United States Environmental Protection Agency Region 7 2018 Decision Document # Iowa's Clean Water Act Section 303(d) List Water Quality Limited Segments Still Requiring TMDLs Jeffery Robichaud Director Water Division (This page intentionally left blank) ### DECISION DOCUMENT OF THE 2018 IOWA CLEAN WATER ACT, SECTION 303(d) LIST WATER QUALITY LIMITED SEGMENTS STILL REQUIRING TMDLS #### I. EXECUTIVE SUMMARY On February 24, 2020, the Iowa Department of Natural Resources submitted its 2018 Clean Water Act Section 303(d) List to the United States Environmental Protection Agency for review, herein referred to as the submittal. Following its review of Iowa's complete submittal, in accordance with 40 CFR § 130.7(d)(2), the EPA is approving Iowa's 2018 CWA Section 303(d) List (Category 5 of their 2018 IR), consisting of a total of 622 water bodies with 786 water body/pollutant combinations. This document summarizes the EPA's review and the basis for its decision. Section 303(d)(1) of the CWA directs states to identify those waters within their jurisdictions for which effluent limitations required by Section 301(b)(1)(A) and (B) are not stringent enough to implement any applicable water quality standard (referred to as 'water quality-limited segments' defined in 40 C.F.R. 130.7), and to establish a priority ranking for such waters, taking into account the severity of the pollution and the uses to be made of such waters. The CWA Section 303(d) listing requirement applies to water quality-limited segments impaired by pollutant loadings from both point and/or nonpoint sources. After a state submits its CWA Section 303(d) list to the EPA, the Agency is required to approve or disapprove that list. In its submittal, the IDNR included its assessment methodology to identify waters that do not meet the state's approved water quality standards and, therefore, are required to be included on CWA Section 303(d) lists. Water quality data that meet the assessment criteria included within the state's 2018 revised methodology were evaluated by the IDNR. The methodology establishes specific protocols and thresholds for assessing water bodies, in addition to data sufficiency and data quality requirements. The methodology contains procedures for assessing both aquatic life use support and human health use support. In 2000, the Iowa legislature enacted its "Credible Data Law" which sets out, in statute, minimum requirements for the use of water quality data for purposes of state water quality standards development and review, water quality assessment, changes to the state's CWA Section 303(d) list, determining designated use support or classification, identification of water quality degradation and establishment of TMDLs. The IDNR has stated that nearly all recent water quality data have already been used for Section 305(b) assessments and thus have already been considered for Section 303(d) listings. Also, a listed water body will not be removed from the state's Section 303(d) List simply because the data upon which the impairment was based have aged beyond five years. All waters which were included in Iowa's approved 2018 CWA Section 303(d) List will remain on the state's CWA Section 303(d) list, unless the IDNR removes a water body from a future list and the EPA approves the removal. The IDNR's submittal for the EPA review includes: Water bodies which the IDNR determined to be water quality-limited segments pursuant to the state's listing methodology and, therefore, included in the CWA Section 303(d) List which the IDNR submitted to the EPA for review; and • Water bodies on Iowa's previously approved 2016 CWA Section 303(d) List which were determined not to need TMDLs pursuant to the listing methodology and, therefore, removed from the CWA Section 303(d) List submitted to the EPA for review. While the guidelines, protocols, and requirements in state statute and the IDNR listing methodology might be useful tools for the IDNR to use in identifying impaired waters, they are not part of the state's EPA-approved water quality standards. Hence, the EPA did not rely solely on the state's statute or the methodology in reviewing Iowa's list. Instead, the EPA reviewed all available information including any information excluded under the state's methodology, to determine if the state's list was developed consistent with the state's underlying EPA-approved water quality standards. The EPA's review process generally followed a two-step analysis: - 1) The EPA reviewed the state's listing methodology, including data collection and data assessment requirements, to determine whether, based on Iowa's EPA-approved water quality standards, the methodology was a reasonable method for identifying water quality-limited segments; and - 2) Where the EPA was unsure whether the methodology was a reasonable method for identifying water quality-limited segments, the Region requested additional information from the IDNR to conduct further water body and data analysis. Following the EPA's decision on Iowa's 2018 submission, the current CWA Section 303(d) List in the state of Iowa contains: - approved removals from the 2016 CWA Section 303(d) List (Table 1); and - an approved 2018 CWA Section 303(d) list with new listings identified (Table 2). The statutory and regulatory requirements relevant to CWA Section 303(d) lists, and the EPA's review of Iowa's compliance with each requirement, are described in detail below. The EPA's approval of Iowa's Section 303(d) List extends to all water bodies on the list with the exception of those waters that may be located within Indian Country, as defined in 18 U.S.C. Section 1151. The EPA is taking no action to approve or disapprove the state's list with respect to those waters at this time. The EPA, or eligible Indian Tribes, as appropriate, will retain responsibilities under Section 303(d) for those waters. In addition, the EPA approval actions of state Section 303(d) lists do not constitute a finding of state and/or tribal jurisdiction over particular waters. #### II. STATUTORY AND REGULATORY BACKGROUND # A. Identification of Water Quality-limited Segments for Inclusion on the CWA Section 303(d) List Section 303(d)(1) of the CWA directs a state to identify those waters within its jurisdiction for which effluent limitations required by Section 301(b)(1)(A) and (B) are not stringent enough to implement any applicable water quality standard, and to establish a priority ranking for such waters, taking into account the severity of the pollution and the uses to be made of such waters. The Section 303(d) listing requirement applies to waters impaired by point and/or nonpoint sources, pursuant to the EPA's long-standing interpretation of Section 303(d). The EPA regulations at 40 CFR 130.7(b)(1) provide that states do not need to list waters where the following controls are adequate to implement applicable standards: - technology-based effluent limitations required by the CWA; - more stringent effluent limitations required by state or local authority; and - other pollution control requirements required by state, local, or federal authority. # B. Consideration of Existing and Readily Available Water Quality-Related Data and Information In developing Section 303(d) lists, states are required to assemble and evaluate all existing and readily available water quality related data and information, including, at a minimum, consideration of existing and readily available data and information about the following categories of waters: - Waters identified as partially meeting or not meeting designated uses, or as threatened, in the state's most recent Section 305(b) report; - Waters for which dilution calculations or predictive modeling indicate non-attainment of applicable standards; - Waters for which water quality problems have been reported by governmental agencies, members of the public, or academic institutions; and - Waters identified as impaired or threatened in any Section 319 nonpoint assessment submitted to EPA (see 40 CFR § 130.7(b)(5)). States are also required to consider any other data and information that is existing and readily available. The EPA's 1991 Guidance for Water Quality-Based Decisions describes categories of water quality related data and information that may be existing and readily available (see Guidance for Water Quality-Based Decisions, The TMDL Process, EPA Office of Water, 1991, Appendix C ("EPA's 1991 Guidance")). While states are required to evaluate all existing and readily available water quality-related data and information, states may decide to rely or not rely on particular data or information in determining whether to list particular waters. In addition to requiring states to assemble and evaluate all existing and readily available water quality-related data and information, the EPA regulations at 40 CFR § 130.7(b)(6) require states to include as part of their submissions to the EPA, documentation to support decisions to rely or not to rely on particular data and information and decisions to list or not to list waters. Such documentation needs to include, at a minimum, the following information: - a description of the methodology used to develop the list; - a description of the data and information used to identify waters; - a rationale for any decision to not use any existing and readily available data and information; and - any other reasonable information requested by the Region. ### C. Priority Ranking and Long Term Vision The EPA regulations also codify and interpret the requirement in the CWA, Section 303(d)(1)(A) of the Act, that states establish a priority ranking for listed waters. The regulations at 40 CFR § 130.7(b)(4) require states to prioritize waters on their Section 303(d) lists for TMDL development, and also to identify those water quality-limited segments targeted for TMDL development in the next two years. In prioritizing and targeting waters, states must, at a minimum, take into
account the severity of the pollution and the uses to be made of such waters (see CWA Section 303(d)(1)(A)). As long as these factors are taken into account, the Act provides that states establish priorities. States may consider other factors relevant to prioritizing waters for TMDL development, including immediate programmatic needs, vulnerability of particular waters as aquatic habitats, recreational, economic, and aesthetic importance of particular waters, degree of public interest and support, and state or national policies and priorities (see 57 FR 33040, 33045 [July 24, 1992], and the EPA's 1991 Guidance). For the 2018 Integrated Report, the state initiated a priority vision which identifies the state's priorities. The state has identified Tier I through Tier IV waters based on the water body/ and Reporting Pursuant to Sections 305(b) and 303(d) of the Federal Clean Water Act. (March 28, 2017) - Attachment 7: State of Iowa Long-Term Vision for Assessment, Restoration, and Protection under the Clean Water Act Section 303(d) Program (updated September 2019). A full discussion of this long-term vision can be found in the state submittal, Methodology for Iowa's 2018 Water Quality Assessment, Listing, and Reporting Pursuant to Sections 305(b) and 303(d) of the Federal Clean Water Act. # III. IOWA'S APPROACH TO IDENTIFYING WATERS FOR THE 2018 SECTION 303(d) LIST ### A. Iowa's 2018 Integrated Report Format The EPA guidance for states in meeting the requirements of CWA Section 303(d) recommends a format which integrates the requirements of both CWA Sections 305(b) and 303(d) in creating a five category "integrated report" format. The 2018 Iowa submission under CWA Section 303(d) is the seventh submission by the state of Iowa using this "integrated report" format. Category 5 of the 2018 integrated report (IR) constitutes Iowa's list of impaired waters for purposes of CWA Section 303(d), and is subject to the EPA's review and approval. The EPA is taking action only on Category 5 which includes water quality-limited segments still requiring TMDLs. The following describes the five categories constituting Iowa's IR and the number of water bodies assigned to each category by the IDNR. Under Iowa's five category system, most water bodies are assigned to one category. The information below regarding Categories 1-4 is provided for information purposes only, as the EPA does not approve Categories 1-4 but does approve Category 5. Category 1 consists of 11 water body segments attaining all designated uses and no use is threatened. Category 2 consists of 352 water body segments for which some, but not all, designated uses are attained and none are threatened. Attainment status of the remaining designated uses is unknown because data are insufficient to categorize a water body consistent with the state's listing methodology. Category 3 consists of 292 water body segments for which there are insufficient or no data and information to determine, consistent with the state's listing methodology, if any designated use is impaired or attained. Category 4 consists of 145 water body segments for which one or more designated uses are impaired or threatened but establishment of a TMDL is not required. Category 5 consists of 622 water body segments for which one or more pollutants has caused, is suspected of causing, or is projected to cause an impairment or threat of impairment of one or more designated uses and the establishment of a TMDL is required. This category also includes those segments for which impairment is indicated, but the cause or source is unknown and segments for which the impairment is to a presumed use. In total this category contains 786 impairments. The state's IR format includes sub-categories within Categories 3, 4 and 5. Only water body segments within Category 5 are subject to the EPA's approval. Within Category 3, the IDNR has added Category 3b which includes those water body segments for which there is "evaluated data" which suggest a potential impairment. According to the IDNR's methodology, "waters 'evaluated' as impaired are identified as having insufficient data to determine whether beneficial uses are met." In short, those data determined by the IDNR to be "evaluated data" are not deemed by the IDNR to be of adequate quality or quantity to support a determination that a use designated within state water quality standards is or is not being met. Iowa's use of a category of "evaluated data" for statistical analysis is allowed in the EPA's guidance. Iowa uses this analysis to ensure statistical certainty before listing a water body segment as impaired. The water body segments listed within Category 3b where there is a potential impairment are placed by the IDNR on a list of waters in need of further investigation. This list serves to support the EPA's evaluation of the IDNR's data assessment process and its determination that all water quality-limited segments were listed by the IDNR in Category 5. Subcategory 3b is also subdivided into -c and -u. In the case of -c, a biological assessment has been conducted for a water body segment where the drainage area is within the range of calibration for the assessment protocol; -u indicates an assessment for a water body segment outside the calibration range. The state's IR format also incorporates an expansion of Category 4 into four sub-categories. Sub-category 4a includes waters that are threatened or impaired, but for which a TMDL has been completed and approved by the EPA. Sub-category 4b includes waters that are threatened or impaired, but for which "other required control measures are expected to result in the attainment of water quality standards." Sub-category 4c includes waters where the "threat or impairment is not caused by a pollutant." Sub-category 4d includes waters impaired by a fish kill but where enforcement actions have been taken against a responsible party. Sub-categories 4a through 4c are recognized within the EPA's guidance for the development of an integrated report. However, sub-category 4d constitutes a variation on the EPA's guidance. The EPA considers Iowa's 4d category to be equivalent to EPA's category 4b. For the purposes of tracking in ATTAINS all Iowa 4d waters will be categorized as 4b. The EPA's review of the state categories and sub-categories was conducted within the context of whether or not a water body segment should be listed within Category 5 based on existing and readily available data and information. The state's IR format also included three subcategories within Category 5 which distinguish between whether the cause of impairment is known (Category 5a), the cause of impairment is unknown (Category 5b), or the cause of the impairment is presumptive pending the completion of use attainability analyses (Category 5p). #### B. Iowa's 2018 The IDNR's "Methodology for Iowa's 2018 Water Quality Assessment, Listing, and Reporting Pursuant to Sections 305(b) and 303(d) of the Federal Clean Water Act," (December 31, 2019), guides the IDNR's evaluation of "existing and readily available water quality-related data and information" (40 CFR 130.7(b)(5)) and identification of "water quality-limited segments still requiring TMDLs" (40 CFR 130.7(a). As described earlier, Category 5 of the 2018 list constitutes Iowa's list of impaired waters for purposes of CWA Section 303(d) and is subject to the EPA's review and approval. The EPA is taking action only on Category 5 which consists of water quality-limited segments still requiring TMDLs. There were no changes in the IDNR's methodology since the 2016 reporting cycle. According to the state's "Listing Methodology," data sources used to assess water quality conditions in Iowa for purposes of Section 305(b) reporting and to aid in developing the state's 303(d) list include: - 1) Physical, chemical, and biological data from ambient fixed station water quality monitoring networks conducted by the IDNR and other agencies (e.g., the U.S. Geological Survey, the U.S. Army Corps of Engineers); - 2) Data from water quality monitoring conducted by adjacent states on border rivers and waters flowing into the state; - 3) Data from biological monitoring being conducted by the IDNR in cooperation with the University of Iowa Hygienic Laboratory; - 4) Data from IDNR-sponsored monitoring of shallow natural lakes; - 5) Data from the IDNR-sponsored statewide lake monitoring project conducted by the Iowa State University and the University of Iowa Hygienic Laboratory; - 6) Data from monitoring of bacterial indicators in rivers and at beaches of publicly-owned lakes; - 7) Data from programs to monitor fish tissue for toxic contaminants; - 8) Reports of pollutant-caused fish kills; - 9) Data from state-wide survey of freshwater mussels; - 10) Data, when available, from public water supplies on the quality of raw and finished water; - 11) Drinking water source assessments under Section 1453 of the Safe Drinking Water Act; - 12) Data from special studies of water quality and aquatic communities; - 13) Best professional judgment of the IDNR staff; - 14) Results of volunteer monitoring (e.g., by IOWATER trained volunteers); and - 15) Water related information received from the public. Additionally, sources of all existing and readily available water quality related data and information to be considered specifically for developing the state's 303(d) list include, but are not limited to, the following: - 1) Iowa's most recent 305(b) report; - 2) CWA Section 319 nonpoint source assessments; - 3) Dilution calculations, trend analyses, or predictive models for determining the physical, chemical, or biological integrity of streams, rivers, lakes, and estuaries; and - 4) Water quality related data and water related information from local, state, territorial, or federal agencies (especially the U.S. Geological Survey's National Water Quality Assessment Program and National Stream Quality Accounting Network), tribal
governments, members of the public, and academic institutions. ### C. Coordination with Other States on the Mississippi and Missouri Rivers The EPA's Guidance for 2006 Assessment, Listing and Reporting Requirements Pursuant to Sections 303(d), 305(b) and 314 of the Clean Water Act contains recommendations on how states should handle shared waters with regard to the sharing of water quality data, assessment decisions for those shared waters, and accounting for the listing decision inconsistencies between states. The guidance further recommends that the EPA Regional offices and Interstate Commissions, where applicable, should assist in resolving inconsistencies among states with shared waters, where they arise. The IDNR's 2018 assessment methodology specifically addresses the IDNR's coordination efforts with other state agencies regarding data assembly and evaluation for "border rivers and waters flowing into the state." Due to a 2004 interstate agreement (memorandum of understanding) developed by the Upper Mississippi River Basin Association's Water Quality Task Force, the IDNR implemented the uniform assessment reaches for the Iowa reach of the Upper Mississippi River that are consistent with assessment reaches used by the adjacent states of Wisconsin and Illinois. Data from water quality monitoring conducted by adjacent states on border rivers and waters flowing into the state include data from: South Dakota, Minnesota, Wisconsin, Illinois, Missouri, and Nebraska. Data from fixed-station ambient water quality monitoring programs were used for purposes of water quality assessments in Iowa. Attachment 8 of Iowa's methodology document provides a summary of reaches Iowa shares with adjacent states. These continuing efforts will improve states' efforts to satisfy the requirements of CWA Sections 303(d) and 305(b) for data assembly and evaluation for border rivers and waters flowing into the state. # IV. THE EPA'S ANALYSIS OF IOWA'S APPROACH TO LISTING WATERS FOR THE 2018 LIST The EPA is approving Iowa's 2018 CWA Section 303(d) List, based on the requirements of Section 303(d) of the CWA and 40 CFR § 130.7. The EPA's action is based on its analysis of whether the IDNR reasonably identified all water quality-limited segments requiring listing. In determining whether the IDNR reasonably identified all water quality-limited segments still needing a TMDL, the EPA first looked at the IDNR's use support determinations as documented in the state's ADB+ database. The IDNR's 2018 assessment methodology identifies a general "cutoff date" as the end of calendar year 2016, for data collection in support of the IDNR's water quality data assessment. The EPA's guidance recognizes the appropriateness of a reasonable data collection cutoff date allowing states to initiate actual data assessment and list preparation. Data not considered for the 2018 assessment should be considered for the 2020 submission. Despite the application of a "cutoff date" by the IDNR for the development of the 2018 list, the IDNR considered data submitted as part of the state's public notice and comment period from November 14, 2019 through December 28, 2019. The EPA believes the IDNR complied with the requirements of federal regulations at 40 CFR § 130.7(b)(5) regarding the assembly and evaluation of all existing and readily available water quality-related data and information. The 2018 assessment methodology also discusses the IDNR's treatment of water quality-related data collected more than five years prior to the current assessment period. Federal regulations and guidance recognize that, in some instances, older data might not reflect current water quality conditions. Where the state demonstrates "good cause" for not including older data in the derivation of its list, federal regulations at 40 CFR § 130.7(b)(6)(iv) provide for the state not including a water or waters on its list. However, a demonstration of "good cause" relies on the state showing that there are changes in condition in the watershed or water body which result in older data not being representative of current water quality status. According to the IDNR's 2018 methodology, recent water quality data have already been used for Section 305(b) assessments and thus have already been considered for Section 303(d) listings. There are no water bodies left off the list because the data were more than five years old. Also, a listed water body will not be removed from the state's Section 303(d) list simply because the data upon which the impairment was based have aged beyond five years. To confirm that Iowa's CWA Section 303(d) List was developed in a manner compliant with the requirements at 40 C.F.R. Part 130.7 (regarding the assembly and evaluation of "all existing and readily available water quality-related data and information"), the EPA reviewed the information contained in the IDNR's ADB+ database for all waters listed in Iowa's Integrated Report Category 5 proposed for delisting. ### V. THE EPA'S ANALYSIS OF CHANGES TO THE IOWA CWA SECTION 303(d) LIST The EPA compared waters listed in Category 5 of the state's 2016 IR with waters listed in Category 5 of the state's 2018 IR to determine whether waters were removed from the list, pollutants identified as causing impairment were changed, or water body descriptions had changed. In each case, such changes could constitute a change to the state's CWA Section 303(d) List requiring the EPA's approval. As described earlier in this document, Iowa's 2018 CWA Section 303(d) List is a part of the state's IR. The IR format is consistent with the EPA's guidance and includes five categories of waters. Category 5 of the state's IR constitutes the state's 2018 CWA Section 303(d) List. In its review of the state's entire 2018 list, the EPA has reviewed Iowa's description of the data and information the state relied upon in developing its list, its methodology for identifying water bodies and the IDNR's responses to public comment. In accordance with 40 CFR § 130.7(d)(2), the EPA is approving Iowa's 2018 CWA Section 303(d) List (Category 5 of their 2018 IR), consisting of a total of 622 water bodies with 786 water body/pollutant combinations. The-EPA reviewed the proposed removals to determine whether the IDNR had "good cause" for modifying or not including these waters on its 2018 CWA Section 303(d) List. The changes are identified below. ### A. Waters Removed by IDNR from Iowa's CWA Section 303(d) List and Approved by EPA The EPA is approving the Iowa's CWA Section 303(d) List which reflects the modification to or removal of 23 water bodies (25 water body/pollutant combinations) consistent with the requirements of federal regulations at 40 CFR 130.7(b)(6)(iv). Section 40 CFR 130.7(b)(6)(iv) provides for the exclusion of waters from the state's CWA Section 303(d) list. These regulations require that the state "demonstrate good cause" for not including water or waters on the list. The reasons for each delisting were included in the ADB submittal, and additional details were provided to the EPA in the form of a responsiveness summary prior to the final Section 303(d) list submittal. The following are the general reasons cited for removal of water bodies from the Section 303(d) list: - A TMDL has been approved by the EPA which addresses the cause of impairment. - The state review identified flaws in original listings, attributable to errors associated with segment identifiers, or the use of inapplicable criteria. - An enforcement action has been undertaken to address the cause of a fish kill. - New data shows the water body is meeting water quality standards. The rationale supporting the removal of these 23 waters (25 water body/pollutant combinations) from the state's list can be grouped into four general categories and are also identified below. Some of the waters have multiple pollutants and/or multiple causes for delisting. ### 1. Waters with Approved TMDLs, alternatives or not impaired by pollutant (Three waters) ### a) TMDLs (three waters, listed by water body identification number) Three water body segments are being removed from the state's list because TMDLs have been developed for those waters and approved by the EPA. In each instance, a TMDL has been developed for the listed pollutant or condition or the IDNR and the EPA have agreed that the TMDL will address the listed pollutant or condition. For some waters, they continue to be listed in Iowa's Category 5 for another pollutant or condition, or they are listed in another Category within Iowa's IR based on other water quality data. These waters are included in Table 1 with information regarding each TMDL described in the last column. Each water body and the rationale for moving it from Category 5 are listed below. Lake of the Hills (IA 01-NEM-00160-L_0, now IA 01-NEM-68) - Iowa previously listed Lake of the Hills as impaired for not meeting a passing score for its index of biological integrity. On June 20, 2018 the EPA approved an Iowa TMDL for biological integrity allocating loads for Algal Growth: Chlorophyll a. As such, this water body/pollutant pair is appropriate for removal from Iowa's § 303(d) List. In today's action, the EPA is approving the delisting of Lake of the Hills because it no longer requires the development of a TMDL for biological integrity, consistent with 40 CFR § 130.7(b). Windmill Lake (IA 05-PLA-00430-L_0, now IA 05-PLA-1482) - Iowa previously listed Windmill Lake as impaired for Algal Growth: Chlorophyll a. On June 26, 2018, the EPA approved an Iowa TMDL for Algae and Turbidity. As such, this water body/pollutant pair is appropriate for removal from Iowa's § 303(d) List. In today's action, the EPA is approving the delisting of Iowa Lake because it no longer requires the development of a TMDL for algae, consistent with 40 CFR § 130.7(b). **Windmill Lake** (IA 05-PLA-00430-L_0, now IA 05-PLA-1482) - Iowa previously listed Windmill Lake as impaired for turbidity. On June 26,
2018, the EPA had approved an Iowa TMDL for Algae and Turbidity. As such, these water body/pollutant pairs are appropriate for removal from Iowa's § 303(d) List. In today's action, the EPA is approving the delisting of Windmill Lake because it no longer requires the development of a TMDL for turbidity, consistent with 40 CFR 130.7(b). #### b) Other pollution control requirements (one water, listed by water body identification number) One water body is being removed from the state's list because legal action consisting of both restitution and corrective action designed to prevent future releases of manure was taken. There have been no additional fish kills in this segment: **Sewer Creek (IA 01-LSR-6621)** - Iowa previously listed Sewer Creek as impaired because of fish kills. A responsible party was identified, corrective action was taken and restitution was sought and received for the results of the fish kill, caused from animal waste from a storage basin that discharged to an unnamed tributary of Sewer Creek through a tile line. Upon discovery of the issue the tile was plugged, and a berm was built to stop the flow of manure and the manure was pumped out. The basin was repaired and monitoring showed that within a day live fish were observed in the creek and ammonia and dissolved oxygen levels in the area returned to near normal. A total of \$3,500 in restitution and investigative costs were required. ### 2. New Data Supports Change in Listing (15 waters, listed by water body identification number) Fifteen water body segments are being removed from the state's list based on new water quality data which indicates the use is supported with regard to the previously specified pollutants: Plum Creek (IA 01-MAQ-0220_1, now IA 01-MAQ-46) - Iowa previously listed Plum Creek as impaired for not meeting a passing score for its index of biological integrity. New monitoring data indicates this water body is attaining Iowa's EPA approved-recovery of fish/invertebrate community. As such, this water body/pollutant pair is appropriate for removal from Iowa's § 303(d) List. In today's action, the EPA is approving the delisting of Plum Creek because it no longer requires the development of a TMDL consistent with 40 CFR §130.7(b). Plum Creek is still listed for loss of native mussel species. **Tetes Des Morts Creek (IA 01-TRK-0090_1, now IA 01-TRK-121)** - Iowa previously listed Tetes Des Morts Creek as being impaired due to a fish kill. Follow-up monitoring data indicates the fish community in this water body has recovered. As such, this water body/pollutant pair is appropriate for removal from Iowa's § 303(d) List. In today's action, the EPA is approving the delisting of the Tetes Des Morts Creek because it no longer requires the development of a TMDL for a fish kill, consistent with 40 CFR §130.7(b). This water body is still listed for *Escherichia coli* and low aquatic macroinvertebrate IBI. Cedar River (IA 02-CED-0010_0, now IA 02-CED-449) - Iowa previously listed Cedar River as impaired for pH. Follow-up monitoring data indicates the pH level in this water body has recovered. As such, this water body/pollutant pair is appropriate for removal from Iowa's § 303(d) List. In today's action, the EPA is approving the delisting of Cedar River because it no longer requires the development of a TMDL for pH, consistent with 40 CFR 130.7(b). This water body is still listed for *Escherichia coli*. Honey Creek (IA 02-IOW-0093_0, now IA 02-IOW-668) - Iowa previously listed Honey Creek as impaired for not meeting a passing score for its index of biological integrity. New monitoring data indicates this water body is attaining Iowa's EPA approved-recovery of fish/invertebrate community. As such, this water body/pollutant pair is appropriate for removal from Iowa's § 303(d) List. In today's action, the EPA is approving the delisting of Honey Creek because it no longer requires the development of a TMDL consistent with 40 CFR §130.7(b). **Des Moines River (IA 04-LDM-0010_3, now IA 04-LDM-1004)** - Iowa previously listed Des Moines River as impaired by *Escherichia coli*. New monitoring data indicates this water body is attaining Iowa's EPA approved-WQS for *E. coli*. As such, this water body/pollutant pair is appropriate for removal from Iowa's § 303(d) List. In today's action, the EPA is approving the delisting of the Des Moines River because it no longer requires the development of a TMDL for *E. coli*, consistent with 40 CFR §130.7(b). Des Moines River is still listed for fish kill due to unknown toxicity. **Des Moines River (IA 04-LDM-0010_4, now IA 04-LDM-1005)** - Iowa previously listed Des Moines River as impaired by *Escherichia coli*. New monitoring data indicates this water body is attaining Iowa's EPA approved-WQS for *E. coli*. As such, this water body/pollutant pair is appropriate for removal from Iowa's § 303(d) List. In today's action, the EPA is approving the delisting of the Des Moines River because it no longer requires the development of a TMDL for *E. coli*, consistent with 40 CFR §130.7(b). Des Moines River is still listed for fish kill due to unknown toxicity. Lacey Keosauqua Lake (IA 04-LDM-00160-L_0, now IA 04-LDM-1008) - Iowa previously listed Lacey Keosauqua Lake as impaired by *Escherichia coli*. New monitoring data indicates this water body is attaining Iowa's EPA approved-WQS for *E. coli*. As such, this water body/pollutant pair is appropriate for removal from Iowa's § 303(d) List. In today's action, the EPA is approving the delisting of the Lacey Keosauqua Lake because it no longer requires the development of a TMDL for *E. coli*, consistent with 40 CFR §130.7(b). White Breast Creek (IA 04-LDM-0200_0, now IA 04-LDM-1059) - Iowa previously listed White Breast Creek as impaired for not meeting a passing score for its index of biological integrity. New monitoring data indicates this water body is attaining Iowa's EPA approved-recovery of fish/invertebrate community. As such, this water body/pollutant pair is appropriate for removal from Iowa's § 303(d) List. In today's action, the EPA is approving the delisting of White Breast Creek because it no longer requires the development of a TMDL consistent with 40 CFR §130.7(b). **Saylorville Reservoir (IA 04-UDM-0020-L_0, now IA 04-UDM-1213)** - Iowa previously listed Saylorville Reservoir as impaired by *Escherichia coli*. New monitoring data indicates this water body is attaining Iowa's EPA approved-WQS for *E. coli*. As such, this water body/pollutant pair is appropriate for removal from Iowa's § 303(d) List. In today's action, the EPA is approving the delisting of the Saylorville Reservoir because it no longer requires the development of a TMDL for *E. coli*, consistent with 40 CFR §130.7(b). Saylorville Reservoir is still listed for turbidity: Secchi Disk Transparency. Thayer Lake (IA 05-GRA-01410-L_0, now IA 05-GRA-1369) - Iowa previously listed Thayer Lake as impaired for turbidity. Follow-up monitoring data indicates the turbidity in this water body has recovered. As such, this water body/pollutant pair is appropriate for removal from Iowa's § 303(d) List. In today's action, the EPA is approving the delisting of Thayer Lake, consistent with 40 CFR 130.7(b). Three Mile Lake (IA 05-GRA-0145-L_0, now IA 05-GRA-1371) – Iowa previously listed Three Mile Lake as being impaired due to organic enrichment/low dissolved oxygen. Follow-up monitoring data indicates this water body has recovered. As such, this water body/pollutant pair is appropriate for removal from Iowa's § 303(d) List. In today's action, the EPA is approving the delisting of the Three Mile Lake because it no longer requires the development of a TMDL for organic enrichment/low dissolved oxygen, consistent with 40 CFR §130.7(b). **Lake Anita (IA 05-NSH-00580-L_0, now IA 05-NSH-1435)** - Iowa previously listed Lake Anita as impaired by *Escherichia coli*. New monitoring data indicates this water body is attaining Iowa's EPA approved-WQS for *E. coli*. As such, this water body/pollutant pair is appropriate for removal from Iowa's § 303(d) List. In today's action, the EPA is approving the delisting of the Lake Anita because it no longer requires the development of a TMDL for *E. coli*, consistent with 40 CFR §130.7(b). Lake Anita is still listed for algal growth: cyanobacteria. Wilson Park Lake (IA 05-PLA-00380-L_0, now IA 05-PLA-1477) - Iowa previously listed Wilson Park Lake as impaired for pH. Follow-up monitoring data indicates the pH level in this water body has recovered. As such, this water body/pollutant pair is appropriate for removal from Iowa's § 303(d) List. In today's action, the EPA is approving the delisting of Wilson Park Lake because it no longer requires the development of a TMDL for pH, consistent with 40 CFR 130.7(b). This water body is still listed for algal growth: chlorophyll a. West Okoboji Lake (IA 06-LSR-02840-L_1, now IA 06-LSR-1653) - Iowa previously listed West Okoboji Lake as impaired by *Escherichia coli*. New monitoring data indicates this water body is attaining Iowa's EPA approved-WQS for *E. coli*. As such, this water body/pollutant pair is appropriate for removal from Iowa's § 303(d) List. In today's action, the EPA is approving the delisting of the West Okoboji Lake because it no longer requires the development of a TMDL for *E. coli*, consistent with 40 CFR §130.7(b). Browns Lake (IA 06-WEM-00485-L_0, now IA 06-WEM-1735) - Iowa previously listed Browns Lake as impaired by *Escherichia coli*. New monitoring data indicates this water body is attaining Iowa's EPA approved-WQS for *E. coli*. As such, this water body/pollutant pair is appropriate for removal from Iowa's § 303(d) List. In today's action, the EPA is approving the delisting of the Browns Lake because it no longer requires the development of a TMDL for *E. coli*, consistent with 40 CFR §130.7(b). Browns Lake is still listed for turbidity and algal growth: chlorophyll a. ### 3. Listing Error (six waters, listed by
water body identification number) For these six water bodies an error was made in the assessment of information which led to the listing of these water bodies in Category 5 of the Iowa 2016 IR. Unnamed Tributary to Unnamed Tributary of West Fork Cedar River (IA 02-WFC-0146_0, now IA 02-WFC-2079) – Iowa previously listed this water body as impaired by a fish kill due to unknown toxicity. Review of this data has found that the samples were collected in a different segment of the tributary. That segment Unnamed Tributary to West Fork Cedar River (IA 02-WFC-2075) is now listed for fish kill. In today's action, the EPA is approving the delisting of the this tributary because it no longer requires the development of a TMDL for a fish kill, consistent with 40 CFR §130.7(b). **Ballard Creek (IA 03-SSK-0057_0, now IA 03-SSK-952)** – Iowa previously listed this water body as impaired by a fish kill caused by animal waste. Review of this data has found that the samples were collected in a different segment of the tributary. That segment Ballard Creek (IA 03-SSK-3053) is now is now listed for fish kill. In today's action, the EPA is approving the delisting of this water because it no longer requires the development of a TMDL for a fish kill, consistent with 40 CFR §130.7(b). Ballard Creek (IA 03-SSK-0057_0, now IA 03-SSK-952) – Iowa previously listed this water body for not meeting a passing score for its index of biological integrity. Iowa has determined that the samples analysis was based on evaluated data. Iowa's analysis has determined that the IBI data does not exceed the listing threshold. According to IDNR's assessment/listing methodology, impairments based on "evaluated" assessments are of lesser confidence and are thus not appropriate for Section 303(d) listing; however, this water is appropriate for Category 3b of the Integrated Report (waters potentially impaired and in need of further investigation). In today's action, the EPA is approving the delisting of this water because it no longer requires the development of a TMDL, consistent with 40 CFR §130.7(b). This water is in Category 3 of the Integrated Report. Ottumwa Lagoon (IA 04-LDM-00215-L_0, now IA 04-LDM-1014) – Iowa previously listed this water body as impaired by a fish kill caused by a petroleum spill. Review of the data in the Iowa DNR fish kill database found that the fish kill was actually due to natural causes due to water levels being lowered in the system. The fish had been dead or dying over several days prior to the groundwater remediation at the LUST (leaking underground storage tank) site. In today's action, the EPA is approving the delisting of this water because it no longer requires the development of a TMDL for a fish kill, consistent with 40 CFR §130.7(b). The water is moved to Category 3 of the Integrated Report. Brushy Creek (IA 04-RAC-0253_0, now IA 04-RAC-1209) – Iowa previously listed this water body as impaired by a fish kill due to unknown toxicity in 2005. Review of this data has found that the samples were collected in a different segment of the tributary. That segment of Brushy Creek (IA 04-RAC-1818 is now listed for fish kill. In today's action, the EPA is approving the delisting of the this tributary because it no longer requires the development of a TMDL for a fish kill, consistent with 40 CFR §130.7(b). This segment of Brushy Creek is still listed for a 2014 Fish Kill from anhydrous ammonia. **Briggs Woods Lake (IA 04-UDM-01880-L_0, now 04-UDM-1255)** – Iowa erroneously listed this water body as impaired by *Escherichia coli* based on evaluated data. According to IDNR's assessment/listing methodology, impairments based on "evaluated" assessments are of lesser confidence and are thus not appropriate for Section 303(d) listing; however, this water is appropriate for Category 3b of the Integrated Report (waters potentially impaired and in need of further investigation). In today's action, the EPA is approving the delisting of this water for *Escherichia coli* because it no longer requires the development of a TMDL, consistent with 40 CFR §130.7(b). The EPA is approving the delisting of this tributary for *Escherichia coli* because it no longer requires the development of a TMDL, consistent with 40 CFR §130.7(b). This water is moved to Category 3 of the Integrated Report for *Escherichia coli*. However, this water is still listed in Category 5 for pH. ### VI. PRIORITY RANKING IN IOWA'S CWA SECTION 303(d) LIST The IDNR's listing methodology describes how the state will prioritize water bodies for purposes of establishing TMDLs. Iowa's submission of its 2018 CWA Section 303(d) List included a priority ranking of each water body as required in Section 303(d)(1)(A) of the CWA and 40 CFR §130.7(b)(4) of the EPA's implementing regulations. #### VII. IOWA'S PUBLIC PARTICIPATION PROCESS The IDNR public noticed its 2018 draft CWA Section 303(d) List from November 14 through December 28, 2019. The list and the IDNR's ADB+ water quality database were also made available for public review and comment through the IDNR website. The IDNR received comments from 102 individuals. A responsiveness summary was submitted to the EPA by the state with its 2018 IR. In response to public comments, IDNR added two waters to the 2018 IR for further investigation. | in response to public comments, in the dedect two waters to the 2010 in tor ruther investigation. | | | | | | |---|----------------|-----------------------------------|--|--|--| | Water Body Name | New ATTAINS ID | IR Category and Description | | | | | East Indian Creek | IA 03-SSK-947 | 3 Insufficient data exist to | | | | | | | determine whether any | | | | | | | designated uses are met. | | | | | Squaw Creek | IA 03-SSK-954 | 2 Some of the designated uses | | | | | _ | | are met but there is insufficient | | | | | | | data to determine if remaining | | | | | | | uses are met. | | | | The IDNR finalized its 2018 CWA Section 303(d) List and submitted it for approval on February 24, 2020 as an email attachment, the official hard copy of the submittal letter and a DVD was also mailed; it was received by the EPA on February 24, 2020. The submittal letter stated that the electronic version was the official submittal. The EPA has reviewed Iowa's public participation process and has concluded that the state provided adequate public notice and opportunity for the public to comment on its decision regarding the CWA Section 303(d) list in compliance with federal requirements. ### 2018 Iowa's Section 303(d) List Table 1 lists each modification or water body approved for the removal from, the state's CWA Section 303(d) List and the supporting rationale for each. Table 2 identifies the 2018 Iowa § 303 (d) list as approved by the EPA. The following terms are used in the tables and defined below. a.k.a.: Also Known As EPA: U.S. Environmental Protection Agency FW Mussels: Freshwater mussels IBI: Index of Biological Integrity PCBs: Polychlorinated biphenyl pH: A measure of water's acidity or basic condition. TMDL: Total Maximum Daily Load UT: Unnamed Tributary Table 1. 2018 Delistings from the EPA-approved 2016 Iowa §303(d) List. For comparative purposes the ADB Code listed is that under which the water body was listed on the 2016 § 303(d) List | | | New ATTAINS | | | |--|-------------------------|-------------|---|--| | Water body Name | Legacy ADB Code | ID | Cause of 2016 303(d) Listing | Delisting Rationale | | Plum Creek | IA 01-MAQ-0220_1 | 01-MAQ-46 | Biological: low aquatic macroinvertebrate IBI | New data: recovery of fish/invertebrate community | | Lake Of The Hills | IA 01-NEM-00160-
L_0 | 01-NEM-68 | Algal Growth: Chlorophyll a | TMDL preparation and approval | | Tetes Des Morts
Creek | IA 01-TRK-0090_1 | 01-TRK-121 | Fish Kill: Cause Unknown | New data: recovery of fish community from pollutant-caused fish kill | | Cedar River | IA 02-CED-0010_0 | 02-CED-449 | рН | New data: WQ improvement (chemical / physical / bacterial) | | Honey Creek | IA 02-IOW-0093_0 | 02-IOW-668 | Biological: low aquatic macroinvertebrate IBI | New data: recovery of fish/invertebrate community | | Unnamed Tributary to
Unnamed Tributary of
West Fork Cedar
River | IA 02-WFC-0146_0 | 02-WFC-2079 | Fish Kill: Due To Unknown Toxicity | Assessment Error | | Ballard Creek | IA 03-SSK-0057_0 | 03-SSK-952 | Fish Kill: Caused By Animal Waste | Assessment Error | | Ballard Creek | IA 03-SSK-0057_0 | 03-SSK-952 | Biological: low fish IBI | Assessment Error | | Des Moines River | IA 04-LDM-0010_3 | 04-LDM-1004 | Bacteria: Indicator Bacteria- E. coli | New data: WQ improvement (chemical / physical / bacterial) | | Des Moines River | IA 04-LDM-0010_4 | 04-LDM-1005 | Bacteria: Indicator Bacteria- E. coli | New data: WQ improvement (chemical / physical / bacterial) | | Lacey Keosauqua
Lake | IA 04-LDM-00160-
L_0 | 04-LDM-1008 | Bacteria: Indicator Bacteria- E. coli | New data: WQ improvement (chemical / physical / bacterial) | | Ottumwa Lagoon | IA 04-LDM-00215-
L_0 | 04-LDM-1014 | Fish Kill: Caused By Petroleum
Spill | Assessment Error | |-----------------------|-------------------------|-------------|---|--| | White Breast Creek | IA 04-LDM-0200_0 | 04-LDM-1059 | Biological: low fish & invert IBIs- cause unknown | New data: recovery of fish/invertebrate community | | Brushy Creek | IA 04-RAC-0253_0 | 04-RAC-1209 | Fish Kill: Due To Unknown Toxicity | Assessment Error | | Saylorville Reservoir | IA 04-UDM-0020-
L_0 | 04-UDM-1213 | Bacteria: Indicator Bacteria- E. coli | New data: WQ improvement (chemical / physical / bacterial)
| | Briggs Woods Lake | IA 04-UDM-01880-
L_0 | 04-UDM-1255 | Bacteria: Indicator Bacteria- E. coli | Assessment Error | | Thayer Lake | IA 05-GRA-01410-
L_0 | 05-GRA-1369 | Turbidity | New data: WQ improvement (chemical / physical / bacterial) | | Three Mile Lake | IA 05-GRA-0145-L_0 | 05-GRA-1371 | Organic Enrichment: Low
Dissolved Oxygen | New data: WQ improvement (chemical / physical / bacterial) | | Lake Anita | IA 05-NSH-00580-
L_0 | 05-NSH-1435 | Bacteria: Indicator Bacteria- E. coli | New data: WQ improvement (chemical / physical / bacterial) | | Wilson Park Lake | IA 05-PLA-00380-
L_0 | 05-PLA-1477 | рН | New data: WQ improvement (chemical / physical / bacterial) | | Windmill Lake | IA 05-PLA-00430-
L_0 | 05-PLA-1482 | Algal Growth: Chlorophyll a | TMDL preparation and approval | | Windmill Lake | IA 05-PLA-00430-
L_0 | 05-PLA-1482 | Turbidity | TMDL preparation and approval | | West Okoboji Lake | IA 06-LSR-02840-
L_1 | 06-LSR-1653 | Bacteria: Indicator Bacteria- E. coli | New data: WQ improvement (chemical / physical / bacterial) | | Sewer Creek | N/A | 06-LSR-6621 | Fish Kill: Caused By Animal Waste | Legal action against party causing fish kill | | Browns Lake | IA 06-WEM-00485-
L_0 | 06-WEM-1735 | Bacteria: Indicator Bacteria- E. coli | New data: WQ improvement (chemical / physical / bacterial) | Table 2. EPA-approved 2018 Iowa § 303(d) List with crosswalk to new ATTAINS water body codes | New
Listing | Count | Legacy ID - Pre 2016 | New
ATTAINS ID | Water body
Name | Cause of 303(d)
Listing | |----------------|-------|-------------------------|-------------------|--------------------------------------|---| | | 1 | IA 01-MAQ-0005-L_0 | 01-MAQ-1 | Shrickers
Slough | Algal Growth:
Chlorophyll a | | | 2 | IA 01-MAQ-0005-L_0 | 01-MAQ-1 | Shrickers
Slough | Turbidity: Secchi Disk
Transparency | | | 3 | IA 01-MAQ-0050_2 | 01-MAQ-13 | Maquoketa
River | Bacteria: Indicator
Bacteria- E. coli | | | 4 | IA 01-MAQ-0060_1 | 01-MAQ-14 | Maquoketa
River | Biological: loss of native mussel species | | | 5 | IA 01-MAQ-0060_2 | 01-MAQ-15 | Maquoketa
River | Bacteria: Indicator
Bacteria- E. coli | | | 6 | IA 01-MAQ-0060_2 | 01-MAQ-15 | Maquoketa
River | Biological: loss of native mussel species | | | 7 | IA 01-MAQ-0060_3 | 01-MAQ-16 | Maquoketa
River | Bacteria: Indicator
Bacteria- E. coli | | | 8 | IA 01-MAQ-0060_3 | 01-MAQ-16 | Maquoketa
River | Biological: low
aquatic
macroinvertebrate IBI | | | 9 | IA 01-MAQ-0080_0 | 01-MAQ-19 | Maquoketa
River | Bacteria: Indicator
Bacteria- E. coli | | | 10 | IA 01-MAQ-0300_0 | 01-MAQ-1963 | Unnamed Tributary to Maquoketa River | Fish Kill: Caused By
Fertilizer Spill | | | 11 | IA 01-MAQ-0010_1 | 01-MAQ-2 | Rock Creek | Organic Enrichment:
Low Dissolved
Oxygen | | | 12 | IA 01-MAQ-0090-L_0 | 01-MAQ-20 | Backbone Lake | Bacteria: Indicator
Bacteria- E. coli | | | 13 | IA 01-MAQ-01580-
L_0 | 01-MAQ-38 | Central Park
Lake | Algal Growth:
Chlorophyll a | | | 14 | IA 01-MAQ-0200_0 | 01-MAQ-44 | Silver Creek | Biological: loss of native mussel species | | | 15 | IA 01-MAQ-0210_0 | 01-MAQ-45 | Buck Creek | Biological: low
aquatic
macroinvertebrate IBI | | | 16 | IA 01-MAQ-0210_0 | 01-MAQ-45 | Buck Creek | Biological: loss of native mussel species | | | 17 | IA 01-MAQ-0220_1 | 01-MAQ-46 | Plum Creek | Biological: loss of native mussel species | | | 18 | IA 01-MAQ-0240_0 | 01-MAQ-51 | Coffins Creek | Bacteria: Indicator
Bacteria- E. coli | |-----|----|------------------|-------------|----------------------|--| | | 19 | IA 01-MAQ-0250_0 | 01-MAQ-53 | Honey Creek | Bacteria: Indicator
Bacteria- E. coli | | | 20 | IA 01-MAQ-0260_1 | 01-MAQ-54 | Lindsey Creek | Bacteria: Indicator
Bacteria- E. coli | | | 21 | IA 01-MAQ-0251_0 | 01-MAQ-6560 | Honey Creek | Bacteria: Indicator
Bacteria- E. coli | | | 22 | IA 01-MAQ-0255_0 | 01-MAQ-6561 | Rutherford
Branch | Bacteria: Indicator
Bacteria- E. coli | | | 23 | IA 01-NEM-0010_1 | 01-NEM-61 | Mississippi
River | Bacteria: Indicator
Bacteria- fecal
coliform | | New | 24 | IA 01-NEM-0010_1 | 01-NEM-61 | Mississippi
River | Metals: Aluminum | | | 25 | IA 01-NEM-0010_2 | 01-NEM-62 | Mississippi
River | Bacteria: Indicator
Bacteria- fecal
coliform | | | 26 | IA 01-NEM-0010_2 | 01-NEM-62 | Mississippi
River | Metals: Aluminum | | | 27 | IA 01-NEM-0010_2 | 01-NEM-62 | Mississippi
River | Toxic Organics: PCBs | | | 28 | IA 01-NEM-0010_3 | 01-NEM-63 | Mississippi
River | Bacteria: Indicator
Bacteria- fecal
coliform | | | 29 | IA 01-NEM-0063_0 | 01-NEM-6370 | Stafford Creek | Bacteria: Indicator
Bacteria- E. coli | | | 30 | IA 01-NEM-0066_0 | 01-NEM-6372 | Candlelight
Creek | Bacteria: Indicator
Bacteria- E. coli | | | 31 | IA 01-NEM-0067_0 | 01-NEM-6373 | Robin Creek | Bacteria: Indicator
Bacteria- E. coli | | | 32 | IA 01-NEM-0010_4 | 01-NEM-64 | Mississippi
River | Metals: Aluminum | | New | 33 | IA 01-NEM-0020_1 | 01-NEM-70 | Mississippi
River | Metals: Aluminum | | | 34 | IA 01-NEM-0030_1 | 01-NEM-75 | Mississippi
River | Metals: Aluminum | | | 35 | IA 01-NEM-0053_0 | 01-NEM-81 | Mad Creek | Bacteria: Indicator
Bacteria- E. coli | | | 36 | IA 01-NEM-0070_0 | 01-NEM-86 | Crow Creek | Bacteria: Indicator
Bacteria- E. coli | | | 37 | IA 01-NMQ-0100_1 | 01-NMQ-103 | Whitewater
Creek | Bacteria: Indicator
Bacteria- E. coli | | | | | _ | | | |-----|----|------------------|-------------|----------------------------------|---| | | 38 | IA 01-NMQ-0100_1 | 01-NMQ-103 | Whitewater
Creek | Biological: loss of native mussel species | | New | 39 | IA 01-NMQ-0100_1 | 01-NMQ-103 | Whitewater
Creek | Fish Kill: Caused By
Animal Waste | | New | 40 | IA 01-NMQ-0100_2 | 01-NMQ-104 | Whitewater
Creek | Fish Kill: Caused By
Animal Waste | | | 41 | IA 01-NMQ-0110_0 | 01-NMQ-105 | Johns Creek | Biological: loss of native mussel species | | | 42 | IA 01-NMQ-0160_0 | 01-NMQ-110 | Hickory Creek | Biological: low fish & invert IBIs- cause unknown | | New | 43 | IA 01-NMQ-0160_0 | 01-NMQ-110 | Hickory Creek | Fish Kill: Caused By
Animal Waste | | | 44 | IA 01-NMQ-0141_0 | 01-NMQ-1886 | Bear Creek | Fish Kill: Caused By
Animal Waste | | | 45 | IA 01-NMQ-0010_1 | 01-NMQ-88 | North Fork
Maquoketa
River | Bacteria: Indicator
Bacteria- E. coli | | New | 46 | IA 01-NMQ-0010_1 | 01-NMQ-88 | North Fork
Maquoketa
River | Fish Kill: Caused By
Animal Waste | | | 47 | IA 01-NMQ-0020_1 | 01-NMQ-90 | North Fork
Maquoketa
River | Bacteria: Indicator
Bacteria- E. coli | | | 48 | IA 01-NMQ-0020_1 | 01-NMQ-90 | North Fork
Maquoketa
River | Biological: loss of native mussel species | | | 49 | IA 01-NMQ-0020_1 | 01-NMQ-90 | North Fork
Maquoketa
River | Biological: low fish & invert IBIs- cause unknown | | | 50 | IA 01-NMQ-0040_0 | 01-NMQ-94 | Farmers Creek | Biological: low
aquatic
macroinvertebrate IBI | | | 51 | IA 01-TRK-0090_1 | 01-TRK-121 | Tetes Des
Morts Creek | Bacteria: Indicator
Bacteria- E. coli | | | 52 | IA 01-TRK-0090_1 | 01-TRK-121 | Tetes Des
Morts Creek | Biological: low
aquatic
macroinvertebrate IBI | | | 53 | IA 01-TRK-0090_2 | 01-TRK-122 | Tetes Des
Morts Creek | Bacteria: Indicator
Bacteria- E. coli | | | 54 | IA 01-TRK-0095_0 | 01-TRK-123 | Lux Creek | Bacteria: Indicator
Bacteria- E. coli | | 55 | IA 01-TRK-0100_1 | 01-TRK-124 | Catfish Creek | Bacteria: Indicator
Bacteria- E. coli | |----------|--------------------------------------|--------------------------|--|---| | 56 | IA 01-TRK-0100_2 | 01-TRK-125 | Catfish Creek | Bacteria: Indicator
Bacteria- E. coli | | 57 | IA 01-TRK-0100_2 | 01-TRK-125 | Catfish Creek | Fish Kill: Due To
Unknown Toxicity | | 58 | IA 01-TRK-0110_0 | 01-TRK-127 | Granger Creek | Bacteria: Indicator
Bacteria- E. coli | | 59 | IA 01-TRK-0120_0 | 01-TRK-128 | Middle Fork
Catfish Creek | Bacteria: Indicator
Bacteria- E. coli | | 60 | IA 01-TRK-0125_0 | 01-TRK-129 | North Fork
Catfish Creek | Bacteria: Indicator
Bacteria- E. coli | | 61 | IA 01-TRK-0130_0 | 01-TRK-130 | South Fork
Catfish Creek | Bacteria: Indicator
Bacteria- E. coli | | 62 | IA 01-TRK-0160_1 | 01-TRK-134 | Cloie Branch | Biological: low
aquatic
macroinvertebrate IBI | | (2) | IA 01 TDV 0100 1 | 01 TDV 124 | Cl.: D. 1 | Organic Enrichment:
Low Dissolved | | 63
64 | IA 01-TRK-0160_1
IA 01-TRK-0160_1 | 01-TRK-134
01-TRK-134 | Cloie Branch Cloie Branch | Oxygen Temperature: Water | | 65 | IA 01-TRK-0180_2 | 01-TRK-138 | Middle Fork Little Maquoketa River (a.k.a. Bankston Cr.) | Biological: low aquatic macroinvertebrate IBI | | 66 | IA 01-TRK-0200_0 | 01-TRK-148 | Turkey River | Bacteria: Indicator
Bacteria- E. coli | | 67 | IA 01-TRK-0200_0 | 01-TRK-148 | Turkey River | Fish Consumption
Advisory: Mercury | | 68 | IA 01-TRK-0210_1 | 01-TRK-149 | Turkey River | Bacteria: Indicator
Bacteria- E. coli | | 69 | IA 01-TRK-0210_4 | 01-TRK-152 | Turkey River | Bacteria: Indicator
Bacteria- E. coli | | 70 | IA 01-TRK-0220_1 | 01-TRK-153 | Turkey River | Bacteria: Indicator
Bacteria- E. coli | | 71 | IA 01-TRK-0220_2 | 01-TRK-154 | Turkey River | Bacteria: Indicator
Bacteria- E. coli | | 72 | IA 01-TRK-0220_4 | 01-TRK-156 | Turkey River | Bacteria: Indicator
Bacteria- E. coli | | 73 | IA 01-TRK-0230_1 | 01-TRK-160 | Little Turkey
River | Bacteria: Indicator
Bacteria- E. coli | | | | | Little Turkey | Bacteria: Indicator | |-----|-------------------|--------------|-------------------------------|--| | 74 | IA 01-TRK-0230_3 | 01-TRK-162 | River |
Bacteria- E. coli | | | | | Little Turkey | Biological: low aquatic | | 75 | IA 01-TRK-0230_3 | 01-TRK-162 | River | macroinvertebrate IBI | | | | 0.1 575 1.62 | Little Turkey | Bacteria: Indicator | | 76 | IA 01-TRK-0230_4 | 01-TRK-163 | River | Bacteria- E. coli | | | | | Point Hollow
Creek (aka | Bacteria: Indicator | | 77 | IA 01-TRK-0240_0 | 01-TRK-165 | White Pine Cr.) | Bacteria- E. coli | | | | | Point Hollow | Biological: low | | 78 | IA 01-TRK-0240_0 | 01-TRK-165 | Creek (aka
White Pine Cr.) | aquatic
macroinvertebrate IBI | | | | 100 | 72 2 2220 | Bacteria: Indicator | | 79 | IA 01-TRK-0260_0 | 01-TRK-168 | Pecks Creek | Bacteria- E. coli | | | | | | Biological: low aquatic | | 80 | IA 01-TRK-0260_0 | 01-TRK-168 | Pecks Creek | macroinvertebrate IBI | | | | | South Cedar
Creek (aka | Bacteria: Indicator | | 81 | IA 01-TRK-0270_1 | 01-TRK-171 | Cedar Cr.) | Bacteria- E. coli | | | | | | Bacteria: Indicator | | 82 | IA 01-TRK-0280_1 | 01-TRK-175 | Elk Creek | Bacteria- E. coli | | 83 | IA 01-TRK-0290_0 | 01-TRK-178 | Steeles Branch | Bacteria: Indicator
Bacteria- E. coli | | | _ | | | Bacteria: Indicator | | 84 | IA 01-TRK-0300_0 | 01-TRK-179 | Pine Creek | Bacteria- E. coli | | 85 | IA 01-TRK-0360 1 | 01-TRK-186 | Roberts Creek | Bacteria: Indicator
Bacteria- E. coli | | 0.5 | 11101 1KK 0300_1 | 01 1100 | Roberts Creek | Bacteria: Indicator | | 86 | IA 01-TRK-0360_3 | 01-TRK-188 | Roberts Creek | Bacteria- E. coli | | | | | Unnamed Tributary to | Fish Kill: Caused By | | 87 | IA 01-TRK-04515_0 | 01-TRK-1885 | Bass Creek | Animal Waste | | | | | | Bacteria: Indicator | | 88 | IA 01-TRK-0370_1 | 01-TRK-189 | Dry Mill Creek | Bacteria- E. coli | | 89 | IA 01-TRK-0380_0 | 01-TRK-191 | Howard Creek | Bacteria: Indicator
Bacteria- E. coli | | | | | | Bacteria: Indicator | | 90 | IA 01-TRK-0381_0 | 01-TRK-192 | Silver Creek | Bacteria- E. coli | | | | | | Ongonio Envialente | |-----|-------------------|-------------|---|---| | 01 | IA 01 TDIZ 0201 0 | 01 TDV 102 | G'1 C 1 | Organic Enrichment: Low Dissolved | | 91 | IA 01-TRK-0381_0 | 01-TRK-192 | Silver Creek | Oxygen | | 92 | IA 01-TRK-0390_1 | 01-TRK-198 | Otter Creek | Bacteria: Indicator
Bacteria- E. coli | | 93 | IA 01-TRK-0390_1 | 01-TRK-198 | Otter Creek | Temperature: Thermal Modifications | | 94 | IA 01-TRK-0419_0 | 01-TRK-2002 | Dry Branch | Bacteria: Indicator
Bacteria- E. coli | | 95 | IA 01-TRK-0412_1 | 01-TRK-202 | Dibble Creek | Bacteria: Indicator
Bacteria- E. coli | | 96 | IA 01-TRK-0416_0 | 01-TRK-205 | Nutting Creek | Bacteria: Indicator
Bacteria- E. coli | | 97 | IA 01-TRK-0382_0 | 01-TRK-2057 | Silver Creek | Bacteria: Indicator
Bacteria- E. coli | | 98 | IA 01-TRK-03817_0 | 01-TRK-2058 | Unnamed
Tributary to UT
to Silver Creek | Bacteria: Indicator
Bacteria- E. coli | | 99 | IA 01-TRK-03817_0 | 01-TRK-2058 | Unnamed
Tributary to UT
to Silver Creek | Toxic Inorganics:
Ammonia | | 100 | IA 01-TRK-0420_0 | 01-TRK-207 | Little Turkey
River | Bacteria: Indicator
Bacteria- E. coli | | 101 | IA 01-TRK-0430_1 | 01-TRK-208 | Little Turkey
River | Bacteria: Indicator
Bacteria- E. coli | | 102 | IA 01-TRK-0430_2 | 01-TRK-209 | Little Turkey
River | Bacteria: Indicator
Bacteria- E. coli | | 103 | IA 01-TRK-0440_1 | 01-TRK-210 | Crane Creek | Bacteria: Indicator
Bacteria- E. coli | | 104 | IA 01-TRK-0440_2 | 01-TRK-211 | Crane Creek | Bacteria: Indicator
Bacteria- E. coli | | 105 | IA 01-TRK-0440_3 | 01-TRK-212 | Crane Creek | Bacteria: Indicator
Bacteria- E. coli | | 106 | IA 01-TRK-0440_4 | 01-TRK-213 | Crane Creek | Biological: low aquatic macroinvertebrate IBI | | 107 | IA 01-TRK-0450_1 | 01-TRK-215 | Bass Creek | Bacteria: Indicator
Bacteria- E. coli | | 108 | IA 01-TRK-0450_1 | 01-TRK-215 | Bass Creek | Temperature: Thermal Modifications | | 109 | IA 01-TRK-0453_0 | 01-TRK-217 | Brockamp
Creek | Bacteria: Indicator
Bacteria- E. coli | |-----|-------------------|-------------|---|--| | 110 | IA 01-TRK-0455_0 | 01-TRK-218 | Rogers Creek | Bacteria: Indicator
Bacteria- E. coli | | 111 | IA 01-TRK-0457_1 | 01-TRK-219 | Wonder Creek | Bacteria: Indicator
Bacteria- E. coli | | 112 | IA 01-TRK-0460_0 | 01-TRK-221 | Bohemian
Creek | Bacteria: Indicator
Bacteria- E. coli | | 113 | IA 01-TRK-0460_0 | 01-TRK-221 | Bohemian
Creek | Temperature: Thermal Modifications | | 114 | IA 01-TRK-0480_0 | 01-TRK-223 | North Branch
Turkey River | Bacteria: Indicator
Bacteria- E. coli | | 115 | IA 01-TRK-01005_2 | 01-TRK-6408 | Unnamed tributary to Catfish Creek | Wastewater | | 116 | IA 01-TRK-0127_0 | 01-TRK-6486 | North Fork
Catfish Creek | Bacteria: Indicator
Bacteria- E. coli | | 117 | IA 01-TRK-0123_0 | 01-TRK-6487 | Middle Fork
Catfish Creek | Bacteria: Indicator
Bacteria- E. coli | | 118 | IA 01-TRK-0223_0 | 01-TRK-6562 | Unnamed Tributary to Turkey River | pH- High | | 119 | IA 01-TRK-0291_0 | 01-TRK-6568 | Steeles Branch | Bacteria: Indicator
Bacteria- E. coli | | 120 | IA 01-TRK-0093_0 | 01-TRK-6580 | Unnamed Tributary to Tetes Des Morts Creek | Bacteria: Indicator
Bacteria- E. coli | | 121 | IA 01-TRK-0094_0 | 01-TRK-6589 | Unnamed
Tributary to
Tetes Des
Morts Creek | Bacteria: Indicator
Bacteria- E. coli | | 122 | N/A | 01-TRK-6620 | Unnamed
Tributary to
Otter Creek | Fish Kill: Caused By
Pesticides | | 123 | N/A | 01-TRK-6638 | Pine Creek | Bacteria: Indicator
Bacteria- E. coli | | 124 | IA 01-UIA-0090_0 | 01-UIA-236 | Upper Iowa
River | Bacteria: Indicator
Bacteria- E. coli | | 125 | IA 01-UIA-0090_0 | 01-UIA-236 | Upper Iowa
River | Fish Consumption
Advisory: Mercury | | 126 | IA 01-UIA-0100_0 | 01-UIA-237 | Upper Iowa
River | Bacteria: Indicator
Bacteria- E. coli | | 127 | IA 01-UIA-0100_0 | 01-UIA-237 | Upper Iowa
River | Fish Consumption
Advisory: Mercury | |-----|-----------------------------------|--------------------------|---|---| | | | | Upper Iowa
River | Bacteria: Indicator Bacteria- E. coli | | 128 | IA 01-UIA-0110_2 | 01-UIA-239 | Upper Iowa | Biological: loss of | | 129 | IA 01 HIA 0120 1 | 01-UIA-239 | River Upper Iowa River | native mussel species Bacteria: Indicator | | 130 | IA 01-UIA-0120_1 | 01-UIA-241 | Upper Iowa | Bacteria- E. coli Biological: loss of | | 131 | IA 01-UIA-0120_1 IA 01-UIA-0130_0 | 01-UIA-241
01-UIA-247 | River Irish Hollow Creek | native mussel species Biological: low aquatic macroinvertebrate IBI | | 133 | IA 01-UIA-0140_0 | 01-UIA-248 | French Creek | Bacteria: Indicator
Bacteria- E. coli | | 134 | IA 01-UIA-0150_0 | 01-UIA-249 | Clear Creek | Bacteria: Indicator
Bacteria- E. coli | | 135 | IA 01-UIA-0160_0 | 01-UIA-250 | Silver Creek | Bacteria: Indicator
Bacteria- E. coli | | 136 | IA 01-UIA-0170_1 | 01-UIA-251 | Bear Creek | Bacteria: Indicator
Bacteria- E. coli | | 137 | IA 01-UIA-0170_2 | 01-UIA-252 | Bear Creek (aka
South Bear
Creek) | Bacteria: Indicator
Bacteria- E. coli | | 138 | IA 01-UIA-0180_0 | 01-UIA-253 | Waterloo Creek | Bacteria: Indicator
Bacteria- E. coli | | 139 | IA 01-UIA-0185_0 | 01-UIA-254 | Duck Creek | Bacteria: Indicator
Bacteria- E. coli | | 140 | IA 01-UIA-0190_0 | 01-UIA-255 | North Bear
Creek | Bacteria: Indicator
Bacteria- E. coli | | 141 | IA 01-UIA-0210_0 | 01-UIA-257 | Paint Creek
(aka Pine Cr.) | Bacteria: Indicator
Bacteria- E. coli | | 142 | IA 01-UIA-0230_0 | 01-UIA-259 | Patterson Creek | Bacteria: Indicator
Bacteria- E. coli | | 143 | IA 01-UIA-0240_1 | 01-UIA-260 | Canoe Creek | Bacteria: Indicator
Bacteria- E. coli | | 144 | IA 01-UIA-0270_0 | 01-UIA-265 | Coon Creek | Bacteria: Indicator
Bacteria- E. coli | | 145 | IA 01-UIA-0280_1 | 01-UIA-266 | Trout Creek | Bacteria: Indicator
Bacteria- E. coli | | 146 | IA 01-UIA-0300_1 | 01-UIA-269 | Trout Creek
(aka Trout Run) | Bacteria: Indicator
Bacteria- E. coli | |-----|------------------|------------|--|---| | 140 | IA 01-01A-0300_1 | 01-01A-209 | Trout Creek | Biological: low aquatic | | 147 | IA 01-UIA-0300_1 | 01-UIA-269 | (aka Trout Run) | macroinvertebrate IBI | | 148 | IA 01-UIA-0320_0 | 01-UIA-272 | Dry Run | Bacteria: Indicator
Bacteria- E. coli | | 149 | IA 01-UIA-0320_0 | 01-UIA-272 | Dry Run | Temperature: Thermal Modifications | | 150 | IA 01-UIA-0330_0 | 01-UIA-273 | Twin Springs
Creek | Bacteria: Indicator
Bacteria- E. coli | | 151 | IA 01-UIA-0340_0 | 01-UIA-274 | Ten Mile Creek | Bacteria: Indicator
Bacteria- E. coli | | 152 | IA 01-UIA-0340_0 | 01-UIA-274 | Ten Mile Creek | Biological: low
aquatic
macroinvertebrate IBI | | 153 | IA 01-UIA-0350_0 | 01-UIA-275 | Unnamed Creek
(aka Casey
Spring Cr.) | Bacteria: Indicator
Bacteria- E. coli | | 154 | IA 01-UIA-0370_0 | 01-UIA-278 | Pine Creek | Bacteria: Indicator
Bacteria- E. coli | | 155 | IA 01-UIA-0380_0 | 01-UIA-279 | East Pine Creek | Biological: low
aquatic
macroinvertebrate IBI | | 156 | IA 01-UIA-0390_0 | 01-UIA-280 | Unnamed Creek
(aka Cold
Water Cr.) | Bacteria: Indicator
Bacteria- E. coli | | 157 | IA 01-UIA-0403_0 | 01-UIA-282 | Silver Creek | Bacteria: Indicator
Bacteria- E. coli | | 158 | IA 01-UIA-0407_0 | 01-UIA-283 | Minor Creek | Bacteria: Indicator
Bacteria- E. coli | | 159 | IA 01-UIA-0410_0 | 01-UIA-284 | Nichols Creek
(aka Bigalk Cr.) | Bacteria: Indicator
Bacteria- E. coli | | 160 | IA 01-UIA-0410_0 | 01-UIA-284 | Nichols Creek
(aka Bigalk Cr.) | Temperature: Thermal Modifications | | 161 | IA 01-UIA-0420_1 | 01-UIA-286 | Beaver Creek | Bacteria: Indicator
Bacteria- E.
coli | | 162 | IA 01-UIA-0420_1 | 01-UIA-286 | Beaver Creek | Temperature: Thermal Modifications | | 163 | IA 01-UIA-0430_0 | 01-UIA-288 | Staff Creek | Bacteria: Indicator
Bacteria- E. coli | | 164 | IA 01-UIA-0135_0 | 01-UIA-6437 | Clark Creek | Fish Kill: Caused By
Animal Waste | |-----|------------------|-------------|---|--| | 165 | IA 01-UIA-0321_0 | 01-UIA-6552 | Dry Run Creek | Bacteria: Indicator
Bacteria- E. coli | | 166 | IA 01-UIA-0323_0 | 01-UIA-6554 | Unnamed Tributary to Unnamed Tributary to Dry Run Creek | Bacteria: Indicator
Bacteria- E. coli | | 167 | IA 01-UIA-0324_0 | 01-UIA-6555 | Unnamed Tributary to Unnamed Tributary to Dry Run Creek | Bacteria: Indicator
Bacteria- E. coli | | 168 | IA 01-UIA-0325_0 | 01-UIA-6556 | Unnamed Tributary to Unnamed Tributary to Dry Run Creek | Bacteria: Indicator
Bacteria- E. coli | | 169 | IA 01-UIA-0326_0 | 01-UIA-6557 | Unnamed
Tributary to
Dry Run Creek | Bacteria: Indicator
Bacteria- E. coli | | 170 | IA 01-UIA-0327_0 | 01-UIA-6558 | Unnamed Tributary to Dry Run Creek | Bacteria: Indicator
Bacteria- E. coli | | 171 | IA 01-UIA-0404_0 | 01-UIA-6569 | Unnamed Tributary to Silver Creek | Bacteria: Indicator
Bacteria- E. coli | | 172 | IA 01-UIA-0182_0 | 01-UIA-6570 | Unnamed Tributary to Waterloo Creek | Bacteria: Indicator
Bacteria- E. coli | | 173 | IA 01-UIA-0304_0 | 01-UIA-6596 | Siewers Spring | Bacteria: Indicator
Bacteria- E. coli | | 174 | IA 01-UIA-0440_0 | 01-UIA-6597 | Unnamed Tributary to Upper Iowa River | Bacteria: Indicator
Bacteria- E. coli | | 175 | IA 01-UIA-0322_0 | 01-UIA-6600 | Unnamed Tributary to Dry Run Creek | Bacteria: Indicator
Bacteria- E. coli | | 176 | IA 01-VOL-0010_3 | 01-VOL-291 | Volga River | Fish Consumption
Advisory: Mercury | | 177 | IA 01-VOL-0020_1 | 01-VOL-294 | Volga River | Fish Consumption
Advisory: Mercury | | 178 | IA 01-VOL-0020_2 | 01-VOL-295 | Volga River | Fish Consumption
Advisory: Mercury | |-----|------------------|------------|---|---| | 179 | IA 01-VOL-0020_3 | 01-VOL-296 | Volga River | Bacteria: Indicator
Bacteria- E. coli | | 180 | IA 01-VOL-0030_1 | 01-VOL-297 | Bear Creek | Bacteria: Indicator
Bacteria- E. coli | | 181 | IA 01-VOL-0070_1 | 01-VOL-303 | Cox Creek (aka
Alderson
Hollow) | Bacteria: Indicator
Bacteria- E. coli | | 182 | IA 01-VOL-0070_2 | 01-VOL-304 | Cox Creek (aka
Alderson
Hollow) | Biological: low aquatic macroinvertebrate IBI | | 183 | IA 01-VOL-0090_0 | 01-VOL-307 | Hewett Creek | Bacteria: Indicator
Bacteria- E. coli | | 184 | IA 01-VOL-0090_0 | 01-VOL-307 | Hewett Creek | Temperature: Thermal Modifications | | 185 | IA 01-VOL-0090_0 | 01-VOL-307 | Hewett Creek | Biological: low aquatic macroinvertebrate IBI | | 186 | IA 01-VOL-0110_1 | 01-VOL-314 | Mink Creek | Bacteria: Indicator
Bacteria- E. coli | | 187 | IA 01-VOL-0120_1 | 01-VOL-317 | Brush Creek | Bacteria: Indicator
Bacteria- E. coli | | 188 | IA 01-VOL-0120_2 | 01-VOL-318 | Brush Creek | Biological: low aquatic macroinvertebrate IBI | | 189 | IA 01-VOL-0140_0 | 01-VOL-322 | Grannis Creek | Bacteria: Indicator
Bacteria- E. coli | | 190 | IA 01-VOL-0146_0 | 01-VOL-325 | Unnamed Creek
(aka Volga
Lake Outlet) | Bacteria: Indicator
Bacteria- E. coli | | 191 | IA 01-VOL-0150_1 | 01-VOL-328 | Little Volga
River | Bacteria: Indicator
Bacteria- E. coli | | 192 | IA 01-VOL-0150_1 | 01-VOL-328 | Little Volga
River | Fish Consumption
Advisory: Mercury | | 193 | IA 01-VOL-0160_0 | 01-VOL-330 | North Branch
Volga River | Bacteria: Indicator
Bacteria- E. coli | | 194 | IA 01-VOL-0160_0 | 01-VOL-330 | North Branch
Volga River | Fish Consumption
Advisory: Mercury | | 195 | IA 01-WPS-0010_1 | 01-WPS-332 | Wapsipinicon
River | Bacteria: Indicator
Bacteria- E. coli | | 196 | IA 01-WPS-0010_2 | 01-WPS-333 | Wapsipinicon
River | Bacteria: Indicator
Bacteria- E. coli | |-----|---------------------|-------------|---|---| | 197 | IA 01-WPS-0010_4 | 01-WPS-335 | Wapsipinicon
River | Bacteria: Indicator
Bacteria- E. coli | | 198 | IA 01-WPS-0010_5 | 01-WPS-336 | Wapsipinicon
River | Bacteria: Indicator
Bacteria- E. coli | | 199 | IA 01-WPS-0020_1 | 01-WPS-340 | Wapsipinicon
River | Bacteria: Indicator
Bacteria- E. coli | | 200 | IA 01-WPS-0020_4 | 01-WPS-343 | Wapsipinicon
River | Bacteria: Indicator
Bacteria- E. coli | | 201 | IA 01-WPS-0030_5 | 01-WPS-354 | Wapsipinicon
River | Bacteria: Indicator
Bacteria- E. coli | | 202 | IA 01-WPS-0030_5 | 01-WPS-354 | Wapsipinicon
River | Biological: low
Biological Integrity | | 203 | IA 01-WPS-0030_5 | 01-WPS-354 | Wapsipinicon
River | Fish Kill: Due To
Unknown Toxicity | | 204 | IA 01-WPS-00375-L_0 | 01-WPS-356 | Lake Hendricks | Algal Growth:
Chlorophyll a | | 205 | IA 01-WPS-00375-L_0 | 01-WPS-356 | Lake Hendricks | pН | | 206 | IA 01-WPS-0050_1 | 01-WPS-358 | Brophy Creek | Biological: low
aquatic
macroinvertebrate IBI | | 207 | IA 01-WPS-0109_0 | 01-WPS-372 | Walnut Creek | Fish Kill: Caused By
Animal Waste | | 208 | IA 01-WPS-0132_0 | 01-WPS-380 | East Branch
Buffalo Creek | Organic Enrichment:
Low Dissolved
Oxygen | | 209 | IA 01-WPS-0153_0 | 01-WPS-394 | Unnamed Creek (near Hazleton) | Fish Kill: Caused By
Animal Waste | | 210 | IA 01-WPS-0190_2 | 01-WPS-408 | East Fork
Wapsipinicon
River | Biological: low fish & invert IBIs- cause unknown | | 211 | IA 01-WPS-0237_0 | 01-WPS-6457 | unnamed
tributary to
Lake Hendricks | Bacteria: Indicator
Bacteria- E. coli | | 212 | N/A | 01-WPS-6618 | West Branch
Pine Creek | Fish Kill: Caused By
Animal Waste | | 213 | IA 01-YEL-0161_0 | 01-YEL-2005 | North Fork
Yellow River | Bacteria: Indicator
Bacteria- E. coli | | 214 | IA 01-YEL-0170_0 | 01-YEL-2059 | Unnamed Tributary to Yellow River | Bacteria: Indicator
Bacteria- E. coli | | | | | | Unnamed | | |-------|------|-------------------|-------------|----------------------------|---| | | | | | Tributary to | | | | 215 | IA 01-YEL-0170_0 | 01-YEL-2059 | Yellow River | pН | | | 216 | IA 01-YEL-0081_0 | 01-YEL-2060 | Yellow River | pН | | | | | | Unnamed | | | | | | | Tributary to North Fork | Bacteria: Indicator | | New | 217 | N/A | 01-YEL-3066 | Yellow River | Bacteria- E. coli | | 11011 | 217 | 11/11 | 01 122 3000 | Tenow raver | Biological: low | | | | | | | aquatic | | | 218 | IA 01-YEL-0010_2 | 01-YEL-427 | Miners Creek | macroinvertebrate IBI | | | | | | | Bacteria: Indicator | | | 219 | IA 01-YEL-0060_0 | 01-YEL-433 | Bloody Run | Bacteria- E. coli | | | 220 | T. 04 TITT 0000 4 | 04 7777 405 | | Biological: low fish | | | 220 | IA 01-YEL-0080_1 | 01-YEL-435 | Yellow River | IBI | | | 221 | 14 01 VEL 0000 2 | 01 MEI 126 | 37 11 D' | Fish Kill: Due To | | | 221 | IA 01-YEL-0080_2 | 01-YEL-436 | Yellow River | Unknown Toxicity | | | 222 | IA 01-YEL-0080_3 | 01-YEL-437 | Yellow River | pH | | | 223 | IA 01-YEL-0080_3 | 01-YEL-437 | Yellow River | Biological: low fish
IBI | | | | | | | Organic Enrichment: | | | 224 | IA 01 VEL 0000 0 | 01-YEL-438 | Dousman Creek | Low Dissolved | | | 224 | IA 01-YEL-0090_0 | U1-1EL-438 | Dousman Creek | Oxygen Organic Enrichment: | | | | | | | Low Dissolved | | | 225 | IA 01-YEL-0100_0 | 01-YEL-439 | Suttle Creek | Oxygen | | | | | | | Biological: low | | | 22.5 | T. 04 TITT 0400 0 | 04 7757 400 | | aquatic | | | 226 | IA 01-YEL-0100_0 | 01-YEL-439 | Suttle Creek | macroinvertebrate IBI | | | | | | Unnamed Creek | Organic Enrichment:
Low Dissolved | | | 227 | IA 01-YEL-0110_0 | 01-YEL-440 | (aka Bear Cr.) | Oxygen | | | | | | , | Organic Enrichment: | | | | | | | Low Dissolved | | | 228 | IA 01-YEL-0120_1 | 01-YEL-441 | Hickory Creek | Oxygen | | | | | | | Organic Enrichment:
Low Dissolved | | | 229 | IA 01-YEL-0130_0 | 01-YEL-444 | Norfolk Creek | Oxygen | | | 227 | | | | • • | | | | | | Unnamed Creek (aka, Ludlow | Biological: low fish & invert IBIs- cause | | | 230 | IA 01-YEL-0150_0 | 01-YEL-446 | Creek) | unknown | | | | | | Unnamed Creek | | | | | TA 04 TYPE 0:== 0 | 04.7777 | (aka Hecker | Dissolved Solids: | | | 231 | IA 01-YEL-0155_0 | 01-YEL-447 | Cr.) | Chloride | | | 232 | IA 01-YEL-0155_0 | 01-YEL-447 | Unnamed Creek
(aka Hecker
Cr.) | Biological: low fish IBI | |-----|-----|------------------------------------|----------------------------|---|--| | | 233 | IA 01-YEL-0155_0 | 01-YEL-447 | Unnamed Creek
(aka Hecker
Cr.) | Fish Kill: Due To
Unknown Toxicity | | | 234 | IA 01-YEL-0160_0 | 01-YEL-448 | North Fork
Yellow River | Organic Enrichment:
Low Dissolved
Oxygen | | | 235 | IA 01-YEL-0085_0 | 01-YEL-6574 | Unnamed Tributary to Yellow River | Bacteria: Indicator
Bacteria- E. coli | | | 236 | IA 01-YEL-0085_0 | 01-YEL-6574 | Unnamed Tributary to Yellow River | рН | | | | | | Unnamed Tributary to Unnamed Tributary to | Bacteria: Indicator | | | 237 | IA 01-YEL-0172_0 IA 01-YEL-0172_0 | 01-YEL-6575
01-YEL-6575 | Yellow River Unnamed Tributary to Unnamed Tributary to Yellow River | Bacteria- E. coli | | | 239 | IA 01-YEL-0173_0 | 01-YEL-6582 | Unnamed
Tributary to
Yellow River | Bacteria: Indicator
Bacteria- E. coli | | | 240 | IA 01-YEL-0173_0 | 01-YEL-6582 | Unnamed
Tributary to
Yellow River | рН | | | 241 | IA 02-CED-0234_0 | 02-CED-1880 | East Branch
Blue Creek | Fish Kill: Caused By
Fertilizer Spill | | | 242 | IA 02-CED-0391_0 | 02-CED-2062 | Dry Run (South
Branch) | Bacteria: Indicator
Bacteria- E. coli | | | 243 | IA 02-CED-0392_0 | 02-CED-2063 | Dry Run
(North
Branch) | Bacteria: Indicator
Bacteria- E. coli | | New | 244 | N/A | 02-CED-3026 | Rock Creek | Bacteria: Indicator
Bacteria- E. coli | | New | 245 | N/A | 02-CED-3027 | Unnamed Tributary to Rock Creek | Bacteria: Indicator
Bacteria- E. coli | | | 246 | IA 02-CED-0010_0 | 02-CED-449 | Cedar River | Bacteria: Indicator
Bacteria- E. coli | | | | | | | Biological: loss of | |----|----|---------------------|------------|------------------------|---| | 24 | 17 | IA 02-CED-0020_2 | 02-CED-451 | Cedar River | native mussel species | | 24 | 18 | IA 02-CED-0030_2 | 02-CED-456 | Cedar River | рН | | 24 | 19 | IA 02-CED-0030_3 | 02-CED-457 | Cedar River | рН | | 25 | 50 | IA 02-CED-00310-L_0 | 02-CED-459 | Pleasant Creek
Lake | Bacteria: Indicator
Bacteria- E. coli | | 25 | 51 | IA 02-CED-0040_2 | 02-CED-462 | Cedar River | Bacteria: Indicator
Bacteria- E. coli | | 25 | 52 | IA 02-CED-00460-L_0 | 02-CED-463 | Meyers Lake | Algal Growth:
Chlorophyll a | | 25 | 53 | IA 02-CED-0060_1 | 02-CED-469 | Cedar River | Bacteria: Indicator
Bacteria- E. coli | | 25 | 54 | IA 02-CED-0060_2 | 02-CED-470 | Cedar River | Bacteria: Indicator
Bacteria- E. coli | | 25 | 55 | IA 02-CED-0070_0 | 02-CED-472 | Cedar River | Bacteria: Indicator
Bacteria- E. coli | | 25 | 56 | IA 02-CED-0110_1 | 02-CED-477 | Cedar River | Bacteria: Indicator
Bacteria- E. coli | | 25 | 57 | IA 02-CED-0110_1 | 02-CED-477 | Cedar River | Fish Consumption
Advisory: Mercury | | 25 | 58 | IA 02-CED-0110_2 | 02-CED-478 | Cedar River | Fish Consumption
Advisory: Mercury | | 25 | 59 | IA 02-CED-0110_3 | 02-CED-479 | Cedar River | Fish Consumption
Advisory: Mercury | | 26 | 50 | IA 02-CED-0157_1 | 02-CED-485 | Pike Run | Biological: low aquatic macroinvertebrate IBI | | 26 | 51 | IA 02-CED-0157_2 | 02-CED-486 | Pike Run | Biological: low fish & invert IBIs- cause unknown | | 26 | 52 | IA 02-CED-0170_1 | 02-CED-489 | Sugar Creek | Biological: low aquatic macroinvertebrate IBI | | 26 | 53 | IA 02-CED-0210_1 | 02-CED-504 | Indian Creek | Bacteria: Indicator
Bacteria- E. coli | | 26 | 54 | IA 02-CED-0210_1 | 02-CED-504 | Indian Creek | Biological: low aquatic macroinvertebrate IBI | | 26 | 55 | IA 02-CED-0210_2 | 02-CED-505 | Indian Creek | Bacteria: Indicator
Bacteria- E. coli | | 26 | 56 | IA 02-CED-0217_0 | 02-CED-507 | Dry Creek | Bacteria: Indicator
Bacteria- E. coli | | | 267 | IA 02-CED-0218_0 | 02-CED-508 | McLoud Run | Bacteria: Indicator
Bacteria- E. coli | |-----|-----|---------------------|------------|---------------------------|---| | | 268 | IA 02-CED-0218_0 | 02-CED-508 | McLoud Run | Fish Kill: Due To
Unknown Toxicity | | | 269 | IA 02-CED-0218_0 | 02-CED-508 | McLoud Run | Fish Kill: Caused By
Chlorine | | | 270 | IA 02-CED-0227_0 | 02-CED-513 | Morgan Creek | Bacteria: Indicator
Bacteria- E. coli | | | 271 | IA 02-CED-0230_0 | 02-CED-514 | Otter Creek | Bacteria: Indicator
Bacteria- E. coli | | | 272 | IA 02-CED-0231_0 | 02-CED-517 | Bear Creek | Bacteria: Indicator
Bacteria- E. coli | | | 273 | IA 02-CED-0233_0 | 02-CED-518 | Blue Creek | Bacteria: Indicator
Bacteria- E. coli | | | 274 | IA 02-CED-0235_0 | 02-CED-519 | Mud Creek | Bacteria: Indicator
Bacteria- E. coli | | | 275 | IA 02-CED-0260_0 | 02-CED-523 | Bear Creek | Bacteria: Indicator
Bacteria- E. coli | | | 276 | IA 02-CED-0270_1 | 02-CED-524 | Lime Creek | Bacteria: Indicator
Bacteria- E. coli | | | 277 | IA 02-CED-0270_2 | 02-CED-525 | Lime Creek | Bacteria: Indicator
Bacteria- E. coli | | New | 278 | IA 02-CED-02750-L_0 | 02-CED-526 | Rodgers Park
Lake | Organic Enrichment:
Low Dissolved
Oxygen | | | 279 | IA 02-CED-0300_0 | 02-CED-530 | Wolf Creek | Bacteria: Indicator
Bacteria- E. coli | | | 280 | IA 02-CED-0370_2 | 02-CED-546 | Black Hawk
Creek | Bacteria: Indicator
Bacteria- E. coli | | | 281 | IA 02-CED-0370_2 | 02-CED-546 | Black Hawk
Creek | Biological: low
aquatic
macroinvertebrate IBI | | | 282 | IA 02-CED-0380_0 | 02-CED-550 | Black Hawk
Creek | Bacteria: Indicator
Bacteria- E. coli | | | 283 | IA 02-CED-0383_0 | 02-CED-551 | North Black
Hawk Creek | Bacteria: Indicator
Bacteria- E. coli | | | 284 | IA 02-CED-0385_0 | 02-CED-552 | Holland Creek | Bacteria: Indicator
Bacteria- E. coli | | | 285 | IA 02-CED-0390_0 | 02-CED-554 | Dry Run | Bacteria: Indicator
Bacteria- E. coli | | | | | | | Biological: low fish & invert IBIs- cause | |-----|-----|-------------------|-------------|--|---| | | 286 | IA 02-CED-0390_0 | 02-CED-554 | Dry Run | unknown | | | 287 | IA 02-CED-0400_0 | 02-CED-555 | Beaver Creek | Bacteria: Indicator
Bacteria- E. coli | | | 288 | IA 02-CED-0410 2 | 02-CED-557 | Beaver Creek | Biological: low aquatic macroinvertebrate IBI | | | 289 | IA 02-CED-0470_1 | 02-CED-574 | Little Cedar
River | Bacteria: Indicator
Bacteria- E. coli | | | 290 | IA 02-CED-0490_1 | 02-CED-580 | Burr Oak Creek | Biological: low aquatic macroinvertebrate IBI | | | 291 | IA 02-CED-0490_2 | 02-CED-581 | Burr Oak Creek | Biological: low
aquatic
macroinvertebrate IBI | | | 292 | IA 02-CED-0500_0 | 02-CED-582 | Beaver Creek | Biological: low
aquatic
macroinvertebrate IBI | | | 293 | IA 02-CED-0510_1 | 02-CED-585 | Rock Creek | Bacteria: Indicator
Bacteria- E. coli | | | 294 | IA 02-CED-0510_2 | 02-CED-586 | Rock Creek | Bacteria: Indicator
Bacteria- E. coli | | | 295 | IA 02-CED-0510_3 | 02-CED-587 | Rock Creek | Bacteria: Indicator
Bacteria- E. coli | | | 296 | IA 02-CED-0510_4 | 02-CED-588 | Rock Creek | Bacteria: Indicator
Bacteria- E. coli | | | 297 | IA 02-CED-0520_0 | 02-CED-589 | Spring Creek | Bacteria: Indicator
Bacteria- E. coli | | | 298 | IA 02-CED-0530_0 | 02-CED-590 | Turtle Creek | Bacteria: Indicator
Bacteria- E. coli | | | 299 | IA 02-CED-0540_1 | 02-CED-591 | Deer Creek | Bacteria: Indicator
Bacteria- E. coli | | | 300 | IA 02-CED-0550_0 | 02-CED-594 | Otter Creek | Bacteria: Indicator
Bacteria- E. coli | | | 301 | IA 02-CED-01545_0 | 02-CED-6262 | Unnamed Tributary to West Branch Wapsinonoc Creek (aka Hoover Creek) | Bacteria: Indicator
Bacteria- E. coli | | New | 302 | IA 02-CED-0154_0 | 02-CED-6264 | West Branch
Wapsinonoc | Bacteria: Indicator
Bacteria- E. coli | | | 202 | IA 02 CED 0202 0 | 02 CED 6202 | Day Day | Bacteria: Indicator | |-----|-----|---------------------|-------------|-----------------------------------|---| | | 303 | IA 02-CED-0393_0 | 02-CED-6293 | Dry Run
Unnamed | Bacteria- E. coli | | | | | | Tributary to | Bacteria: Indicator | | | 304 | IA 02-CED-0394_0 | 02-CED-6294 | Dry Run | Bacteria- E. coli | | | 205 | IA 02 CED 0275 0 | 02 CED (122 | Unnamed Tributary to | Bacteria: Indicator | | | 305 | IA 02-CED-0275_0 | 02-CED-6432 | Lime Creek | Bacteria- E. coli | | | 306 | IA 02-CED-03833_0 | 02-CED-6489 | Mosquito Creek | Bacteria: Indicator
Bacteria- E. coli | | | 307 | IA 02-CED-03835_0 | 02-CED-6490 | Minnehaha
Creek | Bacteria: Indicator
Bacteria- E. coli | | | 308 | IA 02-CED-03855_0 | 02-CED-6491 | Holland Creek | Bacteria: Indicator
Bacteria- E. coli | | | 309 | IA 02-CED-0525_0 | 02-CED-6565 | Slough Creek | Bacteria: Indicator
Bacteria- E. coli | | | 310 | IA 02-CED-0521_0 | 02-CED-6566 | Spring Creek | Bacteria: Indicator
Bacteria- E. coli | | | 311 | IA 02-CED-0522_0 | 02-CED-6567 | Unnamed Tributary to Spring Creek | Bacteria: Indicator
Bacteria- E. coli | | | 312 | IA 02-CED-0522_0 | 02-CED-6567 | Unnamed Tributary to Spring Creek | Toxic Inorganics:
Ammonia | | | 313 | IA 02-CED-0522_0 | 02-CED-6567 | Unnamed Tributary to Spring Creek | Organic Enrichment:
Low Dissolved
Oxygen | | | 314 | IA 02-CED-0115_0 | 02-CED-6593 | Willow Creek | Bacteria: Indicator
Bacteria- E. coli | | | 315 | IA 02-CED-0551_0 | 02-CED-6594 | Unnamed Tributary to Cedar River | Bacteria: Indicator
Bacteria- E. coli | | New | 316 | IA 02-CED-03905-L_0 | 02-CED-962 | South Prairie
Lake | pН | | | 317 | IA 02-ICD-0027_0 | 02-ICD-602 | Big Hollow
Creek | Fish Kill: Caused By
Other | | | 318 | IA 02-ICD-0031_1 | 02-ICD-605 | Cottonwood
Drain | Biological: low fish & invert IBIs- cause unknown | | | 319 | IA 02-ICD-00275-L_0 | 02-ICD-6496 | Big Hollow
Lake | Algal Growth:
Chlorophyll a | | | 320 | IA 02-ICD-00275-L_0 | 02-ICD-6496 | Big Hollow
Lake | рН | | | | | Mississippi | | |-----|---------------------|-------------|---|---| | 321 | IA 02-ICM-0010_2 | 02-ICM-619 | River | Metals: Aluminum | | 322 | IA 02-IOW-0155_1 | 02-IOW-1899 | Ralston Creek | Toxic Organics:
Priority Organics | | 323 | IA 02-IOW-0155_1 | 02-IOW-1899 | Ralston Creek | Toxic Organics:
Priority Organics | | 324 | IA 02-IOW-0155_1 | 02-IOW-1899 | Ralston Creek | Toxic Organics:
Priority Organics | | 325 | IA 02-IOW-0188_0 | 02-IOW-1916 | Walnut Creek | Bacteria: Indicator
Bacteria- E. coli | | 326 | IA 02-IOW-0162_0 | 02-IOW-2043 | Muddy Creek | Bacteria: Indicator
Bacteria- E. coli | | 327 | IA 02-IOW-0010_1 | 02-IOW-621 | Iowa River | Bacteria: Indicator
Bacteria- E. coli | | 328 | IA 02-IOW-0010_2 | 02-IOW-622 | Iowa River | Bacteria: Indicator
Bacteria- E. coli | | 329 | IA 02-IOW-0010_3 | 02-IOW-623 | Iowa River | Bacteria: Indicator
Bacteria- E. coli | | 330 | IA 02-IOW-0020_1 | 02-IOW-624 | Iowa River | Bacteria: Indicator
Bacteria- E. coli | | 331 | IA 02-IOW-0020_1 | 02-IOW-624 | Iowa River | Biological: loss of native mussel species | | 332 | IA 02-IOW-0213_0 | 02-IOW-6263 | Bennett Creek | Bacteria: Indicator
Bacteria- E. coli | | 333 | IA 02-IOW-0030_1 | 02-IOW-627 | Iowa
River | Bacteria: Indicator
Bacteria- E. coli | | 334 | IA 02-IOW-00390-L_0 | 02-IOW-629 | Lake Macbride | Bacteria: Indicator
Bacteria- E. coli | | 335 | IA 02-IOW-00390-L_0 | 02-IOW-629 | Lake Macbride | Algal Growth:
Chlorophyll a | | 336 | IA 02-IOW-0040-L_0 | 02-IOW-630 | Coralville
Reservoir | Turbidity | | 337 | IA 02-IOW-0156_0 | 02-IOW-6300 | Unnamed Tributary to Ralston Creek | Fish Kill: Due To
Unknown Toxicity | | 338 | IA 02-IOW-0189_0 | 02-IOW-6317 | Unnamed
Tributary to
Walnut Creek | Bacteria: Indicator
Bacteria- E. coli | | 339 | IA 02-IOW-0191_0 | 02-IOW-6318 | Unnamed
Tributary to
Walnut Creek | Bacteria: Indicator
Bacteria- E. coli | | r r | | 1 | | 1 | | |-----|-----|-------------------|-------------|---|--| | | 340 | IA 02-IOW-0050_1 | 02-IOW-633 | Iowa River | Bacteria: Indicator
Bacteria- E. coli | | | 341 | IA 02-IOW-0050_1 | 02-IOW-633 | Iowa River | Fish Consumption
Advisory: Mercury | | | 342 | IA 02-IOW-0050_2 | 02-IOW-634 | Iowa River | Fish Consumption
Advisory: Mercury | | | 343 | IA 02-IOW-0050_3 | 02-IOW-635 | Iowa River | Fish Consumption
Advisory: Mercury | | | 344 | IA 02-IOW-0295_0 | 02-IOW-6362 | Beaver Creek | Bacteria: Indicator
Bacteria- E. coli | | | 345 | IA 02-IOW-0297_0 | 02-IOW-6363 | South Beaver
Creek | Bacteria: Indicator
Bacteria- E. coli | | | 346 | IA 02-IOW-0302_0 | 02-IOW-6364 | Unnamed Tributary to Tipton Creek | Bacteria: Indicator
Bacteria- E. coli | | | 347 | IA 02-IOW-0176_0 | 02-IOW-6377 | Price Creek | Bacteria: Indicator
Bacteria- E. coli | | | 348 | IA 02-IOW-0060_1 | 02-IOW-638 | Iowa River | Fish Consumption
Advisory: Mercury | | | 349 | IA 02-IOW-0060_2 | 02-IOW-639 | Iowa River | Fish Consumption
Advisory: Mercury | | | 350 | IA 02-IOW-0098_0 | 02-IOW-6396 | Prairie Creek | Wastewater | | | 351 | IA 02-IOW-0060_3 | 02-IOW-640 | Iowa River | Bacteria: Indicator
Bacteria- E. coli | | | 352 | IA 02-IOW-0060_3 | 02-IOW-640 | Iowa River | Fish Consumption
Advisory: Mercury | | | 353 | IA 02-IOW-01485_0 | 02-IOW-6401 | Unnamed
tributary to
Snyder Creek | Wastewater | | | 354 | IA 02-IOW-00865_2 | 02-IOW-6403 | Roff Creek | Wastewater | | | 355 | IA 02-IOW-0060_4 | 02-IOW-641 | Iowa River | Bacteria: Indicator
Bacteria- E. coli | | | 356 | IA 02-IOW-0060_4 | 02-IOW-641 | Iowa River | Fish Consumption
Advisory: Mercury | | | 357 | IA 02-IOW-01608_0 | 02-IOW-6412 | Rhine Creek | Fish Kill: Caused By
Pesticides | | | 358 | IA 02-IOW-0060_5 | 02-IOW-642 | Iowa River | Bacteria: Indicator
Bacteria- E. coli | | | 359 | IA 02-IOW-0060_5 | 02-IOW-642 | Iowa River | Fish Consumption
Advisory: Mercury | | 360 | IA 02-IOW-0070_1 | 02-IOW-644 | Iowa River | Fish Consumption
Advisory: Mercury | |-----|---------------------|-------------|---|--| | 361 | IA 02-IOW-0070_2 | 02-IOW-645 | Iowa River | Fish Consumption Advisory: Mercury | | 362 | IA 02-IOW-0070_3 | 02-IOW-646 | Iowa River | Bacteria: Indicator
Bacteria- E. coli | | 363 | IA 02-IOW-0070_3 | 02-IOW-646 | Iowa River | Fish Consumption
Advisory: Mercury | | 364 | IA 02-IOW-0070_4 | 02-IOW-647 | Iowa River | Fish Consumption
Advisory: Mercury | | 365 | IA 02-IOW-0070_5 | 02-IOW-648 | Iowa River | Fish Consumption
Advisory: Mercury | | 366 | IA 02-IOW-0080_2 | 02-IOW-651 | Iowa River | Bacteria: Indicator
Bacteria- E. coli | | 367 | IA 02-IOW-0225_0 | 02-IOW-6538 | Deer Creek | Bacteria: Indicator
Bacteria- E. coli | | 368 | IA 02-IOW-0226_0 | 02-IOW-6539 | East Tributary
to Union Grove
Lake | Bacteria: Indicator
Bacteria- E. coli | | 369 | IA 02-IOW-0381_0 | 02-IOW-6550 | Drainage Ditch
13 | Bacteria: Indicator
Bacteria- E. coli | | 370 | IA 02-IOW-0382_0 | 02-IOW-6551 | Drainage Ditch
81 | Bacteria: Indicator
Bacteria- E. coli | | 371 | IA 02-IOW-0382_0 | 02-IOW-6551 | Drainage Ditch
81 | Organic Enrichment:
Low Dissolved
Oxygen | | 372 | IA 02-IOW-0395_0 | 02-IOW-6559 | Unnamed Tributary to East Branch Iowa River | Bacteria: Indicator
Bacteria- E. coli | | 373 | IA 02-IOW-0500_0 | 02-IOW-6563 | Little Bear
Creek | Bacteria: Indicator
Bacteria- E. coli | | 374 | IA 02-IOW-00870-L_0 | 02-IOW-657 | Elm Lake | Algal Growth:
Chlorophyll a | | 375 | IA 02-IOW-00870-L_0 | 02-IOW-657 | Elm Lake | Turbidity: Suspended Solids | | 376 | IA 02-IOW-00890-L_0 | 02-IOW-658 | Morse Lake | Algal Growth:
Chlorophyll a | | 377 | IA 02-IOW-00890-L_0 | 02-IOW-658 | Morse Lake | Turbidity: Suspended Solids | | 378 | IA 02-IOW-0177_0 | 02-IOW-6586 | Willow Creek | Bacteria: Indicator
Bacteria- E. coli | | | | | | Unnamed
Tributary to | Bacteria: Indicator | |----|----|---------------------|-------------|-----------------------------------|---| | 37 | 9 | IA 02-IOW-0179_0 | 02-IOW-6587 | Willow Creek | Bacteria- E. coli | | 38 | 30 | IA 02-IOW-0166_0 | 02-IOW-6588 | Unnamed Tributary to Muddy Creek | Bacteria: Indicator
Bacteria- E. coli | | 38 | 31 | IA 02-IOW-0166_0 | 02-IOW-6588 | Unnamed Tributary to Muddy Creek | Organic Enrichment:
Low Dissolved
Oxygen | | 38 | 32 | IA 02-IOW-0510_0 | 02-IOW-6590 | Unnamed Tributary to Walnut Creek | Bacteria: Indicator
Bacteria- E. coli | | 38 | 33 | IA 02-IOW-0100_1 | 02-IOW-671 | English River | Bacteria: Indicator
Bacteria- E. coli | | 38 | 34 | IA 02-IOW-01150-L_0 | 02-IOW-677 | Iowa Lake | Bacteria: Indicator
Bacteria- E. coli | | 38 | 35 | IA 02-IOW-01150-L_0 | 02-IOW-677 | Iowa Lake | Fish Consumption
Advisory: Mercury | | 38 | 36 | IA 02-IOW-0150_1 | 02-IOW-685 | Old Mans
Creek | Biological: low fish & invert IBIs- cause unknown | | 38 | 37 | IA 02-IOW-0150_2 | 02-IOW-686 | Old Mans
Creek | Bacteria: Indicator
Bacteria- E. coli | | 38 | 38 | IA 02-IOW-0150_2 | 02-IOW-686 | Old Mans
Creek | Biological: low fish IBI | | 38 | 39 | IA 02-IOW-01630-L_0 | 02-IOW-694 | Kent Park Lake | Bacteria: Indicator
Bacteria- E. coli | | 39 | 00 | IA 02-IOW-0175_2 | 02-IOW-699 | Price Creek | Bacteria: Indicator
Bacteria- E. coli | | 39 | 01 | IA 02-IOW-0180_2 | 02-IOW-702 | Bear Creek | Biological: low fish & invert IBIs- cause unknown | | 39 | 2 | IA 02-IOW-0185_1 | 02-IOW-705 | Little Bear
Creek | Bacteria: Indicator
Bacteria- E. coli | | 39 | 03 | IA 02-IOW-0185_1 | 02-IOW-705 | Little Bear
Creek | Biological: low fish & invert IBIs- cause unknown | | 39 |)4 | IA 02-IOW-0185_2 | 02-IOW-706 | Little Bear
Creek | Bacteria: Indicator
Bacteria- E. coli | | 39 | 05 | IA 02-IOW-0187_1 | 02-IOW-708 | Walnut Creek | Biological: low
aquatic
macroinvertebrate IBI | | 39 | 06 | IA 02-IOW-0187_2 | 02-IOW-709 | Walnut Creek | Bacteria: Indicator
Bacteria- E. coli | | 397 | IA 02-IOW-0187_2 | 02-IOW-709 | Walnut Creek | Biological: low fish IBI | |-----|--------------------|------------|---------------------------|---| | 398 | IA 02-IOW-0215_0 | 02-IOW-723 | Raven Creek | Bacteria: Indicator
Bacteria- E. coli | | 399 | IA 02-IOW-0270_0 | 02-IOW-746 | South Fork
Iowa River | Bacteria: Indicator
Bacteria- E. coli | | 400 | IA 02-IOW-0270_0 | 02-IOW-746 | South Fork
Iowa River | Organic Enrichment:
Low Dissolved
Oxygen | | 401 | IA 02-IOW-0280_2 | 02-IOW-748 | South Fork
Iowa River | Biological: low
aquatic
macroinvertebrate IBI | | 402 | IA 02-IOW-0280_3 | 02-IOW-749 | South Fork
Iowa River | Bacteria: Indicator
Bacteria- E. coli | | 403 | IA 02-IOW-0280_4 | 02-IOW-750 | South Fork
Iowa River | Bacteria: Indicator
Bacteria- E. coli | | 404 | IA 02-IOW-0280_4 | 02-IOW-750 | South Fork
Iowa River | Fish Kill: Caused By
Silage Runoff | | 405 | IA 02-IOW-0280_5 | 02-IOW-751 | South Fork
Iowa River | Bacteria: Indicator
Bacteria- E. coli | | 406 | IA 02-IOW-0280_5 | 02-IOW-751 | South Fork
Iowa River | Fish Kill: Caused By
Silage Runoff | | 407 | IA 02-IOW-0282_0 | 02-IOW-752 | South Fork
Iowa River | Bacteria: Indicator
Bacteria- E. coli | | 408 | IA 02-IOW-0290_0 | 02-IOW-753 | Beaver Creek | Bacteria: Indicator
Bacteria- E. coli | | 409 | IA 02-IOW-0290_0 | 02-IOW-753 | Beaver Creek | Organic Enrichment:
Low Dissolved
Oxygen | | 410 | IA 02-IOW-0300_1 | 02-IOW-754 | Tipton Creek | Bacteria: Indicator
Bacteria- E. coli | | 411 | IA 02-IOW-0300_2 | 02-IOW-755 | Tipton Creek | Bacteria: Indicator
Bacteria- E. coli | | 412 | IA 02-IOW-0330-L_0 | 02-IOW-758 | Lower Pine
Lake | Bacteria: Indicator
Bacteria- E. coli | | 413 | IA 02-IOW-0380_1 | 02-IOW-769 | East Branch
Iowa River | Bacteria: Indicator
Bacteria- E. coli | | 414 | IA 02-IOW-0380_1 | 02-IOW-769 | East Branch
Iowa River | Biological: low
aquatic
macroinvertebrate IBI | | 415 | IA 02-IOW-0380_3 | 02-IOW-771 | East Branch
Iowa River | Bacteria: Indicator
Bacteria- E. coli | | | 416 | IA 02-IOW-03830-L_0 | 02-IOW-773 | Eldred
Sherwood Lake | Bacteria: Indicator
Bacteria- E. coli | |-----|-----|---------------------|-------------|--|--| | New | 417 | IA 02-IOW-03830-L_0 | 02-IOW-773 | Eldred
Sherwood Lake | Algal Growth:
Chlorophyll a | | | 418 | IA 02-IOW-0390_0 | 02-IOW-774 | Galls Creek | Bacteria: Indicator
Bacteria- E. coli | | | 419 | IA 02-IOW-04045-L_0 | 02-IOW-778 | West Twin
Lake | Algal Growth:
Chlorophyll a | | | 420 | IA 02-IOW-04045-L_0 | 02-IOW-778 | West Twin
Lake | Turbidity: Suspended Solids | | | 421 | IA 02-SHL-00105-L_0 | 02-SHL-1790 | Avenue Of The Saints Lake | рН | | | 422 | IA 02-SHL-00105-L_0 | 02-SHL-1790 | Avenue Of The
Saints Lake | Algal Growth:
Chlorophyll a | | | 423 | IA 02-SHL-00105-L_0 | 02-SHL-1790 | Avenue Of
The
Saints Lake | Turbidity | | | 424 | IA 02-SHL-0010_1 | 02-SHL-782 | Shell Rock
River | Fish Consumption
Advisory: Mercury | | New | 425 | IA 02-SHL-0010_2 | 02-SHL-783 | Shell Rock
River | Bacteria: Indicator
Bacteria- E. coli | | | 426 | IA 02-SHL-0010_2 | 02-SHL-783 | Shell Rock
River | Fish Consumption
Advisory: Mercury | | | 427 | IA 02-SHL-0010_3 | 02-SHL-784 | Shell Rock
River | Fish Consumption
Advisory: Mercury | | | 428 | IA 02-SHL-0020_2 | 02-SHL-787 | Shell Rock
River | Bacteria: Indicator
Bacteria- E. coli | | | 429 | IA 02-SHL-0020_2 | 02-SHL-787 | Shell Rock
River | Organic Enrichment:
Low Dissolved
Oxygen | | | 430 | IA 02-SHL-0021_0 | 02-SHL-788 | Flood Creek | Bacteria: Indicator
Bacteria- E. coli | | | 431 | IA 02-SHL-00235_0 | 02-SHL-790 | Palmer Creek | Fish Kill: Caused By
Animal Waste | | | 432 | IA 02-SHL-00295-L_0 | 02-SHL-796 | Silver Lake | pН | | New | 433 | IA 02-WFC-0145_0 | 02-WFC-2075 | Unnamed Tributary to West Fork Cedar River | Fish Kill: Due To
Unknown Toxicity | | | 434 | IA 02-WFC-0020_1 | 02-WFC-801 | West Fork
Cedar River | Bacteria: Indicator
Bacteria- E. coli | | | 435 | IA 02-WFC-0090-L_0 | 02-WFC-818 | Beeds Lake | Algal Growth:
Chlorophyll a | | 436 | IA 02-WFC-0110_0 | 02-WFC-820 | Bailey Creek | Biological: low fish & invert IBIs- cause unknown | |-----|-------------------------|-------------|-------------------------|---| | 437 | IA 02-WFC-0110_0 | 02-WFC-820 | Bailey Creek | Pesticides | | 438 | IA 02-WIN-0081_0 | 02-WIN-1837 | Beaver Creek | Organic Enrichment:
Low Dissolved
Oxygen | | 439 | IA 02-WIN-0010_1 | 02-WIN-826 | Winnebago
River | Bacteria: Indicator
Bacteria- E. coli | | 440 | IA 02-WIN-0010_2 | 02-WIN-827 | Winnebago
River | Bacteria: Indicator
Bacteria- E. coli | | 441 | IA 02-WIN-0020_2 | 02-WIN-831 | Winnebago
River | Biological: low fish & invert IBIs- cause unknown | | 442 | IA 02-WIN-00210-L_0 | 02-WIN-832 | Rice Lake | Algal Growth:
Chlorophyll a | | 443 | IA 02-WIN-00210-L_0 | 02-WIN-832 | Rice Lake | Turbidity | | 444 | IA 02-WIN-00450-L_0 | 02-WIN-841 | Clear Lake | Bacteria: Indicator
Bacteria- E. coli | | 445 | IA 02-WIN-0050_0 | 02-WIN-845 | Calmus Creek | Biological: low fish & invert IBIs- cause unknown | | 446 | IA 03-NSK-0010_1 | 03-NSK-853 | North Skunk
River | Bacteria: Indicator
Bacteria- E. coli | | 447 | IA 03-NSK-0010_1 | 03-NSK-853 | North Skunk
River | Metals: Chromium | | 448 | IA 03-NSK-0010_2 | 03-NSK-854 | North Skunk
River | Bacteria: Indicator
Bacteria- E. coli | | 449 | IA 03-NSK-0010_2 | 03-NSK-854 | North Skunk
River | Metals: Chromium | | 450 | IA 03-NSK-0020_2 | 03-NSK-859 | North Skunk
River | Biological: low fish & invert IBIs- cause unknown | | 451 | IA 03-NSK-00250-L_0 | 03-NSK-862 | Hawthorn Lake | Algal Growth:
Chlorophyll a | | 452 | IA 03-NSK-00340-L_0 | 03-NSK-865 | Rock Creek
Lake | Bacteria: Indicator
Bacteria- E. coli | | 453 | IA 03-SKM-0010_1 | 03-SKM-884 | Mississippi
River | Metals: Aluminum | | 454 | IA 03-SKM-00178-
L_0 | 03-SKM-888 | Pollmiller Park
Lake | Fish Consumption
Advisory: Mercury | | 455 | IA 03-SKU-0081_0 | 03-SKU-6271 | South Big
Creek | Fish Kill: Caused By
Pesticides | | | | | | Unnamed | | |-----|-----|---------------------|-------------|---|--| | | 456 | IA 03-SKU-00835_1 | 03-SKU-6410 | tributary to Brush Creek | Wastewater | | | | | | | Bacteria: Indicator | | | 457 | IA 03-SKU-0061_0 | 03-SKU-6549 | Cedar Creek | Bacteria- E. coli | | | | | | Unnamed Tributary to | Bacteria: Indicator | | | 458 | IA 03-SKU-0063_0 | 03-SKU-6573 | Cedar Creek | Bacteria- E. coli | | | | | | Unnamed | | | | 459 | IA 03-SKU-0064_0 | 03-SKU-6581 | Tributary to
Cedar Creek | Bacteria: Indicator
Bacteria- E. coli | | | 439 | IA 03-3KU-0004_0 | 03-3KU-0361 | Unnamed | Dacteria- E. Con | | | | | | Tributary to | Bacteria: Indicator | | | 460 | IA 03-SKU-0065_0 | 03-SKU-6585 | Cedar Creek | Bacteria- E. coli | | | | | | Unnamed Tributary to | Bacteria: Indicator | | | 461 | IA 03-SKU-0066_0 | 03-SKU-6591 | Lake Geode | Bacteria- E. coli | | | 462 | IA 03-SKU-0010_1 | 03-SKU-889 | Skunk River | Bacteria: Indicator
Bacteria- E. coli | | | | | | | Fish Consumption | | | 463 | IA 03-SKU-00650-L_0 | 03-SKU-896 | Geode Lake | Advisory: Mercury | | | 464 | IA 03-SKU-0085_0 | 03-SKU-902 | Saunders
Branch | Toxic Inorganics: Ammonia | | | 707 | 11 03 BRC 0003_0 | 03 510 702 | Saunders | Toxic Organics: Coal | | | 465 | IA 03-SKU-0085_0 | 03-SKU-902 | Branch | Tar | | | 466 | IA 03-SKU-0085_0 | 03-SKU-902 | Saunders
Branch | Organic Enrichment:
Low Dissolved
Oxygen | | | 467 | IA 03-SKU-0090_1 | 03-SKU-905 | Cedar Creek | Bacteria: Indicator
Bacteria- E. coli | | New | 468 | IA 03-SKU-01450-L_0 | 03-SKU-924 | Lake Darling | Bacteria: Indicator
Bacteria- E. coli | | | 469 | IA 03-SSK-0056-L_0 | 03-SSK-1918 | Lake Petocka
(formerly Lake
Patoka) | Fish Kill: Caused By
Chlorine | | | 470 | IA 03-SSK-0091_0 | 03-SSK-2007 | Long Dick
Creek | Bacteria: Indicator
Bacteria- E. coli | | | 471 | IA 03-SSK-0091_0 | 03-SSK-2007 | Long Dick
Creek | Fish Kill: Caused By
Animal Waste | | | 472 | IA 03-SSK-0091_0 | 03-SSK-2007 | Long Dick
Creek | Fish Kill: Caused By
Pesticides | | New | 473 | N/A | 03-SSK-3053 | Ballard Creek | Fish Kill: Caused By
Animal Waste | | | 474 | IA 03-SSK-0170 0 | 03-SSK-6508 | Montgomery
Creek | Bacteria: Indicator
Bacteria- E. coli | |-----|-----|---------------------|-------------|--|---| | | 475 | IA 03-SSK-0175_0 | 03-SSK-6598 | Prairie Creek | Bacteria: Indicator
Bacteria- E. coli | | | 476 | IA 03-SSK-0160_0 | 03-SSK-6599 | Unnamed
Tributary to
Squaw Creek | Bacteria: Indicator
Bacteria- E. coli | | New | 477 | N/A | 03-SSK-6626 | Wolf Creek | Fish Kill: Due To
Unknown Toxicity | | | 478 | IA 03-SSK-0010_2 | 03-SSK-926 | South Skunk
River | Bacteria: Indicator
Bacteria- E. coli | | | 479 | IA 03-SSK-0010_3 | 03-SSK-927 | South Skunk
River | Bacteria: Indicator
Bacteria- E. coli | | | 480 | IA 03-SSK-00118-L_0 | 03-SSK-929 | White Oak
Conservation
Area Lake | Algal Growth:
Chlorophyll a | | | 481 | IA 03-SSK-00120-L_0 | 03-SSK-930 | Lake Keomah | Bacteria: Indicator
Bacteria- E. coli | | | 482 | IA 03-SSK-00120-L_0 | 03-SSK-930 | Lake Keomah | Organic Enrichment:
Low Dissolved
Oxygen | | | 483 | IA 03-SSK-00120-L_0 | 03-SSK-930 | Lake Keomah | Fish Consumption
Advisory: Mercury | | | 484 | IA 03-SSK-0020_1 | 03-SSK-931 | South Skunk
River | Bacteria: Indicator
Bacteria- E. coli | | | 485 | IA 03-SSK-0030_2 | 03-SSK-934 | South Skunk
River | Bacteria: Indicator
Bacteria- E. coli | | | 486 | IA 03-SSK-0030_2 | 03-SSK-934 | South Skunk
River | Biological: low fish & invert IBIs- cause unknown | | | 487 | IA 03-SSK-0030_3 | 03-SSK-935 | South Skunk
River | Biological: low
aquatic
macroinvertebrate IBI | | | 488 | IA 03-SSK-0040_0 | 03-SSK-943 | Indian Creek | Bacteria: Indicator
Bacteria- E. coli | | | 489 | IA 03-SSK-0040_0 | 03-SSK-943 | Indian Creek | Biological: low
aquatic
macroinvertebrate IBI | | | 490 | IA 03-SSK-00530-L_0 | 03-SSK-950 | Hickory Grove
Lake | Bacteria: Indicator
Bacteria- E. coli | | | 491 | IA 03-SSK-00530-L_0 | 03-SSK-950 | Hickory Grove
Lake | Algal Growth:
Chlorophyll a | | | 1 | 1 | | | 1 | |-----|-----|-------------------------|-------------|-----------------------|---| | | 492 | IA 03-SSK-0058_0 | 03-SSK-953 | Walnut Creek | Biological: low fish
IBI | | | 493 | IA 03-SSK-0090_0 | 03-SSK-960 | Long Dick
Creek | Biological: low aquatic macroinvertebrate IBI | | | 494 | IA 04-EDM-0090_2 | 04-EDM-985 | Buffalo Creek | Biological: low fish IBI | | | 495 | IA 04-EDM-0090_3 | 04-EDM-986 | Buffalo Creek | Biological: low fish IBI | | | 496 | IA 04-FAB-0010_0 | 04-FAB-992 | North Fabius
River | Biological: low fish IBI | | | 497 | IA 04-FOX-0010_1 | 04-FOX-994 | Fox River | Biological: low fish IBI | | | 498 | IA 04-FOX-0010_2 | 04-FOX-995 | Fox River | Bacteria: Indicator
Bacteria- E. coli | | | 499 | IA 04-FOX-0010_2 | 04-FOX-995 | Fox River | Biological: low fish
IBI | | | 500 | IA 04-LDM-0010_1 | 04-LDM-1002 | Des Moines
River | Bacteria: Indicator
Bacteria- E. coli | | | 501 | IA 04-LDM-0010_2 | 04-LDM-1003 | Des Moines
River | Bacteria: Indicator
Bacteria- E. coli | | | 502 | IA 04-LDM-0010_3 | 04-LDM-1004 | Des Moines
River | Fish Kill: Due To
Unknown Toxicity | | | 503 | IA 04-LDM-0010_4 | 04-LDM-1005 | Des Moines
River | Fish Kill: Due To
Unknown Toxicity | | | 504 | IA 04-LDM-0020_1 | 04-LDM-1010 | Des Moines
River | Bacteria: Indicator
Bacteria- E. coli | | | 505 | IA 04-LDM-0020_1 | 04-LDM-1010 | Des Moines
River | Fish Kill: Due To
Unknown Toxicity | | | 506 | IA 04-LDM-00270-
L_0 | 04-LDM-1016 | Lake Miami | Fish Consumption
Advisory: Mercury | | | 507 | IA 04-LDM-0030-L_0 | 04-LDM-1017 | Red Rock
Reservoir | Bacteria: Indicator
Bacteria- E. coli | | | 508 | IA 04-LDM-0030-L_0 | 04-LDM-1017 | Red Rock
Reservoir | Turbidity | | | 509 | IA 04-LDM-00380-
L_0 | 04-LDM-1019 | Roberts Creek
Lake | Turbidity | | New | 510 | IA 04-LDM-00380-
L_0 | 04-LDM-1019 | Roberts Creek
Lake | Algal Growth:
Chlorophyll a | | | 511 | IA 04-LDM-0090_2 | 04-LDM-1033 | Soap Creek | Biological: low fish IBI | | | 512 | IA 04-LDM-00995-
L_0 | 04-LDM-1035 | Lake Wapello | Bacteria: Indicator
Bacteria- E. coli | |-----|-----|-------------------------|-------------|--------------------------------|---| | |
513 | IA 04-LDM-00995-
L_0 | 04-LDM-1035 | Lake Wapello | Turbidity: Secchi Disk
Transparency | | | 514 | IA 04-LDM-00995-
L_0 | 04-LDM-1035 | Lake Wapello | Fish Consumption
Advisory: Mercury | | | 515 | IA 04-LDM-0130_0 | 04-LDM-1045 | Miller Creek | Fish Kill: Due To
Unknown Toxicity | | New | 516 | IA 04-LDM-0133_0 | 04-LDM-1046 | Unnamed Creek (near Eddyville) | Fish Kill: Caused By
Wastewater | | | 517 | IA 04-LDM-0140_1 | 04-LDM-1048 | Muchakinock
Creek | Biological: low fish & invert IBIs- cause unknown | | | 518 | IA 04-LDM-0140_2 | 04-LDM-1049 | Muchakinock
Creek | Biological: low fish IBI | | | 519 | IA 04-LDM-0160_0 | 04-LDM-1053 | Cedar Creek | Bacteria: Indicator
Bacteria- E. coli | | | 520 | IA 04-LDM-0170_0 | 04-LDM-1054 | Cedar Creek | Biological: low fish & invert IBIs- cause unknown | | | 521 | IA 04-LDM-0190_0 | 04-LDM-1057 | English Creek | Biological: low
aquatic
macroinvertebrate IBI | | | 522 | IA 04-LDM-0200_0 | 04-LDM-1059 | White Breast
Creek | Bacteria: Indicator
Bacteria- E. coli | | | 523 | IA 04-LDM-02190-
L_0 | 04-LDM-1065 | East Lake
(Osceola) | рН | | | 524 | IA 04-LDM-02296-
L_0 | 04-LDM-1073 | Red Haw Lake | Fish Consumption
Advisory: Mercury | | | 525 | IA 04-LDM-0230_0 | 04-LDM-1074 | South River | Bacteria: Indicator
Bacteria- E. coli | | | 526 | IA 04-LDM-02615-
L_0 | 04-LDM-1080 | Lake Ahquabi | Bacteria: Indicator
Bacteria- E. coli | | | 527 | IA 04-LDM-02615-
L_0 | 04-LDM-1080 | Lake Ahquabi | Algal Growth:
Chlorophyll a | | | 528 | IA 04-LDM-0270_0 | 04-LDM-1083 | Middle River | Bacteria: Indicator
Bacteria- E. coli | | | 529 | IA 04-LDM-0270_0 | 04-LDM-1083 | Middle River | Biological: low
Biological Integrity | | | 530 | IA 04-LDM-02725-
L_0 | 04-LDM-1085 | South Banner
Lake | Fish Consumption
Advisory: Mercury | | | 531 | IA 04-LDM-02870-
L_0 | 04-LDM-1089 | Meadow Lake | Algal Growth:
Chlorophyll a | |-----|-----|-------------------------|-------------|------------------------|---| | | 532 | IA 04-LDM-0300_2 | 04-LDM-1097 | North River | Bacteria: Indicator
Bacteria- E. coli | | | 533 | IA 04-LDM-0300_2 | 04-LDM-1097 | North River | Biological: low fish IBI | | New | 534 | IA 04-LDM-03080-
L_0 | 04-LDM-1100 | Badger Creek
Lake | рН | | New | 535 | IA 04-LDM-0210_2 | 04-LDM-1825 | White Breast
Creek | Biological: low fish & invert IBIs- cause unknown | | | 536 | IA 04-LDM-0350_0 | 04-LDM-1947 | Bear Creek | Organic Enrichment:
Low Dissolved
Oxygen | | | 537 | IA 04-LDM-02726-
L_0 | 04-LDM-1988 | North Banner
Lake | Fish Consumption
Advisory: Mercury | | | 538 | IA 04-LDM-02700-
L_0 | 04-LDM-6311 | Grade Lake | Fish Consumption
Advisory: Mercury | | | 539 | IA 04-RAC-00475-L_0 | 04-RAC-1134 | Black Hawk
Lake | Bacteria: Indicator
Bacteria- E. coli | | | 540 | IA 04-RAC-0050_2 | 04-RAC-1139 | North Raccoon
River | Biological: low fish & invert IBIs- cause unknown | | | 541 | IA 04-RAC-00530-L_0 | 04-RAC-1143 | Storm Lake | Bacteria: Indicator
Bacteria- E. coli | | | 542 | IA 04-RAC-0120_0 | 04-RAC-1159 | Purgatory Creek | Fish Kill: Caused By
Pesticides | | | 543 | IA 04-RAC-0123_0 | 04-RAC-1160 | Marrowbone
Creek | Biological: low
aquatic
macroinvertebrate IBI | | | 544 | IA 04-RAC-0123_0 | 04-RAC-1160 | Marrowbone
Creek | Organic Enrichment:
Low Dissolved
Oxygen | | | 545 | IA 04-RAC-0127_0 | 04-RAC-1161 | Elk Run | Fish Kill: Caused By
Animal Waste | | | 546 | IA 04-RAC-01390-L_0 | 04-RAC-1167 | North Twin
Lake | Bacteria: Indicator
Bacteria- E. coli | | | 547 | IA 04-RAC-01395-L_0 | 04-RAC-1168 | South Twin
Lake | Algal Growth:
Chlorophyll a | | | 548 | IA 04-RAC-01395-L_0 | 04-RAC-1168 | South Twin
Lake | Turbidity | | | 549 | IA 04-RAC-01690-L_0 | 04-RAC-1180 | Pickerel Lake | Algal Growth:
Chlorophyll a | | | | T | T | ı | T | |-----|-----|---------------------|-------------|---|--| | | 550 | IA 04-RAC-01690-L_0 | 04-RAC-1180 | Pickerel Lake | Turbidity:
Siltation/Turbidity | | | 551 | IA 04-RAC-01690-L_0 | 04-RAC-1180 | Pickerel Lake | Algal Growth:
Chlorophyll a | | | 552 | IA 04-RAC-01690-L_0 | 04-RAC-1180 | Pickerel Lake | Turbidity:
Siltation/Turbidity | | | 553 | IA 04-RAC-0170_0 | 04-RAC-1181 | South Raccoon
River | Bacteria: Indicator
Bacteria- E. coli | | | 554 | IA 04-RAC-0180_1 | 04-RAC-1183 | South Raccoon
River | Fish Kill: Caused By
Fertilizer Spill | | | 555 | IA 04-RAC-02220-L_0 | 04-RAC-1196 | Springbrook
Lake | Bacteria: Indicator
Bacteria- E. coli | | New | 556 | IA 04-RAC-02220-L_0 | 04-RAC-1196 | Springbrook
Lake | Algal Growth:
Chlorophyll a | | New | 557 | IA 04-RAC-02370-L_0 | 04-RAC-1199 | Swan Lake | Organic Enrichment:
Low Dissolved
Oxygen | | | 558 | IA 04-RAC-0250_0 | 04-RAC-1208 | Brushy Creek | Fish Kill: Caused By
Fertilizer Spill | | | 559 | IA 04-RAC-0253_0 | 04-RAC-1209 | Brushy Creek | Fish Kill: Caused By
Fertilizer Spill | | | 560 | IA 04-RAC-0251_0 | 04-RAC-1818 | Brushy Creek | Fish Kill: Caused By
Animal Waste | | | 561 | IA 04-RAC-01695_0 | 04-RAC-1883 | Poor Farm
Creek | Fish Kill: Caused By
Fuel Spill | | | 562 | IA 04-RAC-0254_0 | 04-RAC-6537 | Unnamed Tributary to Brushy Creek (Halburn Creek) | Fish Kill: Caused By
Fertilizer Spill | | | 563 | IA 04-UDM-0020-L_0 | 04-UDM-1213 | Saylorville
Reservoir | Turbidity: Secchi Disk
Transparency | | | 564 | IA 04-UDM-0030_1 | 04-UDM-1214 | Des Moines
River | Bacteria: Indicator
Bacteria- E. coli | | | 565 | IA 04-UDM-0030_2 | 04-UDM-1215 | Des Moines
River | Bacteria: Indicator
Bacteria- E. coli | | | 566 | IA 04-UDM-0040_1 | 04-UDM-1216 | Des Moines
River | Bacteria: Indicator
Bacteria- E. coli | | | 567 | IA 04-UDM-0040_2 | 04-UDM-1217 | Des Moines
River | Bacteria: Indicator
Bacteria- E. coli | | | 568 | IA 04-UDM-0060_0 | 04-UDM-1219 | Des Moines
River | Bacteria: Indicator
Bacteria- E. coli | | | 1 | | | 1 | 1 | |-----|-----|-------------------------|-------------|----------------------|---| | | 569 | IA 04-UDM-0070_0 | 04-UDM-1220 | Des Moines
River | Bacteria: Indicator
Bacteria- E. coli | | | 570 | IA 04-UDM-0070_0 | 04-UDM-1220 | Des Moines
River | Fish Consumption
Advisory: Mercury | | | 571 | IA 04-UDM-0080_0 | 04-UDM-1221 | Des Moines
River | Fish Consumption
Advisory: Mercury | | | 572 | IA 04-UDM-0090_1 | 04-UDM-1222 | Des Moines
River | Fish Consumption
Advisory: Mercury | | | 573 | IA 04-UDM-0090_2 | 04-UDM-1223 | Des Moines
River | Fish Consumption
Advisory: Mercury | | New | 574 | IA 04-UDM-01020-
L_0 | 04-UDM-1229 | Silver Lake | pH | | | 575 | IA 04-UDM-01060-
L_0 | 04-UDM-1231 | Twelve-mile
Lake | Algal Growth:
Chlorophyll a | | | 576 | IA 04-UDM-01060-
L_0 | 04-UDM-1231 | Twelve-mile
Lake | Turbidity: Suspended Solids | | | 577 | IA 04-UDM-0110_1 | 04-UDM-1233 | Beaver Creek | Bacteria: Indicator
Bacteria- E. coli | | | 578 | IA 04-UDM-0110_1 | 04-UDM-1233 | Beaver Creek | Biological: low
aquatic
macroinvertebrate IBI | | | 579 | IA 04-UDM-0150_0 | 04-UDM-1243 | Big Creek | Bacteria: Indicator
Bacteria- E. coli | | New | 580 | IA 04-UDM-01650-
L_0 | 04-UDM-1249 | Don Williams
Lake | Bacteria: Indicator
Bacteria- E. coli | | | 581 | IA 04-UDM-0170_0 | 04-UDM-1250 | Skillet Creek | Biological: low
Biological Integrity | | | 582 | IA 04-UDM-0180_1 | 04-UDM-1252 | Boone River | Bacteria: Indicator
Bacteria- E. coli | | | 583 | IA 04-UDM-01880-
L_0 | 04-UDM-1255 | Briggs Woods
Lake | pН | | | 584 | IA 04-UDM-0190_0 | 04-UDM-1256 | Boone River | Fish Kill: Due To Unknown Toxicity | | | 585 | IA 04-UDM-0215_0 | 04-UDM-1260 | Lyons Creek | Bacteria: Indicator
Bacteria- E. coli | | | 586 | IA 04-UDM-0215_0 | 04-UDM-1260 | Lyons Creek | Fish Kill: Due To
Unknown Toxicity | | | 587 | IA 04-UDM-0253_1 | 04-UDM-1270 | West Otter
Creek | Fish Kill: Due To
Unknown Toxicity | | | 588 | IA 04-UDM-0275-L_0 | 04-UDM-1276 | Brushy Creek
Lake | Bacteria: Indicator
Bacteria- E. coli | | | I | 1 | 1 | T | 1 | |-----|-----|-------------------------|-------------|--|---| | | 589 | IA 04-UDM-0300_1 | 04-UDM-1278 | Lizard Creek | Bacteria: Indicator
Bacteria- E. coli | | | 590 | IA 04-UDM-0300_1 | 04-UDM-1278 | Lizard Creek | Biological: low
aquatic
macroinvertebrate IBI | | | 591 | IA 04-UDM-03110-
L_0 | 04-UDM-1281 | Lizard Lake | Algal Growth:
Chlorophyll a | | | 592 | IA 04-UDM-03110-
L_0 | 04-UDM-1281 | Lizard Lake | Turbidity: Suspended Solids | | New | 593 | IA 04-UDM-03395-
L_0 | 04-UDM-1291 | Badger Lake | Algal Growth:
Chlorophyll a | | | 594 | IA 04-UDM-03990-
L_0 | 04-UDM-1304 | High Lake | Algal Growth:
Chlorophyll a | | | 595 | IA 04-UDM-03990-
L_0 | 04-UDM-1304 | High Lake | Turbidity: Suspended Solids | | | 596 | IA 04-UDM-03983-
L_0 | 04-UDM-1754 | West Swan
Lake | Algal Growth:
Chlorophyll a | | | 597 | IA 04-UDM-03983-
L_0 | 04-UDM-1754 | West Swan
Lake | Turbidity: Suspended Solids | | | 598 | IA 04-UDM-0247_0 | 04-UDM-1826 | Buttermilk
Creek | Bacteria: Indicator
Bacteria- E. coli | | | 599 | IA 04-UDM-0202_0 | 04-UDM-6494 | Drainage Ditch
97 | Fish Kill: Caused By
Fertilizer Spill | | | 600 | IA 04-UDM-0151_0 | 04-UDM-6540 | Big Creek | Bacteria: Indicator
Bacteria- E. coli | | | 601 | IA 04-UDM-0153_0 | 04-UDM-6541 | Unnamed
Tributary to Big
Creek | Bacteria: Indicator
Bacteria- E. coli | | | 602 | IA 04-UDM-0520_0 | 04-UDM-6542 | Little Creek | Bacteria: Indicator
Bacteria- E. coli | | | 603 | IA 04-UDM-0525_0 | 04-UDM-6543
| Turkey Creek | Bacteria: Indicator
Bacteria- E. coli | | | 604 | IA 04-UDM-0530_0 | 04-UDM-6544 | Unnamed
Tributary to Big
Creek | Bacteria: Indicator
Bacteria- E. coli | | | 605 | IA 04-UDM-0535_0 | 04-UDM-6545 | Prairie Creek | Bacteria: Indicator
Bacteria- E. coli | | New | 606 | N/A | 04-UDM-6625 | Unnamed Tributary to Unnamed Tributary to Des Moines River | Fish Kill: Caused By
Pesticides | | 607 | IA 05-CHA-0010_1 | 05-CHA-1307 | Chariton River | Bacteria: Indicator
Bacteria- E. coli | |-----|-------------------------|-------------|-----------------------------------|---| | 608 | IA 05-CHA-0010_2 | 05-CHA-1308 | Chariton River | Bacteria: Indicator
Bacteria- E. coli | | | _ | | Rathbun | | | 609 | IA 05-CHA-0020-L_1 | 05-CHA-1309 | Reservoir | Turbidity | | 610 | IA 05-CHA-0030_1 | 05-CHA-1310 | Chariton River | Bacteria: Indicator
Bacteria- E. coli | | 611 | IA 05-CHA-0030_1 | 05-CHA-1310 | Chariton River | Biological: low fish
IBI | | 612 | IA 05-CHA-0030_2 | 05-CHA-1311 | Chariton River | Bacteria: Indicator
Bacteria- E. coli | | 613 | IA 05-CHA-0030_2 | 05-CHA-1311 | Chariton River | Biological: low fish & invert IBIs- cause unknown | | 614 | IA 05-CHA-00301_0 | 05-CHA-1312 | Chariton River | Bacteria: Indicator
Bacteria- E. coli | | 615 | IA 05-CHA-00302_0 | 05-CHA-1313 | Chariton Creek | Bacteria: Indicator
Bacteria- E. coli | | 616 | IA 05-CHA-00325-
L_0 | 05-CHA-1318 | Centerville
Reservoir
Upper | Fish Consumption
Advisory: Mercury | | 617 | IA 05-CHA-0040_0 | 05-CHA-1323 | Cooper Creek | Biological: low fish IBI | | 618 | IA 05-CHA-0060_1 | 05-CHA-1327 | South Fork
Chariton River | Bacteria: Indicator
Bacteria- E. coli | | 619 | IA 05-CHA-0060_1 | 05-CHA-1327 | South Fork
Chariton River | Biological: low fish IBI | | 620 | IA 05-CHA-0060_2 | 05-CHA-1328 | South Fork
Chariton River | Bacteria: Indicator
Bacteria- E. coli | | 621 | IA 05-CHA-0060_2 | 05-CHA-1328 | South Fork
Chariton River | Biological: low fish & invert IBIs- cause unknown | | 622 | IA 05-CHA-0061_0 | 05-CHA-1329 | Walker Branch | Bacteria: Indicator
Bacteria- E. coli | | 623 | IA 05-CHA-0062_0 | 05-CHA-1330 | Jordan Creek | Bacteria: Indicator
Bacteria- E. coli | | 624 | IA 05-CHA-0062_0 | 05-CHA-1330 | Jordan Creek | Biological: low fish & invert IBIs- cause unknown | | 625 | IA 05-CHA-0063_0 | 05-CHA-1332 | Jackson Creek | Bacteria: Indicator
Bacteria- E. coli | | 626 | IA 05-CHA-0063_0 | 05-CHA-1332 | Jackson Creek | Biological: low fish & invert IBIs- cause unknown | |-----|-------------------------|-------------|--|---| | 627 | IA 05-CHA-0064_0 | 05-CHA-1333 | West Jackson
Creek | Biological: low aquatic macroinvertebrate IBI | | 628 | IA 05-CHA-0066_0 | 05-CHA-1335 | Ninemile Creek | Bacteria: Indicator
Bacteria- E. coli | | 629 | IA 05-CHA-0066_0 | 05-CHA-1335 | Ninemile Creek | Biological: low fish
IBI | | 630 | IA 05-CHA-0067_0 | 05-CHA-1336 | Dick Creek | Biological: low fish & invert IBIs- cause unknown | | 631 | IA 05-CHA-0068_0 | 05-CHA-1337 | Honey Creek | Bacteria: Indicator
Bacteria- E. coli | | 632 | IA 05-CHA-00690-
L_0 | 05-CHA-1338 | Bob White
Lake | Algal Growth:
Chlorophyll a | | 633 | IA 05-CHA-00690-
L_0 | 05-CHA-1338 | Bob White
Lake | Bacteria: Indicator
Bacteria- E. coli | | 634 | IA 05-CHA-00690-
L_0 | 05-CHA-1338 | Bob White
Lake | Organic Enrichment:
Low Dissolved
Oxygen | | 635 | IA 05-CHA-0070_0 | 05-CHA-1339 | Wolf Creek | Bacteria: Indicator
Bacteria- E. coli | | 636 | IA 05-CHA-0070_0 | 05-CHA-1339 | Wolf Creek | Biological: low fish & invert IBIs- cause unknown | | 637 | IA 05-CHA-0077_0 | 05-CHA-1341 | Fivemile Creek | Bacteria: Indicator
Bacteria- E. coli | | 638 | IA 05-CHA-0057_0 | 05-CHA-1915 | Unnamed Tributary to Rathbun Reservoir | Fish Kill: Caused By
Fuel Spill | | 639 | IA 05-CHA-0056_0 | 05-CHA-2019 | Honey Creek | Bacteria: Indicator
Bacteria- E. coli | | 640 | IA 05-CHA-0020-L_2 | 05-CHA-2027 | Rathbun
Reservoir | Turbidity | | 641 | IA 05-CHA-0020-L_2 | 05-CHA-2027 | Rathbun
Reservoir | Turbidity | | 642 | IA 05-CHA-0020-L_3 | 05-CHA-2028 | Rathbun
Reservoir | Turbidity | | 643 | IA 05-CHA-0020-L_3 | 05-CHA-2028 | Rathbun
Reservoir | Turbidity | | | | | Rathbun | | |-----|-------------------------|-------------|---|---| | 644 | IA 05-CHA-0020-L_4 | 05-CHA-2030 | Reservoir | Turbidity | | 645 | IA 05-GRA-0030_0 | 05-GRA-1350 | East Fork
Medicine Creek | Biological: low fish & invert IBIs- cause unknown | | 646 | IA 05-GRA-0040_0 | 05-GRA-1351 | Thompson
River | Bacteria: Indicator
Bacteria- E. coli | | 647 | IA 05-GRA-0070_0 | 05-GRA-1356 | Weldon River | Biological: low fish & invert IBIs- cause unknown | | 648 | IA 05-GRA-0080_0 | 05-GRA-1357 | Little River | Biological: low fish IBI | | 649 | IA 05-GRA-00810-
L_0 | 05-GRA-1358 | Little River
Watershed Lake | Bacteria: Indicator
Bacteria- E. coli | | 650 | IA 05-GRA-01010-
L_0 | 05-GRA-1361 | Nine Eagles
Lake | Bacteria: Indicator
Bacteria- E. coli | | 651 | IA 05-GRA-01010-
L_0 | 05-GRA-1361 | Nine Eagles
Lake | Fish Consumption
Advisory: Mercury | | 652 | IA 05-GRA-01320-
L_0 | 05-GRA-1367 | Twelve Mile
Creek Lake | Organic Enrichment:
Low Dissolved
Oxygen | | 653 | IA 05-GRA-0170_0 | 05-GRA-1376 | Lotts Creek | Biological: low fish
IBI | | 654 | IA 05-GRA-0180_0 | 05-GRA-1378 | Middle Fork
Grand River | Bacteria: Indicator
Bacteria- E. coli | | 655 | IA 05-GRA-0180_0 | 05-GRA-1378 | Middle Fork
Grand River | Biological: low fish & invert IBIs- cause unknown | | 656 | IA 05-NOD-0020_0 | 05-NOD-1389 | Nodaway River
(aka West
Nodaway R.) | Bacteria: Indicator
Bacteria- E. coli | | 657 | IA 05-NOD-0030_1 | 05-NOD-1391 | East Nodaway
River | Bacteria: Indicator
Bacteria- E. coli | | 658 | IA 05-NOD-0030_2 | 05-NOD-1392 | East Nodaway
River | Biological: low fish IBI | | 659 | IA 05-NOD-00485-
L_0 | 05-NOD-1396 | Orient Lake | Algal Growth:
Chlorophyll a | | 660 | IA 05-NOD-00485-
L_0 | 05-NOD-1396 | Orient Lake | рН | | 661 | IA 05-NOD-0070_0 | 05-NOD-1400 | Middle
Nodaway River | Biological: low fish & invert IBIs- cause unknown | | New | 662 | IA 05-NOD-00760-
L_0 | 05-NOD-1401 | Nodaway Lake | Algal Growth:
Chlorophyll a | |-----|-----|-------------------------|-------------|------------------------------|---| | | 663 | IA 05-NOD-00820-
L_0 | 05-NOD-1404 | Mormon Trail
Lake | Fish Consumption
Advisory: Mercury | | | 664 | IA 05-NOD-00930-
L_0 | 05-NOD-1407 | Viking Lake | Bacteria: Indicator
Bacteria- E. coli | | | 665 | IA 05-NSH-0010_0 | 05-NSH-1412 | Nishnabotna
River | Bacteria: Indicator
Bacteria- E. coli | | | 666 | IA 05-NSH-0020_1 | 05-NSH-1414 | East
Nishnabotna
River | Bacteria: Indicator
Bacteria- E. coli | | | 667 | IA 05-NSH-0020_2 | 05-NSH-1415 | East
Nishnabotna
River | Bacteria: Indicator
Bacteria- E. coli | | | 668 | IA 05-NSH-00580-L_0 | 05-NSH-1435 | Lake Anita | Algal Growth:
Cyanobacteria | | | 669 | IA 05-NSH-0060_0 | 05-NSH-1436 | Troublesome
Creek | Biological: low fish IBI | | | 670 | IA 05-NSH-0080_1 | 05-NSH-1441 | West
Nishnabotna
River | Bacteria: Indicator
Bacteria- E. coli | | | 671 | IA 05-NSH-0090_3 | 05-NSH-1446 | West
Nishnabotna
River | Biological: low fish & invert IBIs- cause unknown | | | 672 | IA 05-NSH-0090_4 | 05-NSH-1447 | West
Nishnabotna
River | Fish Kill: Caused By
Animal Waste | | | 673 | IA 05-NSH-0120_0 | 05-NSH-1454 | Silver Creek | Biological: low fish IBI | | | 674 | IA 05-NSH-0128_0 | 05-NSH-1457 | Mud Creek | Biological: low fish
IBI | | | 675 | IA 05-NSH-01440-L_0 | 05-NSH-1462 | Prairie Rose
Lake | Bacteria: Indicator
Bacteria- E. coli | | | 676 | IA 05-NSH-01440-L_0 | 05-NSH-1462 | Prairie Rose
Lake | Algal Growth:
Chlorophyll a | | | 677 | IA 05-NSH-01440-L_0 | 05-NSH-1462 | Prairie Rose
Lake | Turbidity | | | 678 | IA 05-PLA-00285-L_0 | 05-PLA-1470 | McKinley Lake | Fish Consumption
Advisory: PCBs | | | 679 | IA 05-PLA-00290-L_0 | 05-PLA-1471 | Summit Lake | Organic Enrichment:
Low Dissolved
Oxygen | | | 680 | IA 05-PLA-00295-L_0 | 05-PLA-1472 | Green Valley
Lake | Algal Growth:
Chlorophyll a | |-----|-----|-------------------------|-------------|---|--| | | 681 | IA 05-PLA-00295-L_0 | 05-PLA-1472 | Green Valley
Lake | Turbidity: Secchi Disk
Transparency | | | 682 | IA 05-PLA-00295-L_0 | 05-PLA-1472 | Green Valley
Lake | Organic Enrichment:
Low Dissolved
Oxygen | | New | 683 | IA 05-PLA-00335-L_0 | 05-PLA-1476 | Lake Of Three
Fires | pН | | | 684 | IA 05-PLA-00335-L_0 | 05-PLA-1476 | Lake Of Three
Fires | Organic Enrichment:
Low Dissolved
Oxygen | | | 685 | IA 05-PLA-00380-L_0 | 05-PLA-1477 | Wilson Park
Lake | Algal Growth:
Chlorophyll a | | | 686 | IA 05-PLA-0040_1 | 05-PLA-1480 | West Branch
One Hundred
And Two River | Biological: low fish & invert IBIs- cause unknown | | | 687 | IA 05-PLA-0015-L_0 | 05-PLA-2064 | Sands Timber
Lake (aka
Blockton
Reservoir) | Turbidity | | | 688 | IA 05-TAR-0020_0 | 05-TAR-1497 | West Tarkio
Creek | Biological: low fish & invert IBIs- cause unknown | | | 689 | IA 06-BOY-0020_1 | 06-BOY-1502 | Boyer River | Bacteria: Indicator
Bacteria- E. coli | | New | 690 | IA 06-BOY-00263-
L_0 | 06-BOY-1505 | Manteno Park
Pond | Algal Growth:
Chlorophyll a | | | 691 | IA 06-BSR-0010_3 | 06-BSR-1522 | Big Sioux River | Fish Kill: Caused By Organic Enrichment/Low Dissolved
Oxygen | | | 692 | IA 06-BSR-0021_0 | 06-BSR-1527 | Perry Creek | Biological: low fish & invert IBIs- cause unknown | | | 693 | IA 06-BSR-0023_0 | 06-BSR-1529 | Broken Kettle
Creek | Biological: low fish & invert IBIs- cause unknown | | | 694 | IA 06-BSR-0027_0 | 06-BSR-1531 | Indian Creek | Bacteria: Indicator
Bacteria- E. coli | | | 695 | IA 06-BSR-00280-L_0 | 06-BSR-1532 | Lake Pahoja | Bacteria: Indicator
Bacteria- E. coli | | 696 | IA 06-BSR-0029_0 | 06-BSR-1533 | Sixmile Creek | Bacteria: Indicator
Bacteria- E. coli | |-----|-------------------------|----------------------------|----------------------------------|---| | 697 | IA 06-BSR-0029_0 | 06-BSR-1533 | Sixmile Creek | Biological: low fish & invert IBIs- cause unknown | | 698 | IA 06-BSR-0030_0 | 06-BSR-1534 | Rock River | Bacteria: Indicator
Bacteria- E. coli | | 699 | IA 06-BSR-0030_0 | 06-BSR-1534 | Rock River | Fish Kill: Caused By
Animal Waste | | 700 | IA 06-BSR-0040_1 | 06-BSR-1537 | Rock River | Bacteria: Indicator
Bacteria- E. coli | | 701 | IA 06-BSR-0040_2 | 06-BSR-1538 | Rock River | Bacteria: Indicator
Bacteria- E. coli | | 702 | IA 06-BSR-0072_0 | 06-BSR-1545 | Otter Creek | Fish Kill: Caused By
Animal Waste | | 703 | IA 06-BSR-0072_0 | 06-BSR-1545 | Otter Creek | Fish Kill: Caused By
Spill | | 704 | IA 06-BSR-0080_0 | 06-BSR-1546 | Mud Creek | Bacteria: Indicator
Bacteria- E. coli | | 705 | IA 06-BSR-0080_0 | 06-BSR-1546 | Mud Creek | Fish Kill: Caused By
Animal Waste | | 706 | IA 06-BSR-0080_0 | 06-BSR-1546 | Mud Creek | Biological: low fish & invert IBIs- cause unknown | | 707 | IA 06-BSR-0060_1 | 06-BSR-1798 | Little Rock
River | Bacteria: Indicator
Bacteria- E. coli | | 708 | IA 06-BSR-0060_2 | 06-BSR-1799 | Little Rock
River | Biological: low
aquatic
macroinvertebrate IBI | | 709 | IA 06-BSR-0060_3 | 06-BSR-1800 | Little Rock
River | Bacteria: Indicator
Bacteria- E. coli | | 710 | IA 06-BSR-0035_0 | 06-BSR-1878 | Dry Creek | Biological: low fish & invert IBIs- cause unknown | | 711 | IA 06-BSR-0035_0 | 06-BSR-1878 | Dry Creek | Fish Kill: Due To
Natural Causes | | 712 | IA 06 PSD 0065 0 | 06-BSR-1934 | Unnamed Tributary to Little Rock | Fish Kill: Due To | | 713 | IA 06-BSR-0065_0
N/A | 06-BSR-1934
06-BSR-6609 | River West Rat Creek | Unknown Toxicity Fish Kill: Caused By Pesticides | | | 714 | IA 06-FLO-0010_0 | 06-FLO-1552 | Floyd River | Bacteria: Indicator
Bacteria- E. coli | |-----|-----|------------------|-------------|----------------------------|---| | | 715 | IA 06-FLO-0020_1 | 06-FLO-1553 | Floyd River | Biological: low fish
IBI | | | 716 | IA 06-FLO-0020_2 | 06-FLO-1554 | Floyd River | Fish Kill: Caused By
Animal Waste | | | 717 | IA 06-FLO-0020_2 | 06-FLO-1554 | Floyd River | Fish Kill: Caused By
Fertilizer Spill | | | 718 | IA 06-FLO-0020_2 | 06-FLO-1554 | Floyd River | Biological: low fish & invert IBIs- cause unknown | | | 719 | IA 06-FLO-0040_0 | 06-FLO-1558 | West Branch
Floyd River | Biological: low fish IBI | | New | 720 | IA 06-FLO-0040_0 | 06-FLO-1558 | West Branch
Floyd River | Fish Kill: Cause
Unknown | | | 721 | IA 06-FLO-0070_0 | 06-FLO-1562 | Deep Creek | Biological: low fish & invert IBIs- cause unknown | | | 722 | IA 06-FLO-0065_0 | 06-FLO-1829 | Willow Creek | Fish Kill: Due To
Unknown Toxicity | | | 723 | IA 06-FLO-0021_0 | 06-FLO-6266 | Floyd River | Fish Kill: Caused By
Pesticides | | | 724 | IA 06-LSR-0010_0 | 06-LSR-1564 | Little Sioux
River | Bacteria: Indicator
Bacteria- E. coli | | | 725 | IA 06-LSR-0020_1 | 06-LSR-1565 | Little Sioux
River | Bacteria: Indicator
Bacteria- E. coli | | | 726 | IA 06-LSR-0030_1 | 06-LSR-1570 | Little Sioux
River | Bacteria: Indicator
Bacteria- E. coli | | | 727 | IA 06-LSR-0030_4 | 06-LSR-1573 | Little Sioux
River | Bacteria: Indicator
Bacteria- E. coli | | | 728 | IA 06-LSR-0040_1 | 06-LSR-1577 | Little Sioux
River | Bacteria: Indicator
Bacteria- E. coli | | | 729 | IA 06-LSR-0040_2 | 06-LSR-1578 | Little Sioux
River | Bacteria: Indicator
Bacteria- E. coli | | | 730 | IA 06-LSR-0040_2 | 06-LSR-1578 | Little Sioux
River | Biological: low fish & invert IBIs- cause unknown | | | 731 | IA 06-LSR-0040_3 | 06-LSR-1579 | Little Sioux
River | Biological: low
aquatic
macroinvertebrate IBI | | | 732 | IA 06-LSR-0070_1 | 06-LSR-1581 | Maple River | Bacteria: Indicator
Bacteria- E. coli | | | | | | West Fork | | |-----|------|---------------------|--------------|-----------------------|---| | | 733 | IA 06-LSR-0120_1 | 06-LSR-1598 | Little Sioux
River | Bacteria: Indicator
Bacteria- E. coli | | | | | | West Fork | Biological: low fish & | | | 734 | IA 06-LSR-0120_2 | 06-LSR-1599 | Little Sioux
River | invert IBIs- cause
unknown | | | 734 | IN 00-LSR-0120_2 | 00-LSK-1377 | Kivei | Biological: low fish | | | 735 | IA 06-LSR-0143_0 | 06-LSR-1605 | Johns Creek | IBI | | | | | | | Biological: low aquatic | | | 736 | IA 06-LSR-0150_0 | 06-LSR-1611 | Willow Creek | macroinvertebrate IBI | | | 737 | IA 06-LSR-0170_0 | 06-LSR-1615 | Mill Creek | Biological: low fish & invert IBIs- cause unknown | | | 131 | IA 00-LSK-01/0_0 | 00-LSK-1013 | Mill Creek | Algal Growth: | | New | 738 | IA 06-LSR-01760-L_0 | 06-LSR-1616 | Lake | Chlorophyll a | | | 739 | IA 06-LSR-02220-L_0 | 06-LSR-1625 | Gustafson Lake | Bacteria: Indicator
Bacteria- E. coli | | | 740 | IA 06-LSR-0223_0 | 06-LSR-1626 | Willow Creek | Bacteria: Indicator
Bacteria- E. coli | | | 741 | IA 06-LSR-0223_0 | 06-LSR-1626 | Willow Creek | Fish Kill: Caused By
Animal Waste | | | 7.40 | 14 04 1 SD 0222 0 | 06 LGD 1626 | W''ll C 1 | Biological: low aquatic | | | 742 | IA 06-LSR-0223_0 | 06-LSR-1626 | Willow Creek | macroinvertebrate IBI | | | 743 | IA 06-LSR-02325-L_0 | 06-LSR-1629 | Elk Lake | Algal Growth:
Chlorophyll a | | | 744 | IA 06-LSR-02325-L_0 | 06-LSR-1629 | Elk Lake | Turbidity: Suspended Solids | | | 745 | IA 06-LSR-02330-L_0 | 06-LSR-1630 | Virgin Lake | Algal Growth:
Chlorophyll a | | | 746 | IA 06-LSR-02330-L_0 | 06-LSR-1630 | Virgin Lake | Turbidity: Suspended Solids | | | 747 | IA 06-LSR-0250_0 | 06-LSR-1638 | Ocheyedan
River | Bacteria: Indicator
Bacteria- E. coli | | | 748 | IA 06-LSR-0270_0 | 06-LSR-1644 | Stony Creek | Biological: low fish & invert IBIs- cause unknown | | | , 10 | 11 00 LbR 02/0_0 | JU LOIK 10TT | Stony Crook | Algal Growth: | | | 749 | IA 06-LSR-02820-L_0 | 06-LSR-1649 | Pleasant Lake | Chlorophyll a | | New | 750 | IA 06-LSR-02820-L_0 | 06-LSR-1649 | Pleasant Lake | Turbidity: Suspended Solids | | New | 751 | IA 06-LSR-02825-L_0 | 06-LSR-1650 | Minnewashta
Lake | Algal Growth:
Chlorophyll a | | | 1 | 1 | 1 | | |-----|---------------------|-------------|---|---| | 752 | IA 06-LSR-02850-L_0 | 06-LSR-1655 | Big Spirit Lake | Bacteria: Indicator
Bacteria- E. coli | | 753 | IA 06-LSR-02855-L_0 | 06-LSR-1656 | Marble Lake | Algal Growth:
Chlorophyll a | | 754 | IA 06-LSR-02890-L_0 | 06-LSR-1663 | Center Lake | Algal Growth:
Chlorophyll a | | 755 | IA 06-LSR-0305_0 | 06-LSR-1667 | Milford Creek | Biological: low
aquatic
macroinvertebrate IBI | | 756 | IA 06-LSR-02393-L_0 | 06-LSR-1775 | Bluewing
Marsh | Algal Growth:
Chlorophyll a | | 757 | IA 06-LSR-0131_0 | 06-LSR-1834 | West Fork Little Sioux River | Fish Kill: Due To
Unknown Toxicity | | 758 | IA 06-LSR-01495_0 | 06-LSR-2048 | Ashton Creek | Organic Enrichment:
Low Dissolved
Oxygen | | 759 | IA 06-LSR-02840-L_2 | 06-LSR-2066 | West Okoboji
Lake | Bacteria: Indicator
Bacteria- E. coli | | 760 | IA 06-LSR-0224_0 | 06-LSR-6299 | Willow Creek | Bacteria: Indicator
Bacteria- E. coli | | 761 | IA 06-LSR-0224_0 | 06-LSR-6299 | Willow Creek | Fish Kill: Caused By
Animal Waste | | 762 | IA 06-LSR-0207_0 | 06-LSR-6342 | Unnamed Tributary to Little Sioux River | Fish Kill: Caused By
Animal Waste | | 763 | IA 06-SOL-0010_1 | 06-SOL-1673 | Soldier River | Bacteria: Indicator
Bacteria- E. coli | | 764 | IA 06-SOL-0010_1 | 06-SOL-1673 | Soldier River | Biological: low
aquatic
macroinvertebrate IBI | | 765 | IA 06-WED-0003_2 | 06-WED-1683 | Plum Creek | Biological: low fish & invert IBIs- cause unknown | | 766 | IA 06-WED-0010_1 | 06-WED-1686 | Keg Creek | Biological: low fish IBI | | 767 | IA 06-WED-0010_2 | 06-WED-1687 | Keg Creek | Biological: low fish & invert IBIs- cause unknown | | 768 | IA 06-WED-0020_1 | 06-WED-1699 | Mosquito Creek | Biological: low fish & invert IBIs- cause unknown | | 769 | IA 06-WED-0020_3 | 06-WED-1701 | Mosquito Creek | Biological: low fish & invert IBIs- cause unknown | |-----|-------------------------|-----------------|---------------------|---| | 770 | IA 06-WED-00270-
L_0 | 06-WED-1702 | Arrowhead Pond | Algal Growth:
Chlorophyll a | | 771 | IA 06-WEM-0010_0 | 06-WEM-
1707 | Missouri River | Bacteria: Indicator
Bacteria- E. coli | | 772 | IA 06-WEM-0020_1 | 06-WEM-
1708 | Missouri River | Bacteria: Indicator
Bacteria- E. coli | | 773 | IA 06-WEM-0020_2 | 06-WEM-
1709 | Missouri River | Bacteria: Indicator
Bacteria- E. coli | | 774 | IA 06-WEM-00235-
L_0 | 06-WEM-
1711 | Lake Manawa | Algal Growth:
Chlorophyll a | | 775 | IA 06-WEM-00235-
L_0 | 06-WEM-
1711 | Lake Manawa | Turbidity | | 776 | IA 06-WEM-00265-
L_0 | 06-WEM-
1714 | Carter Lake | Fish Consumption
Advisory: PCBs | | 777 | IA 06-WEM-0030_0 | 06-WEM-
1715 | Missouri River | Bacteria: Indicator
Bacteria- E. coli | | 778 | IA 06-WEM-00340-
L_0 | 06-WEM-
1716 | Desoto Bend | Turbidity | | 779 | IA 06-WEM-00340-
L_0 | 06-WEM-
1716 | Desoto Bend | Algal Growth:
Chlorophyll a | | 780 | IA
06-WEM-0040_1 | 06-WEM-
1720 | Missouri River | Bacteria: Indicator
Bacteria- E. coli | | 781 | IA 06-WEM-0040_2 | 06-WEM-
1721 | Missouri River | Bacteria: Indicator
Bacteria- E. coli | | 782 | IA 06-WEM-0040_3 | 06-WEM-
1722 | Missouri River | Bacteria: Indicator
Bacteria- E. coli | | 783 | IA 06-WEM-00475-
L_0 | 06-WEM-
1734 | Snyder Bend
Lake | Algal Growth:
Chlorophyll a | | 784 | IA 06-WEM-00475-
L_0 | 06-WEM-
1734 | Snyder Bend
Lake | Turbidity | | 785 | IA 06-WEM-00485-
L_0 | 06-WEM-
1735 | Browns Lake | Turbidity | | 786 | IA 06-WEM-00485-
L_0 | 06-WEM-
1735 | Browns Lake | Algal Growth:
Chlorophyll a |