shows a maximum measured strain of 55 x 10 .. in./in. due to the 20.8 kip 
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load. Since the induced experimental strains were small, cracking of the concrete at the underside 

of the precast panels should not have occurred for any of the service level loads. 

The finite element model, which idealized the composite slab as an isotropic slab, generally over 

estimated the midspan, transverse, slab strains, with the greatest divergence from the measured strain 

values occurring near the load point. However, the analytical model closely predicted the 

distribution pattern as can be seen from Figs. 6.27 and 6.28. Since the composite slab was uncracked 

for the service level load range, the simplified assumption of a homogeneous concrete slab remained 

valid. · 

Figure 6.29 shows the distribution of the bottom, midspan, transverse strains along the specimen 

length for Specimen No. 3, 4, and 5, when a maximum service level load of 20.8 kips was placed 

above or near the joint between the two precast panels. Specimen No. 5 was loaded 12 in. to the 

left of the panel joint. The numbers shown in the key for the figure refer to the skew angles of 15, 

30, and 40 degrees for the three specimens. As shown in Table 4.1, the thickness of the slabs were 

approximately equal at the panel joint. The thicknesses were 8.62, 8.45, and 8.11 inches for 

Specimen Nos. 3, 4, and 5, respectively. Figure 6.29 shows that the finite element model reasonably 

predicted the behavior of the midspan, transverse strains. The figure also indicates that maximum 

transverse tensile strain near the load point is not significantly affected by the presence of the 

skewed support along the longitudinal edge of a trapezoidal-shaped precast panel. 

Double wheel loads of up to 20.8 kips each were applied at a 4 ft. spacing to the composite slab 

specimens. Representative midspan, transverse strain distributions along the specimen length are 

shown in Figs. 6.30 and 6.31. These results correspond to loads placed at Position Nos. 3C and 3E, 

respectively, on Specimen No. 3, which involved the 15 degree skewed geometric condition. The two 

wheel loads were in alignment with the span of the precast panels; therefore, the loads occurred 

along the same transverse line with respect to the specimen length. For Fig. 6.30, both loads were 

above the precast panel joint. The relative position of the panel joint is 96 in. from the origin of the 
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graph. As indicated by both the experimental and analytical results, the maximum strain does not 

occur along the straight line joining the two loads, but was offset by about 16 in. to either side of that 

line. For loads applied at Position No. 3C on Specimen No. 3, the strains are basically symmetric 

with respect to the center of the specimen; therefore, the skewed support along the longitudinal edge 

of the west end of the specimen did not significantly influence the midspan, transverse strain 

distribution for this loading condition. Once again, the finite element solution predicted the general 

behavior of the strain distribution. However, the analytical solution overestimated the magnitude 

of the relatively low strains. Figure 6.31 shows that the distribution of strains becomes 

nonsymmetrical·as the dual wheel loads approach the skewed abutment support. Since both loads 

were close to the ends of the span, the induced flexural strains in the transverse direction were quite 

small. Considering both locations (Position Nos. 3C and 3C) for the double loads, the maximum 

midspan, transverse strain due to the applied wheel loads was equal to 37 x 104 in.fin. 

6.5.2. Factored Level Loads 

Factored wheel loads were applied to Specimen Nos. 4 and S at the positions listed in Table 

4.1. The maximum ma~nitude. of the factored load was 48 kips. To further investigate the effects 

of placing this maximum wheel load on the region of the composite slab near the modeled abutment 

or pier diaphragm, additional graphs of transverse strain along the length of the specimen were 

developed. Figures 6.32, 6.33, and 6.34 show the distribution of the midspan, transverse strain 

obtained by both experimental and analytical methods for Specimen No. 4, when the load was at 

Position Nos. 1C, 1D, and 2E, respectively, as shown in Fig. 4.12. These figures show a distinct 

change in behavior as the concentrated load was moved towards the modeled diaphragm support 

and into the acute corner of the slab. When the load was at Position No. 1 C (Fig. 6.32), a maximum 

experimental strain of 178 x 104 in.fin. occurred near the load point, and when the load was at 

Position ID (Fig. 6.33) a maxim um experimental strain of about 191 x 104 in.fin. (extrapolated value) 

occurred near the edge of the slab. Recall that this edge of the slab was not monolithically cast or 
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tied to the modeled diaphragm. When. the load was at Position No. 2E (Fig. 6.34), a moment 

reversal occurred as indicated by the sign change in the transverse strains. The maximum strain of 

52 x 1 O"" in.fin. aecording to the analytical solution occurred near the edge of the slab. For this wheel 

load position, the measured, maximum, experimental strains were less than 15 x 10.,; in.fin. Figures 

6.32 through 6.34 show that the finite element solution predicted the distribution pattern for the 

midspan, transverse strains. At locations removed the point of load application, the analytically 

established strain magnitudes closely matched the experimentally measured strains, while near the 

load point, the analytical model did not predict strain magnitudes as accurately. This insensitivity 

was anticipated, since a simplified finite element model was selected. However, as shown in Fig. 

6.34, the analytical model currently predicted that a moment reversal took place. 

For the 40 degree skewed specimen configuration (Specimen No. 5), Figs. 6.35 and 6.36 show 

the midspan, transverse strain results when a single 48 kip load was applied at Position Nos. lD and 

lE, respectively (Fig. 4.13). The results shown in Figs. 6.35 and 6.36 are similar to those shown in 

Figs. 6.32 and 6.34, respectively, for the 30 degree skewed specimen configuration (Specimen No. 

4). 

When the 48 kip factored load was applied at Position 1A on Specimen No. 5, a maximum 

midspan, transverse, compressive strain (not shown) equal to 227 x 10"" in.fin. was measured at the 

top of the slab adjacent to the wheel load footprint, and a maximum transverse tensile strain, e,, 

equal to 225 x 10"" in.fin. was recorded at the bottom of the precast panel. These strains were larger 

than those obtained with the factored load applied at other positions on the specimen due to the 

discontinuous slab condition that occurred 4 ft. away from Position lA (Fig. 4.13). 

Even when a factored load equal to 48 kips was applied to Specimen Nos. 4 and 5, the strain 

distribution along the specimen length did not indicate any discontinuity at the joint between the two 

precast panels. Therefore, the topping slab adequately transferred vertical shear forces across the 

joint. 
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Total tensile strains in excess of the strain associated with the modulus of rupture will produce 

cracking of the concrete. Before cracking at the bottom surface of a precast panel in the direction 

perpendicular to the panel span would occur, the maximum flexural tensile strain at the bottom of 

a panel, induced by the dead load of the precast panel and topping slab, superimposed live load 

(wheel load), and shrinkage of the concrete in the topping slab would have to exceed the sum of the 

precompression strain, caused by prestressing the panel, and the modulus of rupture strain. At 

locations not near the precast panel joints or near the skewed diaphragm support, an approximation 

for the tensile strain, e00, at the bottom surface of a precast panel that is induced by the panel self

weight and the weight of the wet concrete of a topping slab is given by 

(6.3) 

where, t = thickness of the composite slab, ~r = span length of the precast panel, tr = thickness of 

the precast panel, and E,r = modulus of elasticity of the panel concrete. Substituting the numeric 

values for the parameters associated with Specimen No. 5 at Position No. lA (Tables 4.1 and 6.1) 

into Eq. (6.3), 

(3)(8.15)(6.58)2 8 e cd = --''-'-''"'--'---'-'-'-'-'--'-- = 91 x 1 o- in.fin. 
(320)(2.50)2(5,839) 

A precompression strain, e,r, which is constant across the thickness of a precast panel and is induced 

by the effective strand prestress can be evaluated from 

(6.4) 

where, f .. = effective strand prestress from Eq. (5.1 ), A,' = cross-sectional area of a prestressing 

strand, and s = strand spacing. Substituting the appropriate values for the parameters for Specimen 

No. 5 into Eq. (6.4), 
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(172.4)(0.085) 
&q=-,(-2.-50~)(~6.~0)~-~0.~08~5~)~~.8-3-9) 

The modulus of rupture strain, e,,, is given by 

t 
& = -a E 

q 

168 x 1 o-s in./ in. 

(6.5) 

where, f, == modulus of rupture for the panel concrete at the time of testing. Evaluating Eq. (6.5) 

for Specimen No. 5 (Table 6.1 ), 

925 6 e.,. = ---- = 158 x 10- in.fin. 
5,839,000 

If the effects of shrinkage of the concrete in the topping slab are neglected, cracking of the bottom 

of the precast panel, in the direction perpendicular to the panel span, should not occur if the critical 

strain condition given by Eq. (6.6) is satisfied. 

(6.6) 

For the 48 kip load at Position No. 1A on Specimen No. 5, evaluation of the strain condition 

produces 

(168 + 158) x 10-< > (91 + 225) x 10-< 

326 x 10 .. > 316 x lQ-6 

Even though the strain condition is just satisfied, initial cracking in any direction at the bottom of 

the precast panel near the midspan may have occurred when the maximum factored load of 48 kips 

was placed at Position 1A, since the effect of the experimental tensile strains in the longitudinal 

direction due to the applied loads have not been considered and shrinkage effects were neglected. 

For the other factored positions, Eq. (6.6) would be satisfied for the strains in the direction 

perpendicular to the panel span, since the transverse strains induced by the superimposed live load 

were smaller for these cases. However, when the strains in both the longitudinal and transverse 

directions of the specimens due to all causes are considered, initial concrete cracking probably 
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occurred for the factored loading conditions. A more detailed investigation of the strains would be 

required to establish the degree and extent of concrete cracking. 

6.6. Panel Bearing Conditions 

As discussed in Section 4.1.1, the precast concrete panels were temporarily supported on 3/4 

in. high x 1 in. wide continuous fiberboard strips during the construction of the bridge deck. To 

establish whether the concrete from the topping slab had flowed beneath the panels to provide the 

desired 2 1/2 in. width of solid bearing, the bearing areas were inspected during the demolision of 

the specimens. For those locations which were not at the block-outs, where monitoring of the 

prestressing strands for slip occurred, good bearing was generally provided. There were some 

isolated portions where the bearing was not complete; however, the amount of length of incomplete 

bearing was small compared to the 8 ft panel width. For adequate concrete bearing to be provided 

for the panels, sufficient vibration of the concrete during casting of the topping slab is necessary. 

The concrete vibrator should be drawn through the concrete along the ends of the panels. 

An increase in the mjnimum height of temporary bearing would increase the probability that 

better permanent bearing would be obtained. The 3/4 in. thickness of the fiberboard strips, which 

were used in this research, was the same dimension as the maximum aggregate size in the D-57 

concrete mix. 

6. 7. limit Loads 

6.7.1. Yield-Line Strengths Versus Test Results 

An evaluation of the limit load for each probable collapse mechanism for each ultimate strength 

test was accomplished by substituting the appropriate nominal moment strengths from Table 5.4 and 

the yield-line dimensions from Table 5.3 into the appropriate limit load expression (Eqs. 5.24 through 

5.30). The calculated collapse load for each ultimate strength test on Specimen Nos. 1 through 5 
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are given in Table 6.11. For a given ultimate load test, the minimum value of the yield-line limit load 

governs the slab capacity. 

To establish whether a flexural mode of failure for a composite slab specimen potentially 

governed its strength, a comparison between the computed yield-line capacity and the experimental 

failure load shown in Table 6.11 was made. Realizing that test scatter associated with experimental 

work will always occur, a high probability for a flexural failure exists whenever the computed flexural 

strength is close to the tested strength. Also, to assist in determining whether a flexural failure mode 

occurred, a complete yield-line pattern must have been developed to physically subdivide the slab 

into a series of rigid plate elements, which are unrestrained from collapse. By observing the cracks 

on both the top and bottom surfaces of a slab and comparing these patterns with the generalized 

yield-line patterns shown in Fig. 5. 7, conclusions were formulated as to whether a complete yield-line 

mechanism had been developed. Table 6.11 lists the results for the likelihood that a flexural failure 

may have occurred for each of the potential crack patterns selected. The presence of the joint 

bet'neen the t-vVo precast panels influenced the behavior of the composite slab spccimeriS during the 

ultimate load tests. 

For Specimen No. 1, yield-line Pattern B was not completely formed (Fig. 6.37), since a crack 

developed in the top surface of the slab directly above the joint between the two precast panels. A 

positive moment yield-line did not occur at this location as required for this pattern. 

For the first ultimate load test on Specimen No. 2, yield-line Pattern D did not completely 

develop. As shown in Fig. 6.38a, the circumferential crack patterns which started at the edges of the 

slab and progressed towards the center had not met in the region between the load and the panel 

joint. A crack throughout the width of the specimen did occur directly above the panel joint at a 

load of about 90 kips. Considering the second ultimate load test on Specimen No. 2, yield-line 

Pattern E appears to have formed. The bottom slab surface shown in Fig. 6.39b had many cracks. 
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Table 6.11. Yield-line limit loads and experimental ultimate strengths. 

Yield-Line Theory 

Speci- Ulti- Crack 
men mate Pattern Yield- Flexural 
No. Test Figure Line Governing P, P, fa Failure 

No. No. Pattern• Eq. No. (kips) (kips) P. Mode 

1 1 6.37b A 5.1 207 145 1.43 No 

6.37 B 5.2 195b 145 1.34 No 

2 1 6.38 c 5.3 198 150 1.32 No 

D 5.4 189b 150 1.26 No 

2 6.39 c 5.3 210 155 1.35 No 

D 5.4 191 155 1.23 No 

E 5.5 150b 155 0.97 Possibly 

3 1 6.40 F 5.6 213b 175 1.22 No . 

2 6.41 c 5.3 280 175 1.60 No 

D 5.4 242b 175 1.38 No 

E 5.5 269 175 1.54 No 

4 1 6.42 F 5.6 241 170 1.42 No 

G 5.7 209b 170 1.23 No 

2 6.43 c 5.3 224 165 1.36 No 

D 5.4 201 165 1.22 No 

E 5.5 177b 165 1.07 Possibly 

5 1 6.44 F 5.6 20lb 160 1.26 No 

G 5.7 210 160 1.31 No 

2 6.45 c 5.3 241 153 1.58 No 

D 5.4 251 153 1.64 No 

E 5.5 182b 153 1.19 No 

'Patterns shown in Fig. 5. 7. 
bGoverns yield-line behavior. 

Recall that a crack along the panel joint had formed during the ultimate load test on the adjacent 

panel. This crack was the negative moment yield-line shown in Fig. 5.7e. 
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Figure 6.37. Crack patterns on Specimen No. 1 from Ultimate Load Test: (a) Top surface of 

slab, (b) Bottom surface of precast panels. 
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Figure 6.38. Crack patterns on Specimen No. 2 from Ultimate Test No. I: (a) Top surface of 

slab, (b) Bottom surface ofprecast panel. 
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Figure 6.39. Crack patterns on Specimen No. 2 from Ultimate Test No. 2: (a) Top surface of 

slab, (b) Bottom surface ofprecast panel. 
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For the ultimate load test on the skewed panel of Specimen No. 3, yield-line Pattern F was 

almost formed. The positive moment yield-lines, located at the middle of the cracking band widths, 

appear to converge at the load point on the panel (g.i =O, in Fig. 5. 7f). The negative moment yield

line near the panel joint (Fig. 6.40a) was formed between the 110 and 140 kip load levels. The 

second ultimate load test on Specimen No. 3 was conducted near the southern support to minimize 

the probability of a flexural failure and maximize the probability for a shear failure. The controlling 

yield-line pattern (Pattern D), shown in Fig. 5. 7d represents the crack patterns shown in Fig. 6.41, 

had not completely formed. 

For the first ultimate load test on Specimen No. 4, yield-line Pattern G (Fig. 5.7g) had almost 

formed. As shown in Fig. 6.42a, the negative moment yield-line, denoted by the curved crack in the 

top surface of the slab on the side of the load towards the panel joint, had formed along about half 

of the specimen width. The positive moment yield-lines obtained by observing the bottom surface 

of the slab. (Fig. 6.42b) appeared to have formed. Considering the second ultimate load test on 

Specimen :t'~o. 4, Fig. 6.43, which show the Ciack patterns on the top and bottom surfaces of the 

specimen, indicate that the idealized yield-line Pattern E, shown in Fig. 5.7e, had possibly formed. 

For the ultimate load test on the portion of the slab near the skewed diaphragm location of 

Specimen No. 5, the crack patterns on the bottom surface of the precast panel (Fig. 6.44b) indicate 

that a failure mechanism similar to yield-line Pattern F (Fig. 5. 7f) had not completely formed. The 

resulting analytical limit load of 201 kips exceeded the ultimate load which the specimen resisted by 

26 percent. The second ultimate test on Specimen No. 5 involved an offset load position from the 

midspan to reduce the possibility of a flexural failure and to increase the chances for a shear failure. 

The position of the load was not as close to the abutment support as a similar load arrangement was 

for Specimen No. 3. Yield-line Pattern E had not completely formed, since the horizontally 

orientated positive moment yield-line had not completely extended to the free edge of the slab, as 

can be noted by comparing Figs. 5. 7e and 6.45b. 
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Figure 6.40. Crack patterns on Specimen No. 3 from Ultimate Test No. 1: (a) Top surface of 

slab, (b) Bottom surface of precast panel. 
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Figure 6.41. Crack patterns on Specimen No. 3 from Ultimate Test No. 2: (a) Top surface of 

slab, (b) Bottom surface of precast panel. 



135 

(a) 

' ... ·-· -· -. -·•···· ----- -' -· -------- -- ... ---- -------- ----- --· --.------------~-------- ------ ------------------------ --·------------------------------ --- --···, 
! ! 

' , --------------------------------··"·---------------------------------------' 

(b) 

Figure 6.42. Crack patterns on Specimen No. 4 from Ultimate Test No. I: (a) Top surface of 

slab, (b) Bottom surface of precast panel. 
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Figure 6A3. Crack patterns on Specimen No. 4 from Ultimate Test No. 2: (a) Top surface of 

slab, (b) Bottom surface of precast panel. 
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Figure 6.44. Crack patterns on Specimen No. 5 from Ultimate Test No. 1: (a) Top surface of 

slab, (b) Bottom surface ofprecast panel. 
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Figure 6.45. Crack patterns on Specimen No. 5 from Ultimate Test No. 2: (a) Top surface of 

slab, (b) Bottom surface of precast panel. 



139 

As Table 6.11 indicates, during only two of the ultimate load tests had a sufficient number of 

properly positioned cracks developed to form a potential yield-line pattern. These strength tests 

involved a wheel load position on the portion of the composite slab which was not adjacent to the 

modeled abutment or pier diaphragm for Specimen Nos. 2 and 4. If the failure in these two regions 

of the composite slab specimens was flexural, large inelastic rotations along the positive and negative 

moment yield-lines caused by yielding of the reinforcement or excessive tensile strains in the 

prestressing strands should have occurred. However, this type of deformation did not seem to have 

taken place, since the slab segments defined by the slab edges and yield-lines did not experience 

large rigid body rotations about the yield-lines or other axes of rotation. Therefore, the nominal 

strength of the composite slab specimens was probably not limited by the full flexural strength of the 

slabs had adequate strand development been provided. 

6.7.2. Shear Strengths Versus Test Results 

The nominal punching shear resistances calculated by the revised AASHTO model are listed 

in Table 6.12. 

Even though a significant amount of test scatter can occur when the shear strength of reinforced 

concrete members is evaluated experimentally, a comparison of the calculated punching shear 

strength, P., and the ultimate experimental test load, P., for the composite slab specimens reveals 

remarkably good correlation. The close agreement indicates that for six of the tests, punching shear 

was probably the failure mode, and for the other three tests, punching shear may have been the 

failure mechanism. An indication that punching shear occurred for all of the specimen strength tests 

was noted by the observation that the wheel load footprint was depressed into the slab and large 

pieces of the bottom surface of the panel were split off when the ultimate load was reached. 
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Table 6.12. Punching shear limit loads and experimental ultimate strengths 

Revised AASHTO 

Specimen Ultimate f' ~. b. dp P, P, f. Shear 
' No. Test No. (psi) (in.) (in.) (kips) (kips) P. Failure 

Mode 

1 1 7,346 2.64 82.82 6.83 170 145 1.17 Yes 

2 1 6,990 2.00 79.63 6.22 166 150 1.11 Yes 

2 7,596 2.00 79.79 6.26 174 155 1.12 Yes 

3 1 7,186 2.00 82.91 7.04 198 175 1.13 Yes 

2 7,257 2.00 84.07 7.33 210 175 1.20 Yes 

4 1 8,165 2.00 84.15 7.35 224 170 1.32 Possibly 

2 7,462 2.00 82.71 6.99 200 165 1.21 Possibly 

5 1 7,229 2.00 81.47 6.68 185 160 1.15 Yes 

2 7,520 2.00 82.35 6.90 193 153 1.26 Possibly 

6.8. Failure Mode and Reserve Strength 

6.8.1. Method of Failure 

The potential failure mechanisms for the composite slab, specimens were as follows: 

1. Bond failure between the prestressing strands and the surrounding concrete in the precast 

panels, along the strand embedment length (Section 6.2). 

2. Horizontal shear failure at the interface between the topping slab and the precast panels, 

resulting in the loss of composite behavior (Section 6.3). 

3. Bearing failure at the panel supports (Section 6.6). 

4. Flexural failure after a sufficient number of yield-lines had formed to produce a collapse 

mechanism (Section 6. 7.1 ). 

5. Punching shear failure around the wheel load footprint (Section 6.7.2). 

Since the strength tests for the slab specimens involved a single concentrated load, the failure 

of the specimens involved a combination of some of the potential failure mechanisms previously 
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discussed. Considering the five failure modes listed, the only failure mechanism which was not 

observed for any of the specimens tested was a bearing failure at the panel supports. Due to the 

behavior of slab systems in general, a localized failure may not cause a complete collapse of the slab, 

since lateral continuity will distribute strains to adjacent portions of the slab. This behavior was 

observed for each of the specimens. For example, a bond failure for an individual prestressing 

strand located near the concentrated load was detected by strand-slip measurements at the end(s) 

of the strand well before the ultimate strength of the slab was reached. 

The primary failure mechanism for the composite slab specimens was punching shear. Even 

though many flexural cracks propogated throughout the top surface of the topping slab and 

throughout the bottom surface of the precast panel(s) where the concentrated wheel load was 

applied, a complete yield-line mechanism was not formed for most specimens prior to failure of the 

deck. For the two instances where a yield-line mech.anism had possibly formed, the required inelastic 

rotations about the yield-lines, that would induce large rigid body rotations of slab segments did not 

occur. The conclusion that punching shear was the primary failure mode for the composite slab 

specimens tested is in agreement with the findings by Fang et al (15]. 

6.8.2. Service Level and Nominal Strengths 

A measure of safety (factor of safety) for any structure or structural element is given by the 

ratio of the nominal strength to the required service level strength. The nominal strength is the 

maximum anticipated strength based on geometric and material property parameters. The required 

service level strength is the required strength due to expected service level loads acting on the 

structure. For the AASHTO HS-20 truck loading, the service level wheel load is 16 kips without 

impact and 20.8 kips with a 30% impact load. When a 20.8 kip concentrated load was placed on the 

AASHTO wheel footprint (8 in. by 20 in.) at each of the designated positions on the surface of the 

specimens, the behavior of the deck remained elastic. Even when a factored load of three times the 
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standard HS-20 wheel load (48 kips) was applied to Specimen Nos. 3, 4, and 5, the deck behavior 

was still elastic. 

The first concrete cracks, which were observed, appeared either along the edge(s) or on the top 

surface of the deck at a load of about 70 kips. This load magnitude was over three times the service 

level design load of 20.8 kips. For safety reasons, the propagation of cracks on the bottom surface 

of the concrete panels were not recorded until after the testing was completed. The smallest 

collapse load of 145 kips occurred when the concentrated test load was positioned directly over the 

joint between the two precast panels and at the mid-span of the slab for Specimen No. 1. This load 

was equal to almost seven times the service level design load. Specimen No. 3 resisted the largest 

ultimate load of 175 kips, which was over eight times the AASHTO wheel load including impact. 

Therefore, the range in the factor of safety for the composite slabs tested was from 6.97 to 8.41. 

Table 6.13 lists the ultimate test load, P., the load factor, LF., and factor of safety, F.S., for each of 

the slab specimens. 

Table 6.13. Load factors and factors of safety for the composite slab specimens. 

Specimen Ultimate P, LF.• F.S.h 
No. Test No. (kips) 

1 1 145 9.06 6.97 

2 1 150 9.38 7.21 

2 155 9.69 7.45 

3 l 175 10.94 8.41 

2 175 10.94 8.41 

4 1 170 10.63 8.17 

2 16.5 10.31 7.93 

5 1 160 10.00 7.69 

2 153 9.56 7.36 

•LF. = P,/16.0 
hf.S. = P ,/20.8 
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The load factor, LF., is the ratio of the ultimate test load, P., to the standard AASHTO HS-20 

wheel load (16.0 kips) without impact. The factor of safety, F.S., is the ratio of P, to the design 

wheel load of 20.8 kips (standard AASHTO HS-20 wheel load with a 30% impact factor). 

As shown by the magnitudes for the factor of safety listed .in Table 6.13, the simply supported 

composite deck specimens, which were constructed and tested under laboratory conditions, had more 

than adequate strength. The skew angles of 15, 30, and 40 degrees for Specimen Nos. 3, 4, and 5, 

respectively, did not appear to affect the ultimate load resistance of the deck, when the ultimate 

wheel load was positioned at a selected point over each of the trapezoidal-shaped precast panels. 
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7. EPILOGUE 

7.1. Summaiy 

Precast prestressed concrete panels have been used in the construction of bridge decks for 

secondary roads in Iowa and for both primary and secondary roads in other states. The behavior 

of these deck types, in which the two bearing edges of the panels are parallel, have been investigated 

by previous researchers. When precast panels are specified at abutment and pier diaphragm 

locations, the end panels are supported along three edges. If a bridge involves a skew angle, the end 

panels will be trapezoidal in shape. These non-rectangular precast panels have prestressing strands 

with varying lengths; therefore, the strand embedment lengths are not constant within these panels. 

The lack of adequate development length for the strands in non-rectangular panels suggests that 

inadequate flexural strength could be possible when wheel loads are positioned over these panels. 

The objective of this research project was to determine the behavior of precast prestressed 

concrete panels that the State of Iowa uses as permanent forms for both skewed and non-skewed 

reinforced concrete bridges at abutment and pier diaphragm locations. To accomplish this objective, 

a review of previous research related to bridge deck panels was completed, a survey of design 

agencies and precast concrete manufacturers was conducted, field inspections of three bridges 

constructed with precast concrete panels within the State of Iowa were performed, a finite element 

anlaysis of a trapezoidal shaped panel subjected to prestressing forces was completed, an 

experimental study to evaluate the prestress force developed in the panels at strand release was 

conducted, many finite element analyses of homogenous slabs used to model the composite slab 

specimens were performed, and an extensive experimental program which involved the testing of five 

full-scale composite bridge decks was conducted. 
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7.1.2. Surveys 

A total of 121 questionnaires were sent to the 50 state departments of transportation, the 

District of Columbia, tollway authorities, two United States provinces, and eight Canadian provinces. 

This in depth survey contained 82 multiple choice questions which addressed general bridge geometry 

and conditions, general panel geometry and conditions, panel bearing details, prestressing strand 

description and conditions, design criteria, economy, experiences with panel useage, and panel details 

and specifications. Approximately 60 percent of the questionnaires were returned. Only 29 design 

agencies who returned the survey stated that they have designed or specified precast panels for 

permanent forms as the construction of bridge decks. 

Another questionnaire was sent to 192 precast manufacturers who are members of the 

Prestressed Concrete Institute. This extensive survey also involved 82 multiple choice questions 

(some questions were identical with the ones contained on the questionnaire which was sent to the 

design agencies). The questions addressed relative background information about the precaster, 

general bridge panel geometry and conditions, bridge panel bearing conditions, prestressing strand 

conditions and description for bridge panels, design criteria, economy, inspection, experiences with 

panel useage, and panel details and specifications. Approximately 38 percent of the questionnaires 

were returned. Only 27 precasters who returned the survey stated that their company manufactures 

precast panels for bridge deck construction. 

7.1.3. Bridi:e Deck Inspections 

Three precast concrete girder bridges near the city of Eldora, Iowa in Hardin County were 

inspected. Two of the bridges have three spans and the other bridge is a single span structure. One 

of the three span bridges had been built with a 30 degree skew angle, while the other two bridges 

involved non-skewed construction. The multi-span bridges cross the Iowa River and the single span 

bridge crosses Pine Creek. 
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The inspections were performed to observe general geometrical relationships, construction 

details, and to note the visual condition of the bridges. Since each bridge involved water crossings 

and since the height beneath the bridges was substantial, the extent of the visual inspections was 

limited. 

7.1.4. Finite Element Models 

A finite element model, containing a single layer of 180 elements and 201 nodes, was developed 

to represent a trapezoidal-shaped panel, having a diagonal edge orientated to match a 40 degree 

skewed bridge condition. The mesh size was established to provide nodal points which occurred 

along the prestressing strands in an actual panel. Thin plate elements with isotropic properties were 

selected; therefore, the precast slab was modeled as a homogenous material with properties of the 

uncracked concrete in the panels. The pres tressing strands were not included in the sim pie model. 

Forces were applied to the edge nodes of the finite element model to represent prestressing forces 

which were induced into the non-rectangular panel during strand detensioning. By com paring the 

analytically derived and experimentally measured concrete strains, the accuracy of the. experimentally 

obtained initial strand transfer length was verified. 

A large number of finite element models were generated to represent the full-scale composite 

slabs which were tested. A different model was developed for each wheel load position. Each model 

contained a single layer of between 200 and 470 thin isotropic plate elements and between 242 and 

488 nodes. The precast panels and reinforced concrete portions of a deck were not modeled 

separately. Also, the reinforcement in both the panels and the topping slab was not included in the 

finite element models. For each experimental test performed, a finite element study was completed 

to obtain strains and displacements. The analytical results were compared with the experimental 

results. 
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7.1.5. Experimental Tests 

The experimental program involved two aspects. The first experimental tests, which were 

conducted at the precast plant where the panels were cast, were performed to evaluate the initial 

strand transfer length. Prior to casting the concrete for the panels, polyester mold embedment strain 

gauges were wired between selected prestressing strands. After the concrete had cured, strain 

readings were taken before, during, and after the strands were cut. Knowing the stress in the 

prestressing strands from their elongation during tensioning and measuring the induced compressive 

strains in a panel after detensioning, the prestress remaining in the strands was calculated. 

The second series of experimental tests involved the construction and testing of five full-scale 

composite bridge decks in the laboratory. Four of the specimens modeled conditions adjacent to an 

abutment or pier diaphragm with skew angles of 0, 15, 30, and 40 degrees. The other specimen 

represented a interior slab condition. Each of the slabs, which were simply supported on concrete 

abutments representing precast concrete bridge girders and reinforced concrete diaphragms, 

contained two precast concrete panels and a reinforced concrete cast-in-place topping slab. The 

construction details essentially followed the Iowa DOT srandard bridge deck drawing involving the 

use of panel subdecks, except for the use of some sleeved prestressing strands. To prevent breakage 

of the triangular corner in a trapezoidal-shaped panel during strand detensioning, two, three, and 

four of the shortest strands were sleeved along their entire length for the panel adjacent to the 

modeled diaphragm having a bridge skew angle of 15, 30, and 40 degrees, respectively . 

. To establish the elastic behavior of the composite bridge slabs, both single and double loads 

incremented up to the standard AASHTO HS-20 wheel load with 30 percent impact were positioned 

at numerous locations on the slab surface. Particular attention was given to the region of the slab 

adjacent to the modeled diaphragm support condition. For the specimens containing a bridge skew 

angle of 30 and 40 degrees, a factored wheel load equal to three times the standard wheel load 

without impact was also applied at various locations within the region of the slab involving the 
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trapezoidal precast panel. This second load phase was instituted to investigate strand anchorage 

resistance for those prestressing strands which have shorter embedment lengths, due to the skew 

angle, than the lengths present in a rectangular shaped panel. After completing the service and 

factored level load tests, the ultimate strength (nominal resistance) of each composite slab was 

experimentally established by applying an incresing concentrated load over an area of approximately 

the same size as the AASHTO wheel load footprint, until a failure occurred. For Specimen No. 1, 

representing an interior composite slab condition, this load was placed at the midspan and directly 

above the transverse joint between the two precast panels. For Specimen Nos. 2, 3, 4, and 5, 

representing a composite slab adjacent to a abutment or pier diaphragm for a bridge with a skew 

angle of 0, 15, 30, and 40 degrees, respectively, this load was first positioned at or near the midspan 

and over the panel adjacent to the modeled diaphragm support. After the completion of this test, 

another strength test was performed on the portion of the slab containing the rectangular-shaped 

panel. For the second strength test, the load was placed along the mid-width of the panel and at 

the midspan for Specimen Nos. 2 and 4 and near the support for Specimen Nos. 3 and 5. These 

ultimate load tests provided information concerning both elastic and inelastic behavior of the 

composite slabs. 

During all of the load tests, three types of displacements were monitored. The vertical 

deflections at many locations on the slab surface were measured with dial gauges. At both ends of 

selected prestressing strands, direct current displacement transducers were used to measure strand 

slippage. At selected locations along the supported slab edges, dial gauges were used to measure 

movement between the precast panel and the reinforced concrete topping slab. 

To obtain experimental flexural strains, electrical resistance strain gauges were mounted at 

selected locations on the top surface of the reinforced concrete slab and on the top and bottom 

surfaces of the precast concrete panels. The majority of the strain gauges were orientated parallel 

to the panel span (transverse to the longitudinally modeled bridge girders). Some strain gauges were 
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aligned perpendicular to the panel span. The magnitudes of the flexural strains in the direction of 

the panel span provided information needed to evaluate the load distribution along the composite 

slab. 

To resist the vertical loads applied to the composite slab specimens, a large structural steel 

frame was designed, fabricated and construction in the laboratory. The frame straddled the 

specimens and allowed loads to be applied anywhere on the top surface of the slab. Also, an 

instrumentation framework was fabricated and constructed to provide a stable platform for the dial 

gauges used to monitor the slab deflections. 

7.2. Conclusions 

7 .2.1. Surveys 

The design agencies' responses to their survey revealed that a significant amount of variation 

· exists regarding the geometry for the precast panels, panel reinforcement, pane! bearing details, and 

deck construction near abutment or pier diaphragms. Less variations amongst the design agencies 

exis~ with respect to design criteria. Considering some of the questions which drew a significant 

majority of the responses, the following list provides general trends in composite bridge deck 

construction: 

• Panels are usually permitted on either primary or secondary roads. 

• The maximum bridge skew angle for panels located adjacent to an abutment or pier 

diaphragms is not normally specified. 

• Panels are usually supported by precast prestressed concrete girders. 

• The maximum panel width normally used is 8 ft. 

• The minimum panel thickness most frequently specified is either 3 or 3 1/2 in. 

• Composite behavior between the precast panels and the cast-in-place reinforced concrete 

slab is usually accomplished by either a raked finish only or a raked finish with U-shaped 

bars or dowels. Composite action is applied in the bridge deck design. 
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• Non-rectangular shaped panels normally do not contain any additional reinforcement, other 

than the conventional rectangular panel reinforcement. 

• For the precast panels, the concrete most frequently specified is normal-weight concrete 

with a 5000 psi compressive strength. The concrete contains air entrainment and does not 

contain corrosion inhibiting admixtures. 

• The temporary bearing material, which supports the panels prior to casting of the topping 

slab, is usually fiberboard, neoprene, polystyrene, or a similar material. 

• The permanent bearing material for the panels is normally a continuous mortar, grout, or 

concrete bed. 

• The most common size of prestressing strand is 3/8 in. diameter, and the most common 

type of strand is ordinary stress-relieved. 

• Usually, the strand positioning within a panel is concentric with the center of gravity of the 

panel and is uniformally spaced across the panel width. 

• Strand extensions are specified very frequently; however, the extensions are not considered 

to be part of the strand development length. 

• According to most design agencies that permit either rectangular or non-rectangular shaped 

panels, debonding some of the prestressing strands for a portion of their length is never 

done. 

• Fatigue effects are rarely considered in the design of composite bridge decks. 

· • Continuity of the bridge deck across the girders was assumed by essentially all of the design 

agencies. 

The validity of assuming complete continuity of the full-depth slab across the girders for 

negative moment strength may require additional investigation, considering that shrinkage cracking 

of the concrete cast between the ends of the panels may occur, particularly if strand extensions are 

not used or if the strand extensions do not overlap significantly. To resist the negative moment 
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within the composite slab at the girders, the design agencies use the top layer of reinforcement found 

in a conventional full-depth cast-in-place slab. 

A significant number of design agencies, which had previously permitted the use of precast 

panel subdecks for bridge deck construction, have discontinued specifying panels even as an alternate 

to a full-depth cast-in-place slab. Problems with panel quality control, development of reflective 

cracks in the topping slabs, unknown economical benefits associated with composite bridge decks, 

completion of experimental programs, and specifically prohibiting use of panels on steel girder 

bridges were given as reasons for the change in agency policy. Many of the design agencies which 

have not specified precast panel subdecks provided explanations for their current position on bridge 

deck construction. Their comments implied that precast panels would not be permitted in bridge 

decks, until ·their agency has had an opportunity to evaluate any new information about deck 

performance, economics, serviceability, and future AASHTO guidance for design and until a demand 

for the product is generated by the construction industry. Even several of the agencies which permit 

or had permitted the use of precast panels had implied that evaluation of existing composite bridge 

decks will establish future applications of panels in bridge construction. 

About 40 percent of the 29 design agencies, which have specified precast panels, responded 

that they could not really comment about specific problems encountered with panel usage, since they 

had not used panels often enough. The other 60 percent of the design agencies have experienced 

some cracking in the topping slab and panels of the composite decks; however, no agency classified 

the problems encountered as major. Twelve agencies categorized their problems associated with 

precast panels as moderate or significant, while 8 agencies classified the problems as minor to non

existent. The design agencies gave an average overall rating about midway between good and fair 

for precast panel usage. 

The precasters' response to their survey showed that considerable variation exists regarding 

precast panel and prestressing strand geometries. Therefore, standardization does not exist for this 
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bridge panel product. About one-half of the panel manufacturers, who produce panels, perform a 

structural design for the panels. A comparison of some of the responses to the design questions 

which were identical on each questionnaire revealed that essentially consistant answers were provided 

by both the precast manufacturers and the design agencies. 

Many of the precast concrete producers who have stopped producing panels or who never 

produced panels for bridge decks provided a variety of reasons for not casting panels. These reasons 

included the lack of demand for the product, production control can not meet the stringent tolerance 

limitations imposed by the design agencies, panel use is prohibited by the design agency, local 

contractors prefer to use cast-in-place slabs, deck panels are not economically feasible, and poor past 

performance by some manufacturers has caused a decline in panel use. 

The precasters believe that the problems associated with precast panel usage are less severe 

than the design agencies implied. Fourteen panel producers classified any problems as minor to non

existent, four thought that the problems were moderate, and only one producer considered the 

problems to be major. As anticipated, the panel producers gave a higher overall rating for precast 

panel usage than the rating provided by design agencies. The average rating from the 24 panel 

producers was about midway between very good and good. 

The responses by both design agencies and precast panel manufacturers to the questions on 

the surveys that addressed economy revealed that most design agencies and about one-half of the 

panel producers have not performed economical studies to determine whether panels are more 

economical than a full-depth cast-in-place slab. Therefore, most designers and precasters do not 

know if cost savings exist when composite slabs are constructed. When cost savings were estimated, 

only 3 out of 27 design agencies listed the savings as between zero and one dollar per square foot 

of deck area; while 8 out of 24 panel producers listed the savings as between zero and three dollars 

per square foot of deck area. 
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7.2.2. Bridge Deck Inspections 

The general condition of the precast panels that were used in the three prestressed concrete 

girder bridges (Bridge Nos. 9066, 8401, and 7022) which were inspected appeared to be essentially 

the same. The similiarity in the visually evaluated condition of the panels is attributed to the fact 

that all three bridges have had about the same number of years of service and have been exposed 

to the same environmental conditions. Many of the panels, whfoh were inspected from a close view, 

have single and sometimes multiple hairline cracks located directly below some of the prestressing 

strands within the center half of the panel width. These cracks usually extend along the entire panel 

length. Also, most of the observed panels have a slight discoloration (darker gray color) beneath 

essentially every strand within a panel. Some of the panels in Bridges Nos. 8401 .and 7022 showed 

rust discoloration on the underside of panel directly beneath some strand locations. Two panels for 

Bridge No. 7022 show significant amounts of rust staining. One of the precast panels in Bridge No. 

8401 was observed to have a diagonal crack at one of the panel comers. 

The hairline cracks in bottom surface of the majority of the panels might be caused by 

shrinkage of the concrete in the topping slab, thermal expansion or contraction of the cast-in-place 

topping slab relative to the precast panels, and tensile strains along the bridge length induced by the 

wheel loads. Since a panel joint occurs at every 8 ft, strain relief perpendicular to the panel span 

is provided at each joint. Between the panel joints, the strain at the bottom surface of the panels 

increases towards the mid-width of the panels, until a crack forms when the modulus of rupture is 

exceeded. To establish the exact cause of these cracks, additional study would be necessary. 

The cause for the rust discoloration and the possible cause for the concrete discoloration 

beneath the strands could be initial corrosion of the prestressing strands. The hairline cracks 

observed may allow moisture to penetrate through the concrete cover and reach the strands. Again, 

further study would be required to provide the proper explanation for the discolorations. 
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7.2.3. Analytical and Bqierimental Results 

. The initial transfer length for the prestress force in the strands was experimentally evaluated 

to be equal to approximately 28.5 in. This length compared reasonably well with the 24.4 in. length 

calculated from the modified ACI Code Commentary (3] expression and with the 30.3 in. length 

established by the equation proposed by Cousins et al (13]. Further studies of strand transfer lengths 

involving a finite element analysis of the trapezoidal-shaped panel, continuing a 40 degree skewed 

edge condition and subjected to prestressing forces obtained from the developed strand prestress 

versus embedment length relationship, produced concrete strains that closely matched the measured 

· experimental strains. 

The required development lengths for the 3/8 in. diameter, 270 ksi, 7-wire, prestressing 

strands, calculated from the expressions given by the MSHTO and ACI Specifications (1, 2], 

Cousins et al (13], and Zia and Mustafa (33], were longer than the embedment lengths available in 

the test specimens. Therefore, strand slippage should have resulted prior to obtaining the ultimate 

flexural strength of the composite slabs. Slippage of prestressing strands was recorded during all of 

the ultimate strength tests, except for one test when a transducer malfunction caused a loss of strand

slip measurements. For Specimen Nos. 1 through 5, the ultimate load tests revealed that slippage 

(strand-slip) between a prestressing strand and the surrounding concrete at the end of a precast 

panel occurred within a range of from 2.64 to 6.01 times the design load of 20.8 kips, (standard 

AASHTO wheel load with a 30 percent impact factor). 

Composite behavior between the precast panels and the reinforced concrete topping slab is 

assumed to exist for conventional analyses of these types of bridge decks. For the service level wheel 

loads equal to 20.8 kips that were applied to all five specimens and for the factored level wheel loads 

equal to 48.0 kips that were applied to the fourth and fifth specimens (Specimen Nos. 1, 2, and 3 

were not subjected to factored level wheel loads), movement (topping-slip) between the panels and 

the topping slab did not occur. Further verification that composite behavior existed at both service 
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and factored level loads for the specimens was obtained by comparing the deflection and strain 

results from the finite element analyses and from the experimental tests. Very good correlation for 

these parameters occurred between the analytical studies and the experimental tests. 

For Specimen Nos. 1 through 5, the ultimate load tests revealed that the break-down of 

composite behavior as measured by the topping-slip occurred within a range of from 2.16 to 6.01 

times the design load of 20.8 kips (standard AASHTO wheel load with 30 percent impact). Initial 

degradation of composite behavior was established by evaluation of the strain differences (interface

slip) between the top of a precast panel and the underside of the topping slab. Precise strain 

measurements were not possible due to a high degree of sensitivity caused by drift in strain readings 

for the strain gauges which were placed on the top of the precast panels and covered with concrete 

during casting the topping slab and by the accuracy of the thickness measurements for the panels 

and composite slab at the strain gauge locations. Considering a quantitative approach, interface-slip 

was believed to have occurred if a distinct shift in the behavior of load versus slip was observed. At 

those locations where reliable strain measurement were obtained, the ultimate load tests for 

Specimen Nos. l, 2, and 5 revealed that the initia.l or localized break-down of composite behavior 

as measured by the interface-slip occurred within a range of from 1.92 to 3.37 times the design load 

of20.8 kips (standard AASHTO wheel load with 30 percent impact). Instrumentation malfunctions 

involving the interface-slip monitoring devices caused erratic results for this parameter evaluation 

for Specimen Nos. 3 and 4. 

The load versus deflection behavior of the composite slab specimens was linearly elastic for 

both the service level load range (0 to 20.8 kips) and the factored level load range (0 to 48 kips). 

The maximum slab deflections were quite small for both of these load ranges. Deflections of less 

than 0.012 in. were encountered for the majority of the tests on each specimen. Generally, the finite 

element predictions for the load versus deflection relationships were in close agreement with the 

experimental results. Comparisons of specific deflection magnitudes obtained analytically and 
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experimentally revealed that the finite element model provided reasonably accurate predictions of 

the slab deflections, considering the simple element types used in the analytical model. 

As anticipated, the presence of the modeled abutment or pier diaphragm significantly reduced 

the slab deflections when loads were placed near the modeled diaphragm. For the 30 and 40 degree 

skewed diaphragm configurations, the load versus deflection behavior for loads placed above the 

trapezoidal-shaped precast panel showed two distinct behaviors due to uplift at the slab comers 

which had occurred prior to applying any wheel loads. The uplift was attributed to concrete 

shrinkage of the topping slab. 

The ultimate load tests showed that the initial portion of the load versus deflection behavior 

was linear. The maximum elastic load, P., was 90 kips for the midspan strength test above the panel 

joint for Specimen No. 1. The minimum magnitude for P, was 65 kips for the first strength tests on 

Specimen Nos. 2 and 4 and for the second strength test on Specimen No. 5. The minimum load for 

which the first crack was observed on the top surface of any of the five composite slabs was 70 kips. 

This load was over three times the design wheel load of 20.8 kips. For safety reasons, the underside 

of the specimens were not observed during testing of the specimens; therefore, conclusions as to 

when the first crack appeared on the bottom surface of the precast panels can not be made. 

In a relative sense, each specimen experienced a significant amount of inelastic deformation 

after the elastic limit had been reached. Considering all of the strength tests conducted, the 

deflection at the load point just prior to failure of a given specimen was at least equal to nine times 

the maximum elastic deflection for the specimen. However, the magnitude of the maximum load 

point deflection was small, varying between about one-third of an inch to one inch. 

During each strength test, the comers of the composite slabs displaced upwards by substantial 

amounts, causing significant lengths of the slab to lift off of the supports. This behavior is typical 

when slabs, which do not have hold-down devices, are subjected to concentrated loads. When uplift 

is prevented, special corner reinforcement is required in the slab to prevent cracking at the corners. 
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Investigation of the midspan, transverse, flexural strains revealed that the strains on the top 

of the slab were slightly larger than the strains on the bottom of the precast panels, since the 

concrete in the precast panels had a larger compressive strength than the concrete in the topping 

slabs. For the service and factored level load ranges, the maximum, experimentally measured, 

midspan, transverse strains were less than 85 x lQ-6 in.fin. and 230 x 10,; in./in., respectively. For both 

of these load ranges, the distribution of the midspan transverse strains along the specimen length 

showed that the joint between the two precast panels did not appear to affect the performance of 

the composite slab. Therefore, the reinforced concrete topping slab adequately transferred vertical 

shear stresses across the joint. 

For all of the service level load tests, the magnitude of any tensile strains in the bottom 

surface of the precast panels in the direction of the panel span were small enough that cracking of 

the precast concrete panels should not have occurred. The effect of the strand prestress and the 

high modulus of rupture strength fo the concrete used in the panels contributed significantly to the 

positive moment cracking strength of the composite slabs. For the factored load tests, initial 

concrete cracking may have occurred. 

The finite element models accurately predicted the behavior for the midspan transverse strain 

distributions along the specimen length. At locations removed from the point of load application, 

the analytically established strain magnitudes closely matched the experimentally measured strains, 

while near the load point, the analytical model did not predict strain magnitudes as accurately. 

The nominal flexural strength of the composite slab specimens was analytically evaluated by 

applying yield-line theory. To develop the full flexural strength of a slab specimen, a complete yield

line pattern would have to have formed to produce a collapse mechanism prior to any strand 

slippage. For most of the ultimate load tests, a complete yield-line pattern had not formed. Only 

two tests involved a cracking pattern at failure that entailed a sufficient number of intersecting 

positive and negative moment yield-lines and other axes of rotation to potentially produce a collapse 
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mechanism. These strength tests involved loads applied over the rectangular precast panel for 

Specimen Nos. 2 and 4; therefore, the load was not near the modeled abutment or pier diaphragm. 

However, even in these two instances, unrestrained plastic rotations along the yield-lines did not 

appear to have occurred, since the slab did not physically collapse as a mechanism involving rotations 

of rigid slab segments. Considering the nine ultimate load tests conducted on Specimen Nos. 1 

through 5, the ratio of the nominal moment strength established by yield-line theory to the 

experimental failure load ranged between 0.97 and 1.38. 

The punching shear strength of the composite slab specimens was established analytically by 

applying a revised AASHTO model for this type of behavior. Using the concrete strength for the 

weaker slab layer (the topping slab) and setting the effective depth of the composite slab equal to 

the distance from the top of the specimen to the centroid of the prestressing strands, the nominal 

shear strengths were calculated. A comparison of the computed punching shear strength to the 

ultimate test load for each specimen revealed close correlation.. For all of the ultimate load tests, 

the range in the ratio of the nominal punching shear strength to the experimental failure load was 

between 1.11 and 1.32. The appearance of the failure surface around the wheel load footprint was 

essentially the same for all of the strength tests. The footprint was depressed through the plane of 

the top surface of the slab and the concrete cover on the prestressing strands located in a broad 

region below the footprint was factured and in some instances, spalled off. Based on the comparison 

between the analytical and experimental load strengths and on the appearance of the failure, 

punching -shear was concluded to be the primary failure mechanism for the composite slab 

specimens. 

The joint between the two precast panels did not appear to affect the behavior of the 

composite bridge decks when service or factored level loads were applied to the specimens. 

Therefore, longitudinal continuity (continuity perpendicular to the panel span) was maintained across 

the panel joint. However, when the strength tests were conducted on the specimens, the region of 
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the reinforced concrete topping slab above the joint between the two panels always developed a 

crack at large load magnitudes. As soon as this crack was completely formed, the flexural resistance 

of the composite slab was essentially confined to the portion of the deck containing the loaded panel. 

A final evaluation of the strength of the tested composite bridge decks was accomplished by 

computing a load factor (the experimental failure load divided by the AASHTO wheel load without 

impact) and the factor of safety (the experimental failure load divided by the AASHTO wheel load 

with impact). Considering all of the strength tests conducted on the five composite slab specimens, 

the range in the load factor was from 9.06 to 10.94 and the range in the factor of safety was from 

6.97 to 8.41. These factors indicate that the composite slabs tested had sufficient strength to resist 

the statically applied service level loads. The skew angles of 15, 30, and 40 degrees did not appear 

to affect the nominal strengths of the composite decks when the ultimate load was placed at a 

selected position on the portion of the slabs containing the trapezoidal-shaped precast panels. 

7.3. Recommendations for Bridge Panels 

7.3.1. Bridge Deck Inspections 

Since concrete cracking in both precast prestressed panels and topping slabs has been 

reported in the literature and have been noted by both design agencies and precast producers in the 

surveys reported herein, and since concrete cracking, discolorations, and rust staining have been 

observed on the underside of many of the panels used in the three bridges visually inspected during 

this research project, an inspection program should be instituted to monitor the condition of all 

bridge decks constructed with precast panels. The first inspection for a bridge should establish the 

location and extent of all concrete cracks, discolorations beneath strands, and rust stains on each 

panel. This information should be documented on drawings for reference during subsequent bridge 

inspections to establish whether additional cracking or staining has occurred since the previous 

inspection. Particular attention should be given to those locations where rust stains are observed, 

since a possibility exists that strand corrosion caused by moisture penetration may be occurring. 
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7.3.2. Precast Panels for Bridi.:e Subdecks 

The results from the questionnaires sent to both the design agencies and the precast panel 

producers suggest that additional inspections during panel production and installation would be 

beneficial to provide better quality control of the product. Several precasters noted that to provide 

more economical panel designs, standardization for precast panels by the industry should be 

undertaken. Also, the surveys revealed that economical studies, which compare the overall cost 

associated with bridge decks constructed with precast panel subdecks to the costs (including soffit 

formwork) of full-depth cast-in-place bridge decks, have not really been conducted. Presently, the 

vast majority of both designers and panel producers do not know whether cost saving can be incurred 

by substituting a composite bridge deck for a conventional cast bridge deck. Based on the survey 

~esults, the following recommendations are made: 

• Additional inspections should be conducted by both the design agencies and the panel 

producers. These additional inspections should cover all aspects of panel involvement from 

bed preparation through curing of the cast-in-place topping slab. 

• Standardization of precast panels as a product should be instituted by the industry. 

Standardization might be best accomplished through the development of a specific 

AASHTO Specification covering the design, production, and installation of precast 

prestressed concrete panel subdecks. The Prestressed Concrete Institute has already 

published design recommendations (28,29,31 ]. 

• Comprehensive economical analyses should be conducted to determine if composite bridge 

decks should be specified instead of conventional full-depth bridge decks. Since all bridges 

are unique in some respect, a partial economical analysis can be accomplished by the 

alternate bid process. A complete economic study should include a life cycle cost analysis 

of both bridge deck types. 
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The inspections of three bridges, constructed with precast panels in Hardin County, Iowa, 

revealed that possible corrosion of some of the pres tressing strands may be ·present. If the 

recommended inspections discussed in Section 7.3.1 show that premature reinforcement corrosion 

is occurring, the use of epoxy coated prestressing strands, welded wire fabric, and any supplemental 

reinforcement is recommended for future composite bridge decks. The effects of increased 

development lengths with epoxy coated prestressing strands and bar and wire reinforcements would 

have to be considered in the composite slab designs. 

The strength performance of the five composite slab bridge decks which were constructed and 

tested during this research project was excellent. The ultimate static load strengths were substantially 

greater than a standard design wheel load of 20.8 kips. Even the loads which produced the first 

indications of distress in the specimens were significantly larger than the standard wheel load. A 

modeled bridge skew of up to 40 degrees did not appear to affect the static load strength of the 

composite deck system. Therefore, based on the static load strength information reported herein, 

the continued use of precast panels as subdecks in bridge deck construction is recommended. 

7.4. Recommendations for Additional Research 

Additional research into the behavior of composite bridge deck slabs constructed with precast 

prestressed concrete panels could include the following topics: 

1. Continuity of composite slabs across bridge girders. 

2. Continuity of composite slabs with abutment and pier diaphragms. 

3. Panel prestress developed with epoxy coated prestressing strands. 

4. Comparison of composite slab strengths for slabs constructed with panels containing 

uncoated prestressing strands and welded wire fabric and panels containing epoxy-coated 

prestressing strands and welded wire fabric. 

5. Fatigue testing of composite slab segments. 

6. Non-destructive field load tests of a composite bridge deck to monitor behavior. 
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7. Non-destructive evaluation of an existing composite slab bridge deck for potential 

reinforcement corrosion and integrity of composite behavior. 

8. Effects of shrinkage of the concrete in the cast-in-place topping slab on the development 

of cracks in the composite slab. 

9. Causes for concrete discoloration and cracking beneath the prestressing strands in the 

precast panels used in bridge deck construction. 
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10. APPENDIX A: DESIGN AGENCY QUESTIONNAIRE RESULTS 

The number in the parentheses ( ) represents the number of design agencies having that 
particular answer. The notes within the braces [ ] are paraphrased comments from the 
respondents. An individual respondent's remarks are separated by a comma. 

Part L General Bridge Geometry and Conditions 

1. Has your state or agency ever specified panels as stay-in-place formwork for cast in-place 
concrete bridge decks (including alternate designs)? 
(29) Yes [1962 bridge widening] 
(40) No Why? [Unconvinced on cost savings· question structural integrity - possible 

construction problems - difficulties with future deck rehabilitation, standard 
practice to use stay-in-place deck forms, No AASHTO Specification and no 
contractor requests, No precaster in area with panel beds, Satisfied with 
standard forming, Availability of epoxy coated strands, Panels can not be 
applied to our pertinent standard designs - Unfavorable reports involving 
panel seating, Use steel forms, Cantilevers must be formed, Unsatisfactory 
details, Local precaster could not show us that a cost savings exists with 
panels, cost savings do not justify panel use, Questionable benefit, No need or 
application, Fear of deck cracking along edges of panels - No successful 
performance report, Very satisfied with metal stay-in-place forms, No 
precaster promoting panels in the area, Lack of data and availability, History 

· of performance reports not entirely satisfactory - No panel requests in our 
state - FHW A Region 10 has questioned serviceability of decks with panels 
and has recommended caution in their use, Potential cracking problems, 
Problems encountered by other states, Currently planning a project with 
panels, Need not expressed, Use SIP metal forms, Not applicable, Use 
orthotropic deck, Poor deck performance, Never proposed, Prefer removable 
forms, Not used in the area.] 

2. Has your state or agency ever prohibited the use of or discontinued specifying panels for 
bridge deck construction after previously permitting panel usage? 
(12) Yes When? [2-Currently, 1978, 2-1982, Dec. 1984, 3-1985, 3-1986) 

Why? [Evaluating future usage, Use on steel bridges prohibited, Discontinued use 
on steel beam bridges - Concerns of excess differential beam deflection 
and deck cracking, Discontinued on primary route steel bridges, Deck 
cracks and spalding with composite design, Construction problems - Not 
cost effective - Design controversy, Strand slippage and excessive 
eccentricity, Poor panel quality control, Reflective cracking, Projects were 
experimental, One experimental project built in 1985 developed roadway 
cracks - Project is being monitored, No. economical advantage, Concern 
about overall thickness and reflective cracks) 

(17) No [Prohibited for steel bridges, Not specified but will permit use if proposed by 
contractor as an alternate] · 

3. Is your state or agency currently using or specifying panels for bridge deck construction? 
(16) Yes (4 yrs ago, Contractor option on concrete bridges only, Not on horizontally cured 

steel bridges, None composite, .Panels experimentally used on a single span 70" 
P/C I-girder structure in 1983 and in 1987 contractor option not exercised] 
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(13) No [1983 last project, Last project 4 years ago] 

4. For approximately how many years (in total) has your state or agency specified panels for 
subdecks? 
(9) 0 to 2 years [27 years ago] (6 ) 2 to 5 years · (7 ) 5 to 10 years 
(7 ) Over 10 years [Always contractor option except inside box girders, On a project by 

project basis) 

5. For the last year during which panels were used in bridge deck construction, what percentage 
of bridge decks involved panels? 
(17) 0 to 10% 
(3) 50 to 75% 

(4) 10 to 25% 
(2) 75 to 100% 

6. Roadway classification for bridge panel usage: 
(5 ) Primary roads only 
(0 ) Secondary roads only 

· (21) Either primary or secondary roads 

(1 ) 25 to 50% 

(2 ) Other [Concrete bridges that cost less than 5 million dollars, special table for use] 

7. Are panels permitted on bridges having a superelevation? 
(7 ) Always (17) Sometimes (3) Never 

8. Maximum bridge skew for panels adjacent to abutments or pier diaphragms: 
(14) Not specified (2 ) 15 degree (3 ) 30 degree 
(0) 45 degree (4) Other [0,18,20,50 degree] 
(5 ) Panels not used at these locations 

9. What type of panel support is provided for typical panels spanning perpendicular to the 
bridge span? 
(1 ) Panels are not used to span in this direction 
(16) Precast prestressed concrete girders only 
(3 ) Steel girders only 
(9 ) Either precast concrete or steel girders 
(3 ) Other [Occasionally P/C T-beam stems, With grout, C.I.P. superstructure only) 

10. When panels are used adjacent to an abutment or pier, is the cast-in-place topping slab 
poured monolithic with the.abutment and pier diaphragms? 
(1 ) Panels not used at these locations 
(10) Always (9 ) Sometimes (8) Never 

11. Cast-in-plaee topping slab thickness to account for girder camber: 
(7 ) Variable thickness of the topping slab with constant permanent panel bearing thickness 
(15) Relatively constant topping slab thickness with variable permanent panel bearing 

thickness 
(3 ) Either of the above 
(0 ) Relatively constant top slab thickness with constant permanent panel bearing thickness 
( 4 ) Other [For .$. in. of camber vary slab cover over top bars and for > 1 in. of camber vary 

panel bearing thickness, Haunch on girder, Maximum of 1 in. increase in slab 
thickness and 1 1/4 in. to 1 3/4 in. variation in bearing material, Variable thickness 
of top slab and variable panel bearing thickness] 
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IL General Panel Geometry and Conditions 

1. Maximum panel width used: 
(3 ) Not specified (5 ) 4 ft. (0 ) 6 ft. 
(18) 8 ft. [Discontinued due to excessive cracking during handling and transportation, For 

one project and have now switched to 4 ft] 
(0 ) 10 ft. 
(4) Other [9 ft, 7.5 ft, 9 ft, As required, 4 and 18 ft] 

2. For non-rectangular shaped panels that occur at abutment and pier diaphragms in skewed 
bridges, what is the minimum length of a panel side? 
(8 ) Panels not permitted at these locations 
(5 ) Not specified 
(0 ) 0 ft. (triangular shaped panel) 
(S ) 1 ft. (trapezoidal shaped panel) 
(2 ) 2 ft. (trapezoidal shaped panel) 
(9 ) Other [Unspecified, one-half the length of the opposite side, 1.5 ft, 2.25 ft, 3 @ 3 ft, 2 @ 

3.25 ft] 

3. Minimum panel thickness used: 
(1 ) Not specified ( 4 ) 2 1/2 in. 
(7 ) 3 in. [Started with 3 in. switched to 3 1/2 in. J 

(11) 3 1/2 in. (3 ) 4 in. 
(1 ) Other [Double bevel, 3 in. flange with 1/2 in. rib, 2 3/4 in.] 

4. Minimum ratio of panel thickness to strand diameter 
(3 ) 9:1 (2 ) 8:1 (1 ) 7:1 
(2 ) 6:1 .(13) Not specified 
(8 ) Other [10.67:1, 9.33:1, 7.33:1, 6.7:1, 4@ 318 in. dia. strands] 

5. Panel construction at skewed abutment or pier locations: 
(8 ) Panels not used at these locations 
( 4 ) Panels sawn to match the skew only 
(2) Panels cast to match the skew only 
(12) Panels sawn or cast to match the skew 
( 4 ) Other [Panels not used when skew > 15 deg., C.I.P. full depth, C.I.P. slab if skew > 30 

deg., May also cast closure in place w/o panel] 

6. Type of longitudinal panel joint (parallel to panel span): 
(1 ) Not specified (26) Butt joint (1 ) Other 
(0 ) Key joint (bulb key, rectangular key, etc) 

7. Edge detail at end of panel (along bearing edge): 
(2 ) Not specified (18) Flat vertical face (2) Inclined or curved face 
(6 ) Other [2 @ 3/4 in. bevel on bottom, Bevel on bottom, 1/4 in. chamfer all around, Flat 

vertical face with 1 in. chamfer at bottom edge] 
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8. Top surface profile for the panels: 
(4) Not specified (21) Flat 
(2 ) Other [Bowing or camber limited, Keyed surface with 45° taped longitudinal panel 

edges] 
(1 ) Tapered at the longitudinal panel edges (panel thinner at edge than at mid-width) 

9. What is the method used to develop bond between the panel and the cast-in-place slab? 
(0 ) Not specified 
(0 ) None (composite action not considered) 
(0 ) U-shape bars or dowels only 
(12) Raked finish only 
(12) U-shaped bars or dowels and raked finish only [With broom finish not raked] 
(0 ) Bonding agent only 
(0 ) Combination of above involving a bonding agent 
(5 ) Other [Continuous bent serpentine bars, Z-bars and brushing brooming or burlap drag, 

Roughened surface, Keyed surface 3 in.: 6 in.: 1 ft-6 in.: 6 in.: 6 in.: 3 in. 
symmetric about centerline, Broom finish] 

10. What is the direction of the raked depression with respect to the panel span? 
(0 ) Raked depression not used 
(11) Not specified 
(8 ) Parallel to panel span 
(8 ) Transverse to panel span 
(1 ) Both parallel and transverse to panel span 
(0 ) Diagonal to panel span 
(0) Other 

11. Minimum depth of raked finish depression 
(1 ) Raked depression not used 
(3 ) Not specified 
(12) 1/4 in. 

(9 ) 1/8 in. (0 ) 3/16 in. 
(3 ) Other [2 @ 1/16 in., 1/8 in. max., 1 in. key] 

12. Minimum width of raked finish depression: 
(1 ) Not used (21) Not specified (3 ) 1/8 in. 
(0 ) 3/16 in. (0 ) 1/4 in. 
(3 ) Other [Scoring spaced 3/4 in. to 1 in., 1/16 in., 6 in. key width] 

13. Transverse panel reinforcement along the entire panel length and perpendicular to the panel 
span: 
(1 ) Not used (15) RIC bar only (9 ) WWF only 
(0 ) Wire strands (1 ) Any of the above 
(6) Other [2@ rebars or welded wire, No. 3 bars or wires, Rebars and/or WWF, WWF top 

and 4 - No. 3 bottom, Bars or wires, No. 3 bars or WWF, No. 3 rebar @ 12 in. 
o.c.J 

14. Do the panel lifting hooks remain in place to be cast into the cast-in-place top slab? 
(2 ) Not used (21) Always (3 ) Sometimes 
(2) Never 
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15. What is the minimum age of the panels when the cast-in-place top slab is cast? 
(17) Not specified [When f', strength is reached] 
(3 ) Less than 2 weeks [May be cast when required strength has been reached] 
(3 ) Between 2 weeks and 4 weeks 
( 5 ) 4 weeks and over 

16. For non-rectangular panels, what type of additional reinforcement, other than the 
conventional rectangular panel reinforcemnent, is provided in the panel? 
(8 ) Non rectangular panels are not permitted 
(15) None (2 ) RIC bars only 
(1 ) WWF only (0 ) Any of the above 

17. Concrete weight for panels 
(0 ) Light weight (28) Normal weight 

18. Is air entrainment used in the panel concrete? 
(15) Always (7 ) Sometimes 

(0 ) Wire Strands 
(1 ) Other [Unspecified] 

(0) Both 

(5) Never 

19. Are corrosion inhibithing admixtures used in the panel concrete? 
(2 ) Always ( 4 ) Sometimes (22) Never 

Part DI. Panel Bearing Details 

1. Do the panels bear along the abutment or pier diaphragms for a non-skewed bridge? 
(4) Panels notused at these locations 
(10) Always (3 ) Sometimes (11) Never 

2. Surface roughness of the girder at panel bearing location: 
(15) Smooth (5 ) Rough (8) Either 

3. What is the minimum height of the temporary bearing material after it has compressed? 
(5 ) Temporary bearing material not used 
(10) Not specified (7 ) 1/2 in. (3 ) 1 in. 
( 4 ) Other [Panels supported by either a mortar bed or metal angles - angles remain in place, 

+ 1/8 in., 1 1/2 in. fiberboard, Height of required fillet, Variable to compensate 
for camber] 

4. What is the maximum height of the temporary bearing material after it has compressed? 
(5 ) Temporary bearing material not used 
(11) Not specified (1 ) 1 in. ( 6 ) 1 1/2 in. 
(2)2in. 
(4) Other [2 1/2 in.± 1/8 in., Required fillet height, Variable to compensate for camber] 

5. Temporary bearing material used to support panels: 
(4 ) Temporary bearing material not used 
(0 ) Not specified 
(19) Fiberboard, neoprene, polystyrene, or similar material only 
( 4 ) Mortar, grout or concrete bed only 
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(0) Any of the above 
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(2) Other [High density expanded polystyrene foam, Timber strips] 

6. Is the temporary bearing material removed after the permanent bearing is provided for the 
panels? 
(5 ) Temporary bearing material not used 
(1 ) Not specified (1 ) Always (3 ) Sometimes 
(19) Never 

7. Permanent bearing material used to support panels: 
(1 ) Not specified 
(7 ) Continous fiberboard, neoprene, polystyrene, or similar material only 
(20) Continuous mortar, grout, or concrete bed only 
(0 ) Steel shims at panel corner only 
(1 ) Any of the above 
(3 ) Other [Joint filler or polystyrene bedding material, C.I.P. concrete, Continuous epoxy 

adhesive filler cement] 

8. What is the minimum length of permanent bearing parallel to the panel span 
(3 ) Not specified (8 ) 1 1/2 in. ( 4 ) 2 in. 
(1 ) 2 1/2 in. 
(12) Other [2 @ 1 in., 1 1/4 in., 2 3/4 in., 3. @ 3 in., 3 ± 1/2 in., 2 @ Full length) 

Part IV. Prestressing Strand Description and Conditions 

1. Total diameter of the strand that is used most often: 
(0 ) 1/4 in. (0 ) 5/16 in. 
(2 ) 7/16 in. (3 ) 1/2 in. 

2. Type of strand (manufacturing process) 
(12) Ordinary stress-relieved [250 k] 
(6 ) Low relaxation 
(9 ) Either ordinary stress-relieved or low relaxation 
(1 ) Other [ASTM A-416] 

3. Type of strands used: 

(23) 3/8 in. 
(0) Other 

(23) Standard (0 ) Super (1 ) Drawn 
(0 ) Any of the above 
(4) Other [High tensile strength, 270 k, M203, ASTM A-416] 

4. Is the strands spacing across the width of the panel uniform? 
(2 ) Not specified (24) Always (1 ) Sometimes 
(1 ) Never 

5. What is the location of the strand with respect to the panel center of gravity? 
(3 ) Eccentric [Culverts] (23) Concentric [Bridges] (3 ) Either 

6. Are strand extensions used? 
(18) Always (2 ) Sometimes (8) Never 
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7. Minimum length of strand extension for a rectangular shaped panel: 
(8 ) Strand extensions not used (1 ) Not specified 
(9 ) 3 in. (3 ) 4 in. · (3)5in. 
(1 ) 6 in. (3 ) Other 12, 9, 12 in.] 

8. Are strand extensions considered for strand development length after the joint between the 
panel ends is cast? 
(6 ) Strand extensions not used 
(1 ) Sometimes 

(1 ) Always 
(20) Never 

9. For a rectangular shaped panel, are some strands unbonded near the panels ends? 
(2 ) Always (0 ) Sometimes (26) Never 

10. For a non-rectangular shaped panel, are some strands unbonded near the panel ends? 
(6 ) Only rectangular shaped panels are permitted 
(0 ) Always (0 ) Sometimes (21) Never 

Part V. Design Criteria 

1. Design AASHTO vehicle loading: 
(0) HS 15 
(0 ) Any of the above 

(25) HS 20 
(0) Other 

2. Panel concrete 28-days corn pressive strength 
(26) 5000 psi (1 ) 5500 psi 
(O) Other 

3. Minimum panel concrete compressive strength at release of prestress force: 

(3) HS 25 

(1 ) 6000 psi 

(2 ) 3000 psi (1 ) 3500 psi (24) 4000 psi 
(0 ) 4500 psi (1 ) Other (5000 psi] 

4. What is the minimum concrete compressive stress at the panel center of gravity due to the 
prestressing force immediately after release (before losses), expressed in terms of the panel 
c-0ncrete strength, f' ,., at the time of release? 
(17) Not specified (1 ) Less than 0.20 f' ,1 

(0 ) Between 0.20 and 0.30 f'" (2 ) Between 0.30 and 0.40 f'" 
(1 ) Between 0.40 and 0.50 f'" (6) Over 0.50 f'e1 

5. What method is used to establish the prestressing force in panels when the total strand 
embedment length is less than twice the required strand development length? 
(16) Not specified 
(9 ) Proportion prestress force based on the available embedment length to the required 

development length given in the AAHSTO Specification 
(1 ) Other (Assume full prestress at midspan] 

6. Is a non-rectangular shaped panel considered to affect the prestress force in the strands? 
(9 ) Only rectangular shaped panels are permitted 
(4) Yes 
(13) No 
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7. Is additional steel provided in the panel ends to prevent splitting due to bond transfer? 
(2 ) Always (2 ) Sometimes (24) Never 

8. What design criterion is ap!Jlied to size the transverse panel reinforcment throughout the 
entire panel length? 
(1 ) Transverse panel reinforcment not used 
(10) Temperature and shrinkage requirements only 
(5 ) Wheel load distribution only 
( 4 ) Both tern perature and shrinkage requirements and wheel load distribution 
(7) Other [No. 3@ 12", AASHTO Art. 9.23.2, 3@ AASHTO Code, 2@ 0.11 in.2/ft] 

9. Cast-in-place top slab concrete 28-day compressive strength: 
(9 ) 4000 psi (5 ) 4500 psi (1 ) 5000 psi 
(13) Other [2 @ 3000 psi, 3000 or 3500 psi, 3200 psi, 3250 psi, 3400 psi, 4 @ 3500 psi, 3 @ 

3600 psi] 

10. Are corrosion inhibition admixtures added to the cast-in-place top slab concrete? 
(1 ) Always (2 ) Sometimes (25) Never 

11. Are epoxy coated rebars used in the cast-in-place top slab? 
(15) Always (7 ) Sometimes 

12. Minimum cast-in-place top slab thickness: 
(2 ) Not specified (1 ) 3 in. 
(8 ) 5 in. (1 ) 6 in. 
(8 ) Other [3 1/4 in., 3.4 in., 3 1/2 in., 4 @ 4 1/2 in., 5 1/2 in.] 

13. Concrete weight for cast-in-place top slab: 
(0 ) Light-weight (28) Normal-weight 
(0 ) Either light-weight or normal-weight 

(5) Never 

(6 ) 4 in. 
(2)7in. 

14. Are any special precautions taken to minimize cracking in the top slab near the longitudinal 
panel joints Goints parallel to panel span)? 
(3 ) Always (3 ) Sometimes 
(21) Never (Except good vibration] 

15. Are any special precautions taken to minimize cracking in the top slab near the transverse 
panel joints Goints at ends of panels)? 

(3 ) -Always (2 ) Sometimes (23) Never 

16. Degree of composite behavior between the panels and the cast-in-place slab: 
(27) Fully composite 
(1 ) Partially composite (Composite for live load] 
(0 ) None (composite behavior not considered) 

17. Is the bridge deck designed as a continous span across the girders when panels are used? 
(24) Always (3 ) Sometimes [For live load] (1 ) Never 
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18. Is positive moment reinforcement (bottom steel) provided in the cast-in-place topping slab to 
achieve the continuity across the girders? 

(5 ) Always [Continuous for negative moment and simple for positive moment] 
(1 ) Sometimes (22) N~ver 

19. Is any additional negative reinforcement (top steel) in the cast-in-place topping slab provided 
to obtain continuity across the girders, beside the normal negative moment reinforcement 
used in conventional full thickness cast-in-place decks, when panels are used? 

(1 ) Always (1 ) Sometimes (26) Never 

20. Is any supplemental reinforcement provided in the cast-in-place topping slab provided to 
obtain continuity across the girders, beside the normal negative moment reinforcement used 
in conventional full thickness cast-in-place decks, when panels are used? 
(4) Always (5) Sometimes [0.25 in.2/ft] (19) Never 

21. Is two-way plate action considered in the design of the deck when the panels are supported 
along three edges? 

(10) Three edge panel support not permitted 
(1 ) Yes (16) No 

22. ls fatique considered in the design of the deck when panels are used? 
(1 ) Yes (26) No 

23. Effective slab width for wheel load distribution: 
(26) AASHTO Specification for full depth cast-in-place slabs (without panels) 
(1 ) Full panel width if less than the AAHSTO Specification 
(0) Other 

24. Are torsional stresses caused by movements of curved and boxed shaped-steel girders 
considered in the deck when panels are used? 

(19) Panels not used with these girders 
(0 ) Yes (8 ) No 

25. Are stresses caused by differential movements of long flexible steel girders considered in the 
deck design when panels are used? 

(13) Panels not used with steel girders 
(0) Yes (14) No 

Part VL Economy 

1. Have cost effectiveness studies ever been performed to evaluate the economical advantages of 
using panels instead of full depth cast-in-place deck? 
(5) Yes (23) No 

2. What are the approximate cost savings realized (including costs associated with construction 
time), when panels are used for subdecks on a typical bridge compared to a conventional full 
depth bridge deck? 
(18) Cost savings not known savings 
(3 ) $0 - $l.00/ft2 of deck area 

(6 ) No cost savings 
(0 ) $1.00 - $2.00/ft2 of deck area 
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(0 ) $2.00 - $3.00/ft2 of deck area 
(0 ) Over $4.00/ft2 of deck area 

(0 ) $3.00 - $4.00/ft2 of deck area 

3. What was the basis used for the economy study? 
(19) Cost effectiveness studies have not been performed 
(3 ) Actual bids that included both a conventional cast-in-place slab and a panel system for 

the same bridge deck 
(1 ) Panel system substitution suggested (without actual bids) by the bridge constructor 
(1 ) Estimates, not actual bids 
(4 ) Other [Contractor substitute C.I.P. in lieu of P/C panels, Panels always bid as contractor 

option • selected about 95% of time, Actual bids on two bridges for both C.I.P. 
and panel system, Panels allowed as an alternate • savings assumed to be minimal] 

Part VIl. Experiences uith Panel Usage 

1. Which of the following items of panel damage has your state or agency experienced more 
than just a few times or occasionally? 
(13) 
(8 ) 
(9 ) 
(6 ) 
(4) 
(3 ) 
(3 ) 
(2 ) 
(7 ) 

Can not really comment since we have not used panels often enough 
Broken corners 
Spalled or chipped edges 
Crackiilg parallel to strands along a significant portion of the panel length 
Cracking parallel to strands near the ends of the panel only 
Cracking transverse to the strands near panel midspan 
Diagonal cracks across panel surface 
Strand slippage 
Other fRandom cnrin" cracks. None renorted. Some of the above occur durin11 - ----- L ------~--- - ------<::> --- - -, - - - ' - , ...., 

manufacturing but those panels are rejected, Cracked and spalled decks 
over panels, All have occurred but not regularly-acceptance per 
specification, Some occurrence of all of these but infrequently, Cracks at 
random in direction of strands which would leak water immediately when 
applied - these panels were replaced] 

2. Which of the following items of panel irregularities has your state or agency experienced 
more than just a few times or occasionally? 
(13) Can not really comment since we have not used panels often enough 
(9 ) Panel dimensions (thickness, width, and/or length) did not meet specifications 
(7 ) Panel trueness (bow, horizontal alignment, and/or squareness) was beyond tolerances 
(3 ) Strand position (vertical, horizontal alignment, and/or extensions) 
(3 ) Panel surface· finished improperly 
(5 ) Other [None reported, panels don't match beam camber, All have occurred but 

not regularly - acceptance per specification, No specific known 
irregularities j 

3. Which of the following items related to the panel and cast-in-place topping slab installation 
has your state or agency experienced more than just a few times or occasionally? 
(12) Can not really comment since we have not used panels enough 
( 4 ) Non-uniform panel support surfaces 
(4 ) Improper panel overlap on supports 
(5 ) Difficulty in leveling the panels 
(3 ) Difficulty in sealing the panel joints 
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(2 ) Air bleed slots at panel bearing allows mortar to drip from the structure 
(1 ) Skewed panels were difficult to set properly 
(5) Other [2@ none of the above, Improper bed grout, Unknown - This is 

construction experience] 

4. Which of the following items related to the performance of the panel and cast topping slab 
bridge deck have your state or agency experienced more than just a few times or 
occasionally? 
(12) Can not really comment since we have not used panels often enough 
(7 ) Reflective cracks in the top of the cast-in-place slab above the transverse panel joints 
(7 ) Reflective cracks in the top of the cast-in-place slab above the longitudinal panel joints 
(3 ) Cracks in the top of the cast-in-place slab that are not above the panel joints 
(3 ) Cracks in the top of the cast-in-place slab at the abutment or pier diaphragms 
(3 ) Cracks in the bottom of the panels parallel to the panel span 
(1 ) Cracks in the bottom .of the panels transverse to the panel span and near the midspan 

of the panel 
(1 ) Strand slippage 
(0 ) Some loss of composite behavior between panels and cast-in-place slab 
(3 ) Apparent loss of panel bearing at some locations 
(5 ) Other (3 @ none of the above, Cracks and spalls in C.I.P. slab parallel to and 

adjacent to the beam faces, All have occurred but not regularly -
acceptance per specification] 

5. How does your state or agency classify any problems associated with panel usage for bridge 
deck construction? 
(12) Can not really comment since we have not used panels often enough 
(1 ) Non-existent 
(7 ) 
(6 ) 
(6 ) 
(0 ) 

Minor 
Moderate 
Significant 
Major 

6. Considering all aspects of manufacturing, transportation, erection, and performance of panels 
for bridge deck construction, how does your state or agency rate panel usage? 

.(11) Can not really comment since we have not used panels often enough 
(1 ) Excellent 
(3 ) Very good 
(7) Good 
(5 ) Fair 
(5) Poor 

7. Please feel free to expand on the experiences that your state or agency has had regarding any 
aspect of precast prestressed concrete panel subdeck manufacturing, transportation, storage, 
erection, casting of top slab, performance, maintenance, or economy, which have not been 
covered in the previous parts of the questionnaire. (Quotes are respondents' comments) 

"Only used in one project to reduce construction time. We will be evaluating its cost 
effectiveness and performance. If satisfactory, we may institute a policy for panel use as an 
alternate to full cast in place slab." · 
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"The use of stay-in-place panels is specified in the plans as an option. Contractors have 
not been selecting the panel option." 

"The contractor has the option to redesign the full depth cast slab and use the deck panels on 
concrete bridges only." 

"Continued use of panels will depend on maintenance problems encountered." 

"Our limited experience in ---- indicates that contractors are not real excited about 
panels .. ." 

"We have not used panels in quite awhile but we do have a few places that need to be 
observed. We are looking to use panels in more locations in the future." 

"Their use has been discontinued." 

"Deck panels used on only one job. This job is under construction.'' 

"We question whether the laminated slab which results from use of panels is as durable as a 
full depth monolithic slab. We may be accepting an inferior product when panels are used." 

"Quick and easy to erect but difficult to maintain deck grades due to variable I-beam camber." 

"Since adopting and implementing our current standard drawings and special provisions in 
July 1985 we have had only very minor problems with deck panels. Continual inspection will 
be necessary to assure future results.''-

"Precast prestressed concrete panels were placed into our contracts by alternate bidding. It is 
believed that the contractors found it less economical than conventional construction. This 
type of construction would not be recommended, however, the system may have merit where 
the structure is straight with near right angle substructure units and a constant grade.'' 

"We have improved deck panel useage and performance by revising our manufacturing and 
installation specifications." 

" has had good experience with the use of precast panels with very few problems. 
Overall, panel use has declined significantly over the years and is currently used on less than 
10% of our projects." 

"Have received panels from only one supplier, ___ " 

"Panels have separated from deck after 25 years. Even though separated, they are difficult to 
remove without damaging slab above." 
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11. APPENDIX B: PRECAST PANEL MANUFACTURE QUESTIONNAIRE RESULTS 

The number in the parentheses ( ) represents the number of panel manufacturers having that 
particular answer. The notes within the brackets [ ] are paraphrased comments· from the 
respondents. An individual respondent's remarks are separated by a comma. 

Part. L Background 

1. Has your company ever produced panels as stay-in-place formwork for cast-in-place concrete 
bridge decks?. 
(27) Yes 
(45) No Why? [No bid opportunity, Not commonly used, No acceptance of product, Do not 

compete in bridge market, Contractor not interested, Local preference for 
C.I.P., Never been designed by local consultants, C.I.P. awarded over panels, 
Not economically feasible, Produce hollow core slabs only, Produce AASHTO 
Double Tees only, Depressed market, Not a profitable product, Do not do or 
want DOT work, Never successful in bidding during the 1970's - Product has 
been banned by DOT for many years, Product too hard to control and be a 
profitable item, Do not produce panels and over 25 years since the last bridge 
beams, Not used by DOT, We don't produce the I-girders, All decks have been 
full slab thickness, Too many producers for the market] 

2. Has your company ever stopped producing panels as stay-in-place formwork for bridge deck 
construction? 
(8) Yes When? [1984, 1985, May 1986, 2 @ 1986, 1988, Over 10 years ago] 

Why? DOT discontinued use, DOT discontinued use due to panel cracking and poor 
quality, price too high compared to timber forming, state prohibited use, 
Tolerances, Change in design, No longer specified, No market and too high 
price, DOT stopped using S.I.P. panels] 

(19) No 

3. Has your company produced or submitted a bid to produce panels for a bridge project within the 
last two years? 
(20) Yes (7 ) No [Last ones were made in Oct. 1986] 

4. For approximately how many years (in total) has your company produced panels for subdecks? 
(5 ) 0 to 2 years (7 ) 2 to 5 years (10) 5 to 10 years 
( 4 ) Over 10 years 

5. List the agency that have specified panels or allowed for a panel alternative in bridge deck 
construction for which your companey was or would have been the panel producer or 
supplier? 
(26) State DOTs 
( 4 ) Tollway or turnpike authorities 
(9 ) Counties within states 

(1 ) Province DOTs 
(6 ) Cities 

(4) Other [Forestry bridges, Port Authority, Private developers] 
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6. Is your company expected to perform or expecJed to hire an engineering consultant to perform 
the structural design of the panels as part of your contract for providing panels? 
( 4 ) Always (9) Sometimes (14) Never 

7. Before you cast panels, does your company verify the structural engineering design provided by 
a state or agency? 
(5 ) Always (12) Sometimes (9 ) Never 

Part Il. General Bridge Panel Conditions and Geometry 

I. Maximum panel width cast: 
(5)4ft. 
(1 ) 10 ft. 

(0 ) 6 ft. 
(2 ) Other [8.75 ft, 3.33 ft] 

(19) 8 ft. 

2. For non-rectangular shaped panels that occur at abutment and pier diaphragms in skewed 
bridges, what is the minimum length of a panel side? 
( 6 ) Only rectangular panels are cast [Mostly saw cut in the field] 
( 4 ) O ft. (triangular shaped panel) 
(3 ) 1 ft. (trapezoidal shaped panel) 
(7 ) 2 ft. (trapezoidal shaped panel) 
( 6 ) Other (trapezoidal shaped panel cast) [1 ft, 2.83 ft, 3 @ 3 ft, 4 ft] 

3. Panel length established by: 
(23) Distance between headers on the precast bed 
( 5 ) Saw cutting panels from a continuous casting length 
(3 ) Other [3 @ spacing of bridge girders] 

4. Minim um panel thickness cast: 
(6) 2 1/2 in. (8) 3 in. (12) 3 1/2 in. 
(2 ) 4 in. ( 1 ) Other [3 1/8 in. allowed] 

5. Minimum ratio of panel thickness to strand diameter 
(15) Not specified [2 @ 3/8 dia. strands] (1 ) 9:1 
(3 ) 7:1 (1 ) 6:1 
(2 ) Other [8:1 for 3/8 in. dia. and 6:1 for 1/2 in. dia., 2 @ 6.67:1] 

6. Panel construction at skewed abutment or pier locations: 
(3 ) Panels not used at these locations 
(3 ) Panels sawn to match the skew only 
( 12) Panels cast to match the skew only 
(7 ) Panels can be either sawn or cast to match the skew 
(1 ) Other [N.A] 

7. Type of longitudinal panel joint (parallel to panel span): 
(23) Butt joint 
(0 ) Key joint (bulb key, rectangular key, etc) 

(6 ) 8:1 

(5) Other [Vertical face with top edge chamfer, Double female key, Inclined butt joint, Shear 
key, 2 @ V-shaped joint] 
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8. Edge detail at end of panel (along bearing edge): 
(23) Flat vertical face 
(5 ) Inclined or curved face 
(2 ) Other [Strand extension, Bottom edge chamfer 1 1/2 iri. vert. by 2 1/2 in. horiz. and top edge 

tooled] 

9. Top surface profile for the panels: 
(26) Flat 
(2 ) Tapered at the longitudinal panel edges (panel thinner at edge than at mid-width) 
(0) Other 

10. Top surface roughness and projections (not counting lifting hooks): 
(0 ) Smooth finish without bar projections 
(0) Smooth finish with U-shape bars or dowels 
(3 ) Broom finish without bar projections 
(1 ) Broom finish with U-shape bars or dowels 
(14) Raked finish without bar projections 
(17) Raked finish with U-shaped bars or dowels 
(2) Other [Grooved finish without bar projections, Screed vibratory finish] 

11. What is the direction of the raked depression with respect to the panel span? 
(1 ) Raked depression not used 
(6 ) Parallel to panel span 
(17) Transverse to panel span 
(1 ) Both parallel and transverse to panel span 
(2 ) Diagonal to panel span 
(0) Other 

12. Minimum depth of raked finish depression 
(1 ) Raked depression not used 
(2 ) 1/16 in. 
(10) 1/4 in. 

13. Minimum width of raked finish depression: 
(2 ) Raked depression not used 
(3 ) 1/16 in. 
(9 ) 1/4 in. 

(12) 1/8 in. 
(1 ) Other [No minimum] 

(8 ) 1/8 in. 
(1 ) Other [Not specified] 

(2 ) 3/16 in. 

(3 ) 3/16 in. 

14. Transverse panel reinforcement along the entire panel length and perpendicular to the panel 
span: 
(3 ) Transverse panel reinforcment not used 
(14) Reinforcing bars only. (13) WWF only 
(2 ) Prestressing strands only 
(3) Other [Reinforcing bars, WWF and reinforcement at panel ends, Varies with job] 

15. Do the panel lifting hooks remain in place to be cast into the cast-in-place top slab? 
(3 ) Lifting hooks not used (19) Nways 
(2) Unknown (4) Sometimes 
(0) Never 
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16. What is the minimum age of the panels when the cast-in-place top slab is cast? 
(11) Unknown [Shipped at 28 days] (2) Less then 2 weeks 
(8 ) Between 2 weeks and 4 weeks (5 ) 4 weeks and over 

17. For non-rectangular panels, what type of additional reinforcement, other than the conventional 
rectangular panel reinforcemnent, is provided in the panel? 
(6 ) Only rectangular panels without additional reinforcement are cast 
(5 ) None (2 ) Prestressing strands only 
(2 ) WWF only (1 ) Other [Varies with job] 
(11) Reinforcing bars only [Extra No. 4 bars, 8 - No. 5 along future cutted skew location] 

18. Concrete weight for panels 
(3 ) Light-weight [2 @ 115 pcf, 120 pcf] 

19. Panel concrete admixtures: 

Usage Air Corrosion 
Entrainment Inhibitors 

Always (15) (2 ) 
Sometimes (5 ) (2 ) 
Never (6 ) (18) 

(26) Normal-weight 

Water 
Reducers 
(18) 
(7 ) 
(1 ) 

Strength Other 
Accelerators 

(7 ) (2 ) 
(5 ) (1 ) 
(11) (3 ) 

20. Maximum skew angle for casting non-rectangular panels to match the bridge skew for those 
panels adjacent to abutment or pier diaphragms: 
(6 ) Only rectangular panels are cast 
(2 ) 15 de11ree (3 ) 30 degree (4 ) 45 degree 
(10) No ui"aximum [Minimum edge length of 1 ft.; No pointed corners] 
(1 ) Other [As long as the ratio of the long to short P.anel end is 2 or less] 

21. Panel concrete 28-days compressive strength 
(22) 5000 psi 
(2 ) Other (4500 psi (light-weight concrete] 

(2) 5500 psi 

22. Minimum panel concrete compressive strength at release of prestress force: 
( 4 ) 3000 psi (8 ) 3500 psi 
(14) 4000 psi [For normal-weight] (2 ) 4500 psi 

(3) 6000 psi 

(1 ) Other [3750 psi (light-weight concrete) and 5000 psi (normal-weight concrete)] 

· 23. Is additional steel provided in the panel ends to prevent splitting due to bond transfer? 
(8 ) Always (8 ) Sometimes 
(11) Never [But it should be] 

Part IIL Bridge Panel Bearing Details 

1. Temporary bearing material used to support panels: 
(2 ) Temporary bearing material not used 
(3) Unknown 
(18) Fiberboard, neoprene, polystyrene, or similar material only 
(2 ) Mortar, grout or concrete bed only 
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(2 ) Steel shims only 
(2 ) Other [None, External support] 

2. Is the temporary bearing material removed after the permanent bearing is provided for the 
panels? 
(2 ) Temporary bearing material not used 
(5 ) Unknown (2 ) Always (1 ) Sometimes 
(16) Never 

3. What is the minimum height of the temporary bearing material after it has compressed? 
(3 ) Temporary bearing material not used 
(9) Unknown [1 1/4 in. min. before compression] (3 ) 1/2 in. (7) 1 in. 
(2 ) 1 1/2 in. (2 ) Other [3/4 in., 1 114 in.] 

4. What is the maximum height of the temporary bearing material after it has compressed? 
(3 ) Temporary bearing material not used 
(12) Unknown 
(1 ) 2 in. 

(2)1in. 
(3 ) Other. (3 @ 3 in.] 

5. Permanent bearing material used to support panels: 
(2) Unknown 
(5 ) Continous fiberboard, neoprene, polystyrene, or similar material only 
(8 ) Continuous mortar, grout, or concrete bed only 
(10) Cast-in-place concrete from pouring the top slab 
(0 ) Steel shims at panel corner only . 

(5) 1 V2 in. 

(2 ) Other [PVC pipe for 3 in. bearing and styrofoam for 4 in. bearing, Galvanized angle] 

6. What is the minimum lengtlJ of permanent bearing parallel to the panel span 
(3) Unknown (6) 1 in. (7) 1 1/2 in. 
(3)2in. (3)21/2in. 
( 4 ) Other [112 in. 2 @ 3 in., Full length of panel] 

Part IV. Prestressing Strand Conditions and Description for Bridge Panels 

1. Total diameter of the strand that is used most often: 
(0 ) 1/4 in. (2 ) 5/16 in. (20) 3/8 in. 
(4) 7/16 in. [Light-weight concrete] (9) 1/2 in. [3/8 in. probably less splitting] 
(0) Other 

2. Type of strand 
(16) Ordinary stress-relieved (14) Low-relaxation (1 ) Other 

3. Is the strands spacing across the width of the panel uniform? 
(19) Always (6) Sometimes (2 ) Never 

4. What is the location of the strand with respect to the panel center of gravity? 
( 4 ) Eccentric (18) Concentric ( 4 ) Either 

5. Are strand extensions used? 
(15) Always (8 ) Sometimes (5) Never 



188 

6. Minimum length of strand extension for a rectangular shaped panel: 
(6 ) Strand extensions not used 
(9 ) 3 in. 
(4)6in. 

(1 ) 4 in. (2 ) 5 in. 
(3) Other [Varies 3 in. to 6 in., 12 in., Varies] 

7. For a rectangular shaped panel, are some strands unbonded near the panels ends? 
(0 ) Always (3 ) Sometimes [For a portion of the strands] 
(24) Never 

8. What is the maximum length for debonding a strand, measured from each end of a rectangular 
shaped panel? 
(25) Debonding not done on rectangular shaped panels 
(1 ) 3 in. (0 ) 6 in. (1 ) Other 

9. For a non-rectangular shaped cast panel, are some strands unbonded near the panel ends? 
(6) Only rectangular shaped panels are cast 
(0) Always (5 ) Someti_mes (14) Never 

10. What is the maximum length for debonding a strand, measured from each end or edge of a 
non-rectangular shaped cast panel? 
(6 ) Only rectangular shaped panels are cast 
(14) Debonding not done for non-rectangular panel 
(2 ) 3 in. (1 ) 6 in. (0 ) Other 

11. Method used to measure the prestress force a strand: 
(1 ) Hydraulic pressure only (0 ) Strand elongation only 
(26) Hydraulic pressure and strand elongation (1 ) Electronic load cell on some strands 
(0) Other 

12. What method is used to release the bridge panel prestressing strands? 
(20) Acetylene torches (6 ) Abrasive saw blades 
(3 ) Wire (bolt) cutters (2 ) Slow release of hydraulic pressure 
(0) Other 

Part V. Design Criteria - Answer the questions in Part V only if your company performs a structural 
design for the panels; otherwise, skip to Part VI. 

l. Design AASHTO vehicle loading: 
(0) HS 15 
(2 ) Other [MS-250 (metric), As specified] 

(10) HS 20 (1 ) HS 25 

2. What is the minimum concrete compressive stress at the panel center of gravity due to the 
prestressing force immediately after release (before losses), expressed in terms of the panel 
concrete strength, f' "' at the time of release? 
(8 ) Not specified 
(0 ) Between 0.20 and 0.30 f' ,, 
(1 ) Between 0.40 and 0.50 f'" 

(0 ) Less than 0.20 f' ,, 
(0 ) Between 0.30 and 0.40 f'" 
(l ) Over 0.50 f'" 
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3. What method is used to establish the prestressing force in panels when the total strand 
embedment length is less than twice the required strand development length? 
(4) Not specified . 
(6 ) Proportion prestress force based on the available embedment length to the required 

development length given in the AASHTO Specification (1.6 q• is used) 
(1 ) Other [Minimum panel length eliminates this problem] 

4. Is a non-rectangular shaped panel considered to affect the prestress force in the strands? 
(3 ) Only rectangular shaped panels are permitted 
(2) Yes 
(4) No 

5. What design criterion is applied to size the transverse panel reinforcment throughout the entire 
panel length? 
(2 ) Transverse, panel reinforcment not used 
(4) Temperature and shrinkage requirements only 
(0 ) Wheel load distribution only 
(0 ) Both temperature and shrinkage requirements and wheel load distribution 
(4) Other [AASHTO Design Specs., Project Specs., No. 3@ 12 in. o.c. standard, No. 3 @ 12 

in. o.c. or DS.5 @ 6 in.] 

6. Cast-in-place topping slab concrete 28-day compressive strength: 
(1 ) 3500 psi (2 ) 4000 psi ( 4 ) 4500 psi 
(2 ) 5000 psi (2 ) Other (As specified, 3000 psi] 

7. Minimum cast-in-place topping slab thickness: 
(2 ) Not specified 
(4)5in. 
(1 ) Other [Per state] 

8. Concrete weight for cast-in-place topping slab: 

(0 ) 3 in. 
(0) 6 in. 

(1 ) Light-weight (115 pcf] (11) Normal-weight 

(3)4in. 
(1 ) 7 in. 

9. Are any special precautions taken to minimize cracking in the topping slab near the longitudinal 
panel joints (joints parallel to panel span)? 
(1 ) Always (2 ) Sometimes (8 ) Never 

10. Are any special precautions taken to minimize cracking in the topping slab near the transverse 
panel joints (joints at ends of panels)? 
(1 ) Always (1 ) Sometimes (9 ) Never 

11. Degree of composite behavior between the panels and the cast-in-place slab: 
(10) Fully composite 
(0) Partially composite 
(1 ) None (composite behavior not considered) 

12. Is the bridge deck designed as a continous span across the girders when panels are used? 
(6 ) Always (2 ) Sometimes (3 ) Never 
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13. Is positive moment reinforcement (bottom steel) provided in the cast-in-place topping slab to 
achieve the continuity across the girders? 
(2 ) Always (3 ) Sometimes (5 ) Never 

14. Is any additional negative reinforcement (top steel) in the cast-in-place topping slab provided to 
obtain continuity across the girders, beside the normal negative moment reinforcement 
used in conventional full thickness cast-in-place decks, when panels are used? 
(0 ) Always (3 ) Sometimes (7 ) Never 

15. Is any supplemental reinforcement provided in the cast-in-place topping slab provided to obtain 
continuity across the girders, beside the normal negative moment reinforcement 
used in conventional full thickness cast-in-place decks, when panels are used 
(2) Always [No. 4 @ 9 in. o.c.] (1 ) Sometimes (6 ) Never 

16. Is two-way plate action considered in the design of the deck when the panels are supported along 
three edges? 
(2 ) Three edge panel support not permitted 
(0 ) Yes (5 ) No 

17. Is fatique considered in the design of the deck when panels are used? 
(1 ) Yes (7 ) No 

18. Effective slab width for wheel load distribution: 
(7 ) AASHTO Specification for full depth cast-in-place slabs (without panels) 
(1 ) Full panel width if less than the AASHTO Specification 
(2) Other [Staie specifications, Don't know] 

19. Are torsional stresses caused by movements of curved and boxed shaped-steel girders considered 
in the deck when panels are used? 
(5 ) Panels not used with these girders (1 ) Yes (1 ) No 

20. Are stresses caused by differential movements of long flexible steel girders considered in the deck 
design when panels are used? 
(4) Panels not used with steel girders (0) Yes (2) No 

Part VL Economy 

1. Have cost effectiveness studies ever been performed to evaluate the economical advantages of 
using panels instead of a full depth cast-in-place deck? 
(11) Yes (12) No 

2. What are the approximate cost savings realized (including costs associated with construction 
time), when panels are used for subdecks on a typical bridge compared to a conventional full 
depth bridge deck? 
(15) Cost savings not known 
(5 ) $0 - $1.00/ft' of deck area 
(1 ) $2.00 - $3.00/ft2 of deck area 
(0 ) Over $4.00/ft' of deck area 

(1 ) No cost savings 
(2 ) $1.00 - $2.00/ft2 of deck area 
(0 ) $3.00 - $4.00/ft2 of deck area 
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3. What was the basis used for the economy study? 
(10) Cost effectiveness studies have not been performed 
(5 ) Actual bids that included both a conventional cast-in-place slab and a panel system for the 

same bridge deck 
(2) Panel system substitution suggested (without actual bids) by the bridge contractor 
( 4 ) Estimates, not actual bids 
(0) Other 

Part VIL Inspection 

1. Does the state or agency for which your company is casting panels have a representative at your 
plant to inspect the panel forms and strands before the panels are cast? 
(0 ) Not their responsibility (21) Always 
(5 ) Sometimes (0 ) Never 

2. Does the state or agency for which your company is casting panels have a representative at your 
plant to observe strand detensioning, form stripping, and panel handling and 
storage? 
(1 ) Not their responsibility 
(6 ) Sometimes 

(19) Always 
(0) Never 

3. Does your company send a representative to the bridge jobsite to inspect the panels after 
erection for cracks and proper bearing? 
(5 ) Not our responsibility 
(12) Sometimes 

Part VIII. Experiences uith Panel Usage 

(5) Always 
(4) Never 

1. Which of the following items of panel damage has your company directly experienced more than 
just a few times or occasionally? 
( 4 ) Can not really comment since we have not used panels often enough 
(6) Have not experienced any problems [Not major problems] 
(8 ) Broken corners 
(9 ) Spalled or chipped edges 
(9 ) Cracking parallel to strands along a significant portion of the panel length [caused by lifting 

devices] 
(10) Cracking parallel to strands near the ends of the panel only 
(2 ) Cracking transverse to the strands near panel midspan 
(3 ) Diagonal cracks across panel surface 
(1 ) Strand slippage 
( 4 ) Skewed panels are difficult to detension properly 
(1 ) Other [Problems not recurrent but do exist] 

2. Which of the following items of panel irregularities has your company directly experienced more 
than just a few times or occasionally? 
( 4 ) Can not really comment since we have not used panels often enough 
(10) Have not experienced any problems [Not major problems] 
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(4 ) Difficulty in maintaining panel dimensions (thickness, width, and/or length) 
(4) Difficulty in maintaining panel trueness (bow, horizontal alignment, and/or squareness) 
(3 ) Difficulty in maintaining strand position (vertical, horizontal, and/or extensions) 
(2 ) Difficulty in maintaining panel surface finish 
(1 ) Strands from some suppliers had an oily or graphite feel or coating 
(1 ) Other [Difficulty with light-weight concrete strengths] 

3. Which of the following items related to the panel and cast-in-place top slab installation has your 
company experienced more than just a few times or occasionally? 
( 4 ) Can not really comment since we have not cast panels enough 
(5 ) Have not experienced any problems 
(9 ) Can not really comment since we are not involved in panel erection 
(1 ) Non-uniform panel support surfaces 
(3 ) Improper panel overlap on supports 
(2 ) Difficulty in leveling the panels 
(0 ) Difficulty in maintaining a constant grout bed elevation 
(2 ) Construction loads placed on untopped panels 
(1 ) Difficulty in sealing the panel joints 
(0 ) Air bleed slots at panel bearing allows mortar to drip from the structure 
(3 ) Skewed panels were difficult to set properly [No experience with skewed panels] 
(1 ) Other [We usually don't erect] 

4. Which of the following items related to the performance of the panel and cast topping slab bridge 
deck have your company directly experienced more than just a few times or 
occasionally? 
(3 ) Can not really comment since we have not cast panels often enough 
(10) Have not experienced any problems [Not major problems] 
(3 ) Reflective cracks in the top of the cast-in-place slab above longitudinal panel joint 
(3 ) Reflective cracks in the top of the cast-in-place slab above the transverse panel joints 
(2 ) Cracks in the top of the cast-in-place slab that are not above the panel joint 
(0 ) Cracks in the top of the cast-in-place slab at the abutment or pier diaphragms 
(0 ) Cracks in the bottom of the panels parallel to the panel span 
(0 ) Cracks in the bottom of the panels transverse to the panel span and near the midspan of the 

panel 
(0 ) Strand slippage 
(0 ) Some loss of composite behavior between panels and cast-in-place slab 
(0 ) Apparent loss of panel bearing at some locations 
(2 ) Other [See states, Cannot comment since panels have not been in service long} 

5. Which of the following shipping, handling, or storage related items, which your company believes 
might have caused or could have caused panel cracks to develop, has your 
company directly experienced more than just a few times or occasionally? 
( 4 ) Cannot really comment since we have not cast panels often enough 
(9 ) Have not experienced any problems [Not major problems} 
(5 ) Improper strapping or chaining of panels to truck beds 
(1 ) Overstacking panels on truck beds 
(1 ) Panel stacked on the rear end of trailers on long hauls 
(10) Incorrect panel storage at bridge sites 
( 4 ) Stacking panels too high in storage stacks 
(5 ) Settlement of cribbing in storage stacks 



193 

(8 ) Improper dunnage alignment for storage stacks 
(1 ) Outside storage of panels over winter 
(2 ) Improper forklift handling of panels 
(5 ) Lifting an entire stack of panels at bridge sites 
(1 ) Other [All of the above occur if you don't watch out] 

6. Which of the following casting techniques has your company established to minimize problems 
in panel fabrication? · 
( 4 ) Cannot really comment since we have not cast panels often enough 
( 4 ) Provided strand tie downs along prestress bed length 
(10) Clean out header strand slots after each casting 
(19) Allow for concrete preset prior to heat application for accelerated curing 
(11) Instituted special strand cutting sequence 
(14) Provided steel headers 
(2 ) Allow strands to oxidize by exposure to the weather for a few days 
(2 ) Increased concrete release strength above minimum specified 
( 4 ) Increased concrete ultimate strength above minimum specified 
(13) Provided a reinforcing bar transverse to strand at panel ends 
(0 ) Apply compressed air when stripping panels 
(2 ) Cast panels inside a structure to avoid exposure to weather 
(1 ) Other [Proprietary casting/stripping and handling techniques] 

7. How does your company classify any problems associated with panel usage for bridge deck 
construction? · 
( 4 ) Can not really comment since we have not cast panels often enough 
(2 ) Non-existent 
(12) Minor 
( 4 ) Moderate 
(0 ) Significant 
(1 ) Major 

8. Considering all aspects of manufacturing, transportation, erection, and performance of panels for 
bridge deck construction, how does company rate panel usage? 
(1 ) Can not really comment since we have not cast panels often enough 
(7 ) Excellent 
(7) Very good 
(5) Good 
(3 ) Fair 
(2) Poor 

9. Please feel free to expand on the experiences that your company has had regarding any aspect 
of precast prestressed concrete panel subdeck manufacturing, transportation, storage, erection, 
casting of top slab, performance, maintenance or economy, which may not have been covered in 
the previous parts of this questionnaire. (Quotes are respondents' comments) 

" ____ Dept. of Trans. has discontinued use of plank since 1986. Prestressed Producers of 
____ have been trying to reinstitute their use. Contractors VERY favorable to plank 
because of speed, $, and SAFETY. Due to regretable quality problems by some producers, 
___ has proposed unobtainable specs. if plank is to be used. Example: 1) 1/32 in. tolerance 
on strand placement, 2) beds leveled to 1/16 in. in 20 ft, 3) "O" tolerance on slippage. has 
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refused to consider 3 in. thick plank due to curent design constraints." 

"Our DOT people are completely unrealistic by assuming that any water mark is a structural 
crack. Their ignorance is the only impediment to panel usage." 

"Not an important product for our firm."1 

"We are not involved with work at jobsite or the long term performance problems of deck panels 
in general. We know of no problems with performance of our panels. Configurations of panels 
and their design meets the written (text) requirements of the DOT's for each project. (No 
standardization). We have used several different configurations at abutments and diaphragms 
and always had them approved. The very existence of panels as a product indicates how many 
precast concrete producers there are that do not know how to make money in this industry. It 
also indicates how easy it is the sell agency bureaucrats a bill of goods. Deck panels are a drain 
on the resources of any otherwise successful precasting operation. The problem with panels that 
still has not been solved in one area is the lack of standardization of the panel as a product and 
the lack of completion of engineering of the application of the product to the project. Producers 
have sold a product and a concept to DOT's and the DOT's have left the execution and any 
field problems to their inspection personnel and the bridge general contractor and his field 
superintendent. Had the product gone through the testing, revision and stanqardization process 
of other precast bridges products we would not be in this "no-win" war." 

"Specifying agencies require unrealistic details and reinforcement, and call for difficult and 
expensive bearing/seating details." 

"Most precastors do not erect bridge plank or design the bridge." 

"Problems with standardization from one job to the next. Design not done by DOT in house and 
no consistency between different consultants. No criteria for acceptance of panels with any 
cracks, no matter what length or width." 

"We have produced panels for only one project in . It was a DOT experimental 
project. Reflective cracks have shown through the deck above the main bridge girders where the 
panels are supported. Steel shims were used for temporary support of panels, contrary to 
specifications." 

"Our P/C panel compete with metal stay-in-place forms. We cannot compete with price of metal 
stay-in-place." 

"The precast soffit for stay-in-place forming of concrete bridge deck has been discontinued by 


