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INTRODUCTION

1.1 General Background

A considerable number of single span, composite concrete deck and
steel beam bridges in lowa, as well as in most states, presently
cannot be rated to carry today's design loads. This problem was
initially addressed in the research project, HR-214, "Feasibility
Study of Strengthening Existing Single Span Steel Beam Concrete Deck
Bridges'" [18,19], henceforth referred to as Phase I. The research of
Phase 1 verified that post-tensioning can be used to provide strengthening
of the composite bridges in question. This was determined analytically,
using a modification of the orthotropic plate theory, and experimentally,
through testing of various post-tensioning schemes on a half-scale
model bridge.

Because of the importance of the strengthening problems and the
wide range of variables, a second research study was undertaken. The
second study involved two parts. As the second study was a continuation
of the feasibility study (Phase 1), the two parts, henceforth, will be
referred to as Phases I] and III. The primary emphasis of Phase Il
involved the strengthening of two full-gcale prototype bridges. One
of the bridges was a prototype of the model bridge tested during
Phase I; the other bridge was larger and skewed.

In addition to this field work, Phase 11 also involved a consider-
able amount of laboratory work. A literature search revealed that
only minimal data existed on the angle-plus-bar shear connectors.

Thys, several specimens utilizing angle-plus-bars, as well as channels,



studs and high strength bolts utilized as shear connectors were fabricated
and tested. To obtain additional shear connector information, the

bridge model of Phase I was sawed into four composite concrete slab

and steel beam specimens. Two of the resulting specimens were tested

with the original shear connection, while the other two specimens had
additional shear connectors added before testing. In this way, the

effect of the additional shear connectors could be determined.

As previously mentioﬁed, one of the bridges selected for strengthen-
ing was a 45° skewed bridge. Although orthotropic plate theory was
shown in Phase I to predict vertical load distribution in bridge decks
and to predict apprbximate distribution of post-tensioning for right-
angle bridges, we questioned whether the theory could also be used on
skewed bridges. Thus, a small plexiglas model was constructed and
used in vertical lead distribution tests and post-tensioning force
distribution tests for verification of the theory.

Phase III of the investigation involves the inspecticn of the two
strengthened bridges approximately every three months for a period of
two years. Approximately one year after post-tensioning, both bridges
will be tested under service loads to determine if there are any
behavioral changes from the initial service load tests. The results
of Phase II--laboratory and field investigatioms--are repqrted herein;

results of Phase III will be presented in 3 final report at the conclu-

sion of the study.



1.2 Objectives

The overall objective of Phase 1 of the study was to determine
the feasibility of strengthening the type of bridges in question by
post-tensioning. As a result of the successful completion of Phase 1
of the study, Phase II was undertaken with the overall objective of
designing and ihstalling post~tension strengthening on two existing
bridges. After the bridges were strengthened, they both were tested .
to determine the effectiveness of the posi-tension strengthening
systems. Before the field strengthening systems could be designed,
additional data were needed on the strength of the angle-plus-bar
shear connectors, thus requiring the additiomal laboratory work in
Phase II.

In line with the overall objective of Phase II of this study, the
following secondary objectives were established:

® Determine load distribution before and after post-tensioning

in actual bridges.

¢ Determine vertical load and post-tension force distribution in

skewed bridges.

¢ Determine strength and behavior of angle-plus-bar shear con-

nectors and compare with other shear conmnectors, such as studs
and channels.

@ Develop a simple method of adding shear connectors to existing

construction and evaluate their streangth and effectiveness.



¢ Determine if there are any field problems in emploving the
post-tensioning scheme developed during Phase I that did not
exist in the laboratory.
Field experimental results were compared wth theoretical predictions
obtained from orthotrépic plate theory. Laboratory experimental

results were compared with theoretical predictions using appropriate

theories.

1.3 Literature Review

The report on Phase 1 of the study [19] included a literature

review which was organized into four areas: prestressed steel structures,

prestressed composite structures, bridge strengthening, and bridge

deck analysis. Although the majority of these references are pertinent

to the work in Phase II, a review will not be repeated here due to
their availability in Ref., [19]. Therefore, the literature review
which follows only pertains to shear connectors and skewed bridges.

1.3.1 Mechanical Shear Connectors

Numerous types of mechanical shear connectors have been propbsed
since the early 1920's for steel and concrete composite construction.
Although spirals, chamnels, and studs found wide acceptance in the
United States then, stud connectors are almost exclusively used today
becanse of their ease of installation and low cost.

The use of two-slab push-out tests for the evaluation of shear
connector behavior was common [27,29,31]. These early investigations

suggested that the strength of shear connectors obtained from push-out



tests was lower than that obtained from beam tests. It was later
concluded by Slutter and Driscoll [28] that this relatiomship was
true. Also, the push-out test is still considered to be the most
reliable and useful method of determining load-slip and ultimate load
capacities of different types of compectors used in beams [5,21].

The use of high strength bolts {ASTM A325) as shear connectors
has been tested in several sgituations [6,7,10]. Dallam [7], in 1968
and 1970, reported the testing of two-slab push-out and composite beam
specimens with high strength bolts (ASTM A325, various diameters) as
shear connectors. The bolts were loosely attached to the steel beam
section and held in place by wire-spring chairs. After the slab
concrete was cured for 2B days, the bolts were tightened to the minimum
specified bolt tension; the specimens were then tested to failure. It
was found that the bolts exhibited a greater useful capacity and
ultimate strength than comparable studs. In 1976, Dorton [10] described
the use of high strength bolts (ASTM A325 Type 3 weathering steel,
7/8-~in. diameter) in push-out specimens and a full-scale test bridge.
The bolts were double-nutted to the beam flange of a steel bridge
stringer (H-pile section substituted in the push-out specimens), and
placed in oversize holes to accommodate movement of the concrete deck
due to post-tensioning. Both the push-out specimens and the test
bridge were subjected to fatigue and static loadimng. Dorton concluded
that a high strength bolt in this particular configuration could be
safely used to replace a welded stud of the same diameter. In the
studies described above, the bolts were placed before the concrete

silab was cast.



Slutter and Driscoll {28] tested a series of composite beams and
push~out specimens. They also re-evaluated the test results from
other investigations in order to substantiate their conclusions.

Tests were performed on composite beams Qith varying numbers of shear

connectors. A number of different shear connectors (channels, spirals,

bent studs, headed studs) were tested in the composite beam and push-out

specimens. Test results from this and previous investigations were

compared. This was dome by utilizing a method of analysis for determining

the ultimate moment capacity of beams when-a weaker shear connection
than that proposed for design existed. Slutter and Driscoll concluded
that the ultimate flexural capacity of a beam could be evaluated, even
if the number of shear comnectors was less tham that regquired to
develop the theoretical ultimate bending capacity. The analysis
showed that the load-deflection curve of a beam was not significantly
affected by slip if there were enough shear connectors provided to
develop the theoretical ultimate bending capacity.

In the literature it has been established that push-out tests
give reliable and slightly conservative results for the ultimate
strength of shear connectors. Properly installed high strength bolts
provided a slightly higher strength and therefore can be substituted
for welded stud connectors of equal diameter. Load-deflection behavior
of a cqmposite beam is not significantly affected by slip of shear
connectors, as long as connectors are adequate for ultimate flexural

capacity of the beam.




1.3.2 Effect of Skew on Bridge Deck Behavior

Skew generally has a greater effect on isotropic than on ortho-
tropic bridge decks. A rather comprehensive review of skew effects on
prestressed slab bridge decks is contained in the publication by Clark
and West [4]. The authors tested two 45° skewed, solid slab bridge
deck models and compared the model results with separate grillage and
finite element analyses. The models represented bridge decks which
were essentially isotropic except for longitudinal post-tensioning.

Clark and West separated the prestressing into separate axial and
bending coméonents for purposes of analysis. Although the axial
component could be treated on a simple force per area basis, the
bending component could not be treated so simply. Because a portion
of tﬁe bending component was dispersed in the slab as torsional and
transverse bending stresses, a simple treatment of the bendimng component
applied to a slab strip of unit width would overestimate the effects
of the bending component. Increasing skew and increasing aspect ratio
{width to length) increased bending component losses, whereas increasing
orthotropy (longitudinal to transverse strepgth) decreased losses.

Due to the post-tensioning, obtuse corners of the bridge deck
were subject to uplift, if not tied down. Downward reactions due to
application of live load tended to concentrate in the obtuse corners.
Minor differences in behavior occurred depending on the sequence of
post-tensioning of a slab bridge deck.

For slab bridge decks, Lee and Chaplin [22]} reiterated several of
the conclusions reached by Clark and West, namely that prestressing

could cause uplift at obtuse corners, that maxXimum reactions due to



live load occurred in obtuse corners and that beam and slab (orthotropic)

bridge decks would have reduced skew effects. Lee and Chapiin also
noted that, for slab bridges, moments were large in obtuse corners and
that the directions of principal moments were dependent on the position
of a live load., The variation in direction of principal moments
therefore requires additional guantities of reinforcing, beyond that
required for right-angle bridges.

Newmark, Siess, and Peckham [23] tested both 30° énd 60° skewed,
quarter-scale composite beam and slab (orthotropic) bridge models.
For a 30° skewed bridge model, deflections and live load distribution

to beams were essentially the same as for a right-angle bridge model.

Beam strains in the skewed model were up to 5% larger than in right-angle

bridge models.

For the 60° skewed model, differences between the skewed and
right-angle models became quite apparent. Smaller deflections were
measured in the 60° skewed model, and deflections and load distributions
were less uniform. Beam strains were up to 14% less. The change in
performance can be explained by partial restraint at beam ends and
increased torsional stiffness of the bridge deck.

Hondros and Marsh [15] tested a series of right-angle and 30°
skewed composite bridge models. They found that in the 30° skewed
model strains and deflections were approximately 17% less. It appeared
to them that the proportion of load to each beam remained essentially
the same for the right-angle and 30° skewed bridge models.

Gustafson and Wright [13] utilized finite element analysis to

analyze the effects of skew on an B0-ft span, two-lane steel girder

S



and concrete slab composite bridge. Their analysis showed almost no
change in distribution of moment to the girders for angles of skew

less than 30°, and no significant change unless the skew angle eXceeded
45°%, They found that exterior girders were less sensitive to skew

than interior girders. Influence lipes for girder reactions which

they plotted indicated that exterior girders carried a large percentage
of midspan concentrated leoads--even when interior girders ;ather than
exterior girders were loaded.

DeCastro and Kostem [8] conducted a rather extensive finite
element analysis of composite, prestressed concrete I-beam bridges of
moderate span. Their results were quite comparable to those of Gustafson
and Wright. Exterior beams were less affected by skew than were
interior beams, and the effect of skew was not significant until the
angle of skew exceeded 45°. Formrelatively closely spaced beams
(small §/L ratios), the authers found that the distribution factor
actually increased slightly. The effect of skew decreased as the span
of the bridge increased.

Kennedy and Gupta {17] correlated orthotropic plate theory (modified
to account for skew) with model tests. They concluded that for ortho-
tropic plates, skew had a greater effect for uniform load than for a
concentrated load. For a concentrated load at midspan, their charts
can be interpreted to show results similar to those contained in other
research reviewed above. For an interior beam, skew had the effect of
decreasing moment to the beam, and the reduction becam¢ significant at
angles of skew greater thanm 45°. TFor an exterior beam, the charts

indicated a slight increase in moment with increasing skew.
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Bakht, Cheung, and Aziz [3] described the use of charts for load
distribution in the Ontario bridge code. Although their charts are
for right~angle bridges, they indicated that bridges with angles of
skew to 15° may be treated as right-angle bridges.

The review of literature on skewed bridge decks indicated several
potential problem areas. BRoth moments and reactions tended Lo concen-
trate in obtuse corners. In particular, uplift could cccur at obtuse
corners due to prestressing. These effects were more pronounced for
isotropic than for orthotropic bridge decks. The various authors
considered skew to have a significant effect at angles of 159 to 45°9,
depending on the type of bridge deck. Truck load distribution for
orthotropic, composite beam and slab bridges is quite similar for
angles of skew of 0° to 45°, but changes significantly for angles of

skew greater than 45°.

1.4 General Testing Program

As previcusly stated, Phase Il of the study consisted of both a
laboratory investigation and a field investigation. Brief descriptions
of each of these investigations are presented in the following sections;
detailed information about the various tests will be presented later
in this report,

1.4.1 Laboratory Testing Program

The laboratory investigation consisted of three programs: one
involved the determination of the strength and load-slip characteristics

of various shear connectors; the second involved testing of the composite
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beams cut from the bridge model of Phase I; and the third involved the
testing of a small scale plexiglas model to determine vertical load
and post-tensioning force distribution in a skewed bridge.

Push~out specimens were utilized to investigate the strength and
behavior of various shear comnectors. Deflection dials were used in
each test to measure relative slip and separation between the concrete
and steel. A total of 22 specimens were fabricated and tested to
failure. The types of shear connector used in the specimens were as
follows: six angle-plus-bar connectors, five channel connectors,
three stud connectors, four epoxied high strength bolt connectors, and
four double-nutted high strength bolt connectors.

The model bridge utilized in Phase I was sawed into four composite
concrete slab and steel beam specimens. Two of the specimens, one
interior and one exterior, were tested in the "as fabricated" condition,
while the remaining two specimens had additional shear connectors
added before testing. All tests employed two equal concentrated loads
positioned azbout the span centerline so that a region of pure moment
existed. After several tests were performed, each specimen was post-
tensioned and loaded to failure with vertical loading. Strain gages
utilized in the testing of the model bridge in Phase I were again
utilized to collect strazin data for each specimen. Deflection dials
were used to measure vertical deflection of the specimens, as well as
relative slip between the concrete slab and steel beam.

A plexiglas model of the skewed bridge selected for field strengthen-

ing was fabricated and instrumented with strain gages for load distri-
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bution testing. The bridge model was subjected to vertical concentrated
loads, simulated truck loading, and various post~tensioning schemes.

1.4.2 TField Testing Program

After several meetings with the Jowa DOT Office of Bridge Design,
two bridges were selected on which the post-tension strengthening
technique could be applied. One of the bridges, henceforth referred
to as Bridge 1, is located in Dickinson County (2.2 miles north of
Terrill on county road N14), and is on the secondary road system. The
other bridge, henceforth referred to as Bridge 2, is located in Greene
County (a few yards south of the Greene-Webster County line on Iowa 144),
and is on the primary highway system.

Bridge 1 is a four beam 50 ft X 30 ft I-beam right-angle bridge,
which is essentially identical to the prototype for the model bridge
used in Phase I. Thus, Bridge 1 is essentially twice the size of the
laboratory model bridge.

Bridge 2 is a four beam 70 ft x 30 ft I-beam 45° skewed bridge
which was used as the prototype of the plexiglas model bridge.

Both bridges were instrumented with strain gages and deflection
dials. Although essentially the same instrumentation.was employed on
both bridges, more strain gages and deflection dials were used on
Bridge 2 to determine the effects of the skew and to measure the end
restrainpt presént.

The testing program employed, which was essentially the same for
both bridges, consisted of determining the response of the bridge:

® To an overloaded truck before post-tensioning

e —



13

@ To post-tensioning

@ To an overlpaded truck after post-tensioning.



NN
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2. DESCRIPTION OF TESTS

2.1 Push~Out Tests

2.1.1 Description of Specimens

The push-out specimens were of two sizes: one full-~scale and the
other half-scale. Dimensions of the specimens are shown in Fig. 1.
As is shown, each specimen consisted of a wide-flange beam, 2 ft loang,
with concreté slabs attached to each flange of the beam. The size of
the wide-flange beams utilized (W10X22 in the half-scale specimens and
Wi0x68 in the full-scale specimens) was chosen on the basis of flange
thickness of the beam sections. The flange thickness of the full-scale
specimens closely approximated that of the exterior beams in existing
bridges; the flange thickness in the balf-scale specimens nearly
equalied that of the exterior beams in the model bridge. As shown in
Figs. 2 through 6 and also described in Table 1, shear connectors were
rigidly attached to the beam flanges by bolting or welding. Load was
applied to the upper portion of the beam and transmitted into the
slabs through the shear conmectors. Thus, both the slabs and beam
were subjected to compression.

The push-out specimens were grouped into two categories:

1} Type A specimens (as shown in Figs. 2, 3, and 4) employed

welded connectors installed before the concrete was poured.
2} Type B specimens (Figs. 5 and 6) had high strength bolts
inserted and tightened after the slabs had cured.

Thus, Type A specimens were modeled as shear connectors currently in

use on various composite bridges and on the half-scale bridge of
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BAR 5/8 x 3/8 x 0' 5" REFERENCE LINE
(SERIES 1)
BAR 1 1/4 x 3/4 x 0’ 10““‘““-\HH\\\\hr
(SERIES 3)
L >
L3 x3x3/16x0 11/4" . o>
(SERIES 1) | \ 371
L6 x6x3/8x0" 3 1/4"
(SERIES 3) ‘fy v é;
sTe \\\\\\ 410 x 22 or W10 x 68
s /
BEAM CENTERLINE - -
x
/
1 1/4" - 5/16" (SERIES 1)
2 1/2 - 5/8" (SERIES 3)

a. Details of half-scale (SERIES 1) and fuil-scale {SERIES 3} connector.

b, Photograph of full-scale connector.

Fig. 2. Angle-plus-bar shear connector (Series 1 and 3).
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REFERENCE LINE

374" »] fe 5
C3 x 4,1 x0' 31727 J:,
(SERIES 2) N )
Cs x 6.7 x 0" 8" /3/]6" ! /
(SERIES 4) 1 . !
£ L
: ) wtr i
\ % Mo x 22 \ 2 oaQ ‘
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a. Details of half-scale (SERIES 2) and full-scale {SERIES 4) connector. i

——

b. Photograph of full-scale connector. !

Fig. 3. Channel shear connector (Series 2 and 4).
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HEADED STUD — 7 ’ ’
! 4 3/8" 4 5/4

¥
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| o
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/ |

L

10 1/8"

a. Details of full-scale stud connector.

at

b. Photograph of stud connector.

Fig. 4. 8Stud shear connector (Series 5).
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N
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e

H
a
a. Details of double-nutted high strength bolt shear connector. !

b. Photograph of double-nutted connector prior to placement of grout. i

Fig. 5. Double-nutted high strength bolt shear connector (Series 6).
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7/8%!
| \ ?
~ T; 3/4% HOLES
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a, Details of epoxied high strength bolt connector.

b. Photograph of connector prior to installation of the bolts.

Fig., 6. Epoxied high strength bolt shear connector (Series 7).
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Table 1. Summary of push-out specimens tested. §

Series Type ' Connector Description Specimens !

1 A Halffscale‘angle—plus-bar HAL 'l
- . HA2 {
HA3

2 A Half~scale channel HC1 !
: ' HC2 f
HC3

3 A Full-scale angle~plus-bar FAl
FAZ
FA3

A A Full-scale channel FC1 .f
Fc2

5 A Full-scale stud FS1 o
Fs2
¥S83 i

6 B Double-nutted high strength bolt N1 ‘
N3 |
N4

7 . B * . Epoxied high strength bolt ': E1l | f

=3
L~

1
!
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Phase I, while Type B specimens were modeled as techniques of adding
shear connectors to existing bridges. Because the type of steel on
several of the bridges requiring strengthening was unknown, only shear
connectors that could be added by bolting rather than welding were
considered and tested.

Table 1 presents a breakdown of the push-out specimens grouped
according to series and type. As shown, Type A specimens were desig-
nated by two letters and one number. The first letter designates the
specimen size: H for half~scale and F for full-scale. The second
letter represents the type of connector welded to the flange: S for
stud, A& for angle-plus-bar, and C for channel. The number distinguishes
between the various specimens im a given series.

Type B specimens were all full-scale specimens and, therefore,
designated by just one letter and one number. The letter represents
the process used for attaching the slab to the beam flange by bolting:
E for epoxied and N for double-putted. Tﬁe number distinguishes
between specimens within a series. As may be seen, there were five
series of Type A specimens (Series 1-~5) and two series of Type B
specimens {(Series 6 and 7).

Earlier research had shown that the bond does.not change the
specimen's ultimate strength [27]. Thus, although the beam flanges
and shear connectors were thoroughly cleaned with a wire brush and
then with acetone, no attempt was made to destroy the natural bond

between the concrete and_steel.
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2.1.2 Fabrication of Specimens

A general description of the push-out specimens was given in the
previous section. The following two sections, Sec. 2.1.2.1 and
Sec, 2,1.2.2, present the fabrication procedures used for the Type A
and the Type B specimens, respectively.

2.1.2.1 Type A Specimens

The first step in the fabrication of the specimens was welding
the shear connectors to the beams. Channel and angle-plus~bar connectors
were welded utilizing a standard weld, while the studs were installed
using a stud welder. The location of the shear connectors in the wvarious
specimens may be determined by correlating the reference lines in Figs.

2 through 6 with the reference line in Fig. 1.

The push-out specimens were cast vertically, rather than horizon-
tally, so that both slabs coulé be cast from the same batch of concrete
to reduce the chance qu'variation in concrete strength from one slab
to another. Concrete was”mixed in a 9~-cu-ft mixer and cast into the
forms in three individual 1ifts. Each lift was thoroughly vibrated;
care was taken to minimize the formation of voids adjacent to fhe
shear connectors. Forms were fabricated so that three specimens could
be cast simultaneously as shown in Fig. 7. Each slab was provided
with a small amount of reinforcement, that is, two layersrof #4 reinforce-
ment, arranged as shown in Fig. 1.

A minimum of three 6-in.-diameter * 12-in.-long standard ASTNM
quality test cylinders were made during each pour. The specimens, as
well as the control cylinders, were covered with burlap and plastic,

then wet cured for five to seven days. Due to time constraints, the

EENC—

e
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Fig., 7. TFormwork used for constructing the push-out specimens.
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specimens needed to be tested before 28 days had elapsed. Therefore,

a high strength concrete was employed. From the nine-day cylinder
compressive streng#h determinéd,'the ﬁ#sh}bﬁt_éfecimens were determined
to be sufficiently.strong:for te#ting.a; aﬁ.agé #f 14 days.

2.1.2.2 Type B Specimens

Fabrication of Type.B.$pecim¢ﬁs.began with the vertical casting
of slabs in the sé@e”formwork used'for Type_ﬁ specimens {see Fig. 7).
A nominal amount Qf réiﬁforcément wés:?;oﬁidéd, as well as three #3
reinforcing bars as.iabeled éna.5h§wﬁ.in Fig.'l. The #3 reinforcing
bars provided temporary éobﬁectioﬁ_of fhe slab to the beam flanges
until the high strength.bolg_shear”éon@ectors were in place. Prior to
testing, the #3 reinforcing:baté wer¢ remoﬁgd, so that the only connec~
tion between the slabs and wide-flangg.béam_sectiqns was provided by
the high strength bolts. Because éilhthe'spécimeﬁs:were full-size,
concrete was purchased from a local ready~mix ﬁiént.rather than mixiﬂg
it in the laboratory as was done for the half;scale,.Type A specimens
which required smaller aggregate. The concrete was placed in two
lifts, each of which was properly vibrated to prevent honeycombing.

Four 6-in.-diameter X 12-in.-long standard ASTM quality test
cylinders were made for each set of three specimens. The specimens
and cylinders were then covered with burlap and plastic and wet-cured
for seven days. Due to the time required for the more involved fabrica-
tion of Type B specimens, Series 6 and Series 7 specimens were tested
41 days and 52 days respectively after casting.

After the formwork was removed, each specimen was rotated so that

one slab was resting on the floor and the other resting on the beam

P



27

section so the desired shear connectors could be added. Two different
methods of adding high strength bolt shear conmectors to existing
beams were investigated for ease of installation, ultimate strength,
and characteristics of load-slip and load-separation.

The first fabrication technique examined was the double-put con-
figuration depicted in Fig. 5. Two 3 1/4-in.-diameter X 6-in.-deep
cores at 6 in., center to center, were drilled into each slab of the
Series 6 specimens. Location of the cores along the length of the
beam is given by the reference lines in Figs, 1 and 5. The concrete
cores were removed and a 3/4-in.-diameter hole was drilled through the
beam flange at the center of each core. The side walls of the core
holes were then roughened and cleaned to improve the bonding between
the non-shrink grout and the hardened concrete. Acetone was used to
remove the oil residue left from drilling the steel beams; water was
used to remove the cementitious materials resulting from the coring.

High strength bolts (ASTM A325 3/4-in. diameter X 6 1/2-in. long)
were then placed in the holes through the beam flange and adjusted for
an overall length of 5 in. above the flange. Bolts were then tightened
to the beam flange in the double-nut configuration. To retard the
hydration process in the grout, the core walls were rinsed with water
immediately prior to placement of the grout.

When the grouting was placed, three 3-in.-diameter X 6-in.-long
standard ASTM quality test cylinders were made for determining the
compressive strength. The grouting and cylinders were wet-cured for

four to five days.
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The addition of shear connectors to Series 7 specimens followed a
different procedure, as portrayed in Fig. 6.  Two 3 1/4~in.-diameter
X 1 1/2-in.-deep cores at 6 in., center to'cénter,_ﬁere drilled into
each slab. The reference lines of Figs. 1 and 6 locate the core holes
along the length of the beam. At the center of each core, a 3/4-in.-
diameter core was drilled to the beam flangé;'_Aﬁtéi removal of all
core material, a 3/4-in.—éiameter'hble was driiléd.through the beam
flange at each core 1oqation;15fheﬁbuild~up ofiéﬁééi shavings in the
3/4 in. core caused the drilling to be halted-freqﬁenﬁly in order to
remove the shavings. To provide an even beérihg surface for the

1/8 in. plate washer and bolt combination, grout was placed in the

3 1/4-in.-diameter core and leveled off 1 1/2 in. below the top surface

of the slab. The grout used for leveling was allowed to wet cure for
a minimum of four days.

In order to fill voids and provide Bonding between the bolt and
the slab, a concrete-steel epoxy was employed. The epoxy was spread
thoroughly over the shaft of a 3/4-in.~diameter X 6 1/2-in.~long ASTM
A325 high strength bolt. The epoxy-covered bolt was then placed in
the 3/4-in.-diameter core and moved vertically up and down to provide
an even coating of epoxy between the core walls and bolt shaft. The
bolts were immediately tightened, thus forcing out any veids in the
viscous epoxy and providing uniform bonding between the steel and
concrete,

The epoxy was allowed to cure for a minimum of 24 hours before
grout was placed in the remaining 3 1/4-in.-diameter cores. Two

3-in.-diameter X 6-in.-long standard ASTM quality test cylinders were

P
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made of the grout used in the previously described patching process.
The patching on all specimens and the control cylinders was wet-cured

for a minimum of four days.

2.2 Composite Beam Specimens

The four composite, concrete slab and steel beam specimens were
sawed from the half-scale model bridge of Phase I. The model bridge
framing plan and midspan cross-section may be found in Ref. 19. The
composite beam specimens were obtained by making five longitudinal
cuts in the model bridge, as depicted in Fig. 8. The cuts were made
with a gasoline-engine~powered concrete saw which was provided and
operated by personnel from the Iowa DOT.

Two of the beams, Beams 1 and 4 (see Fig. 8}, had a nominal slab
width of 1 ft 5 in. and were exterior-type composite beams with a
flange on one side only. The remaining beams, Beams 2 and 3, had a
nominal flange width of 4 ft 10 in. and were interior-type composite
beams with equal widths of slab on each side of the beam centerline.
Flange widths on Beams 2 and 3 were made equal to the beam spacing,
thus minimizing the number of saw cuts required. Flange widths on
Beams 1 andjd were determined by calculating the width of slab needed
to locate the centroid of the slab about a vertical axis through the
centerline of the steel beam. This was done to decrease the possibility
of unsymmetrical bending. The actual composite beam slab widths
were the result of inaccuracies in the cutting process; these, along

with the average slab thicknesses, are given in Fig. 9 and Table 2.
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(See Table 2 for values of each variable.)
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Table 2. Actual widths for each composite beam tested. (Refer to
Fig. 9 for definition of x, t, X, Y, and T.)
Beam 1 Beam 2
| Point x(in.) t{in.) Point X({in.) Y(in.) T(in.)
1 10.50 4.25 1 31.12 28.50 4.22
2 - 10.25 4£.25 2 31.12 28.62 4.25
3 10.25 4.38 3 31.12 28.62 4,19
4 9.62 4,25 4 31.00 28.50 4.16
5 9.25 4.12 5 31.00 28.50 4.09
6 9.62 4,12 6 31.12 28.38 4.09
7 10.25 4.12 7 31.00 28.25 4,06
8 10.38 4,25 8 31.00 28.12 4.16
9 10.50 4,12 9 30.75 28.12 4.16
10 10.62 4.12 10 30.62 28.25 4,06
11 10.38 4.12 11 30.38 28.25 4.03
12 10.62 4.12 12 29.88 28.38 4.00
13 11.00 4.12 13 29.62 28.75 4.06
14 11.25 3.88 14 29.50 29.00 4.12
Ave. 10.32 4.16 Ave. QGTEE ;gfzg ZT;;

E—

[
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Table 2. Continued.
Beam 3 Beam 4

Point X(in.) Y(in.) T({in.) Point %x{in.) t{in.)
i 28.00 28.62 4,06 1 10.00 4.00
2 28.62 28.62 4,06 2 10.00 4.00
3 28.75 28.25 4.00 3 10.00 4.12
4 28.62 27.88 4.06 4 10.00 4.00
5 28.50 27.62 4.06 5 10.00 4,12
6 28.50 27.38 4,19 ) 10.00 4.25
7 28.50 27.25 4.19 7 10.25 4.12
8 28.38 27.00 4.12 8 i0.12 4,12
9 28.62 27.00 4.06 9 10.00 4.12
10 29.00 27.12 4.06 10 9.75 4.00
i1 28.88 27.12 4.19 11 9.50 4.12
12 28.88 27.12 4.12 12 9.75 4.00
13 28.62 27.00 4.19 i3 10.12 4.00
14 28.62 27.25 4.12 14 10.62 3.88
Ave. 28.61 27.52 4.11 Ave. 10.01 ;TB;
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All four beams were equipped with the post-tensioning system used
in the testing of the model bridge of Phase I. Details of the post-
tensioning system employed may be found in Ref. 19,

The properties of the concrete and steel in the four beams,
although also available in Ref. 19, are presented in Tables 3 and &
for convenient reference.

The shear capacity of the beaﬁs was less than that required by
AASHTO bridge standards [1]. Therefore, additional shear connectors
(high strength bolts double-nutted to the top flange) were added to
one interior beam, Beam 3, and one exterior beam, Beam 4. The locations
of the existing angle-plus-bar shear connectors for all four composite
beams are given in Ref. 19; the locations of the shear connectors
added to Beams 3 and 4 are shown in Fig. 10, These locations were
dictated by the location of the existing angle-pluS*bar connectors,

Core holes were located on either side of the beam centeriine. However,
this placement was varied slightly on the exterior-type beams so that
the cores did not have to pass through the curbs. For ease of construc-
tion, the core holes (3 1/4 diameter) were drilled before the bridge

was cut into individual beams.

The additional shear conmectors were 1/2-in.-diameter X 4-in.-long
ASTM A325 high strength bolts. The bolts were double-nutted to the
beam flange similar to the configuration {shown in Fig. 5) used in the
Series 5 push-out specimens., An ultimate strength value for the
existing angle-plus-bar shear connector was computed using data obtained
from the push-out tests, The total resisting force of the angle-plus-bar

connectors was then determined for each beam and was found to be less
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Table 3. Physical properties of concrete.

£ (psi) E(ksi)
Deck 33060 2830
Curh 7450 5080

Table 4. Physical properties of steel.

Uy(ksi) gult(kSi) E(ksi)
Reinforcement
#3 69.8 110.8 29,110
#4 70.8 109.7 -
Prestressing - 156.1 24,100
Wl x 26 44.1 66.9 29,990

Wi4 x 22 44.7 69.4 28,990
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than that required. Therefore, sufficient bolt connectors, 16 to the
interior beam (Beam 3) and 24 to the exterior beam (Beam 4), were
added to increase tﬁé shear caﬁaéity té fhe required.level. The
ultimate stfédgth of the bolts was caléulated using thé'wélded stud
formula for shear conmectors in the AASHTO standards [1]. :From the
laboratory work perférmed on the'push-out-épéciméﬁé; ﬁhis_was found to

be a slightly conservative assumption;

2.3 Plexiglas Bridge Model

To deiefmine apficximatél& how.Bfidée 2 would;xéqund to post-ten-
sioning, a small scale model of thé bridge w;s faﬁricated and tested.
As elastic behavior was the primary interest, plexiglas was chosen for
the model material rather than reinforced concrete and structural
steel, as was done in Phase I. Not only was there considerable saving
in expense but alsco in fabrication time. The model fabricated is
shown in Fig. 11. The loading shown on the bridge is to simulate the
correct dead load stresses.

The size of the model was governed by the thickness of available
plexiglas. Since 3/8 in. plexiglas was readily available and Bridge 2
had a deck thickness of 8 in., a model scale factor of 21.33 resulted.
This was close to the range of scale factors generally selected for
highway bridge models. Using the 21.33 scale factor, the overall
bridge dimensions were to be 40 1/2 in. long and 17 5/8 in. wide;
however, due to a fabrication error the bridge was made 40 in. long.

Because of the two different materials (reinforced concrete deck and
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Fig. 11.

Photograph of plexiglas model bridge with additlonal dead

load in place.
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steel I-beams) in the prototype, a unique problem existed in modeling
the remaining portion of the bridge. The modeling was accomplished by
transforming the steel beams into equivalent concrete areas through
use of the modular ratio concept. Beam depths were determined through
use of the scale factor. As may be seen in Fig. 12a, all beams also
were fabricated from 3/8-in.~thick plexiglas. The curbs shown in

Fig. 12a were attached to the deck by set-screws, so that the behayior
with and without curbs could be studied. Flange widths were varied to
obtain the correct moment of inertia and, thus, a good model for
deflection behavior. The variation in lower flange widths shown in
Fig. 12b was made to model the presence of cover plates (thus, larger
moments of inertia) on the exterior and interior beams of the prototype.
Support conditions were modeled using pin supports at one end of the
span and roller supports at the other end.

Due to the small size of the model, the post~tensioning arrangement
also had to be modified from that used on the prototype. For post-ten-
sioning, a single 1/4-in.-diameter aluminum rod was attached to the
ends of each exterior beam.by means of aluminum angles (2 in. X 2 in.

X 1/4 in.) attached to the bottom of the lower flange. Thus, the rod
on the model was located at a greater distance from the neutral axis
of the cross-section and had a significantly larger moment arm than
the post-tensioning system used on the prototype. As may be seen in
Fig. 13a, three holes were drilled in the outstanding legs of the
brackets so that various moment to axial load ratios could be investi-
gated. Another variable incorporated into the model was the series of

holes drilled into the lower flange of the exterior beams, thus making
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possible variations in length of the post«tensioned regions of the
beams. Three different post-tensioning lengths may bée seen in Fig. 13b;
these were obtained by positioning the brackets in the various holes

in the lower flanges of the exterior beams.

2.4 Field Bridges

2.4.1 Description of Bridges

As previcusly mentioned, two bridges were chosen to be post-ten-
sioned: Bridge 1, a 50 ft X 30 ft right-angle bridge, and Bridge 2, a
70 ft x 30 ft, 45° skewed bridge. An overall view of each bridge with
the post-tension strengthening system in place is shown in Fig. 14.
The framing plans and midspan cross-sections for Bridge 1 and Bridge 2
are presented in Figs. 15 and 16, respectively. The overall condition
of both bridges was geﬁerally good. On both bridges, the abutments
had been undercut as the elevation of the stream béd dropped, but
otherwise they were in excellent condition with minimal cracks visible
and no spalling. The deck on Bridge 1 was in excellent condition; the
steel frame, although not corroded, needed painting. The top surface
of the deck on Bridge 2 was badly deteriorated; however, the underneath
deck surface was in good condition., The bridgelis now scheduled for a
concrete overlay in the near future. Its steel frame was in excellent
condition; the painting appeared to be relatively recent.

Since material properties for the bridgeé were unknéwn, testing
or some approximations were required. A number of &-in.~diameter

cores were takem from each bridge (three from Bridge 1 and six from
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Bridge 2) and tested. The average deck concrete strength for Bridge 1
was 7140 psi and for Bridge 2 it was 6430 psi. The reinforcing steel
and A7 structural steel properties were estimated for each bridge, at
40,000 psi for the yield stress of the reinforcing steel and 33 ksi
for the yield point of the A7 structural steel.

Each bridge required approximétely two weeks of preparatory work
before any testing took place. This work consisted mainly of installa-
tion of shear connectors, application of strain gages, construction of
frames for deflection dials, and placement of the post-tensioning
system. Most of the work was performed by crews working from scaffolding
under the bridge, while the bridge was open to traffic. However, when
strain gages were applied, shear connectors attached, and obviously
wher testing was in progress, it was necessary to close the bridge.

The shear connectors were installedremploying the procedure for double-
nutted bolt connectors.described in Sec. 2.1.2.2 and shown in Fig. 5.
The 4~in.-diameter cores for the l-in.-diameter X 8-in.-long high
streagth boits (ASTM A325) were located as shown in Figs. 17 and 18
- based on computations in Sec. 2.4.2. Also shown are the locations of
the existing angle-plus-bar shear connectors for each bridge. Bridge 1
had 26 high strength bolts added to each exterior beam, while Bridge 2
had 28 added to each exterior beam and 26 to each interior beam for a
total of 108. The angle-plus~-bar configuration for both bridges is
-similar to that used on the Series 3 push-out specimens (see Fig. 2).

2.4.2 Design of Strengthening- for Bridges

Details of the post-tensioning system employed on each bridge are

presented in the following two sections. Due to the uncertainty about



*814

LT

*17 28pIag U0 SI103D9UUCO IBPYS JO WOIIBIOT

ooy
=&
= -t
*;;\____ -
1" 9 ﬁ /\ 1t ogn
Z eefeletz 340 -
2' 6 3/4" AN 2' 6 3/4"
1 3/4» : : 2 1740
21 3740 AN 211 178"
? ]/2" ?3 2 3/qu g
1y”
3612 ~ 3¢ g
T 20 ; i 138" T
36 1/2 4 3
a1
RN YL
o) A
. » AT . "
4110 3/8" 4 o ANEL 4' 10 174
(=B
AN 210 174
& e
7' 2 1/4" 3
A 4 g
N
L2 3ran et vy
6' 11 174" "
o e
\/ 2! 100«
e e " A
ze) | 12 34
e
4110/2" 4 50 Y on 4' 10 1/4”
I L
—3e— LT e o
O - 1174 ?{'\ 3" 3F 8 3/6%
B o)
2' 10 3/4% 1 172 :\ﬁ’ 2 374" 21 10 172
I e
I“ # 29 " ¥
34 1/2 2 };. 712 3/8" 505 0
"j{ B Ii\
2r 2t 2 1/2”%,4_3_'; 2' 1 3/40
_ ]
10 g# \/ 1' 8 1/4¢
al, al

*x
¢ BEARING § D
1° 7 172 g 2N 72
S T by T2
2' 8 ]/4u 8 'y ad 2t g+
= Q| B ] e it
ﬁ 3|| 4l 3I|
2 332" BN 2 2 34"
P f ? 2 374" B e
3+ 4 /4 N 34 34
— 1 3/3" :: 3" e
LT
37 38 AN 37 1/2v
~ [-2¥-]
2172 13
4 30 7/8" /N ar 9 778"
2 14,102 78"
170
[ 3]
/N 3' 5 374"
L e iitte o
701 /40 . 2 1/4
N 308 38
\/ . 4 11:
ML
701 y/an ~
-]
2" t?(ﬁ 33/4" 370 e
P $
4 ¢ 778" N 4' 9 374"
2 3/a"| 1 |2 374"
o o
2010 1120 1,g|~t:{f 3 2010 374
e
[- 3¥-3
R AN L
3J4 2 Jdﬁa an
a3 LR N
2' B 1/4" 3 ype \J\{ 2 3/8% 2+ g
Jr Py Jr
¢ 2y iydle 2o
o 1
3t 9 374 N 108 /2
§ BEARING |

LY




3t

———i
2' 3 y/2
s
205 344"
__.\}.:4..
3 81/4
& 1
3o 1/en
g 5
50 g
9§ /2
14 10"
e
4l 3 ]/2!5
LY
4! 3!1
__4,__

F

i ¥ N & &

g - ~ ~ ~ ~

—_ . - ~3 o o —_ . - - - pn

o« .u.w - < o~ B - ) 2_ - <r - )
i E By O Er B AR A S 8 s N Y N8 R e U ir_
|Thmmo4.. FAE I e AN X ASIAY s SN 2 .MM WA A WA NVW T

= = % = # = = = - = = =

ey 3 ™ o8 % R = s

— 3 P — - ™ -l - o

EAST INTERIOR ., - - . P o e
BEAM

.
30"

_AF_

"
3 g

4' 10 /2

3' 3 1/3“

4 3”4.. 33720
4,_
T

.
|

4' 4 v/2n
4o
g* 1"
4* 1
4' 3

: ) : . - ) i =~
: & 5, :, I 5 o T & T L4 @
.m R & T S =

: U+~I o o ‘ilhr in — _w o - .W — o —_ o o ?+4ul|

: & rgﬂn i A N * = & - o O B b b

H i

” : A S AR

= . =2 - = -

: . N Y = o I R &

: A YaE Vo oA W i A I i R s & ot NE O N8 b MBS -Eoas e e
B N i N8 o W N e ooy ~ W R 'l P I o W o Wl vl Vi ik YA " 5|
1= - = = ¥ = 2 B = = = =

o3
WEST INTERIOR BEAM o - - o~ o o
H
@l o] & o & o= | < - | = Pel % I
~— ~ ~ - ~ - ~ lku»l ~ ~ ~ £
3%! 34ﬁ| pn - — o .m (5] — u_ - m e —_ oy Land - 3
=1 =3 o3
— fa [ - D o (=) L4l — wy ~
- N = ™ - - = ~ - PO
e - o =

2, Interior beams.

§ BEARING
§ BEARING

Fig, 18. Location of shear comnectors on Bridge 2,



*gT *8%4

*paInuUTLIvOY

=
™
v
=)
m
=
G BEARING 2T
3t 2 2t \é N 3rzaem
_1.;_ = ki ?.4n
2tog /2 g 24 BM
SRV E W BV
51 /2 A 5 2 172"
T 3 e
2: 9 }/2|1 | 3! 1"
e 3 1/2,, :. 2“ e
T
51 9 ]/2” TN 5« 8 ]/2"
3 3 172" :. 3 [ o
6' 3 1/2v A~ 5' 10
e qm :01 1/2¢ I
= 4" 1 e 4+ 5 1/2¢
s - 317202 174" T
* 4
o+
% 5‘ 9 }/2" /\ St 8 1/2"
o‘ e
el e - E p——
g
2 51 110 3 1/2"‘1/ 2n 51 110
’ e ola “}(
av o 2202 e 40"
fe o ale e
gt gv 3 172" :,/3 ]/2“ 51 gu
T
M- @8 R
8' 0" 3 1/2° IY14" 6° 3"
e o: —h
3t g" 2" :f " 30 o3m
+ go -
st 2:: 2 ‘]/2" :/ 21; 5‘ 21|
e
2' 1 /e 3t Pyggl ozt o2t o1y oz
¥
ola —he
2t gn \L/ 2+ ge
G BEARING -~k | ] J

™
&
-
l
T
___‘.\FM,,M % 311\""12"
AN [ A==t 2' 10"
+ 2k
s " "
36" g Z rs 1/4 3 6"
oy
4; su 2 1/2.1 d/\? 1/2" 41 Sn
e o o!l: e
3t g e 2" N2 1740 30 B /2
e ola e
5 7 1/2n i 1/2"{\3 1/2% 5" 7 1/2°
1y
— ole e
SI 4 1/2" 2II {\3“ 5' 4 3/2"
e - ole b
4' g 172 2" 4/\2 1/2% 4 10 172"
S - o -
5ty N 5' 3 1/2°
= - Al T
§' 7 12" 2 yRniNA2 2 s 7ot
e slo Sher
5 0 3/4" 183 1727 50 0 374
e Lo e o
a9 1740 e W2 1720 At 11178
e oa‘ b
6' 3378 21/2'NAz 1/2n 601 172
e ie “!-‘
3» -!n 3.. }/2 ]./2!! 31 -| ]/4"
—+— oo +
a' 5 174" 2 374" Nl 2t 4" 5 1/4¢
oo <+
4t 4 172" N 4' 4 1/2"
o ole
§'O3) /20 2 1/2" 2" 1+ 11 1700
J 3 N

6%



50

the type of steel in these bridges, as well as in others requiring

strengthening, the brackets were designed for beolted connection to the

bridges (as was done in Phase I).

2.4.2.1 Strengthening for Bridge 1

A Yortran program, BRIDGEOZ, developed under Phase I of this

research, was used to determine the extent of overload in the existing

bridge.

L]

L3

The basic set~up for the data and program included:

Simple span support conditions

Towa DOT truck loads (which give results that lie between
those for aﬁ H20 truck and an HS20 truck)

Impact increase as required by AASHTO

1 1/2 in. overlay on an 8 in. slab (only the & in. slab was
included in the composite section computations)
Wheel load fractions for beams as required by AASHTO
Effective flange widths as determined by AASHTO rules (curb
parts were included in exterior beam composite section)
n = 10 (based on estimated minimum deck concrete strength of

3000 psi)

For data listed above, BRIDGE0OZ gave the following results for

maximum tension stresses in the bottom flange or coverplate:
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Exterior Beam Interior Beam
In bottom flange
at cover plate cutoff 25.28 ksi I18.85 ksi
In cover plate near
midspan 24.49 ksi 18.25 ksi

The allowable stress for inventory rating for A7 steel is 18 ksi
[2}. Consequently, the post-tensioning was required to remove 7.28 ksi
from the bottom flange at the cover plate cutoff and 6.49 ksi from the
cover plate at midspan.

Based on the good correlation between results obtained from
orthotropic plate theory for wvertical loading and distribution of
post-tensioning forces and moments in Phase I, ORTHCO02, a Fortran
program utilizing a series solution to the orthotropic plate equation,
was used to determine the approximate post-tensioning distribution.

When both exterior beams were post-tensioned, ORTHCO02 indicated that
each exterior beam would retain approximately 0.35 of the effects of

the total post-tensioning applied to the bridge. Because 0.15 of the
total post-tensioning effects would be applied to each interior beam,

the slight bottom flange and cover plate overstresses there are obviously
relieved by post-tensioning of the exterior beam.

In order to ailow for possible upward adjustment of post-tensioning
force, the maximum allowable force in post-tensioning tendons was set

at 0.60 fpu’ where fpu is the ultimate tension strength of the tendons.
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In order to reduce the midspan tension stress of the exterior
beam cover plate by 6.49 ksi, it was determined that two of the 1 1/4-~
in.-diameter post-tensioning tendons, 3 1/4 in. above the bottom
flange, would be required for each exterior beam. The forceJto be
appiied to each tendon was computed as 92 kips, for a total of 184
kips for each exterior beam.

A check of post-tensioning losses and gains showed that losses
due to concrete shrinkage, elastic shortening, and concrete creep
either did not apply or were insignificant. The loss due to steel
relaxation was estimated to be 3.8 kips per tenden. If a maximum
temperature difference of 20° F occurred between post-tensioning
tendons and beam, a temporary temperature~caused loss of 3.9 kips per
tenden could occur. These two losses essentially would be offset by
an estimated 5.4 kips increase in tension per tendon as a truck passed
over the bridge. Since estimated losses and gain were essentially
compensated, the initial computation of 92 kips per tendon was retained.

For the exterior beam and simple span conditions, the computed
deflection after full post-tensioning was 0.34 in. upward. An ecceniric
truck on the bridge would cause a computed deflection of 0.64 in.,
which is less than 0.77 in. or L/800, the allowable deflection.

Shear stress on the exterior beam was checked during preliminary
computations and found to be approximately 60% of the allowable and,
consequently, no further shear checks were performed.

Fatigue on coverplate welds was checked. The check indicated
that the welds would be adequate for 100,000 total cycles, but inade-

‘quate for 500,000 total cycles.
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Location of post-tensioning brackets was set so that the average
stress in the bottom flange of the beam would be 18 ksi, or less,

after deduction for holes for 1 in. diameter bolts. Computations

showed that no bolt hole sﬂOuld be farther from the support than

6.04 ft, and brackets were located accordingly.

W

" For purposes of computing the force applied to each bracket, the

pgét‘ ensxon;ng tendon was considered to be a member. Under AASHTO
requ_ ements the connectlon (bracket) design force then must be
increased; thus the bracket was designed for 144 25 klps

The thlckness for bracket parts was set to be at least the thickness
of the beam fiange, 3/4 in. The ﬁrécket end‘plaie thiékﬁess was
computed assuming é uniform load on a simply supported plate with a
central hole. Welds and bolts were designed for both force and moment
caused by the eccentric force of the post-tensioning tendon. The
complete post~tensioning tendon and bracket design is shown in Fig. 19.
Detail drawings for the bracket are in Appendix A.

The statement on the Bridge 1 plans that surface bond between the
top beam flanges and concrete deck had been considered in design
indicated the need for an increased number of shear connectors, as did
our preliminary computations. Often, fatigue controls design of the
shear connectors [14]; however, fatigue data on the bridge itself and
on the angle;fluS*bar type of shear connector were not available,
Consequently, the shear connectors were checked on the basis of ultimate
strength.

For computing the capacity of existing angle-plus-bar connectors,

the angle-plus-~bar was converted to an equivalent channel, based on
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a. Post-tensioning bracket & tendon in posﬁtion.

3 1/4" 3 1/4"

1 1/4% (== (>
TENDON

,(__D_l31 g T 31 gllb‘
o 51+ 3" ‘ >

b. Tendon location.

Fig. 19, Post-tensioning detaiis -~ Bridgel.
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laboratory push-out tests, and the AASHTO channel formula was applied.

On that basis, each existing angle-plus-bar connector was computed to

have apn ultimate strength of 143.8 kips.

Shear connector computations are summarized below:

Exterior beam

P, > P, = 1289 kips

2 |
] Su for 7 connectors = 856 kips
& Su for 13-1" ¢ bolts (studs) = 428 kips

1284 kips TOTAL = 1289 kips = OK

Interior beam

PZ > Pl = 1498 kips

¢ Su for 12.5 connectors = 1528 kips (including central connector

at one-half value)

1528 kips > 1498 kips =« OK

where

P1 = force in the slab due to steel beam and tendon yield
strength

P2 = force in the slab due to concrete slab ultimate compression
strength

¢ = a reduction factor, 0.83

Su = the ultimate strength of the shear connector

2.4.2.2 Strengthening for Bridge 2

Since the literature review indicated that the behavior of 45°

skewed beam and slab bridges was similar to that for right angle

bridges, Bridge 2 was analyzed as a right angle bridge. BRIDGE(OZ data
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were the same as those for Bridge 1 given in Sec. 2.4.2.1, except that
Bridge 2 was treated as a right-angle bridge with a span of 71.25 ft.

Results for tension stresses were:

Exterior Beam Interior Beam
In bottom flange at
cover plate cutoff 24.97 ksi 18.80 ksi
In cover plate near

midspan 24,37 ksi 18.58 ksi

To meet the allowable inventory stress of 18 ksi, the post-tensioning

was required to reduce the exterior beam cover plate stress at midspan
by 6.37 ksi.

Even though ORTHCO0Z is directly applicable only to right-angle
bridges, our review of the literature indicated that load distribution
could be expected to be within 15% of the correct solution. ORTHCOOZ
applied to a right-angle bridge with a 71.25 ft span indicated, ihen,
that each exterior beam would retain approximately 0.32 of the effects
of the total post-tensioning applied to the bridge. Post-tensioning
of the exterior beams easily compensated for the slight overstress in
the interior heams.

In order that stresses in post-tensioning tendons would not
exceed 0.60 fpu’ and to keep forces within 120 kip jack capacity, four

tendons were required for each exterior beam as follows:




& Two teéendons of 1 1/4 in. diameter, stressed to 91 kips at
3 1/4 in. above the bottom flange
e Two tendons of 1 in. diameter, stressed to 62 kips at 7 3/4 in.
above the bottom flange
Based on computations for Bridge 1, no adjustments were made for gains
or losses,

In order to keep the average stress in the bottom flange of the
exterior beam at 18 ksi or less after deduction of holes for 1 in.
diameter bolts, all bolt holes were required to be within 7.51 ft of
the center of bearing. Due to expected moment shift toward obtuse
corners, the brackets at those corners were located as close as possible
to the supports, and the brackets at the acute corners were located
with bolt holes ending at 7.50 ft on the span.

The force for each bracket was increased in accordance with
AASHTO requirements to 241.50 kips. The bracket was designed to be
welded from 3/4 in. plate, except for the end plate, which was to be
2 in. thick of Grade 50. (During fabrication a 2 1/2-in.~-thick A36
plate was substituted for the Grade 50 plate.) Welds and bolts were
designed for both force and moment. The complete post~tensioning
tendon and bracket design is shown in Fig. 20. Detail drawings for
the bracket are in Appendix A.

Computations for the shear connectors are summarized below:
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Exterior beam

P, > P, = 1503 kips

¢.Su for 8.5 connectors = 1039 kips (central coanector at
one~half value)

461 kips

1500 kips = 1503 kips = OK

il Su for 14-1" ¢ bolts (studs)

Interior beam

P, > P, = 1958 Kips

] Su for 12.5 connectors = 1528 kips (central connector at
one-half value)

¢ Su for 13-1" ¢ bolts (studs) = 428 kips

i

1956 kips % 1958 kips » OK
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a. Post-tensioning bracket & tendons in position.

1%¢ TENDON 3 174" 3 174"

1 1/4"¢ TENDON

1"¢ TENDON
34

e

~w~L}<~z 0" o

|"‘ 7']1 3"

b. Tendon location.

Fig. 20. Post~tensioning detall ~— Bridge 2.
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3. TESTS AND TEST PROCEDURES

The following sections outline the details of the specific tests
that were éonducted in the laboratory, as well as those that were
conducted during the field strengthening and testing of Bridges 1 and
Z. Only test set-ups, instrumentation utilized, and procedures followed

during testing will be presented in this section; discussion and

analysis of results, as well as behavior, will be presented in Section 4.

The instrumentation for the tests {laboratory and field) consisted
of electrical-resistance strain gages (strain gages), direct current
displacement transducers (DCDT's}, and mechanical displacement dial
gages (deflection dials). Calibration problems with the DCDT's resulted
in their only being used in some of the laboratory testing.

Strain gages were attached to the various materials (steel,
concrete, plexiglas) of the test specimens, by means of recommended
surface preparations and adhesives. All strain gages were appropriately
waterproofed and wired to minimize the effects of long lead wires and
temperature changes. The majority of the gages attached to the model
bridge of Phase I were still operational, and thus were used during
the testing of the composite concrete and steel beam specimens cut
from the bridge model.

Strains were read and recorded using an automatic data acquisition
system (DAS), except for those on the post-tensioning tendons in the
laboratory and field, which were read using a Vishay portable strain

indicator. The same DAS was used to measure and record the deflections
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which were measured using DCDT's; however, deflections measured with

deflection dials were read and recorded by hand in all tests.

3.1 Push-out Tests

Slip and separation between the slabs and the beams were measured
on all push-cut specimeﬁs. The instrumentation for all specimens
consisted of eight deflection dials, located as shown in Fig. 21.
Four‘deflection dials recorded slip and the remaining four deflection
dials measured separation at two elevations along the slab,

The four deflection dials which were used to measure slip were
rigidly attached to the web of the beam, as shown in Fig. 21. The
stem of each deflection dial was allowed to bear against blocks attached
to the slab as shown. Slip was measured relative to the centerline of
the various shear connectors.

The remaining four deflection dials, used to measure separation
or "uplift", were rigidly attached to the platen of the universal
testing machine. As shown in Fig. 21, separation was measured at the
connector centerline and 1 in. from the end of the slab bearing on the
testing machine platen.

The arrangement for testing in the universal testing machine is
shown in Fig. 22. For uniform load distribution, the lower ends of
the slabs were bearing either on a 1/4-in.~thick pad of neoprene or a
thin laver of dry portland cement. Load was applied to the upper end
of the steel beam by the head of the testing machine through a steel

distribution plate; care was taken to assure concentric loading.
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Fig. 21. location of instrumentation used in the push-out tests,
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The tests involving both Type A and Type B push-out specimens
proceeded in the same general manner. Testing began with a pre-load
of approximately 10% of the predicted ultimate load for each specimen.
The pre-load value of 10 to 25 kips was applied for a variety of
reasons: to insure an even distribution of force through the proper
seating of the steel distribution plate on the beam flanges, to check
the operation of the deflection dials, and to break the bond between
the concrete and the steel beam.

By destroying the bond, consistent ultimate load results will
occur because the entire load is on the conmnectors [27]. The bond was
physically destroyed even though it has been reported that shrinkage
of the concrete is sufficient to destroy bond [28]. Previous research
{24] has indicated that the load-slip relationship will not be affected
by unloading and reloading the specimens.

After the pre-load had been released and equilibrium in the
system established, the load was applied in increments of varying
magnitude. The magnitude of the incfements for the tests varied from
10 kips to 50 kips at the beginning of the tests and 1 to 5 kips when
failure was imminent. After each increment of load, slip and separation
displacements were recorded. At high values of load, the load was
held constant so that behavior (e.g., crack patterns) could be recorded.
When failure occurred, photographs were taken to show the final deformed
shape, and the ultimate load was recorded. The specimens were then
removed from the testing machine and disassembled to determine the

effects of the loading on the slabs and shear connection.

s
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3.2 Testing of Composite Beams

3.2.1 Loading Apparatus and Instrumentation

This section outlines the loading apparatus and the instrumentation
employed on the fpur test specimens. The same loading apparatus,
except for slight variations in the load point location, was used in
all tests. The instrumentation was nearly identical on each of the
composite beams.

Load was applied to the beéms through two 100 kip hydraulic jacks
bearing against a steel frame anchored to the structural testing
floor. Photographs of the test set-up used on the interioyr and exterior
beams are shown in Figs. 23a and b, respectively. The leoad points
were nominally 80 in. apart; the exact locations may be found in
Fig. 24 along with other details of the test set-up. In order to
transmit force uniformly to the slab, a combination of steel plates
and neoprene pads was placed between the jacks and the slab. To
transmit force through the curb and slab on the exterior-type composite

beams, a concrete block was placed under the neoprene pads. Force was
then transmitted through the concrete block and curb, which were at
the same elevation. To prevent horizontal restraint at the load
points, pin and roller supports were provided under the jacks. The
jack pin support coincided with the beam's roller support and the jack
roller support with the beam's pin support; details of the load points
are provided in Fig. 24.

The load on the specimen was measured by a 100 kip load cell and

checked by hydraulic jack pressure. The load cell was placed under
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a. Example of interior beam test set-up.

b, Example of exterior beam test set-up.

Fig. 23. Photographs of composite beam test set-up.
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Table 5. Total number of DCDT's, deflection dials, and strain gages
on each composite beam.

: Deflection Strain

Beam BCDT's Dials Gages
1 5 8 16
2 5 7 18
3 5 7 26
4 5 8 29

[E——
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post~tensioning force and magnitude of vertical load. Four tests were
performed on each beam; the magnitude of test variables as well as the
combination of variables in each test is summarized in Table 6. Note
that Tests A, B, and C for each of the beams were elastic tests, while
Test D for each of the beams was an ultimate strength test. A descrip-
tion of the four tests performed on each beam and test set-ups unique
to the individual composite beams is provided in the following paragraphs.

To distinguish between tests, a number and a letter are used to
designate each test. Thus, Test 3A indicates Test A of Beam 3.

Initially, in Test A, each composite beam was locaded with a pre-
load of one to two kips to insure préper seating at the load points
and to check the performance of all gages and DCDT's. lAfter the
preloading, initial "zero'" readings for all strain gages, deflection
dials, and DCDT's were recorded. As loading progressed, strain and
displacement readings were taken after each load increment. Behavior
was noted and photographs were taken throughout the test. After the
load was released, beams were allowed to sit uqloaded for a few minutes
before final zero readings were recorded.

Tests B and C were slightly different from Test A in that a pre-
determined force was applied to the post-temsioning tendons (see
Table 6 for magnitude of post-tensioning force). Composite beam
specimens were then pre-loaded, vertical lcad applied, and readings
taken as was done during Test A. The procedure used to "lock in" the
post-tensioning force was similar to that used in Phase 1.

The ultimate test performed on each beam, Test D, consisted of

applying vertical load to the post-tensioned beam until the ultimate



74

Table 6. Summary of tests performed on the composite beam specimens.

Vertical Load per
Load Point (kips)

Post-tensioning

Beam Test Force (kips) Maximum Increment
1 A 0 9 1
B 12 - 9 1
c 24 9 1,
D 34 35.0 1
2 A 0 18 1
B 16 15 1
C 32 15 liw
D 48 48.3 1
3 A 0 - 15 1
B 16 15 i
c 32 15 oo
D 48 50.4 1
4 A o 9 1
B 12 9 1
c 24 9 1,
D 34 38.1 1

e
Increment was increased to 2 kips after the vertical load per load
point reached 9 kips.
%
Increment was increased to 2 kips after the vertical load per load
point reached 15 kips.
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capacity of the beam was reached. The test procedure up to the calculated
elastic limit of the steel beam was identical to Tests B and C except

that a higher post-tensioning force (see Table 6) was locked into each
composite beém. At the calculated elastic limit of the steel beam,

the loading increment was increased to two kips per load point.

Behavior of the beam was noted and photographs taken when significant

deformations occurred and when failure occurred.

3.3 Plexiglas Bridge Model

Although using plexiglas for the model of Bridge 2 did save time
and meney, it did have one undesirable characteristic, creep. If this
is not properly accounted for, all results may be invalid. The most
common methed for handling creep in constant stress situations, such
as the tests on the bridge model, is to determine a cyclic loading
time to use in all tests. At a specified time increment, loads are
applied and then all strain and deflection readings are takem. It is
important to use the same time increment in all tests as there is a
certain modulus of elasticity associated with that time. Through
experimenting with a test specimen of the plexiglas in the model
bridge, a time increment of one minute was selected. This same test
specimen was used to determine the modulus of elasticity of the plexiglas.
After loading was removed from the model, it was found that a period
of time (at least twice the time it was loaded) was required for the

model to relax and be ready for another loading cycle.
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Figure 27 indicates the location of the 32 strain gages mounted
on the model. At each of the 16 locations, there were two gages with
their axes parallel to the axis of the beams~-one on the top of the
deck and one on the bottom of the lower flange. As seen in Fig. 27,
the skewed centerline, as well as a perpendicular centerline, were
instrumented for strain measurements. However, only the skewed center-
line was instrumented for deflection measurements.

Table 7 lists the combination of variables in each of the ten
different tests. Clarification of the various loading positions and
the truck loading position_islpresented in Figs., 28 and 35. As previously
stated, the bridge model was fabricated so that it could be tested
with and without curbs; however, all testing done to date has been
with the curbs in place. Load points shown in Fig. 28 were 1/2 in.
off the centerline and quarter span line to avoid the strain gages on
the deck.

For clarity, the testing program will be presented in three
sections: vertical load tests (Tests 1 and 2 in Table 7), post~tensioning
load tests (Tests 3-5 and 8-10), and tests involving a combination of
vertical load and post-tensioning load (Tests 6 and 7).

3.3.1 Vertical Load Tests

Tests involving vertical loads only are designated in Table 7 as
Tests 1 and 2. A single concentrated load of 14.2 lbs was systema-
tically placed at each of the eight load points shown in Fig. 28. The
14.2 1bs concentrated load (equivalent to 41.9 kips on the prototype)
produced strains of sufficient magnitude that measurement problems

were minimal. Steel plates were placed on bolts, so that only the
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Fig. 28. Locations of concentrated vertical load
points — plexiglas model.
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Flg. 29. Simulated truck loading —- plexiglas model.




head of the bolt came in contact with the bridge (approximately {
1/2 square in. of contact area). These were used to simulate the
concentrated load. _: | 3
In Fig. 29Ithe simulated truck loading used on the model bridge [i
is shown; it is a scaled-down version of the truck actually used on
Bridge 2. Thus, the model truck weighed 20.51 ibs, while the actual
truck Qeighed 60,500 1bs. Shown in Fig. 35 are:quarter span and
centerline points where the centér~of—gravity of the trﬁck was positioned M
on the model. As was the case in the field testing (see Section 3.4),
the truck was placed.in six different lanes--three one direction and
three the other direction--across the bridge. Lanes 1 and 6 were at \
minimum distance from curb (1.13 in. model; 2 £t prototype); lanes 2
and 5 were at minimum distance from bridge centerline; and lanes 3 and ' \
4 were both centered on the longitudinal bridge centerline--lane 3
with the truck headed one direction and lane 4 with the truck headed '
opposite. Thus, the truck was placed at 18 different locations. }
The procedure used in each vertical load test waé as follows: '
{1} Record zero strain gage and DCDT readings utilizing the DAS. i
Read and record initial reading of deflection dial for creep
determination. /
(2) Apply load {concentrated or truck) at.desired location.
(3) Wait one minute and take strain and deflection readings as 4

in step 1.

(4) Remove loading, wait a minimum of two minutes (noting deflec-

tion dial reading for creep behavior) and take second set of

zero readings as in step 1.
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{(5) Repeat above steps until all vertical load cases have been
completed.

3.3.2 Post-tensioning Tests

Tests involving post-tension forces only are listed in Table 7 as
Tests 3, 4, 5, 8, 9, and 10. The only difference in post-tensioning
schemes 1 and 2 (listed as Tests 9 and 10 in Table 7; henceforth
referenced as PTS~1 and PTS-2) was in PTS~1, where the force was
symmetrically incremented in each rod to the desired value, and in
PTS~2 the force was increased to the desired value in one rod and then
increased to the same value in the second rod. The three different

eccentricities (el, e,, and e3) used, as well as their distance from

2
the composite peutral axis, arve shown in Fig. 13a. Figure 13b indicates
the location of the brackets used to obtain the three different post~-

tensioning lengths (Ll’ L,, and L3). Length L1 was obtained by placing

Iy
the brackets close to the location they will be on the prototype,
Bridge 2. By moving the bracket at the acute angle of the bridge
closer to the other bracket, length L2 was obtained. Length L3, the
shortest length, was obtained by moving both brackets away from the

end supports.

The post-tensioning force required for each exterior beam--to
reduce the bottom flange strains to the desired level--was found by
using the requirements of similitude to be 104.1 lbs. This is the
force required, assuming the post-tensioning rods have the same eccen-
tricity as those in the prototype. However, in the model the post-ten-

sioning rods are actually below the lower flange; thus, a smaller

force was required to cobtain the same moment effect. As is normally
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the case, the axial load effects are small compared to the flexural

effects resulting from post-temsioning. Thus, the axial load stresses

were ignored when the force necessary to produce the same moment as

the 104.1 1lbs in the correct position was determined.

€y @ force of 50.0 1lbs was determined to result in the desired moment.

In the tests invelving PTS-1, the post-tensioning force was

increased in increments of 12.5 1bs until 62.5 1bs was reached. The

tests in which the post-tensioning force was incremented were conducted

as follows:

(1) Record zero strain gage and DCDT readings utilizing the DAS.

(2) Tighten nuts at one end of each post-~tensioning rod until
the desired strain is reached, thus indicating the desired
force has been obtained.

(3) Allow creep effects to occur in the model for approximately
30 sec. Adjust tension in post-tensioning rods until the
desired force is once again obtained.

{4) Take final strain gage readings using the DAS.

(5) Remove post-tensioning force and allow bridge to relax for a
pericd of time at least twice that in which the force was
applied.

(6) Repeat steps 1 through 5 except each time increase the

post-tensioning force one increment. For the higher post-ten-
sioning force, considerably longer periods of time are

required for the model to relax.

Using eccentricity
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3.3.3 Vertical Loads Plus Post-tensioning

Tests involving a combination of vertical load and post-tensioning
(Tests 6 and 7 in Table 7) were conducted at eccentricity e, and
length Ll, with a post-tensioning force of magnitude, 50.0 lbs. As
presented in the previous sections, the 50.0 lbs of force at an eccen~

tricity e, were required to reduce lower flange stresses to the desired

2
level. The procedure of applying the vertical loads and post-tensioning
forces, as well as their locations, were the same as has already been
presented. Post~tensioning forces were applied first, when vertical
loads {concentrated or truck)} were applied to the model. The bridge

strains, as well as the change in strains in the post-tensioning rods,

were recorded utilizing procedures similar to those previously described.

3.4 Field Bridge Tests

In the following paragraphs the instrumentation, type of loading,
location of loading, testing program, and so forth for Bridges 1 and 2
will be presented. Due to the similarities in the bridges, instrumenta-
tion and the like will be discussed together for both bridges.

Figure 30 indicates the location of the strain gages and deflection
dials used on Bridge 1. At each of the four sections instrumented for
strain detection, four strain gages were oriepted with their axes
parallel to the axis of the beam. Two of the four gages were on the
lower surface of the top flange, and two were on upper surface of the
bottom flange; all were 1/2 in. in from the flange edges. The strain

gages were so positioned on the beam cross-section to facilitate their
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85

installation. Since the strain gages were not on the top and bottom
of the beams, strains slightly less than the maxiwmum at the various
sections were recorded. However, with the measured strains, the
maximum strains at the given section can be determined.

The six deflection dials indicated in Fig. 30 were positioned to
measure vertical deflection at the centerline of each beam and the
quarter point of Beams 1 and 2. Due to the large distance between the
bridge and the ground, it was necessary to construct wooden frames to
support the deflection dials. To prevent movement of the frames, they
were guyed with several small cables.

The instrumentation (strain gages and deflection dials) utilized
on Bridge 2 is shown in Fig. 31. At each of the eight sections ipstru-~
mented for strain measurement, four strain gages were placed and
oriented as on Bridge 1. The majority of the strain gages were placed
on Beams 3 and 4; however, the centerline of Beams 1 and 2 was also
instrumented. Two sections were instrumented 15 in. from the centerline
of bearing of Beams 3 and 4; this was done as a result of the end
restraint detected during the strengthening of Bridge 1. With the
instrumentation of these two sections, it was possible to determine
the approximate end restraint present, More details on the end restraint
in the two bridges is presented later. The eight deflection dials
used for the measurement of vertical deflections were attached to
wooden frames similar to those used on Bridge 1. As previously stated
for post-tensioning the bridges, two 1 1/4 in. diameter Dywidag Thread-
bars were required on each exterior beam of Bridge 1 and four Dywidag

Threadbars~~two of 1 in. diameter and two of 1 1/4 in. diameter--~were



86

© +7 98p1ag - UOTIPIUSWNIISUT JO UOTIBDOT

SINIWIUNSYIW NOILD343Q WIILYIAO
- SINIWFHNSYIW NIVYLIS ©

M3IA NV

‘1€ 814

Y /

L W8

o
Vel e

/| /
<

p
3 NvdS v/1 NI 61




87

required on the exterior beams of Bridge 2. For accurate measurement
of the post-tensioning force, two longitudinal strain gages (wired to
cancel bending and detect twice the axial strains) were attached to
each tendon (Dywidag Threadbars). For corrosion protection, all
tendons were given a fusion bonded powder epoxy coating using 3M,
5K213 material; coating thickness was 8 mils £ 2 mils. As the tendons
were factory coated, they were inspected after they were in place to
recoat any areas that had been scratched during shipping or handling.
Post-tensioning brackets for both bridges were painted with red oxide
Type 2 primer before installation. After they were bolted in place,
the bolts were painted and the brackets "touched-up" with the primer.
Brackets and attaching bolts were then painted with Iowa DOT approved
second field coat: Foliage Green. On both bridges, it was necessary '
to remove'é portion of the interior diaphragm brackets for tendon
cléarénce.n -

' Thé field tesiiné program on each bridge involved the determination
of eécﬁ'bridgg's fespohse?ﬁstrains, and deflections, to the following
three loading conditionsi.

(1) An overloaded truck at various predetermined locétions on
the bridge
{2) The various stages of the post-teasioning sequence
(3) Same overloaded truck at the same locations after the post~
tensioning of the bridge had been completed.
The trucks (configuration and weights) used to load the bridges
are presented in Figs. 32 and 33. Although the trucks had different

wheel spacing, their weights (60,540 1bs for Bridge 1 and 60,500 1bs
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90

for Bridge 2) were essentially the same. As may be seen in Figs. 32b
and 33b the sand load ip both trucks was covered to reduce evaporation,
which would change the truck weight. Althoughrthe photograph of the
truck used on Bridge 1 (Fig. 32b) shows rear tandem wheels, the rear
wheels were actwally raised, thus creating the wheel spacing shown in
Figure 32a.

The load points shown in Figs. 34 and 35 indicate where the
center-of*graviﬁy of trucks (see Fig. 32a for Bridge 1 and Fig. 33a
for Bridge 2) used in the loading of Bridges 1 and 2, respectively,
were positioned. Trucks were posiﬁioned at these locations before
(loading condition 1) and after (loading condition 3) post-tensioning.

On Bridge 1, the truck was positioned over the 12 leading points
shown in Fig. 34b by having the triuck heading south and crossing the
bridge in thrée different lanes: 1lane 1 was with the centerline of
the tires_ztf#_f;éﬁ:the curﬁ,ﬂlahe 2 was with the centerlines of the
tires 2 ft from tﬁe’lénéiﬁudinal bridge céﬁteﬁiiﬁe, a9d.1ane 3 was
with the.truqk centgfed 9n.the 1oggi;udingl b;idge_céntexline (see
Fig. 3455. As the t?ﬁck Erosséd the briagé, iﬁ was stopped at the two
quarter points, the centerline, and at a section 19.83 in. past the
bridge centerline. Foﬁ this truck, positioning the truck’s center-of-
gravity at this latter section produces maximﬁm mément in the bridge.
Although not shown, testing alsc included having the truck cross the
bridge headed north, in lanes similar to the other three, to check
symmetry.

As in the test of Bridge 1, another truck (see Fig. 33) was

positioned on Bridge 2 (see Fig. 35b) by having the truck cross the



91

LANE 3

=0

LANE 2

=0

o e

LANE 1-JPI2'

1/4 SPAN

“— 51 3"

BOI Oll

rk*__“_

¢ BRIDGE

Cross- section.
¢-¢
¢ 1/4 SPAN
«—19,83"

BRG s

M_a

;l_{
15" 11 1/4" :

|

¢ LANE 1

1

mﬂi—

€r4?
tt
—-—

i
i%
'

¢ LANE 2

¢ LANE 3

b.

Fig. 34.

POSTION FOR
[ MAX IMUM MOMENT

Plan view.

Location of test vehicle -- Bridge 1.




92

LANES 3 8 4.
| o=t || (3-NORTH; 4-50UTH)
LANE 2
, NOTE :
' 1' ON BRIDGE 2
LANE ] = 0.56" ON PLEX. MODEL

B!

- R TR LE———

e 15' 11 1/4'
BRIDGE §

a. Cross-section,

L 71* 3* %- % BRG (BRIDGE 2)
r 39 5/8" & - % BRG {PLEX. MODEL)-

|1

AN
LANlI; 5E g E/ @/' @/ 8/
LANE 4 & /L /0/ /e/ /o/ — ¢ LANE 3
® @ ® ¢ LANE 2

@ & -]
s | ’/ ,/ 7/ ¢ LANE )
1/4 éPAN %/ 1//spAN %

b. Plan view,

Fig. 35. Location of test vehicle —— Bridge 2 & plexiglas model.



93

bridge in six different lanes and stop so that the truck's center-of-
gravity was at the two guarter points and bridge centerlipme. The six
crossings (three with the truck headed north and three with the truck
headed south) were necessary due to the skew of the bridge and the
1imited amount of instrumentation used. As on Bridge 1 the truck
crossed the bridge aﬁ a minimum distance from the curb (lanes 1 and
6), at a minimum distance from the bridge centerline (lanes 2 and 5),
‘and with the truck centered on the longitudinal centerline of the
bridge (lanes 3 and 4). As expected, the results obtained when the
truck was placed in lane 3 {truck headed north) and in lane 4 (truck
headed south) were essentially the same.

Post-tensioning force was applied to the exterior beam of the two
bridges utilizing 120 kip capacity, 6-in.-stroke hollow-core-hydraulic
cylinders, which were 6 1/4 in. in diameter. This diameter was somewhat
critical im that it did influence the position of tﬁe tendons relative
to the beams. As only two hydraulic cylinders were available, it was
nécessary to post-tension the bridges utilizing a scheme similar to
the second post-tensioning scheme (PTS-2) of Phase I. As the actual
steps in post-tensioning were different for the two bridges, they will
be presented separately in the following paragraphs.

For Bridge 1, in order to reduce by the desired amount the stresses
in the exterior beam and cover plate, it was determined that each
exterior beam required 184 kips (92 kips per tendon) of post-tensioning
force located 3 1/4 in. above the bottom flange (see Sec. 2.3.2.1).
Utilizing the two hydraulic-cylinders, the bridge was post-tensioned

by applying approximately one-third (60 kips) to each exterior beam in
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six steps as shown in Table 8. Note that the values given in Table 8
(as well as in Table 9 which follows) are nominalrvalues_rather.than
actual values.

In steps 5 and 6 the forces in the tendons were increased past
the desired values to offset seating losses. As previously noted, the
post-tensioning forces could be measured accurately asing the strain
gages mounted on the individual tendon. After seating losses, Beams 1
and 4 had 181.59 kips and 182.43 kips of post-tension force respectively.
Thus, based on the average of the two values, 182.01 kips, there was
1% less post~tehsioning force than desired. |

Te obtain the desired stress reduction in Bridge 2, each exterior
beam required 306 kips (91 kips per large tendon and 62 kips per small
tendon), located as shown in Fig. 20. As there were only two hydraulic
cylinders available and each exterior beam had four tendons {two of
1 1/4 in. diameter and two of 1 in. diameter), the post-tensioning of
Bridge 2 was somewhat more involved than Bridge 1. As shown in Table 9,
post-tensioning of Bridge 2 was accomplished in steps by applying to
the eight tendons approximately one-third the desired force. A graphical
representation, as presented in Fig. 36, shows how the post-tensioning
force was applied (12 steps). As can be seen, small changes in the
post-tensioning force occur on one.beam when the other beam is being
post-tensioned. 1In addition'tb seating losses, the loss of post-ten-
sioning force in one set of tendons on a given beam, caused by the
elastic shortening of the beam when the other set of tendons was

post-tensioned, had to be tazken into account.
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Table 8. Post~tensioning sequence--Bridge 1.

T e
lofe? c 30Het
S o]
BEAM 1 BEAM 4
Force Applied and "Locked in' Tendons (kips)
Steps - Tendon 1 Tendon 2 Tendon 3 Tendon 4
1 30 30
2 30 30
3 60 60
4 60 60
5 92 92
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Fig., 36. Variation Iin post-~tensioning force per beam during

post-tensioning sequence -~ Bridge 2.
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After the various losses had been taken into account, Beams 1 and {
4 had post~teﬁsioning forces of 303.58 kips and 307.58 kips respectively.
Based on aﬁ average‘of these two values, 305.58 kips, the post-tensioning
force was 0.1% lower than desired. ;
The procedure used to obtain data on both bridges for the trucks
in .the various locations as well as for the various stages of post-ten-
sioning was:

(1) Recqrd zero'strain.reading for all strain gages utilizing ‘ |
the DAS and Vishay indicator; read and record_initiai readings
of all deflection dials.

(2) Apply loading {(truck, post-tensioning, or post-tensioning

+ truck) at desired location.

L

(3) Record the strain gage readings as in step 1; record any

| changes in bridge behavior.

(4) Remove truck loading from bridge and take second zero strain o
gage and deflection dial reading. Obviously the second zero | ]
could not be obtained when the post-tensioning forces were
applied. . {

.(5) Repeat steps 1 through 4 until truck loading had been posi-
tioned at all desired locations {(before and after post-ten-

sioning).
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4. TEST RESULTS AND ANALYSIS

.Detailed descriptions of the test specimens have been presented
in Section 2; detailed information on the various tests (field and
laboratory) were presented in Section 3. In subsequent sections of
this chaptér, experimental results of the various tests performed will
be presented. In most instances the experimental results will be
compareé with theoretical results.

As was done in Phase I, orthotropic plate theory was used in the
determination of the theoretical moment coefficients. TFor details of
assumptions made in this analysis, the reader is referred to Réf. 19.
The experimental moment fractions are based on bottom flange strains
utilizing the same assumptions made during Phase I. As previously
mentioned, beam strains measured in the field (Bridges 1 and 2) were
on the top of the bottom flange (bottom flange strains) and on the
bottom of the top flange (top flange strains). ‘For clarity, the
results of each test program will be presented and discussed separately
as was done in the previous sections {Sections 2 and 3). Due to the
vastness of the various test programs, and thus the resulting data,'

only the most significant portions of the data will be reported.

4.1 Push-out Test Results and Analysis

The data from the push-out tests consisted of slip and separation
measurements, as well as ultimate load values for each specimen. The
four slip readings obtained were averaged together to produce the

average slip per connector. The lcad per connector is half the total



100

load applied to the steel beam. Ip the case of a stud or high strength
bolt, a connector consists of two studs or two bolts.

The separation‘between the concrete and steel was measured at two
locations along the face of the slab. Deflection dials located 1 in.
above the bed of the testing machine were used to check for excessive
sliding of the specimen on the testing machine platen, as well as
separation between the slabs.

The results from these dials indicated movement along the platen
was occurring, but was of a small enough magnitude to neglect. Relative
separation of the slabs at the base was found by averaging the two’
deflection dials. The separation at the base does not provide a true
value of the uplift on the connectors but was checked to insure that
separation or uplift was small; separation was found to be small and
thus was not given any further consideration.

The average of the two deflection dials at connector level is
referred to as the "uplift" of the slab from the beam. This uplift or
separation was Cheéked to insure that it was "less than half the
interface slip at the corrésponding load level™ [32]. Thus, it closely
approximated the uplift forces present in an actual composite beam.

A1l but one connector, the angle-plus-bar, met this 50% limit. The
rigid nature of the angle-plus-bar conﬁector, which will be discussed
in more detail later, probably caused the excessive separation.
Because the uplift values obtained in the remaining series were within
the 50% limit (see typical load-separation curves in Ref. 9), the
effect of uplift was considered to have minimal influence on the

behavior of these connectors.
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4.1.1 Type A Specimens

As explained in Section 2.1.1, the Type A specimens were tested
in order to obtain experimental values for angle-plus-bar connectors
(used on bridges built from the 1940’s to 1960's), welded studs, and
‘channel cbpnectors. By comparing experimental results to existing
design equétions [1], a design rationale could be developed for the
angle~plus-bar connectors. Values obtained from push-out tests‘provided
a lower limit to those obtained from composite beam tests and thus are
conservative when used in design {28,32].
To eliminate several of the variables, concrete compressive

strengths were held nearly constant; also the physical dimensions of
the push-out specimens were held constant. Tébles 10 and 11 present
compressive concrete strengths, experimental and theoretical ultimate
loads, aﬁd,types of failure for Series 1 through 5. Theoretical
lultimate load values for Series 2, 4, and 5 were obtained by using
relationships from AASHTO [1]; those for Sefies 1 and 3 were obtained
by using a modified form of the AASHTO channel formula [1]. Note that
within the various specimep series the experimental ultimate load
values are very consistent as are the failure mechanisms (except for
one case). This same con;istency is also true im the load-slip curves
fof the individual specimens of a given series (see Appendix of Ref. 9).

| The connector ultimate load values oBtained experimentally compared
ve?y well to the‘predicted values for the half-scale speéimens (Series 1
and 2). Table 10 shows that the ratio of predicted t§ experimental
ultimate 1oad.for the channel and angle-plué—bar connectors yielded

results between 1.00 and 1.13. The slightly low experimental values
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Table 11. Description of type of failures occurring in push-out test

specimens.
Letter
Designation - Description

A Tensile cracking of the slab (simultaneous
with concrete crushing adjacent to connector)

B Fracture of the shear connector above the beam
flange or weld preceded by cracking of the
slab

C. Fracture in weld attaching the connector to
the beam flange

b Shearing of a wedge of concrete from under

the connector (comcurrent with the separation
of the slab from the beam flange)
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can be attributed to an unequal distribution of load bétween the two
connectors caused by slight eccentricities of the specimen in the
testing machine [31].

In Fig. 37, the load-slip curves for half-scale, angle-plus-bar
and channel shear connectors are presented. Thése load-slip curves
(as well as the others which fbllow) are an average of the indi%idual
load-slip curves of the specimens within a given series. The angle-plus-
bar connector provided more resistance to slip at all values of lead.
Compared to the halfusgale_channel, the angle-plus-bar connector
provided a more rigid connection, as well as a slightly higher ultimate
strength. |

The full-scale, angle-plus-bar shear connector (Series 3), which
was previously used on.composite bridges in Towa, was compared to both
the channel connectors (Series 4) and the stud connectors (Series 5).
0f the full-scale specimens tested, only Series 5 yielded results in
good agreement with calculated values (ratios of predicted to experi-
mental ultimate loads between 1.01 and 1.10). The low experimental

‘results most likely can be attributed to slight eccentricity of the
specimen in the testing machine. The results from the Series 3 and 4
specimens were in poor agreement with the calculated values (ratios
‘between 1.42 and 1.47), although the low experimental ultimate load
values, as well as failure modes, were very consistent within a given
series.

The low results for the Series 4 specimens were probably caused
by a large qumber of voids located adjacent to the loaded side of the

connectors. After testing, when the slabs were fully separated from
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the connectors, it was discovered that voids comprised approximately
15% of the effective concrete bearing area. The percentage of voids
found in the other specimens was found to be considerably less. A
considerable number of voids found were located near the channel
flange welded to the beam. Previous research [31] has indicated that
high stresses exist neér the beam flange and that the greatest portion
of the load carried by a channel connector is carried by thé flange
welded to the beam. As is seen in Table 10, Series 4 specimens failed
by tensile cracking in the concrete slabs. Since this failure was a
function of the dimensions of the slabs, this might also havé caused
the low experimental values.

Series 3 specimens also experienced failure at loads much lower
than calculated. As noted in Table 10, all Series 3 sﬁeciméns failed
through the weld. Inadvertently, a 3/16 in. weld (specifiedlon plans
for the laboratory model bridge) wés provided rather than the 1/4 in.
weld which was specified on Bridge 1 and Bridge 2 plans. The éhear‘
and bending capacity of the 3/16 in. weld was calculated and found to
be slightly below the observed ultimate load. By providing a 1/4 in.
weld, the capacity'would have been increased approximately 33%; thus
the ratio of predicted to experimental ultimate load would have been
Lowered Consi&erably. In Section 4.1, it was noted that the separation
of the slab from the beam, or uplift, was considered a significant
problem on the Series 3 specimens. This is true because the angle-plus-
bar connector, being a rigid connector, provides a greater resistance

to slip, which increases the tendency of the slabs to separate from
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the beam. Thé failure of the weld at the leading (or first loaded)
edge of the angle further influenced the separation tendency.

The load vs. slip curves for the full-scale shear connectors
(Series 3, 4, and S specimens) are presented in Fig. 38. For comparison,
10ad-$1ip curves from two other research projects [25,31] are also
given. As was the case in the half-scale specimens (Series 1 and 2),
the rigid, angle-plus~bar shear connectors provided more resistance to
slip than the flexible channel or stud connectors. There is good
agreement between Series 5 and the previously tested studs [25]. A
lack of agreement at the lower loads can be attributed to the fact
that the.previously tested specimens were not pre-loaded (Series 5
specimens were pre-loaded to 10% of the ultimate), and some bond
betweén.the concreﬁe and steel may have been present. The channel
conngctér (Series 4) did not correlate very well with the previously
tested channel comnector [31]. Though the channel in Series 4 was
largér in size és well as length, it exhibited consistently lower.
‘values of load at equivalent values of slip. The presence of voids
adjacent to the connector is thought to have caused the difference.

4.1.2 Type B Specimens

Type B specimens (Series 6 and 7), as stated in Section 2.1.1,
were tested to determine the effectiveness of using high strength
bolts as shear connectors. The two belt configurations tested (shown
in Figs. 5 and 6) produced the results shown in Table 12. Although a
limited number of specimens were tested, consistent results were |

obtained for each connector series. This agreement is evident in the
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ultimate 1036 values in Table 12 and in the specimen 1oa&~slip curves
{see Appendix of Ref. 9).

In order to evaluate the effectiveness of Type B specimens,
welded stud specimens (Beries 5) were used for comparison. As may be
observed in Figs. 4, 5, and 6, the physical dimensions of the conﬁectors
were essentially identical (height was approximately 5 in. and the
diameter was 3/4 in.). As previously discussed, the main differences
between the bolts and studs were the method of attachment to the beam
flange and the tensile strength. The minimum tensile strength of a
high strengﬁh bolt is 120 ksi, while the tensile strength of a‘stud is
approximately 71 ksi [25], or 40% less than the bolt.

In comparing values from Tables 10 and 12, it is evident phat‘the
bolt connectors exhibited consisténply higher values of ultimate load
than the studs. The Series 6 speciﬁens produced ratios of predicted
fo experimental ultimate load between 0.917 and 1.00, and the Series 7
ratios were between 0.863 and 0.909. Series 5 connector ratios were
consisfently greater than 1.01. The deviation in the ultimate strengths
may be attributed to the large differences of tensile strength between
the connectors, because an increase in the tensile strength is usuvally
accompanied by an increase in shear strength. 1In Table 12, the ultimate
‘_load capacity of the epoxied bolt connector {Series 7) is sﬁOWn to be
slightly higher than the double-nut bolt connector (Series 6). This
small difference is very likely due to the reduced cross-sectional
afea on the double-nut bolts, because the threads were located in the
shear plane. Ratios of predicted to experimental ultimate load below

1.00 for the bolt connectors indicate that the AASHTO formula for the

oot
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ultimate strength of studs provides a conservative estimate of the
ultimate strength of high strength bolt shear connectors.

As shown in Fig. 39, there is good correlation between the Series 5,
6, and 7 specimen load-slip curves. Some of the variation at medium
values of 1oad‘was‘probably caused by the method of attachment to the
beam (bolting versus welding). Up to loads of 15 to 20 kips, the
curves have approximately the same slope. From 20 to 45 kips, the
effect on the load-slip behavior due to bolting is noiiceable. The
lower resistance to slip of the bolts is probably related to the
seating of the bolt in the hole through the flange. |

For loads up to 15 to 20 kips, the bolts provided a higher resis~-
tance to slip than the studs. This occurred in the Series 7 specimens,
because the slab was clamped down to the beam by the bolt, and thus
friction had to be overcome initially. The existence of the nut on
the flange in the Series 6 specimens created a more rigid connection
than a welded stud, as the nut provided a higher connector stiffness.

Variations in the load-slip characteristics between the double-
nutted bolt connectof (Series 6) and the epoxied ﬁolt connector (Series 7)
were minimal. Any differences can be.explained by examining the
methods of attachment to the beam flange. The bonding of the slab to
the bolt was dug to the epoxy. More importantly, the frictional
forces from pre-tensioning the bolt probably helped to lower the
initial slip values in the epoxied bolt connector. Beyond 30 kips the
double-nutte& belt connector was more resistant to slip. The main
reason was the upper nut that was tightened against the beam flange.

This nut provided more bearing area for the concrete and thereby
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increased the connector stiffness adjacent to the beam where high
stresses are known to occur [31]. The double-nutted bolt connector
(Series 6) is preferred over the epoxied bolt connector {Series 7}, as
it is the easier of the two to install for several reasons: |
@ Fewer installation steps (only one coring operation and no
epoxy to apply)
e Quicker (metal shavings do not delay the procedure)
¢ Fewer materials and equipment {(only one core bit and no epoxy
is necessary).
Previous studies [7,10] have shown that high strength bolts performed
satisfactorily under fatigue loading. Although the bolting configuration
in this project was slightly different than the previous studies, in
the authors' opinion, there should be no fatigue problems with the

bolting configuration proposed (Series 6).

4.2 Composite Beam Test Results and Analysis

As previously mentioned, the main thrust of these tests was to
determine the effects of additional shear connectors on post“tehsioned
composite beams. Results and events in the elastic range tests will
be presented in Sec. 4.2.1, and ultimate strength test results and
occurrences will be discussed in Sec. 4.2.2. |

By post-tensioning a composite beam, the post-tensioning tendons
become part of the beam structure, thereby rendering the post~tensioned
portion of the beam statically indeterminate to the first degree. In

the analysis of the various composite beam specimens, the A-T effect
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and P-A effects were neglected, as these effects were shown to be
negligible for the range of loads in this study [19]. The large
deflections in the ultimate strength tests normally require the addition
of P-A effects. However, because the thrust of this testing was to
determine the effects of variable amounts of shear connection, the P-A

effects were also ignored.

4.2.1 Elastic Range Test Results and Analysis

Reéults presented and discussed in this section are for Tests A,
B, and C, all of‘which invelved loading which produced stresses in the
steel'bgams below the elastic limit. Only experimental results are
presented in the following paragraphs; comparisons between experimental
results and theoretical results will be presented in the following
section on ultimate strength, Tests A, B, and ¢ were performed on all
of the composite beams without any unusual occurrences,

Experimental midspan deflections due to vertical load only for
the interior and exterio; cémposite beams are presented im Figs. 40
and 41 respectively. As seen, there is very little difference in the
resulting deflection behavior either due to the post-tensioningrforce‘
(Test A, B, and C) or the additional shear connectors (Beam lrvs.
Beam 4 and Beam 2 vs. Beam 3). Deflections obtained from Test A {no
prestress force locked in the beams) were the most linear of all the
tests throughout the entire elastic range. This is expected because,
withouf the post-tensioning force applied, the problem is linear.
After the poét*tensioning force is locked in, the relation between
vertical load and deflection is nonlinear, but Figs. 40 and 41 show

this is insignificant throughout the entire elastic range.
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The slight differences in deflections at lower values of load are
most likely due to the varying degree of bond between the steel‘béam
“and concrete slab and variation of prestress force. During Phase I
testing, when the beams were part of the half-scale model bridge as
well as the cutting process, the movement of the beams fo; testing and
the initial pre-load before each test accounted for the vary;ng degree
of bond present. Different values of prestress force also caused a
slight variation in deflection (Figs. 40 and 41). At higher values of
prestress force, the composite beams tended to deflect more at lower

values of vertical load. This was probably due to a lower moment of

inertia resulting from cracks in the concrete caused by post-tensioning.

Av higher values of vertical load, the concretg cracks closed, thus
int  .sing the stiffness of the post-tensioned composite beam.
Strengthening the shear connection in the composite beam slightly
lowered the beam's resistance to deflection {Figs. 40 and 41). As
shown, the effect was small and not considered to be significant.

" 4.2.2 Ultimate Strength Test Results and Amalysis

The ultimate strength test, Test D, when performed on each composite

beam, provided data for vertical loading from 0 kips to ultimate.
The 'as fabricated" exterior composite beam (Beam 1) performed
uneventfully vp to 18 kips per load point in Test 1D. At a vertical
load of 18 kips, deformation in the bracket and the flange under the
~bracket became visible. The beam continued to resist load; however,
the rate of slip oécu:ring increased more rapidly (as will be shown

later). While loading increased, it was noted that the post-tensioning
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tendons remained level as the beam deflected. This phenomena was
noted in all the composite beams when loaded to their ultimate strength.
At 30 kips the bottom flange of the steel beam h%d rotated to
within 1/16 in. of the abutment. At 35 kips the'angle~plus-bar‘shear
cogﬁecior sixth froﬁ one end failed. The composite beam failed to
accept any gdditional load at this point and testing was terminated.
Upon clﬁser examination, it was noted that the slab "rode'up"‘over the
shear comnector. This phenomenon was similar to that found inm the
Series 1 push-out speciméns. The maximum recorded end slip was 0.238 in.,
and the midspan displacement was approximately 3.537 ian.
The second composite beam tested in the "as fabricateﬂ" condition,
Beam 2, was loaded to a maximum of 48.3 kips per peint. During Test 2D
the beam was noticed to have tilted slightly at a load of 18 kips, as
one centerspan deflection dial read 0.2 in. lower than.the other.
This wvalue remained constant throughout the remainder of the test,
The'defléction dials; along with the other displacement gages, were
removed at 37 kips to prevent damage if sudden failure'occurred. A
?uler at the miaspan provided approximate displacement values and the
end DCDT's measured relative slip until the test was terminated. At
48.3 kips loading was stopped because of the danger of sudden failure
in the testing frame. The maximum slip recorded was 0.015 in., and
the midspan displacement was approximately 3 3/8 in. After the load
was removed, permanent f;ange deformation of approximately 2 1/2 in.
at midspan was observed. Local buckling of the web under one load
point (near the location where the diaphragms were formerly framed in)

was evident.
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Test 3D, performed on the strengthened, interior composite beam
(Beam 3), went according to plan up to a loading of 23 kips. At this
point, flange deforma;ion under the brackets was noticeable, and the
deflection dials were reset due to the large deflections. Deflection
dials and DCDT's, except those measuring slip, were removed at 44.2 kips
{midspan displacement equal to 3.34 in.). Using a string line stretched
between the beam ends and a ruler, approximate measurement of midspan
displacements c&ntinued. Testing was terminated at 48.8 kips because
the usable stroke of the hydraulic jack was reached. At this point,
cracks in the concrete were observed on the underside of the slab, as
well as crushing of the concrete on the top side of the slab at the
span centerline. However, the beam was still capable of resisting load.
At this pqint the maximum midspan deflection and end slip was 5 9/16 in.
and 0.009 in., respectively.

In order to fail the composite beam, it was decided to release
the load, add 3 in. of steel plate at the load points, and resume
loading. Occasional readings were taken with a deflection dial and
string line at midspan and twe DCDT's Lo record end slip. At a maximum
ldaé of 50.4 kips,ra sudden compressive failure in the slab occurred
at the span centerline. During reloading, the maximum deflection
never exceeded 5 9/16 in., and the final end slip was 0.009 in. The
shear connectors showed no signs'of distress; however, web buckling
was noted in the same location as in Beam 2.

The fourth ultimate strength test, Test‘éD, proceeded uneventfully
up to 22 kips, where it was noted that the lower beam flange in the

vicinity of the post-tensioning load brackets had deformed similarly
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to the previous composite beams. At 24 kips, near one load point,
concrete was visibly peeling away from the flange on the underside of
the slab. The chipping of the concrete was noticeable 1at¢r {at
app?oximately 28 kips) under the other load point but eyentually

ceased at both locations around 30 kips. A loud cracking sound occurréd :
at 33 kips, and a sudden drop in load of 2 kips followed. The load was
held constant until it was discovered that the block of concrete under
one of the jacks had cracked. It was then decided to continue the
test. Just before the ultimate load of 38.1 kips was reached, a
lateral bow of approximately 1/2 in. was observed. A suddéﬁ failure
occurred simultaneously in the slab and curb approximaﬁély 16 in. from
the span centerline. The compressive failure of the concrete was
accompanied by local buckling of the top flange directly below the
distressed concrete.

A comparison of theoretical and experimental ultimate bgnding
moment values is presented in Table 13. As may be seen, the experimental
moment was within 9.5% of the predicted capacity for all four-composite
beams. The predicted ultimate bending moments were based on a plastic
-stress distribution, which was modified when a state of inadequate
shear connection existed [28]. The exterior-type composite béams,
Beams 1 and 4, provided experimental values that agreed very well with
-the predicted values. Addition of shear connectors increased the
experimental ultimate moment capacity only 8.8%. Beams 3 and 4,
provided with an adequate shear connection, failed by slab (and curb)
“crushing, while Beam 1, with inadequate shear connection, failed

through the shear connection. Beams 2 and 3, interior-type beams,
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also provided reasonable results. Though Test 2D was terminated, ;he
maximum expgrimental moment was close to the'predicted value. ‘The
experimental moment obtained in Test 3D most likely was iufluenced by
stopping the test to extend the stroke on thé hydraulic jack before
testing to failure. Some crushing of the concrete was noted before
stopping the test, and the reduction in cross-sectional area of the
slab probably reduced the ultimate moment slightly. As shown in
Table 13, including the effects of post-tensioning in the theoreticai
analysis inc;éased the theoretical ultimate moment capacity of the
83terior énd interior beams approximately 17% and 13% respectiveiy.

Figure‘AZ presents the effects of different levels_of shear
connection on the bottom flange strains. As may be seen, there was
small variation, especially at low loads, due to the amount of shear
conneétion. This agrees with the fact that the difference in relative
'slip between "as fabricated" and strengthened beams was very small.
Reasonable correlation between experimental and cémputed strains is
also shown in Fig. 42. The theoretical strains were based on full
interaction between the beam and slab,

Profiles of strain at the span centerline are given in Fig. 43
for the various beams at several levels of loading. Once again the
~observed strains agree well with calculated strains (based on full
interaction), as well as between beams with different amounts of shea;
connection. The strains at the higher wvalues of load did not correlate
as well with the theoretical strain profiles. These differences were
most noticeable at the steel-concrete interface where slip may occur,

thus creating a localized effect at the gages.
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In all tests, the measured deflection exceeded the theorefical
composite section bending deflection, as illustrated in Fig. 44. The:
theoretical deflections are based on 100% interaction between the
concrete and steel beam and on the steel beam acting alone. As shown
in Fig. 44, the experimental values are éloser to the 100% interaction
line. This high degree of interaction agrees with the low relative
slips obtained experimentally. The theoretical curves in Fig. 44 are
based on deflections due to bending effects only {no shear deformation
effects, P-A effects, or the like) and therefore underestimate the
observed deflections.

Figure 45 shows the load vs. end slip curves for each of the
composite beams. As can be seen, the difference in slip between the
strengthened and "as fabricated" beams at low loads is small. The
rigid nature of the angle-plus-bar connectors resulted in low values
of slip, which might have lowered the difference in slips, especially
at small values of load. At approximately 70% of the ultimate load,
the "as fabricated" beams tended to exhibit more slip as a result of
having less shear connectors. Though Beam 2 was not taken to failure,
it can be noted that the slip was increasing at approximately thg same
rate as Beam 1, which failed through the shear connectors.

Figure 46 presents the experimental force per connector vs.
relative slip for each of the composite beams and the average load-slip
curve for the Series 1 push-out specimens. The approximate force in
the shear connector was found by expressing the vertical load in terms
of horizontal shearing force. Because Beams 3 and 4 had two different

types of shear connectors (angle-plus-bar and high strength double-nutted
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bolt), a value for the bolt connectors in terms of the angle-plus-bar.
was approximated. As shown in Fig. 46, a typical connectof in each of
the chposite beams provided rougﬁly the same amount of resistance to
slip at‘eﬁual values of force. The load vs. slip curves from the
composite beams were of the same shape as the Series 1 c&rve, even
though the values of slip were much lower. As previously noted for
the same connector, results from push-out tests are more conservative
than composite beam results., It may alsc be noted in Fig. 46 that the
connector in Beam 1 had a maximuom calculated force of 39.9 kips, which
is similar to that found experimentally by the push-out tests (6%
higher). All other beams had connector forces lower than the push-out
test connectors. This agrees with the fact that only Beam 1 failed in
its shear connection while the other beams {except Beam 2) failed by

crushing of the concrete.

4.3 Elastic Tests of the Plexiglas Model

Figure 47 shows how the centerline bottom flange strains in each
beam changed as the post~tensioning force in Beam 1 was incredsed.
There was essentially no change iﬁ the bottom flange strain in the
other exterior beam {Beam 4). However, the strains in Beams 1, 2, and
3 increased in somewhat of a linear fashion. Figufe 48 illustrates
the variations in the midspan bottom flange strains that eccur when
50.0 1lbs of post~tensioning force are locked on Beam 1, and the post-
tensioning force on Beam 4 is increased in increments (PTS-2). The

strains in guestion increase most significantly in the beam being
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pbst—tensioned (Beaﬁ 4) and in the one adjacent to it (Beam 3); hoWeVer,
there are small increases in the other two beams also. Results similar
to these were found during the testing of the model bridge of Phase I.V
The moment fractions for the model beams subjected to PTS-1 are
shown in Fig. 49. The strains upon which these fractions were cglculated
resulted from the following conditions: (1) eccentricity eé, (Zj_post-
tensioning length Ll’ and (3) and post-tensioning forcelof 50 1b;
(PTS-1: €5 Ll’,EF = 50 1bs}. The dashed line shown is the distribution
obtained using orthbﬁropic piéfe theory assuming the bridge to be
right angled rather than skewed. Based on theory, a slightly larger
fraction of the post—teﬂsioning remains with the exterior beams than
is distributed teo the interior beams. The experimental results indicate
an essentially equal distribﬁﬁion to the four beéms, even thqugh the
post-tensioning was only applied to the exterior beams (PTS-1).
Post-tenéioning the model bridge (PTS-1:

L,, PF = 50 1bs)

€20 “p2
did not significantly affect the vertical load distribution. Figure 50
compares thé moment fractions for the bridge before (depicted with
circular dots) and after (depicted with triangular dots) postwtensioning.-
As can be seen, there is‘excellent agreement (except for one pdint) not
only between the before énd after post-tensioning values,.but also

with the theoreticél values given. A similar excellent agreemeht

between theoretical and experimental results is shown in Fig. 51,

which illustrates the moment fraction for the simulated truck loading.

In a later section (Sec. 4.3.2.1) these distribution results (which

were obtained in testing the model) are compared with the results

obtained from the prototype, Bridge 2.
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Shown in Fig. 52 are the Qariations in centerline deflections
‘resulting‘from an increase in the post-tensioning forces (PTS—I:Ll)
and the eccentricity (63 > e, > el) at which the force is applied.

For the post~tensioning forces applied (0 1lbs to 62.5 1bs) at eccen-
tricities ) and €y the nonlinear (P-A) effects were not significant,
as indicated by the straight lines for these two eccentricities.
However, for the third eccentricity €y, the nonlinear effects were
significant, as indicated by the curved load-deflection relationéhip,.
and thﬁs could not be neglected in design.

.Althoughumoment'fractions were not included here, they were
obtained for the post“tensioning.(PTS~1) at the three different eccen~
tricities. The smallest eccentricity e, resulted.in slightly more of
the post-tensioning reﬁaining in the exﬁerior beams; however, for all
practical purposes, there is no difference in the moment fractions at
any of the three eccentricities.

Similar results (although not included in this report) were
obtained for the moment fractions determined by utilizing the three -
different pos;ntensioning lengths, Ll’ LZ’ and L3 {i.e., momént fraction
essentially the same for all three lengths)}. One small difference was
that slightly more of the post-tensioning force remained in the exterior
beams when the shortest length L3 was used. This can be explained in
that with the shortest length L3 there was less of the bridge subjected
to post-tensioning and, thus, less length over which lateral distribution

could occur.
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4.4 Field Bridge Tests

4.4.1 Bridge 1

4.4.1.1 Effect of Post-tensioning

As stated in Sec. 3.4, the post-tensioning force was applied to
Bridgell in six steps. The strains occurring after each step of
post-tensioning are shown in Fig. 53. Note that although the pdstften-
sioning force was only 1% low, the resulting strain in the exterior
beaﬁs was 339 low,-assuming'the'bridge to be simply supporfed. Similar
results were found in all other data in Table 14. Review of the data
indicated that the bridge actually was not simply supported but had
some end restraint. Additional information on the end restraints is
given in Sec. 4.4.1.2.

Moment fractions computed from orthotropic plate theory.and from
field-measured beam strains are given in Fig. 54. For post-tensioning,
orthotropic plate theory predicts that the moment fraction fo? an
exterior beam will be approximately twice the moment fraction for an
interior beam. Figure 54a shows, however, that the moment fractions
for the exterior beams,.based on measured strains; were smaller than
the predicted values. Interior beams, conseguently, had larger than
predicted moment fractions. The.laboratory‘modél tests in Phase I
gave much better correlation between theoretical and measured ﬁoment
fractions. It is very likely that the discrepancy was due to restraint
at the ends of exterior beams in Bridge 1 {(to be discusged in

Section 4.4.1.2).
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Comparison of experimental and theoretical data4~Bridge 1.

Deflection at
E due to Post-

Deflection at
¢ due to Truck

Change in Post-
tensioning Force
due to Truck in

tensioning in Lane 1 Lane 1
(in.) {in.) (kips)
Based on Simple
Span 0.340 0.335 7.47
Measured 0.199 0.187 5.23
Based on Fixed
Ends 0.060 0.085 1.29




138

-160
5
Z 120
o
E
[T
(¥
Ll
S -804
=z
[ ]
[
=
= .a0f
=
=
’._..
[¥a)

40

| | l l

Fig. 53.

BM1 BMZ BM3 BM4

Variation in midspan bottom flange strains as
post-tensioning is applied to Beams ! & 4. --Bridge 1.




139

For a truck in each of the three lanes (Fig. 54b, c, and a4y,
theoretical and measured moment fractions are in egcellent_agreement.
The figure shows no significant difference in truck load distribution
after post-tensioning, as also was indicated by the model testing in
Phase I.

Although theoretical and measured moment fractions are in fair to
excellent agreement, the computed strains fof simply supported bridge
beams do not agree as well with field-measured strains. Figure 55
indicates that strains measured as a result of post-tensioning were
only about two-thirds of the strains computed. Strains measured with
a truck near the midspan of Bridge 1, in Lanes 1, 2 or 3 {Fig. 56a, b,
or ¢), also are approximately two-thirds of the computed, simple span
strains. The two-thirds ratio holds for exterior beams when the
‘post-tensioning and truck strains are added; that ratio also holds for
the change in post~tensioning force in the tendons. (Table 14). Measured
strains, in general, were less than strains computed for simfle span

bridge beams.

4,4.1.2 Effect of End Restraint

In order to check the discrepancy between measured and computed
strains noted above, theoretical strains for both simple span and
fixed beam ends were plotted in Figs. 55 and 56. Also, theoretical
deflections for both simple span and fixed beam ends were plotted‘in
Figs. 57 through 59. An examination of the figures showed that the
measured strains and def}ections were almost always bracketed by the
simple span and fixed end conditions. Furthermoré, there was excelleni

correlation between strain and deflection measurements as described
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below. Post-tensioning strain measurements fell approximately midway
between simple span and fixed end extremes for exterior beams, but
"measured strains approached the simple span condition for interior

beams (Fig. 55). The same positions with respect to the extremes can
‘be observed for measured deflections in Fig. 57. The measured strains
for a truck in Lane 1 (Figure 56a) are between extremes, but closer to
the fixed end condition for all beams. Measured deflections illustrated
in Fig. 58 also fall between the extremes, but toward the fixed end
condition. The combined post-tensicning and truck strains for the

more heavily strained exterior beams lie about halfway between simple
span and fixed end conditions (Fig. 56a). Measured deflections for

the same beam (Fig. 59) also lie about halfway between extreme condi-
tions.

Both strain and deflection measurements seemed to indicate the

presence of some end restraint at Bridge 1 beam ends. The check of

deck strepgth in the next section notes that the actual, higher than
assumed, deck strength did not affect strain and deflection measurements
significantly. The bridge plans show reinforcing bars to be extended
from the bridge deck into the abutment and from the curbs into the
abutmeﬁts, thereby assuring some end restraint for exterior beams.

Compression restraint at the tops of the exterior beams could

explain why, for post-tensioning, the exterior beams appéared to have
end restraint, whereas the interior beams appeared to have no significant
end restraint. The negative, post-tensioning moment caused the bridge

deck to elongate. The elongation was effectively restrained by abutments
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at exterior beams, but the elongation was not restrained at the interior
beams.

For the positive truck moments, the bottoms of the beams elongated,
and the elongation could be restrained in a more uniform manner by
beam bearings and the end diaphragm detail. This would explain why
béam strains for truck loads in Fig. 56 indicated some restraint for
both exterior and interior beams.

Both strain and deflection field measurements indicated some ena
restraint, which seemed to be greater for exterior beams than for
interior beams. Although the restraint reduced the effects of post-ten-
sioning, it élso reduced the effects of the truck. Differences in end
restraint from exterior to interior beams affected the load distribution

behavior of Bridge 1.

4.4.1.3 Effect of High Strength Deck Concrete

for purposes of design and computations within this report, deck
concrete strength was taken as 3000 psi. (Jowa DOT experience has
indicated that strength seldom is less than 3000 psi.) Testing of
deck cores ffom Bridges 1 and 2 gave strengthé in excess of 6000 psi.
Due to the large difference hetween assumed and actual strengths, the
effect of the difference was examined for Bridge 1.

All comparisons given below were made for fé = 6000 psi and n = 6
with respegt to fé = 3000 psi and n = 10. For overall stresses (including
dead, long term'dead, live, and impact loads), midspan beam cover
plate tension sﬁresses were reduced a maximum of 3%. Orthotropic
plate theory moment fractions were affected by a small, relatively

constant amount. For the largest fractions, the change was only a few
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percent. The required post-tensioning force was reduced by 6%.
Theoretical stresses comparable to field-measured stresses were reduced
by 6%‘or less, and deflections were reduced by 13% or less.

Angle-plus-bar shear coﬁnector capacity, based on the AASHTO
channel formula, was increased substantially; however, weld capacity
cﬁmputed from welds on bridge plans permitted only a 29% increase in
capacity. |

The stronger than assumed concrete deck did not affect the basic
bridge rating or post-tensioning computations noticeably. The deck
strength did, however, affect shear connector capacity significantly.
Testing of the concrete deck strength could very well be worthwhile as-
a means of reducing the number of shear connectors required to be
added to the bridge as part of a strengthening program.

4.4.2 Bridge 2

4.4.2.1 Effect of Post-tensioning

The postjtensioning force was applied to Bridge 2 in 12 steps
(see Sec. 3.4). Figure 60 illugtrates the change in bottom flange
strain after each step. Although the post-tensioning force applied to
thé exterior bgam was only 0.1% low, assuming the bridge to be simply

supported, the resulting strains in the exterior beams were 52% low.

As was the case on Bridge 1, Bridge 2 also had considerable end restraint

present. This may be seen by reviewing the data in Table 15.
Section 4.4.2.2 presents additional information on the end restraint.
Although the deck on Bridge 2 had a considerable amount of spalling,

no additional cracks were observed as a result of the post-~tensioning.
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Table 15. lComparison of experimental and theoretical data-~Bridge 2.

Deflection at
Q due to Post~

Deflection at
Q due to Truck in

Change in Post-
tensioning Force
due to Truck in

tensioning Lane 1 Lane 1
Values (im.) (in.) (kips)
Based on Simple
Span - 0.547 0.472 8.25
Measured 0.318 0.233 *
Based on Fixed
Ends 0.061 0.136 0.91

.'t‘.
Bad data, due to strain indicator
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Figare 61 gives the moment fractions computed by orthotropic
plate theory and moment fractions computed from strains measured on
beam bottom flanges for post-tensioning and for trucks in each of the
three lanes. For post-tensioning only, ¥Fig. 61a shows that orthotropic
plate theory predicted higher moment fractions for exterior beams than
were measured and predicted lower moment fractions for interior beams
than were measured. The predicted vs. measured behavior was similar
to that for Bridge 1 (Fig. 54a), but for Bridge 2 the predicted vs.
measured deviations were greater. The results for Bridge 2, however,
were in good agreement with the results for the plexiglas model (Fig. 49).
Because the plexiglas model did have simple span end conditions, the
deviation between predicted and measured moment fractions should be
attributed primarily to the effect of skew on Bridge 2.

Figure 61b, c, and d showed generally good to excellent agreement
bepweeh theoretical and measured moment fractions for the truck. The
results here also compared well with the results given in Fig. 5la, b,
and ¢ for the plexiglas model. The moment fractions computed from
beam strains in Bridge 2 deviated most from moment fractions computed
on the basis of orthotropic plate theory when the truck was located in
Lane 1. The greater deviation could be expected, since ig Lane 1 the
truck is farthest from.the center of the bridge and closest to the one
skewed end.

Figure 62a shows that strains measured in the exterior beams of
Bridge 2 for post-tensioning were only about one-half those predicted
from theory for a simple span, right-angle bridge. For the truck in

Lanes 1, 2, and 3, Fig. 62a, b and ¢ shows that measured strains are
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generally one-half to two-thirds of those predicted for a simple span,
right angle bridge. Although the change in thg post-tensioning force
wihen a truck is in Lane 1 could not be measured accurately due to
strain indicator problems, the measured values were between the simple
span and fixed end extreme conditions. Again, as was the case with
Bridge 1, measured and theoretical moment fractiqns are in better
agreement than measured and theoretical strains.

4.4.2.2 Effect of End Restraint

As noted in the literature review, beam end restréint is one of
the consequences of skew. Comparisons of the results from the plexiglas
model and Bridge 2 in the previous section were favorable, and thus, a
iarge portion of measured end restraint could be attributed to skew.
In addition, the plans for Bridgg 2 shoﬁed construction that provided
a greater degree of restraint and moré uniform restraint from exterior
to interior beams than the end restraint for Bridge 1.

In all of the figures in which measured strain was presented,
both extreme conditions for a right angle bridge, simple span, and
fixed end are drawn. In almost every case, the measured strains fell
within the simple span, fixed end range. For post-tensioning alone,
Fig. 62a indicated that all measured midspan strains lay within the
range but were closer to the fixed end condition. In contrast to
Fig. 55 for Bridge 1, the measured strains for Bridge 2 implied consider-
able end restraint for all beams, not just exterior beams. Strains
measured at the quarter point of Bridge 2 (Fig. 62b) also implied end
restraint. For the end restraint to exist, strains near the support

would have to change from compression to temsion for the post-temsioning.
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This strain reversal is shown, at least for the exteriof beam, in
Fig. 62Zc.

Further evidence of end restraint in exterior beams is given in
Fig. 63. At midspan, the quarter point, and 15 in. ffom the support,
the measured strains generxally approach the fixed end condition. For
post"tensioning, strains reversed from compression to tension from
'midspan to the support (¥Fig. 63a). For the truck in Lane 1, strains
reversed from tensién to compression (Fig. 63b)._ Strains also reversed,
for combined post-tensioning and the truck, usually coming closest to
the fixed end condition (Fig. 63c). The midspan strains for combined
post-temsioning and the truck in Lanes 1, 2 and 3 (Fig. 64a, b, and c¢)
also approéched the fixed end condition.

A comparison of the post~-tensioning strains in Fig. 62a and the
post-tensioning deflections in Fig. 65 showed good agreement . In both
cases the measured values were approximately halfway between the
simple span and fixed end conditions. With the truck in Lane 1,
measured strains in Fig. 64a léy near the fixed end condition; the
measured deflections in Fig. 66 also lay near the fixed end conditiop.
Although the combined post-tensioning and truck strains in Fig. 64a
generally lay near the fixed end condition, the same generalization
did not fit the deflection data in Fig. 67‘35 well, The measured
deflections exhibited more variability with respect to the simple span
and fixed end conditions.

In the case of truck loading, the plexiglas model and Bridge 2
measured bottom flange strains were compared directly in Fig. 68. The

magnitudes of the strains were in good to excellent agreement. This
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MICRO INCHES PER INCH

STRAIN,

320

240

160

80

= TRUCK,
FIXED END mevememnsm TRUCK + POST-
— TENSTONING.
TRUCK, - FIXED ENDS
SIMPLE SPAN
oo TRUCK + POST- et e 100T TRUCK,
- AASHTO
TENSIONING., il
SIMPLE SPAN DISTRIBUTION

(NO IMPACT)

-160 TRUCK
¢ TRUCK +
POST-
. TENSIONING
~240 — -
-320L 1 1 | . 1 | L. | | _ L |
BM1 BM2 BM3 BM4  BM] BM2 BM3 BM4 BMI BMZ BM3 BM4

a., Truck in Lane 1.

b. wﬂcnw in Lane 2.
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Fig. 64. Reduction of bottom flange midspan strain as a result of post-tensioning

Bridge 2.
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validated the model, as well as indicated that end restraint was due
more to skew than construction details at beam ends.

In almost all of the cases described above, strain and deflection
measurements indicated considerable beam end restraint. The measured
strains and deflections usually approached the theoretical fixed end
condition for a right angle bridge. Both the plexiglas model and
Bridge 2 exhibited end restraint, although the restraint for Bridge 2
was greater, due to construction details. The end restraint-reduced
post-tensioning effects but at the same time reduced truck live load
effects.

4.4,2.3 Effect of Skew

In addition to caﬁsing end restraint for bridge beams, skew
creaﬁed a fwist withiﬁ the bridge deck. To give an indication of this
twist, theoretical ﬁoment fractions for a truck in Lane 1 on a right
angle bridge were plotted (Fig. 69), along with moment fractions
computed fram midspan bottom flange strains. Except for the exterior
beam on the far side of the bridge, measured moment fractions from the
three'trucklpositions bracketed the theoretical moment fractions. The

skew shifted moment toward the beams for which the truck was closest

to midspan. Even with the twist, however, the measured moment fractions

were'reasonably close to theoretical.

4.4.3 Field Test Summary

The field testing program demonstrated that strengthening of

compbsite bridges by post-tensioning is feasible and can be accomplished

successfully. When existing shear connectors are inadequate, high

strength bolt shear comnectors can be added to the bridge relat;vely

S
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easily and economically. Although methods for post-tensioning utilized
in Phase II were labor intensive, these methods were dictated by
instrumentation and the need to check the sequence of tendon stressing.
The overall strengthening brocess, in practice, could be accomplished
with much less effort. Measurement of post-teusioning forces, for
example, could be accomplished with jack pressures and chécked by‘
tendon elongation measurements.

Design methods used in Phase II adequately predicted the distribu-
tioﬁ.of post-tensioning to the bridge. However, orthotrbpic piate
theory was found t6 be more suitable for use with right-angle bridges
{Bridge 1) than with skewed bridges (Bridge 2), as more discrepancy
between experimental and theoretical results was found in Bridge 2.

End restraint did affect load distribution and flexural stresses for.
both right-angle and skewed bridges. In addition to the effects of
end restraint, in skewed bridges the effects of several other factors
are unknown, such as.the effect of angle of skew on reactions and
shear stresses. Thus, a more exact analysis should be developed for
skewed bridges. This new analysis, along with orthotropic plate

theory for rightwangie bridges, could then be used to develop a simpli-
fied design methodology. The methodology would permit the practicing
engineer to refer to design tables or charts for post-temsioning data
for right~angle and skewed bridges rather than.spend considerable

amounts of design time with exact theories.
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5. SUMMARY AND CONCLUSIONS

5.1 Summary

The literature review indicated that behavior of skewed, orthotropic
bridges was reasonably close to that for right-angle bridges,‘if the
angle of skew did not exceed 45°. At a 45° skew, however, load distfibu~
tion was affected somewhat, in that exterior beams tended to carry
more load and interior beams less load. Several of the skew effects
noted in the literature, such as increased moments and reactions near
obtuse corners, were not checked in Phase II.

The literature review also established the validity of push-out
tests for determining strength of shear comnectors. Previous research
had indicated that high strength steel bolts might be substituted for
welded stud connectors of eqﬁal diameter with no loss in fétigué of

ultimate capacity.. ./ i
. ) “% ’,, oA

-iaboratory test{;g of shear connectors established the capacity
of existing.angle-plus~bar connectors. Although the angle-plus-bar
connectors were stiffer and exhibited less slip under load than comparable
channel shear connectors did, the angle-plus-bar connectors did not
have an ultimate cgpacity significantly larger than a comparablé_channel.
On the basis of testing of Phase II, it was determined that the ultimate
capacity of the angle-plus-bar connector could be determined from a
modified AASHTO channel connector formula, provided that the weld
capacity between the angle and bridge beam was not exceeded.

Two methods of adding comnectors to existing bridge beams were

tested, both of which invelved high strength bolts. The double-nutted
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bolt - method (Series 6) and the epoxied bolt method (Series 7) of
attaching bolt connectors gave load-slip characteristics similar to
those for welded studs {Series 3). Both methods for attaéhing bolts
provided connectors which gave a higher ultimate strength than a

welded stud of the same diameter. Consequently, the AASHTO formula

for ultimate strength of welded studs Qas conservative for high strength
bolt connectors iﬁstalled'by either methoed. The double-nutted method
was judged eésier to install in the laboratory and consequently waé

used in the field with no diffi&ulty.

The composite beams, which were cut from the ha1f~scéle bridge
model of Phasé I and testedlto failure, gave an indicatibn of the
overall performance of post-tensioned composite beams. Although the
beams deforﬁed in thé fegion of the brackets and the post-tensioning
tendons deformed at the brackets at high loads, the post-tensioniﬁg
system did not fracture, Instegd, the observed beaﬁ failures occufred
due to failure of the shear cognectors or crusﬁing of the slab concrete.
In all cases the experimental ultimate moments were within 10% of
computed ultimate moments.

The tests dempnstﬁated that the addition of shear cdnnéetors to
the model beams did increase ultimate capacity by an amount up to
approximately 9%. In the case of the exterior beams, addition of
shear connectors also changed the failure mode from shear connector
failure to a fléxural, slab/curb concrete crushing failure. Computations
for the model bridge beams indicated that the addition of post-tensioning

could increase ultimate capacity by up to 17%.
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The plexiglas skewed bridge model duplicatgd the behavior of
Bridge 2 very closely in terms of load distribution. Application of
post-tensioning to the model caused beam moment fractions which deviated
from momeﬁt fractions computed by orthotropic plate theory in the
following manner: A greater fraction of the post-tensioning moment
was shifted to interior beams than expected. The measured and computed
moment fractions for post-teasioning of Bridge 2 deviated in the same
manner. Moment fractions measured for model truck loads fell closer
to moment fractions computed by orthotropic plate theory for a right
angle bridge than those for post-tensioning. The model béhavior again
was duplicated in Bridgé 2. Post-tensioning of the plexiglas model essen-
tially did not affect model truck load distribution. Post-tensioning
also did not affect truck load distribution in Bridge 2.

.Somewhat unexpectedly, field-measured straims and deflections for
Bridge 1 were less than those computed on the basis of orthotropic
plate theory and simple span beam end conditions. The field results,
however, were bracketed by simple span and fixed end beam conditions.
All of the data indicated that end restraint at bridge abutments was
greater than might be expected.

For post-tensioning only, measured strains and deflection at
midspan of Bridge 1 indicated considerable end restraint for exterior
:beams, but almost no restraint for interior beams. For truck loading,
with or without post-tensioning, measured strains and deflectioné
indicated significant restraint at both interior and extérior beam
ends. The difference in restraint from post-tensioning to truck

loading might be explained by the fact that post-tensioning applied a
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negative moment to the bridge, whereas truck loading applied'a positive
moment to the bridge. Abutment and support details for Bridge 1 most
likely caused the difference in end restraint from negative to positive
moment .

Because strains as a result of post-tensioning were oﬁly two-thirds
of those computed to be required for strengthening the bridge, there -
could be concern that the strengthening was ineffective. However,
strains measured for truck loading were also only two-thirds of those
computed. The unexpected post-tensioning strain loss essentially was
compensated by the also smaller than expected truck strains.

Testing of deck concrete cores from Bridges 1 and 2 gave strengths
greater than 6000 psi vs., the 3000 psi assumed for analytical purposes.
The higher deck strength had a very minor effect on the need for
strengthening and the required post-tensioning force. The higher deck
‘strength did, however, significantly increase the capacity of shear
connectors and thereby had an effect on the need for additional shear
connectors as part of a strengthening program.

As a result of the unexpected end restraint for Bridge 1, Bridge 2.
was more extensively instrumented with strain gages and deflectibﬁ
dials. The additional instrumentation confirmed the existence of end
restraint in Bridge 2.

For post;tensioning alone, field measured strains and deflections
for Bridge 2 were only ébout one-half those computed for a simple
‘span, right angle bridge. Essentially there was no difference between
exterior and interior beams; for both types of beams the measured

quantities were very close to those computed on the basis of fixed end
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conditions. Comparison with the plexiglas model indicated that more
of the end restraint was due to skew than to construction details at
the abutments of Bridge 2.

For the truck loading, measured strains and deflections were
one-half to two-thirds of those expected. The measured quantities
generally lay midway between simple span and fixed end conditions or N
closer to the fixed end condition. For Bridge 2, post-tensioning -did
‘not affect truck load distribution.

Again, as was the case for Bridge 1, the post-tensioning did not
cause as much compression strain as desired, but truck loading also
did not cause as much tension strain as expected. The‘two effects
essentially compénsated.

As a result of the field work for both Bridge 1 and Bridge 2, it
appeared that significant end restraints existed as a result of construc-
tien detailé for single span, right angle composite bridges and as a
resnlt of both skew and construction details for single span, skewed
composite bridges. The restraint reduced the effect which truck
loading had on the bridge beams and also reduced the effect which

post-tension stremngthening had on bridge beams.

5.2 Conclusions

The following conclusions were developed as a result of this
study:
(1)‘.The capacity of existing shear connectors must be checked as

part of a bridge strengthening program. Since strength of



(2)

(3)

(4)

[©

(6)

A
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deck concrete has a significant effect on the need for addi-
tional shear connectors, determination of the concrete deck
strength in advance of bridge strengthening is recommended.
The. ultimate capacity of angle-plus~-bar shear connectofs can

be computed on the basis of a modified AASHTO channel connector
formula and an angle-to-beam weld capacity check.

Existing shear connector capacity can be augmented by means

‘of double-nutted high strength bolt connectors.. Ultimate

capacity of a high strength bolt connecter can be computed
directly from the AASHTO formula for a welded stud.
Post-tensioning did not significantly affect truck load
distribution, either for right angle or for 45° skewed
bridges;

Approximate post-temsioning and truck load distfibution for
actual bridges can be predicted by orthotropic plate theory

for vertical load; however, the agreement between actual

distribution and theoretical distribution is not as close as

that measured for the laboratory model in Phase I.

The right angle bridge (Bridge 1) exhibited considerable end
restraint at what would be assumed to be simple support.

The construction details at bridge abutments seem to be the
reasonlfor the restraint;

The 45° skewed bridge (Bridge 2) exhibited more end restraint
than Bridge 1. Both skew effects and construction details

at the abutments accounted for the restraint.

L———
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(8) End restraint in Bridges 1 and 2 reduced tension strains in .

| the steel bridge beams due to truck loading, but also reduced
the compression strains caused by post-tensioning. In |
_effect, the truck tension strain losses compensated for the

post-tensioning compression strain losses.
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6. RECOMMENDED CONTINUED STUDIES

On the basis of the literature review and testing program, the

following should be checked:

(1)

(2)

(3)

(4)

End restraint and differences in end restraint among bridge
beams affect load distribution and the performance of a
bridge. A study of the variables involved in end restraints
should be undertaken to insure that reasonable combinations
of end restraints do not cause excessive flexural or shear

stresses. Theoretical results should be substantiated by

"measurement of the end restraint in several bridges.

Skew does affect shears and reactions for both post-ten-
sioning and truck loading. At this point the extent of skew
effects are unknown and should be determined to insure that
allowable shear stresses in bridge beams are not exceeded.
Although orthetropic plate theory has been shown to predict
load distribution in right angle bridges, there are greater
differences between orthotropic results and experimental
results in skewed bridges. Thus, skewed bridges should be
analyzed in more detail and a design methodology developéd,
in‘which the design engineer simply uses design curves,
charts, and so forth for load distribution rather than the
more involved theories. |

The concept of utilizing the post~tensioning'tendons in a
"king-post" arrangement rather than straight should be

investigated. The "king-post" arrangement has the advantage



(5)

(6)

(7
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of providing a vertical 1lift component, as well as making
possible the required jacking operation from the top of the
bridge rather than under it.

Post~tension strengthéning'has successfully been applied to
simple-span bridges. The problems associated with utilizing
similar strengthening in the positive and negative moment
regions of continuous bridges should be investigated.
Preseﬁtly there are no data on the effects of dynamic loading
on the post-tension strengthened beams or on the fatigue
strength of these beams. 1In a laboratory study, the same
specimens could be used to determine both of these properties.

As previously stated, in the author’s opinion, there should

be no fatigue problems with the bolting configuratioh proposed.

However, there are no data available concerning the fatigue
strength of the core patching grout im combination with the
existing concrete. A relatively small study should be
undertaken to determine if there are any problems in utilizing
the high strength bolt shear connectors in combination with

the twe different concretes.
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9. APPENDIX A.

DETAILS OF POST-TENSIONING BRACKETS

USED ON BRIDGES 1 AND 2.






184

‘12"
RZ 1/2" x 5 3/4" Lé x 6 x 3/4 A36 STEEL

X OI 63!

A36 STEEL 1 1/4" HOLES 1 1/16" ¢ HOLES
\—-TYPICAL ) \ - TYPICAL

~ o PR, Y |

SR R O Ol O O

. O ,,.__\r 6"
5/16 e I ' I 1/4"
2 12" 2”1 7 SPA @ 3" = 21" ‘12“,

25"

a. Side view.

11/2% W27 x 94

- "
+

N

1

: 3
'

v

'

v

1

i

- ——
[ ]
)

]

L]

4

]

]

3

N

¥

]

+

’

S

BRACKETS ROUNDED
TO FIT FLANGE-WEB
INTERSECTION

b, End view.

Fig. A-1. Post-~tensioning bracket -- Bridge 1.
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