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Introduction and Objective 
 
With the implementation of the 2000 Q-MC specification, an incentive is provided to produce an 
optimized gradation to improve placement characteristics.  Also, specifications for slip-formed 
barrier rail have changed to require an optimized gradation.  Generally, these optimized 
gradations have been achieved by blending an intermediate aggregate with the coarse and fine 
aggregate. The demand for this intermediate aggregate has been satisfied by using crushed 
limestone chips developed from the crushing of the parent concrete stone. The availability, cost, 
and physical limitations of crushed limestone chips can be a concern.   
 
A viable option in addressing these concerns is the use of gravel as the intermediate aggregate.  
Unfortunately, gravels of Class 3I durability are limited to a small geographic area in Mississippi 
river sands north of the Rock River.  Class 3 or Class 2 durability gravels are more widely 
available across the state.  The durability classification of gravels is based on the amount and 
quality of the carbonate fraction of the material.  At present, no service histories or research 
exists to assess the impact of using Class 3 or 2 durability gravels would have on the long-term 
durability of Portland cement concrete (PCC) pavement requiring Class 3I aggregate.   

Materials and Mix Design 
 
The mix design was developed in accordance with SS-01034 Quality Management Concrete.  
The mix design utilized well graded aggregates following the Shilstone

1
 principles. The materials 

used are shown in Table 1. 
 

Table 1 – Material Sources 

Material Source Specific 
Gravity 

Cement Holcim Mason City I/II 3.14 

Fly Ash Ottumwa Class C 2.61 

Water w/c = 0.40 Ames tap  1.00 

Fine Aggregate Cordova, IL AIL520 2.67 

Coarse Aggregate Ft. Dodge A94002 2.66 

Intermediate Aggregate various 2.55 

Air Entraining Admixture WR Grace Daravair 1400 - 

Water Reducing Admixture WR Grace WRDA-82 - 

 
Each mix had a target air content of 7 percent and target water to cementitious (w/cm) ratio of 
0.40.  The average production gradations for each pea-gravel source and the crushed limestone 
chips were compiled from producer records.  Optimized gradation designs for each source were 
developed using the Shilstone technique to target an approximate coarseness factor of 60 
percent and workability factor of 32 percent.  The optimum percentage for each intermediate 
source was determined.  The maximum percentage of intermediate aggregate used to achieve an 
optimized gradation for an individual source was used as the intermediate aggregate percentage 
for all mixes with an increase of 5 percent.  The relative percent of aggregates used for each mix 
was 43 percent coarse, 19 percent intermediate, and 38 percent fine aggregate. 
 
The coarse aggregate used is a high quality pure calcium carbonate source.  In the investigation, 
the high quality limestone chip  was used as the control to compare with eight pea gravel sources 
as the intermediate aggregate.  The durability classification of gravels is based on the amount 
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and quality of the carbonate fraction of the material.  The sources of intermediate aggregate 
used, including the percentage of carbonate fraction, are shown in Table 2. 
 

 
Table 2 - Intermediate Aggregate Sources 

 
  Source 

 
A-Number 

Durability 
Class 

 
District / County 

% 
Carbonate 

Rockford A34502 2 2/Floyd 47 

Ames South A85510 2 1/Story 54 

Army Post Road A77520 2 1/Polk 26 

Harlan A83504 3 4/Shelby 8 

Woodbine-McCann A43512 3 4/Harrison 15 

Anthon A97522 3 3/Woodbury 30 

Bellevue A49526 3I 6/Jackson 0 

Turner A49516 3I 6/Jackson 0 

Fort Dodge limestone A94002 3I 1/Webster 100 

Test Procedure 
 
Two mixes were weighed, batched, and mixed according to ASSHTO T126 for each source.  A 0.9 cubic foot 
batch was sufficient quantity to allow for air and slump tests as well as the fabrication of 6 durability beams.  A 
total of 108 durability beams were tested. 
 
One mix used washed intermediate aggregate while the second mix used salt soaked intermediate aggregate.  
Salt soaked aggregates were prepared by heating the aggregate to 230 °F for 12 hours.  Next, 1000 grams of 
sodium chloride (NaCl) is dissolved in hot tap water.  This salt solution is then poured over the hot aggregate until 
the aggregate is entirely immersed.  The aggregate is soaked for 24 hours in the salt solution.  Finally, the 
aggregate is removed from the salt solution and rinsed.  The rinsed aggregate is dried to SSD condition for 
incorporation into the mix.   
 
All beams were fabricated and tested according to ASTM 666 procedure B.  In order to compare to previous 
freeze thaw durability testing, 89 days of moist room curing was conducted.  Testing was terminated when either 
300 freeze-thaw cycles were completed or until a relative dynamic modulus of elasticity of 60 percent was 
reached.  After freeze thaw durability testing was terminated the beams were removed from the freezer and 
stored in the freezer room.   
 
After the completion of durability testing, a sample was obtained from each set of beams.  The samples were 
polished using a lapping wheel.  The sections were examined using an optical microscope and SEM.  Qualitative 
observations were made to determine if the intermediate aggregate exhibited any potential for increased 
deterioration.    

ASTM C 666 Results 
 
The results of the ASTM C 666 method B freeze thaw durability testing are found in Table 1. Graphical 
representation of the relative durability factor (DF) and percent growth are found in Figures 1 and 2.  Individual 
beam test data are found in the Appendix. 
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Table 3 – ASTM C 666 Method B data 

 
Source 

% Expansion Durability Factor 

No-salt Salt No-salt Salt 

Rockford 0.0031 0.0039 90 89 

Ames South 0.0028 0.0048 91 89 

Army Post  0.0020 0.0025 92 92 

Harlan  0.0014 0.0020 94 93 

Woodbine-McCann  0.0023 0.0040 92 90 

Anthon  0.0039 0.0060 91 90 

Bellevue  0.0041 0.0039 91 93 

Turner  0.0040 0.0043 90 88 

Fort Dodge  0.0035 0.0033 90 89 

 
 
 

Figure 1 – Average ASTM C 666 B durability factors salt and non-salt by source 
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Figure 2 – Average expansion for salt and non-salt by source 

 
 

Petrographic analysis 
 
Since little difference was noted between the freeze thaw durability beams, sections from a sampling of the salt 
soaked aggregate beams were examined for petrographic analysis.  Two Class 2 sources, two Class 3 source, 
and one Class 3I source examined to determine if any of the intermediate aggregates showed signs of distress.  
One sample was obtained from the middle of the beam and one near the edge of the beam.  Polished sections 
were obtained from the beams and examined under an optical microscope.  The optical images overall view are 
shown in Figures 3-12. 
 

Figure 3 – Rockford optical images (no salt) - middle (l), edge (r) 
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Figure 4 – Rockford optical images (salt) - middle (l), edge (r) 

 
 
 

Figure 5 – Army Post Road optical images (no salt) - middle (l), edge (r) 

 
 
 

Figure 6 - Army Post Road optical images (salt) - middle (l), edge (r) 
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Figure 7 - Anthon optical images (salt) - middle (l), edge (r) 

 
 
 

Figure 8 – Woodbine optical images (salt) - middle (l), edge (r) 

 
 
 

Figure 9 - Bellevue optical images (no salt) - middle (l), edge (r) 
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Figure 10 - Bellevue optical images (salt) - middle (l), edge (r) 

 
 

Little deterioration was noted in any of the samples investigated.  Salt was concentrated in a rim around a few 
aggregate particles, but no deterioration was noted.  Pyrite, found in some samples, also exhibited little signs of 
deterioration.  
 

Figure 11 – Salt concentrated around aggregate in Woodbine sample 
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Figure 12 – Pyrite in Bellevue salt sample 

 
 

Discussion 
 
Based on ASTM C 666 freeze thaw durability testing Method B, it appears that addition of pea gravel at 19 
percent relative of total aggregate, does not drastically affect the durability rating, salt or non salt, as compared to 
the control, regardless of the gravel durability classification.  The percent growth increases slightly in the salt soak 
specimens, especially in those sources with higher amounts of carbonate fraction. 
 
Typically, approximately 10 to 12 percent pea gravel is needed to achieve a well graded Shilstone aggregate 
combination using a coarse aggregate meeting Gradation No. 3 and a sand meeting Gradation No. 1. This 
research was conducted at a much higher percentage that would typically be required.  Since 19 percent pea 
gravel had relatively minimal influence on durability rating, using a lower percentage of pea gravel should have 
even lesser affect on durability. 

Conclusions and Recommendations 
 
Based on the findings of this report, the following recommendations: 
 

 When Class 3I aggregate is required, utilize pea gravels from Class 2 or Class 3 sources as an 
intermediate aggregate, limited to 15% of the total aggregate. 

 

 Develop specifications for pea gravel to limit amounts of deleterious materials.  
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Figure 13 – Aggregate Gradations 

 
 
 
 
 

Coarse

Source State ID

Specific 

Gravity SSD 3" 2 1/2" 2" 1 1/2" 1" 3/4" 1/2" 3/8" #4 #8 #16 #30 #50 #100 #200

Fort Dodge A94002 2.66 100.0 100.0 100.0 100.0 100.0 75.0 52.0 15.0 2.5 1.0 0.9 0.8 0.7 0.6 0.5

0.0 0.0 0.0 0.0

Intermediate

Source State ID

Specific 

Gravity SSD 3" 2 1/2" 2" 1 1/2" 1" 3/4" 1/2" 3/8" #4 #8 #16 #30 #50 #100 #200

Army Post A77520 2.65 100.0 100.0 100.0 100.0 100.0 100.0 100.0 80.0 5.0 0.5 0.4 0.4 0.3 0.3 0.2

Bellevue A49526 DWU 100.0 100.0 100.0 100.0 100.0 100.0 100.0 90.0 3.4 0.6 0.5 0.4 0.3 0.2 0.1

Turner A49516 2.63 100.0 100.0 100.0 100.0 100.0 100.0 99.0 63.0 1.0 0.6 0.5 0.5 0.4 0.4 0.3

Ames South A85510 2.66 100.0 100.0 100.0 100.0 100.0 100.0 100.0 88.0 1.3 0.2 0.2 0.2 0.1 0.1 0.1

Harlan A83504 2.67 100.0 100.0 100.0 100.0 100.0 100.0 100.0 97.0 40.0 2.9 2.4 1.8 1.3 0.7 0.2

Rockford A34502 2.68 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.0 12.8 4.5 3.8 3.0 2.3 1.5 0.8

Woodbine McChan A43512 DWU 100.0 100.0 100.0 100.0 100.0 100.0 100.0 96.0 19.0 5.7 4.6 3.5 2.4 1.3 0.2

Anthon A97522 2.72 0.0 0.0 0.0 0.0

Fort Dodge A94002 2.66 100.0 100.0 100.0 100.0 100.0 100.0 99.0 74.0 7.6 1.7 1.5 1.2 1.0 0.7 0.5

Average 100.0 100.0 100.0 100.0 100.0 100.0 100.0 86.0 11.0 2.1 1.7 1.4 1.0 0.7 0.3

Fine

Source State ID

Specific 

Gravity SSD 3" 2 1/2" 2" 1 1/2" 1" 3/4" 1/2" 3/8" #4 #8 #16 #30 #50 #100 #200

Cordova AIL520 DWU 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 95.0 87.0 73.0 38.0 6.0 0.9 0.4

100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
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Figure 14 – Mix Proportions 

 
 
  

GENERAL INFORMATION

PROJECT: Intermediate Agg.

PROJECT TITLE: #REF!

MIX TYPE: QM-C

MIX NUMBER: fortdodge

DATE: 09/21/00

MATERIALS Source Type/Class SPG Percent Percent

CEMENT: Holnam I/II 3.14

FLY ASH: Ottumwa C 2.61 20.00

MINERAL ADMIXTURE: 0.00

SILICA FUME SLURRY: 0.00

FINE AGGREGATE: AIL520 2.67 38.00

COARSE AGGREGATE: A94002 2.66 43.03 69.40

INTERMEDIATE AGGREGATE: A94002 2.66 18.97 30.60

AIR ENTRAINING AGENT: DARAVAIR 1400

RETARDER:

WATER REDUCER: WRDA-82

SUPER WATER REDUCER:

ACCELERATOR:

DESIGN W/C(+FLY ASH): 0.40

DESIGN SLUMP: 1.8

DESIGN AIR CONTENT: 7.0

QUANTITIES (absolute volume method in SSD condition)

Volume Volume Weight Weight Weight

ft3 ft3 lbs lbs lbs

Batch Size Batch Size Batch Size Batch Size Lab Batch Size

1.0 yd3 1.0 ft3 1.0 ft3 1.0 yd3 0.9

CEMENT: 2.2853 0.0846 X 3.14 X 62.4 = 16.6 448 14.9

FLY ASH: 0.6873 0.0255 X 2.61 X 62.4 = 4.1 112 3.7

MINERAL ADMIXTURE: 0.0000 0.0000 0.0 0 0

SILICA FUME SLURRY: 0.0000 0.0000 0.0 0 0

WATER: 3.5879 0.1329 X 1.00 X 62.4 = 8.3 224 7.5

FINE AGGREGATE: 7.0488 0.2611 X 2.67 X 62.4 = 43.5 1174 39.1

COARSE AGGREGATE: 7.9815 0.2956 X 2.66 X 62.4 = 49.1 1325 44.2

INTERMEDIATE AGGREGATE: 3.5192 0.1303 X 2.66 X 62.4 = 21.6 584 19.5

AIR: 1.8900 0.0700 X 0.00 X 62.4 = 0.0 0 0.0

Summation 27.0000 1.0000 143.2 3867 128.9

Paste Content 24.3

Mortar Content (abs vol) 57.4

Mortar Content (% pass) 54.6

CHEMICAL ADMIXTURES

Rate Rate Rate

ml ml ml

Rate Batch Size Batch Size Lab Batch Size

oz/100 lbs cementitious 1.0 ft3 1.0 yd3 0.9

AIR ENTRAINING AGENT: 0.8 20.73 X 0.008 X 29.57 = 4.9 132.4 4.4

RETARDER:

WATER REDUCER: 3.5 20.73 X 0.035 X 29.57 = 21.5 579.3 19.3

SUPER WATER REDUCER:

ACCELERATOR:
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Figure 15 – Coarseness and Workability Factors  
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Figure 16 – Combined Percent Passing Gradations 0.45 Power Curve 
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Figure 17 – ASTM C 666 B Individual Beam Test Results 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 18 – Rockford freeze thaw beams Rockford (no salt) 

 
 
 

Figure 19 – Rockford freeze thaw beams (salt) 

 
 
 
 
 
 
 
 
 

No Salt Salt No Salt Salt No Salt Salt No Salt Salt No Salt Salt No Salt Salt No Salt Salt No Salt Salt No Salt Salt
Beam 1 0.0034 0.0047 0.0021 0.0047 0.0017 0.0029 0.0013 0.0017 0.0027 0.0042 0.0027 0.0065 0.0046 0.0032 0.0048 0.0031 0.0032 0.0038

Beam 2 0.0036 0.0029 0.0033 0.0048 0.0023 0.0027 0.0018 0.0020 0.0016 0.0038 0.0050 0.0062 0.0039 0.0044 0.0040 0.0033 0.0033 0.0031

Beam 3 0.0022 0.0040 0.0030 0.0050 0.0021 0.0018 0.0012 0.0022 0.0026 0.0040 0.0041 0.0052 0.0039 0.0041 0.0032 0.0066 0.0039 0.0031

Avg. 0.0031 0.0039 0.0028 0.0048 0.0020 0.0025 0.0014 0.0020 0.0023 0.0040 0.0039 0.0060 0.0041 0.0039 0.0040 0.0043 0.0035 0.0033

No Salt Salt No Salt Salt No Salt Salt No Salt Salt No Salt Salt No Salt Salt No Salt Salt No Salt Salt No Salt Salt
Beam 1 89 86 89 90 92 91 94 93 90 90 91 90 92 91 87 87 87 85

Beam 2 88 92 92 86 93 91 93 93 92 91 91 89 91 93 91 90 91 89

Beam 3 92 89 91 90 92 92 96 92 95 90 91 91 88 93 92 87 90 92

Avg. 90 89 91 89 92 92 94 93 92 90 91 90 91 93 90 88 90 89

Anthon Bellevue Turner Fort DodgeRockford Ames Army Post Harlan Woodbine McCane
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Figure 20 – Ames South freeze thaw beams (no salt) 

 
 
 
 

Figure 21 – Ames South freeze thaw beams (salt) 

 
 
 

Figure 22 – Army Post Road freeze thaw beams (no salt) 

 
 
 

Figure 23 – Army Post Road freeze thaw beams (salt) 
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Figure 24 – Harlan freeze thaw beams (no salt) 

 
 

Figure 25 – Harlan freeze thaw beams (salt) 

 
 
 

Figure 26 – Woodbine-McCann freeze thaw beams (no salt) 

 
 
 

Figure 27 – Woodbine-McCann freeze thaw beams (salt) 
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Figure 28 – Anthon freeze thaw beams (no salt) 

 
 
 

Figure 29 – Anthon freeze thaw beams (salt) 

 
 
 

Figure 30 – Bellevue freeze thaw beams (no salt) 

 
 
 

Figure 31 – Bellevue freeze thaw beams (salt) 
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Figure 32 – Turner freeze thaw beams (no salt) 

 
 
 

Figure 33 – Turner freeze thaw beams (salt) 

 


