## Development of a Model for the Ice Scraping Process

## **Iowa Department of Transportation Project HR 361**

Final Report

by

W.A. Nixon, T.J. Gawronski, and A.E. Whelan



### IIHR Technical Report No. 383

Iowa Institute of Hydraulic Research College of Engineering The University of Iowa Iowa City IA 52242-1585

October 1996

### ABSTRACT

A laboratory study has been conducted with two aims in mind. The first goal was to develop a description of how a cutting edge scrapes ice from the road surface. The second goal was to investigate the extent, if any, to which serrated blades were better than un-serrated or "classical" blades at ice removal.

The tests were conducted in the Ice Research Laboratory at the Iowa Institute of Hydraulic Research of the University of Iowa. A specialized testing machine, with a hydraulic ram capable of attaining scraping velocities of up to 30 m.p.h. was used in the testing.

In order to determine the ice scraping process, the effects of scraping velocity, ice thickness, and blade geometry on the ice scraping forces were determined. Higher ice thickness lead to greater ice chipping (as opposed to pulverization at lower thicknesses) and thus lower loads. Similar behavior was observed at higher velocities. The study of blade geometry included the effect of rake angle, clearance angle, and flat width. The latter were found to be particularly important in developing a clear picture of the scraping process. As clearance angle decreases and flat width increases, the scraping loads show a marked increase, due to the need to re-compress pulverized ice fragments.

The effect of serrations was to decrease the scraping forces. However, for the coarsest serrated blades (with the widest teeth and gaps) the quantity of ice removed was significantly less than for a classical blade. Finer serrations appear to be able to match the ice removal of classical blades at lower scraping loads. Thus, one of the recommendations of this study is to examine the use of serrated blades in the field. Preliminary work (by Nixon and Potter, 1996) suggests such work will be fruitful.

A second and perhaps more challenging result of the study is that chipping of ice is more preferable to pulverization of the ice. How such chipping can be forced to occur is at present an open question.

#### **ACKNOWLEDGMENTS**

This project was made possible by funding from the Iowa Department of Transportation, Project Number HR 361. This support is gratefully acknowledged.

The shop staff at IIHR, led by Mr. Jim Goss, made these experiments possible with their insight and assistance. Experiments were assisted by Ms. K. Hiranmayee. Thanks are extended to all these people.

The assistance and advice of Mr. Lee Smithson throughout the project has added significantly to the benefits obtained from the study.

## TABLE OF CONTENTS

1.7

| : .

1

Ì

| Chap | ter    |                                                                                                                                                                                                                              | Page                             |
|------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 1    | Introd | luction                                                                                                                                                                                                                      | 1                                |
| 2    | Exper  | rimental Description                                                                                                                                                                                                         | 4                                |
|      | 2.1    | <ul> <li>Experimental Setup</li> <li>2.1.1 Ice Scraping Machine</li> <li>2.1.2 Load Cell Calibration</li> <li>2.1.3 Velocity Transducer Calibration</li> <li>2.1.4 Design and Manufacture of the Concrete Samples</li> </ul> | 5<br>5<br>6<br>8<br>8            |
|      | 2.2    | Parameters and Variables                                                                                                                                                                                                     | 9                                |
|      | 2.3    | Typical Procedure                                                                                                                                                                                                            | 10                               |
|      | 2.4    | Data Acquisition and Data Handling                                                                                                                                                                                           | 11                               |
| 3    | Expe   | rimental Results                                                                                                                                                                                                             | 13                               |
|      | 3.1    | Introduction                                                                                                                                                                                                                 | 13                               |
|      | 3.2    | <ul> <li>Blade Variables</li> <li>3.2.1 Rake Angle Effect</li> <li>3.2.2 Clearance Angle Effect</li> <li>3.2.3 Flat Width Effect</li> <li>3.2.4 Blade Edge Effect</li> <li>3.2.5 Serrated Blades</li> </ul>                  | 13<br>13<br>15<br>17<br>18<br>19 |
|      | 3.3    | Ice Thickness Effect                                                                                                                                                                                                         | 21                               |
|      | 3.4    | Velocity Effect                                                                                                                                                                                                              | 27                               |
| 4    | Disc   | ussion                                                                                                                                                                                                                       | 30                               |
|      | 4.1    | Introduction                                                                                                                                                                                                                 | 30                               |
|      | 4.2    | Rake Angle Effect                                                                                                                                                                                                            | 30                               |
|      | 4.3    | Clearance Angle Effect                                                                                                                                                                                                       | 31                               |
|      | 4.4    | Flat Width Effect                                                                                                                                                                                                            | 32                               |
|      | 4.5    | Edge Effect                                                                                                                                                                                                                  | 32                               |
|      | 4.6    | Serrated Blades                                                                                                                                                                                                              | 32                               |

i

|      | 4.7      | Ice Thickness Effect | 34 |
|------|----------|----------------------|----|
|      | 4.8      | Velocity Effect      | 34 |
|      | 34       |                      |    |
| 5    | Conc     | clusions             | 36 |
| Bił  | oliograp | bhy                  | 38 |
| Appe | endix    |                      |    |

A Experimental Results

41

### LIST OF FIGURES

| Figure |                                                                        | Page |
|--------|------------------------------------------------------------------------|------|
| 1.1    | Definition of blade geometry variables                                 | 2    |
| 2.1    | The cutting edge striking the ice                                      | 4    |
| 2.2    | The ice scraping machine                                               | 5    |
| 2.3    | The concrete block                                                     | 6    |
| 2.4    | The load cell calibration setup for x and y directions                 | 7    |
| 2.5    | The load cell calibration setup for z direction                        | 8    |
| 2.6    | Foam strips acting as dams                                             | 9    |
| 2.7    | Cutting edge geometry of a classical blade                             | 10   |
| 2.8    | Cutting edge geometry with rectangular serration                       | 10   |
| 3.1    | Average vertical force vs thickness for various rake angles            | 14   |
| 3.2    | Average horizontal force vs thickness for various rake angles          | 15   |
| 3.3    | Average vertical force vs thickness for various clearance angles       | 16   |
| 3.4    | Average horizontal force versus thickness for various clearance angles | 16   |
| 3.5    | Average vertical force vs thickness for various flat widths            | 17   |
| 3.6    | Average horizontal force vs thickness for various flat widths          | 18 - |
| 3.7    | Average vertical force vs thickness for blades with various widths     | 19   |
| 3.8    | Average horizontal force vs thickness for blades with various widths   | 19   |
| 3.9    | Average vertical force vs thickness for serrated blades with various   |      |
|        | teeth sizes                                                            | 19   |
| 3.10   | Average horizontal force vs thickness for serrated blades with various |      |
| •      | teeth sizes                                                            | 20   |
| 3.11   | Averaged forces vs ice thickness for blade with a rake angle of 30°,   |      |
|        | clearance angle of 5°, and zero flat width                             | 22   |
| 3.12   | Maximum forces vs. ice thickness for blade with a rake angle of 30°,   |      |
|        | clearance angle of 5°, and zero flat width                             | 22   |
| 3.13   | Average forces vs. ice thickness for blade with a rake angle of 30°,   |      |
|        | clearance angle of $5^{\circ}$ , and tooth size of 0.125 in.           | 23   |
| 3.14   | Maximum forces vs. ice thickness for blade with a rake angle of 30°,   |      |
|        | clearance angle of 5°, and tooth size of 0.125 in.                     | 23   |

| 3.15 | Average forces vs. ice thickness for blade with a rake angle of 30°,           |    |
|------|--------------------------------------------------------------------------------|----|
|      | clearance angle of 5°, and tooth size of 0.25 in.                              | 24 |
| 3.16 | Maximum forces vs. ice thickness for blade with a rake angle of 30°,           |    |
|      | clearance angle of 5°, and tooth size of 0.25 in.                              | 24 |
| 3.17 | Maximum forces vs. ice thickness for blade with a rake angle of 30°,           |    |
|      | clearance angle of 5°, and tooth size of 0.5 in.                               | 25 |
| 3.18 | Average forces vs. ice thickness for blade with a rake angle of $30^{\circ}$ , |    |
|      | clearance angle of $5^{\circ}$ , and tooth size of 0.5 in.                     | 25 |
| 3.19 | Maximum forces vs. ice thickness for blade with a rake angle of 30°,           |    |
|      | clearance angle of 5°, and tooth size of 1 in.                                 | 26 |
| 3.20 | Average forces vs. ice thickness for blade with a rake angle of 30°,           |    |
|      | clearance angle of 5°, and tooth size of 1 in.                                 | 26 |
| 3.21 | Average forces vs. thickness for blade with a rake angle of 30°,               |    |
|      | clearance angle of 5°, and zero flat width                                     | 27 |
| 3.22 | Maximum forces vs. thickness for blade with a rake angle of 30°,               |    |
|      | clearance angle of 5°, and zero flat width                                     | 28 |
| 3.23 | Average forces vs. thickness for blade with a rake angle of 30°,               |    |
|      | clearance angle of 5°, and tooth size of 0.25 in.                              | 28 |
| 3.24 | Maximum forces vs. thickness for blade with a rake angle of 30°,               |    |
|      | clearance angle of 5°, and tooth size of 0.25 in.                              | 29 |
| 4.1  | Directions of ice chips for blunt and angled blades                            | 31 |
| 4.2  | Side view of a serrated blade (0.25 in.) surface after a run                   | 33 |
| 4.3  | Side view of a serrated blade (0.5 in.) surface after a run                    | 33 |
| 4.4  | Ice failure modes                                                              | 35 |

iv

## Chapter 1 Introduction

More than half of the States in the United States experience winter weather each year of sufficient severity to create hazardous situations. Freezing rains and compacted snow often accumulate in winter on the highways and roads creating dangerous and fatal conditions for road users. The accidents caused by these conditions carry both a societal and an economic cost, which can be considerable (Hanbali, 1994). In addition to safety concerns, it is clear that ensuring good road conditions in the winter has a positive economic benefit. The procedure of Just-In-Time manufacturing has gained wide acceptance in U.S. industry, and requires not so much a low average transit time between locations, but a small standard deviation on that average transit time for best results (Forkenbrock et al., 1994). Such a low standard deviation is best obtained by ensuring good winter maintenance practice. The means for ensuring good road conditions (typically termed "bare pavement" conditions) traditionally comprise salting, sanding and scraping in the United States. Other countries do not require bare pavement conditions for some or most of their roads. This is particularly true in the Scandinavian countries and in Japan.

Salt (Sodium Chloride, typically in the form of rock salt) is applied to roads because it depresses the freezing point of water, thus causing ice and snow to melt. It is the most widely used deicer and is much cheaper than all other deicers. Sand is used to raise the friction coefficient between the vehicle tires and the road. However, there are increasing concerns about the environmental impact of salting (TRB, 1992) and sanding, and also their harmful effect on transportation infrastructure. Accordingly, there is great interest in improving the third method, scraping.

Recent studies conducted as part of the Strategic Highway Research Program (SHRP) have shown that the geometry of a blade used on the plow can affect the loads acting on the blade (Nixon 1993, Nixon et al., 1993). The blade variables studied were clearance angle, rake angle, flat width and attack angle, as shown in Figure 1.1. The preliminary experiments (conducted at very low scraping velocities of less than 1.5 ft/s) found that for a clearance angle greater than 2° the forces on the blade were reduced by a

factor of twenty when compared to a blade with a zero degree clearance angle. Further, the scraping forces increased significantly when the blade flat width was more than 3/8 in.



### **Front View**

Figure 1.1. Definition of blade geometry variables.

The above studies were extended to higher velocities by means of a custom designed and built ice scraping machine. This second series of tests was conducted at velocities of 5 mph, 10 mph, 15 mph and 20 mph and at temperatures of -5°C and -20°C.

These experiments indicated that a blade with a rake angle of  $30^{\circ}$ , a clearance angle of  $5^{\circ}$  and a flat width equal to zero was most efficient for ice removal. It was also concluded from the study that the scraping forces were independent of temperature, and that the scraping resistance decreased with an increase in scraping velocity.

The objective of the project described herein was to conduct further laboratory experiments to determine the blade geometry effects of straight edged and serrated blades for varying ice thicknesses and velocities, and thus to build a more comprehensive understanding of the ice scraping process. The ice scraping machine was first improved, so as to provide more accurate data, by the incorporation of a three axis load cell into the test machine. Straight edged blades with varying blade parameters like rake angle, clearance angle and flat width were tested again and the results compared to previous studies. It was confirmed that blade parameter values of rake angle 30°, clearance angle 5° and zero flat width gave best results. Tests were conducted to compare the performance of straight edged and serrated blades, with both straight edged and serrated blades having the above given blade parameter values.

## **Chapter 2 Experimental Description**

The aim of the experiments was to measure the force required to scrape ice from blocks of concrete, using cutting edges with differing geometry. The primary variables to be studied were the geometry of the cutting edges, the scraping velocity, and the ice layer thickness. By measuring changes in the scraping force as these variables were changed, a model of the ice scraping process could be developed. To simulate field conditions to the best extent possible, the ice samples were grown on specially prepared concrete blocks. The concrete blocks were placed in the ice room to lower their temperature before making the ice samples. The actual scraping process was done using an ice scraping machine. The machine was designed such that a scraping velocity as high as 30 mph could be attained. The loads acting on the blade were measured using a three axis load cell. The scraping velocity was measured using a velocity transducer.



Figure 2.1. The cutting edge striking the ice.

#### 2.1 Experimental Setup

The experimental setup was such that the blade was stationary and the concrete block with the ice sample was in motion. A schematic diagram of the setup is show in Figure 2.1. The blade was fixed to the frame of the ice scraping machine, with the load cell sandwiched (as shown). The concrete block was mounted on a sled attached to a hydraulic ram. It was mounted with the ice layer facing down. The velocity with which the block moved as the blade scraped the ice was monitored.

The setup differs from natural conditions, but is statically and dynamically equivalent to that of a plow scraping an ice layer. The setup makes it easier to record accurately the forces acting on the blade while scraping.

#### 2.1.1 Ice Scraping Machine

The ice scraping machine (Figure 2.2) has a 68 in. long hydraulically propelled piston or ram. The ram is mounted on a W 10x49 structural beam, which provides stiffness and structural support. The hydraulic system is designed to operate under a pressure of 3000 psi, produced by a differential displacement pump.



Figure 2.2 The ice scraping machine.

The concrete block (Figure 2.3) is mounted on a sled connected to the end of the ram. The first 16 in. of the stroke allows the concrete block to accelerate to the required velocity. The ice on the block then hits the blade and the ice scraping action occurs. The off switches trigger immediately after the scraping and the block comes to a stop in the remaining distance. The concrete block is 12 in. x 4 in. x 4 in. in size. A shock absorber

has been mounted at the end of the stroke as a safety precaution. A choke control selector valve controls all operations.



#### Figure 2.3 The concrete block

The selector valve has three control positions; one for forward movement, one for backward and the third for neutral position of operation. A four gallon accumulator, placed in the flow line between the pump and the selector valve, operates at an internal pressure of 1500 psi, thus ensuring the transfer of large quantities of fluid while operating at high velocities. Once the scraping is over, the selector valve switches to a neutral position, shutting off all fluid flow. While the sled is still in motion, with significant momentum, the pressure upstream of the piston rises considerably whereas the pressure downstream of the piston decreases. This process creates a decelerating effect.

A 2000 psi, relief valve accounts for this differential pressure. If the fluid pressure in the line rises above 2000 psi, the valve opens allowing the fluid to flow back to the other side of the piston. During deceleration a negative pressure can build up since the flow is shut off and the piston is still in motion. A one half gallon accumulator placed downstream of the choke control valve, just before of the hydraulic piston, serves as an additional reservoir of fluid and hence prevents negative pressure.

#### 2.1.2 Load Cell Calibration

The impact forces on the blade while scraping the ice were measured by a three axis load cell. The load cell was held tightly between the machine frame and the blade. The

operation of the load cell was based on the piezoelectric properties of quartz. When a strain is applied to the load cell, the electrical properties of the quartz change in proportion to the strain. To keep the strain proportional to the stress the load cell has to be prestressed. The prestressing was done using a torque wrench. About 22,000 lbs. of prestressed force was applied for the testing. Since the measured forces were much lower than the prestressed force, no slip occurred. The load cell was calibrated before any testing took place.



Figure 2.4. Load cell calibration setup for x and y directions.

The load cell was calibrated in three orthogonal directions (x, y, and z). The calibration system is shown in Figures 2.4 and 2.5. The vertical arm has a cantilever arm attached to it. The cantilever arm was balanced by weights such that it was in a horizontal position. The load cell could be mounted on the horizontal or vertical arm depending which axis was being calibrated. The cell was mounted on horizontal arm for calibrating the cell in the z-direction. For calibrating in the x and y directions, it was mounted on the vertical arm (Figure 2.4). The cantilever arm has a steel rod that rests lightly on the load cell. The dimensions of the arm were such that if weights were hung at the free end of the cantilever, ten times the weight acted on the load cell through the steel rod. A voltmeter was connected to the load transducers and the change in voltage with change in load on the cell was recorded. The calibration curves were obtained by placing a curve-fit through the data points.



Figure 2.5. Load cell calibration setup for z direction.

#### 2.1.3 Velocity Transducer Calibration

A Linear Voltage Displacement Transformer (LVDT) was used for position measurement. For the purpose of calibration, the sled was disconnected from the piston, and moved manually. For different positions of the sled the voltage was recorded using a voltmeter. The plot between position and voltage was obtained and the curve was highly linear. The relationship between position and voltage was used to determine the scraping velocity.

#### 2.1.4 Design and Manufacture of the Concrete Samples

The ice samples for testing were grown on specially designed concrete blocks. The concrete blocks were made with a C4 concrete mix. Each block was 12 in. x 4 in. x 4 in. in size. The blocks were cast such that the sides made an angle of 2° with respect to the vertical. The top surface of the concrete block was roughened with a brush while the concrete was still viscous. The sled carrying the concrete block for testing was made such that the block fit into it exactly on three sides, with some gap between the block and the sled on the fourth side. To avoid even a small displacement of the block due to the impact of the blade on the ice, the concrete block was prestressed using a steel bolt. A steel plate pressing against the concrete block, with a fastening bolt between the plate and the sled were provided such that, on tightening the bolt a compression force was exerted on the concrete block by the steel plate.

The ice on the concrete blocks was grown in layers. This avoided the formation of air pockets within the ice during ice formation. The air pockets cause additional areas of stress concentration which do not exist in nature. Each layer of water, around 1/8 in. in thickness was allowed to freeze before the next was added and the number of layers depended on the final thickness of ice required. The water was held in place on the block by a foam strip wound tightly round the concrete block (Figure 2.6). The temperature in the ice room was controlled by a thermostat and was maintained at 21°F with an accuracy of  $\pm 2°F$ .



Figure 2.6 Foam strips acting as dams

#### 2.2 Parameters and Variables

The blade parameters for the classical or straight edged blades (see Figure 2.7) were

1) Rake angle (0°, 15°, 30° and 45°)

2) Clearance angle  $(2^\circ, 5^\circ \text{ and } 10^\circ)$  and

3) Flat width (0 in., 1/8 in. 1/4 in and 5/8 in.)

4) Edge effect.

Based on the results obtained for straight edged blades, all blades used for further testing had standard parameters of rake angle 30°, clearance angle 5° and flat width 0 in.

Tests were also conducted with these parameters to determine the ice thickness effect and scraping velocity effect on scraping forces.



Figure 2.7. Cutting edge geometry of a classical blade.



Figure 2.8 Cutting edge geometry with rectangular serration.

#### 2.3 Typical Procedure

The concrete blocks on which the ice layers were formed were always kept in the ice room, so that when the samples were to be made, the temperature of the blocks was below freezing. Prior to making the samples, water (ordinary tap water) was taken in a large container and placed in the ice room for about 30 to 40 minutes, to cool it and bring

the temperature close to the freezing point. This process prevented the formation of air bubbles in the samples. While the water was cooling, the foam strips were wrapped tightly round the concrete blocks so that water could be retained on top of the blocks. A small quantity of grease was applied to the sides of the concrete blocks before wrapping the foam, to avoid leakage of water.

When the water became sufficiently cold, it was poured carefully on top of the concrete blocks, the layer of water not exceeding 0.125 in. The second layer was not applied until the first layer of water was completely frozen. On average each layer took about 1 to 1.5 hr. to freeze. The samples were usually prepared in the morning and the tests conducted at the end of the day.

The ice scraping machine was switched on at least ten minutes before the actual testing was done. In order to ensure the oil in the hydraulic pump was adequately warmed up, the sled was made to run forwards and backwards several times, taking care to start at very low velocities and then slowly increasing until the test velocity was attained smoothly. This caused the hydraulic oil to flow and warm up

Testing was conducted in batches. For each batch, 12 samples were prepared and the concrete blocks numbered. In order to determine the efficiency (defined as the percentage of ice removed by volume) of each run, the weight of ice scraped off each block during scraping was required. Once the sample was prepared and ready for testing, the foam strip was removed and the thickness of the ice layer formed was measured using a scale. The concrete block was placed in the sled with the ice layer facing downwards, and the prestressing bolt was tightened with a wrench so that the concrete block did not move. Before running the test, the data acquisition system was started on the computer. The switch to move the sled forward was turned on and the run completed. The same process was repeated for the other samples in the batch. After each batch of testing was complete, the concrete samples were cleaned off and made ready for the next batch of testing.

#### 2.4 Data Acquisition and Data Handling

Data acquisition and handling was done using a PC and the software, LABTECH NOTEBOOK. The variation of voltages, with the variation of loads in the three directions on the load cell and with the displacement of the sled, as transmitted by the load cell transducers and velocity transducer through independent channels, were recorded by the computer. The frequency and the time interval for data acquisition could be set as required. A visual plot of the four voltages corresponding to the three loads and the displacement

with respect to time, was shown on the computer during the scraping process. The data acquired for each test run were stored in separate files.

Before each test run the initial values of the voltages were recorded and stored from all four channels. After the test run when the final values were acquired, the average of the initial values were subtracted from the final values to give the actual voltages corresponding to the loads. The voltages were then converted to their corresponding loads or displacement as the case may be using the calibration curves.

## **Chapter 3 Experimental Results**

#### 3.1 Introduction

The averaged results of the ice scraping tests for selected runs are presented in this chapter. The type of output obtained from each experiment varies significantly between each run. The magnitude of forces and type of output changes with varying blade parameters. All experimental results obtained for this study contain scattered data. However, the difficulty of analysis was not only due to the spread of data, but also to ice chipping. This chipping resulted in a sudden drop of forces and therefore effected the final average. The complete table of results is located in Appendix A. When dealing with results of this type, it is difficult to adequately represent the experimental output with a single number or even an average value for a each experiment. In order to obtain comparable and reasonable results for analysis, a large number of experiments were necessary.

There were three sets of parameters that were considered in this study:

- 1. Blade variables
- 2. Thickness of scraped ice
- 3. Scraping velocity

The results of the scraping tests according to these three sets of variables are presented in the following sections.

#### **3.2** Blade Variables

The blade variables referred to in this section are shown in Figure 1.1

#### **3.2.1 Rake Angle Effect**

Blades with rake angles of  $0^{\circ}$ ,  $15^{\circ}$ ,  $30^{\circ}$  and  $45^{\circ}$  were tested at varying velocities. Even though the load cell was capable of measuring forces in three directions, only horizontal and vertical forces were of analytical significance. For each run an average force was calculated for both horizontal and vertical directions. Because of the large scatter of results and because of variation between tests (for the same blade with common velocity and thickness), an average of several individual runs was taken. Data for rake angles, 0°, 15°, 30°, and 45° are plotted in Figures 3.1 and 3.2.



■ Rake 0 ▲ Rake 15 × Rake 30 + Rake 45

Figure 3.1 Average vertical force vs. thickness for various rake angles (Vel=10 ft/s)



Figure 3.2 Average horizontal force vs. thickness for various rake angles (Vel=10 ft/s)

### 3.2.2 Clearance Angle Effect

The clearance angle effect was tested for three different values at  $2^{\circ}$ ,  $5^{\circ}$ , and  $10^{\circ}$ . The average vertical and horizontal forces are plotted in Figures 3.3 and 3.4 respectively. Rake angle 30° and zero flat width were constant for all three blades.



Figure 3.3 Average vertical force vs. thickness for various clearance angles (Vel=9 ft/s). The clearance angles are  $2^{\circ}(\Delta)$ ,  $5^{\circ}(\Box)$ ), and  $10^{\circ}(\times)$ 



Figure 3.4 Averaged results horizontal force vs. thickness for various clearance angles (Vel=9 ft/s). The clearance angles are  $2^{\circ}(\Delta)$ ,  $5^{\circ}(\square)$ ), and  $10^{\circ}(\times)$ 

#### 3.2.3 Flat Width Effect

Due to blade wear, it was important for the study to analyze the flat width effect on the scraping forces. Four different blades with varying flat widths were tested. For this analysis, blade rake angle and clearance angle were constant at 30° and 5° respectively. The results are presented Figures 3.5 and 3.6.



Figure 3.5 Average vertical force vs. thickness for various flat widths. The flat widths are 0 in. ( $\Box$ ), 0.125 in. ( $\Delta$ ), 0.3 in.(×), and 0.4 in. ( $\Diamond$ ).



Figure 3.6 Average horizontal force vs. thickness for various flat widths. The flat widths are 0 in. ( $\Box$ ), 0.125 in. ( $\Delta$ ), 0.3 in.( $\times$ ), and 0.4 in. ( $\Diamond$ ).

#### 3.2.4 Blade Edge Effect

The samples on which ice was grown were 4 in. in width, however, the blades were manufactured at 5 in.. Therefore, all ice was removed from the concrete block. It was of interest to test a blade of smaller width than that of the concrete block, in this case with a blade width of 3.2 in. These results are presented Figures 3.7 and 3.8. The results are given in pounds per inch of scraped area.



Figure 3.7 Average vertical force vs. thickness for blades with various widths



Figure 3.8 Average horizontal force vs. thickness for blades with various widths

### 3.2.5 Serrated Blades

In previous studies, results showed that ice failed in chips or flakes of various sizes. Because of this reason, it was believed that ice could be removed effectively using

various designs of serrated blades. The following sections present results of serrated blades with square teeth of different sizes.

Figures 3.9 and 3.10 give visual representation of the average forces in the horizontal and vertical directions. All figures in this section contain results only for velocity of 10 ft/s. Data obtained for other velocities are available in the Appendix A.







Figure 3.10 Average horizontal forces vs. thickness for serrated blades for various teeth sizes. The sizes of the teeth are 0.125 in. ( $\square$ ), 0.25 in. ( $\Delta$ ), 0.5 in. ( $\times$ ), and 1.0 in. ( $\Diamond$ ).

### 3.2 Ice Thickness Effect

Five blades were chosen to test the effect of ice thickness on scraping forces. Figures 3.11 through 3.20 present the results of a blade with rake angle 30°, clearance angle 5°, and a zero flat width. Four of the five blades were serrated blades of 0.125, 0.25, 0.5, and 1 in. square teeth.



Figure 3.11 Average forces vs. ice thickness for blade with a rake angle of 30°, clearance angle of 5°, and zero flat width. The horizontal force is denoted by ( $\Box$ ) and the vertical force is denoted by ( $\Delta$ )



Figure 3.12 Maximum forces vs. ice thickness for blade with a rake angle of 30°, clearance angle of 5°, and zero flat width. The horizontal force is denoted by ( $\Box$ ) and the vertical force is denoted by ( $\Delta$ )



Figure 3.13 Average forces vs. ice thickness for blade with a rake angle of 30°, clearance angle of 5°, and tooth size of 0.125 in. The horizontal force is denoted by ( $\square$ ) and the vertical force is denoted by ( $\Delta$ )



Figure 3.14 Maximum forces vs. ice thickness for blade with a rake angle of 30°, clearance angle of 5°, and tooth size of 0.125 in. The horizontal force is denoted by ( $\square$ ) and the vertical force is denoted by ( $\Delta$ )



Figure 3.15 Average forces vs. ice thickness for blade with a rake angle of 30°, clearance angle of 5°, and tooth size of 0.25 in. The horizontal force is denoted by ( $\square$ ) and the vertical force is denoted by ( $\Delta$ )



Figure 3.16 Maximum forces vs. ice thickness for blade with a rake angle of 30°, clearance angle of 5°, and tooth size of 0.25 in. The horizontal force is denoted by ( $\square$ ) and the vertical force is denoted by ( $\Delta$ )

Í



Figure 3.17 Maximum forces vs. ice thickness for blade with a rake angle of 30°, clearance angle of 5°, and tooth size of 0.5 in. The horizontal force is denoted by ( $\square$ ) and the vertical force is denoted by ( $\Delta$ )



Figure 3.18 Average forces vs. ice thickness for blade with a rake angle of 30°, clearance angle of 5°, and tooth size of 0.5 in. The horizontal force is denoted by ( $\square$ ) and the vertical force is denoted by ( $\Delta$ )



Figure 3.19 Maximum forces vs. ice thickness for blade with a rake angle of 30°, clearance angle of 5°, and tooth size of 1 in. The horizontal force is denoted by ( $\square$ ) and the vertical force is denoted by ( $\Delta$ )



Figure 3.20 Average forces vs. ice thickness for blade with a rake angle of 30°, clearance angle of 5°, and tooth size of 1 in. The horizontal force is denoted by ( $\square$ ) and the vertical force is denoted by ( $\Delta$ )

#### 3.4 Velocity Effect

In the process of removing ice from roads using cutting edges, velocity may have an effect on scraping forces. Figures 3.21 through 3.24 represent the relationship both vertical and horizontal scraping forces for a constant ice thickness of 0.3 in., for two blades: one without serrations, the other with teeth 0.25 in. wide with equal sized gaps between the teeth.



Figure 3.21 Average forces vs. thickness for blade with a rake angle of 30°, clearance angle of 5°, and zero flat width. The horizontal force is denoted by ( $\square$ ) and the vertical force is denoted by ( $\Delta$ )



Figure 3.22 Maximum forces vs. thickness for blade with a rake angle of 30°, clearance angle of 5°, and zero flat width. The horizontal force is denoted by ( $\square$ ) and the vertical force is denoted by ( $\Delta$ )



Figure 3.23 Average forces vs. thickness for blade with a rake angle of 30°, clearance angle of 5°, and tooth size of 0.25 in. The horizontal force is denoted by ( $\square$ ) and the vertical force is denoted by ( $\Delta$ )



Figure 3.24 Maximum forces vs. thickness for blade with a rake angle of 30°, clearance angle of 5°, and tooth size of 0.25 in. The horizontal force is denoted by ( $\square$ ) and the vertical force is denoted by ( $\Delta$ )

## Chapter 4 Discussion

#### 4.1 Introduction

This study has two aims: to determine the process by which ice is scraped from the road; and to determine whether serrated blades offer any benefits for ice scraping. In this chapter the results presented in Chapter 3 are discussed with these two aims in mind.

#### 4.2 Rake Angle Effect

Four different rake angles were analyzed:  $0^{\circ}$ ,  $15^{\circ}$ ,  $30^{\circ}$ , and  $45^{\circ}$ . As shown in Figure 3.2, a rake angle of  $30^{\circ}$  has been shown to produce the best results with respect to vertical force. It can be seen that for small thicknesses (about 0.1 in.), the difference in the magnitude of forces for rake angle  $30^{\circ}$  versus the other three rake angles is approximately 200 lbs. However, as the scraping thickness increases (up to 0.6 in.), this difference becomes smaller (about 20-50 lbs).

The horizontal force reactions versus thickness for each rake angle are shown in Figure 3.1. The magnitudes of these forces are much smaller than the vertical forces. Also, horizontal force decreases with increasing rake angle. These results are consistent considering that an angled blade would reduce the amount of energy transferred to the broken ice chips. However a "blunt" blade would redirect the ice chips in the opposite direction thus supplying them with more energy. This phenomenon is illustrated in Figure 4.1.



Figure 4.1 Direction of ice chips for blunt and angled blades

#### 4.3 Clearance Angle Effect

Another variable that was taken into consideration was clearance angle. Blades with three clearance angles, 2°, 5°, and 10°, with flat widths of zero were tested. Figure 3.3 shows that clearance angles of 5° and 10° give approximately the same vertical forces for varying thicknesses. Blades with clearance angle 2° had a much higher vertical reaction force. As was observed before, the difference in these forces decreases as the thickness of scraped ice increases. The results collected for horizontal force were much lower for the blade with clearance angle 5° which would indicate that this angle is the most desirable one. The clearance angle effect sheds particular light on the ice scraping process. It appears that as the blade interacts with the ice, ice ahead of the blade is fragmented. This fragmentation occurs both above and below the horizontal plane along which the tip of the cutting edge moves. While the ice above this plane is ejected in front of the blade, the ice fragments beneath the cutting tip plane must pass beneath the cutting edge. For this to occur, the ice fragments must be compressed, which requires work to be done. The degree of compression will be greater for a smaller clearance angle (below some value) and also greater for a greater flat width. This description of the ice-scraping process is confirmed both by the observed clearance angle and flat width effects, and by observed ejection of ice fragments from behind the cutting edge, as documented in the field experiments of Nixon and Frisbie (1993).

#### 4.4 Flat Width Effect

In real life application, plow blades are subject to wear which increases the flat width of the blade. For practical application, it was important during this study to determine the effect of flat width on the efficiency of scraping and the resulting forces. By studying the various flat widths of blades, it was determined that with increasing flat widths there was a large increase in both vertical and horizontal forces. Figures 3.5 and 3.6 show that a flat width of 0.125 in. increases the reaction forces by magnitudes of 10 for the vertical force and 4 for the horizontal force. These results indicate a tremendous blade wear effect on scraping forces.

#### 4.5 Edge Effect

Another aspect considered in this study was blade edge effect. For all previous tests, the blade width was 5 in. (larger than the width of the concrete sample) and, as a result, all ice was removed from the concrete block. To test edge effect, a blade of 3.2 in. width was used. Figures 3.7 and 3.8 show the data obtained from both the 5 inch and 3.2 inch blades. In order to show edge effect, the reaction forces were divided by the width of the blade. It can be seen that for various thicknesses, the smaller blade (3.2 in.) produced higher reaction forces. This may reflect the complex stress state at the edge of the smaller blade as it cuts a groove in the ice.

#### 4.6 Serrated Blades

It should be noted at this point, that because the blade with rake angle  $30^{\circ}$ , clearance angle 5°, and flat width zero showed the best results, all the serrated blades were made with these parameters. For all blades, the teeth sizes and the spacing between them were kept at a ratio of one. The teeth were a quarter inch deep. Blades with four different tooth sizes (0.125 in., 0.25 in., 0.5 in., and 1.0 in.) were tested. These blades leave a grooved surface, each groove corresponding to a different tooth size. The blade with a tooth size of 1.0 inch had the smallest reaction forces. This blade, however, did not remove ice efficiently. As the width of tooth size decreased, the height of the grooves also decreased (as illustrated in Figures 4.2 and 4.3).

Both vertical and horizontal forces increased for blades of smaller tooth sizes (0.25 in. and 0.125 in.). Because of their tooth sizes, these blades were able to remove a larger volume of ice. The serrated blades of smaller teeth sizes exerted smaller reaction forces than an un-serrated blade with rake angle  $30^{\circ}$  and clearance angle  $5^{\circ}$ .



Figure 4.2 Side view of a serrated blade (0.25 in.) surface after a run



Figure 4.3 Sideways view of a serrated blade (0.5 in.) surface after a run

#### 4.7 Ice Thickness Effect

Thickness effect was an important aspect in this research because, in natural conditions, roads may be covered by various ice thicknesses. Figures 3.11 through 3.20 indicate that both the maximum and average scraping forces reach their maximum value at a thickness range of 0.4 to 0.6 in.. As thickness increases above 0.6 in., the average reaction forces decrease. This is due to the fact that as the thickness increases, the likelihood of ice chipping off the concrete also increases. It was observed during this study that for larger thicknesses, ice was removed in bigger chunks leaving more bare concrete. This tendency to chip at higher ice thicknesses reflects the increased likelihood under such conditions a crack in the ice propagating for at least some distance along the ice-concrete interface or within the ice, rather than going directly to a free surface.

#### 4.8 Velocity Effect

Two blades were tested with respect to forces and velocity, a serrated blade, with a tooth size of 0.25, and a classical blade, with rake angle 30° and clearance angle 5°. In both cases, it was shown (see Figures 3.21 through 3.24) that as the velocity increased, both vertical and horizontal reaction forces decreased. As these figures indicate, the maximum force was reached at a velocity of approximately 10 ft/s (6.8 mph). When the velocity doubles, the average vertical and horizontal forces decrease by about 50 lbs. As with thickness effect, it was observed that with increasing velocity more ice was chipped off the concrete block.

4.9 The Ice Scraping Process and Serrated Blades

From the tests conducted in this study, a picture of the processes involved in scraping ice from pavements has emerged. This is shown schematically in Figure 4.4.



**Direction of Pavement Motion** 

Figure 4.4 Ice failure modes

The processes include pulverization of the ice into small fragments which are both ejected in front of the blade, and recompressed beneath the blade and ejected behind it. Under certain conditions (thicker ice and higher velocities) cracks may propagate significant distances within the ice or along the ice-concrete interface, causing chipping of the ice. Chipping is preferable to pulverization of the ice because it is much less energy intensive, and would thus require lower scraping loads. However, methods which promote chipping have yet to be determined.

The test results obtained indicate that serrated blades are capable of removing ice at lower loads that "classical" or un-serrated blades. Further, the finer toothed blades were more efficient at removing ice than were the coarse blades. To that extent, it would seem that finely toothed blades should be considered for field testing. However, the step from the laboratory to the field is not straight forward and some care is needed in this regard.

## Chapter 5 Conclusions

The primary objectives of this study were to develop an understanding of the ice scraping process and to investigate the effectiveness of serrated blades for ice scraping. The classical blades were used as the point of reference. The objective of this study was to investigate blade geometry in order to a) minimize horizontal and vertical scraping forces and b) maximize the ice removal.

The following points summarize the conclusions obtained from the research conducted in this study.

- Various parameters of blades, such as rake angle, clearance angle, and flat width were tested. As a result of this study, it was shown that the blade with rake angle 30° and clearance angle 5° produced the minimum horizontal and vertical forces for varying ice thicknesses.
- It was shown that velocity has an effect on the average value of scraping forces. As velocity increased beyond 10 ft/s, both average horizontal and vertical forces decreased.
- 3. As ice thickness increased beyond 0.5 inches, the average scraping forces significantly decreased (approximately 100 lbs).
- 4. The above observations correspond to an increase in ice chipping as thickness and velocity increase.
- 5. The study showed that serrated blades as opposed to non-serrated blades, required smaller forces to remove a given thickness of ice. There was, however, a slight reduction in the amount of ice that was removed with serrated blades. The difference in reaction forces between these two types of blades became smaller as the tooth size decreased.
- 6. The rate of ice removal of the serrated blades increased as the tooth size became smaller. It was a speculation, therefore, that the serrated blades might perform significantly better than the classical blades especially when the flat width increased due to wear.

A good picture of the ice scraping process has been developed from this study. From this, two challenges can be identified:

- 1. When ice is chipped, rather than pulverized, scraping loads are significantly (an order of magnitude) lower and more pavement is exposed. The challenge is to identify means to promote chipping of ice rather than pulverization.
- 2. Serrated blades appear capable of removing as much ice as classical blades but at lower loads. This suggests field tests would be valuable, and preliminary results in that direction are promising. This may be an area which warrants further study.

## **Bibliography**

Bregman, J.J. Corrosion Inhibitors, 1st edition, New York: Macmillan Co., 1963.

- Brohom, D.R. and S. Cohen, Maintenance Operations Office, Maintenance Branch, Ontario Ministry of Transportation and Communications, Downsview, Ontario.
- Bruss, Poul T. "The Use of Stress Waves In Removing Ice From Concrete", Snow Removal and Ice Control Technology, Third International Symposium on Snow Removal and Ice Control Technology, September, 1992.
- Chung, Cheng-Hua. "Development of Cutting Edges for Ice Removal from Pavements", Thesis submitted to the University of Iowa, May 1992.
- Dickinson, W.E. (1968). "Snow and Ice Control-A Critical Look at Its Critics", Highway Research Record Number 227, Highway Research Board, National Research Council, Washington D.C.
- Forkenbrock, David J., Norman S. J. Foster, and Michael C. Crum. 1994. Transportation and Iowa's Economic Future. Report prepared for the U.S. Department of Transportation and the Iowa Department of Transportation. Iowa City, IA: University of Iowa Public Policy Center.
- Frederking, R. "Mechanical Properties of Ice and Their Application to Artic Ice Platforms", *Ice Tech 75*, The Society of Naval Architects and Marine Engineers, New York, 1975.
- Fromm, H.J. (1968). "Corrosion of Auto-Body Steel and the Effects of Inhabited Deicing Salts", Highway Research Record Number 227, Highway Research Board, National Research Council, Washington D.C.
- Hansen, Andrew C. "An Analysis of Energy Dissipation Caused by Snow Compaction During Displacement Flowing", SHRP Contract H-206, University of Wyoming, Laramie, November, 1990.

- Hanbali, R. 1994. The Economic Impact of Winter Road Maintenance on Road Users. Paper No. 940191. Presented at 73rd Annual Meeting of the Transportation Research Board, January 9–13, 1994, Washington DC.
- Hegmon, R.R. and W.E. Meyer. (1968). "The Effect of Antiskid Materials", Highway Research Record Number 227, Highway Research Board, National Research Council, Washington D.C.
- Iowa DOT, etal. "Deicing Practices in Iowa: An Overview of Social, Economic and Environmental Implications, Prepared for The Iowa General Assembly House of Representatives, January, 1980.
- Kinsey, J.S. etal. "Guidance Document for Selecting Antiskid Materials Applied to Iceand Snow Covered Roadways", Report to United States Environmental Protection Agency, Iowa City, 1990.
- Michel, B and R.O. Ramseier. "Classification of Riven and Lake Ice Based on Its Genesis, Structure and Texture", Depart. De Genie Civil, Universite Laval, Quebec, 1969.
- Minsk, D.L. (1968). "Electrically Conductive Asphalt for Control of Snow and Ice Accumulation", Highway Research Record Number 227, Highway Research Board, National Research Council, Washington D.C.
- Minsk, D.L. "Non corrosive Methods of Ice Control", Rpt. US. Army Cold regions Research and Engineering Laboratory, 1979
- Murry, D.M. and M.R. Eigerman. (1972). "A Search: New Technology for Pavement Snow and Ice Control", EPA-R2-72-125, Office Of Research and Monitoring, U.S. Environmental Protection Agency, Washington D.C., December, 1972.
- Nixon, Wilfrid A. "Improved Cutting Edges for Ice Removal", SHRP-H-346, National Research Council, Washington D.C., 1993.
- Nixon, Wilfrid A. And Todd R. Frisbie. "Field Measurements of Plow Loads During Ice Removal Operations", Iowa Department of Transportation Project HR 334, Iowa Institute of Hydraulic Research, November, 1993.

- W.A. Nixon and J.D. Potter, "Measurements of Ice Scraping Loads on Underbody Plows during Service Operations", Proc. 4th Ontl. Symposium on Snow Removal and Ice Control technology, TRB/NRC Paper No. D-4, Vol II, Reno, Nevada, August 1996.
- Osborne, Mark D., "An Abrasive Air Blast System for Disbonding Ice and Snow From Pavement", Snow Removal and Ice Control Technology, Third International Symposium on Snow Removal and Ice Control Technology, September, 1992.
- Sayles, F.H., etal., "Classification and Laboratory Testing of Artificially Frozen Ground." Journal of Cold Regions Engineering, Vol. 1 No. 1, March 1987, P. 22-48.
- SHRP. "Ice-Pavement Bond Disbonding-Surface Modification and Disbonding", Report Number SHPR-H/FR-90-2, National Research Council, Washington D.C., 1990.
- SHRP. "Testing Program for the Experimental Plow", SHRP Contract H-206, University of Wyoming, Laramie, November, 1990.
- Tabler, Ronald D. "Engineering the Control of Blowing Snow", SHRP Contract H-206, University of Wyoming, Laramie, November, 1990.
- Transportation Research Board. 1992. Highway Deicing: Comparing Salt and Calcium Magnesium Acetate. Special Report 235, Washington DC: Transportation Research Board.
- Wade, R.G. et al. "Improvements in Icebreaking by Use of Air Cushion Technology", Ice Tech 75, The Society of Naval Architects and Marine Engineers, New York, 1975.
- Weber, Larry. "A Study of Fracture Toughness and Fatigue of Freshwater Ice", Thesis submitted to University of Iowa, May 1993.
- Transportation Research Board. 1992. Highway Deicing: Comparing Salt and Calcium Magnesium Acetate. Special Report 235, Washington DC: Transportation Research Board.

# Appendix A Experimental Results

The results in this appendix were classified according to the amount of scatter produced from the reaction forces.

| VG | - | very good (minimal scatter of data) |
|----|---|-------------------------------------|
| G  | - | good (small scatter)                |
| Μ  | - | medium scatter                      |
| D  | - | drop in forces                      |
| DD | - | double drop in forces               |

Clearance Angle 5°, Rake Angle 0°, Blade Width 3.21 in.

| Cl               | Run | Thic. | Vel  | Max. H | Avg. H | Std. | Max. V | Avg. V | Std. |
|------------------|-----|-------|------|--------|--------|------|--------|--------|------|
|                  | no. | in.   | ft/s | lbs    | lbs    | Dev. | lbs    | lbs    | Dev. |
| G                | . 2 | 0.25  | 10   | 272    | 104    | 53   | 475    | 320    | 124  |
| Μ                | 3   | 0.15  | 10   | 430    | 95     | 67   | 434    | 254    | 105  |
| D                | 4   | 0.30  | 4    | 309    | 127    | 62   | 452    | 232    | 109  |
| M                | 5   | 0.20  | 4    | 264    | 114    | 52   | 502    | 305    | 129  |
| DD               | 6   | 0.25  | 4    | 360    | 74     | 86   | 534    | 151    | 161  |
| G                | 7   | 0.25  | 4    | 230    | 104    | 51   | 527    | 318    | 151  |
| G                | 8   | 0.25  | 4    | 166    | 81     | 33   | 495    | 298    | 99   |
| G                | 9   | 0.25  | . 7  | 264    | 74     | 37   | 450    | 235    | 76   |
| $\mathbf{M}^{+}$ | 10  | 0.25  | 7    | 211    | 84     | 44   | 672    | 255    | 150  |
| D                | 11  | 0.35  | 7    | 365    | 99     | 59   | 511    | 227    | 109  |
| M                | 12  | 0.30  | 7    | 264    | 68     | 43   | 472    | 264    | 110  |

Clearance Angle 5°, Rake Angle 0°, Flat Width 0 in.

| Cl     | Run            | Thic. | Vel  | Max. H | Avg. H | Std.      | Max. V | Avg. V | Std. |
|--------|----------------|-------|------|--------|--------|-----------|--------|--------|------|
|        | no.            | in.   | ft/s | lbs    | lbs    | Dev.      | lbs    | lbs    | Dev. |
| Μ      | 1              | 0.30  | 10   | 326    | 79     | 67        | 360    | 144    | 122  |
| D      | 2              | 0.30  | 10   | 367    | 59     | 65        | 287    | 56     | 66   |
| Μ      | 3              | 0.35  | 9    | 283    | 95     | 69        | 278    | 184    | 108  |
| DD     | . 4            | 0.30  | 10   | .333   | 41     | 43        | 377    | 43     | 36   |
| Μ      | 5              | 0.30  | 10   | 286    | 104    | 49        | 493    | 290    | 91   |
| Μ      | 6              | 0.30  | 10   | 314    | 121    | 60        | 408    | 275    | 88   |
| Μ      | 7              | 0.30  | 9    | 403    | 124    | 71        | 509    | 250    | 114  |
| Μ      | 8              | 0.15  | 9    | 234    | 67     | 55        | 487    | 195    | 67   |
| М      | 9              | 0.15  | 8    | 259    | 99     | 38        | 555    | 360    | 67   |
| D      | 10             | 0.25  | 8    | 235    | 69     | 50        | 491    | 183    | 106  |
| М      | 11             | 0.20  | 6    | 255    | 107    | 46        | 504    | 364    | 55   |
| G      | 1              | 0.30  | 9    | 151    | 84     | 27        | 522    | 405    | 75   |
| Ğ      | $\overline{2}$ | 0.25  | 9    | 213    | 110    | 36        | 432    | 318    | 57   |
| Ğ      | 3              | 0.25  | 9    | 210    | 106    | 42        | 505    | 343    | 73   |
| Ð      | 4              | 0.25  | 9    | 362    | 81     | 50        | 402    | 182    | 97   |
| Ĝ      | 5              | 0.20  | 9    | 290    | 12     | 52        | 538    | 381    | 100  |
| Ğ      | 6              | 0.10  | 10   | 183    | 77     | 27        | 439    | 333    | 49   |
| M      | 7              | 0.15  | 10   | 264    | 75     | 44        | 503    | 252    | 103  |
| G      | 8              | 0.15  | 10   | 186    | 74     | 28        | 519    | 342    | 95   |
| Ğ      | 9              | 0.15  | 9    | 214    | 112    | 34        | 601    | 396    | 100  |
| Ğ      | 10             | 0.10  | 10   | 214    | 99     | 28        | 566    | 411    | 75   |
| Ğ      | 11             | 0.15  | 9    | 242    | 131    | $40^{-1}$ | 548    | 426    | 59   |
| D      | 12             | 0.15  | 10   | 211    | 88     | 50        | 537    | 256    | 135  |
| M      | 1              | 0.30  | 10   | 307    | 141    | 59        | 523    | 335    | 92   |
| D      | $\hat{2}$      | 0.40  | 10   | 294    | 95     | 67        | 519    | 187    | 125  |
| M      | 3              | 0.50  | 10   | 403    | 92     | 66        | 441    | 199    | 103  |
| M      | 4              | 0.35  | 9    | 392    | 120    | 68        | 644    | 331    | 127  |
| DD     | 5              | 0.55  | 8    | 504    | 84     | 90        | 400    | 129    | 104  |
| M      | 6              | 0.45  | 10   | 360    | 86     | 82        | 405    | 105    | 95   |
| DD .   | 7              | 0.35  | 10   | 356    | 100    | 68        | 572    | 179    | 97   |
| M      | 8              | 0.30  | 9    | 317    | 130    | 51        | 572    | 330    | 81   |
| M      | 9              | 0.40  | 10   | 305    | 112    | 73        | 3499   | 168    | 92   |
| M      | 10             | 0.40  | 8    | 407    | 135    | 71        | 507    | 294    | 109  |
| D      | 11             | 0.35  | 8    | 315    | 101    | 62        | 460    | 212    | 106  |
| Ď      | 12             | 0.35  | 7    | 350    | 61     | 68        | 408    | 122    | 116  |
| M      | 1              | 0.00  | 10   | 183    | 76     | 25        | 650    | 404    | 80   |
| G      | 2              | 0.10  | 5    | 205    | 66     | 34        | 556    | 210    | 92   |
| G      | 3              | 0.10  | 10   | 170    | 86     | 27        | 545    | 389    | 67   |
| G      | 4              | 0.10  | 5    | 210    | 116    | 26        | 621    | 443    | 52   |
| с<br>С |                | 0.15  | 5    | 206    | 102    | 29        | 541    | 394    | 50   |
| С<br>С | 5              | 0.15  | 2    | 200    | 64     | 25        | 550    | 309    | 141  |
| D<br>D | 7              | 0.15  | 11   | 250    | 103    | 75        | 585    | 145    | 170  |
| M      | ,<br>x         | 0.30  | 11   | 288    | 105    | 65        | 542    | 184    | 116  |
| M      | 9              | 0.40  | 9    | 493    | 106    | 103       | 403    | 162    | 131  |

| М      | 10        | 0.50 | 10 | 392 | 136 | 76 | 406 | 245 | 88  |
|--------|-----------|------|----|-----|-----|----|-----|-----|-----|
| G      | 11        | 0.40 | 5  | 545 | 90  | 71 | 387 | 200 | 55  |
| D      | 12        | 0.40 | 5  | 382 | 146 | 74 | 559 | 317 | 98  |
| $D\!D$ | . 1       | 0.35 | 11 | 423 | 74  | 80 | 531 | 158 | 172 |
| DD     | 2         | 0.35 | 8  | 367 | 40  | 69 | 242 | 26  | 51  |
| D      | 4         | 0.40 | 11 | 274 | 72  | 61 | 377 | 122 | 100 |
| D      | 5         | 0.30 | 8  | 436 | 45  | 55 | 317 | 25  | 33  |
| D      | · 6       | 0.50 | 10 | 263 | 92  | 70 | 268 | 68  | 58  |
| Μ      | 7         | 0.45 | 8  | 377 | 81  | 73 | 269 | 65  | 50  |
| DD     | 8         | 0.45 | 9  | 357 | 81  | 73 | 430 | 97  | 102 |
| M      | <u>11</u> | 0.50 | 8  | 307 | 126 | 66 | 505 | 266 | 76  |

· · · · · ·

۰. ۲.

.

| Cl | Run            | Thic. | Vel  | Max. H | Avg. H | Std.      | Max. V | Avg. V | Std. |
|----|----------------|-------|------|--------|--------|-----------|--------|--------|------|
|    | no.            | in.   | ft/s | lbs    | lbs    | Dev.      | lbs    | lbs    | Dev. |
| D  | 2              | 0.45  | 10   | 223    | 75     | 50        | 353    | 188    | 103  |
| Μ  | - 3            | 0.60  | 10   | 177    | 57     | 50        | 220    | 98     | 72   |
| D  | . 4            | 0.50  | 10   | 183    | 68     | 37        | 473    | 173    | 115  |
| M  | 5              | 0.45  | 10   | -257   | 79     | 43        | 476    | 210    | 122  |
| D  | 6              | 0.50  | 10   | 202    | 68     | 45        | 513    | 187    | 132  |
| D  | 7              | 0.55  | 10   | 234    | 71     | 47        | 486    | 199    | 114  |
| DD | 8              | 0.45  | 10   | 210    | 75     | 46        | 523    | 242    | 136  |
| DD | 9              | 0.45  | 10   | 193    | 48     | 52        | 249    | 34     | 43   |
| G  | 10             | 0.55  | 10   | 166    | 76     | 28        | 519    | 319    | 84   |
| DD | 11             | 0.45  | 10   | 190    | 60     | 48        | 506    | 127    | 148  |
| D  | 12             | 0.45  | 10   | 216    | 64     | 54        | 474    | 171    | 151  |
| G  | 1              | 0.30  | 10   | 177    | 88     | 40        | 539    | 360    | 135  |
| DD | 2              | 0.25  | 10   | 201    | 61     | 39        | 561    | 175    | 127  |
| D  | 3              | 0.45  | 10   | 218    | 73     | 35        | 590    | 280    | 129  |
| G  | 4              | 0.20  | 10   | 146    | 81     | 23        | 524    | 328    | 88   |
| G  | 5              | 0.25  | 10   | 208    | 96     | 32        | 579    | 362    | 67   |
| G  | 6              | 0.25  | 10   | 198    | 95     | 33        | 526    | 387    | 97   |
| G  | 7              | 0.50  | 10   | 161    | 76     | 32        | 481    | 330    | 100  |
| G  | 8              | 0.25  | 10   | 185    | 89     | 34        | 526    | 345    | 101  |
| G  | 9              | 0.30  | 10   | 210    | 94     | 32        | 538    | 370    | 93   |
| G  | 10             | 0.25  | 10   | 201    | 91     | 26        | 570    | 365    | 67   |
| M  | 11             | 0.35  | 10   | 176    | 92     | 32        | 558    | 344    | 90   |
| D  | 12             | 0.35  | 10   | 173    | 79     | 44        | 530    | 249    | 144  |
| M  | 1              | 0.10  | 10   | 122    | 60     | 23        | 492    | 270    | 97   |
| M  | 2              | 0.30  | 10   | 170    | 71     | 30        | 524    | 241    | 78   |
| M  | 3              | 0.15  | 10   | 129    | 71     | 22        | 495    | 321    | 39   |
| M  | 4              | 0.20  | 10   | 154    | 67     | 30        | 494    | 271    | 95   |
| M  | 5              | 0.15  | 10   | 127    | 69     | 23        | 431    | 280    | 81   |
| G  | 6              | 0.20  | 10   | 165    | 70     | 26        | 459    | 251    | 50   |
| Ň  | 7              | 0.15  | 10   | 154    | 61     | 29        | 568    | 288    | 121  |
| M  | 1              | 0.25  | 10   | 165    | 80     | $24^{-2}$ | 440    | 296    | 90   |
| M  | $\overline{2}$ | 0.30  | 10   | 183    | 78     | 54        | 464    | 284    | 82   |
| D  | 3              | 0.20  | 10   | 181    | 68     | 44        | 494    | 238    | 104  |
| D  | 4              | 0.30  | 10   | 250    | 63     | 34        | 457    | 298    | 110  |
| Ĝ  | 5              | 0.40  | 10   | 339    | 112    | 35        | 422    | 366    | 25   |
| Ğ  | 6              | 0.30  | 10   | 273    | 98     | 42        | 425    | 300    | 33   |
| DD | 7              | 0.30  | 10   | 198    | 88     | 32        | 484    | 199    | 140  |
| G  | 8              | 0.20  | 10   | 188    | 87     | 28        | 480    | 338    | 44   |
| D  | 9              | 0.30  | 10   | 259    | 51     | 44        | 233    | 103    | 110  |
| M  | 10             | 0.25  | 10   | 138    | 75     | 25        | 478    | 315    | 65   |
| G  | 11             | 0.25  | 10   | 195    | 94     | 25        | 493    | 317    | 55   |
| Ď  | 12             | 0.25  | 10   | 206    | 86     | 27        | 482    | 299    | 78   |
| M  | 1              | 0.30  | 10   | 140    | 64     | 36        | 517    | 243    | 129  |
| G  | 2              | 0.20  | 10   | 162    | 55     | 30        | 524    | 221    | 87   |

| D | 3    | 0.20 | 10 | 133 | 69  | 23  | 538 | 321 | 76    |
|---|------|------|----|-----|-----|-----|-----|-----|-------|
| Μ | 4    | 0.25 | 10 | 175 | 70  | 35  | 534 | 278 | 118   |
| G | 5    | 0.25 | 10 | 188 | 74  | 38  | 597 | 292 | 126   |
| G | 6    | 0.15 | 10 | 146 | 66  | 24  | 525 | 294 | 56    |
| Μ | 7    | 0.25 | 10 | 163 | 58  | 29  | 383 | 238 | 84    |
| M | 8.   | 0.20 | 10 | 182 | 73  | 32  | 586 | 349 | 110   |
| D | · 9  | 0.20 | 10 | 208 | 58  | 27  | 539 | 249 | 129   |
| D | · 10 | 0.30 | 10 | 233 | 67  | 41  | 542 | 259 | 130   |
| G | 11   | 0.20 | 10 | 177 | 84  | 26  | 580 | 385 | 80    |
| Μ | 12   | 0.20 | 10 | 152 | 69  | 33  | 539 | 311 | 109   |
| D | 1    | 0.30 | 17 | 349 | 219 | 69  | 452 | 209 | 124   |
| D | 3    | 0.35 | 17 | 463 | 258 | 86  | 489 | 228 | 110   |
| Μ | 4    | 0.30 | 17 | 344 | 243 | 56  | 451 | 234 | 101   |
| Μ | 5    | 0.35 | 17 | 389 | 242 | 81  | 433 | 237 | 112   |
| Μ | 6    | 0.30 | 17 | 371 | 213 | 67  | 428 | 204 | 100   |
| Μ | 7    | 0.25 | 17 | 417 | 255 | 96  | 791 | 267 | 114   |
| Μ | 8    | 0.25 | 17 | 368 | 206 | 112 | 485 | 198 | 114   |
| Μ | 9    | 0.25 | 17 | 378 | 187 | 99  | 519 | 204 | 111 · |
| Μ | 10   | 0.20 | 17 | 404 | 225 | 96  | 383 | 207 | 112   |
| Μ | 11   | 0.35 | 17 | 360 | 213 | 100 | 393 | 178 | 100   |
| D | 12   | 0.25 | 17 | 361 | 185 | 113 | 459 | 180 | 149   |

| Cl           | Run | Thic. | Vel  | Max. H | Avg. H | Std. | Max. V | Avg. V | Std. |
|--------------|-----|-------|------|--------|--------|------|--------|--------|------|
|              | no. | in.   | ft/s | lbs    | lbs    | Dev. | lbs    | lbs    | Dev. |
| М            | 1   | 0.40  | 10   | 142    | 81     | 29   | 141    | 77     | 37   |
| Μ            | 2   | 0.30  | 10   | 153    | 85     | 33   | 161    | 84     | 43   |
| DD           | . 3 | 0.35  | 10   | 170    | 59     | 42   | 180    | 51     | 49   |
| DD           | 4   | 0.35  | 17   | - 156  | 59     | 35   | 118    | 30     | 37   |
| Μ            | 6   | 0.25  | 17   | 178    | 83     | 27   | 175    | 65     | 50   |
| D            | 7   | 0.25  | 19   | 150    | 83     | 45   | 143    | 58     | 57   |
| Μ            | 8   | 0.25  | 19   | 201    | 118    | 40   | 164    | 96     | 45   |
| Μ            | 9   | 0.30  | 20   | 149    | 89     | 39   | 204    | 68     | 55   |
| D            | 10  | 0.25  | 23   | 143    | 75     | 40   | 106    | 25     | 52   |
| Μ            | 11  | 0.45  | 23   | 206    | 87     | 55   | 210    | 8      | 52   |
| D            | 12  | 0.20  | 23   | 162    | 91     | 50   | 175    | 82     | 64   |
| Μ            | 1   | 0.15  | 10   | 117    | 73     | 20   | 148    | 99     | 22   |
| M            | 2   | 0.20  | 10   | 130    | 81     | 19   | 158    | 100    | 23   |
| Μ            | 3   | 0.25  | 10   | 126    | 68     | 20   | 130    | 79     | 22   |
| Μ            | 4   | 0.15  | 17   | 156    | 74     | 26   | 122    | 81     | 30   |
| Μ            | 5   | 0.10  | 17   | 118    | 69     | 25   | 140    | 91     | 30   |
| Μ            | 6   | 0.15  | 17   | 118    | 68     | 21   | 147    | 82     | 33   |
| D            | 7   | 0.10  | 20   | 129    | 59     | 26   | 140    | 51     | 29   |
| Μ            | 8   | 0.15  | 20   | 123    | 74     | 27   | 145    | 80     | 35   |
| D            | 9   | 0.20  | 20   | 164    | 81     | 32   | 172    | 53     | 34   |
| D            | 10  | 0.20  | 23   | 120    | 74     | 28   | 151    | 62     | 40   |
| DD           | 11  | 0.15  | 23   | 148    | 56     | 34   | 139    | 22     | 64   |
| Μ            | 1   | 0.45  | 10   | 165    | 107    | 26   | 181    | 125    | 37   |
| D            | 2   | 0.60  | 10   | 156    | 80     | 35   | 131    | 70     | 46   |
| $\mathbf{M}$ | 3   | 0.50  | 10   | 147    | 88     | 26   | 156    | 90     | 41   |
| Μ            | 4   | 0.50  | 17   | 163    | 78     | 40   | 137    | 70     | 46   |
| D            | 5   | 0.35  | 17   | 154    | 78     | 36   | 154    | 61     | 47   |
| D            | 6   | 0.40  | 17   | 157    | 97     | 37   | 150    | 84     | 40   |
| D            | 7   | 0.40  | 20   | 174    | 85     | 43   | 139    | 72     | 43   |
| Μ            | 8   | 0.45  | 20   | 174    | 92     | 43   | 172    | 86     | 60   |
| Μ            | 9   | 0.40  | 20   | 204    | 98     | 45   | 204    | 94     | 57   |
| D            | 10  | 0.45  | 23   | 241    | 90     | 54   | 199    | 75     | 58   |
| D            | 11  | 0.35  | 23   | 131    | 69     | 37   | 128    | 31     | 64   |
| D            | 12  | 0.35  | 23   | 142    | 76     | 43   | 149    | 63     | 44   |
| Μ            | 4   | 0.41  | 9    | 401    | 284    | 76   | 621    | 417    | 116  |
| G            | 5   | 0.40  | 9    | 463    | 361    | 59   | 702    | 555    | 91   |
| D            | 6   | 0.30  | 9    | 477    | 330    | 110  | 763    | 515    | 186  |
| D            | 7   | 0.35  | 9    | 485    | 313    | 88   | 683    | 462    | 161  |
| G            | 8   | 0.30  | 9    | 477    | 411    | 24   | 755    | 653    | 34   |
| Μ            | 9   | 0.25  | 9    | 425    | 308    | 62   | 641    | 443    | 124  |
| D            | 10  | 0.35  | 8    | 484    | 354    | 114  | 757    | 528    | 188  |
| VB           | 11  | 0.35  | 8    | 522    | 457    | 20   | 846    | 726    | 44   |
| Μ            | 12  | 0.25  | 9    | 525    | 405    | 60   | 875    | 660    | 111  |

Clearance Angle 5°, Rake Angle 30°, Flat Width 0 in.

| Cl | Run | Thic. | Vel  | Max. H | Avg. H | Std. | Max. V | Avg. V | Std. |
|----|-----|-------|------|--------|--------|------|--------|--------|------|
|    | no. | in.   | ft/s | lbs    | lbs    | Dev. | lbs    | lbs    | Dev. |
| М  | 1   | 0.45  | 19   | 125    | 77     | 24   | 214    | 131    | 55   |
| DD | 2   | 0.45  | 22   | 133    | 35     | 34   | 220    | 62     | 78   |
| Μ  | . 3 | 0.50  | 21   | 143    | 74     | 25   | 350    | 190    | 75   |
| DD | 4   | 0.45  | 23   | 169    | 43     | 38   | 360    | 123    | 132  |
| Μ  | 5   | 0.40  | 22   | 141    | 73     | 27   | 368    | 201    | 59   |
| G  | 6   | 0.40  | 21   | 133    | 83     | 18   | 457    | 345    | 35   |
| Μ  | 7   | 0.40  | 22   | 155    | 77     | 24   | 461    | 350    | 98   |
| Μ  | 8   | 0.35  | 22   | 117    | 67     | 18   | 471    | 299    | 62   |
| G  | 9   | 0.35  | 23   | 128    | 81     | 27   | 450    | 283    | 90   |
| Μ  | 10  | 0.35  | 22   | 144    | 78     | 26   | 332    | 241    | 52   |
| D  | 11  | 0.50  | 23   | 145    | 62     | 35   | 365    | 181    | 11   |
| Μ  | 12  | 0.45  | 24   | 118    | 68     | 32   | 335    | 192    | 88   |
| G  | 1   | 0.35  | 6    | 104    | 52     | 22   | 173    | 112    | 40   |
| Μ  | 2   | 0.35  | 6    | 119    | 69     | 26   | 457    | 364    | 137  |
| G  | 3   | 0.30  | 6    | 150    | 60     | 24   | 359    | 276    | 96   |
| Μ  | 4   | 0.30  | 9    | 158    | 63     | 24   | 442    | 270    | 76   |
| G  | 5   | 0.25  | 9    | 114    | 68     | 16   | 381    | 280    | 30   |
| М  | б   | 0.10  | 9    | 118    | 62     | 18   | 389    | 297    | 48   |
| G  | 7   | 0.20  | 9    | 148    | 69     | 16   | 419    | 262    | 36   |
| Μ  | 8   | 0.20  | 9    | 128    | 90     | 23   | 435    | 285    | 70   |
| G  | 9   | 0.20  | 9    | 123    | 56     | 18   | 309    | 214    | 40   |
| Μ  | 10  | 0.20  | 10   | 115    | 64     | 21   | 305    | 207    | 34   |
| Μ  | 11  | 0.20  | 10   | 119    | 67     | 23   | 420    | 263    | 82   |
| G  | 12  | 0.20  | 4    | 150    | 66     | 26   | 390    | 299    | 126  |

Clearance Angle 5°, Rake Angle 45°, Blade Width 0 in.

| Cl | Run  | Thic. | Vel  | Max. H | Avg. H | Std. | Max. V | Avg. V | Std. |
|----|------|-------|------|--------|--------|------|--------|--------|------|
|    | no.  | in.   | ft/s | lbs    | lbs    | Dev. | lbs    | lbs    | Dev. |
| М  | 4    | 0.30  | 10   | 426    | 227    | 60   | 2265   | 1181   | 432  |
| G  | 5    | 0.20  | 10   | 507    | 245    | 58   | 2268   | 1343   | 317  |
| Μ  | 6    | 0.15  | 10   | 403    | 241    | 44   | 2268   | 1354   | 379  |
| Μ  | 7    | 0.15  | 10   | 508    | 309    | 76   | 2268   | 1452   | 340  |
| Μ  | 8    | 0.15  | 10   | 491    | 243    | 74   | 2207   | 1254   | 376  |
| Μ  | 9    | 0.20  | 10   | 426    | 227    | 60   | 2265   | 1181   | 432  |
| Μ  | 10   | 0.15  | 10   | 477    | 187    | 67   | 2268   | 1175   | 486  |
| Μ  | 11   | 0.20  | 10   | 310    | 200    | 99   | 2268   | 1249   | 330  |
| Μ  | 12   | 0.25  | 10   | 648    | 224    | 85   | 2268   | 1219   | 601  |
| Μ  | 1    | 0.20  | 10   | 533    | 256    | 142  | 2268   | 912    | 390  |
| Μ  | 2    | 0.35  | 10   | 806    | 384    | 109  | 1498   | 633    | 217  |
| Μ  | 3    | 0.30  | 10   | 785    | 556    | 80   | 1419   | 917    | 199  |
| Μ  | 4    | 0.20  | 10   | 652    | 484    | 78   | 1193   | 730    | 196  |
| Μ  | 5    | 0.20  | 10   | 684    | 563    | 68   | 1145   | 907    | 153  |
| Μ  | 6    | 0.20  | 10   | 782    | 579    | 94   | 1450   | 942    | 230  |
| Μ  | 7    | 0.20  | 10   | 794    | 545    | 95   | 1509   | 873    | 200  |
| Μ  | 8    | 0.20  | 10   | 703    | 436    | 67   | 1273   | 773    | 139  |
| D  | 9    | 0.30  | 10   | 907    | 460    | 182  | 1754   | 830    | 333  |
| Ģ  | 10   | 0.25  | 10   | 771    | 600    | 47   | 1417   | 1049   | 132  |
| G  | 11   | 0.20  | 10   | 799    | 407    | 64   | 1407   | 964    | 162  |
| Μ  | 12   | 0.20  | 10   | 599    | 743    | 83   | 1081   | 607    | 188  |
| Μ  | 1    | 0.25  | 10   | 1002   | 563    | 115  | 2085   | 1265   | 315  |
| Μ  | 2    | 0.20  | 10   | 877    | 593    | 86   | 1687   | 1172   | 183  |
| Μ  | 3    | 0.15  | 10   | 780    | 598    | 100  | 1498   | 990    | 282  |
| M  | 4    | 0.25  | 10   | 790    | 539    | 124  | 1415   | 969    | 265  |
| Μ  | 5    | 0.15  | 10   | 780    | 604    | 95   | 1471   | 857    | 257  |
| Μ  | 6    | 0.20  | 10   | 836    | 674    | 102  | 1668   | 1031   | 270  |
| Μ  | 7    | 0.20  | 10   | 953    | 672    | 121  | 1811   | 1169   | 301  |
| Μ  | 8    | 0.20  | 10   | 857    | 597    | 115  | 1533   | 982    | 300  |
| Μ  | 9    | 0.20  | 10   | 482    | 260    | 85   | 2101   | 1117   | 368  |
| Μ  | 10 - | 0.20  | 4    | 887    | 623    | 115  | 1746   | 1024   | 357  |
| Μ  | 11   | 0.15  | 10   | 888    | 591    | 113  | 1784   | 979    | 343  |
| Μ  | 12   | 0.15  | 10   | 791    | 438    | 99   | 1413   | 686    | 244  |

Clearance Angle  $5^{\circ}$ , Rake Angle  $30^{\circ}$ , Blade Width 0.125 in.

| Cl | Run | Thic. | Vel  | Max. H | Avg. H | Std. | Max. V | Avg. V | Std. |
|----|-----|-------|------|--------|--------|------|--------|--------|------|
|    | no. | in.   | ft/s | Ibs    | lbs    | Dev. | lbs    | lbs    | Dev. |
| M  | 1   | 0.20  | 8    | 3095   | 2176   | 369  | 3392   | 2276   | 576  |
| DD | 2   | 0.30  | 8    | 2039   | 701    | 407  | 1958   | 636    | 451  |
| Μ  | . 3 | 0.50  | 8    | 1567   | 978    | 404  | 1508   | 850    | 367  |
| DD | 5   | 0.35  | 7    | 2749   | 1520   | 529  | 2522   | 1358   | 671  |
| D  | 6   | 0.40  | 7    | 2145   | 1136   | 619  | 2191   | 1040   | 625  |
| Μ  | 7   | 0.35  | 8    | 2761   | 1739   | 824  | 2477   | 1501   | 777  |
| D  | 8   | 0.35  | 7    | 2838   | 1366   | 571  | 2642   | 1202   | 633  |
| D  | 9   | 0.30  | 7    | 2440   | 1256   | 629  | 2472   | 1200   | 686  |
| Μ  | 10  | 0.20  | 7    | 2889   | 1763   | 493  | 2655   | 1564   | 525  |
| DD | 11  | 0.25  | 2    | 2228   | 251    | 322  | 2206   | 220    | 295  |
| D  | 12  | 0.10  | 6    | 2701   | 1535   | 671  | 2545   | 1394   | 661  |
| D  | 2   | 0.30  | 5    | 2601   | 1267   | 586  | 2539   | 1072   | 659  |
| D  | 3   | 0.30  | 5    | 2099   | 1127   | 358  | 2703   | 1407   | 557  |
| D  | 4   | 0.25  | -5   | 1952   | 953    | 469  | 2748   | 1280   | 715  |
| D  | 5   | 0.25  | 5    | 2136   | 1100   | 364  | 2715   | 1398   | 569  |
| D  | 6   | 0.25  | 7    | 1807   | 1122   | 286  | 2623   | 1458   | 535  |
| D  | 7   | 0.25  | 8    | 1814   | 843    | 354  | 2624   | 1144   | 561  |
| Μ  | 8   | 0.20  | 8    | 1419   | 930    | 168  | 2037   | 1249   | 321  |
| Μ  | 9   | 0.20  | 7    | 2138   | 1377   | 273  | 2713   | 1706   | 494  |
| D  | 10  | 0.20  | 8    | 2139   | 972    | 394  | 2781   | 1315   | 630  |
| D  | 11  | 0.20  | 9    | 1856   | 838    | 299  | 2655   | 1150   | 498  |
| D  | 12  | 0.20  | 8    | 2316   | 1256   | 387  | 2977   | 1458   | 548  |
| Μ  | 1   | 0.20  | 7    | 1249   | 753    | 178  | 2052   | 1098   | 247  |
| D  | 2   | 0.25  | 6    | 1117   | 490    | 355  | 1643   | 654    | 501  |
| Μ  | · 3 | 0.40  | 7    | 1163   | 952    | 369  | 1623   | 1028   | 511  |
| D  | 4   | 0.40  | 6    | 1755   | 732    | 378  | 2601   | 913    | 593  |
| D  | 5   | 0.40  | 6    | 1765   | 525    | 475  | 2379   | 768    | 612  |
| D  | 6   | 0.30  | 5    | 2146   | 813    | 539  | 2761   | 1011   | 910  |
| D  | 7   | 0.30  | 5    | 1756   | 880    | 371  | 2601   | 1099   | 507  |
| D  | 8   | 0.30  | 4    | 1673   | 903    | 343  | 2589   | 1264   | 655  |
| D  | 10  | 0.20  | 7    | 1510   | 594    | 524  | 2171   | 813    | 701  |
| D  | 11  | 0.30  | 6    | 1226   | 719    | 272  | 1621   | 958    | 401  |

Clearance Angle  $5^{\circ}$ , Rake Angle  $30^{\circ}$ , Blade Width 0.3 in.

| Cl | Run | Thic. | Vel  | Max. H | Avg. H | Std. | Max. V | Avg. V | Std. |
|----|-----|-------|------|--------|--------|------|--------|--------|------|
|    | no. | in.   | ft/s | lbs    | lbs    | Dev. | lbs    | lbs    | Dev. |
| M  | 1   | 0.40  | 7    | 2115   | 1174   | 611  | 2598   | 1532   | 820  |
| Μ  | 2   | 0.40  | 7    | 1985   | 1354   | 422  | 2585   | 1489   | 351  |
| Μ  | . 3 | 0.30  | 5    | 2027   | 1480   | 151  | 2620   | 1748   | 372  |
| Μ  | 4   | 0.35  | 5    | 2254   | 1268   | 269  | 2780   | 1487   | 441  |
| Μ  | 5   | 0.35  | 5    | 2897   | 1675   | 735  | 3091   | 1961   | 854  |
| D  | 6   | 0.40  | 5    | 2031   | 1143   | 559  | 2582   | 1429   | 801  |
| D  | 7   | 0.35  | 5    | 3093   | 1097   | 998  | 3387   | 1144   | 895  |
| Μ  | 8   | 0.10  | 5    | 2443   | 1577   | 630  | 2765   | 1890   | 818  |
| D  | 9   | 0.30  | 5    | 2636   | 764    | 727  | 3005   | 934    | 981  |
| Μ  | 11  | 0.05  | 5    | 2768   | 1432   | 727  | 2887   | 1817   | 770  |
| D  | 12  | 0.25  | 5    | 2292   | 781    | 626  | 2751   | 1043   | 837  |
| D  | 1   | 0.40  | 7    | 3012   | 1613   | 988  | 3082   | 1075   | 832  |
| D  | 3   | 0.35  | 7    | 2873   | 685    | 750  | 2635   | 653    | 733  |
| D  | 4   | 0.40  | 7    | 4520   | 782    | 984  | 3211   | 541    | 930  |
| D  | 5   | 0.45  | 7    | 4217   | 1096   | 958  | 3381   | 861    | 998  |
| D  | 6   | 0.45  | 7    | 3637   | 4590   | 999  | 2887   | 1340   | 944  |
| DD | 7   | 0.50  | 7    | 3292   | 1243   | 998  | 2650   | 1106   | 988  |
| Μ  | 8   | 0.30  | 7    | 2696   | 1355   | 936  | 2630   | 1317   | 840  |
| D  | 9   | 0.25  | 7    | 3140   | 1360   | 999  | 2713   | 1152   | 996  |
| Μ  | 10  | 0.35  | 7    | 3431   | 1713   | 978  | 6058   | 1454   | 973  |
| D  | 11  | 0.30  | 7    | 3623   | 1355   | 994  | 2942   | 1232   | 998  |
| Μ  | 12  | 0.40  | 7    | 3698   | 1531   | 993  | 2848   | 1370   | 951  |
| DÐ | 1   | 0.30  | 5    | 3060   | 1718   | 559  | 4530   | 1525   | 540  |
| М  | 2   | 0.20  | 5    | 2133   | 1424   | 247  | 2122   | 1402   | 259  |
| Μ  | 3   | 0.35  | 5    | 3820   | 1931   | 728  | 2906   | 1649   | 544  |
| Μ  | 4   | 0.35  | 5    | 3226   | 1915   | 498  | 2718   | 4724   | 467  |
| Μ  | 5   | 0.35  | 5    | 3525   | 1783   | 542  | 2826   | 4622   | 510  |
| Μ  | 6   | 0.35  | 5    | 2799   | 1504   | 362  | 2542   | 1380   | 391  |
| Μ  | 7   | 0.30  | 7    | 3217   | 1990   | 909  | 2678   | 1750   | 825  |
| Μ  | 8   | 0.30  | 7    | 3262   | 1752   | 950  | 2648   | 4789   | 907  |
| Μ  | 9   | 0.30  | 7    | 3835   | 2049   | 996  | 2864   | 1814   | 862  |
| Μ  | 10  | 0.40  | 7    | 2735   | 1761   | 786  | 2590   | 1627   | 747  |
| DD | 11  | 0.20  | 7    | 2970   | 786    | 718  | 2609   | 789    | 738  |
| Μ  | 12  | 0.30  | 7    | 3060   | 2102   | 883  | 2681   | 1820   | 798  |

Clearance Angle  $5^{\circ}$ , Rake Angle  $30^{\circ}$ , Blade Width 0.4 in.

| CI | Run       | Thic | Vel    | Max H | Ανσ Η | Std  | Max V | Avg V | Std  |
|----|-----------|------|--------|-------|-------|------|-------|-------|------|
| Ç1 | no.       | in.  | ft/s   | lbs   | lbs   | Dev. | lbs   | lbs   | Dev. |
| G  | 1         | 0.35 | 7      | 422   | 290   | 81   | 407   | 304   | 76   |
| Ğ  | $\hat{2}$ | 0.25 | ,<br>7 | 434   | 335   | 42   | 411   | 342   | 37   |
| VG | . 3       | 0.30 | 7      | 129   | 351   | 123  | 451   | 373   | 117  |
| G  | 4         | 0.30 | 7      | ·441  | 365   | 67   | 456   | 386   | 60   |
| Ğ  | 5         | 0.30 | 7      | 504   | 326   | 177  | 514   | 344   | 175  |
| Ň  | 6         | 0.20 | 7      | 442   | 308   | 140  | 455   | 321   | 71   |
| M  | 7         | 0.30 | 7      | 462   | 309   | 125  | 494   | 332   | 125  |
| G  | 8         | 0.30 | 7      | 460   | 397   | 62   | 989   | 419   | 48   |
| M  | 9         | 0.25 | 9      | 455   | 314   | 79   | 502   | 341   | 79   |
| VG | 10        | 0.20 | 3      | 513   | 438   | 14   | 572   | 495   | 16   |
| VG | 11        | 0.30 | 3      | 603   | 540   | 25   | 687   | 614   | 31   |
| VG | 12        | 0.35 | 3      | 573   | 500   | 24   | 646   | 574   | 30   |
| G  | 1         | 0.20 | 8      | 365   | 261   | 25   | 575   | 369   | 43   |
| VG | 3         | 0.15 | 8      | 476   | 407   | 21   | 805   | 683   | 37   |
| VG | 4         | 0.20 | 8      | 488   | 409   | 22   | 782   | 659   | 41   |
| G  | 5         | 0.15 | 8      | 573   | 179   | 30   | 986   | 825   | 60   |
| М  | 6         | 0.25 | 8      | 458   | 367   | 47   | 727   | 560   | 102  |
| Μ  | 7         | 0.20 | 8      | 454   | 338   | 48   | 739   | 533   | 86   |
| VG | 8         | 0.25 | 7      | 495   | 389   | 21   | 796   | 620   | 39   |
| VG | 9         | 0.10 | 7      | 595   | 495   | 31   | 1003  | 842   | 46   |
| VG | 10        | 0.20 | 7      | 587   | 475   | 24   | 948   | 785   | 41   |
| G  | 11        | 0.10 | 7      | 481   | 241   | 107  | 744   | 378   | 180  |
| М  | 12        | 0.20 | 7      | 522   | 414   | 75   | 898   | 683   | 137  |
| G  | 1         | 0.20 | 8      | 368   | 313   | 23   | 567   | 480   | 35   |
| М  | 2         | 0.30 | 8      | 425   | 317   | 51   | 679   | 494   | 82   |
| G  | 3         | 0.20 | 8      | 445   | 351   | 49   | 729   | 555   | 74   |
| G  | 4         | 0.35 | 8      | 470   | 390   | 29   | 722   | 604   | 48   |
| G  | 5         | 0.20 | 8      | 400   | 327   | 39   | 639   | 518   | 55   |
| VG | 6         | 0.20 | 8      | 619   | 532   | 33   | 1054  | 916   | 57   |
| D  | 7         | 0.30 | 9      | 463   | 307   | 106  | 692   | 451   | 157  |
| VG | 8         | 0.15 | 8      | 465   | 405   | 22   | 770   | 678   | 34   |
| DD | 9         | 0.25 | 9      | 378   | 195   | 94   | 587   | 288   | 158  |
| G  | 11        | 0.25 | 9      | 539   | 476   | 24   | 887   | 761   | 48   |
| D  | 12        | 0.25 | 9      | 525   | 387   | 134  | 852   | 632   | 225  |
| DD | 2         | 0.45 | 7      | 403   | 119   | 106  | 619   | 170   | 177  |
| D  | 3         | 0.45 | 8      | 456   | 217   | 87   | 699   | 307   | 124  |

Clearance Angle 2°, Rake Angle 30°, Blade Width 0 in.

\_

| Cl | Run | Thic. | Vel  | Max. H | Avg. H | Std. | Max. V | Avg. V | Std. |
|----|-----|-------|------|--------|--------|------|--------|--------|------|
|    | no. | in.   | ft/s | lbs    | Ibs    | Dev. | lbs    | lbs    | Dev. |
| M  | 2   | 0.40  | 7    | 340    | 184    | 84   | 214    | 85     | 57   |
| DD | 3   | 0.45  | 7    | 328    | 70     | 115  | 190    | 25     | 66   |
| D  | . 4 | 0.45  | 7    | 357    | 177    | 100  | 185    | 79     | 57   |
| Μ  | 5   | 0.45  | 7    | 304    | 180    | 54   | 209    | 118    | 38   |
| Μ  | 6   | 0.25  | 7    | 320    | 173    | 62   | 223    | 107    | 45   |
| Μ  | 7   | 0.35  | 7    | 356    | 224    | 99   | 210    | 115    | 56   |
| Μ  | 8   | 0.30  | 7    | 355    | 245    | 65   | 207    | 130    | 36   |
| Μ  | 9   | 0.30  | 7    | 361    | 252    | 71   | 206    | 147    | 41   |
| Μ  | 10  | 0.30  | 7    | 300    | 165    | 58   | 181    | 104    | 37   |
| Μ  | 11  | 0.30  | 7    | 321    | 148    | 70   | 191    | 95     | 36   |
| Μ  | 1   | 0.20  | 4    | 324    | 193    | 87   | 219    | 130    | 60   |
| М  | 2   | 0.20  | 4    | 337    | 189    | 76   | 216    | 129    | 51   |
| D  | 3   | 0.40  | 4    | 361    | 209    | 100  | 221    | 126    | 62   |
| D  | 4   | 0.20  | 4    | 321    | 182    | 91   | 221    | 117    | 66   |
| D  | 5   | 0.25  | 4    | 374    | 218    | 107  | 262    | 126    | 64   |
| D  | 6   | 0.40  | 4    | 361    | 225    | 102  | 244    | 135    | 69   |
| Μ  | 7   | 0.20  | 4    | 404    | 212    | 97   | 212    | 134    | 62   |
| D  | 8   | 0.20  | 10   | 339    | 148    | 98   | 213    | 102    | 65   |
| D  | 9   | 0.20  | 10   | 343    | 149    | 105  | 206    | 85     | 70   |
| Μ  | 10  | 0.15  | 10   | 322    | 170    | 104  | 212    | 110    | 71   |
| Μ  | 11  | 0.15  | 10   | 341    | 186    | 118  | 253    | 122    | 74   |
| D  | 12  | 0.20  | 13   | 343    | 149    | 104  | 222    | 93     | 76   |
| D  | 1   | 0.30  | 13   | 333    | 203    | 60   | 232    | 108    | 53   |
| D  | 2   | 0.35  | 13   | 342    | 180    | 74   | 205    | 85     | 70   |
| DD | 3   | 0.35  | 15   | 410    | 151    | 117  | 242    | 69     | 89   |
| D  | 4   | 0.35  | 15   | 355    | 154    | 74   | 182    | 65     | 61   |
| D  | 5   | 0.30  | 15   | 337    | 205    | 51   | 276    | 119    | 52   |
| D  | 6   | 0.20  | 15   | 314    | 171    | 40   | 182    | 107    | 41   |
| D  | 7   | 0.20  | 20   | 249    | 128    | 90   | 176    | 80     | 63   |
| Μ  | 8   | 0.20  | 20   | 331    | 175    | 98   | 234    | 108    | 72   |
| D  | 9   | 0.25  | 20   | 289    | 153    | 93   | 230    | 85     | 80   |
| D  | 10  | 0.25  | 20   | 338    | 184    | 105  | 235    | 103    | 67   |
| D  | 11  | 0.25  | 20   | 294    | 159    | 101  | 220    | 83     | 62   |
| D  | 12  | 0.30  | 20   | 355    | 131    | 105  | 222    | 66     | 75   |

Clearance Angle 10° Rake Angle 30°, Blade Width 0 in.

| Cl           | Run | Thic. | Vel  | Max. H | Avg. H | Std. | Max. V | Avg. V | Std. |
|--------------|-----|-------|------|--------|--------|------|--------|--------|------|
|              | no. | in.   | ft/s | lbs    | lbs    | Dev. | lbs    | lbs    | Dev. |
| M            | 1   | 0.40  | 11   | 185    | 112    | 37   | 253    | 171    | 58   |
| Μ            | 2   | 0.40  | 10   | 173    | 113    | 37   | 280    | 169    | 54   |
| Μ            | - 3 | 0.35  | . 10 | 153    | 115    | 26   | 291    | 181    | 39   |
| Μ            | 4   | 0.35  | 17   | 209    | 113    | 37   | 251    | 159    | 59   |
| Μ            | 5   | 0.40  | 17   | 187    | 124    | 46   | 267    | 154    | 64   |
| D            | 6   | 0.50  | 17   | 193    | 80     | 46   | 198    | 66     | 55   |
| D            | 7   | 0.35  | 20   | 184    | 98     | 50   | 237    | 102    | 75   |
| G            | 8   | 0.30  | 20   | 170    | 122    | 39   | 274    | 186    | 54   |
| Μ            | 9   | 0.40  | 20   | 189    | 111    | 47   | 233    | 139    | 69   |
| Μ            | 10  | 0.40  | 23   | 213    | 122    | 44   | 276    | 136    | 73   |
| Μ            | 11  | 0.35  | 23   | 183    | 116    | 49   | 276    | 129    | 79   |
| G            | 12  | 0.35  | 23   | 196    | 112    | 48   | 290    | 144    | 68   |
| М            | 1   | 0.10  | 10   | 130    | 86     | 22   | 242    | 147    | 40   |
| Μ            | 2   | 0.20  | 10   | 122    | 76     | 23   | 285    | 137    | 49   |
| Μ            | 3   | 0.15  | 10   | 152    | 85     | 32   | 313    | 156    | 65   |
| Μ            | 4   | 0.15  | 17   | 138    | 87     | 36   | 244    | 133    | 56   |
| Μ            | 5   | 0.15  | 17   | 159    | 92     | 31   | 299    | 153    | 55   |
| Μ            | 6   | 0.15  | 17   | 133    | 88     | 32   | 212    | 141    | 48   |
| $\mathbf{M}$ | 7   | 0.15  | 16   | 135    | 93     | 29   | 216    | 140    | 37   |
| Μ            | 8   | 0.10  | 16   | 141    | 88     | 33   | 213    | 138    | 47   |
| Μ            | 9   | 0.15  | 20   | 152    | 74     | 30   | 228    | 98     | 56   |
| Μ            | 10  | 0.15  | 23   | 118    | 80     | 31   | 219    | 122    | 39   |
| Μ            | 11  | 0.15  | 23   | 155    | 101    | 38   | 224    | 161    | 51   |
| Μ            | 1   | 0.55  | 10   | 196    | 101    | 54   | 283    | 161    | 85   |
| Μ            | 2   | 0.65  | 10   | 182    | 54     | 53   | 247    | 80     | 80   |
| D            | 3   | 0.60  | 10   | 195    | 89     | 58   | 280    | 138    | 100  |
| D            | 4   | 0.60  | 10   | 197    | 82     | 50   | 327    | 146    | 85   |
| Μ            | 5   | 0.60  | 19   | 281    | 138    | 70   | 304    | 184    | 98   |
| D            | 7   | 0.50  | 17   | 185    | 96     | 54   | 255    | 114    | 76   |
| D            | 8   | 0.60  | 20   | 216    | 92     | 70   | 316    | 79     | 89   |
| D            | 9   | 0.65  | 19   | 175    | 66     | 66   | 218    | 56     | 62   |
| D            | 10  | 0.60  | 23   | 226    | 112    | 65   | 274    | 99     | 92   |
| D            | 11  | 0.60  | 23   | 237    | 117    | 69   | 239    | 133    | 61   |
| D            | 12  | 0.60  | 23   | 194    | 114    | 62   | 265    | 130    | 82   |

Clearance Angle 5°, Rake Angle 30°, Blade Width 0.125 in.

| Cl                | Run           | Thic.   | Vel  | Max. H     | Avg. H | Std.       | Max. V      | Avg. V     | Std.      |
|-------------------|---------------|---------|------|------------|--------|------------|-------------|------------|-----------|
|                   | no.           | in.     | ft/s | Ibs        | lbs    | Dev.       | lbs         | lbs        | Dev.      |
| M                 | 1             | 0.25    | 4    | 201        | 111    | 29         | 207         | 100        | 37        |
| Μ                 | 2             | 0.3     | 4    | 187        | 97     | 32         | 241         | 115        | 43        |
| D                 | 3             | 0.3     | 4    | 221        | 74     | 56         | 224         | 83         | 63        |
| Μ                 | 4             | 0.4     | 4    | 221        | 134    | 58         | 216         | 138        | 71        |
| D                 | 5             | 0.25    | 4    | 180        | 77     | 37         | 194         | 85         | 40        |
| Μ                 | 6             | 0.25    | 4    | 213        | 139    | 54         | 235         | 156        | 72        |
| Μ                 | 7             | 0.3     | 7    | 246        | 161    | 44         | 268         | 179        | 48        |
| Μ                 | 8             | 0.35    | 7    | 174        | 113    | 23         | 206         | 129        | 28        |
| Μ                 | 9             | 0.25    | 7    | 212        | 146    | 26         | 310         | 177        | 34        |
| Μ                 | 10            | 0.25    | 7    | 203        | 130    | 26         | 210         | 151        | 28        |
| М                 | 11            | 0.35    | 7    | 165        | 114    | 29         | 270         | 134        | 40        |
| D                 | 12            | 0.25    | 7    | 203        | 123    | 39         | 309         | 154        | 58        |
| DD                | 1             | 0.5     | 9    | 229        | 117    | 56         | 311         | 129        | 86        |
| D                 | 2             | 0.4     | 9    | 240        | 145    | 47         | 316         | 178        | 71        |
| DD                | 3             | 0.4     | 9    | 233        | 47     | 61         | 350         | 32         | 77        |
| M                 | 4             | 0.3     | 8    | 266        | 165    | 61         | 359         | 209        | 87        |
| M                 | 5             | 0.3     | 9    | 281        | 133    | 50         | 424         | 167        | 78        |
| M                 | 6             | 0.3     | 10   | 301        | 190    | 43         | 431         | 247        | 75        |
| D                 | 7             | 0.35    | 13   | 296        | 142    | 83         | 423         | 180        | 111       |
| D                 | 8             | 0.3     | 13   | 209        | 107    | 55         | 350         | 135        | 80        |
| M                 | 9             | 0.3     | 13   | 262        | 169    | 86         | 373         | 214        | 111       |
| D                 | 10            | 0.4     | 12   | 252        | 147    | 72.        | 325         | 170        | 95        |
| M                 | 11            | 0.35    | 12   | 251        | 165    | 66         | 357         | 210        | 81        |
| D                 | 12            | 0.3     | 12   | 276        | 168    | 89         | 364         | 209        | 116       |
| M                 | 1             | 035     | 17   | 267        | 161    | 57         | 272         | 178        | 60        |
| M                 | 2             | 0.35    | 17   | 289        | 179    | 51         | 338         | 201        | 51        |
| M                 | 3             | 0.20    | 16   | 245        | 129    | 57         | 296         | 145        | 77        |
| M                 | 4             | 0.35    | 15   | 279        | 147    | 60         | 330         | 175        | 80        |
| M                 | 5             | 0.25    | 16   | 306        | 161    | 60         | 453         | 205        | 70        |
| M                 | 6             | 0.20    | 16   | 247        | 158    | 40         | 379         | 198        | 68        |
| M                 | 7             | 0.5     | 17   | 320        | 150    | 86         | 437         | 193        | 103       |
| M                 | ,<br>8        | 0.25    | 17   | 312        | 130    | 68         | 432         | 170        | 81        |
| M                 | o<br>o        | 0.25    | 17   | 285        | 154    | 63         | 507         | 195        | 81        |
| M                 | 10            | 0.25    | 17   | 258        | 154    | 57         | 388         | 181        | 65        |
| M                 | 10            | 0.25    | 17   | 230        | 154    | 78         | 310         | 155        | 70        |
| TAT<br>TAT        | 12            | 0.35    | 10   | 273        | 158    | 67         | 450         | 102        | 8/        |
| IVI<br>N/I        | 12            | 0.25    | 10   | 215        | 125    | 60         | 400<br>207  | 156        | 74        |
| IVI<br>NA         | 2             | 0.25    | 10   | 211        | 122    | 67         | 257         | 137        | 07        |
| 1V1<br>1V1        | <u>э</u><br>л | 0.33    | 10   | 200        | 106    | 71         | 3/0         | 105        | יג<br>דר  |
| T∧T<br>T∧T        | 4<br>5        | 0.33    | 19   | ムツJ<br>つ1つ | 100    | 7 1<br>6 A | 207         | 117        | 77        |
| 1VI<br>N <i>4</i> | 5<br>6        | 0.5     | 19   | 212        | 127    | 75         | 271<br>121  | 176        | 115       |
| 1VI<br>N <i>1</i> | 07            | 0.5     | 10   | 290<br>070 | 107    | 27         | -+01<br>20/ | 150        | 104       |
| TAT<br>TAT        | /<br>0        | 0.5     | 10   | 217        | 140    | 04<br>61   | 220         | 197<br>190 | 104<br>Q/ |
| IVI<br>NA         | ð             | 0.25    | 10   | ∠40<br>277 | 140    | 84<br>01   | 340<br>440  | 100        | 04<br>105 |
| 111               | 7             | V. Z. J | 17   | 211        | 121    | 00         | ~++7        | 14.        | 10.5      |

Clearance Angle 5°, Rake angle 30°, Tooth Size 0.25 in.

| Μ  | 10  | 0.25 | 18 | 239 | 150 | 73 | 420 | 186 | 92   |
|----|-----|------|----|-----|-----|----|-----|-----|------|
| Μ  | 11  | 0.25 | 18 | 304 | 145 | 80 | 490 | 176 | 87   |
| Μ  | 12  | 0.25 | 19 | 286 | 166 | 77 | 479 | 217 | 102  |
| Μ  | 1   | 0.5  | 13 | 316 | 174 | 64 | 414 | 227 | 95   |
| D  | 2   | 0.4  | 13 | 324 | 184 | 73 | 518 | 261 | 117  |
| Μ  | 3   | 0.55 | 15 | 359 | 158 | 66 | 497 | 226 | 94   |
| DD | 4   | 0.5  | 13 | 273 | 76  | 77 | 397 | 94  | 108  |
| DD | - 5 | 0.5  | 15 | 330 | 150 | 97 | 553 | 171 | 127  |
| DD | 6   | 0.45 | 15 | 302 | 104 | 85 | 463 | 117 | 124  |
| М  | 7   | 0.55 | 12 | 296 | 162 | 53 | 433 | 229 | 81   |
| DD | 8   | 0.45 | 15 | 335 | 81  | 91 | 418 | 62  | 118  |
| Μ  | 9   | 0.5  | 15 | 297 | 114 | 77 | 418 | 132 | 87   |
| D  | 10  | 0.35 | 14 | 311 | 161 | 53 | 568 | 243 | 119  |
| Μ  | 11  | 0.5  | 14 | 293 | 131 | 79 | 336 | 126 | 90   |
| DD | 12  | 0.5  | 13 | 270 | 103 | 84 | 385 | 117 | 121  |
| D  | 2   | 0.75 | 9  | 190 | 91  | 54 | 198 | 78  | 63   |
| D  | 4   | 0.8  | 12 | 186 | 67  | 57 | 298 | 52  | 58   |
| Μ  | 6   | 0.65 | 11 | 278 | 119 | 48 | 255 | 123 | 45   |
| М  | 7   | 0.6  | 11 | 233 | 126 | 39 | 334 | 208 | 55   |
| D  | 8   | 0.75 | 11 | 193 | 106 | 51 | 313 | 145 | 64   |
| D  | 9   | 0.75 | 12 | 255 | 60  | 60 | 130 | 38  | 48   |
| D  | 10  | 0.7  | 12 | 186 | 55  | 59 | 158 | 37  | 55   |
| DD | 11  | 0.7  | 11 | 145 | 32  | 48 | 244 | 25  | - 71 |

-----

| Cl           | Run | Thic. | Vel  | Max. H | Avg. H    | Std. | Max. V | Avg. V | Std. |
|--------------|-----|-------|------|--------|-----------|------|--------|--------|------|
|              | no. | in.   | ft/s | lbs    | lbs       | Dev. | lbs    | lbs    | Dev. |
| M            | 1   | 0.25  | 9    | 112    | 62        | 23   | 170    | 79     | 44   |
| Μ            | 2   | 0.35  | 9    | 120    | 60        | 27   | 154    | 74     | 36   |
| $\mathbf{M}$ | - 3 | 0.35  | 10   | 132    | 83        | 24   | 413    | 131    | 87   |
| Μ            | 4   | 0.35  | 10   | 142    | 76        | 26   | 376    | 117    | 41   |
| Μ            | 5   | 0.4   | 9    | 142    | 77        | 25   | 295    | 73     | 40   |
| Μ            | 6   | 0.35  | 10   | 152    | 83        | 23   | 323    | 146    | 79   |
| Μ            | 7   | 0.4   | 12   | 191    | 79        | 55   | 333    | 144    | 93   |
| Μ            | 8   | 0.35  | 15   | 186    | 93        | 56   | 231    | 139    | 46   |
| Μ            | 9   | 0.3   | 14   | 181    | 92        | 57   | 530    | 216    | 129  |
| $\mathbf{M}$ | 10  | 0.3   | 14   | 171    | 85        | 54   | 242    | 128    | 62   |
| Μ            | 11  | 0.35  | 15   | 172    | 92        | 65   | 333    | 132    | 73   |
| Μ            | 12  | 0.35  | 16   | 147    | 66        | 49   | 163    | 72     | 51   |
| Μ            | 1   | 0.3   | 9    | 133    | 85        | 20   | 295    | 130    | 50   |
| Μ            | 2   | 0.2   | 10   | 119    | 74        | 20   | 182    | 107    | 30   |
| Μ            | 3   | 0.2   | 9    | 125    | 77        | 23   | 259    | 130    | 56   |
| Μ            | 4   | 0.15  | 9    | 134    | 101       | 15   | 374    | 204    | 104  |
| Μ            | 5   | 0.15  | 10   | 136    | 91        | 16   | 383    | 180    | 87   |
| Μ            | 6   | 0.2   | 9    | 142    | <u>98</u> | 16   | 270    | 169    | 46   |
| Μ            | 7   | 0.2   | 18   | 140    | 82        | 43   | 291    | 161    | 58   |
| Μ            | 8   | 0.15  | 17   | 157    | 105       | 32   | 275    | 141    | 46   |
| Μ            | 9   | 0.15  | 16   | 135    | 89        | 23   | 127    | 88     | 22   |
| Μ            | 11  | 0.15  | 18   | 150    | 79        | 29   | 243    | 109    | 48   |
| Μ            | 1   | 0.15  | 24   | 112    | 37        | 39   | 123    | 39     | 37   |
| Μ            | 2   | 0.15  | 24   | 130    | 63        | 45   | 112    | 46     | 44   |
| Μ            | 3   | 0.15  | 24   | 107    | 56        | 38   | 142    | 58     | 44   |
| Μ            | 4   | 0.2   | 24   | 117    | 57        | 39   | 148    | 63     | 47   |
| Μ            | 5   | 0.2   | 24   | 144    | 72        | 51   | 181    | 82     | 50   |
| Μ            | 6   | 0.25  | 24   | 144    | 67        | 47   | 189    | 94     | 53   |
| Μ            | 7   | 0.35  | 25   | 217    | 107       | 77   | 298    | 143    | 76   |
| Μ            | 8   | 0.25  | 24   | 162    | 85        | 59   | 238    | 125    | 75   |
| Μ            | 9   | 0.15  | 24   | 123    | 56        | 41   | 137    | 66     | 50   |
| Μ            | 10  | 0.25  | 20   | 167    | 106       | 44   | 261    | 142    | 48   |
| Μ            | 11  | 0.15  | 24   | 126    | 69        | 47   | 232    | 113    | 65   |
| Μ            | 12  | 0.3   | 24   | 166    | 89        | 59   | 274    | 140    | 71   |

Clearance Angle  $5^{\circ}$ , Rake Angle  $30^{\circ}$ , Tooth Size 0.5 in.

| Cl | Run | Thic. | Vel  | Max. H | Avg. H | Std. | Max. V | Avg. V | Std. |
|----|-----|-------|------|--------|--------|------|--------|--------|------|
|    | no. | in.   | ft/s | lbs    | Ibs    | Dev. | lbs    | lbs    | Dev. |
| М  | 3   | 0.25  | 24   | 101    | 63     | 18   | 135    | 62     | 26   |
| М  | 4   | 0.15  | 24   | 79     | 47     | 17   | 97     | 63     | 17   |
| М  | · 5 | 0.25  | 24   | 118    | 51     | 25   | 109    | 24     | 33   |
| Μ  | 6   | 0.2   | 24   | · 99   | 67     | 18   | 145    | 88     | 24   |
| М  | 7   | 0.1   | 17   | 78     | 41     | 12   | 103    | 53     | 29   |
| М  | 8   | 0.15  | 17   | 73     | 29     | 13   | 99     | 46     | 19   |
| Μ  | 9   | 0.1   | 17   | 92     | 49     | 15   | 117    | 62     | 28   |
| М  | 10  | 0.05  | 17   | 70     | 46     | 16   | 130    | 80     | 25   |
| Μ  | 11  | 0.05  | 17   | 61     | 40     | 11   | 96     | 68     | 18   |
| М  | 12  | 0.1   | 17   | 65     | 34     | 16   | 89     | 48     | 22   |
| Μ  | 2   | 0.35  | 10   | 133    | 68     | 22   | 131    | 78     | 28   |
| Μ  | 3   | 0.4   | 10   | 118    | 56     | 24   | 113    | 49     | 32   |
| Μ  | 4   | 0.35  | 11   | 138    | 61     | 26   | 159    | 67     | 36   |
| Μ  | 5   | 0.35  | 17   | 140    | 65     | 29   | 129    | 44     | 46   |
| Μ  | 6   | 0.35  | 17   | 143    | 90     | 25   | 115    | 58     | 30   |
| Μ  | 7   | 0.3   | 17   | 151    | 80     | 30   | 137    | 67     | 32   |
| М  | 8   | 0.2   | 17   | 94     | 63     | 16   | 115    | 68     | 24   |
| Μ  | 9   | 0.3   | 17   | 126    | 67     | 27   | 122    | 48     | 39   |
| Μ  | 10  | 0.25  | 17   | 125    | 71     | 17   | 151    | 69     | 35   |
| Μ  | 11  | 0.25  | 17   | 95     | 60     | 19   | 107    | 45     | 33   |
| Μ  | 12  | 0.2   | 17   | 120    | 68     | 27   | 127    | 45     | 36   |
| Μ  | 2   | 0.3   | 10   | 111    | 54     | 17   | 121    | 53     | 27   |
| Μ  | 3   | 0.45  | 10   | 134    | 60     | 20   | 107    | 51     | 33   |
| Μ  | 4   | 0.4   | 17   | 100    | 62     | 23   | 106    | 35     | 38   |
| Μ  | 5   | 0.35  | 17   | 115    | 68     | 23   | 109    | 61     | 32   |
| Μ  | 6   | 0.4   | 17   | 115    | 52     | 27   | 96     | 23     | 27   |
| Μ  | 7   | 0.35  | 20   | 113    | 64     | 29   | 95     | 29     | 40   |
| M  | 8   | 0.3   | 20   | 121·   | 56     | 29   | 87     | 32     | 33   |
| Μ  | 9   | 0.35  | 20   | 126    | 66     | 32   | 103    | 35     | 48   |
| Μ  | 10  | 0.4   | 23   | 124    | 66     | 36   | 126    | 19     | 47   |
| Μ  | 11  | 0.4   | 24   | 149    | 71     | 37   | 123    | 12     | 42   |
| M  | 12  | 0.45  | 24   | 161    | 90     | 41   | 195    | 43     | 52   |

Clearance Angle 5°, Rake Angle 30°, Tooth Size 1 in.