Evaluation of Microcracking and Chemical Deterioration in Concrete Pavements

Final Report

October 31, 1995

S. Schlorholtz J. Amenson

Iowa DOT PROJECT HR-358 ERI PROJECT 3711 ISU-ERI-96402

Sponsored by the Highway Division of the Iowa Department of Transportation and the Iowa Highway Research Board

"The opinions, findings and conclusions expressed in this publication are those of the authors and not necessarily those of the Highway Division of the Iowa Department of Transportation."

TABLE OF CONTENTS

1.

. .

. 1

Ĵ

ABSTRACT						
INTRODUCTION						
RESEARCH APPROACH6Cores Available for Analysis7Other Samples for Analysis8Equipment8Shale Counts10						
SAMPLE PREPARATION						
SEM INVESTIGATION ROUTINES11Basics11Basics11Standard Operating Procedure13Potential Errors14						
RESULTS AND DISCUSSION17Results of Different Sample Prep. Techniques17CMI Cores29Highway US 20 Cores35I-35 Cores51I-80 Cores59Fast-track Pavement at Bettendorf51Assorted Other Cores72						
SUMMARY AND CONCLUSIONS						
RECOMMENDATIONS						
CLOSING COMMENTS						
ACKNOWLEDGEMENTS						
REFERENCES						
APPENDICES						
Appendix A - Summary of Core Logs						

ABSTRACT

The major objective of this research project was to investigate the chemistry and morphology of portland cement concrete pavements in Iowa. The integrity of the various pavements was evaluated qualitatively, based on the presence or absence of microcracks, the presence or absence of sulfate minerals, and the presence or absence of alkali-silica gel(s).

Major equipment delays and subsequent equipment replacements resulted in significant delays over the course of this research project. However, all these details were resolved and the equipment is currently in place and fully operational. The equipment that was purchased for this project included: (1) a LECO VP 50, 12-inch diameter, variable speed grinder/polisher; (2) a Hitachi S-2460N variable pressure scanning electron microscope; and (3) a OXFORD Instruments Link ISIS microanalysis system with a GEM (high-purity germanium) X-ray detector.

This study has indicated that many of the concrete pavements contained evidence of multiple deterioration mechanisms; and hence, the identification of a single reason for the distress that was observed in any given pavement typically had to be based on opinion rather than empirical evidence.

INTRODUCTION

Concrete is typically a very durable building material. However, there are a few instances where special precautions must be taken to ensure that it does not exhibit premature deterioration. For instance, when concrete is exposed to cyclical freezing and thawing it is normally desirable to use an air-entraining admixture to increase the durability of the mortar fraction of the concrete. Also, when concrete is to be exposed to soluble salts (sulfates, alkalis, etc.) it is wise to use a mix design that produces a concrete with a very low permeability (i.e., low water/cement ratio), high cement content (using the proper ASTM cement type), and one that incorporates aggregates that are not prone to alkaliinduced expansion. However, the deterioration of concrete is still a fact of life. Any composite material like concrete can fail because of a wide variety of The key to understanding and avoiding future different circumstances. occurrences of similar failures is to be able to identify the true cause of the problem, whether it is related to design parameters, constituent materials or construction processes.

This report summarizes the research activities conducted on lowa Department of Transportation Project HR-358. The objective of this research project was to investigate the chemistry and morphology of core specimens that were taken from portland cement concrete pavements throughout lowa. The pavements that were cored exhibited a wide range of field performance; and hence, have helped to contrast how microstructure relates to the observed performance of field concrete. The goal of the project was to enhance the ability of engineers to diagnose the reason(s) for materials related failures in concrete pavement systems.

Background

Recent field observations of deteriorating concrete pavements in Wisconsin, Minnesota, Nebraska and Iowa have indicated that several different forms of chemical and/or physical attack may have been involved in the degradation process [1, 2, 3, 4]. The major deterioration mechanisms that have been identified were alkali-aggregate (silicate) reaction (ASR), delayed ettringite formation (DEF), and freeze-thaw damage. It is pertinent to point out that mixed mode failure (i.e., ASR or DEF coupled with freeze-thaw attack) are quite probable in pavement concrete due to the severe exposure conditions. Each mode of deterioration produces microcracks that grow as the degradation proceeds. Only a brief description of these degradation mechanisms will be discussed here because both the macroscopic and microscopic perspectives have been addressed in previous reports [5, 6].

Alkali-aggregate reactions occur because some types of aggregates react with the alkaline pore solution in concrete to produce a gel. The gel tends to imbibe water and expand. The expansion, which typically occurs within the aggregate particle, eventually causes cracking in the surrounding paste. The kinetics of the process (i.e., the time required for the onset of deterioration) are very complicated and researchers are still working to find reliable correlations between laboratory testing and actual field performance. However, many of the aggregates that exhibit sensitivity to alkalis have been (or are currently being) cataloged [7, 8].

Cracking of portland cement based materials due to delayed ettringite formation (DEF) is considerably less well defined than alkali-aggregate reactivity [9]. In fact, some researchers still insist that such a phenomenon cannot occur in concretes subjected to normal curing (for a literature survey on this topic please refer to reference 9). The cracking is typically observed several years after construction is completed. This process is different from normal (external) sulfate attack because the external source of sulfates is not required. The chemical product evident in both cases is the same, namely ettringite (although gypsum may also form in some situations).

Weathering (freezing and thawing) often plays a major role in the deterioration of concrete pavements. This is due to the severe exposure conditions (i.e., continuous wetting and drying coupled with large temperature fluctuations), plus the routine application of deicing salts. Freeze-thaw durability failure (i.e., cracking) can occur in the mortar phase of the concrete or in the coarse aggregate fraction of the concrete. The durability of the mortar can be improved by entraining air voids in the concrete. Likewise, selective quarrying and proper materials specifications (based on service record) generally help to avoid coarse aggregate durability failures.

There are several other processes that may cause cracking in portland cement based products. The interested reader should refer to [8] for a general overview of these processes and a description of the cracking patterns that may be observed in field investigations. However, the point of the previous discussion is that the various deterioration mechanisms produce different distortions in the concrete specimens. Johansen, Thaulow and Sklany [10], list the following possibilities for the expansion of concrete in the field:

- 1. Both cement paste and aggregate expand.
- 2. Cement paste expands, aggregate does not expand.
- 3. Aggregate expands, cement paste does not expand.

These idealized expansion processes are illustrated in Figure 1. Keep in mind, that cracking typically occurs when the expansion pressure exceeds the tensile strength of the constituent.

ASR produces expansion in reactive aggregate particles (see possibility 3 above and Fig. 1d). The expansion eventually causes cracking. Deleterious expansion occurs when these cracks propagate through the cement paste. Note, that often the paste-aggregate interface will remain intact during alkaliinduced deterioration because the cement paste does not expand. Hence, ASR induced deterioration includes cracked aggregates, cracks extending from aggregates into the paste, and gel material.

Y

Х

 $X + \Delta X$

D

 $Y + \Delta Y$

1c - Cement paste expands, aggregate does not.

Figure 1. Idealization of expansion mechanisms in field concrete.

Y

Secondary ettringite formation (or, also, external sulfate attack) occurs in the paste fraction of concrete; and hence, causes the paste to expand. This process is illustrated in Figure 1c (thinking in terms of cylindrical or spherical coordinates, rather than the Cartesian coordinates depicted in the figure, greatly simplifies the idealization process). Note that since the aggregate does not expand there may be a noticeable gap between the aggregate and the cement paste.

Frost damage is more complicated because it can occur in the coarse aggregate, the cement paste, or both; and it depends on whether a constituent reaches critical saturation (about 90% saturated, give or take a few percent). Freeze-thaw attack in the coarse aggregate (durability cracking or d-cracking) creates the situation depicted in Fig. 1d. Freeze-thaw attack in the paste fraction of the concrete creates the situation depicted in Fig. 1c. Obviously, the use of poor coarse aggregate and poor air entrainment in concrete could lead to expansion in both the aggregate and the paste (see Fig. 1b).

It is important to understand the concepts illustrated in Figure 1 because they describe the fabric (morphology) that should be observed in specimens of concrete obtained from the field. These observations of fabric, coupled with information about the chemical composition, essentially lead to petrographic examination as defined by Katharine Mather [11].

For the purpose of this report several terms will be used rather loosely. The terms macrocracks and microcracks need some explanation because they will not be used in a quantitative sense in this report. Instead, macrocracks refer to cracks that are visible to the eye or at very low (2X) magnification. Microcracks refer to cracks that require a microscope for observation. Also, the terms ettringite and sulfate-bearing material will often be used interchangeably, and the term ettringite will denote a mineral group (i.e., similar crystal structures but with varying chemical composition, as is often observed in real systems; however, the deviations from the pure endmember appear small in this study).

RESEARCH APPROACH

Petrographic methods were the major analytical methods that were chosen to investigate the characteristics of the concrete core specimens that were obtained for this study. These techniques generally produce information that helps to identify the distress mechanisms(s) present in concrete materials [8, 11, 12, 13, 14].

The core samples were cut into sections (see Fig. 2) to produce specimens for analysis. Normally, the sections denoted as B and C were used in this study so that information pertaining to the top and bottom of the pavement slab could be obtained. However, all of the sections were inspected (the longitudinal sections were particularly informative) over the course of this investigation. Also, some to the core specimens (see IA 25 and US 169 described later in this report) were in such a deteriorated state that the sectioning using the normal techniques was impossible.

used for SEM studies

Typically, the investigation began with a quick visual inspection of the core specimen using the naked eye or a low-power (2X) magnifying lens. This was followed by a more detailed investigation using conventional light microscopy and scanning electron microscopy. The scanning electron microscope (SEM) featured the ability to operate at variable pressures (to minimize specimen cracking that normally occurs in high-vacuum systems) and it was equipped with an energy dispersive X-ray analyzer. The specific details pertaining to these procedures will be described in more detail below.

Cores Available for Analysis

Core specimens were drilled from a variety of different portland cement concrete pavements across Iowa. The core samples were taken by Iowa Department of Transportation (IDOT) personnel and then transported to the Materials Analysis and Research Laboratory (MARL) at Iowa State University, for specimen preparation and analysis. Core logs are listed in Appendix A.

The various pavement cores were assigned priority numbers, ranging from 1 through 6, at a subsequent meeting with IDOT engineers and geologists (see Table 1). Priority numbers were assigned to indicate the order that the samples should be analyzed (highest priority = 1, lowest priority =6).

Priority Number	Description	Number of Cores
]	Cores from the Materials Quality Task Force study at the Iowa DOT	6 cores 2 beams
2	US 520 in Webster County	12
3	I-35 in Story County	8
4	I-80 in Dallas County	4
5	Bettendorf street in Scott County	4
6	Assorted cores from Louisa, Madison, Hamilton, Union and Buchanan Counties	25

Table 1. Summary of cores taken for this project.

Other Samples for Analysis

A wide variety of mortar bar specimens and several concrete beam specimens were also available for analysis. All of the mortars and concretes were taken from a chemical durability research project that had recently been completed [6]. Hence, all of the mortars and concretes were proportioned, mixed and cured in a laboratory environment. All of these samples had been exposed to very severe environments which should have accelerated the alkali silica reaction or sulfate deterioration processes. Also, the various test specimens had been monitored for various physical properties (i.e., length change, etc.) as a function of exposure time. These specimens were selected because they would allow a more quantitative evaluation of the level of deterioration that is present in the mortar fraction of the specimens. However, due to the many procurement and equipment related delays that plagued this project, most of these specimens still need to be analyzed. Unfortunately, all of the concrete specimens were inadvertently discarded and will not be available for future studies.

Equipment

A Hitachi S-2460N, variable pressure SEM was used for this project. This SEM was selected because it would accept large specimens (up to 6-inches in diameter) and had a stage movement capable of traversing a four inch specimen. The SEM can be operated at pressures ranging from 0.01 to 2 Torr (1 to 270 pascals), in the variable pressure mode. The "variable pressure" mode (also referred to as "low-vacuum") allows researchers to analyze difficult specimens, like concrete or portland cement mortars, in their natural state, without the tedious sample preparation techniques that are normally mandatory for conventional scanning electron microscopes [14, 15, 16]. The scanning electron microscope was equipped with a Robinson backscattered electron detector and an Oxford Instruments GEM energy dispersive X-ray detector. The GEM X-ray detector has a higher resolution than most typical X-ray detectors

(111 eV in best resolution mode, measured at our laboratory, for Mn K_{α} radiation; as compared to about 140 to 150 eV for most conventional Si(Li) detectors). The detector was generally operated in optimum acquisition rate mode. This caused the resolution to drop to about 133 eV but allowed X-ray spectrums and maps to be obtained relatively quickly since they could be acquired at a rate of 10,000 counts per second (about 20 to 25 percent deadtime).

A LECO variable speed grinder/polisher (model VP-50) was used to prepare the core specimens for detailed microscopic investigation. The grinder/polisher was equipped with a 12-inch diameter brass wheel. Fixed grit silicon carbide paper was used throughout the study.

Several different microscopes were used for the light microscopy phase of this study. Thin sections were viewed with an Olympus BH-2 transmitted light microscope or a Unitron polarizing microscope. Bulk or polished specimens were viewed in reflected light with an Olympus BH reflected light microscope or an Olympus SZH stereo microscope.

A Buehler LAPRO slab saw (18 inch model) was used to cut the cores into pieces for analysis. The saw was equipped with an 18-inch diameter notchedrim diamond blade. Propylene glycol (reagent grade from Fisher Scientific Company) was used as the lubricant/coolant for the blade during the cutting process.

A TA-Instruments differential scanning calorimeter (DSC, Model 2910) was used to analyze portions of the paste that were extracted from some of the core specimens. A typical experiment was conducted on a 10 milligram specimen that was heated from 25°C to about 550°C using a heating rate of 10 degrees per minute. All specimens were sealed in aluminum specimen containers prior to analysis. A pinhole was punched through the top of the specimen container prior to analysis. Nitrogen was purged through the system to avoid oxidation of the DSC cell.

A Siemens D-500 X-ray diffractometer was used to analyze portions of the paste that were extracted from some of the core specimens. A typical experiment used a copper X-ray tube (excitation conditions: 50kV and 27 mA) and a diffracted beam monochromater. Specimens were front-loaded into a silicon sample holder for analysis. Scanning rates were generally below 0.5 degrees per minute due to the very poor crystalline nature of the hydrates commonly observed in portland cement pastes.

Shale Counts

Prior investigators had indicated that shale particles were a major factor in the premature deterioration of some of the concrete included in this study [2]. Hence, the shale content of selected cores was estimated by counting shale particles on the interior surfaces of the core specimens using a low power magnifying glass. The total area that was inspected for shale particles amounted to about 170 square inches (i.e., all the sawn faces shown in Fig. 2). Total number of shale particles, maximum size and distance from the top of the core (in 1-inch increments), are tabulated in Appendix B.

SAMPLE PREPARATION

Sample preparation for the low-vacuum scanning electron microscope used in this study, is considerably simpler than the techniques that are commonly employed for conventional scanning electron microscopes because there is no need to coat the sample with a conductive film. Several different sample preparation methods have been used during different stages of this project. They included fractured surfaces, sawn surfaces, ground and polished surfaces and thin sections. Examples of each different sample preparation technique will be illustrated and discussed in detail later in this report.

Procedure Used for Specimen Preparation

The method that was most commonly employed in this project consisted of: (1) sawing off a section of the concrete; (2) rinsing off the propylene glycol; (3) grinding the sample surface flat by using fixed grit paper (grit sizes listed in Table 2, water used as a lubricant); and (4) cleaning the surface of the sample with petroleum ether (Skelly B) or acetone to remove any residual debris from the final grinding/polishing step. This sample preparation method is similar to the method that is commonly used to prepare specimens for air void analysis by standard ASTM procedures [7].

Step	Current method	ASTM C 457 (see [7])				
	grit size (micron equiv.)	grit size (micron equiv.)				
ļ	180 (70μm)	100 (150 μ m) optional				
2	320 (30μm)	220 (75µm)				
3	600 (17µm)	320 (35µm)				
4	800 (12µm)	600 (17.5μm)				
5	1200 (2 to 5µm)	800 (12.5µm)				
6	optional	optional				
	1µm diamond paste	5μm Alumina				

Table 2. Grinding and polishing procedure for the concrete cores.

SEM INVESTIGATION PROCEDURES

Basics

As mentioned above, two types of information have been collected in this project. First, the macroscopic and microscopic features from each core have been collected by means of pictures. And secondly, the chemistry of the core specimens has been investigated by collecting digital X-ray maps of various features that were observed in the pictures. Obviously, as the title of this research project suggests, the regions of interest will normally contain cracks. The basic details pertinent to the collection process are illustrated in Figure 3. It is important to note that the imaging process employed two entirely separate detectors. The pictures were generated from a backscattered electron detector that was located directly above the specimen. The elemental maps were constructed using the signal from the GEM X-ray detector.

The pictures consist of the normal (analog) format and a more modern, computer readable format (digital, this format was available only for work conducted using the SEM). The analog format currently offers more resolution (about 2000 by 1500 lines per picture) than the digital format (digital images can be collected at 256 by 192 pixels, 512 by 384 pixels or 1024 by 768 pixels). However, the digital format will surely be the media of the future because: (1) computer storage media costs are falling rapidly,; (2) the resolution of digital images is constantly being increased (second source vendors already boast 4096 by 4096 pixel images); and (3) the images can be manipulated (i.e., magnified or processed using image analysis) and cataloged (e.g. an image

Figure 3. Illustration of details pertaining to the SEM study.

database) using less resources than is required for conventional pictures. For the purpose of this research project both media formats have been used. Typically, pictures were taken using Polaroid Type 55 film because it has a negative that can be used for enlargements. The digital images were normally collected using the high resolution (1024 by 768 pixels) mode; however, some lower resolution images were also collected.

The Link ISIS program SPEEDMAP was used to collect the digital X-ray maps for this project. This particular program allows researchers to collect information on 30 different elements, simultaneously. The major elements of interest in this project were oxygen (O), sodium (Na), magnesium (Mg), aluminum (Al), silicon (Si), sulfur (S), chlorine (Cl), potassium (K), calcium (Ca) and iron (Fe). Occasionally, after special treatments, other elements were also measured (i.e., uranium). Digital X-ray maps were normally collected at a resolution of 256 by 192 pixels; however, occasionally higher resolution maps were collected (512 by 384 pixels).

Standard Operating Procedure

Test specimens were normally seated in the specimen holder and then marked with reference points so that they could be removed and then reinserted into the SEM at the same nominal location (i.e., easy location of the features of interest). The study of a specimen began by scanning rapidly over the surface of the specimen at a magnification of 15X to 20X. This process was conducted as shown in Figure 4. The process was videotaped so that gross details could be permanently recorded. The videotaping , which took about 10 to 15 minutes per specimen to complete, provides a good record of approximately 65% of the surface of each specimen. It also provides preliminary indications of void (entrapped and entrained air) content, homogeneity of the specimen, and cracking in the aggregate and/or paste fraction of the concrete. During the videotaping session the microscopist recorded the x-y coordinates of interesting features that could be investigated in more detail.

Another source of error in the X-ray maps was due to topography in the specimens. Since all of the concrete cores contained entrained air voids (these voids are huge on a microscopic scale) one can often see shadows in the X-ray maps (see Fig. 6). These shadows result from the fact that the X-ray detector had a take-off angle of 30 degrees relative to the specimen surface. A comparison of the backscattered electron image and the oxygen X-ray map normally allows one to quickly identify when shadowing may distort the X-ray image. For the convenience of the operator no attempt was made to tilt the specimen towards the detector to minimize this error.

RESULTS AND DISCUSSION

The results from this study will be discussed in detail; however, due to the nature of the data collected in this research project (i.e., pictures or images), it is difficult to display the results in a text-based report. Also, since this report has been published without using color it lacks many of the sophisticated image processing techniques that can be used to enhance and clarify subtle details. These techniques are available and can be used to manipulate the digital data; however, publishing costs prohibited their use in this report. Hence, much of the information has been reduced to tabular form. This is a great disservice because it limits the information that can be presented. However, it is not currently possible to create and distribute a multimedia based report that can incorporate all of the digital data (although this will be possible in the near future). The original photographs, hard copies of the X-ray maps, and copies of the exploratory videotapes were submitted to the lowa Department of Transportation upon completion of the project. The availability and distribution of the original information is left to their discretion.

Results of Different Sample Preparation Techniques

Sample preparation is critical to the interpretation petrographic examinations; and hence, this study has briefly evaluated the use of four different common sample preparation techniques. These techniques included the observation of freshly fractured surfaces, sawn surfaces, ground and polished surfaces, and standard thin section surfaces.

The thin sections were prepared by a commercial petrographic consultant (Spectrum Petrographics, Winston, Oregon) using both standard techniques and special techniques that are often employed for water and heat sensitive samples. There were no apparent differences between the specimens prepared by the standard or sensitive materials procedures. Backscattered electron images obtained from a typical thin section are shown in Figure 7. The image clearly indicates the presence of material in the air voids. In fact, many of the smaller voids have been completely filled. Fine hair line cracks were also evident in the paste portion of the specimen. Most of the features remained intact during the preparation of the thin section; however, some of the shale particles were destroyed by the process.

Backscattered electron images obtained from the normal sample preparation method used in this study (ground and polished surfaces), which was described earlier in this report, are shown in Figure 8. The images have been oriented so that the area shown in Figure 7 corresponds closely to the area shown in Figure 8. The images shown in Figure 8 were obtained before the samples were sent to be made into thin sections. This allowed the laboratory that made the thin sections to prepare a specimen of nearly the same area that had been viewed on the bulk specimen (except for the 30 micron thickness of the thin section).

Overall, Figures 7 and 8 contain essentially the same information. The surface polish is a little better in Figure 8 than in Figure 7, but the major features, particularly the filled voids, have been preserved in both sample preparation techniques. The voids are filled with a sulfate bearing mineral (see Fig. 9). The X-ray map indicates that only a small amount of aluminum is present in the material in the voids, this suggests that the material's composition has been altered to some extent by the sample preparation process because the material started out as ettringite. If the thin section is viewed in transmitted light using a petrographic microscope the voids appear to be nearly empty. This may help to explain why these features were not mentioned in previous studies of similar cores [2,17]. The distinct morphology of the ettringite is easily recognized when using a scanning electron microscope. In addition, the visual information can easily be supplemented with chemical information (via an X-ray spectrum or an X-ray map). This allows one to better estimate the identity of the object that is being observed.

Figure 8. US 20, polished specimen, normal preparation technique.

Figure 9. X-ray map of the region shown in Fig. 7B, 300X magnification.

Images obtained from the sawn surface of the specimen are shown in Figures 10 and 11. Note the poor contrast between adjacent minerals in Figure 10. The sawing process has smeared debris over the surface of the specimen, this has distorted the information in both the backscattered electron image and the X-ray map. This also makes it difficult to identify microcracks in the specimen. However, both figures still indicate the presence of filled air voids. Higher magnification (see Fig. 12) helps to discern features but it also indicates that specimen topography will interfere with accurate X-ray mapping.

Figure 10. US 20, sawn surface, magnification =100X...

;

Figure 12. US 20, sawn surface; 300X magnification.

Images from a freshly fractured specimen surface are shown in Figures 13 through 17. The first two figures clearly illustrate the presence of filled air voids. In fact, the images give a better illustration of the three dimensional nature of the air voids. The X-ray map (see Fig. 15) contains many shadows (due to topography) which make interpretation difficult. Figures 16 and 17 show a large shale particle that was uncovered during the fracturing process. The shale particle is surrounded by voids that have been filled with ettringite. None of the voids give any evidence of being filled with alkali-silica gel. However, this statement must be tempered by the fact that surface topography has distorted both the image (this is why the lower-right half of the image is poorly focused) and the elemental map.

÷

Į

Figure 13. US 20, fractured surface, 30X magnification.

Figure 14. US 20, fractured surface, 100X magnification.

Figure 15. X-ray map of the region shown in Fig. 14; 100X magnification.

The preceding discussion has illustrated some of the strengths and weaknesses of the various sample preparation techniques that were available for use in this project. Obviously, there is no single technique that fits all situations. However, the fractured surface and sawn surface sample preparation techniques were not deemed to be adequate since the observation of cracking was a fundamental requirement for this project. The thin section technique produced excellent specimens but the delicate and time consuming sample preparation procedure, plus the small specimen size (about 1 inch by 2 inches), did not meet the needs of the project. Hence, the use of bulk specimens, that had been ground flat and then polished to #1200 grit, appeared to provide the most reliable information with only a moderate amount of time invested for specimen preparation.

Figure 16. US 20, fractured surface, shale particle, 50X magnification.

Figure 17. X-ray map of the region shown in Fig. 16; 50X magnification.

CMI Cores

The concrete samples denoted as priority 1 in Table 1, all consisted of sections of cores that had been studied earlier by the Materials Quality Task Force [17]. The results of the petrographic examination are summarized in Table 3. A detailed discussion of the first four core specimens (i.e., specimens from I-80, I-35 and US 20) will be delayed until later in this report so that all observations from a single pavement site can be considered as a whole. At this time, it is sufficient to say that the results are roughly similar to those reported by Concrete Microscopy, Inc. [17].

The samples denoted as CMI-11 and CMI-12 both exhibited very little cracking; however, they did contain features that help to illustrate points that will be mentioned later in this report. The CMI report [17] indicated that the two specimens contained similar amounts of entrained air (7.9% and 7.5%, respectively), and that the air voids were only thinly lined with ettringite. This investigation revealed major differences in the distribution of air voids (compare Figures 18 and 19), and it also indicated that many of the small air voids in the CMI-11 sample had been filled with ettringite (compare Figures 20 and 21).

The specimens denoted as CMI-14 and CMI-15 both exhibited severe cracking at the edges of the specimens. The corners of the specimens were quite fragile and crumbled during normal handling. This was due to the fact that both specimens had been submerged in a concentrated sodium sulfate solution (10% by mass) for almost two years. Visual inspection indicated that the sulfate-induced cracking penetrated about 0.5" to 1" into concrete specimens. Again, the CMI report acknowledges only thin ettringite linings in the air voids near the edges of the specimens. This study indicated that many of the small air voids near the edges of the specimens had been completely filled with ettringite (see Figure 22). The frequency of the filled voids decreases as one travels towards the interior of the specimen, this is in agreement with the CMI report. The ettringite filled voids appeared to be more prevalent in the

Table 3.	Summary	of	observations	from	the	CMI	cores
----------	---------	----	--------------	------	-----	-----	-------

Observations: Visual inspection and light microscopy

Core	Location &	Aggregates	Voids	Cracks	Comments
No.	Details				
CMI-1	I-80 EB Dallas	Alden stone	many entrapped	cracked shale;	fly ash present
	Co.	0.75" max	voids, some air	other cracks	air looks OK
		Van Meter sand	voids lined	minimal	
		0.2"max			
CMI-2	I-35 NB	Alden stone	many entrapped	cracked shale;	fly ash present
	Story Co.	1" max	voids, some air	other cracks	air looks OK
		Ames sand	voids lined	minimal	
		0.2"max]		
CMI-5	US 520	Ft. Dodge	little entrapped	cracked shale;	most voids lined with
	EB, C ash	1" max	air; air looks low	macrocracks	white material; small
		Yates sand		roughly	voids filled; fly ash
		0.2" max		subparallel to top	present
		-		of core, go	
				though paste	
CMI-6	US 520	Ft. Dodge	little entrapped	cracked shale;	most voids lined with
	WB, no ash	1" max	air .	other cracks	white material; no fly
		Croft sand		minimal	ash present
		0.2" max		······	
CMI-11	Fast track	Lee Crawford	little entrapped	none evident	all voids lined with
	Benton Co.	0.75" max	air; air looks odd		white material; no fly
		Cedar Rapids			ash but considerable
		sand,			angular debris in paste
	<u> </u>	0.2" max		<u> </u>	
CMI-12	Co. Road B	Garner North	little entrapped	cracked shale;	some gel evident
	Hancock Co.	0.75° max	air; air content	some cracked	lining voids near
		Sankey sand	looks nign	inne aggregate	cracked shale particles
CML 14	I ab agentia	0.2 max	francisco d	particles	
CIVI1-14	Lao sample	Montour	iew entrapped	cracks evident at	merocracking
	nn-527	LU max	volus, all content	surface of	O 5" of an animon
	110 4511	0.25" max	iooks good	large	0.5 of specimen
CMI-15	Lab sample	Montour	few entranned	cracks evident at	fly ash present:
	HR-327	1.0" max	voids: air content	surface of	microcracking less
	15% C ash	Bellevue	looks marginal	specimen	apparent than in CMI-
		0.25" max		-p	14 specimen
	1			L	

specimen containing Class C fly ash. However, the specimen containing only Type I cement appeared to exhibit more internal distress, this distress was particularly evident at the paste-aggregate interface (see Figure 23). This observation was consistent with the results of the expansion tests that had been conducted on the specimens during research project HR-327 (see Figure 24).

Table 3. (continued) Summary of observations from the CMI cores

Core	Location &	Matrix	Voids	Cracks	Fly	Comments
No.	Details				Ash	
CMI-1	I-80 EB Dallas	good paste/agg	some small voids	cracked shale;	yes	some ASR gel
	Co.	bond, air looks	filled with	very fine		in voids near
		good	ettringite	microcracks		shale particles
				connecting air		
				voids		
CMI-2	I-35 NB	good paste/agg	small voids filled	cracked shale;	yes	
	Story Co.	bond, air looks	with ettringite in	microcracks		
		low	some areas	travel thru paste,		
				often connect air		
	X (0, 200)	. / 1 1		Volas .		
CMI-5	US 520	paste/agg bond	many entrapped	cracked snale;	yes	paste looks
	EB, C asn	varies;	voids, many sman	anterocraeks		very poor in
		all looks low	with ettringite	go around		some regions
			with cumpite	agoregates		
CMI 6	115 520	naste/agg_bond	many entranned	cracked shale:	no	paste looks
Civil-O	WB no ash	? air may be	voids: many voids	few microcracks		poor in some
	() D, 110 don	low	lined with	in paste		regions
			ettringite	· · · · ·		
CMI-11	Fast track	paste/agg. bond	large voids lined	fine microcracks	no	
	Benton Co.	OK, air looks	with ettringite,	go thru paste,		
		low	small voids often	connect air voids		
			filled			
CMI-12	Co. Road B	paste/agg. bond	some entrapped	cracked shale;	no	
	Hancock Co.	OK; too much	voids; some voids	some microcracks		
		air	lined with	in paste		
			ettringite			
CMI-14	Lab sample	paste/agg. bond	air content OK;	microcracks	no	paste and the
	HR-327	poor at exterior	some voids lined	extensive in paste		paste/ coarse
	no ash	surface of	but few filled	fraction of		aggregate
		specimen	with ettringite	specimen		
CMI 15	Lob comple	nasta/aga hand	air content locks	microoracka	NAC	poor paste and the
UMI-13	Lao sample	pasteragg, cond	OK: some voids	evtencive in pasta	yes	paste and the
	15% C ash	surface of	lined small voids	fraction of		acoregate
	1570 C asii	specimen	filled with	specimen		bond look
		opeennen	ettrinoite	speamen		poor
				L	L	P001

Observations: scanning electron microscopy

ł

Figure 18. Fast track, Benton County (CMI-11), 20X magnification.

Figure 19. County Road B, Hancock Co. (CMI-12), 20X magnification.

Figure 20. Fast track, Benton County (CMI-11), 125X magnification.

Figure 21. County Road B, Hancock Co. (CMI-12), 125X magnification..

Figure 22. Lab concrete exposed to sulfate solution, 100X magnification; (Beam 55 from HR-327, Type I cement with 15% C fly ash).

Figure 23. Lab concrete exposed to sulfate solution, 20X magnification; (Beam 53 from HR-327, Type I cement, no fly ash).

Figure 24. Results of a laboratory sulfate resistance study using Ottumwa fly ash.

Highway US 20 Cores

The concrete samples in the priority 2 group were all taken from US 20. The results of the petrographic examination are summarized in Tables 4, 5 and 6. The cores have been split into distinct groups based on the mix design used during construction of the pavement. These details have been described thoroughly by Jones [18] in a earlier investigation of the deterioration observed on US 20. Observations from the two CMI cores that were taken from US 20 (CMI-5 and CMI-6, respectively), will also be discussed in this section.

The major type of distress that was observed in the specimens consisted of cracking oriented subparallel to the top of the pavement. The number and severity of the cracking varied considerably from core to core. This type of cracking was apparent (i.e., by visual inspection only) in cores 10, 11, 12, 17, 19, 20, and the core denoted as CMI-5. The horizontal cracks tended to propagate through the paste fraction of the concrete. The cracks often reached widths of 0.5 millimeters (or more in some instances) and they were typically open (i.e., not filled with alkali-silica gel or ettringite).
Table 4. Summary of observations from the cores taken from US 20 (mix#1).

Highway: US 20, paved 1987, proj. #.?Mix details:C3WRC, Mix#1Coarse Aggregate (CA): Ft. Dodge Mine crushed limestoneFine Aggregate (FA): CroftCement: LehighFly Ash: Ottumwa

Observations: Visual inspection and light microscopy

Core	Location &	Aggregates	Voids	Cracks	Comments
No.	Details				
9	midpanel,	CA sound	many entrapped	cracked shale	few cracks observed
1	no vibrator trail	max. = 1.0"	air voids; many	particles	
		FA max.=.3"	air voids lined		
1		shale not			
		measured			
10	joint,	CA sound	many entrapped	extensive in top	steel observed in lower
	no vibrator trail	max. = 1.25"	air voids; many	of core; also	third of sample
		FA max.=.3"	air voids lined	cracked shale	
		shale = 1.1%		particles	
11	joint,	CA sound	entrapped air	extensive, full	air looks low
	vibrator trail	max. = 1.0"	voids; many air	depth; subparallel	
		FA max.=.3"	voids lined, some	to top of	cracked shale particles
		shale = 0.6%	filled	pavement	
12	midpanel,	CA sound	entrapped air	extensive, in top	some regions in top of
	vibrator trail	max. = 1.25"	voids; many air	of core;	core exhibit
		FA max.=.3"	voids lined, some	subparallel to top	segregation;
		shale not	filled	of pavement	cracked shale particles
		measured			-

Observations: Scanning electron microscopy

Core	Location &	Matrix	Voids	Cracks	Fly	Comments
No.	Details				Ash	
9	midpanel,	Good	many large voids;	few, except for	yes	ASR evident
1	no vibrator trail	cement/agg.	small voids filled	cracked shale		near shale
		bond	with ettringite			particles
10	joint,	some regions	many large voids;	common in paste,	yes	more air and
	no vibrator trail	poorly consol-	small voids filled	often connect air		less void
		idated	with ettringite	voids; cracked		filling in
				shale		bottom
						specimen
11	joint,	some paste areas	many large voids;	common, some	yes	air looks low
l	vibrator trail	have excess fly	small voids filled	cracks contain		in top
		ash or poor	with ettringite	ASR gel; cracked		specimen
		mixing		shale		
12	midpanel,	paste looks poor	many large voids;	common, some	yes	air looks low
	vibrator trail	or distorted in	small voids filled	were caused by a		in top
		some regions	with ettringite	reactive		specimen
				aggregate;		· ·
				cracked shale		

Table 5. Summary of observations from the cores taken from US 20 (mix#2).

Highway: US 20, paved 1986, proj. #.?Mix details:C3WR, Mix#2Coarse Aggregate (CA): Ft. Dodge Mine crushed limestoneFine Aggregate (FA): CroftCement: LehighFly Ash: None

Observations:	Visual	inspection a	nd light	microscopy
----------------------	--------	--------------	----------	------------

Core	Location &	Aggregates	Voids	Cracks	Comments
No.	Details				
13	midpanel,	CA sound	some entrapped	not evident	looks sound
	no vibrator trail	max. = 1.0"	air voids; some	except for	
		FA max.=.25"	air voids lined	cracked shale	
		shale = 1.2%		particles	
14	joint,	CA sound	large entrapped	not evident	air looks low; perhaps
	no vibrator trail	max. = 1.0"	air voids; many	except for	some segregation in
		FA max.=.25"	air voids lined	cracked shale	some areas
•		shale = 1.4%		particles	
15	joint,	CA sound	entrapped air	not evident	steel observed in lower
	vibrator trail	max. = 1.25"	voids common	except for	third of core
		FA max.=.3"	near center of	cracked shale	
		shale = 0.9%	core	particles	
16	midpanel,	CA sound	entrapped air	not evident	clumps of air voids
	vibrator trail	max. = 1.25"	voids common	except for	observed in some areas
		FA max.=.25"	near center of	cracked shale	
		shale = 0.8%	core	particles	

Observations: Scanning electron microscopy

Core	Location &	Matrix	Voids	Cracks	Fly	Comments
No.	Details				Ash	
13	midpanel,	good paste/agg.	many voids lined	few except for	no	air looks low
	no vibrator trail	bond	with ettringite	cracked shale		in some areas
				particles		
14	joint,	good paste/agg.	some voids lined	few except for	no	? low air in
	no vibrator trail	bond	with ettringite	cracked shale		top of core;
				particles		higher in
						bottom
15	joint,	good paste/agg.	many large voids;	common in paste;	no	shale may be
	vibrator trail	bond	some voids lined	cracked shale		producing
			with ettringite	particles		ASR gel
16	midpanel,	good paste/agg.	many large voids;	some radiate from	no	
	vibrator trail	bond	some voids lined	air voids others		
		1	with ettringite	from shale		
				particles		

Table 6. Summary of observations from the cores taken from US 20 (mix#3).

Highway: US 20, paved 1986, proj. #.?Mix details:C3C, Mix#3Coarse Aggregate (CA): Ft. Dodge Mine crushed limestoneFine Aggregate (FA): YatesCement: LehighFly Ash: Port Neal 4

Observations:	Visual inspection	and light microscop
----------------------	-------------------	---------------------

Core	Location &	Aggregates	Voids	Cracks	Comments
No.	Details				
17	joint,	CA sound	many entrapped	extensive in top	steel observed in
	no vibrator trail	max. = 1.0"	voids; many air	of core;	middle of core;
		FA max.=.3"	voids lined	subparallel to top	
		shale = 0.8%		of pavement	cracked shale
18	midpanel,	CA sound	air content looks	not evident	some oversize in fine
	no vibrator trail	max. = 1.0"	low	except for	aggregate
		FA max.=.3"		cracked shale	
		shale = 0.5%		particles	
19	midpanel,	CA sound	some entrapped	extensive in top	cracked shale; ?
	vibrator trail	max. = 1.25"	air voids; many	of core;	segregation and mortar
		FA max.=.25"	lined voids	subparallel to top	cracking near top of
		shale = 0.9%		of pavement	core
20	joint,	CA sound	air content looks	extensive in top	some oversize in fine
	vibrator trail	max. = 1.0"	low in top of	of core;	aggregate
		FA max.=.3"	core; many lined	subparallel to top	
		shale = 0.7%	voids	of pavement	cracked shale

Observations: Scanning electron microscopy

....

Core	Location &	Matrix	Voids	Cracks	Fly	Comments
No.	Details				Ash	
17	joint,	air content looks	many ettringite	cracked shale;	yes	some ASR
	no vibrator trail	low	filled voids	some cracks go		observed near
***	*****			thru paste around		shale particles
				agg.		
18	midpanel,	air content looks	many ettringite	cracked shale;	yes	some ASR
1	no vibrator trail	low	filled voids	some cracks go		observed near
				thru paste around		shale particles
				agg.		
19	midpanel,	air content looks	many large voids,	cracked shale;	yes	some areas
	vibrator trail	low	many ettringite	some cracks go		distorted, ?
			filled voids	thru paste around		poor mixing
				agg.		or consol-
						idation
20	joint,	air content looks	many large voids,	often join large	yes	minor
	vibrator trail	low in top of	many ettringite	voids; cracked		evidence of
		core, high in	filled voids	shale		ASR
		bottom				

The coarse aggregate (Ft. Dodge crushed limestone) was sound in all of the cores. The fine aggregate contained some reactive particles that had produced alkali-silica gel. Most of the reactive aggregates were shale particles and all of the core specimens (cores 9 through 20 plus CMI-5 and CMI-6) contained cracked shale particles. Some of the cracked shale particles had produced alkali-silica gel while many others had not. The cracks associated with the shale particles were extremely fine and typically did not propagate far into the cement paste (see Figures 25 through 27). Other reactive aggregates were only very rarely observed in the fourteen core samples. Sand-sized dolomite particles were observed in all of the cores from US 20.

Figure 25. US 20, core 17B, ASR near shale particle; 50X magnification.

Figure 26. US 20, core 15B, 30X magnification (mix#2, no fly ash).

Figure 27. US 20, core 12B, 25X magnification (mix#1, 15% fly ash)

A reactive particle, which had produced disruptive expansion by the production of alkali-silica gel, was found in the top specimen of core 12 (see Figures 28 and 29). This particular particle is an excellent example of alkali-silica reaction and it will be used to demonstrate how alkali-reactive aggregates can be identified using the scanning electron microscope. First, notice in Figure 28, that a cracked aggregate is present in the field-of-view. The cracks tend to radiate from the reactive particle into the cement paste (several millimeters in this instance, they actually pass out of the field-of-view). Several cracks appear to be filled with a material that has a "mud-cracked" appearance, this is the normal morphology of alkali-silica gel in a scanning electron microscope.

Figure 28. US 20, core 12B, deleterious ASR cracking; 100X magnification.

Figure 29. X-ray map of the area shown in Fig. 28; 100X magnification.

The visual information can immediately be supplemented with elemental information from the energy dispersive X-ray analyzer. This could consist of an elemental scan of the gel material or an X-ray map of the region of interest. In this instance, an X-ray map was collected because it provides a more comprehensive view of the region of interest. Figure 29 is the X-ray map that was collected from the region shown in Figure 28. The oxygen map indicates that the sample was reasonably flat with little topography (i.e., few shadows are apparent in the oxygen map). The silicon, potassium and sodium maps clearly indicate that the material in the cracks is primarily composed of these elements (plus oxygen). The calcium map indicates that regions of the gel contain only small amounts of calcium. However, as is readily apparent in the calcium X-ray map, the concentration of calcium varies considerably in different parts of the crack, this suggests a variety of alkali-silica gels with different compositions (and perhaps with different swelling potentials). One important thing to note is that the aggregate, which appeared to contain only a single well defined crack in the backscattered electron image, now clearly indicates severe distress in the Xray maps (refer to aluminum or calcium maps which indicate about five distinct cracks). This is in better agreement with the amount of gel that was observed in the region.

The paste fraction of many of the concrete cores taken from US 20 was often distorted in one way or another. One of the most commonly observed distortions was a large number of entrapped air voids. The diameter of the entrapped voids ranged in size from 1" (uncommon but observed), to about 0.2" (very common in all of the cores). The entrapped voids were observed in both the top and bottom sections of cores taken from either the pavement joint or midpanel region. No attempt was made to quantify these observations.

The entrained-air void system varied considerably from core to core. It also varied from the top to the bottom of the core in many instances (see Figure 30 for an example). Again, the discussion that follows will hinge on qualitative

. A how

Bottom of Core

Figure 30. US 20, core 20, 20X magnification; note difference in air voids.

comparisons rather than strict quantitative comparisons. The distribution of air voids throughout the paste often appeared to be very poor when compared to laboratory concrete specimens. However, a closer inspection of the paste generally indicated that ettringite had filled many of the small (<100 microns) air voids (see Fig. 31). Even closer inspection (see Fig. 32) appeared to indicate that the air voids had been filled from smallest to largest (note the linings on the larger voids while the small voids have been filled). Often the air voids that had been filled were difficult to see without careful inspection (even though ettringite has a very unique morphology in the scanning electron microscope). X-ray maps, particularly the sulfur and silicon maps, were useful for detecting the ettringite filled voids (see Fig. 31). Sometimes very fine cracks were observed to pass through the filled air voids into the adjacent paste (or perhaps to another filled air void).

Figure 31. X-ray map of US 20, core 10B, note filled voids; 20X magnification.

Figure 32. US 20, core 10B, void filling and microcracking; 100X magnification.

The observation of ettringite filled voids was common throughout all the cores taken from US 20. The cores from mixes that contained fly ash (mixes 1 and 3) appeared to contain considerably more filled voids than the cores taken from the mix without fly ash (mix 2); however, this observation is only qualitative at this time. Future work will be suggested to quantify this matter. It is also important to remember that the cements used in the different mixes were not the same. They had been produced by a single manufacturer but at different times.

In an attempt to shed more light on the chemistry of the paste fraction of the cores from US 20, all the cores were analyzed using differential scanning calorimetry (DSC). Also, selected samples were subjected to X-ray diffraction analysis (XRD).

The preliminary specimens for DSC analysis were obtained by using a masonry bit to remove mortar from the exterior of the concrete cores, this allowed one to avoid sampling the coarse aggregate fraction of the concrete. The extracted material was then sieved through a #100 mesh sieve and then around to a fine particle size for the DSC experiments. However, this sampling procedure also tended to sample material that had been altered due to exposure to the atmosphere. Hence, additional samples were removed from fresh surfaces of specific core specimens, to evaluate the influence of the sampling technique. The fresh surfaces were tested with phenolphthalein to evaluate the depth of carbonation (which was less than 0.5 millimeters in all the cores that were tested). All of the results of the DSC study have been appended to this report (see Appendix C). For the purpose of brevity only three core specimens will be discussed in detail. It is important to note, however, that the DSC experiments appear to sort the cores into groups based on the calcium hydroxide content of the mortar -- but beware of making any conclusions based on these results because of the potential for sample alteration that was described above. The exposure of the core samples to the atmosphere appears to magnify the differences observed between the cores. These tests are currently being repeated on fresh surfaces to see if the grouping is repeated.

Three core specimens were selected from the fourteen cores from US 20 that were available for study. To aid the comparison, all three of the cores were obtained from the joint region of the pavement slab, and they represented all three of the concrete mixes that were available. Two of the cores represented concrete that contained vibrator trails (cores 15 and 20), the remaining sample (core 11) did not contain vibrator trails.

The results of DSC analysis are shown in Figures 33 and 34. Figure 33 depicts results obtained from the outside surface of the concrete cores (i.e., the specimen was not indicative of the mortar fraction of the concrete specimen

Figure 33. Results of DSC analysis on the mortar fraction of US 20 cores, (sample from exterior of core specimen, significant carbonation).

Figure 34. Results of DSC analysis on the fresh mortar fraction of US 20 cores.

since it had been exposed to the air for a considerable amount of time). The test results obtained from a fresh surface are shown in Figure 34, this should give a better indication of the composition of the mortar fraction of the concrete cores. The results were in rough agreement since they identified the same major constituents in the mortar fraction; however, the quantitative details (i.e., the area of the peaks that represented different decomposition events) varied considerably.

The major compounds that were indicated by the DSC study included: (1) calcium silicate hydrate gel and ettringite (or another AF(t) phase with a composition close to ettringite) - these compounds decomposed at temperatures between 50 and 120°C; (2) monosulfoaluminate hydrate (or another AF(m) phase of similar composition) - this compound decomposed at about 170°C; (3) magnesium hydroxide (brucite) - this compound decomposed at about 390°C; and (4) calcium hydroxide (portlandite) - this compound decompound decomposed at about 470°C. The presence of brucite was also indicated by XRD (see Fig. 35). The XRD study indicated that the calcite content was similar in each core specimen, this suggests similar amounts of carbonation.

Why the drastic difference in brucite and portlandite contents of the mortar fractions from the different cores? The answer to this question is not readily evident; however, one can speculate on why this was observed.

Portlandite (calcium hydroxide) is a common by-product from the hydration of the calcium silicate phases in portland cement (fly ashes typically produce negligible amounts of portlandite when compared to cements, especially when only 15% fly ash is substituted for an equivalent amount of cement). The use of fly ash would have reduced the amount of portlandite present in the cores because of: (1) direct substitution; and (2) consumption of portlandite via the pozzolanic reaction. However, the reduction of the amount of portlandite by roughly 50%, which was evident in the DSC results (see Figure 34), cannot be explained adequately by either of these processes. Remember

Figure 35. Results of XRD analysis on the mortar fraction of US 20 cores.

that Class C fly ashes tend to be poor pozzolans but good cements, this is the reason why they often do not mitigate the occurrence of alkali-silica reaction like a Class F fly ash. Supporting evidence can be found in the DSC results for the laboratory concrete specimens (see samples IO-1 #53 and I15-1 #55 in Appendix C). These laboratory test specimens were made in 1991 and showed only about a 20% reduction in portlandite content for a 15% level of fly ash replacement. It seems unlikely that several additional years of curing would have doubled the consumption of portlandite in the specimens.

Brucite (magnesium hydroxide) is normally formed from the hydration of periclase (magnesium oxide), and the periclase could have entered the system via the cement or the Class C fly ash. The hydration of periclase tends to occur slowly and may cause soundness problems. However, this does not seem to provide a reliable answer because, as was stated by Jones [18], the materials used in the project all met the appropriate specifications (i.e., the materials would have passed an autoclave expansion test).

The relative solubility of the two minerals may be the key factor to understanding the test results. Brucite is nearly insoluble in water. Portlandite is slightly soluble in water but it is still many times more soluble than Brucite. Hence, if water had been allowed to leach the samples one would expect Portlandite to leave the bulk sample while Brucite would be retained. The dissolved Portlandite would travel to a free surface where it would probably precipitate as a carbonate, due to exposure to atmospheric carbon dioxide. This would produce efflorescence on the surface of the sample. Analysis of the leached specimen would indicate an elevated concentration of Brucite and a reduction in the amount of Portlandite. Hence, one may speculate that the DSC results simply indicate the relative amounts of deterioration present in the core specimens. Internal cracking drastically increased the amount of water that could penetrate into the concrete, and the relative solubility of the two compounds dictated which would be removed.

<u>I-35 Cores</u>

The concrete samples in the priority 3 group were all taken from I-35 in Story County. The results of the petrographic studies are summarized in Table 7. Observations from the CMI core that was taken from I-35 (CMI-2), will also be discussed in this section.

The major type of distress that was observed consisted of cracking oriented subparallel to the top of the pavement (cores 1 and 2), and cracking oriented perpendicular to the top of the pavement (cores 7 and 8). The cracks were severe and often caused portions of the cores to break apart during normal sample preparation procedures. The other samples (cores 3, 4, 5, 6 and CMI-2) did not exhibit macroscopic cracking (except for cracked shale particles). However, closer inspection of the cores indicated that they all exhibited similar features on a microscopic level.

The coarse aggregate (Alden crushed limestone) was sound in all of the cores. The fine aggregate contained shale particles 'that had cracked; however, little, if any, alkali-silica gel had been produced. The cracked shale particles rarely appeared to be causing much distress in the paste fraction of

the concrete. Core 8 contained more shale (2.1%) than any of the other cores. Sand-sized dolomite particles were observed in all the I-35 cores.

The paste fraction of the concrete cores often looked poor. The paste contained many entrapped voids (especially in the cores obtained from the pavement joints), and often the entrained air content varied considerably from the top to the bottom of the cores (see Figures 36 and 37). Again, the joints appeared to look the worst. The air content often appeared to be low in both the top and bottom of some cores. Occasionally, clumps of what appeared to be fly ash were observed in the paste (see Fig. 38). The significance of such features is difficult to ascertain; however, such features would typically suggest problems in the mixing cycle of the concrete.

Closer inspection of the paste typically indicated microcracking that tended to migrate around aggregates and through adjacent air voids (see Fig. 39). Small air voids were often completely filled with ettringite and were very difficult to observe without careful inspection because of poor contrast between the air voids and the bulk paste. Often it was easiest to refer to the sulfur X-ray map to locate the air voids. An alternative method of identifying the filled voids was to look for "holes" (dark regions) in the silicon X-ray map. Cracks, plus gaps between the cement paste and the aggregate particles, were also occasionally observed. Often these features tended to be filled with ettringite (see Figures 40 and 41). These features generally passed through several millimeters of paste. They suggest that the paste has expanded away from the aggregate. Plastic concrete problems, such as poor consolidation, could also leave similar gaps around aggregates; however, they could not account for the cracks that were observed adjacent to the gaps. It is difficult to say if the ettringite helped to create the cracks or if it simply was deposited there during the normal wetting and drying cycles experienced by the concrete pavement.

Table 7. Summary of observations from the cores taken from I-35.

Highway:I-35 north bound, paved 1985, proj. #IR-35-5(40)121Mix details:Coarse Aggregate (CA): Alden crushed limestoneFine Aggregate (FA): Ames, HallettCement: Lehigh, Type IFly Ash: Port Neal #4

--

Observations: Visual inspection and light microscopy

Core	Location &	Aggregates	Voids	Cracks	Comments
No.	Details				
1	l' from	CA sound	many filled	Subparallel to	cracks pass
	joint	max. = 1"	with white	surface of	through paste
	[FA max.=.25"	material	pavement	
		shale = 1.1%			
2	4" from	CA sound	many	Subparallel to	sample broke
	joint	max. = 1"	entrapped	surface of	about 4" below
		FA max.=.3"	voids, some air	pavement	surface
		shale = 0.9%	voids filled		
3	midpanel	CA sound	few entrapped	evident only in the	sample looks
		max. = 1"	voids, air voids	shale particles	good
		FA max.=.25"	filled		Ű
		shale = 1.9%			
4	midpanel	CA sound	many	evident only in the	some entrapped
		$\max = 1$ "	entrapped	shale particles	voids go all the
		FA max.=.25"	voids, some air	·	way thru
		shale = 1.0%	voids filled		specimen
5	8" from vibrator	CA sound	some entrapped	evident only in	one entrapped
	trail crack	$\max = 1$ "	voids, many	shale particles	void goes all
		FA max.=.3"	voids filled	·	the way thru
		shale = 1.4%			specimen
6	8" from vibrator	CA sound	few entrapped	evident only in	·····
	trail crack	$\max = 1$ "	voids, many	shale particles	
		FA max.=.3"	voids filled		
		shale = 1.1%			
7	in vibrator trail	CA sound	many	cracked the length	cracks go
	crack	max. = 1"	entrapped	of the core	around
]		FA max.=.3"	voids, many	specimen (from	aggregates
		shale = 1.4%	voids filled	bottom to top)	
8	in vibrator trail	CA sound	many	cracked from the	cracks go
	crack	max. = 1"	entrapped	bottom up about 5".	around
	2011 December 2011	FA max.=.25"	voids, many	some cracked shale	aggregates
		shale = 2.1%	voids filled		

Table 7. (continued) Summary of observations from the cores taken from I-35.

Core	Location &	Matrix	Voids	Cracks	Fly	Comments
No.	Details				Ash	
1	1' from	few cracked	air voids filled	extensive in paste,	yes	air content
	joint	aggs.	with ettringite in	often leading		varies from
			top of core, open	from air voids		top to bottom
			in bottom			of core
2	4" from	one area	many entrapped	present in paste	yes	air content
	joint	contains alot of	voids; many			varies from
		fly ash, paste	ettringite filled			top to bottom
		looks poor	voids			
3	midpanel	few cracked	many entrapped	extensive in paste;	yes	some shale
		aggs.	voids; many	some cracked		showing ASR
			ettringite filled	shale		gel
			voids			
4	midpanel	few cracked	ettringite fills	mostly in paste;	yes	
		aggs.	many air voids in	some cracked		
			top and bottom of	shale		
			core			
5	8" from vibrator	few cracked	ettringite fills air	mostly in paste;	yes	air content
	trail crack	aggs.	voids in top and	some cracked		looks low
			bottom of core	shale		
6	8" from vibrator	few cracked	many entrapped	some cracks in	yes	air content
	trail crack	aggs.	voids; ettringite	paste;		looks low
			fills many small	some cracked		
			air voids	shale		
7	in vibrator trail	? paste/agg	many entrapped	extensive in paste;	yes	air content
	crack	bond, few	voids; ettringite	some cracked		looks low
		cracked aggs.	fills small air	shale		
			voids			
8	in vibrator trail	? paste/agg	many entrapped	extensive in paste;	yes	air content
	crack	bond, few	voids; ettringite	some cracked		looks low
		cracked aggs.	fills small air	shale		
	<u>.</u>		voids			

Figure 36. I-35, core 2B, 25X magnification.

Figure 37. 1-35, core 2C, 25X magnification; compare air voids to Fig. 36.

Figure 38. 1-35, core 2B, 90X magnification; note clump of fly ash.

Figure 39. 1-35, core 3B, 125X magnification; note general paste cracking.

Figure 40. 1-35, core 7B, 125X magnification; note gaps around aggregate particles that have been filled with ettringite.

Figure 41. X-ray map of the region shown in Fig. 40; 125X magnification.

I-80 Cores

: {]

The concrete samples in the priority 4 group were all taken from I-80 in Dallas County. The results of the petrographic examination are summarized in Table 8. Observations from the CMI core that was taken from I-80 (CMI-1), will also be discussed in this section.

Distress was observed in several of the cores from I-80; however, the severity of the cracking was considerably less than that which was noted in US 20 and I-35. The cracking was most evident in cores taken from regions that exhibited vibrator trails (cores 21 and 22, note that core 21 also appeared to contain some mortar-rich regions (segregation) in the top few inches of the core). Most of the cracks were randomly oriented; however, occasionally they appeared to orient subparallel to the top of the pavement. The remaining samples (cores 23, 24 and CMI-1) did not exhibit extensive cracking (except for the cracked shale particles that were evident in all of the cores).

The coarse aggregate appeared to be sound. The fine aggregate contained shale particles that were causing popouts, this was due to the formation of alkali-silica gel (see Figure 42). Needle-like crystals, which were primarily composed of sodium and oxygen (perhaps sodium hydroxide?), were observed during detailed investigation of the popout region (see Figure 43). The exact significance of these crystals is not clear; however, it was noted that the composition of the alkali-silica gel tended to be enriched in potassium and low in sodium.

The paste fraction of the concrete was highly variable. Both entrapped and entrained air voids tended to be poorly dispersed throughout the paste. Some regions had virtually no air voids (see Figure 44), while other regions contained many air voids but they were not dispersed uniformly (see Figure 45). Also, it appeared that the tops of the cores from pavement sections containing vibrator trails contained less entrained air than similar cores without vibrator trails (compare Figures 44 and 45 with Figures 46 and 47, note the small change in

Table 8. Summary of observations from the cores taken from I-80.

Highway: 1-80, Dallas Co., EB, paved 1989, proj. #IR-80-3(57)106Mix details:Coarse Aggregate (CA): Alden crushed limestoneFine Aggregate (FA): Van Meter, HallettCement: Davenport, Type IFly Ash: Council Bluffs

Observations: Visual inspection and light microscopy

Core No.	Location & Details	Aggregates	Voids	Cracks	Comments
21	joint, vibrator trail	CA sound max. = 1" FA max.=.25" shale = 1.4%	few entrapped voids but some large	fine cracks, subparallel to surface of pavement	excess mortar near top of core; gel near cracked shale particles; air looks low
22	midpanel, vibrator trail	CA sound max. = 1" FA max.=.2" shale = 0.7%	many entrapped voids, some go thru specimen	fine cracks in mortar, random orientation ;some cracked shale	some areas appear to have low air content
23	joint, no vibrator trail	CA sound max. = 1" FA max.=.25" shale = 1.1%	some entrapped voids	evident only in the shale particles	sample looks good; air content looks good
24	midpanel, no vibrator trail	CA sound max. = 1.25" FA max.=.25" shale = 0.9%	some entrapped voids	evident only in the shale particles	sample looks good; air content looks good

Observations: scanning electron microscopy

Core No	Location & Details	Matrix	Voids	Cracks	Fly	Comments
21	joint, vibrator trail	good paste/agg bond, air looks low	many clustered voids; small voids filled with ettringite	extensive in paste; cracked shale	yes	bottom of core has more air than top of
22	midpanel, vibrator trail	good paste/agg bond, air looks low	small voids filled with ettringite in top of core, bottom open	extensive in paste; cracked shale	yes	fly ash appears to be poorly dispersed
23	joint, no vibrator trail	good paste/agg bond, air looks good	many entrapped voids; most air void open	few cracks in paste; cracked shale	yes	fly ash appears to be poorly dispersed
. 24	midpanel, no vibrator trail	good paste/agg bond, air looks good	many entrapped voids; most air void open	few cracks in paste; cracked shale	yes	fly ash appears to be poorly dispersed

Figure 42 X-ray map of shale pop-out from I-80, core 24; 100X magnification.

Figure 43 X-ray map of shale pop-out from I-80, core 24; 2000X magnification.

Figure 44. 1-80, core 21B, 25X magnification.

Figure 45. 1-80, core 22B, 25X magnification.

Figure 46. 1-80, core 23B, 20X magnification.

Figure 47. 1-80, core 24B, 20X magnification.

magnification). Also, the small air voids tended to be filled with ettringite in the top sections of the two cores taken from pavement sections exhibiting vibrator trails. In general, however, the cores from I-80 exhibited considerably less ettringite filled voids than the cores from I-35 and US 20.

Fly ash also appeared to be poorly distributed in the paste (see Fig. 48). An alternative explanation for the number of fly ash spheres that were observed would be that too much fly ash was batched into the concrete. However, this explanation does not seem as plausible as poor mixing because other paste regions appear to contain virtually no fly ash.

Fast-track Pavement at Bettendorf

The concrete samples in the priority 5 group were all taken from a street in Bettendorf, Iowa. The results of the visual inspection, light and scanning electron microscopy studies are summarized in Table 9.

Moderate distress was observed in only one of the cores (number 27, cored from the joint area) from the Bettendorf fast track pavement. Again, the severity of the cracking was considerably less than that which was noted in US 20 and I-35. The cracking was oriented subparallel to the top of the pavement and was located about half way down the core. The remaining samples (cores 25, 26 and 27) did not exhibit macroscopic cracking (except for an occasional chert particle, these were evident in all of the cores).

The coarse aggregate appeared to be sound. The fine aggregate contained some reactive particles that were in the early stages of alkali-silica related deterioration (see Figures 49 and 50). Cracking related to the formation of alkali-silica gel was minimal; however, some voids lined with gel were observed. Sand-sized dolomite particles were observed in all of the cores.

The paste fraction of the concrete cores looked poor, this was especially true for cores 27 and 28. Air contents looked low; however, this was simply due

100X magnification

Figure 48. 180, core 22B; note excess fly ash.

Table 9. Summary of observations from the cores taken from Bettendorf.

Highway: Bettendorf Fast Track, Spruce Hill, paved 1987. Coarse Aggregate (CA) : Linwood crushed limestone Fine Aggregate (FA) : ? : Continental, Type III Сетепт Fly Ash : Louisa

Observations: Visual inspection and light microscopy

Core	Location &	Aggregates	Voids	Cracks	Comments	
No.	Details		•			
25	East bound lane	CA sound	some entrapped	none evident	fly ash present	
		1.25" max	voids; many lined		-	
		FA max=.2"				
26	East bound lane	CA sound	some entrapped	none evident	fly ash present	
		1.25" max	voids; many lined			
		FA max=.2"				
27	West bound lane	CA sound	some entrapped	subparallel to	fly ash present; paste	
		1.25" max	voids; many lined	surface of	looks poor in some	
		FA max=.4"		pavement, about	regions; some gel	
		;some FA		half way down	material in voids near	
		particles reactive		core	reactive aggregates	
28	West bound lane	CA sound	many entrapped	none evident	fly ash present; paste	
	•	1.0" max	voids; many lined		looks poor in some	
		FA max=.2"	· ·		regions	
		;some FA				
		particles reactive			14 C	
Observations: Scanning electron microscopy						

0.0000000		remon microscop?		•		· ·
Core	Location &	Matrix	Voids	Cracks	Fly	Comments
No.	Details				Ash	
25	East bound lane	good paste/agg.	many voids lined	few present; some	yes	some ASR gel
		bond; air looks	with ettringite;	cracked shale		near shale
		OK in top but	small air voids	particles		
		low in bottom	sometimes filled,			
		n an	especially in			
يى بىرى بىلى ب		a dalam ny ahra-kao amin' Ny INSEE dia mampina	bottom			
26	East bound lane	air appears to	many entrapped	more cracking	yes	regions with
		vary from top to	voids, many air	than was observed		low air tend to
	n an an tha an tha the Anna Anna An Anna Anna Anna	bottom	voids lined with	in core 25,		have small
an a			ettringite, some	typically cracks		voids entirely
			entirely filled	go thru paste		filled
27	West bound lane	air content looks	air voids appear	extensive	yes	ASR gel
		low; paste/agg.	distorted; voids as	cracking; some		evident near
		bond poor in	large as 200	cracks filled with		reactive fine
		some regions	microns filled	ettringite; some		aggregate
			with ettringite	cracked FA	. : :	particles
28	West bound lane	air content looks	air voids appear	much cracking in	yes	some ASR gel
		better than in	distorted; many	paste; some		evident in
		core 27	filled with	cracks filled with		entrapped air
			ettringite	ettringite; few		voids
				cracked FA		

to the fact that many of the entrained air voids had been filled with ettringite (see Figures 51 and 52). Also, cracks were often filled with ettringite (note the bright lines in the sulfur and aluminum maps in Fig. 52). Sometimes the air voids even appeared as if they had been distorted during the placement process (note the asymmetric voids in Figure 53). Microcracking was common in the paste and typically went around aggregates and through air voids. Again, in a manner very similar to that which was observed in the cores from I-35, the ettringite-filled cracks tended to propagate several millimeters through the cement paste.

Figure 49. Bettendorf fast track, core 25B, 100X magnification.

Figure 50. X-ray map of the region shown in Fig. 49; 100X magnification.

Figure 52. X-ray map of the region shown in Fig. 51; 25X magnification.

Figure 53. Bettendorf fast track, core 28C, 70X magnification.

Assorted Other Cores

The concrete samples in the priority 6 group consisted of cores obtained from three different locations. The first set of cores was from Highway 175 in Hamilton county. The results of the petrographic studies are summarized in Table 10. The second set of cores was from US 169 in Madison county. The results of the petrographic examination are summarized in Table 11. The final set of cores that were inspected for this project were obtained from Highway 25 in Union county, and the results of the petrographic examination are summarized in Table 12. Time and funding were insufficient to allow for the examination of cores from Buchanan and Louisa counties.

Very little distress was observed in the cores taken from Highway 175. Five different cores were studied; however, only two are listed in the core log in Appendix A. The three additional cores were obtained from Iowa Department

Table 10. Summary of observations from the cores taken from IA 175.

Highway: Highway 175, paved 1980, proj.# F-175-7(13)-20-40.Mix details:C-3 control mix, A-3 for fly ash mixesCoarse Aggregate (CA): Moberly mine crushed limestoneFine Aggregate (FA): Hallet sandCement: Penn Dixie, Type IFly Ash: varies, see below

Observations: Visual inspection and light microscopy

Core	Location &	Aggregates	Voids	Cracks	Comments
No.	Details				
not in	control section	CA sound	some entrapped	cracked shale	ASR gel evident near
log	(no ash)	max.=1.25"	voids; most voids	particles	shale particles and
Ũ		FA max.=.25"	clean, few lined		adjacent voids
not in	C - ash section	CA sound	some voids lined	cracked shale	ASR gel evident near
log	(Council Bluffs)	max.=1.25"		particles	shale particles and
U		FA max.=.25"			adjacent voids
not in	F - ash section	CA sound	few voids lined	cracked shale	no ASR gel evident
log	(Port Neal)	max.=1.25"		particles	
U	· · · ·	FA max.=.25"			
41	midpanel fly ash	CA sound	some voids with	cracked shale	no ASR gel evident
		max.=1.0"	thick linings	particles	
		FA max.=.25"			
42	joint	CA sound	some voids lined	cracked shale	ASR gel evident near
	fly ash	max.=1.25"		particles	shale particles and
	-	FA max.=.20"			adjacent voids

Observations: Scanning electron microscopy

Observau	ous. Stanning ti	een on meroscopy				
Core	Location &	Matrix	Voids	Cracks	Fly	Comments
No.	Details		· · ·		Ash	· -
not in	control section	good paste/agg.	often lined with	cracked shale	no	ASR gel
log	(no ash)	bond	ettringite; some	particles; very		evident near
			voids near shale	fine microcracks		shale particles
			filled with ASR	in paste		
			gel			and the second
not in	C - ash section	good paste/agg.	often lined with	cracked shale	yes	ASR gel
log		bond	ettringite; some	particles; very		evident near
	anda 1995 - Andreas Andreas, andreas Andreas 1996 - Andreas Andreas, andreas	the second second	voids near shale	fine microcracks		shale particles
		i de la second	filled with ASR	in paste	a terra	
			gel			aliya sa Arisana sa
not in	F - ash section	good paste/agg.	some voids lined	cracked shale;	yes	No ASR
log		bond	with ettringite	few cracks in		observed
				paste		

of Transportation personnel, the cores were extracted from the pavement in 1991. These three cores were taken from pavement sections that contained Class C fly ash, Class F fly ash, and no fly ash (i.e., a control section). Two of the cores (cores 41 and 42, which both contained fly ash) were not studied in the scanning electron microscope because the visual investigation indicated that they were very similar to the cores taken in 1991.

The coarse aggregate used in the Highway 175 project (Moberly mine crushed limestone) was sound in all of the cores. The fine aggregate contained some shale particles that had produced alkali-silica gel. All of the core specimens (cores 41 and 42 plus the three other cores described above) contained cracked shale particles. Some of the cracked shale particles in the

Figure 54. Highway 175, class F fly ash, 20X magnification.

pavement cores that did not contain fly ash, or that contained Class C fly ash, had produced alkali-silica gel. None of the shale particles in the section containing Class F fly ash exhibited any signs of alkali-silica gel. The cracks associated with the shale particles (see Figure 54) were small and typically did not propagate far into the cement paste. Other reactive aggregates were not observed in the five core samples. Sand-sized dolomite particles were observed in all of the cores taken from Highway 175.

The paste fraction of the cores taken from Highway 175 appeared reasonably uniform. It did contain some very fine microcracks that could be observed at magnifications of about 100X (or more) ; however, they appeared randomly oriented. The samples contained entrapped air voids, but few exceeded about 3 millimeters in diameter. The entrained-air voids were often lined with ettringite (see Fig. 55); however, they were never totally filled (even the small air voids).

Figure 55 Highway 175, core containing no ash; 100X magnification.

The remaining cores, those from US 169 and Highway 25, arrived at the laboratory in very poor shape. In fact, several of the cores consisted primarily of rubble. Hence, it was decided to do the majority of the studies using sawn specimens of various sizes. Some studies were also conducted on small samples that had been ground and polished as was described earlier in this report. The two sets of pavement cores will be discussed at the same time since they exhibit nearly identical types of deterioration.

Table 11. Summary of observations from the cores taken from US 169.

Highway: US 169, paved 1977, proj. #. FN-169-3(18)--21-6Mix details:?Coarse Aggregate (CA): Early Chapel crushed limestoneFine Aggregate (FA): ?Cement: ?

Core No.	Location & Details	Aggregates	Voids	Cracks	Comments
37	near joint South Bound	CA cracked max.=.75" FA=0.25" max	many entrapped voids; air looks low	severe; subparallel to top of pavement	sample basically rubble
38	midpanel South Bound	CA cracked max.=.75" FA=0.25" max	some entrapped voids; some voids lined	extensive; subparallel to top of pavement	some randomly oriented cracks were also observed
39	near joint South Bound	CA cracked max.=.75" FA=0.25" max	some voids lined	extensive; subparallel to top of pavement	all cracks intersect coarse aggregate
40	midpanel South Bound	CA cracked max.=.75" FA=0.2" max	some entrapped voids; many voids lined	severe; subparallel to top of pavement	all cracks intersect coarse aggregate

Observations: Visual inspection and light microscopy

Observations:	Scanning	electron	microscopy
----------------------	----------	----------	------------

Core	Location &	Matrix	Voids	Cracks	Fly	Comments
No.	Details				Ash	
37	near joint	distorted due to	often filled with	extensive; often	?	much fine Mg
	South Bound	cracking, sample	ettringite	intersect coarse		observed in
		preparation		agg		paste
38	midpanel South	distorted due to	often filled with	extensive; often	no	much fine Mg
	Bound	cracking, sample	ettringite	intersect coarse		observed in
		preparation		agg.		paste
39	near joint	distorted due to	many voids lined,	extensive; often	no	much fine Mg
	South Bound	cracking, sample	small voids filled	intersect coarse		observed in
		preparation		agg.		paste
40	midpanel South	distorted due to	many voids lined	extensive; often	no	some dolomite
	Bound	cracking, sample		intersect coarse		in sand
		preparation		agg.		fraction

Distress was observed in all of the cores taken from the two pavements. Cracking was nearly always oriented subparallel to the top of the pavement. The cracks tended to pass through coarse aggregate particles as they traversed across the samples. Cracking was always severe (this was the most deteriorated concrete that was studied in this project) handling during viewing in a stereo microscope often resulted in specimen breakage.

Table 12. Summary of observations from the cores taken from IA 25.

Highway: IA 25, paved 1964, proj. # F-451 (8)Mix details:A*3Coarse Aggregate (CA): Stanzel (Schildberg)Fine Aggregate (FA): Conc. materialsCement: Lone Star Type IFly Ash: none

Observations:	Visual ins	pection and	light n	licroscopy
---------------	------------	-------------	---------	------------

0.0001.14	nomot nome mop		FJ		
Core No.	Location & Details	Aggregates	Voids	Cracks	Comments
43	midpanel South bound	CA cracked max.= 1.0" FA=0.25" max	some voids lined	severe; subparallel to top of pavement	12 of 20 coarse aggregate particles cracked
44	midpanel South bound	CA cracked max.= 1.0" FA=0.25" max	some voids lined; some voids filled	severe; subparallel to top of pavement	13 of 15 coarse aggregate particles cracked
45	midpanel South bound	CA cracked max.= 1.0" FA=0.25" max	some voids lined; many voids filled	severe; subparallel to top of pavement	10 of 15 coarse aggregate particles cracked

Observations: Scanning electron microscopy

Core	Location &	Matrix	Voids	Cracks	Fly	Comments
No.	Details				Ash	
43	midpanel South bound	distorted due to cracking, sample preparation	some voids lined	extensive; often intersect coarse agg.	no	air system difficult to see
44	midpanel South bound	distorted due to cracking, sample preparation	many small voids filled with ettringite	extensive; often intersect coarse agg.	no	air system difficult to see
45	midpanel South bound	distorted due to cracking, sample preparation	many small voids filled with ettringite	extensive; often intersect coarse agg.	no	air system difficult to see

The coarse aggregate was extensively cracked in both sets of cores. This was most frequent in the cores from Highway 25, where over 50% of the coarse aggregate particles exhibited cracks. The cracks in the coarse aggregate particles were not filled (i.e., little evidence of ettringite or gel products). The fine aggregate looked sound and very few shale particles were observed. Sand-sized dolomite particles were observed in all the cores from IA 25, and core number 40 from US 169.

The paste fraction of the concrete cores was difficult to view because of the poor surface preparation that was used. Hence, it was difficult to assess details of the entrained-air system that was present in the specimens. Ettringite filled voids were present in both series of cores; although the cores from US 169 appeared to be filled more frequently (see Figures 56 and 57). Microcracks could not be reliably detected in the specimens, this was due to the way that the specimens had been prepared.

Figure 56. X-ray map from US 169, core 37B; 30X magnification.

Figure 57. X-ray map from IA 25, core 45B; 20X magnification.

SUMMARY AND CONCLUSIONS

In summary, a detailed investigation has been conducted on core specimens from nine different concrete pavements located in Iowa. The investigation used scanning electron microscopy, coupled with energy dispersive X-ray analysis, to document the deterioration processes that were observed in the cores. Visual inspection and light microscopy techniques were also used to study the cores. Selected fractions of some cores were also subjected to thermal analysis (differential scanning calorimetry) and X-ray diffraction analysis to help identify the constituents that were present.

The results of the study indicated that there were typically two or more deterioration processes acting simultaneously in many of the core specimens. Hence, one must use judgment to ascertain which process initiated the deterioration and which process contributed most to the observed degradation. There is no sound reason to assume that a single process accounts for both of these observations. This is very difficult because petrographic techniques still lack much of the quantitative methods that are needed to sort out the relative significance of multiple distress features. Hence, one must rely on opinion to diagnose the situation and that is what the reader will be exposed to in the remainder of this report. The facts (observations) that allowed the formulation of the opinion will be interspersed as needed; however, much of the information was presented earlier in this report.

1. Freeze-thaw damage appears to be the most probable explanation for the deterioration observed in cores from US 20 in Webster County. This deterioration was only observed in concrete cores taken from pavement sections using mix formulations denoted as Mix#1 and Mix#3 (see Tables 4 through 6 for details). Cores from sections denoted as Mix#2 exhibited little distress, they also exhibited much more coherent paste fractions than did the other two mixes. The void system of the deteriorated concrete often appeared to be odd. Entrained-air voids, especially voids smaller than 100 µm in diameter, were often filled with a sulfate bearing mineral that had a chemical composition close to ettringite. The concrete also tended to

contain a large proportion of entrapped air voids. Alkali-silica reaction was observed in all of the core specimens from US 20. This was almost entirely related to the presence of shale particles in the fine aggregate (only one other reactive fine aggregate particle (nonshale) was observed in the 14 cores that were studied, this particular particle was a site of alkali-silica ael expansion and subsequent paste cracking). The shale content of the cores was less than 2% in all of the specimens that were measured. The coarse aggregate was sound in all of the core samples. Very little alkali-silica ael was observed in any of the cores. The macroscopic cracking patterns observed in the cores tended to follow the periphery of aggregate particles and rarely intersected the shale particles. Hence, alkali-silica reaction appeared to play a minor part in the deterioration. Some of the microcracking in the paste, coupled with the observation of filled air voids and general paste expansion, suggested the presence of an additional deterioration mechanism; however, this research has not explicitly defined such a mechanism.

- 2. Freeze-thaw damage appears to be the most probable explanation for the deterioration observed in cores from I-35 in Story County. This deterioration was most severe in cores taken from near the pavement joints and near a crack in a vibrator trail. The paste portion of the deteriorated concrete often appeared to be odd. Entrained-air voids, especially voids smaller than 100 µm in diameter, were often filled with a sulfate bearing mineral that had a chemical composition similar to ettringite. The concrete also tended to contain a large proportion of entrapped air voids. Some paste regions exhibited extensive microcracking plus sulfate-filled gaps around fine aggregate particles. It is currently unclear if these observations indicate that the freeze-thaw deterioration caused the paste expansion, which then allowed the transport of sulfates to the site, or if the sulfates initiated the paste expansion which caused cracking and subsequent critical saturation of the pavement. Alkali-silica reaction was observed in all of the core specimens from 1-35. This was due to the presence of shale particles in the fine aggregate. The maximum shale content observed in the cores was 2.1%. The coarse aggregate was sound in all of the core samples. Very little alkalisilica gel was observed in any of the cores. The macroscopic cracking patterns observed in the cores tended to follow the periphery of aggregate particles and rarely intersected aggregate particles. Hence, alkali-silica reaction appeared to play a minor part in the deterioration.
- 3. The concrete specimens taken from I-80 exhibited only minor deterioration. Few macrocracks were observed during inspection, most of which appeared to be related to the presence of vibrator trails (or segregation) in the concrete. Alkali-silica reaction was observed in all of the core specimens from I-80. This was due to the presence of shale particles in the fine

aggregate. The maximum shale content observed in the cores was 1.4%. The coarse aggregate was sound in all of the core samples. Microcracking was common in the cores taken from areas with vibrator trails. Some cracks appeared to be related to the cracked shale particles while other cracks tended to follow the periphery of the aggregate particles. Sulfate-filled air voids were also observed in these specimens; however, they were considerably less prevalent than in other pavements (i.e., US 20 or 1-35). Many features were observed that suggested poor mixing or plastic concrete problems. Hence, it is difficult to pinpoint which of these factors has played a major role in the minor amount of deterioration that was observed.

- 4. Only one of the cores from the Bettendorf fast-track project in Scott County, exhibited macrocracks (core 27). Three of the cores (26, 27 and 28) exhibited moderate to extensive microcracking. Some of the microcracks were filled with ettringite and sometimes ettringite-filled gaps were observed between aggregates and the cement paste. The cement paste appeared to be highly distorted and air voids as large as 200 µm were totally filled with ettringite. Alkali-silica gel was also observed in three of the cores (25, 27 and 28). The reactive aggregate appeared to be some shale particles in core 25. The reactive aggregate appeared to be chert particles in cores 27 and 28. Some distress was related to the presence of alkali-silica reaction. However, the microcracks related to reactive aggregates tended to stop after a few hundred microns while the ettringite filled microcracks extended millimeters through the cement paste. This suggests that the cracking induced by alkalisilica reaction did not play a major role in the distress. However, in this particular case one may legitimately argue that any one of three different mechanisms may have started the cracking (freeze and thaw, alkali-silica reaction or sulfate expansion).
- 5. The cores from IA 175 exhibited virtually no distress (no macrocracking). Alkali-silica reaction was noted in three of the cores. This was due to the presence of shale particles in the fine aggregate. The distress adjacent to the shale particles was similar to that which was observed in the other cores studied in this project. The void system looked excellent, air content and distribution looked good, and few voids were filled with ettringite. Microcracks tended to be very fine and typically propagated randomly through the cement paste.
- 6. The cores from US 169 were all severely macrocracked. The macrocracks tended to connect coarse aggregate particles. The cracks were not filled in nearly all instances. No alkali-silica gel was observed in any of the samples. Hence, this suggests that the most probable cause for the deterioration was freeze-thaw damage in a frost-sensitive coarse aggregate (classic d-cracking). Many of the air voids appeared to be filled with sulfate minerals;

however, the use sawn specimens, rather than ground and polished specimens, restricted the observation of microcracking in the various specimens.

- 7. The cores from IA 25 were all severely macrocracked. The macrocracks tended to connect coarse aggregate particles. No alkali-silica gel was observed in the samples. Hence, the most probable cause for the deterioration appears to be freeze-thaw damage in a frost-sensitive coarse aggregate (classic d-cracking). Many of the small air voids present in the specimen appeared to be filled with sulfate minerals; however, the use sawn specimens, rather than ground and polished specimens, restricted the observation of microcracking in the various specimens.
- 8. The core from the fast-track project in Benton County (CMI-11) exhibited virtually no distress (no macrocracking). The void system looked marginal to adequate; however, the small entrained-air voids were filled with ettringite. Microcracks tended to be fine and typically propagated randomly through the cement paste, sometimes connecting adjacent air voids.
- 9. The cores from County Road B in Hancock County, exhibited virtually no distress (no macrocracking). Alkali-silica reaction was noted in the core. This was mostly due to the presence of shale particles in the fine aggregate; however, some other fine aggregate particles had cracked. The distress adjacent to the shale particles was similar to that which was observed in the other cores studied in this project. The void system looked good, air content looked high but distribution looked good, and few voids were filled with ettringite. Microcracks tended to be very fine and typically propagated randomly through the cement paste.
- 10.Little evidence was found of deicer (road salt) induced distress in any of the cores specimens. X-ray analysis rarely indicated the presence of significant amounts of chlorine in the specimens. However, it must also be stressed that this study concentrated on specimens that were taken about one-inch, or lower, below the top surface of the pavement cores; and hence, additional work is needed to totally validate this claim.
- 11. Construction practices (i.e., mixing, placement and curing techniques) and the associated quality of concrete that was produced, appeared to vary significantly throughout the cores investigated in this study. Cores from US 20, I-35, I-80, and the Bettendorf fast-track project, tended to contain many artifacts (e.g., segregation or vibrator trails, clusters of air voids, clusters of fly ash and a large fraction of entrapped-air voids), that suggest that things simply did not go well in the field during construction. It is currently difficult to ascertain how large of an influence this had on the deterioration processes

that were noted in the various pavements. However, in most instances, one would expect that these construction related problems would accelerate the onset of any given deterioration mechanism.

12. Many of the concrete specimens that were studied for this project contained a considerable amount of small air voids (<150 μ m) that were filled with a sulfate mineral that had a chemical composition close to ettrinaite. Hence, accurate air-void content determinations would not be obtained with the epoxy impregnation technique that is commonly used to increase the contrast between the air voids and the cement paste. Note, that this same bias would apply to any of the common automated image analysis techniques that use air-void filling, via a powder or fluid, for contrast enhancement. An accurate air-void determination should either account for these voids by some type of direct measurement (i.e., a staining technique for light microscopy or elemental mapping for scanning electron microscopy), or the voids should be cleaned prior to analysis. Our research has indicated that it is often difficult to differentiate between filled air voids and bulk cement paste as the size of the features decrease, this was especially true for light microscopy using polished sections (however, scanning electron microscopy suffered similar limitations). Without these refinements the specimens will simply produce test results that indicate low air contents; however, one will not be able to ascertain from such an analysis if the air content is really low or if the voids have simply been filled.

RECOMMENDATIONS

Field Concrete

It is strongly recommended that every effort should be made to ensure the proper mixing and placement of the concrete used for the construction of pavement slabs. Some of the deterioration processes that were noted in the concrete core specimens, could be interpreted as having been significantly influenced by the mixing, placement and finishing procedures employed during construction. This research project has documented instances of segregation (probable cause: excessive vibration), clumping of air voids (probable causes: poor mixing, retempering or admixture incompatibility), and clumping of fly ash (probable cause: poor mixing). All efforts must be directed at ensuring that a homogeneous, workable concrete mixture reaches the paver.

Much of the distortion that was observed in the concrete cores appeared to be related to the void distribution that was created during the paving process. Hence, it is strongly recommended that efforts should be made to obtain estimates of the hardened air content and the distribution of entrainedair voids present in concrete pavements. Refinement of the procedures developed for this research project should produce rapid measurements that could be used to provide feedback to contractors. This would provide an additional mechanism for improving the quality of field concrete.

Finally, it is recommended that the protocol described in reference 8 should be followed when sampling concrete for routine analysis. The procedures and technical details pertinent to the selection and description of test specimens have been outlined in detail, and they should provide a high level of assurance that the core samples represent the concrete in question.

Concrete Materials

Distress was noted in some of the materials that were present in the cores studied for this project. However, the distress was not convincing enough to abandon the information that is currently contained in existing service record files. Service record is still the most reliable estimate of durability. However, one must temper the service record information (which was generated over the course of tens of years) with the following facts: (1) cement production techniques have changed significantly in the past two decades; (2) incorporation of chemical admixtures and fly ash into concrete pavements has become routine; and (3) deicer salts are liberally applied to pavements during inclement weather. These facts indicate a need for laboratory testing (to verify performance, compatibility, etc.); however, it is very difficult to find quick laboratory tests that yield accurate information about field performance. This was case for many of the pavements that were included in this study, all of the materials independently passed the designated specifications but yet the concrete deteriorated prematurely. Why? For the simple reason that the laboratory experiments never simulated the field concrete. This is another good reason to spend more time inspecting and evaluating the properties of specimens obtained from real (field) concrete pavements.

Extensive laboratory testing has been conducted during the last 15 years concerning the use of Class C fly ashes in concrete products. We have studied how these fly ashes influence air void properties, strength, freeze-thaw durability, sulfate resistance and alkali-silicate reactivity; and each study has generally indicated that these fly ashes can play a beneficial role in concrete that is properly proportioned with portland cements commonly available in Iowa. Yet the reader should note that many of the pavements that exhibit premature distress also contain fly ash. It is not known if this is due to the fact that we now mandate the use of fly ash in pavement projects (and hence, all good and bad pavements contain fly ash - so why don't they all fail?) or if some other unforeseen (or unmeasured) factor is contributing to the deterioration. Hence, it is recommended that a serious attempt should be made to correlate field performance with laboratory performance. The study should contain detailed petrographic examinations because the results of this research (HR-358) have indicated gross differences between concrete specimens prepared in a laboratory and those cored from concrete pavements.

Also, some of the field related problems were probably caused (or at least exacerbated) by materials problems involving poor workability or premature stiffening (false set). Our experience has indicated that these problems can typically be attributed to an improper gypsum content in the cement (note that the total sulfur trioxide content of the cement can be within specification limits but the partitioning of sulfur among several different compounds may cause problems). It is important to mention that Class C fly ashes can also have a detrimental influence on these types of plastic concrete problems; however, cements typically have a much greater influence than fly ashes. Hence, it is recommended that efforts be made to provide routine quantification of the amount of gypsum (and other sulfate bearing phases for that matter) present in cements. Differential scanning calorimetry and X-ray diffraction would be suitable for performing these types of analysis. Both types of equipment could provide rapid information (less than one hour for analysis) that could help identify problematic cements.

Additional Research

This research project was of a preliminary nature; and hence, it has posed many questions that need further research. For the purpose of brevity they will simply be listed.

• Refinement of the procedures described in this report to provide quantitative information pertaining to void content and distribution plus information pertaining to the quantity and orientation of cracks in concrete.

- Quantification and categorization of the different ASR gels that have been observed over the course of this study. This may lead to a better understanding of the swelling potentials of different gels and how they relate to the deterioration observed in field concrete specimens.
- Quantification of the amount of ettringite filled voids in concrete and how this influences the rate at which concrete becomes critical saturated with water. Does this play a major role in the freeze-thaw resistance of the concrete?
- Do soluble alkalis (particularly sodium and potassium sulfates and chlorides) influence the movement of ettringite through the pore solution of concrete to the entrained-air voids?
- Influence of the soluble aluminum and sulfates in Class C fly ashes on the presence of ettringite in the entrained-air voids of concrete. How much of a role does the glass phase of the fly ash play in the amount of soluble aluminum that is liberated?

CLOSING COMMENTS

One feature that was common in many of the concrete cores exhibiting distress was the presence of sulfate minerals in the entrained-air voids. The chemical composition of the material in the air voids was often quite close to that which is characteristic of ettringite and the material typically exhibited a fibrous morphology. Experts indicated that such an observation was not uncommon and most petrographic examination guides also suggested that such observations should be documented because they may be important to understanding the deterioration mechanism. So we documented our observations. However, such documentation was not considered a relevant explanation for deterioration by some experts, while others failed to observe such features in companion cores. Hence, our early observations were ignored.

The amount of void filling that was observed varied considerably from sample to sample. Some of the samples had few air voids that were completely filled (e.g. highway 175), while others had nearly all air voids smaller than 100 microns completely filled. In extreme cases air voids as large as 250 microns had been completely filled. Hence, in some samples, void filling occurred on both a macroscopic and a microscopic level. Occasionally, sulfates were also found around the periphery of some aggregate particles. Alkali-silica reaction cannot cause features of this type. Instead, these types of features are normally attributed to a cement paste matrix that has expanded (possibly due to frost damage or sulfate related reactions). Such features may also be attributed to poor consolidation during field construction.

Many of the cracks that were observed in the concrete core specimens appeared to be open (i.e., no apparent material filling the cracks). This was true regardless of the sample preparation method that was employed prior to observation. Often, the general cracking pattern tended to go around the aggregate particles and through the cement paste and air voids. Little aggregate related cracking was apparent, except for the notorious shale particles (cracked shale particles, in close proximity with small amounts of ASR gel, were observed in nearly all of the pavement cores in this study, even the pavements which exhibited no deterioration).

Sometimes the cracking pattern around air voids suggested that expansion had taken place within the air void. These voids were typically filled with ettringite, as was noted by Marks and Dubberke [3]. Such features suggest that secondary ettringite formation contributed to the microcracking. However, an alternative interpretation of the feature can be formulated. Such an interpretation would maintain that the void had become filled with water and then subjected to freezing and thawing. Hence, the cracks were generated by the expansion of water and then the ettringite precipitated in the void. This alternative interpretation fails to account for the fact that the microcracks often remain empty while only the air void has been filled with ettringite, such preferential filling seems odd under such circumstances.

It is sad to say that this research project has shed little light on the potential for secondary ettringite formation in concrete pavements. However, the observations still stand, the voids are still filled, and it appears that the general consensus about what this observation means may have changed during the course of this research project. More investigators appear to be observing similar features. A direct link to premature deterioration is still not evident but at least questions are being raised.

New and more powerful equipment, such as that used in this study, was not needed to make these observations. The new equipment did make the observations easier to obtain, more fun to recheck, and simpler to document. However, careful observations using light microscopy, coupled with some detailed chemical analysis of the material filling the voids, would have yielded very similar results. The best way to express my optimism about what modern analytical techniques can do for the study of concrete is to quote Katharine Mather [11, see 169-A]; however, it is extremely troubling to note that the use of these techniques have not migrated from concrete science to concrete practice after thirty years. Why?

"The measure of progress and the results of the use of newer techniques including X-ray diffraction, differential thermal analysis, electron microscopy and electron diffraction are that the questions listed above, and others, are obvious to me in 1965, although I could not have formulated them in 1955."

ACKNOWLEDGMENTS

We would like to thank all of the people who helped to contribute to this project. A special thanks to lowa DOT personnel who spent many days coring concrete pavements to produce the samples that were analyzed in this project. Also, a special thanks to all the MARL staff and students who contributed time and effort to this project.

REFERENCES

- 1. Deicer Distress, by S. Wolter, T.E. Swor, R.D. Stehly and M. Lukkarila; personal communication by R.D. Stehly, 1991.
- 2. Investigation of Pavement Cracking in US 20 and I 35, Central Iowa, by D. Stark, Construction Technolgy Laboratory, September, 1992.
- V. Marks and W. Dubberke, Investigation of PCC Pavement Deterioration, Interim Report for Iowa DOT Research Project HR-2074 January, 1995.

- Skalny, J.P., Evaluation of Concrete Cores, State of Wisconsin, Dept. of Transportation, Prepared for the Portland Cement Association, November 15, 1994. (RJ Lee Group, Inc. was a subcontractor).
- Schlorholtz, S. and J. Amenson, Evaluation of Microcracking and Chemical Deterioration in Concrete Pavements, Phase II Report, HR-358, ISU-ERI-Ames-95-411, February, 1995
- Schlorholtz, S. and K. Bergeson, Evaluation of the Chemical Durability of Iowa Fly Ash Concretes, Final Report, HR-327, ISU-ERI-AMES-93-411 March, 1993.
- American Society for Testing and Materials, <u>Annual Book of ASTM</u> <u>Standards</u>, Vol. 4.02, ASTM:Philadelphia, 1994. See C 33 and also C 294, C 295 and C 856.
- 8. British Cement Association, <u>The Diagnosis of Alkali-Silica Reaction</u>, Second Edition, Wexham Springs, Slough, 1992.
- Day, R.L., <u>The Effect of Secondary Ettringite Formation on the Durability of</u> <u>Concrete: A Literature Analysis</u>, Portland Cement Association Research and Development Bulletin RD108T, PCA, 1992.
- 10. Johansen, V., Thaulow, N., and Skalny, J., "Simultaneous presence of alkali-silica gel and ettringite in concrete," Advances in Cement Research, Vol. 5, No. 17, 1993, pp. 23-18.
- 11. Mather, K., Petrographic Examination, in <u>ASTM STP 169</u>, 1956, pp. 68-80. (see also later versions of the article in STP 169A and C).
- 12. Erlin, B. The Magic of Investigative Petrography: The Practical Basis for Resolving Concrete Problems, in <u>ASTM STP 1061</u>, 1990, pp. 171-181.
- Mielenz, R. C., Petrography Applied to Portland Cement Concrete, in <u>Reviews in Engineering Geology</u>, Vol. 1, Geological Society of America, 1962, pp. 1-38.

- Struble, L. and P. Stutzman, "Epoxy Impregnation of Hardened Cement for Microstructural Characterization", Journal of Materials Science Letters, Vol. 8, ,1989 pp. 632-634.
- Stutzman, P. and J. R. Clifton, <u>Microstructural Features of Some Low</u> <u>Water/Solids, Silica Fume Mortars Cured at Different Temperatures</u>, NISTIR 4790, National Institute for Standards and Technology, Gaithersburg, MD, April 1992.
- Diamond, S., S. Mindess, A. Bentur and J. Lovell, Development and Applications of Devices to Study Cracking Within the SEM, in Proceedings of the Sixth International Conference on Cement Microscopy, Held March 26-29 in Albuquerque, New Mexico, 1984, pp.438-452.
- 17. Kofoed, D.E., CMI Report 793-587, submitted to Mr. Gordon Smith of the lowa Concrete Paving Association, September 27, 1993.
- 18. Jones, K., Evaluation of Deterioration on U.S. 20 in Webster County, Final Report for MLR-91-1, Iowa Department of Transportation, January, 1991.

APPENDIX A (SUMMARY OF CORE LOGS)

. | |....

erer E

.

	94
	· · ·
	358 Concrete Cores 1994
	#1 6 T2F 5TA FH1-2+ 31- NB 1014
	MPLE IDENTIFICATION: 1, STORY, 135, STA STORY, NO USNE
	ENERAL SAMPLE OBSERVATIONS:
- [Sample Dimensions: 10.1 cm DIAMFTER, 25 cm DEDGTI
and the second	FULL SLAB THICKNESS
	Surface condition:
	TOP- THES. 2mm MAK DEDTLY, 5mm MAL JOTH
4 	
·····	
	Bottom- CAST ON COMPACTED SAND
	SOACED @ 102 CM INTERVALS
· · •	Prinferromant: NONE FRESEN
·	Reinforcement. <u>Rome</u> the good
	Cracks and Other
····	Distinctive Features.
-	LIMESTONE AGGREGATE
· ·	
	ТОР
•••	
•••• •••	
· · ·	
· ·	
······································	

HR - 358	Concrete Cores 1994
. SAMPLE	IDENTIFICATION: #2, STORY, I.35, STA. 5462+37 NB LANE
GENERA	L SAMPLE OBSERVATIONS: Sample Dimensions: 10.1 Cm DIAMETER, APPROX 25cm
	LENGTH, FULL SLAB THICKNESS.
	Surface condition: TOP- TINES, ZMM MAX DEPTH, 5MM MAX WIDTH,
•	@ INTERUDUS OF 1.5 TO Z CM
	Bottom- CAST ON GRAVEL, UN EVEN SURFACE:
	VARIES BY APPROX. 1.500 IN PLACES
	Reinforcement: NONE PRESENT
	Distinctive Features: BROCEN COMPLETELU @ 11Cm
	FROM TOP. ALSO, MEJOR CRACKS @ 14cm AND
	24 cm FROM TOP.
	- BESIDES NORMAL SAMPLE CUTS
	TOOK A SAMPLE ABOVE AND BELOW THE
	MAJOR BREAK. SOME SHALE
. N	TOP
SAW PISING SHOWING SHOWING VOIDS	
· · · ·	
an a	
PK.	

1

.

••••

-

•

ء سر ء ي

1

.

	AL SAMPLE OB		<u>STORY, I.</u>	-35, STA	5462+46	NB LONE	
	Sample Dime	nsions:	DIAM	ETER	10.1 cn ,	LENGTH	2504
	FULL SC	LAB TI	lickness				
	Surface condi Toj	tion: p- <u>Ti</u>	125, 3mm	Max -	DEPTH, 5	imm MA	x (ENATL)
	1 to lif	5 11	TERUPLS			· •	
	Bot	tom	NST ON	GRAVE	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -		
	Reinforcement	: N	ONE PREC	ENT			•
	Cracks and Ot	her					
	Distinctive Fea	itures:	NUM	LEROUS	VOIDS	SPPROX	
	len	DIAME	TER.	SOME	SHALE	د	
					-		
			-				
	<u></u>		то)p			<u></u>
					\rightarrow		
					{		
				•			
							·
<u></u>							
	D	С	L	******	В	A	
	D	С	L		В	A	
	D	С	L		В	A	
	D	С			В	A	

.

......

GENER	AL SAMPLE O	BSERVATI	ONS:					
	Sample Dim	ensions:	<u>[</u>]	olem Dia	METER	25.5 C	M LENGI	<u>H</u>
	FULL S	scre -	THICKNE	<u> </u>				
	Surface cond	dition: op-	INES M	N DEPTH	4mm	MAX WIT	TH SMM	<u>`</u>
(@ 1.5 to 2	. cm	INTE	ZUAUS	•			1
	В	ottom-	CAST	on GI	LIJUAS	SUB G	RAX	
	Reinforceme	ent:	NONE	PRASE	ENT			······
	Cracks and (Other	ĥ) mean of	1.1.5		Th 10.	
	Distinctive F	eatures:	۳ ۲۰۱۸					<u> </u>
	- DIAM	FLE?	2144			<u>'``</u>		
	-							
	<u> </u>							
	Contractor and the U.S. South and A.S.							
				тор				
· ·				тор				
•				тор	\rightarrow			
· ·				тор	\rightarrow			
· ·				тор	\rightarrow			
•		C		TOP				
· ·	D	C		тор		В	A	
	D	С		TOP		В	A	
	D	C		TOP		В	A	

....

. .

SAMPLE	IDENTIFICA		5, store	<u>כינ - ו, י</u>	572 54	71+70	-15 L DN 2	
GENERA	L SAMPLE O Sample Dim	BSERVA ensions:	FIONS:	10,1 cm	DIDMETE	R, 25 cm	DENGT	<u>fr</u>
•	FOLL	SLM	5 THICK	NESS			12 12 12	
· ·	Surface con T	dition: op	TINES, 1	MAX DEPT	4 Im	MAX WIDT	4 5mm	<u> </u>
	@ 1.5	5 TO 2	<u>2~ I</u> >	STERVI	<u>><</u>			
•	В	ottom-	CAST	<u>on G</u>	RAUEL	<u>siss</u>	2ADR	
	Reinforceme	ent:	NONE	PRESE	5 2 7			
	Cracks and Distinctive F	Other eatures:	}	b visib	LE CF	eschika	<u>.</u>	
	(حع	2G.E.	VOIDS	UP 70	1.5cm	ACROSS		
·	SOME	Su.	sir in	CLOCID	ي كرو			
-								
		-						-
	<u></u>			тор	K			
					\longrightarrow	>		
a sa an				••••••••••••••••••••••••••••••••••••••				
				L				
	D	С				В	A	
		L				J <u>L · -</u> J		l
					، بلغ ۵ ماري به، بو بسو به شماله کو	· · · · · · · · · · · · · · · · · · ·		•••
			,			······································		
ې و سېنې د مربقې شو کې د د د د د								

÷ :

····

.

----...

Ť

HR-358 Concrete Cores 1994 SAMPLE IDENTIFICATION: 6, STORY, 1-35, STA 54714 94, NB LANC
GENERAL SAMPLE OBSERVATIONS: Sample Dimensions: 10.1 cm DIAMETER, 25cm LENGTH FULL SLAB TRICKNESS
O THEFERIDES OF JOHN TO ZCH
Bottom- CAST ON GAR AUFL SUB GRADE
Reinforcement: NONE PRESENT Cracks and Other
LARGE AIR VOIDE UP TO 1.5 CM ACROSS,
W THESE SAMPLES MAN WE REEN
CONTIAMINATED W/ SULFER FROM EXPERI TOP

-

~ I

• • •

.

-

,

۰.

•••

.

*

HR - 358	Concrete Cores 1994
SAMPLE	IDENTIFICATION: #7, STORY, I-35, STA 5471+97, NBLANE
GENERA	L SAMPLE OBSERVATIONS: Sample Dimensions: (0.1 cm DIAMETER, 25cm LENGTH
Ţ	FULL SLOB THICKNESS
	Surface condition: Top- TINES, MAX DEFATH 2MM, MAX WIDTH Sun,
2 m	@ 1.2 TO ZOM INTERNALS
	Bottom- OAST ON GRAVEL SUBGRADE
• • •	Reinforcement: NONE PRESENT
· · ·	Cracks and Other Distinctive Features: CRACKED THE ENTIRE THICK NESS
•••	OF SLOB. APPEARS TO BE WIDEST @ BASE
•	APPROLIMPTLY 0.5 MM WIDTH. SMALL SECONDARY
	ORACK GOM FROM BASE EXTENDING 4 CM UP @
	30° FROM VERTICAL. VOIDS UP TO ZEM ACCROSS,
	SHALE IN CLUSIONS
	тор
· · · · · · · · · · · · · · · · · · ·	
• • •	
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	
0K	

.

.....

·····

- -

÷. 1. 1.

> -# • --

2

2. **1**. 1

ļ

SAMPLE	DENTIFICATION: #8, STORY, 1-35, STA 5472+01, NB	
GENER	AL SAMPLE OBSERVATIONS: Sample Dimensions: 10.1 cm DIDMETER, 25.3 cm (FN
	FUL SLAB THICKAVESS	
	Surface condition: Top- TINES MAR DEPTH 2mm, MAR WIDT	-£1 ¹
	1.5 cm TNTERVALS	
	Bottom- CAST ON GRAVEL SUBGRADE	
	Reinforcement: NONE PRESENT	
•	Cracks and Other Distinctive Features: CRACKED VERTICALLY FRO	M
· · ·	BASE. EXTENDS 10 CM ON ON SIDE AND	9
	14 cm ON OTHER. OCCURS =1 cm FROM BISEC	nw
-	SAMPLE. SOME SHALE PRESENT, MOSTON	
	CALCIUM CLEREDIDATE AGGREGATED	
	CALCUM CLEEDIDATE AGGREGATED	
	CALCUM CLEBONDATE AGGREGATED	
	CALCIUM CARENDATE AGGREGATED	
	CALCIUM CAREDIDATE AGGREGATES	
	CALCUM CARBONDATE AGGREGATES	
	CALCIUM CARENDATE AGGREGATED	
	CALCIUM CARENDATE AGGREGATED	
- 、	$\begin{array}{c c} CALCIUM & CAREDONATE AGGREGATED \\ \hline \\ \hline \\ \hline \\ D \\ \hline \\ C \\ \hline \\ \hline \\ C \\ \hline \\ \hline \\ C \\ \hline \\ \hline$	
	$\begin{array}{c c} \hline \\ \hline $	
	$\begin{array}{c} CALCIUM (ARRENDATE AGGREGATES) \\ \hline \\ \hline \\ D \\ \hline \\ C \\ \hline \hline \\ C \\ \hline \\ C \\ \hline \\ C \\ \hline \hline \hline \\ C \\ \hline \hline \hline \\ C \\ \hline \hline \hline \hline$	
	$\begin{array}{c c} CALCIJAL (CAREDONDATE AGGEGGATED) \\ \hline \\ $	
	$\begin{array}{c c} CALCIUM & CAREBONANTE AGGERGATED \\ \hline \\ $	
	$\begin{array}{c c} CALCIUM & CARBONDATE AGGREGATED \\ \hline \\ $	

;

- -

1

·· --

• • •

.....

 .

• :

.

.

102	
HR - 358 Concrete Cores 1994	Management and B
SAMPLE IDENTIFICATION: #9, WEBSTER, U.S. 520, STA 2004.	eb lane
GENERAL SAMPLE OBSERVATIONS:	m length
Full slab thickness	
Surface condition: Top- Tines 4mm Max width, 3	mm max depth
located 1 to 2 cm apart.	
Bottom- Cast on non-soil material	
Reinforcement: None present	
Cracks and Other	nable
Distinctive Features: No large Cracks	41510ic;
large voids noted	
	<u>к</u> " і"
	·2
••••	
	BA
	•• ••••• ••• ••• ••• •• • • • • • • •

• .

---....

1. ...

••

____ I

- - -

	Concrete Cores 1994	
SAMPLE	IDENTIFICATION: "D. WEBSTER, US 520, STA 2004, EB LANE	
GENERA	AL SAMPLE OBSERVATIONS: Sample Dimensions: <u>10,1 cm, diameter; 23 cm, Length;</u>	1
	FULL SLAB thickness	.:
	Surface condition: Top- <u>Tines 3,5 mm Man Depth</u> 4 mm Max width	
	located 1 TO 2 cm apart	
	Bottom- Cast on non-soir material	
	Reinforcement: Present, approx 9-9,5 cm from bottom	
	Cracks and Other	• •
	Distinctive Features: <u>No large Cracks Visible</u>	•
	large void spaces noted.	•
	- 0	
	CUI LONGITUDINAL SECTION L MARCH 45.	•• • • •
	COT LONGITUDINAL SECTION L MARCH 95.	•• • • •
	TOP	•• • • •
	TOP	•• • • • •
	$\frac{1}{ $	
· · · · · · · · · · · · · · · · · · ·	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
· · · · · · · · · · · · · · · · · · ·	$ \begin{array}{c c} \hline $	
· · · · ·	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	· · · · · · · · · · · · · · · · · · ·
	$ \begin{array}{c c} \hline $	
	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
	$ \begin{array}{c c} \hline $	

. .. .

. . .

•••

]

17

.

....

-

•••

IR - 958	Concrete Cores 1994
SAMPLE	IDENTIFICATION: *11, WEDSTER, U.S. 520, STA ZOON, EB LANE
SENER/	LI SAMPLE OBSERVATIONS: Sample Dimensions: 10,1 cm drameter, 23,5 cm length Full slab thickness
	Surface condition: Top- <u>Thoy, max depth 3mm max width</u> 6mm SPACING 2 TO I CM Apart
	Bottom- <u>CAST ON NON-Soil Material</u> , <u>Appeared</u> to be an impression from reinforcement but on bottom
· · · · · · · · · · · · · · · · · · ·	Reinforcement: Projent approx 9 cm From bottom
• • • • • • • •	Cracks and Other Distinctive Features: <u>LARCEE (UP TO 2.5 cm) VOIDS</u> NOTED,
	BUTTOM SURFACE EXTENDING ALONG SIDES OF SECTION D.
	MOST OF AGGREGATE CALCIUM CARD. SOME SHALE
	CUT LONGITUDINAL SECTION MARCH A95
entre a series de la construcción de la construcción de la construcción d la construcción de la construcción d	
	D C B A
a the second sec	

!

, ***** *****

÷.

HR - 358	B Concrete Cores 1994
SAMPL	EIDENTIFICATION: #12, WEBSTER, U.S. 520, STD 2004, E.B. LANE
GENER	AL SAMPLE OBSERVATIONS: Sample Dimensions: <u>10.1 cm diameter</u> , 23cm length Full <16b thickness
	Surface condition: Top- Tines, Max depth 6 cmm (dis appears in some spors)
. •	Max Width 500 Spaced at 1+02cm intervals Bottom- Cast ON NON-Soil Material
	Reinforcement: <u>None</u> Present Cracks and Other (< 1mm) width) Distinctive Features: <u>Crack * across the length of the</u>
	top surface extending 2.0 cm under surface, Crack is rinning PERPENDICULAR TO TINES,
	MOST OF AGGREGATE Calcium Carbonate W/ small concent of shale present. Uoids up to I cm diameter. MARCH FIGS.
	D C B A

. . . .

t

---- [!

Į

÷

HR - 358	Concrete Cores 1 994	
SAMPLE	IDENTIFICATION: #13, WEBSTER, U.S. 520, STA 2020, 1	NB LONE
GENERA	Sample Dimensions: 10,1 cm, diameter: 23.5 cm	length
	FULL SLAB THICKNESS	
	Surface condition: Top- TUES, MAX DEPTH 4 MM, MAX	WIGTH EMM
	SPACES = 1 to 2 cm INTERVALS.	
	Bottom- COST ON SAND SUBGRADE	
		,
	Reinforcement: NON DRESENT	
	Distinctive Features: No VILIBLE ORACKING	+ VOIDS UP
. •	TO 2 CM DIAMETER, CONCENTRATE	IN THE
-	TOP HALF OF SPECIMEN.	بر در از
· .	CUT LONGITUTINAL SECTION MARCH M	795
	ТОР	
		-
	D C B	A.
. : :	· · · · · · · · · · · · · · · · · · ·	

;

:

..

.

-

. <u>.</u>.

.

•• • • ^{*}

1.1
HR - 358	Concrete Cores 1994	
SAMPLE	IDENTIFICATION: #14, WEBSTER, U.S. 520, STA 2020	, WB LA
GENERA	L SAMPLE OBSERVATIONS: Sample Dimensions: <u>10.1 Cm diameter</u> ; 23.5	cn length
	FULL SLAPE THICKNESS	
	Surface condition: TOP- TINES ON 2 12 SAMPLE; MAX DEP	TU 4MM
	MAX WIDTH SOM @ 1 TO 2 CM IN	TERUALS 1-
•	Bottom- CASTON CAND SUBGRADE	
	•	
	Reinforcement: PRESENT ON BOTTOM OF SAN	APLE
•	Cracks and Other Distinctive Features: No VISIBLE CRACKING,	VOIDC
-	UP TO LIS CM DIAMETER, NOT A	LARGE
1	AMOUNT OF JOIDS PRESSENT.	
	CUT LONGITUDINAL SECTION MARLY !	775
	тор	
ч. П		
	L	
		:

• • •

D 258 Concrete Cores 1994
AMPLE IDENTIFICATION: 15, US 520, WEBSTER, STA 2020 WB LANE
SENERAL SAMPLE OBSERVATIONS: Sample Dimensions: 10.1 cm diameter; 25.3 cm length
FULL SLAB THICKNESS
Surface condition: Top- TINES, MAY DEPTH 3MM, MAY WIDTH 5MM
Q 1702 cm SPACING
Bottom- I PREGULAR, BAST ON SAND
SJEGRADE
Reinforcement: PRESENT, APPROXIMATELY 9CM FROM
Cracks and Other Distinctive Features: No UISIBLE CRACKL LARGEST
LOID ICM DIAMETER, NOT A LARGE AMOUNT
OF VOIDS PULESE OFT.
CUT LONGITUDINAL SECTION MARCH 1995.
ТОР
D C B A

...

108

•-----•----

HR - 358	Concrete Cores 1994
SAMPLE	IDENTIFICATION: #16, WEBSTER, U.S. 520, STA 2020, WB LANS
GENERAI	L SAMPLE OBSERVATIONS: Sample Dimensions: 10,1 cm diameter, 24,5 cm length
•	FULL STAB THICKNESS
	Surface condition: Top- Times, MAN DEPTH 2MM MAX -
	WIDTH 5mm @ 10 20M SPACING
•	Bottom- CASTON SUBGRADE
	Reinforcement: NON PRESENT
	Cracks and Other Distinctive Features: No ORACES VISIBLE, VOIDS
	UP TO ZOM ACROSS MONT PRESENT.
-	CUT LONGITUTINAL GECTION MARCH 1995.
•	
-	ТОР
•	D C E A

÷--

······· ·····

۰.

••

. . .

HR - 358 Concrete Cores 1994
SAMPLE IDENTIFICATION: 17, WEBSTER, U.S. 520, STA 2209, WE LANE
GENERAL SAMPLE OBSERVATIONS: Sample Dimensions: <u>10.1 CM DIAMETER, 23.2 cm LENGTH</u>
FULL SLAB THICKNESS
Surface condition: Top- TIMES, MLX DEPTH 8mm, MAX WIDTH
1 cm, Q 1 TO Z CM SPACING
Bottom- CAST ON NON-SOIL MATERIAL
Reinforcement: PRESENT, @ 1015 CM FROM BASE
Cracks and Other Distinctive Features: No VISABLE CRACKING UNRE
VOILS (ROM MAX) SCATTERED THROUGH OUT SPECIFICEN,
MOST AGGREGATE CALCIUM CAREOMOTE WITH TIME
SHALEO
OUT I DUGITIDINAL SECTION MARCH 1995.
VERY LARGE VOIDS NOTED WITH CRACK EXTENDING FROM
THEM PARALLEL TO ICT SCITTOP

÷.,

÷.,

• • •

.....

•••••

-

- --- ----

. . .

.....

. ,

j

. .

HR - 358 Concrete Cores 1994 SAMPLE IDENTIFICATION: "DO WERSTER, U.S. 520, STA 2209, WB LONE GENERAL SAMPLE OBSERVATIONS: Sample Dimensions: DO CAL WIDTH, Z3.5 CAL DEPTH FULL SLAG THICK NFSS Surface condition: TOP TINES, MAX DEPTH 9 MAX WIDTH 5 MM (OCSTED AT VARYING INTERVALS OF ITD 2CA. Bottom CAST DA NON SOIL SINDERT MINTERIA Reinforcement: NON PRESENT Cracks and Other Distinctive Features: CRACKS LOCATED ON TOP OF SAMPLE PERPENDICULAR TO TIMES. THEY RUN ABOUT GOM LOCATED IN CRINTER OF SAMPLE TOP, LIMESTON & ACORED OF LONGATIVETENDAL CECTION MARCH PAGS. TOP DE C		
GENERA	Sample Dimensions: 10 CM WIDTH, 23.5 CM DEPTU	
. •	FULL SLAB THICK NESS	
	Surface condition: TOP- TINES, MAX DEPTH 9mm MAX WIDTH 5mm	
	LOCATED AT VARYING INTERVALS OF 1 to 2 cm.	
	Bottom- CAST ON NON SOIL SUIDETTA MATERIA	Ĺ
	Reinforcement: INON PRESENT	
	Cracks and Other Distinctive Features: <u>CRACKS</u> LOCATE O ON	
	TOP OF SOMPLE PERPENDICULOR TO	
	TINES. THEY RON ABOUT GEM LOCATED IN	
R - 358 SAMPLE SENERA	CENTER OF SAMPLE TOP. LIMESTON & AGORKO	ATE
	CENTER OF SAMPLE TOP. LIMESTON & AGORE	ATE
·	CENTER OF SAMPLE TOP. LIMESTON & AGORG	TE
	TINES. THEY RON ABOUT GEM LOCATED IN CENTER OF SAMPLE TOP. LIMESTON'E AGORGO UT LONGITUTIONAL SECTION MARCH 1995. TOP) JTE
	TINES. THEY RON ABOUT GEM LOCATED IN CENTER OF SAMPLE TOP. LIMESTON'E AGORGO CUT LONGITUTIONAL SECTION MARCH 1995, TOP	, ste
	TINES. THEY RON ABOUT GEM LOCATED IN CENTER OF SAMPLE TOP. LIMESTON & AGORGO CUT LONGITUTIONAL CECTION MARCH 1995. TOP	20, STA ZZOR, WB LOUE H, ZZ.5 CM DEPTU AMM MAX WIDTH 5 MM ERVALS OF I TO ZCM. SOIL CIMDETTA MATERIA LOCATE O ON PENDICULER TO CM LOCATED IN LIMESTON FE AGYORKGATE MARCH 1993, B A A
	TINES. THEY RON ABOUT GEM LOCATED IN CENTER OF SAMPLE TOP. LIMESTON & AGORGO CIT LONGITUTIONAL CECTION MARCH 1995. TOP	JANE .
	TINES. THEY RON ABOUT GEM LOCATED IN CENTER OF SAMPLE TOP. LIMESTON'E AGORGO UT LONGITUTIONAL CECTION MARCH 1995. TOP	, n Te
	TINGS. THEY RON ABOUT GEM LOCATED IN <u>CENTER OF SAMPLE TOP.</u> LIMESTON & AGORGO <u>OUT LONGITUTIONAL CECTION MARCH 1995.</u> TOP	
	TINGS. THEY RON ABOUT GEM LOCATED IN CENTER OF SAMPLE TOP. LIMESTON & AGORGO CUT LONGITUTIONAL SECTION MARCH 1995. TOP L D C C L B A	
	DIC C	
	TINGS. THEY RON ABOUT GEM LOCATED IN <u>CENTER OF SAMPLE TOP.</u> LIMIESTON & AGORKO <u>CUT LONKSITUTIONAL CECTION MARCH 1995</u> , TOP L B A	JATE.
· · · · · · · · · · · · · · · · · · ·	TINGS. THEY RUN ABOUT GEM LOCATED IN <u>CENTER OF SAMPLE TOP. LIMESTON & AGORGO OUT LONGITUTIONAL SECTION MARCH 1995.</u> TOP L B A A	

ţ

ŗ

特別

.

,

.....

· · · · ·

SAMPLE	IDENTIFICATION: #21, DALLAS CO., J-80, STA 726+60 EB 1	علا
GENERA	L SAMPLE OBSERVATIONS: Sample Dimensions: 10.1 CM DAMFTER, 29.6 CM LENGT	н
	FULL SLAB THICKNESS	
	Surface condition: Top- TINES, MAY DEPCH IMM, MAX WIDTH 4MM	
	@ 1.5-2.5 OM INTERVALS	ببيها المراجب
	Bottom- CAST ON GRAVEL SUBGRADE	
	Reinforcement: NONE PRESENT	
	Cracks and Other Distinctive Features: <u>ORACKED THROUGH CENTER OF</u>	
	TOP SURFACE EXTENDING 3 CM INTO SAM	PLE
•		
	тор	
	D C B A	
		[*]

....

l

÷

.

÷) +

> . ..<u>...</u>

. . ..

----- *****

• • • • • • • • •

...

• - --

·

• •

		· ·	•	
	HR - 358	Concrete Cores 1	1994	
	SAMPLE	IDENTIFICATION	N: #22, Dowas Co., I-80, STA 726+60, EB is	125
	GENERA		ERVATIONS	
		Sample Dimensi	sions: 10,1 am DIAMETER, 30,5 cm LENG	TH I
		FULL SL	LAB TAICKNESS	{
		Surface conditio	ion:	
		Top-	- TINES, MAX DEPTH I MM, MOXWIDTH 4 MM	
	•	@ 1.5	5-2.5 CM INTERVALS	
		Botto	OM- CAST ON GRAVEL SUBGRADE	
				. {
		•		
анарияния (К.		Reinforcement:	NONE PRESENT	1
• •		Cracks and Othe	ner	
ана на на К	· .	Distinctive Featu	tures: CRACK THROUGH TOP SURFACE	
-		- EXTEN	JDING 3 CM INTO SAMPLE, SAMPLE	
.•		A PAU .	PEAS WERE IT IS SPALLING OFF Q	
i.	-	10		
1		<u>10 cm</u>	FROM 1013, 8 cm 4 20 cm A (50.	
		967-1101-110-110-110-110-110-110-110-110-1		
e e		•	· ·	,
			ТОР	
، فر				7
· .				
• • •				n
•				ł
· · · · · · ·				ţ
· · · -				
				j
		· · · · · · · · · · · · · · · · · · ·		
· · ···	· · · · · · · · · · · · · · · · · · ·			
······································		** ******* ** * * * * * * * * * * * * *		
······································		nya		· · · · · · · · · · · ·
Ω V.				

1 .

> and the second state of the second ł

¢ į

.

. --- -4-<u>مە</u> ، مە «

·· ..

...

. ..

... Q_{i}^{i} • • • -

> . • ..

.....

•

... ·· ··x·- ·

. . **.**

.

.

.....

			110	· · · · · · · · · · · · · · · · · · ·			: ·		
HR - 358	Concrete Co	ores 1994				•			
SAMPLE	IDENTIFICA	TION: #2	3, DELLAS	Co., I-80,	STA 726	+60	EB LANE	2	
GENERA	L SAMPLE (Sample Dir	DBSERVATI	IONS:	em Dia	METER	<u>, 29.</u>	5cm LENG	<u>er</u> r	
	For	SLAB	THICKNE	22		·			
• • •	Surface cor	ndition: Top- <u>1</u>	INES, MAX	DEPTH IN	im, Max	Wועדעו	Hnn		
	@ 1.5-2.5 cm INTERVALS								
	I	Bottom-	CAST ON) GRAVE	i Subo	RADE			
	Reinforcem	ent:	NONE T	RESENT					
	Cracks and Distinctive F	Other eatures:	No	CRACKS	NOTED	, vo	IDS		
· .	AROU	M DU	WCH OF	THE LA	rger	AGE	EGATES	• •	
-									
					<u></u>	-,,-			
	•								
				ТОР					
					7				
				·					
			L						
	D	С				в	A		
	······································		·· · · · · · · · · · · · · · · · · · ·						
	• • • • • • • • • • • • • • • • • • • •		· · · · · · · · · · · · · · · · · · ·	, , , , , , , , , , , , , , , , , , , ,	E 	: 1 ــــــــــــــــــــــــــــــــــــ			
2K	· · · · · · · · · · · · · · · · · ·		• • • • • • • • • • • • • • • • • • •				1979 - Frier II, Statistica II, Sana - San		
• •									

. 160- j

1 .____1

•

....

.

.

• •

• • • • • • • •

· · · • • • • •

· · · · · . .

-- ---• • •

.

-.

ł.

······

. . . -· ··· • ------1 .

> . . . ŧ •• •

. - 1

. --a Tina Inger 🕴

· ---- } · · · · · · ·

	AL SAMPLE (Sample Dir	OBSERVAT	IONS:	cm Diames	TER. 29.5	Sca LENG
	Fun	SLAB -	MICKNES	5		
	Surface co	ndition:	TINES, No	T MEASURAF	SUE DEPTH	. 2 4 mm V
	<u>_</u> @	1.5 - 2.5	cn INT	FIZUALS		
		Bottom-	CAST O	N GRAU	IEL SUB	GRADE
	Reinforcem	ient:	NONE T	RESENT		
	Cracks and Distinctive I	Other Features:	No	CRAC	KI NOTT	ED,
	Som	<u>e spa</u>	LING .	JOTED Q	llom FR	on top
	<u> </u>	SAMPLE	<i>(</i>	-		
	•		••••••••••••••••••••••••••••••••••••••			
		A	·	ТОР	\rightarrow	
·						
·			L			
	D	с	L		В	A
	D	с			B	A

Ţ

.

.

... •

,

4 ٠

> . • · •

• ٠ • • •

•• . × 1

> • • • • . .

. -----

. ...

......

· · · · · · · · · · · ·

• ----

. ۰.

> . •

.

	Sample Dimensions: 10.1 CM DISMETER, 26CM LENGT
	FULL SLOB THICK NESS
	Surface condition: TOP- <u>TINES, Q 4 mm SPACING</u> , VERY FAINT
. •	Bottom- CAST ON GRAVEL SUBGRAVE
	Reinforcement: NONE PRESENT
	Cracks and Other Distinctive Features:
-	
	ТОР
	$ \longrightarrow $
	D C B A
	D C B A

OK

۰. .

> . ••• ۰,

. . . .

. .

	GENERA	IDENTIFICA		TIONS:	LO, BETTENT	DRF ST	2 120	3 FEBL	<u>ar</u>
		Sample Dim	ensions:	10,	I cm Dia	METER	,26 0	n (JENG)	-H
		FULL	SI AR	THICKIDES	1		<u></u>		
•		Surface con T	dition: op-	TINES	FAINT, 20	NDON	<u> </u>	<u>xg Q 4</u> .	<u>n-</u> 84
• • •		B	ottom-	CAST ON	S GRAVEL	SUBG	RADE		
•		Reinforceme	ent:	NONE	PRESEN	. .			
		Cracks and	Other	J.		e			
		Distinctive F	eatures:			s no	<u>(191)</u>		
		attention and a second second							-

					804km241,4302 (45 12) - 45 27 - 52 26 (45 22) - 44 42				(
		4							
			· .		TOP				
				di la companya da companya		\rightarrow			
	• *	[]		ר ר		́л г]] .
			c				_		
							B	A	
		· · · · ·	- • • • • · ·	··· · · · · · · · · · · · · · · · · ·				**************************************	
	· • • · · ·			•••••					-

di.

SAMPLE GENERA	IDENTIFICA AL SAMPLE Sample Di	ATION: OBSERV mensions	# <u>27,</u> ATIONS:	<u>50077 (</u>	<u>20. , BET</u> ch Di	TEN DOR	ef Sta , 25.e	1208, U	<u>DB (A)</u>	E
	For	SLAB	THIC	KNES			·			
	Surface co	ndition: Top-	TINE	<u>-S, T</u>	to wor	y Dou	סד או	MEASU	r.L	
		Bottom-	CAST	600	gravel	. <u>5</u> 01	BGRAD	٤		
	Reinforcem	nent:	NON	ź ?!	LESENT					
	Cracks and Distinctive	l Other Features:		ORA	CKED	T UO	or su	rface		
	PARAL	_51	- 07	コンセム	NOT	EXT	ENDIN	<u>a</u>		
	••••••••••••••••••••••••••••••••••••••									
					ſOP	\rightarrow				
									•	
	D	C					B 	A		

the state

.....

GENER	AL SAMPLE OBSERVATIONS:	WDU
	Sample Dimensions: DICM WIDTH, Z3CM LENKS	TH
•	FULL SLAB THICKNESS	
	Surface condition: Top- TINES 2 MM MAY WIDTH 0.5mm	<u>े</u> विद्यगम
	IRM TO 3MM INTERVALS	· .
. •	Bottom- CAST ON GRAVEL SUB GRA	PE
<u></u>		
1	Reinforcement: NONE PRESENT	
	Cracks and Other Distinctive Features: No CRACKS POTED	
	MORE VOIDS IN TOP 1/2 OF SAMPLE	•
	THUGH NOT VERY LARCE I'S ON DIAME	ter).
	TOP	
	TOP	
		A
		A
· · ·		A

••••••

. مي

. . . .

.

• •••••••

.....

•

• • •

...

ĺ

٥K

. . .

GENER	AL SAMPLE OI Sample Dim	BSERVATI(ensions:	DNS: 1 <u>011 cm</u>	DIDMETER	14.7 cm 6	ENCETH	
	FULL S	UB T	HICKNESS				
	Surface cond	dition:	LES : 3mm N	MAX DEPTH	5mm Max	WIDTH	
2	@ 1.5	-Zam	INTERUM	xs .			
	Bo	ottom- <u> </u>	Post on	ASPHALT	•		
	Reinforceme	nt:	NONE 7	recent			
	Cracks and C Distinctive Fe	Other atures:	No	CRACKING I	NO7ED.		
				•			
-							
			Ţ	0P			
	f	,,		/			
	n						
					В	A	
	• •	н ^{а с}	·	a sa	···· ··· ··· ··· ···	··· ·· ·	
				• •			

-		
	1	
· · ·		

A

+9

* • * • • • • • • • • • • • • •

•

· · · ·

•••••

...

•

!

•

.....

•• •••

· · · · · · · ·

ŧ

HR - 358 Concrete Cores 1994

SAMPLE IDENTIFICATION: 30, LOUISS CO, G-62, WBLANE

GENERAL SAMPLE OBSERVATIONS:

Sample Dimensions: 10.1 cm WIDTH × 16.6 cm LENGTH, Fur SLAB

123

Surface Conditions: TOP-TINES, COMM MAK DRATH COMM MAK WIDTH 0,2 TOT 3,5 CM FUTERWILLS Bottom- CAST ON ASPHAUT Reinforcement: NONE PRESENT

Cracks and Other Distinctive Features: NO CRACKS PRESENT

В

A

المحاد المرجع والمشاهد

Note rims on aggregates

TOP

С

.

D

HR - 358 Concrete Cores 1994	
SAMPLE IDENTIFICATION: 31, LOUISA Co. G-67 MP.	•
GENERAL SAMPLE OBSERVATIONS	2
Sample Dimensions: 10-1 CM WIDTH X 1617CM DENGTH	FULL SLAB
Surface Conditions:	
TOP-TINES, 2MM MAX DEPTH X 5MM MA	Wioru
@ 1-205 CM INTERVALS	
Bottom- CASTON ASPHALT	· · · · · · · · · · · · · · · · · · ·
Reinforcement: NONE PRESENT	
Cracks and Other	
Distinctive realities: 100 CRACKS NOTED, CHIP	TAKEN OUT
OF TOP (MAY HAVE OCCURIZED W	HILE DEALLING)
OF TOP (MAY HAVE OCCURIZED W	HILE DELLING)
Note discoloration nound con	HILE DELLING)
OF TOP (MAY HAVE OCCURERED W Note discoloration mound com	HILE DELLING)
OF TOP (MAY HAVE OCCURIZED W Note discoloration mound con	HILE DEILLING)
DE TOP (MAY HAVE OCCURERED W Note discoloration mound con	HILE DEILLING)
DE TOP (MAY HAVE OCCURERED W Note discoloration mound con TOP	HILE DEILLING)
DE TOP (MAY HAVE OCCUERZED W Note discoloration mound com	HILE DELLING)
Distinctive realities: 100 CRACKS NOTED, CHIP OF TOP (MAY HAVE OCCUPETZED W Note discoloration mound com	HILE DIRILLING)
DE TOP (MAY HAUE OCCURETZED W Note discoloration mound com TOP	HILE DELLING)
Distinctive readines: TOU CRACKS NOTED, CHIP OF TOP (MAY HAVE OCCUTETZED W Note discoloration mound com TOP	HILE DIRILLING)
DE TOP (MAY HAVE OCCURTZED W Note discoloration mound con TOP D C B A	HILE DIRILLING)
DE TOP (MAY HAVE OCCURTZED W Note discoloration mound com TOP D C B A	HILE DIRILLING
DE TOP (MAY HAVE OCCURIZED W Note discoloration mound con TOP D C B A	HILE DIRILLING
Distinctive realities. TOP (MARY HAUE OCCUTETZED W Note discoloration mound com TOP D C B B A	<u>HILE DIRILLING</u>

ł

12 ...L.

> ł ŧ

. .__ ۰. .

_.

• · -

, : ;

•

.

---- · - ---

and the second se

••

ł

	.125
	HR = 358 Conversion Correct 1004
	IIX = 558 Concrete Cores 1994
	SAMPLE IDENTIFICATION 27
	SAMPLE IDENTIFICATION: 5C, LOUISA CO., G-62, WB UNK
	GENERAL SANDLE ODGEDULATIONIC
	Server AL SAMPLE OBSERVATIONS:
	Sample Dimensions: Dilan WIDTH, MIDON VENGTH, FULL SLAR
and the second sec	Surface Conditions
and the second	
	TOP-TINES, THE NORE DEPTHY SHIM MOR WIDTL
	Q 1-7 CT THERING
· · · · ·	COM -NIZEVING
the second se	Bottom. ONCTON ASDING
2 · · ·	DOMONT CHEST ON ASPADU
·· ·· · ·	Reinforcement: None Traces N
	Cracks and Other
	Distinctive Features: NO OPACKS NUTED
•••	
· · ·	
gan a l	
	TOP
•	
· •	
· /	
· · · · · ·	ومامه معالي المراجع الم
a second s	
·····	
- P.K	
· · · · · · · · · · · ·	

÷,

ť

105

1	126
	HR - 358 Concrete Cores 1994
	SAMPLE IDENTIFICATION: 33 LOUISA CO., G-62, 2B LANE, BRAD
	GENERAL SAMPLE OBSERVATIONS:
	Sample Dimensions: 1011 cm WIDTH, 16.5 cm LENGTH Full SLAB
Sama Angeland	Surface Conditions: Ton-THES, RODLY WORN SURFACE
	Bottom- CAST ON ASPHALT
	Reinforcement: NONE PRESENT
	Creake and Other
, .	Distinctive Features: NO CRACKS NOTED, MAN?
· ·····	SWALL LIDIDS AROUND A CAREGATE
· ·	
	Extremely Soft !! - Simple Sawing plusted out
	Note ring around accremation making
`	
	ТОР

. .

....

- 1

.

• ••

المواريد المواري والمراجع وو والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع ووالمراجع والمراجع والمراجع والمراجع والم

....

- .

.

> .. . •

- '

• ;*

..

.

THE REAL PROPERTY AND

•

• •

.

· ••••

.

· · · · ·

. . ..

.

.

. . . .

.....

· · · · · · · · · · · · · · ·

الربيا مراجعها والالتيان والمترابط ومافا المحاد مسترابط المستري

.....

of

-...

. . . .

en la construction de la

mere analysis of a single structure

· ...

	127
	$\sim 2^{-1}$
1 × 0	
	HR - 358 Concrete Cores 1994
	SAMPLE IDENTIFICATION: 34, LOUISA CO., GT-62, WE LANE, BED AREA
	GENERAL SAMPLE OBSERVATIONS:
	Sample Dimensions: 10,1 CM WIDTH, 16 CM LEWGTH, FULL SLAB
	-
	Surface Conditions:
E .	TOP-TINES, BARY WORN SDRFALS
franciska se	Bottom- CAST OIS ASPHALT
La de la companya de	NONE PRECENT
· ·	Reinforcement:
	Cracks and Other
	Distinctive Features: NO CRACKS NOVED, NOVEROUS THILL
	VOILS
1	
	•
	TOP
	· · · · · · · · · · · · · · · · · · ·
A.4	

	the second of th
	HR - 358 Concrete Cores 1994
	SAMPLE IDENTIFICATION: 35, LOUISA CO., G-62, WE LANE, BOD DRED
	GENERAL SAMPLE OBSERVATIONS: Sample Dimensions: KO,I cn WIDTH, 13 cm LENGTH, Ful SLAB
and a second	Surface Conditions: Top-TINES BADLY MORN, LARGE PITS DENELLING
	Bottom- CAST ON ASPULLT
	Reinforcement: NONE PRESENT
• • •	Cracks and Other
	Distinctive Features: NO CRINCES NOTED, NUMEROUS SMALL VOIDE
	ТОР
	ТОР
	TOP
	$\begin{array}{c} TOP \\ \hline \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
	D C B B A C C C C C C C C C C C C C C C C

.

.

and a second sec

•

HR - 358 Concrete Cores 1994 SAMPLE DENTIFICATION: 36 LOUGE CO., G-662, WB (AHE, DED AREA GENERAL SAMPLE DESERVATIONS: Sample Dimensions: [O.1. Con U.D.BCH, 15 Con LENGTH, F.U. 5.465 Surface Conditions: TOP	2.1.mm.s.1.1 1	129
HR - 358 Concrete Cores 1994 SAMPLE DENTIFICATION: 30 Longs Co., G-62, WB (AHE, DED HEEA GENERAL SAMPLE OBSERVATIONS: Sample Dimensions: [D] con UIEH, 15 cm LENGTH, full SNG Surface Conditions: TOP TOP TOP TOP TOP OF TOP OF TOP		
HR - 338 Concrete Cores 1994 SAMPLE DENTIFICATION: 36 Lance Co., G-62, WB LANE, DED AREA GENERAL SAMPLE OBSERVATIONS: Sample Dimensions: [O.L. CALLUETH, 15. CM LENGTH, FULL CAMP Surface Conditions: TOP Bottom- CAST ON ASPLACT Reinforcement: NON& PRESENT Cracks and Other Distinctive Feature: ND CRACKI, NOME CONSTANCE SALAR SALE SERTER ALL IN TOP V3 OF TAUCHER.		
HR - 338 Concrete Cores 1994 SAMPLE IDENTIFICATION: 36, LOJISE Co., G-GZ, WB LANE, DAD AREA GENERAL SAMPLE OBSERVATIONS: Sample Dimensions: ICL Con. UIDEH, 10 CM LENGTH, FUL 5-MG Surface Conditions: TOP_TINE C_BARY WARN, PHOC 5 2000 200 Bottom: CAST ON ASPRACT Reinforcement, NONE PRESENT Cracks and Other Distinctive Peatures: ND CRACKS, MUMARDAY SUIL DAPL STAPE(M. U III TOP M3 OF TAMPLE. TOP TOP D C B B A		
HR-338 Concrete Cores 1994 SAMPLE IDENTIFICATION: 36 LONDE CO., G-GZ, WB (ANE, DAD AREA GENERAL SAMPLE OBSERVATIONS: Sample Dimensions: [OL CA ULIDIA, 16 CM LENGTH, FUL SUPE Surface Conditions: TOP-TINE C BARLY UNDERN, PIT UC E 2 CMX 2CL BOTTOM-CAST ON ASPRACT Reinforcement: MONE PRESENT Cracks and Other Distinctive Features: ND CIENCES, MUNAPROJ SUPE, DIRI IFURE U. U. II TOP V3 OF TAURLE. TOP TOP		
HR-338 Concrete Cores 1994 SAMPLE IDENTIFICATION: <u>Xo, Lance Co., Grózi, WB (ANE, DAD AREA</u> GENERAL SAMPLE OBSERVATIONS: Sample Dimensions: <u>IDAL CAN WIFH, ID</u> CAN LENGTH, <u>FUL SUMB</u> Surface Conditions: TOP- <u>TINES</u> <u>BARY WARN, <u>P</u>T WC <u>E</u> 2000 200 Botom-<u>CAST</u> ON <u>ASPHACT</u> Reinforcement: <u>NONE</u> <u>PRESENT</u> Cracks and Other Distinctive Features: <u>ND</u> <u>CRACKS</u> <u>NDMERON</u> <u>SUME</u> <u>DRU</u> <u>SUPER</u> <u>D</u> <u>ID</u> <u>ID</u> <u>ID</u> <u>ID</u> <u>ID</u> <u>ID</u> <u>ID</u></u>		
Intersection SAMPLE DENTIFICATION: 36, LONSE CO., Gr 62, WB (MNE, DED AREA GENERAL SAMPLE DESERVATIONS: Sample Dimensions: [OL CAL UNDER, 16 CM LENGTH , Full SUPPORT Surface Conditions: TOP TIME S BARY WORK, PATHOR E 200X 200 Bottom-CAST DU ASPRACT Reinforcement NONE PRESENT Cracks and Other Distinctive Features: NO Cracks and Other Distinctive Features: NO TOP VIII TOP VIII TOP VIII TOP VIII TOP VIII ONE		HR - 358 Concrete Cores 1994
SAMPLE IDENTIFICATION: 30 LONS: GENERAL SAMPLE OBSERVATIONS: Sample Dimensions: IOL CALLULTH, 16 CM LENGTH, FULL SUPE Surface Conditions: TOP. TINE C BARY WRITH, PATTICE & REAL 200 Bottom-CAST ON ASPBALT Reinforcement: NONE PRESENT Cracks and Other Distinctive Features: No CRACKS, NOMERAL SUPE SUPE OR DES TOP TOP TOP TOP TOP TOP		
GENERAL SAMPLE OBSERVATIONS: Sample Dimensions: IQ1 CAL ULISTH, IS CALLENGTH, FULL SUMS Surface Conditions: TOP_TINES_BARY JERN, P.T. NG & ZONX 201 Bottom-CAST_ON_ASPANT Cracks and Other Distinctive Features: NO CRACKS, NOMEROJ SUMA DRD FIPE/ DISTINCTIVE FEATURES: TOP TOP TOP TOP D C D C C C C C C C C C C C C C		SAMPLE IDENTIFICATION: 36, LOUISE CO., G-62, WB LANE, BOD AREA
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
Surface Conditions: TOP TINE C BARY WARN, PETIC E 2000 200 Bottom CAST OU ASPRACT Reinforcement: NONE PRESENT Cracks and Other Distinctive Features: No C.RACKS, NOMERON' SHIM, DRD SERPER A. U. IN TOP V3 OF TAMPLE. TOP TOP D C B B A		GENERAL SAMPLE OBSERVATIONS:
Surface Conditions: TOP_TINES_BATER IDEN, PITTIC I ZONX 200 Bottom-CAST_ON_ASPACT Reinforcement: NONE PRESENT Cracks and Other Distinctive Features: ND_CRACKS_NUMAPONS_SUMM_DADL Cracks and Other DISTINCT FEATURE: DISTINCT FEATURE: ND_CRACKS_NUMAPONS_SUMM_DADL Cracks and Other DISTINCT FEATURE: DISTINCT FEATURE: ND DISTINCT TOP TOP B A B A A		Sample Dimensions. IGT CM COTORATIS CM CONTENT FOCE SCHO
Surface Conditions: TOP TINES BARY WARK, PETRO E ZEAX 2CA Bottom CAST ON ASPRACT Reinforcement: NONE PRESENT Cracks and Other Distinctive Features: ND CRACKS, HUMADRY, CAURA, DARE EXPERIMENT OF TAMPLE. TOP TOP TOP B A SUMMEDIAL DISTINCTION OF TAMPLE.		· · · · · · · · · · · · · · · · · · ·
TOP		Surface Conditions:
Botom <u>CAST OU ASPACT</u> Reinforcement <u>NONE PRESENT</u> Cracks and Other Distinctive Features: <u>ND CRACKS</u> <u>NUMARDO'S</u> <u>SUBLE</u> <u>DAPS</u> <u>SUPEC IN U</u> <u>ID</u> <u>VB OF TAMPLE</u> . TOP D C B B A		TOP-TINGE BATTY INDREN, PITTING = ECNX 2CM
Bottom-CAST ON ASPANT Reinforcement: NONE PRESENT Cracks and Other Distinctive Features: No CIZACKS, NUMARDY SAME DADS EEDRE ADDING VS OF TAMPLE. TOP D C B B A O		
Botom: CAST OU AEPAACT Reinforcement: NONE PRESENT Cracks and Other Distinctive Features: No CIEACUS, NUMARDI SMALL DADI EEPER A U IN TOP VE OF TAILPLE. TOP TOP D C B B A		
Reinforcement: NONE PRESENT Cracks and Other Distinctive Features: ND CRACKS, NUMARDI SUBL DAPS EEDEC = 0 IN TOP VR OF THIRE. TOP D C B B A O		Bottom- CAST ON ASPUALT
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Marke Oner
$\begin{array}{c} Cracks and Other \\ Distinctive Features: DD \ CRACKS, \ DOM \in PDJ \ SMAL DAPS \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		Reinforcement: NONR PRESENT
Distinctive Peatures: NB CRACKS, NDMARDS SUME DIDE $TOP = TOP$ $D C B A A$		Cracks and Other
$\frac{1}{1} \frac{1}{1} \frac{1}$		Distinctive Features: NO CIRACKS, NUMARON SMILL DADS
		TERPERATO IN TOP PROFESSAVILE.
	1	
		•
	•	
	÷ .	
	ŧ.	
	· ·	ТОР
	ţ.	
O/	• • • • • • • • • • • • • • • • • • •	
0	e e e e e e e e e e e e e e e e e e e	
0H	• • • • • • • • • • • •	
04	• • • • • • • • • • • • • • •	
OK		
	• • • • • • • •	
	• •	

	130
	HR - 358 Concrete Cores 1994
	,
	SAMPLE IDENTIFICATION: 37, MADISON CO., U.S. 169, STA 224+20, SB LANE
	(joint, bad area)
	GENERAL SAMPLE OBSERVATIONS:
	Sample Dimensions: 10,1 cm WIDTH, APPROX 19.5 cm LENGTA, FULL SLAS
+ :	Surface Conditions:
	TOP-TINES, MORI SALLY
•	Bottom-CASTON GRAVEL SUBGRADK
· · ·	
•	Reinforcement: MONE PRESENT
	Cracks and Other
. .	Distinctive Features: COMPLETELY BROKEN INTO THREE PIECES
•	CREAK FI @ ison from TOP & #2@ alson from T
	NUMEROUS OTHER CRACKS ALL PARALLEL TO
	THE CANDE PEOPERISE AND THE TOP
	INK SOMILY ICHICICAR TO SURGALL.
•	
	LE EAT
	france france
• •	
• w	
1	
•	
• • •	
•	
• • • • •	
· • • • • •	
· • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • •	

i ------• ֥ 1.

----··-- - ,---

• • •

ہ ______ ، ، ، ، . ______ ، ____ ، _____ ،

لىدى د مەسىم . ..

. .

131 HR - 358 Concrete Cores 1994 SAMPLE IDENTIFICATION: 38, MADISON CO., U.S. 169, STA 224+20, SB LANE (mid panel, and) APPROX GENERAL SAMPLE OBSERVATIONS: Sample Dimensions: 10,1 cm WIDTH, 20 cm LENGTH CLAB Surface Conditions: BADLY WORN TOP- TINES BOTTOM CAST ON GITZAIEL SUE GERADE Reinforcement: 10000 PRESENT Cracks and Other Distinctive Features: BROKEN @ 29,5 cm FROM TOP SURFAUE CRACKS NOTED THROUGHOUT SAMRE OTHEIL PAMAULEL TO TOT SURFACE. ALSO, A CRACE TOP THE KACE FRIPPENDI CUARTO 133 5 NOT TIDES EXTENDE DOWN INTO SAMPLE -SNCE D Å B

	\mathbf{X} , \mathbf{X} , \mathbf{x}
	HR - 358 Concrete Cores 1994
	SAMPLE IDENTIFICATION: 39, MADISON CO., U.S. 169, STA ZZO+00, SB LANE
	GENERAL SAMPLE OBSERVATIONS
	Sample Dimensions: 101 CM 14/1073, 321.5 cm 1 EXTEL FUEL SCIAP
	Surface Cartilitian 1-3mm
	TOP-TANES OF OSELY SPACED RADLY (FRA)
	The the the second s
and the second sec	Bottom OAST ON GRAJEL SUBGEADE
	Reinforcement: NONE PRESENT
	Cracks and Other
	Distinctive Features: ORACKS PARALLEL TO TOP SURFACE
``	TUROYCHONT CAMPLE BRINELL Q NORN 5413.
	EPOID TOP CORFACE A GUALL CONCLUME D
	FICOM TOP SUPPACE, A SMALL UKALK IN TOP
	SURFACE PEPPENDICULIE TO TINESO
. .	
· ·	
· · · · · · · · · · · · · · · · · · ·	6
• • • • • • • • • • • • • • • •	UT
1 Strategy and a second sec	

122

 $\{ \cdot \}_i$

.

1. .

.

)

~

HR - 358 Concrete Cores 1994 SAMPLE IDENTIFICATION: 40, MADISON CO., U.S. 169, STA 220+00, SB LANE GENERAL SAMPLE OBSERVATIONS: Sample Dimensions: 10 cm WIDTH, 221 cm LESLATH, Fur, SLAB Surface Conditions: TOP- TINES BADY WORN, PITTING STRETING 17. Bottom- CAST ON GRAVEL SURGELOR adore Reinforcement: PRESENT Cracks and Other Distinctive Features: ONE CRACK COMPLETELO THROUGA a Tan Dawn (a)SANPLE •••• FROM TOP SURFACE. Two CORF PIECES .15 . 20 RESULTO 4 LISO, CRACK STARTING 700 FROM BOTTOM SURFACE. BOTA CRACKS ω RUN 70 TOP SURFACE. γĤ. X." TOP SURFACE D С Á

ŧ

HR - 358 Concrete Cores 1994 SAMPLE IDENTIFICATION: <u>41, HAMILTON CO., IA 175, STA 190, EB LANE</u> (mid punch, good, Fiz ash) GENERAL SAMPLE OBSERVATIONS: FUL SLAR Sample Dimensions: 10,1 CM WIDTH, 20,2 CM LENGTH Surface Conditions: TOP-TINES, 7MM MAX DEPTH, 11MM MAX WIDTH 1-1.5 cm INTERVALS ω Bottom- CAST ON CORAVEL SUBGRADE Reinforcement: NONE PRESENT Cracks and Other Distinctive Features: NO CRACKS NOTED. LARGE VOID (20m x 7mm, 5mm x 5mm) NOTTED. SHALE CONTENT HIGH. SEENED TOP Ζ. . . A В C ... D **.**:. _ • ÷."

网门子名	
	•
	HR - 358 Concrete Cores 1994
	SAMPLE IDENTIFICATION. 47. HAMILTON CO. TA 175. CD. 190 EB LANE
	(iont, gow), fly gib)
	GENERAL SAMPLE OBSERVATIONS:
	Sample Dimensions: W. 1 CH WIDTH, 19,5CM LENGTH, FULL SLAB
a series and a series of the series	•
	Surface Conditions:
	TOP-TINES, GMM MAE DROTH, 12MM MAN WIDTH
	\wedge
	@ 0.1-2 cm INTERNALS
• *** • • • • •	
a second a s	Bottom- CAST OU GRAVEL SUBGRAPE
Constant of the second	INN'NG TOPPET
a second and a second second	Reinforcement: PODE MGEDEN
a second a second s	
	Cracks and Other
	Distinctive Features: Mo Clascia Monte Courses 00105
	amin in duringe AUERAGE, SHAE DANTENT
	applat ICM CICKER CONCERCES STAR CONTENT
	HIDA
19 A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
· .	
· •	
.	•
	ТОР
-	
· ·	
•	
······································	
and the second s	
· · · · · · · · //	ok.

-

SAMPLE IDENT	TEICATION:44.1	NOU CA.	TA 25 CT	\$ 0 201 m a	2 m	
GENERAL SAM Sample I	PLE OBSERVATION	parel , Clas VS:	s i stone)	<u>- 170+00</u>	SIS LANC	
		<u>- 1- 1- 2- 3, 7 1</u>	<u>,,,,,,,,,,,,,,,,</u> ,	Concern 1 1	<u> </u>	
Surface (Conditions: Top- <u>_<mo⊖t∺< u=""></mo⊖t∺<></u>	TOP	SURFAC	E, OVER	CAID	
<u>_</u>	LITH ASF	>ualt	····			
·	Bottom	•	· · ·	• •		
Reinforce	ment: NONE	HUE JEN		• •		
Cracks an Distinctiv	d Other		TAN NO			
Pokuot	J APPROX.	500	TUICK	CORRE .	TEN GATT	
CRACKS			TOP SU	REACE	<u></u>	<u> </u>
1480	m From		40-6-	= CLTSS	DEACTU	NG
· · · · ·						-
	:	•	•			
			<u> </u>			
· · · · · · · · · · · · · · · · · · ·	TOP					
		2	Bottom Rubble			
		3	Bottom Rubble			
			To TOM Rutelle	i) Top		
			BUTTOM Rubble			
			HANNER AND			

. .

. .

. .

.

......

ž

	HR - 358 Concrete Cores 1994
E G	
	SAMPLE IDENTIFICATION US UNION CA. TA 25, STA 231+00 SB LANE
	(Mid prott class 1 store)
	GENERAL SAMPLE OBSERVATIONS:
	Sample Dimensions: MILCM WIDTH, UNICOULD LENGTH, ELLI SUDE
	Surface Conditions:
and a second	TOP- SMOOTH FURFACE OVERLAID W-
	ASPHALT
and the second sec	
	Bottom- CAST ON COMPACTER SOIL & GRAUEL
	Reinforcement: NONE PRESENT
	Cracks and Other
	Distinctive reatures: MID Stellion CONSIDERELY CECIMELED
	OUT. THE FETTON APPON SOM THICK WITTE
	CRACKS ROOMING PARALLEL TO TOP SURFICE
	CONTRACTOR & GOM THICK IN THE SAME CRAIP IN
•	
	TATHAN - THANG TO HAVE SOME AGGING GATE REALT OF
-) •	TOP
·	
•	
• • •	
	MIN SECTION
	D C ROBILE
: 1	
· · · · · · · · · · · · · · · · · · ·	
·	
e j	
· · · · · · · · · · · · · · · · · · ·	
	6E
in the second	

139 HR 7 358 Concrete Cores 1994 SAMPLE IDENTIFICATION: 46, BUCHANAN (O. U.S. 201 STA 57+60 EB (AUE (joint, VIBRATOR TRAN) GENERAL SAMPLE OBSERVATIONS: Sample Dimensions: 10,1 cm WIDTH, 23.5 cm LEDGTH, FUL SLAB Surface Conditions: TOP-TINES 200 ALLY DEPTH, 5MM MAX WIDTH 1-2 CM INTERUALS Ø Bottom- CAST ON BASE COURSE W/ DEPENT SEAL Reinforcement: NONE PRESENT Cracks and Other Distinctive Features: NO CRACKS PRESENT, NOMEROUS EMALL UDIDS (85 cm) ESPECIALLY NOTED AROUND LARGE AGARE GATES ALSO TOOK OF COURSE CROSE SECTION SASE <u>A</u> E: Bip course TOP JEE Y A B D С

HR - 358 Concrete Cores 1994 SAMPLE IDENTIFICATION: 47, BUCHANAN CO., U.S. 20, STD 57+60, EBI GENERAL SAMPLE OBSERVATIONS: Sample Dimensions: 10,1 CM WIDTH, 23.5CM LENGTH, FULL SLAR Surface Conditions: TOP-TINES, MAN DEPTIL 7MM, MAX MIDTH 8mm. \odot 0.2 - 104 Cm TUTERUMUS Bottom-CASTON BASE /دں . LEPHALT SEAL COURSE Reinforcement: NONE PRESENT Cracks and Other Distinctive Features: ORACKED @ 0.5 cm Feon Base, VOIDS CONCENTRATED siso SROUND. AGGREGATE . AMPLE Took FROM COURSE BASE TOP 2 where is it ?? NO 47 base course DIDN'T TAKE RASE COARSE CUT A B C D سالات أراب بمحمقي مناه ارد. الارداد المسالية موجوديونيو والاستانية المسالات مساملة محمد محمد ما محمد المراجعة والارد المراجعة والا

- · · ·

-- --

HR - 358 Co	ncrete Cores 1994				
SAMPLE II	DENTIFICATION: <u></u>	18, BIXING	Ind Co. U.S	20, STA	57+60,E
GENERAL San	SAMPLE OBSERVA	ATIONS:	DTH, 23.5	cn LENGTH	FUL SA
Sur	face Conditions: Top- <u>Tいどら</u>	Hmn Mr	x DEPTU,	Gnu Max	WIDTH,
	@ 1-2 cm	INTER	UPCS		
, ,	Bottom-Cast	01 A 10	cn Base Ce	WASE W/	SPAALT S
Rei	nforcement: NoH	ABJESS BI	JT .	•	
Cra Dist	cks and Other inctive Features: محمد	- CRACKS	NOTED,	A LARG	E NUM
		CULKENT	RATEN	AROUND	LARGE
OF	VOIDS				
AGG	REGATE.	<u> </u>			
AGG	VOIDS RECOATE				·····
DF ACC	VOIDS				
AGG	VOIDS				
AGG	VOIDS PRECEATE TOP				
D					

HR - 358 Concrete Cores 1994 SAMPLE IDENTIFICATION: 49, BUDHANAN CO., U.S. ZO, STA385+64, EBLAN (joint, NO VIB TRAL) GENERAL SAMPLE OBSERVATIONS: Sample Dimensions: 10,10m WIDTH, 28.5cm LENKITH, FUL SLAS . . :... Surface Conditions: TOP- 2mm MAX DEPTH COMM MAX WIDTH JUTERVAL 1a 2 cun HOM BASE COURSE WY DSPHALT SEAL Bottom-CAST ON ÷ • • • • Reinforcement: RENFORCEMENT @ BASE OF SLAB Cracks and Other -----Distinctive Features: No CRACKS NOTED. VOIDS CONTRAT - . ..**.** KROUND AGGREGATE TOP ... • • • • A В C D -----÷---------.....

HR - 358 Concrete Cores 1994 SAMPLE IDENTIFICATION: 50, BUCHANAN CO., U.S. ZO, STA 385+64, EB LANE (MID PANEL, VIB TRAIL) **GENERAL SAMPLE OBSERVATIONS:** Sample Dimensions: 10.1 cm WIDTH, 20.2 cm LENGTH, FULL SLAB Surface Conditions: TOP-TINES, HMM MAK DEPTH, GMM MAX WIDTH 1-2 CM INTERUMUS BOTTOM DOM BASE COURSE W ASPUBLT SEAL Reinforcement: NONE PRESENT Cracks and Other Distinctive Features: ORACK @ 19 CM FROM TOP (MAY HAVE BEEN THE RESULT OF PRYING BASE COURSE OFF NUMEROUS EXTENT THROUGH SAMPLED VOIDS EONCHNTR MROUND AGGREGATE. MANY VOIDS لى AGGREGAR THEOUGHOUT FENTIRE SAMPLE.

الدواج الأساميريان ليراسم والاسانية

143

ТОР

D

HR - 358 Concrete Cores 1994
SAMPLE IDENTIFICATION: 51 BUCHANAN CO., U.S. ZO, STA 385+64 EB LANE
GENERAL SAMPLE ODSERVATIONS
Sample Dimensions: 10.1 Cm 1.2 (DT4 70 cm 1 ENGT) EN CLAB
<u>iener weiner weiner weiner verster sond</u>
Surface Conditions:
10p-11N25 MAR DEFTH 4MM, MAR WIDTH 6MM
@ 1-2 cm INTERVINCS
Bottom- CAST ON YOM BASE COURSE W/ ASPLACE SEAL
Reinforcement: NONE MZESENT
Distinctive Features: NO ORAGE(A) of EO A PROVIDENTE (U
Distance To CICACKS DOTTED, ATTICONTANTES
I CM OF SPALLING OCCURED ON PART OF
THE SAMPLE BOTTOM. APEARS TO HAVE
AGGREGATE RXNS. VOIDS IN MANY OF AGGREGATES.
VOIDS IN PASTE KONFENTRIATE ARAIND ASTR
VUILD IN INSTE EURCEI IL AND ADGREGATE,
\cdot

....

.

. ..

-1·

÷---

÷

٤.

TOP

--------: - --:

-

- ----

.

-----, - -

-

...

-

· . (

÷ .

·· .

....

. -

••••

· 22	
	HR - 358 Concrete Cores 1994
	SAMPLE IDENTIFICATION: 52, BUCHANAN CO., U.S. ZO, STA 385+64, EB LAN 2
•••	GENERAL SAMPLE OBSERVATIONS:
•	Sample Dimensions: 10,1 cm WIDTH & ZOSCM LENSTH, FULL SCAB
- • 	
•	Surface Conditions: TOD-TWES, MAX DEPTH 4mm, MAX WIDTH 5mm.
-	
• •	LO I-C CM INTERDISCS,
	Bottom-CAST ON LOCM BASE COURSE W/ ASPHALT SELL
	Reinforcement: NONE PRESENT
	Cracks and Other
	Distinctive Features: CROCKED 0.5 CM FROM BOTTOM OF SAMPLE
	W/ SOME SPALL OFF. VOIDS CONCENTRATED AROUND
	AGGREGATE, ALSO, UDIDS IN MUCH OF AGGREGATE.
_	
-	
-	
	тор
	тор
	тор

145 .

ş

•

HR - 358 Concrete Cores 1994

·

. . . .

. . .

K

SAMPLE IDENTIFICATION: 53, BUCHANAN CO., U.S. ZU, STA 385+64, EB CAUE (JOINT, NO VIE TRAIL) GENERAL SAMPLE OBSERVATIONS:

Sample Dimensions: 10,1 cm WIDTH, ZOCM LENGTH, FULL SLAB

Surface Cond Top	TINES, MAX	DEPTH	4mm	MAX W	י אדמוו	SMM,
\square	-2 cm INT	ERUPLS		-		
Botte	om-CAST ON	10cm BA	SE COUR	SE W/P	SPALT	SEAL
Reinforcemer	IL NONE PRES	ENT		•		
Cracks and O Distinctive Fe	ther atures: NO CRA	CKS N	DTED.	VOIDS	CONC	ENTRALD
LROUND	AGGREGA	ATE. A	. (50	VOIDS	in r	NUCH

OF AGGREGATE. LARGE VOIDS CONCENTRATED

IN TOP 13 OF PASTE.

ТОР

APPENDIX B (SUMMARY OF SHALE COUNTS)

Core 1 I-35 Story County

	Total	Largest		Area	Total Area of		Average
	Area	Shale (mm)	Number of Shale	per Shale	Shale	Percent	•
Section A	8107	2	7	3.14	21.99	0.27	
Section B Top Surface	8107	5	7	19.63	137.44	1.70	
Section B Bottom Surface	8107	3.5	7	9.62	67.35	0.95	
Section C Bottom Surface	8107	2	5	3.14	15.71	0.19	
Section D sum	8107 48643.92	3	9	7.07	63.62 383.86	0.78	0 789129
							0.1.00.120
Section L	Total	Largest		Area	Total Area of		Average
Face 1	Area	Shale	Number	per Shale	Shale	Percent	•
Depth 1"	(mm^2) 2581	(mm) 2	of Shale	(mm^2) 3 14	(mm^2) 9.42	Shale 0.37	
2"	2581	5	3	19.63	58.90	2.28	•
3" 4"	2581	0	0	0.00	0.00	0.00	
5"	2581	3	5	7.07	35.34	1.37	
6"	2581	2	4	3.14	12.57	0.49	
5.5" sum	1290	2	2	3.14	6.28 150.80	0.49	0.86955
Continn I	Totol	Lorocat		A	Total		A. 10 FR. 00
Face 2	Area	Shale	Number	per Shale	Shale	Percent	Average
Depth	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale	
1" 2"	2581	2	6 2	3.14 50.27	18.85	0.73	
3" .	2581	3	3	7.07	21.21	0.82	
4" 5"	2581	3.5	4	9.62	38.48	1.49	
6"	2581	2	5	3.14	15.71	0.61	
6.5"	1290	1	3	0.79	2.36	0.18	4 450504
SUM	16/74				200.00		1.156501
					Total		
Section L Face 3	Total Area	Largest Shale	Number	Area per Shale	Area of Shale	Percent	Average
Depth	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale	
1* 2*	2581	1	2	0.79	1.57	0.06	
2 3"	2581	4	4 5	12.57	62.83	2.43	
4"	2581	3	6	7.07	42.41	1.64	
5" 6"	2581	4 5	25	12.57 19.63	25.13 98.17	0.97 3.80	
6.5"	1290	3	2	7.07	14,14	1.10	
sum	16774				294.52		1.708665
On eller 1	Nga- 1 - 4	1		•	Total		•
Section L Face 4	Total Area	Largest Shale	Number	Area per Shale	Area of Shale	Percent	Average
Depth	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale	· _
1" ?"	2581	7	4	38.48	153.94	5.97	
3"	2581	3	6	7.07	42.41	1.64	
4 ⁴	2581	2	4	3.14	12.57	0.49	
5 6"	2581	1 1	3 2	0.79	2.30	0.09	
6.5"	1290	5	2	19.63	39.27	3.04	
sum	16774				287.46		1.808663

diameter 1.14

check 1.135053

Core 2 I-35 Story County

Section A Section B Top Surface Section B Bottom Surface Section C Top Surface Section C Bottom Surface Section D sum	Total Area (mm^2) 8107 8107 8107 8107 8107 8107 8107 48643.92	Largest Shale (mm) 3 2.5 3 3 4 2	Number of Shale 9 7 10 5 6 11	Area per Shale (mm^2) 7.07 4.91 7.07 7.07 12.57 3.14	Total Area of Shale (mm^2) 63.62 34.36 70.69 35.34 75.40 34.56 313.96	Percent Shale 0.78 0.42 0.87 0.44 0.93 0.43	Average 0.645431
Section L Face 1 Depth 1" 2" 3" 4" 5" 6" sum	Total Area (mm^2) 2581 2581 2581 2581 2581 2581 15484	Largest Shale (mm) 5 4 0 1 1 4	Number of Shale 5 0 2 3 2 2	Area per Shale (mm^2) 19.63 12.57 0.00 0.79 12.57	Total Area of Shale (mm^2) 117.81 62.83 0.00 1.57 2.36 25.13 209.70	Percent Shale 4.57 2.43 0.00 0.06 0.09 0.97	Average 1.354324
Section L Face 2 Depth 1" 2" 3" 4" 5" 6" 5" 6" sum	Totai Area (mm^2) 2581 2581 2581 2581 2581 2581 15484	Largest Shale (mm) 2 5 0 3 3 3 3.5	Number of Shale 4 5 0 3 3 5	Area per Shale (mm^2) · 3.14 19.63 0.00 7.07 7.07 9.62	Total Area of Shale (mm^2) 12:57 98.17 0.00 21.21 21.21 48.11 201.26	Percent Shale 0.49 3.80 0.00 0.82 0.82 1.86	Average 1.299796
Section Ł Face 3 Depth 1" 2" 3" 4" 5" 6" sum	Total Area (mm^2) 2581 2581 2581 2581 2581 2581 15484	Largest Shaie (mm) 2.5 2 0 5.5 2 2 2 2	Number of Shale 3 4 0 4 4 6	Area per Shale (mm^2) 4.91 3.14 0.00 23.76 3.14 3.14	Total Area of Shale (mm^2) 14.73 12.57 0.00 95.03 12.57 18.85 153.74	Percent Shale 0.57 0.49 0.00 3.68 0.49 0.73	Average 0.992917
Section L Face 4 Depth 1" 2" 3" 4" 5" 6" sum	Total Area (mm^2) 2581 2581 2581 2581 2581 2581 2581 15484	Largest Shale (mm) 2 3 0 3.5 1 2	Number of Shale 5 6 0 7 1 4	Area per Shaie (mm^2) 3.14 7.07 0.00 9.62 0.79 3.14	Total Area of Shale (mm^2) 15.71 42.41 0.00 67.35 0.79 12.57 138.82	Percent Shale 0.61 1.64 0.00 2.61 0.03 0.49	Average 0.896542

Average Percent Shale

diameter 0.92

check 0.92014

Core 3 I-35 Story County

Section A Section B Top Surface Section B Bottom Surface Section C Top Surface Section C Bottom Surface Section D sum	Total Area (mm^2) 8107 8107 8107 8107 8107 8107 48643.92	Largest Shale (mm) 4 4 2 3 4 4 4	Number of Shale 8 7 8 11 16 7	Area per Shaie (mm^2) 12.57 12.57 3.14 7.07 12.57 12.57	Total Area of Shale (mm*2) 100.53 87.96 25.13 77.75 201.06 87.96 580.41	Percent Shale 1.24 1.09 0.31 0.96 2.48 1.09	Average 1.193179
Section L. Face 1 Depth 1" 2" 3" 4" 5" 6" 6.5" sum	Total Area (mm^2) 2581 2581 2581 2581 2581 2581 1290 16774	Largest Shale (mm) 2 2 2 2 1 5 5	Number of Shale 7 7 8 4 6 8 5	Area per Shale (mm^2) 3.14 3.14 3.14 3.14 3.14 0.79 19.63 19.63	Total Area of Shale (mm^2) 21.99 25.13 12.57 4.71 157.08 98.17 341.65	Percent Shale 0.85 0.85 0.97 0.49 0.18 6.09 7.61	Average 2.434739
Section L. Face 2 Depth 1" 2" 3" 4" 5" 6" 6.5" sum	Total Area (mm^2) 2581 2581 2581 2581 2581 1290 16774	Largest Shale (mm) 2 1 4 2 1 2 1 2	Number of Shale 4 8 7 2 6 7	Area per Shale (mm^2) 3.14 0.79 12.57 3.14 0.79 3.14 0.79	Total Area of Shale (mm^2) 12.57 3.14 100.53 21.99 1.57 18.85 5.50 164.15	Percent Shale 0.49 0.12 3.90 0.85 0.06 0.73 0.43	Average 0.939114
Section L. Face 3 Depth 1" 2" 3" 4" 5" 6" 6.5" sum	Total Area (mm^2) 2581 2581 2581 2581 2581 2581 1290 16774	Largest Shale (mm) 4 3 5 5 5 2 2 2	Number of Shale 10 6 9 9 7 4 6	Area per Shale (mm^2) 12.57 7.07 7.07 19.63 19.63 3.14 3.14	Total Area of Shale (mm^2) 125.66 42.41 63.62 176.71 137.44 12.57 18.85 577.27	Percent Shale 4.87 1.64 2.47 6.85 5.33 0.49 1.46	Average 3.299941
Section L Face 4 Depth 1" 2" 3" 4" 5" 6" 6.5" sum	Total Area (mm^2) 2581 2581 2581 2581 2581 2581 1290 16774	Largest Shale (mm) 2 5 3 6 3 3 3 2	Number of Shale 4 9 6 6 8 7 6	Area per Shale (mm^2) 3.14 19.63 7.07 28.27 7.07 7.07 3.14	Total Area of Shale (mm^2) 12.57 176.71 42.41 169.65 56.55 49.48 18.85 526.22	Percent Shale 0.49 6.85 1.64 6.57 2.19 1.92 1.46	Average

Average Percent Shale

diameter 1.89

Core 4 I-35 Story County

Section A Section B Top Surface Section B Bottom Surface Section C Top Surface	Total Area (mm^2) 8107 8107 8107 8107	Largest Shale (mm) 2.5 3 3 6.5	Number of Shale 10 6 10 9	Area per Shale (mm^2) 4.91 7.07 7.07 33.18	Area of Shale (mm^2) 49.09 42.41 70.69 298.65	Percent Shale 0.61 0.52 0.87 3.68	Average	
Section C Bottom Surface	8107	2	4	3.14	12.57	0.16		
sum	48643.92	5	o	19,03	630.48	1.94	1.296109	
Protion 1	Tetel	1		A	Total		•	
Section L	- 10(a)	Cargest	Number	Area	Area or	Descent	Average	
Denth	(mm^2)	(mm)	of Shale	/mm^2)	Snate (mm^2)	Choic	•	
1"	2581	(1000)	01 Ollaite 2	3 14	(HINE'Z) 6 28	0.24		
2"	2581	2	4	3.14	12 57	0.40		
3*	2581	3	2	7 07	14 14	0.55		
4"	2581	2	3	3 14	942	0.37		
5"	2581	3.5	5	9.62	48 11	1.86		
6"	2581	4	4	12.57	50 27	1.95		
6.75"	1935	2	3	3.14	9.42	0.49		
sum	17419		-		150.21		0.848898	•
					Total			
Section L	Total	Largest		Area	Area of		Average	

Section L	Total	Largest		Area	Area of		Average
Face 2	Area	Shale	Number	per Shale	Shale	Percent	-
Depth	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale	
1"	2581	2	3	3.14	9.42	0.37	
2"	2581	2	3	3.14	9.42	0.37	
3" _	2581	3	6	7.07	42.41	1.64	
4"	2581	2	3	3.14	9.42	0.37	
5"	2581	2	5	3.14	15.71	0.61	
6"	2581	3	4	7.07	28.27	1.10	
6.75"	1935	1	1	0.79	0.79	0.04	
sum	17419				115.45		0.640568

				Total		
Total	Largest		Area	Area of		Average
Area	Shale	Number	per Shale	Shale	Percent	_
(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale	
2581	3	2	7.07	14.14	0.55	
2581	4	2	12.57	25.13	0.97	
2581	2	3	3.14	9.42	0.37	
2581	2	2	3.14	6.28	0.24	
2581	3.5	2	9.62	19.24	0.75	
2581	2	3	3.14	9.42	0.37	
1935	3	3	7.07	21.21	1.10	
17419				104.85		0.619554
	Total Area (mm^2) 2581 2581 2581 2581 2581 1935 17419	Total Largest Area Shale (mm^2) (mm) 2581 3 2581 4 2581 2 2581 2 2581 3.5 2581 2 1935 3 17419 1	Total Largest Area Shale Number (mm^2) (mm) of Shale 2581 3 2 2581 4 2 2581 2 3 2581 2 3 2581 3.5 2 2581 2 3 1935 3 3 17419	Total Largest Area Area Shale Number per Shale (mm^2) (mm) of Shale (mm^2) 2581 3 2 7.07 2581 4 2 12.57 2581 2 3 3.14 2581 2 2 3.14 2581 3.5 2 9.62 2581 2 3 3.14 2581 3 3 7.07 1935 3 3 7.07	Total Largest Area Area of Area Shale Number per Shale Shale (mm^2) (mm) of Shale (mm^2) (mm^2) 2581 3 2 7.07 14.14 2581 4 2 12.57 25.13 2581 2 3 3.14 9.42 2581 2 2 3.14 6.28 2581 3.5 2 9.62 19.24 2581 2 3 3.14 9.42 2581 3 3 7.07 1.21 1935 3 3 7.07 1.21 17419 104.85 104.85 104.85	Total Largest Area Area of Area Shale Number per Shale Shale Percent (mm^2) (mm) of Shale (mm^2) (mm^2) Shale 2581 3 2 7.07 14.14 0.55 2581 4 2 12.57 25.13 0.97 2581 2 3 3.14 9.42 0.37 2581 2 2 3.14 6.28 0.24 2581 3.5 2 9.62 19.24 0.37 2581 2 3 3.14 9.42 0.37 2581 2 3 3.14 9.42 0.37 1935 3 3 7.07 21.21 1.10 17419 104.85 104.85 104.85 104.85

				Total		
Total	Largest		Area	Area of		Average
Area	Shale	Number	per Shale	Shale	Percent	. *
(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale	
2581	2	4	3.14	`12.57 ′	0.49	~
2581	2	2	3.14	6.28	0.24	
2581	3	2	7.07	14.14	0.55	
2581	5	5	19.63	98.17	3.80	
2581	3	2	7.07	14.14	0.55	
2581	2	6	3.14	18.85	0.73	
1935	1	2	0.79	1.57	0.08	
17419				165.72		0.920273
	Total Area (mm^2) 2581 2581 2581 2581 2581 2581 1935 17419	Total Largest Area Shale (mm^2) (mm) 2581 2 2581 2 2581 3 2581 5 2581 3 2581 3 2581 3 2581 3 2581 3 2581 3 2581 2 1935 1 17419	Total Largest Area Shale Number (mm^2) (mm) of Shale 2581 2 4 2581 2 2 2581 3 2 2581 5 5 2581 3 2 2581 3 2 2581 3 2 2581 3 2 2581 2 6 1935 1 2 17419	Total AreaLargestAreaAreaShaleNumber of Shaleper Shale(mm^2)(mm)of Shale(mm^2)2581243.142581223.1425815519.632581327.072581263.141935120.7917419111	Total Largest Area Area of Area Shale Number per Shale Shale (mm^2) (mm) of Shale (mm^2) (mm^2) 2581 2 4 3.14 12.57 2581 2 2 3.14 6.28 2581 3 2 7.07 14.14 2581 5 19.63 98.17 2581 2 6 3.14 18.85 1935 1 2 0.79 1.57 17419 165.72 165.72 165.72	Total Largest Area Area of Area Shale Number per Shale Shale Percent (mm^2) (mm) of Shale (mm^2) (mm^2) Shale Percent 2581 2 4 3.14 12.57 0.49 2581 2 2 3.14 6.28 0.24 2581 2 2 7.07 14.14 0.55 2581 5 5 19.63 98.17 3.80 2581 3 2 7.07 14.14 0.55 2581 3 2 7.07 14.14 0.55 2581 3 2 7.07 14.14 0.55 2581 2 6 3.14 18.85 0.73 1935 1 2 0.79 1.57 0.08 17419 185.72 145.72 145.72 165.72

diameter 0.99 check 0.97883 Total

Core 5 I-35 Story County

	Total Area (mm^2)	Largest Shale (mm)	Number of Shale	Area per Shale (mm^2)	Total Area of Shale (mm^2)	Percent Shale	Average
Section A	8107	1	6	0.79	4.71	0.06	
Section B Top Surface	8107	3	8	7.07	56.55	0.70	
Section B Bottom Surface	8107	3	9	7.07	63.62	0.78	
Section C Top Surface	8107	2	9	3.14	28.27	0.35	
Section C Bottom Surface	8107	6	9	28.27	254.47	3.14	
Section D	8107	2	5	3.14	15.71	0.19	
sum	48643.92				423.33		0.870262
					Total		
Section L	Total	Largest		Area	Area of		Average
Face 1	Area	Shale	Number	per Shale	Shale	Percent	
Depth	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale	
1"	2581	5	7	19.63	137.44	5.33	
2"	2581	2	3	3.14	9.42	0.37	-
3"	2581	2	5	3.14	15.71	0.61	
4"	2581	3	4	7.07	28.27	1.10	
5"	2581	2	6	3.14	18.85	0.73	
6"	2581	4	8	12.57	100.53	3,90	
6.5"	1290	5	6	19.63	117.81	9.13	
sum	16774				428.04		3.021685

					Total		
Section L	Total	Largest		Area	Area of		Average
Face 2	Area	Shale	Number	per Shale	Shale	Percent	
Depth .	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale	
1"	2581	3.5	10	9.62	96.21	3.73	
2"	2581	2	6	3.14	18.85	0.73	
3"	2581	2	10	3.14	31.42	1.22	
4"	2581	3	4	7.07	28.27	1.10	
5"	2581	2	4	3.14	12.57	0.49	
6"	2581	2	5	3.14	15.71	0.61	
6.5"	1290	2	3	3.14	9.42	0.73	
sum	16774				212.45		1.228239

				Total		
Total	Largest		Area	Area of		Average
Area	Shale	Number	per Shale	Shale	Percent	
(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale	
2581	2	6	3.14	18.85	0.73	
2581	5	8	19.63	157.08	6.09	
2581	5	5	19.63	98.17	3.80	
2581	2	5	3.14	15.71	0.61	
2581	2	5	3.14	15.71	0.61	
2581	2	7	3.14	21.99	0.85	
1290	3.5	8	9.62	76.97	5.97	
16774				404.48		2.66517
	Total Area (mm^2) 2581 2581 2581 2581 2581 2581 1290 16774	TotalLargestAreaShale(mm^2)(mm)2581225815258122581225812258122581212903.516774	Total Largest Area Shale Number (mm^2) (mm) of Shale 2581 2 6 2581 5 8 2581 5 5 2581 2 5 2581 2 5 2581 2 5 2581 2 7 2581 2 7 1290 3.5 8 16774 5 5	TotalLargestAreaAreaShaleNumberper Shale(mm^2)(mm)of Shale(mm^2)2581263.1425815519.632581253.142581253.142581273.142581273.142581273.1412903.589.621677473.58	Total Largest Area Area of Area Shale Number per Shale Shale (mm^2) (mm) of Shale (mm^2) (mm^2) 2581 2 6 3.14 18.85 2581 5 5 19.63 157.08 2581 5 5 19.63 98.17 2581 2 5 3.14 15.71 2581 2 5 3.14 15.71 2581 2 7 3.14 21.99 1290 3.5 8 9.62 76.97 16774 404.48 5 5 3.14	Total Largest Area Area of Area Shale Number per Shale Shale Percent (mm^2) (mm) of Shale (mm^2) (mm^2) Shale 2581 2 6 3.14 18.85 0.73 2581 5 8 19.63 1957.08 6.09 2581 5 5 19.63 98.17 3.80 2581 2 5 3.14 15.71 0.61 2581 2 5 3.14 15.71 0.61 2581 2 7 3.14 21.99 0.85 1290 3.5 8 9.62 76.97 5.97 16774 404.48 404.48 404.48 404.48

				Total		
Total	Largest		Area	Area of		Average
Area	Shale	Number	per Shale	Shale	Percent	
(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale	~
2581	3	2	7.07	14.14	0.55	
2581	2	9	3.14	28.27	1.10	
2581	1	1	0.79	0.79	0.03	
2581	2	7	3.14	21.99	0.85	
2581	2	5	3.14	15.71	0.61	
2581	3	5	7.07	35.34	1.37	
1290	3	4 -	7.07	28.27	2.19	
16774				144.51		0.956505
	Total Area (mm^2) 2581 2581 2581 2581 2581 2581 1290 16774	Total Largest Area Shale (mm^2) (mm) 2581 3 2581 2 2581 2 2581 2 2581 2 2581 2 2581 2 2581 2 2581 3 1290 3 16774 3	Total Largest Area Shale Number (mm^2) (mm) of Shale 2581 3 2 2581 2 9 2581 1 1 2581 2 7 2581 2 5 2581 3 5 1290 3 4 16774	Total Largest Area Area Shale Number per Shale (mm^2) (mm) of Shale (mm^2) 2581 3 2 7.07 2581 2 9 3.14 2581 1 1 0.79 2581 2 7 3.14 2581 2 5 3.14 2581 2 5 3.14 2581 2 5 3.14 2581 3 5 7.07 1290 3 4 7.07 16774 5 3.14 3	Total Largest Area Area of Area Shale Number per Shale Shale (mm^2) (mm) of Shale (mm^2) (mm^2) 2581 3 2 7.07 14.14 2581 2 9 3.14 28.27 2581 2 7 3.14 21.99 2581 2 5 3.14 15.71 2581 3 5 7.07 35.34 1290 3 4 7.07 28.27 16774 144.51 5 145.51	Total Largest Area Area of Area Shale Number per Shale Shale Percent (mm^2) (mm) of Shale (mm^2) (mm^2) Shale Percent 2581 3 2 7.07 14.14 0.55 2581 2 9 3.14 28.27 1.10 2581 1 1 0.79 0.03 2581 2 7 3.14 21.99 0.85 2581 2 5 3.14 15.71 0.61 2581 3 5 7.07 35.34 1.37 2581 3 5 7.07 28.27 2.19 16774 144.51

diameter 1.39 check 1.506578

Core 6 I-35 Story County

	Total	Largest		Area	Area of		Average
	Area	Shale	Number	per Shale	Shale	Percent	
	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale	
Section A	` 8107 [`]	4	15	12.57	188.50	2.33	
Section B Top Surface	8107	4	15	12.57	188.50	2.33	
Section B Bottom Surface	8107	3	5	7.07	35.34	0.44	
Section C Top Surface	8107	3	13	7.07	91.89	1.13	
Section C Bottom Surface	8107	2	15	3.14	47.12	0.58	
Section D	8107	3	16	7.07	113.10	1.40	
sum	48643.92	-			664.45		1.36594
					Total		
Section L	Total	Largest		Area	Area of		Average
Face 1	Area	Shale	Number	per Shale	Shale	Percent	
Depth	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale	
4"	2581	3	4	7.07	28.27	1.10	
2"	2581	3	5	7.07	35.34	1.37	•
3"	2581	2	1	3.14	3.14	0.12	
4"	2581	2	3	3.14	9.42	0.37	
5"	2581	3	7	7.07	49.48	1.92	
6"	2581	2	5	3.14	15.71	0.61	
6.5"	1290	2	5	3.14	15.71	1.22	
sum	16774	-	-		157.08		0.956505
*							
					Takal		

					1 Utal		
Section L	Total	Largest		Area	Area of		Average
Face 2	Area	Shale	Number	per Shale	Shale	Percent	-
Depth .	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale	
1*	2581	2	3	3.14	9.42	0.37	
2"	2581	1	5	0.79	3.93	0.15	
3" .	2581	2	4	3.14	12.57	0.49	
4"	2581	2	6	3.14	18.85	0.73	
5"	2581	2	4	3.14	12.57	0.49	
6"	2581	3	6	7.07	42.41	1.64	
6.5"	1290	2	6	3.14	18.85	1.46	
sum	16774				118.60		0.760856

				Total		
Total	Largest		Area	Area of		Average
Area	Shale	Number	per Shale	Shale	Percent	-
(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale	
2581	2	5	3.14	15.71	0.61	
2581	2	4	3.14	12.57	0.49	
2581	2	3	3.14	9.42	0.37	
2581	1	2	0.79	1.57	0.06	
2581	1	4	0.79	3.14	0.12	
2581	3	9	7.07	63.62	2.47	
1290	2	3	3.14	9.42	0.73	
16774				115.45		0.691292
	Total Area (mm^2) 2581 2581 2581 2581 2581 1290 16774	Total Largest Area Shale (mm^2) (mm) 2581 2 2581 2 2581 2 2581 1 2581 1 2581 1 2581 3 1290 2 16774 1	Total Largest Area Shale Number (mm*2) (mm) of Shale 2581 2 5 2581 2 4 2581 2 3 2581 1 2 2581 1 4 2581 3 9 1290 2 3 16774 4	Total Largest Area Area Shale Number per Shale (mm^2) (mm) of Shale (mm^2) 2581 2 5 3.14 2581 2 4 3.14 2581 2 3 3.14 2581 2 3 3.14 2581 1 2 0.79 2581 1 4 0.79 2581 3 9 7.07 1290 2 3 3.14 16774	Total Largest Area Area of Area Shale Number per Shale Shale (mm^2) (mm) of Shale (mm^2) (mm^2) 2581 2 5 3.14 15.71 2581 2 4 3.14 12.57 2581 2 3 3.14 9.42 2581 1 2 0.79 1.57 2581 1 4 0.79 3.14 2581 3 9 7.07 63.62 1290 2 3 3.14 9.42 16774 115.45 15.45 15.45	Total Total Total Largest Area Area of Area Shale Number per Shale Shale Percent (mm^2) (mm) of Shale (mm^2) (mm^2) Shale 2581 2 5 3.14 15.71 0.61 2581 2 4 3.14 12.57 0.49 2581 2 3 3.14 9.42 0.37 2581 1 2 0.79 1.57 0.06 2581 1 4 0.79 3.14 0.12 2581 3 9 7.07 63.62 2.47 1290 2 3 3.14 9.42 0.73 16774 115.45 115.45 115.45 115.45

					Total		
Section L	Total	Largest		Area	Area of		Average
Face 4	Area	Shale	Number	per Shale	Shale	Percent	-
Depth	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale	
1"	2581	2	3	3.14	9.42	0.37	-
2"	2581	2	4	3.14	12.57	0.49	
3"	2581	3	6	7.07	42.41	1.64	
4"	2581	2	4	3.14	12.57	0.49	
5"	2581	1	7	0.79	5.50	0.21	
6"	2581	5	8	19.63	157.08	6.09	
6.5"	1290	1	3	0.79	2.36	0.18	
sum	16774				241.90		1.35215

Average Percent Shale

diameter 1.12 check 1.119134 Total

Core 7 I-35 Story County

Section A Section B Top Surface Section B Bottom Surface Section C Top Surface Section C Bottom Surface Section D sum	Total Area (mm^2) 8107 8107 8107 8107 8107 8107 48643.92	Largest Shale (mm) 5 3 3 4 2 2	Number of Shale 11 9 8 12 6 11	Area per Shale (mm^2) 19.63 7.07 7.07 12.57 3.14 3.14	Total Area of Shale (mm^2) 215.98 63.62 56.55 150.80 18.85 34.56 540.35	Percent Shale 2.66 0.78 0.70 1.86 0.23 0.43	Average 1.110836
Section L Face 1 Depth 1" 2" 3" 4" 5" 6" 6.5" sum	Total Area (mm^2) 2581 2581 2581 2581 2581 1290 16774	Largest Shale (mm) 3 5 2 2 2 3 2 2 2 2 2 2	Number of Shale 4 6 5 4 5 5 5 5	Area per Shale (mm^2) 7.07 19.63 3.14 3.14 7.07 3.14 3.14	Total Area of Shale (mm^2) 28.27 157.08 18.85 15.71 28.27 15.71 15.71 279.60	Percent Shale 1.10 6.09 0.73 0.61 1.10 0.61 1.22	Average 1.634753
Section L Face 2 Depth 1"	Total Area (mm^2) 2581	Largest Shale (mm) 2	Number of Shale 8	Area per Shale (mm^2) 3.14	Total Area of Shale (mm ⁴ 2) 25.13	Percent Shale 0.97	Average

Section L	Total	Largest		Area	Area of		Average
Face 2	Area	Shale	Number	per Shale	Shale	Percent	
Depth	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale	
1"	2581	2	8	3.14	25.13	0.97	
2"	2581	2	10	3.14	31.42	1.22	
3"	2581	3	6	7.07	42.41	1.64	
4"	2581	4	7	12.57	87.96	3.41	
5"	2581	1	9	0.79	7.07	0.27	
6"	2581	2	7	3.14	21.99	0.85	
6.5"	1290	2	3	3.14	9.42	0.73	
sum	16774				225.41		1.299977

					Totai		
Section L	Total	Largest		Area	Area of		Average
Face 3	Area	Shale	Number	per Shale	Shale	Percent	
Depth	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale	
1"	2581	4	9	12.57	113.10	4.38	
2"	2581	2	5	3.14	15.71	0.61	
3"	2581	2	9	3.14	28.27	1.10	
4 ⁿ	2581	2	7	3.14	21.99	0.85	
5"	2581	2	9	3.14	28.27	1.10	
6"	2581	4	8	12.57	100.53	3.90	
6.5"	1290	3	4	7.07	28.27	2.19	
sum	16774				336.15		2.017355

					Total		
Section L	Total	Largest		Area	Area of		Average
Face 4	Area	Shale	Number	per Shale	Shale	Percent	
Depth	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale	
1"	2581	5	6	19.63	117.81	4.57	
2"	2581	2	7	3.14	21.99	0.85	
3"	2581	2	6	3.14	18.85	0.73	
4"	2581	4	4	12.57	50.27	1.95	
5"	2581	2	4	3.14	12.57	0.49	
6"	2581	4	3	12.57	37.70	1.46	
6.5"	1290	3	5	7.07	35.34	2.74	
sum	16774				294.52		1.826054

1.45

check 1.449215

Core 8 I-35 Story County

Section A Section B Top Surface Section B Bottom Surface Section C Top Surface Section C Bottom Surface Section D sum	Totai Area (mm^2) 8107 8107 8107 8107 8107 8107 48643.92	Largest Shale (mm) 4 3 6 4 5 3	Number of Shale 13 16 12 13 10 10	Area per Shale (mm*2) 12.57 7.07 28.27 12.57 19.63 7.07	Total Area of Shale (mm^2) 163.36 113.10 339.29 163.36 196.35 70.69 1046.15	Percent Shale 2.02 1.40 4.19 2.02 2.42 0.87	Average 2.150629
Section L Face 1 Depth 1"	Total Area (mm^2) 2581	Largest Shale (mm) 2	Number of Shale 8	Area per Shale (mm^2) 3.14	Total Area of Shale (mm^2) 25.13	Percent Shale 0.97	Average
2" 3" 4" 5" 6"	2581 2581 2581 2581 2581 1290	2 2 4 4 2	10 13 9 8 6	3.14 3.14 12.57 12.57 3.14	31.42 40.84 113.10 100.53 18.85 12.57	1.22 1.58 4.38 3.90 0.73	
sum	16774	2	-	0.14	342.43	0.97	1.965182

				i otal		
Total	Largest		Area	Area of		Average
Area	Shale	Number	per Shale	Shale	Percent	
(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale	
2581	4	5	12.57	62.83	2.43	
2581	3	4	7.07	28.27	1.10	
2581	3	9	7.07	63.62	2.47	
2581	1	6	0.79	4,71	0.18	
2581	2	12	3.14	37.70	1.46	
2581	5	8	19.63	157.08	6.09	
1290	2	4	3.14	12.57	0.97	
16774				366.78		2.099963
	Total Area (mm^2) 2581 2581 2581 2581 2581 2581 1290 16774	Total Largest Area Shale (mm^2) (mm) 2581 4 2581 3 2581 3 2581 1 2581 2 2581 5 1290 2 16774 2	Total Largest Area Shale Number (mm^2) (mm) of Shale 2581 4 5 2581 3 4 2581 3 9 2581 1 6 2581 2 12 2581 5 8 1290 2 4 16774 16774	TotalLargestAreaAreaShaleNumberper Shale(mm^2)(mm)of Shale(mm^2)25814512.572581347.072581397.072581160.7925812123.1425815819.631290243.141677455	Total Largest Area Area of Area Shale Number per Shale Shale (mm^2) (mm) of Shale (mm^2) (mm^2) 2581 4 5 12.57 62.83 2581 3 4 7.07 28.27 2581 3 9 7.07 63.62 2581 1 6 0.79 4.71 2581 2 12 3.14 37.70 2581 5 8 19.63 157.08 1290 2 4 3.14 12.57 16774 366.78 366.78	Total Largest Area Area of Area Shale Number per Shale Shale Percent (mm^2) (mm) of Shale (mm^2) (mm^2) Shale 2581 4 5 12.57 62.83 2.43 2581 3 4 7.07 28.27 1.10 2581 3 9 7.07 63.62 2.47 2581 1 6 0.79 4.71 0.18 2581 2 12 3.14 37.70 1.46 2581 5 8 19.63 157.08 6.09 1290 2 4 3.14 12.57 0.97 16774 366.78 366.78 366.78

.....

					Total		
Section L	Total	Largest		Area	Area of		Average
Face 3	Area	Shale	Number	per Shale	Shale	Percent	
Depth	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale	
1"	2581	2	7	3.14	21.99	0.85	
2"	2581	4	9	12.57	113.10	4.38	
3"	2581	4	7	12.57	87.96	3.41	
4"	2581	2	6	3.14	18.85	0.73	
5"	2581	4	6	12.57	75.40	2.92	
6"	2581	2	7	3.14	21.99	0.85	
6.5"	1290	3	5	7.07	35.34	2.74	
sum	16774	-			374.63		2.269525

					Total		
Section L	Total	Largest		Area	Area.of		Average
Face 4	Area	Shale	Number	per Shale	Shale	Percent	
Depth	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale	_
19	2581	2	5	3.14	15.71	0.61	-
2°	2581	2	6	3.14	18.85	0.73	
3"	2581	2	4	3.14	12.57	0.49	
4"	2581	2	4	3.14	12.57	0.49	
5"	2581	4	6	12.57	75.40	2.92	
6"	2581	2	5	3.14	15.71	0.61	
6.5"	1290	4	8	12.57	100.53	7.79	
sum	16774				251.33		1.947791

Average Percent Shale

2.06

check 2.104246

UPDATED with proper calculation for area ON 10-2-95

Core 10 U.S. 520 Webster C

Marin and an a	A
vveoster	COUNTY

				Calculated by TP using diameter			
Section A Section B Top Surface Section B Bottom Surface Section C Top Surface	Total Area (mm ⁵ 2) 8107 8107 8107 8107	Largest Shale (mm) 2 3 8 1.5	Number of Shale 6 10 11 3	Area per Shale (mm^2) 3.14 7.07 50.27 1.77	Area of Shale (mm*2) 18.85 70.69 552.92 5.30	Percent Shale 0.23 0.87 6.82 0.07	Average
Section C Bottom Surface	8107	5	3	19.63	58.90	0.73	
Section D	8107	4	5	12.57	62.83	0.78	
sum	48643.92				769.49		1.581891
й. С					Total		
Section L	Total	Largest		Area	Area of	·	Average
Face 1	Area	Shale	Number	per Shale	Shaie	Percent	. –
Depth	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale	
1"	2581	2	2	3.14	6.28	0.24	
2"	2581	3	3	7.07	21.21	0.82	
3"	2581	2	5	3.14	15.71	0.61	
4"	2581	2	3	3.14	9.42	0.37	
5"	2581	1	2	0.79	1.57	0.06	
6"	2581	2	3	3.14	9.42	0.37	
sum	15484				63.62		0.410862

					Total		
Section L	Total	Largest		Area	Area of		Average
Face 2	Area	Shale	Number	per Shale	Shale	Percent	-
Depth	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale	
1"	2581	5	2	19.63	39.27	1.52	
2"	2581	4	6	12.57	75.40	2.92	
3"	2581	6	4	28.27	113.10	4.38	
4"	2581	3	3	7.07	21.21	0.82	
5"	2581	1	6	0,79	4.71	0.18	
6"	2581	2	3	3.14	9.42	0.37	
sum	15484				263.11		1.699245

						Total		
Section L		Total	Largest		Area	Area of		Average
Face 3		Area	Shale	Number	per Shale	Shale	Percent	-
Depth		(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale	
1"		2581	2	2	3.14	6.28	0.24	
2"		2581	2	4	3.14	12.57	0.49	
3"	•	2581	2	3	3.14	9.42	0.37	
4 " ·	-	2581	2.8	5	6.16	30.79	1.19	
5"		2581	2	7	3.14	21.99	0.85	
6"		2581	3	5	7.07	35.34	1.37	
sum .		15484				116.40		0.751726

Section I	Total	Lassast		A	Total		A
Ecco A	i utai	Choic	Mumber	Area	Area or	D	Average
Depth	(mm^2)	(mm)	of Shale	(mm^2)	(mm ²)	Shale	
1"	2581	2	2	3.14	6.28	0.24	
2"	2581	2	2	3.14	6.28	0.24	
3"	2581	1	3	0.79	2.36	0.09	
4"	2581	2	3	3.14	9.42	0.37	
5"	2581	2	2	3.14	6.28	0.24	
6"	2581	1	3	0.79	2.36	0.09	
sum	15484				32.99		0.21304

Average	Percent	Shale
---------	---------	-------

diameter 1.13

check 1.126432

Core 11 U.S. 520 Webster County

					TUCAL			
	Total	Largest		Area	Area of		Average	
	Area	Shale	Number	per Shale	Snale	Percent		
	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale		
Section A	8107	2	9	3.14	28.27	0.35		
Section B Top Surface	8107	4.	5	12.57	62.83	0.78		
Section B Bottom Surface	8107	2	4	3.14	12.57	0.16		
Section C Top Surface	8107	4	3	12.57	37.70	0.47		
Section C Bottom Surface	8107	2.5	× 4	4.91	19.63	0.24		
Section D	8107	2	6	3.14	18.85	0.23		
sum	48643.92				179.86		0.36974	
					Total			
Section L	Total	Largest		Area	Area of		Average	
Face 1	Area	Shale	Number	per Shale	Shale	Percent		
Depth	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale		
1"	2581	<u>ີ 2</u> ໌	8	3.14	25.13	0.97	•	
2"	2581	1 1	6	0.79	4.71	0.18		
3*	2581	1.	2	0.79	1.57	0.06		
4 ^H	2581	3.5	6	9.62	57.73	2.24		
5*	2581	2.7	4	5.73	22.90	0.89		
6*	2581	2	6	3.14	18.85	0.73		
sum	15484				130.89		0.845362	

					lotal		
Section L	Total	Largest		Area	Area of		Average
Face 2	Area	Shale	Number	per Shale	Shale	Percent	
Depth	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shaie	
1"	2581	5	5	19.63	98.17	3.80	
2"	2581	2	7	3.14	21.99	0.85	
3" -	2581	1	3	0.79	2.36	0.09	
4"	2581	4	6	12.57	75.40	2.92	
5"	2581	2	2	3.14	6.28	0.24	
6"	2581	1	3	0.79	2.36	0.09	
sum	15484				206.56		1.334034

Section L Face 3 Depth	Total Area (mm^2) 2581	Largest Shale (mm)	Number of Shale	Area per Shale (mm^2)	Total Area of Shale (mm^2)	Percent Shale	Average
1 2" 3"	2581 2581 2581	1 1	2	0.79 0.79 0.79	1.57 3.93	0.06	.
4" 5" 6"	2581 2581 2581	2.5 2 3	4 4 7	4,91 3.14 7.07	19.63 12.57 49.48	0.76 0.49 1.92	
sum	15484				91.89		0.593468

					Total		
Section L	Total	Largest		Area	Area of		Average
Face 4	Area	Shale	Number	per Shale	Shale	Percent	
Depth	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale	
1"	2581	2	3	3.14	9.42	0.37	-
2"	2581	1	4	0.79	3.14	0.12	
3"	2581	2	4	3.14	12.57	0.49	
4"	2581	1	3	0.79	2.36	0.09	
5"	2581	3.5	5	9.62	48.11	1.86	
6"	2581	3	3	7.07	21.21	0.82	
sum	15484				96.80		0.62517

Average Percent Shale

diameter 0.64 check 0.638459

Core 13 U.S. 520 Webster County

Section A Section B Top Surface Section B Bottom Surface Section C Top Surface Section C Bottom Surface Section D sum	Total Area (mm^2) 8107 8107 8107 8107 8107 8107 8107 48643.92	Largest Shale (mm) 5 5.5 3.5 3 2 2 2	Number of Shale 9 6 6 6 7 4	Area per Shale (mm^2) 19.63 23.76 9.62 7.07 3.14 3.14	Total Area of Shale (mm^2) 176.71 142.55 57.73 42.41 21.99 12.57 453.96	Percent Shale 2.18 1.76 0.71 0.52 0.27 0.16	Average 0.933231
Section L Face 1 Depth 1" 2" 3" 4" 5" 6" 5" 6" sum	Total Area (mm^2) 2581 2581 2581 2581 2581 2581 15484	Largest Shale (mm) 1 5 2 1 4 9.5	Number of Shale 1 5 6 3 4 6	Area per Shale (mm^2) 0.79 19.63 3.14 0.79 12.57 70.88	Total Area of Shale (mm^2) 0.79 98.17 18.85 2.36 50.27 425.29 595.72	Percent Shale 0.03 3.80 0.73 0.09 1.95 16.48	Average 3.847395
Section L Face 2 Depth	Total Area (mm^2)	Largest Shaie (mm)	Number of Shale	Area per Shale (mm^2)	Total Area of Shaie (mm^2)	Percent Shale	Average

ection L	Total	Largest		Area	Area of		Average
Face 2	Area	Shale	Number	per Shale	Shale	Percent	
Depth	(mm^2)	(mm)	of Shaie	(mm^2)	(mm^2)	Shale	
1"	2581	2	6	3.14	18.85	0.73	
2"	2581	2	3	3,14	9.42	0.37	
3"	2581	2	3	3.14	9.42	0.37	
4"	2581	2	2	3.14	6.28	0.24	
5"	2581	. 2	2	3.14	6.28	0.24	
6"	2581	5	4	19.63	78.54	3.04	
sum	15484				128.81		0.831869

					Total		
Section L	Total	Largest		Area	Area of		Average
Face 3	Area	Shale	Number	per Shale	Shale	Percent	
Depth	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale	
1"	2581	1	3	0.79	2.36	0.09	
2"	2581	1.5	1	1.77	1.77	0.07	
3"	2581	1	4	0.79	3.14	0.12	
4"	2581	2	5	3.14	15.71	0.61	
5"	2581	2	3	3.14	9.42	0.37	
6"	2581	1	4	0.79	3.14	0.12	
sum	15484				35.54		0.229525

					Total			
Section L	Total	Largest		Area	Area of		Average	
Face 4	Area	Shale	Number	per Shale	Shale	Percent		
Depth.	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale		
1"	2581	1	1	0.79	0.79	0.03	-	
2"	2581	3	2	7.07	14.14	0.55		
3"	2581	1.5	5	1.77	8.84	0.34		
4"	2581	3	4	7.07	28.27	1,10		
5"	2581	3	2	7.07	14.14	0.55		
6"	2581	3.5	2	9.62	19.24	0.75		
sum	15484				85.41		0.551621	

Average	Percent	Shale
---------	---------	-------

diameter 1.18 check 1.175123 Core 14 U.S. 520 Webster County

					rotar		
•	Total Area	Largest Shale	Number	Area per Shale	Area of Shale	Percent	Average
	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale	
Section A	8107	4	8	12.57	100.53	1.24	
Section B Top Surface	8107	1	6	0.79	4.71	0.06	
Section B Bottom Surface	8107	2	8	3.14	25.13	0.31	
Section C Top Surface	8107	5	7	19.63	137.44	1.70	
Section C Bottom Surface	8107	3	6	7.07	42.41	0.52	
Section D	8107	6	14	28.27	395.84	4.88	
sum	48643.92				706.07		1.451513
,					Total		
Section L	Total	Largest		Area	Area of		Average
Face 1	Area	Shale	Number	per Shale	Shale	Percent	
Depth	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale	
1.	2581	2	7	3.14	21.99	0.85	
2"	2581	1	4	0.79	3.14	0.12	
3"	2581	3	8	7.07	56.55	2.19	
4"	2581	3	4	7.07	28.27	1.10	
5"	2581	<u>1</u>	2	0.79	1.57	0.06	
6"	2581	2	7	3.14	21.99	0.85	
sum	15484				133.52		0.862303

				Total				
Section L	Total	Largest		Area	Area of		Average	
Face 2	Area	Shale	Number	per Shale	Shale	Percent		
Depth	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale		
1"	2581	2.5	5	4.91	24.54	0.95		
2"	2581	4	8	12.57	100.53	3.90		
3"	2581	2	4	3.14	12.57	0.49		
4"	2581	3	3	7.07	21.21	0.82		
5"	2581	1	5	0.79	3.93	0.15		
6"	2581	2	3	3.14	9.42	0.37		
sum	15484				172.20		1.112118	

			i otal						
Section L	Total	Largest		Area	Area of		Average		
Face 3	Area	Shale	Number	per Shale	Shale	Percent			
Depth	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale			
f "	2581	2	7	3.14	21.99	0.85			
2"	2581	2	6	3.14	18.85	0.73			
3"	2581	4	3	12.57	37.70	1.46			
4"	2581	3	3	7.07	21.21	0.82			
5"	2581	3	3	7.07	21.21	0.82			
6"	2581	1	2	0.79	1.57	0.06			
sum	15484				122.52		0.79129		

Section L	Total	Largest		Area	Area of		Average	
Face 4	Area	Shale	Number	per Shale	Shale	Percent		
Depth	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale		
1"	2581	1	2	0.79	1.57	0.06	-	
2"	2581	5	12	19.63	235.62	9.13		
3"	2581	5	4	19.63	78.54	3.04		
4"	2581	2	5	3.14	15.71	0.61		
5"	2581	3	5	7.07	35.34	1.37		
6"	2581	2	4	3.14	12.57	0.49		
sum	15484				379.35		2.449956	

diameter

1.37

Average Percent Shale

check 1.363302 ÷....

Core 15 U.S. 520 Webster County

	Total Area (mm^2)	Largest Shale (mm)	Number of Shale	Area per Shale (mm^2)	Total Area of Shaie (mm^2)	Percent Shale	Average
Section A	8107	1	4	0.79	3.14	0.04	
Section B Top Surface	8107	6.5	4	33.18	132.73	1.64	
Section B Bottom Surface	8107	5	7	19.63	137.44	1.70	
Section C Top Surface	8107	3	8	7.07	56.55	0.70	
Section C Bottom Surface	8107	2	8	3.14	25.13	0.31	
Section D	8107	3	11	7.07	77.75	0.96	
sum	48643.92				432.75		0.889637
					Total		
Section L	Total	Largest		Area	Area of	· _ ·	Average
Face 1	Area	Shale	Number	per Shale	Shale	Percent	
Depth	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale	
1"	2581	2.5	5	4.91	24.54	0.95	
2"	2581	3	4	7.07	28.27	1.10	
3"	2581	2	6	3.14	18.85	0.73	
4"	2581	2	5	3.14	15.71	0.61	
5"	2581	3	4	7.07	28.27	1.10	
6*	2581	2	4	3.14	12.57	0.49	
7"	2581	2	5	3.14	15.71	0.61	
sum	18064				143.92		0.796725

					lotal		
Section L	Total	Largest		Area	Area of		Average
Face 2	Area	Shale	Number	per Shale	Shale	Percent	
Depth	(mm^2)	(mm)	of Shaie	(mm^2)	(mm^2)	Shale	
1"	2581	4	6	12.57	75.40	2.92	
2"	2581	3	5	7.07	35.34	1.37	
3"	2581	2	5	3.14	15.71	0.61	
4"	2581	2	5	3.14	15.71	0.61	
5"	2581	1	2	0.79	1.57	0.06	
6*	2581	2	3	3.14	9.42	0.37	
7"	2581	2	3	3.14	9.42	0.37	
sum	18064				162.58		0.899984

Section L	Total	Largest		Area	Total Area of		
Face 3	Area	Shale	Number	per Shale	Shale	Percent	Average
Depth	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale	
1"	2581	` 3 `	4	7.07	28.27	1.10	
2"	2581	2	6	3.14	18.85	0.73	
3"	2581	1	3	0.79	2.36	0.09	
4"	2581	5	9	19.63	176.71	6.85	
5"	2581	2	8	3.14	25.13	0.97	
6"	2581	2	6	3.14	18.85	0.73	
7*	2581	1	4	0.79	3.14	0.12	
sum	18064				273.32		1.513016

					Total			
Section L	Total	Largest		Area	Area of		Average	
Face 4	Area	Shale	Number	per Shale	Shale	Percent		
Depth	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale		
1"	2581	2	4	3.14	12.57	0.49		
2"	2581	2	4	3.14	12.57	0.49		
3"	2581	3	3.	7.07	21.21	0.82		
4"	2581	- 4	4	12.57	50.27	1.95		
5"	2581	3	2	7.07	14.14	0.55		
6"	2581	1	3	0.79	2.36	0.09		
7"	2581	1	3	0.79	2.36	0.09		
sum	18064				115.45		0.639119	

diameter 0.93 check 0.933011 Core 16 U.S. 520 Webster County

Section A Section B Top Surface Section B Bottom Surface Section C Top Surface Section C Bottom Surface Section D sum	Total Area (mm^2) 8107 8107 8107 8107 8107 8107 48643.92	Largest Shale (mm) 5 2 2 2 2 4 1	Number of Shale 8 10 9 8 13	Area per Shale (mm^2) 19.63 3.14 3.14 3.14 12.57 0.79	Total Area of Shale (mm^2) 157.08 25.13 31.42 28.27 100.53 10.21 352.64	Percent Shale 1.94 0.31 0.39 0.35 1.24 0.13	Average 0.724949
Section L Face 1 Depth 1" 2" 3" 4" 5" 6" 6.5" sum	Total Area (mm^2) 2581 2581 2581 2581 2581 2581 1290 16774	Largest Shale (mm) 1.5 2 2 2 2 2 2 2 2 2 1	Number of Shale 4 6 3 4 3 2	Area per Shale (mm^2) 1.77 3.14 3.14 3.14 3.14 3.14 0.79	Total Area of Shale (mm^2) 7.07 12.57 18.85 9.42 12.57 9.42 1.57 71.47	Percent Shale 0.27 0.49 0.73 0.37 0.37 0.49 0.37 0.12	Average 0.404341
Section L Face 2 Depth 1" 2" 3" 4" 5" 6" 6.5" sum	Total Area (mm^2) 2581 2581 2581 2581 2581 2581 1290 16774	Largest Shale (mm) 3 2 4 3 3 1 1	Number of Shale 5 2 5 4 3 5 4	Area per Shale (mm^2) 7.07 3.14 12.57 7.07 7.07 0.79 0.79	Total Area of Shale (mm ²) 35.34 6.28 62.83 28.27 21.21 3.93 3.14 161.01	Percent Shale 1.37 0.24 2.43 1.10 0.82 0.15 0.24	Average 0.908679
Section L Face 3	Total Area	Largest Shale	Number	Area per Shale	Total Area of Shale	Percent	Average

					1 0 101			
Section L	Total	Largest		Area	Area of		Average	
Face 3	Area	Shale	Number	per Shale	Shale	Percent	-	
Depth	· (mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale		
1"	2581	2	6	3.14	18.85	0.73		
2"	2581	1	4	0.79	3.14	0.12		
3"	2581	5	6	19.63	117.81	4.57		
4"	2581	2	6	3.14	18.85	0.73		
5"	2581	3	4	7.07	28.27	1.10		
6"	.2581	2	5	3.14	15.71	0.61		
6.5"	1290	1	4	0.79	3.14	0.24		
sum	16774				205.77		1.156501	

					Total			
Section L	Total	Largest		Area	Area of		Average	
Face 4	Area	Shale	Number	per Shale	Shale	Percent		
Depth	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shate		
1"	2581	1	5	0.79	3.93	0.15	-	
2"	2581	1	5	0.79	3.93	0.15		
3"	2581	1	3	0.79	2.36	0.09		
4"	2581	2	4	3.14	12.57	0.49		
5"	2581	3	6	7,07	42.41	1.64		
6"	2581	3	5	7.07	35.34	1.37		
6.5"	1290	1	3	0.79	2.36	0.18		
sum	16774				102.89		0.582598	

Average Percent Shale

diameter 0.77

check 0.747025

Core 17 U.S. 520 Webster County

					Total		
	Total	Largest		Area	Area of		Average
	Area	Shale	Number	per Shale	Shale	Percent	-
	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale	
Section A	8107	1	6	0.79	4.71	0.06	
Section B Top Surface	8107	2	3	3.14	9.42	0.12	
Section B Bottom Surface	8107	4	6	12.57	75.40	0.93	
Section C Top Surface	8107	6	6	28.27	169.65	2.09	
Section C Bottom Surface	8107	6	4	28.27	113.10	1.40	
Section D	8107	7	6	38.48	230.91	2.85	•
sum	48643.92				603.19		1.240002
					Total		
Section L	Total	Largest		Area	Area of		Average
Face 1	Area	Shale	Number	per Shale	Shale	Percent	•
Depth	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale	
1"	2581	1	2	0.79	1.57	0.06	
2"	2581	2	4	3.14	12.57	0.49	•
3"	2581	1	2	0.79	1.57	0.06	
4"	2581	1	2	0.79	1.57	0.06	
5"	2581	1	3	0,79	2.36	0.09	
6"	2581	1	5	0.79	3.93	0.15	
sum	15484				23.56		0.152171

Section L Face 2 Depth	Total Area (mm^2)	Largest Shale (mm)	Number of Shale	Area per Shale (mm^2)	Area of Shale (mm^2)	Percent Shale	Average
1"	2581	2	1	3.14	3.14	0.12	
2"	2581	2	3	3.14	9.42	0.37	
3"	2581	1	1	0,79	0.79	0.03	
4"	2581	2	3	3.14	9.42	0.37	
5"	2581	1	2	0.79	1.57	0.06	
6"	2581	2	3	3.14	9.42	0.37	
sum	15484				33.77		0.218112

Section	Total	Lorgost		Area	Total		Augeneo
Eaco 3	Area	Choic	Number	Alea Dor Sholo	Alea ol	Dereent	Average
Depth	(mm^2)	(mm)	of Shale	(mm ²)	(mm ²)	Shale	
1"	2581	1	4	0.79	3.14	0.12	
2"	2581	2	2	3.14	6.28	0.24	
3"	2581	1	2	0.79	1.57	0.06	
4"	2581	1	3	0.79	2.36	0.09	
5"	2581	. 1	1	0.79	0.79	0.03	
6"	2581	4	3	12.57	37.70	1.46	
sum	15484				51.84		0.334777

					Total		
Section L	Total	Largest		Area	Area of		Average
Face 4	Area	Shale	Number	per Shale	Shale	Percent	
Depth	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale	
1"	2581	0	0	0.00	0.00	0.00	-
2"	2581	6	3	28.27	84.82	3.29	
3"	2581	3.5	6	9.62	57.73	2.24	
4"	2581	1	3	0.79	2.36	0.09	
5"	2581	2	7	3.14	21.99	0.85	
6"	2581	3.5	4	9.62	38.48	1.49	
sum	15484				205.38		1.326426

diameter 0.83 check 0.829935

Core 18 U.S. 520 Webster County

	Total	i araaci		Aron	Total Area of		Avoran
1	1 Didi	Chaio	Number	ner Shaia	Cholo	Dorcont	Average
	(mmA2)	(mm)	of Shala	(mmA2)	(mmA2)	Cholo	
O	(1001 2)	(11817)	UI Ottale	(1111 4)	45 74	0 40	
Section A	8107	2	5	3.14	10.71	0.19	
Section B Top Surface	8107	3	6	7.07	42.41	0.52	
Section B Bottom Surface	8107	2	15	3.14	47.12	0.58	
Section C Top Surface	8107	3	7	7.07	49.48	0.61	
Section C Bottom Surface	8107	2	8	3.14	25.13	0.31	
Section D	8107	3	6	7.07	42.41	0.52	
sum	48643.92				222.27		0.456928
					Total		
Section L	Total	Largest		Area	Area of		Average
Face 1	Area	Shale	Number	per Shale	Shale	Percent	
Depth	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale	
1"	2581	1	6	0.79	4.71	0.18	
2"	2581	1	3	0.79	2.36	0.09	
3*	2581	4.5	3	15,90	47.71	1.85	
4 "	2581	3	4	7.07	28.27	1.10	
5"	2581	1	4	0.79	3.14	0.12	
6"	2581	1	5	0.79	3.93	0.15	
sum	15484				90.12		0.582055

					l otal				
Section L	Total	Largest		Area	Area of		Average		
Face 2	Area	Shale	Number	per Shale	Shale	Percent			
Depth	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale			
1"	2581	1	3	0.79	2.36	0.09			
2"	2581	1	3	0.79	2.36	0.09			
3"	2581	1	6	0.79	4.71	0.18			
4"	2581	3	6	7.07	42.41	1.64			
5"	2581	3	3	7.07	21.21	0.82			
6"	2581	1	2	0.79	1.57	0.06			
sum	15484				74.61		0.481875		

					Total			
Section L	Total	Largest		Area ·	Area of		Average	
Face 3	Area	Shale	Number	per Shale	Shale	Percent		
Depth	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale		
1"	2581	2	5	3.14	15.71	0.61		
2"	2581	2	4	3.14	12.57	0.49		
3"	2581	1	1	0.79	0.79	0.03		
4"	2581	1	2	0.79	1,57	0.06		
5"	2581	. 2	4	3.14	12.57	0.49		
6"	2581	. 1	1	0.79	0.79	0.03		
sum	15484				43.98		0.284053	

					Total		
Section L	Total	Largest		Area	Area of		Average
Face 4	Area	Shale	Number	per Shale	Shale	Percent	
Depth	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale	•
1"	2581	4	5	12.57	62.83	2.43	-
2"	2581	1	5	0.79	3.93	0.15	
3"	2581	1	4	0.79	3.14	0.12	
4"	2581	2	5	3.14	15.71	0.61	
5"	2581	5	3	19.63	58.90	2.28	
6"	2581	2	3	3.14	9.42	0.37	
sum	15484				153.94		0.994185

check 0.528965 Core 19 U.S. 520 Webster County

	Total	Largest		Area	Area of		Average	
	Area	Shale	Number	per Shale	Shale	Percent	-	
	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale		
Section A	8107	1	13	0.79	10.21	0.13		
Section B Ton Surface	8107	2	7	3.14	21.99	0.27		
Section B Bottom Surface	8107	3	12	7.07	84.82	1.05		
Section C Ton Surface	8107	5	10	19.63	196.35	2 42		
Section C Bottom Surface	8107	2	2	3 14	6 28	0.08		
Section D	8107	2	5	3 14	15 71	0.00		
Section D	48643.02	~	v	0.14	335 37	0.10	0 680428	
Sum	40040.52				000.01		0.005420	
					Total			
Section L	Total	Largest		Area	Area of		Average	
Face 1	Area	Shale	Number	per Shale	Shale	Percent	•	
Depth	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale		
1"	2581	4	3	12.57	37.70	1.46		
2"	2581	5	5	19.63	98.17	3.80		
3"	2581	1	3	0.79	2.36	0.09		
4"	2581	1	4	0.79	3.14	0.12		
5"	2581	1	3	0.79	2.36	0.09		
6"	2581	2	4	3 14	12 57	0.49		
sim	15484	-	•	0	156 29	0.10	1 009402	
00117	10101				100.20			
					Total			
Section L	Total	Largest		Area	Area of		Average	
Face 2	Area	Shale	Number	per Shale	Shale	Percent		
Depth	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale		
1"	2581	3	5	7.07	35.34	1.37		
2"	2581	1	. 1	0.79	0.79	0.03		
3"	2581	1	5	0.79	3.93	0.15		
4 "	2581	1	5	0.79	3.93	0.15		
5"	2581	2	4	3.14	12.57	0.49		
6"	2581	6	5	28.27	141.37	5.48		
sum	15484				197.92		1.278238	

Section L Face 3	Total Area	Largest Shale	Number	Area per Shale	Total Area of Shale	Percent	Average
Depth	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale	
1"	2581	1	7	0.79	5.50	0.21	
2"	2581	1	2	0.79	1.57	0.06	
3"	2581	1	4	0.79	3,14	0.12	
4"	2581	2	5	3.14	15.71	0.61	
5"	2581	2	4	3.14	12.57	0.49	
6"	2581	5	9	19.63	176.71	6.85	
sum	15484				215.20		1.38983

Section L	Total	Largest		Area	Total Area of		Average
Face 4	Area	Shale	Number	per Shale	Shale	Percent	
Depth	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale	-
1"	2581	2	5	3.14	15.71	0.61	
2"	2581	2	3	3.14	9.42	0.37	
3"	2581	1	4	0.79	3.14	0.12	
4"	2581	2	3	3.14	9.42	0.37	
5"	2581	1	1	0.79	0.79	0.03	
6"	2581	5	1	19.63	19.63	0.76	
sum	15484				58.12		0.375356

Average Percent Shale

diameter 0.87

check 0.870777

Total

Core 20 U.S. 520 Webster County

	Total	Largest		Area	Area of		Average
	Area	Shale	Number	per Shale	Shale	Percent	-
	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale	
Section A	8107	5	7	19.63	137.44	1.70	
Section B Top Surface	8107	4	6	12.57	75.40	0.93	
Section B Bottom Surface	8107	3	6	7.07	42.41	0.52	
Section C Top Surface	8107	3	5	7.07	35.34	0.44	
Section C Bottom Surface	8107	3	4	7.07	28.27	0.35	
Section D	8107	6	8	28.27	226.19	2.79	
sum	48643.92				545.07		1.120523
					Total		
Section L	Total	Largest		Area	Area of		Average
Face 1	Area	Shale	Number	per Shale	Shale	Percent	-
Depth	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale	
1"	2581	5	4	19.63	78.54	3.04	
2"	2581	1	1	0.79	0.79	0.03	
3"	2581	4	1	12.57	12.57	0.49	
4"	2581	0	0	0.00	0.00	0.00	
5"	2581	2	2	3.14	6.28	0.24	
6"	2581	2	3	3.14	9.42	0.37	
sum	15484				107.60		0.694915
					1		•

Section L	Total	Largest		Area	Total Area of		Averane
Face 2 Depth	Area (mm^2)	Shale (mm)	Number of Shale	per Shale (mm^2)	Shale (mm^2)	Percent Shale	Average
1"	2581	2	3	3.14	9.42	0.37	
2"	2581	1	3	0.79	2.36	0.09	
3" -	2581	2	2	3.14	6.28	0.24	
4"	2581	2	2	3.14	6.28	0.24	
5"	2581	3	4	7.07	28.27	1.10	
6"	2581	3.5	1	9.62	9.62	0.37	
sum	15484				62.24		0.401986

Average
0.172461
1

					Total		
Section L	Total	Largest		Area	Area of		Average
Face 4	Area	Shale	Number.	per Shale	Shale	Percent	-
Depth	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale	
1"	2581	1	1	0.79	0.79	0.03	~
2"	2581	1	2	0.79	1.57	0.06	
3"	2581	1	3	0.79	2.36	0.09	
4"	2581	6	1	28.27	28.27	1.10	
5"	2581	0	0	0.00	0.00	0.00	
6"	2581	5	1	19.63	19.63	0.76	
sum	15484				52 62		0 339849

Average Percent Shale

diameter 0.72

check 0.718247 Total

Core 21 I-80 Dallas County

Section A Section B Top Surface Section B Bottom Surface Section C Top Surface Section C Bottom Surface Section D sum	Total Area (mm^2) 8107 8107 8107 8107 8107 8107 8107 48643.92	Largest Shale (mm) 6.5 5 2.5 2 2 2 4	Number of Shale 13 10 14 7 6 5	Area per Shale (mm^2) 33.18 19.63 4.91 3.14 3.14 12.57	Total Area of Shale (mm^2) 431.38 196.35 68.72 21.99 18.85 62.83 800.12	Percent Shale 5.32 2.42 0.85 0.27 0.23 0.78	Average 1.64486
Section L Face 1 Depth 1" 2" 3" 4" 5" 6" 7" 8" sum	Total Area (mm^2) 2581 2581 2581 2581 2581 2581 2581 2581	Largest Shale (mm) 5 3 2 2 2 2 3 4 2 2 3 4 2	Number of Shale 8 7 6 4 5 3 4 3 3	Area per Shale (mm^2) 19.63 7.07 3.14 3.14 3.14 7.07 12.57 3.14	Total Area of Shale (mm^2) 157.08 49.48 18.85 12.57 15.71 21.21 50.27 9.42 334.58	Percent Shale 6.09 1.92 0.73 0.49 0.61 0.82 1.95 0.37	Average 1.620623
Section L Face 2 Depth 1" 2" 3" 4" 5" 6" 7" 8" sum	Total Area (mm^2) 2581 2581 2581 2581 2581 2581 2581 2581	Largest Shale (mm) 3 2 2 2 2 2 2 2 2 2 2 2 2 2 5	Number of Shale 6 6 6 5 4 4 4	Area per Shale (mm^2) 7.07 7.07 3.14 3.14 3.14 3.14 3.14 4.91	Total Area of Shale (mm^2) 56.55 42.41 18.85 18.85 18.85 15.71 12.57 12.57 19.63 197.13	Percent Shale 2.19 1.64 0.73 0.73 0.61 0.49 0.49 0.76	Average 0.954874
Section L Face 3 Depth 1" 2" 3" 4" 5" 6" 7" 8" sum	Total Area (mm^2) 2581 2581 2581 2581 2581 2581 2581 2581	Largest Shale (mm) 2 3 2 2 2 2 6 3 2 2 3 2	Number of Shale 9 6 5 6 4 4 4 4 4	Area per Shale (mm^2) 3.14 7.07 3.14 3.14 3.14 28.27 7.07 3.14	Total Area of Shale (mm^2) 28.27 42.41 15.71 18.85 12.57 113.10 28.27 12.57 271.75	Percent Shale 1.10 1.64 0.61 0.73 0.49 4.38 1.10 0.49	Average 1.316281
Section L Face 4 Depth 1" 2" 3" 4" 5" 6" 7" 8" sum	Total Area (mm^2) 2581 2581 2581 2581 2581 2581 2581 2581	Largest Shale (mm) 3 4 2 3 3 2 3 2 3 2 3 2	Number of Shale 6 6 7 6 6 4 6 3	Area per Shaie (mm^2) 7.07 12.57 3.14 7.07 7.07 3.14 7.07 3.14 7.07 3.14	Total Area of Shale (mm^2) 42.41 75.40 21.99 42.41 42.41 12.57 42.41 9.42 289.03	Percent Shale 1.64 2.92 0.85 1.64 1.64 0.49 1.64 0.37	Average

Average Percent Shale

1.44

check 1.442274 Core 22 I-80 Dallas County

Section A Section B Top Surface Section B Bottom Surface Section C Top Surface Section C Bottom Surface Section D sum	Total Area (mm^2) 8107 8107 8107 8107 8107 8107 48643.92	Largest Shale (mm) 3 2 2 5.5 4 3	Number of Shale 10 10 11 5 10 7	Area per Shale (mm^2) 7.07 3.14 3.14 23.76 12.57 7.07	Total Area of Shale (mm^2) 70.69 31.42 34.56 118.79 125.66 49.48 430.59	Percent Shale 0.87 0.39 0.43 1.47 1.55 0.61	Average 0.885197
Section L Face 1 Depth 1" 2" 3" 4" 5" 6" 7" 8" sum	Total Area (mm^2) 2581 2581 2581 2581 2581 2581 2581 2581	Largest Shale (mm) 3 2 2 3 2 3 2 1 2 2 2 2	Number of Shale 6 3 4 7 3 3 3 5 8	Area per Shale (mm^2) 7.07 3.14 3.14 7.07 3.14 0.79 3.14 3.14	Total Area of Shale (mm^2) 42.41 9.42 12.57 49.48 9.42 2.36 15.71 25.13 166.50	Percent Shale 1.64 0.37 0.49 1.92 0.37 0.09 0.61 0.97	Average 0.806507
Section L Face 2 Depth 1" 2" 3" 4" 5" 6" 7" 8" sum	Total Area (mm*2) 2581 2581 2581 2581 2581 2581 2581 2581	Largest Shale (mm) 2 2 2 2 2 2 2 2 2 2 3	Number of Shale 5 5 4 3 4 3 3	Area per Shale (mm^2) 3.14 3.14 3.14 3.14 3.14 3.14 3.14 3.14	Total Area of Shale (mm^22) 12.57 15.71 12.57 9.42 12.57 12.57 21.21 112.31	Percent Shale 0.49 0.61 0.49 0.37 0.49 0.37 0.49 0.82	Average 0.544012
Section L. Face 3 Depth 1" 2" 3" 4" 5" 6" 7" 8" sum	Total Area (mm^2) 2581 2581 2581 2581 2581 2581 2581 2581	Largest Shale (mm) 2 2 2 3 4 2 2 3 4 2 2 3	Number of Shale 4 5 2 3 4 2 4 2 4 2	Area per Shale (mm^2) 3.14 3.14 3.14 7.07 12.57 3.14 3.14 7.07	Total Area of Shale (mm^2) 12.57 15.71 6.28 21.21 50.27 6.28 12.57 14.14 139.02	Percent Shale 0.49 0.61 0.24 0.82 1.95 0.24 0.49 0.55	Average 0.673358
Section L Face 4 Depth 1" 2" 3" 4" 5" 6" 7" 8" sum	Total Area (mm^2) 2581 2581 2581 2581 2581 2581 2581 2581	Largest Shale (mm) 3 2 2 2 2 2 2 2 2 1 2 2 1 2	Number of Shale 6 7 4 3 5 4 4 3	Area per Shale (mm^2) 7.07 3.14 3.14 3.14 3.14 3.14 0.79 3.14	Total Area of Shale (mm^2) 42.41 21.99 12.57 9.42 15.71 12.57 3.14 9.42 127.23	Percent Shale 1.64 0.85 0.49 0.37 0.61 0.49 0.12 0.37	Average 0.616293

Average Percent Shale

Core 23 I-80 Dallas County

. . . |

.

					Total		
	Total	Largest		Агеа	Area of		Average
	Area	Shale	Number	per Shale	Shale	Percent	
,	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale	
Section A	8107	4	9	12.57	113.10	1.40	
Section B Ton Surface	8107	3	17	7.07	120.17	1.48	
Section B Bottom Surface	9107	Ř.	6	19.63	176 71	2 18	
Section & Bottom Surface	9407	5	ě	2 14	18 25	0.23	
Section C Top Surface	0107	2	40	7.07	70.00	0.20	
Section C Bonom Surface	0107	3	10	2.07	20.00	0.07	
Section D	8107	2	9	J. 14	20.21 597 70	0.35	4 095000
sum	48043.92				521.19		1.005002
					Tabat		
					TO(a)		
Section L	lotai	Largest	h la san ha ma	Alea	Alea ()	Descent	A
Face 1	Area	Snale	Number	per Snale	Sinale	Percent	Average
Depth	(mm*2)	(mm)	of Shale	(mm^2)	(mm^2)	Snale	
1.	2581	0	U	0.00	0.00	0.00	
2*	2581	0	0	0.00	0.00	0.00	
3"	2581	0	0	0.00	0.00	0.00	
4"	2581	0	0	0.00	0.00	0.00	
5"	2581	0	0	0.00	0.00	0.00	
6"	2581	0	0	0.00	0.00	0.00	
7" ·	2581	0	0	0.00	0.00	0.00	
8*	2581	0	0	0.00	0.00	0.00 .	
sum	20645				0.00		0
					Total		
Section L	Total	Largest		Area	Area of		Average
Face 2	Area	Shale	Number	per Shale	Shale	Percent	
Depth	(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale	
1 ⁿ	2581	0	0	0.00	0.00	0.00	
2"	2581	0	0	0.00	0.00	0.00	
3"	2581	Ō	Ó	0.00	0.00	0.00	
4"	2581	ō	ō	0.00	0.00	0.00	
5"	2581	ō	õ	0.00	0.00	0.00	
6"	2581	ñ	õ	0.00	0.00	0.00	
7"	2581	ň	ñ	0.00	0.00	0.00	
/ 97	2501	ν ΓΛ	ň	0.00	0.00	0.00	
0	20645	v	v	0.00	0.00	0.00	0
sum	20045				0.00		Ŭ
		•			Total		
Spotion I	Total	Inreact	• •	Aran	Area of		Δυρταπο
Section L	Aree	Choic	Mumhor	ner Shale	Shala	Decent	Aterage
Face 3		(mm)	of Shalo	(mm ²)	(mm^2)	Shalo	
Depth	(1001.2)	(mm)	Oronale	(1181.2)	0.00	0.00	
1	2001	0	0	0.00	0.00	0.00	
2	2081	0	0	0.00	0.00	0.00	
3	2001	0	0	0.00	0.00	0.00	
4	2081	U A	U O	0.00	0.00	0.00	
5"	2081	Û	Ű	0.00	0.00	0.00	
6"	2581	0	U	0.00	0.00	0.00	
7"	2581	U	0	0.00	0.00	0.00	
8"	2581	Û	U	0.00	0.00	0.00	•
sum	20645				0.00		U
					MP . A A		
	.			• -	Iotal		
Section L	lotal	Largest	-	Area	Area or	-	Average
Face 4	Area	Snale	Number	per Shale	Snale	Percent	1
Depth	(mm^2)	(mm)	of Shale	(mm*2)	(mm^2)	Snale	-
1"	2581	0	0	0.00	0.00	0.00	
2"	2581	0	0	0.00	0.00	0.00	
3"	2581	0	0	0.00	0.00	0.00	
4*	2581	0	0	0.00	0.00	0.00	
5"	2581	D	D	0.00	0.00	0.00	
6"	2581	0	0	0.00	0.00	0.00	
7"	2581	0	0	0.00	0.00	0.00	
8"	2581	0	0	0.00	0.00	0.00	
sum	20645				0.00		0
			check				
Average Percent Shale	1.09		1.085004				

.

Average Percent Shale

Core 24 I-80 Dallas County

		—				Total		
		Total	Largest	A.L	Area	Area of	D	•
		Area	Shale	Number	per Shale	Shale	Percent	Average
		(mm*2)	(mm)	or Snale	(mm^2)	(mm ⁿ 2)	Snale	
Section A		8107	4	10	12.57	188.50	2.33	
Section B Top Surface		0107	4	10	3.14	01.42 04.60	0.39	
Section B Bottom Surface		0107	2		3.14	34.30	0.43	
Section C Top Surface		0107	4	44	3.14	20.13	0.31	
Section C Bottom Surface		0107	<u>4</u>		3.14	34.00	0.43	
Section D		49642.02	2		J. 14	21.00	V.21	0 601042
50411		40040.02				000.10		0.031045
						Total		
Section I		Total	Largest		Area	Area of		Average
Face 1		Area	Shale	Number	per Shale	Shale	Percent	
Depth		(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale	
1'"		`2581 ´	3	4	7.07	28.27	1.10	
2"		2581	3	4	7.07	28.27	1.10	
3"		2581	4	8	12.57	100.53	3.90	
4"		2581	2	3	3.14	9.42	0.37	
5"		2581	3	6	7.07	42.41	1.64	
6"	•	2581	4	6	12.57	75.40	2.92	
7"		2581	2	3	3.14	9.42	0.37	
8"		2581	3	5	7.07	35.34	1.37	
sum		20645				329.08		1.593993
						Tatal		
Postion I		Total	Loroot		Aran	10(a)		Auge 200
Section L		Aron	Chalo	Number	ner Shala	Shala	Dercont	Average
Face 2 Depth		(mm^2)	(mm)	of Shala	/mm^2)	(mm ²)	Shala	
1"		2581	(1111 <i>1)</i>	A	3 14	12 57	0.49	
2"		2581	3	3	7.07	21.21	0.82	
3"		2581	3	5	7 07	35.34	1 37	
4"		2581	4	5	12.57	62.83	2.43	
5"		2581	1	3	0.79	2.36	0.09	
6"		2581	3	4	7.07	28.27	1.10	
7"		2581	2	6	3.14	18.85	0.73	
8"		2581	2	4	3.14	12.57	0.49	
sum		20645				193.99		0.939657
		.				Total		
Section L		Total	Largest		Area	Area of	n	Average
Face 3		Area	Snale	Number	per Shale	Shale	Percent	
Jepm		2591	(mm) 2	or Snale	(mm··2) 2 14	(IIIII)~2) 0 42	Shale	
1 3#		2001	2	2	7.07	21 21	0.37	
∠ ?"		2581	3 A	3 A	12 57	50.27	1 95	
4"		2581	3	2	7 07	14.14	0.55	
5"		2581	2	3	3.14	9.42	0.37	
6"		2581	3	3	7.07	21.21	0.82	•
7"		2581	2	2	3.14	6.28	0.24	
8"		2581	3	3	7.07	21.21	0.82	
sum		20645				153.15		0.741835
						Total		_
Section L		Total	Largest		Area	Area of		Average
Face 4		Area	Shale	Number	per Shale	Shale	Percent	
Depth		(mm^2)	(mm)	of Shale	(mm^2)	(mm^2)	Shale	
1		2581	5	6	19.63	117.81	4.57	
2"		2581	2	5	3.14	15.71	0.61	
о А ^н		2591	2	4 9	3.14 3.14	12.3/ 6 29	0.49	
5"		2591	2	2	0.14 3.14	0.20	0.27	
6"		2581	2	3	3.14	9.42	0.37	
7"		2581	2	2	3.14	6.28	0.24	
8"		2581	2	6	3.14	18.85	0.73	
sum		20645	-	-		196.35	*	0.95107

Average shale =

APPENDIX C (DSC RESULTS, PRELIMINARY)

Ì74

SLI

L

LLI

. .

LLI

. .

L I

٠.

£81

58I

¥,

\$6I

¥.

. 205