The Prettiest Dam on the Maquoketa River

The Quaker Mill Dam at Manchester, Iowa
The Prettiest Dam on the Maquoketa River

The Quaker Mill Dam at Manchester, Iowa

By Richard J. Carlson

With contributions by Chérie E. Haury-Artz and layout by Angela R. Collins

(Office of the State Archaeologist, University of Iowa)

Prepared for and funded by the Iowa Department of Natural Resources
1869 map of Manchester area with Quaker Mill circled (Thompson and Everts, Library of Congress, Geography and Map Division).
The Maquoketa River in northeast Iowa has long been one of the state's premier rivers, both for the water power that supported its many industries and for its scenic beauty and recreational opportunities. The river's water power was a major attraction for early settlers. Dams were constructed at many points along the river from the 1840s through the 1930s. The first dams powered grist mills and saw mills. In the late nineteenth and early twentieth centuries, old mill dams were replaced by, or converted to, hydroelectric dams to generate electrical power. Finally, particularly during the 1930s, some new dams were constructed for strictly recreational purposes, creating ponds for swimming, boating, fishing, and other outdoor activities.

In recent decades, it has become clear that dams are detrimental to the health of rivers, creating problems that outweigh their benefits. Dams produce turbulent water that is hazardous to swimmers and boaters; they allow silt to collect in mill ponds and reservoirs, worsening upstream flooding; and they hinder the passage of fish from one part of the river to another. In many instances, when they have outlived their industrial uses, these structures may be left to deteriorate, raising the possibility of dangerous catastrophic failures and increasing the risk of flooding. Restoring the free flow of the river ameliorates these problems and restores wetlands critical for good water quality and natural habitats.

Before its demolition in 2017, the Quaker Mill Dam was located along the Maquoketa River northwest of Manchester in Delaware County. This was the site of a succession of dams built during the nineteenth and twentieth centuries. The earliest dam was a wooden structure built in 1852 to supply power to a saw mill and later to a flour mill. After a series of wooden dams were built in this location, only to be destroyed by floods, a more permanent concrete dam was constructed in 1914. In 1922, the Iowa Electric Company acquired the mill site, modified the dam, and built a hydroelectric plant to generate electricity. During the mid-twentieth century, hydroelectric power became increasingly expensive to generate relative to other forms of power, leading the electric company to stop production at the Quaker Mill plant in 1967. During its useful life, and for some years afterwards, the dam and its associated mill pond served as a popular recreation spot for people in the Manchester area. Finally, in 2017 the deteriorating structure was demolished to restore the free flow of the river, benefiting the environment and creating new recreational opportunities.

Before it was demolished, the Quaker Mill Dam was determined to be eligible for listing in the National Register of Historic Places. It was significant for displaying three unusual engineering features in a single dam. First, it was hollow, allowing an operator to walk inside the dam from the powerhouse at the east end to the floodgate on the west end. Second, the hoist of its single floodgate, a type of curved floodgate known as a Tainter gate, was hand-operated rather than motorized. Finally, it had a monumental concrete fishway designed to accommodate the movement of fish across the dam. Each of these features was uncommon on dams built in Iowa; to find all three on a single structure was truly remarkable.
1852
Wooden dam built to power a saw mill

1865
Mill destroyed by flood waters

1869
Mill destroyed by fire and rebuilt

1867
Mill rebuilt and named Quaker Mill

1876
Dam washed away and rebuilt

1907–1910
Quaker Oats Company ownership

1914
Wooden dam replaced by a concrete structure

1922
Concrete dam expanded and converted to hydroelectric power

Flour mill from circa 1910 (Merry, opposite page 332).

Power plant and dam during 1925 flood (Manchester Press 2014).
1967
Quaker Mill hydroelectric power plant closes

1930s–1960s
Dam and mill pond promoted as recreation destination

2017
Deteriorating dam demolished to improve river quality

2017 Plans
Free-flowing Maquoketa River

Photo used courtesy of The Cedar Rapids Gazette (partial view shown here).

The Prettiest Dam on the Maquoketa River—The Quaker Mill Dam at Manchester, Iowa
Deaths at the Dam

Six fatalities are known to have occurred at or near the Quaker Mill Dam. In chronological order these are:

- **June 11, 1887:** Albert Lee, age 15, drowned while swimming in Quaker Mill Pond.⁵⁷
- **June 30, 1929:** Alice Collins, age 30, of Lamont, was struck by lightning while taking shelter under a tree during a sudden storm that broke during a family picnic at the dam.⁵⁸
- **May 29, 1938:** Mary Shimpac'h, age 21, of Cedar Falls, drowned after falling from a motorboat near the dam.⁵⁹
- **July 18, 1948:** Jerry Luther Kirby, age 29, of Strawberry Point, fell into the water while trying to climb up to the powerhouse base after walking across the top of the dam.⁶⁰
- **May 29, 1958:** Jan Speed, age 19, of Manchester, drowned while trying to swim across the river just above the dam.⁶¹
- **July 18, 1968:** William Tibbett, age 17, of Greeley, stepped into a deep hole in the river while seining fish below the dam.⁶²

Prior to the construction of the concrete structure in 1914, at least four other dams had existed at the location of the Quaker Mill Dam. The first dam was probably built in 1852 by Dr. John Acers (pronounced "Akers") and his brother Henry. This was a wooden structure designed to power a saw mill. Just two years later, in 1854, a flouring mill was added.¹

John Acers had great aspirations for development in the area. In November 1854 he laid out the town of Acersville, later known as Delaware Center, along both sides of the Maquoketa River near his mills. Confident that the proposed route of the Dubuque and Pacific railroad would have to go through Acersville, he reportedly set a high price for land in the railroad right-of-way. The railroad interests balked, and chose instead to run the railroad two miles south of Acersville, establishing a new town for the railroad station. Originally named Burrettington, the new city was platted in 1854–1855. In 1857, it was given its present name, Manchester, probably as a sly reference to William Chesterman, one of the entrepreneurs involved in securing the railroad route. Losing the railroad was the death knell for Acersville, as businesses and residences rapidly abandoned the town and moved to Manchester.²

Although Acersville faded away, the flouring mill continued to operate at the dam. Unfortunately, the early years held many more troubles. Disaster struck in 1865 when a flood destroyed the mill. The firm of Paxson & Seeds (later Paxson, Seeds & Co.) stepped in, purchasing a part interest in the business and rebuilding the mill in 1867. The new partners named it “Quaker Mill” in honor of their religious heritage. The mill was destroyed again in 1869, this time by fire. Dr. Acers sold his remaining interest in the business, but Paxson & Seeds had the structure rebuilt by the end of the year. In 1876, the dam was washed away “for the third or fourth time since its construction,” but it was soon rebuilt 120 feet long and 14 feet high.³

Paxson, Seeds & Co. and other firms continued to operate the Quaker Mill for several decades. By the turn of the twentieth century it was one of the leading flouring mills in the area. This 1902 overview summarizes the situation of the company:

The Quaker Mill company is having a very satisfactory and ever-increasing trade, and besides doing a large local business is shipping flour to the leading markets of the country, in addition to doing quite an extensive export business, shipping to different ports in the British empire. The company pays the highest market price for all kinds of grain, and not only uses all the grain to
be secured in the local territory, but ships in large quantities from the northwest. The Quaker mill is thoroughly modern in all respects and turns out the finest grades of flour, cornmeal and buckwheat flour. The leading brands of flour are White Pearl, Best Patent, White Satin, Sea Foam, Big Leaf, and Straight, all of which are well known and have the company's trade mark, "A Quaker on Every Sack." The firm is incorporated with a paid up capital stock of $20,000, and is controlled by some of Manchester's best citizens."

The Quaker Mill company was clearly doing well. Its business, however, was only a small fraction of that of a similarly named but much better known company, the Quaker Oats Company. The Quaker Oats Company was founded in 1901, but it had its roots in several independent oatmeal milling companies that had joined together around 1890. The brand name "Quaker" had been used since 1877 by one of these earlier firms. It became the best known brand of the merged firm, and gave its name to the successor company formed in 1901, the Quaker Oats Company. 5

The Quaker Oats Company considered the brand name "Quaker" to be of paramount importance and vigorously protected the name from trademark infringement. A 1933 history of the Quaker Oats Company describes what happened when the company became aware of the Quaker Mill Company of Manchester, Iowa:

In 1906, the Quaker Oats Company, to its great surprise, discovered that an obscure mill was operating in Manchester, Iowa, under the name of the Quaker Mill Company. Inquiry revealed that though this company had been organized in 1894, its predecessors had been doing business since about 1867, and applying the term "Quaker" to flour, cornmeal, graham flour, buckwheat and other mill products. Thereupon, the Quaker Oats Company, to protect its name, lost no time in seeking to negotiate purchase and, in May, 1907, title was secured to the property, business, trade-marks, trade-names, good will, etc., for $18,000. 6

The Quaker Oats Company owned the Manchester mill for only a few years. Once the brand name and trademark issues had been resolved to the satisfaction of the Quaker Oats Company, the firm had no further use for the Manchester mill. In 1910, the company sold the former Quaker Mill to a South Dakota firm, which in turn sold the mill back to a local Manchester owner, Joseph Hutchinson. Hutchinson continued milling flour in the mill—presumably no longer under the Quaker brand name—but also planned to add electrical generating equipment to the mill to create a hydroelectric plant. 7

Flour Milling in Iowa

The Quaker Mill Dam began life as a source of power for a saw mill and a grist mill. It served as a profitable flour mill for many decades before being converted to produce hydroelectric power. Before corn became king, wheat was the leading crop in Iowa. In the 1840s and 1850s farmers in eastern Iowa counties led in producing wheat. By 1859 Iowa had become the seventh leading wheat producing state in the nation. 63 Consequently, burgeoning municipalities saw flour milling as a key ingredient for growth and development. Having a flouring mill drew trade from area farms which, in turn, attracted other commercial services such as banks, stores, and hotels. 64

Images courtesy of Robert Ungs.
A Dam Reborn

In 1914 Joseph Hutchinson replaced the old wooden dam at Quaker Mill with a taller concrete dam, most likely with the thought of adding electrical power generation in the future. According to a local newspaper, this improvement was intended to increase the efficiency of the mill and provide additional power. The newspaper noted that "The new dam will contain 600 barrels of cement. It is to be fourteen feet high, one hundred and fifty feet in width, fifteen feet in breadth at the bottom, and three feet in breadth at the top." Only one photograph of this dam prior to its reconstruction in 1922 is known to exist. Writing on this photograph states that Sam Holdren of Earlville, Iowa, was the contractor, and M. G. Albrook of Delhi, Iowa, was the mechanical engineer. The new dam was completed by mid-September 1914.

The Iowa Electric Company

As Iowa entered the twentieth century, the need for reliable electrical power became imperative. By the mid-1910s several events helped convince Manchester residents that a new hydroelectric plant would be desirable. The two electrical power plants (one hydroelectric and one steam powered) that had operated in Manchester before 1916 were bought by the Iowa Electric Company of Cedar Rapids. After the Iowa Electric Company acquired the plants, Manchester residents became increasingly frustrated by inadequate service coupled with repeated rate hikes. Each time the Iowa Electric Company raised its rates, there was serious talk in Manchester of starting an independent, perhaps municipally owned, electric light and power plant.

To this end, a group of local investors incorporated the Delaware County Light and Power Company and acquired the former Quaker Mill site in 1917. During the next several years, however, the new company proved unwilling to develop the hydroelectric plant themselves, but also unable to convince the City of Manchester to take over the property to develop a municipal power plant. In the meantime, the Iowa Electric Company completed a new high-tension electric line from Cedar Rapids to Manchester, making electrical service more reliable.

By 1922, the shareholders of the Delaware County Light and Power Company had grown tired of inaction. Since they could not persuade the City of Manchester to purchase the site, and had no desire to develop a hydroelectric plant themselves, they sold the Quaker Mill property to the only entity for whom it made economic sense to acquire the site: the widely disliked Iowa Electric Company. This transfer took place in late 1921 or early 1922. Between February and
April 1922, the Iowa Electric Company mounted an extensive public relations campaign to present the “real facts” in response to the “consistent, continuous effort to misrepresent every act of the Iowa Electric Company, in respect to the Quaker Mill, steam rates and service, and many other matters.” Whether or not the people of Manchester accepted the company’s version of events, the Quaker Mill property was transferred to the Iowa Electric Company. Iowa Electric demolished the former Quaker Mill and built a new hydroelectric plant on the site in 1922. The company also raised the height of the dam an additional four feet, increasing the size of the mill pond from about 86 acres to 126 acres.

The Iowa Electric Company’s 1922 expansion of Joseph Hutchinson’s dam resulted in the dam that persisted through the rest of the twentieth century and into the twenty-first. Features added at this time include the Tainter gate and the concrete fishway at the west end of the dam and a powerhouse and powerhouse base on the east end. Of these, only the powerhouse base now survives. The powerhouse, and perhaps also the modified dam, were designed by the engineering firm of Holland, Ackerman & Holland of Ann Arbor, Michigan, and Chicago. The chief engineer on the site appears to have been Joseph D. Wardle, chief engineer with the Iowa Electric Company’s sister organization, the Iowa Railway and Light Company.

When the Quaker Mill Dam was removed in 2017, numerous objects were discovered in the sediment at the bottom of the former mill pond which cast light onto the area’s past. Among the most interesting are several metal license plate toppers, extra plates that could be attached to a vehicle’s license plate to promote a message. The license plate toppers display political slogans from the 1932 presidential election, in which Democratic challenger Franklin D. Roosevelt beat Republican incumbent Herbert Hoover in a landslide victory several years into the Great Depression. One set of plates reads simply “Roosevelt for President.” Another reads “Repeal 18th Amendment,” a reference to the Democratic Party’s call to repeal Prohibition, the 1919 constitutional amendment that prohibited the production, transportation, or sale of alcoholic beverages in the United States.
Engineering of the Dam

How the Dam was Designed

Following its 1922 reconstruction, the dam was divided into a main overflow dam that was reportedly 18 feet high and 196 feet long, a fishway, and a type of radial floodgate known as a Tainter gate. A floodgate is intended to regulate water flow through a dam during floods. The dam also included two prominent wing walls that extended from the west end of the Tainter gate. All of these features have been removed.

The concrete dam was hollow, and was divided into at least eight small chambers that were accessible though the powerhouse foundation. The chambers were separated from each other by concrete walls that typically had two openings: a large opening near the floor through which people could move between chambers, and a small square opening above the main opening, used for electrical wiring and possibly also as an air vent. For most of the length of the dam, the doors were lined up in a row so that, with enough light, one could see nearly from one end of the dam to the other. However, the west end of the dam, by the fishway and Tainter gate, was built on stone ledges that project from the river bank. Because these ledges are higher than the river floor, the two chambers at the west end of the dam were higher and smaller than those elsewhere in the dam, since they had the same ceiling height over a raised floor. Their doors and other openings were also correspondingly higher, and they also included a square opening beneath the main large opening, apparently for water drainage.\(^\text{19}\)

The hollow construction of the Quaker Mill Dam most likely dated to the original 1914 dam rather than the 1922 expansion. In later years this interior passage may have provided access to the Tainter gate and hoist mechanism; however, the 1914 dam appears not to have had a floodgate. The purpose for the hollow construction is currently not known.

The dam was constructed of reinforced concrete that represented at least two separate major building episodes and additional repairs. The original 1914 dam was reportedly 14 feet high, but it was raised to 18 feet by the Iowa Electric Company in 1922. A third building episode appears to have taken place at a later point—dam owner Willard Hawker guesses in the late 1940s or early 1950s—when the dam crest was raised several inches and made level by the use of rails from the abandoned Manchester & Oneida Railway nearby.\(^\text{20}\) Two openings at the bottom of the dam near the powerhouse were used to drain the upstream pond when necessary. These openings were sufficiently large for people to use to gain access to the dam’s interior from the downstream face of the dam rather than through the powerhouse base.\(^\text{21}\) In addition to these openings, two small square holes were located near the crest of the downstream face. The position of these holes near the crest of the dam suggests that
they most likely functioned to vent air into and out of the interior chambers as the water level within the dam rose and fell. 22

The monumental concrete fishway (or fish ladder) extended down from the crest of the dam to the bedrock ledge near the west end of the dam. Fish ladders, which were designed to allow fish passage across dams, were required by Iowa state law on any dam constructed after the late nineteenth century. 23 However, many builders of early twentieth century dams in Iowa either ignored the law completely—building the fish ladders years later as an afterthought, if at all—or built small, predominantly wooden fish ladders that have not survived. The large concrete fish ladder that formed a prominent feature of the Quaker Mill Dam was unusual in both its size and permanence. It was built as an integral part of the 1922 dam reconstruction rather than as an afterthought, and its concrete construction led to its long-term survival. The fish ladder was not straight, but had an angled bend near the center of its run so that the south half angled towards the center of the river. The fish ladder had concrete partitions that extended partway across the channel to provide pools of stiller water to assist the ascending fish. These partitions were angled upstream rather than perpendicular to the walls because angled partitions were thought to offer the fish a greater area of still water in which to rest. 24 Fishways with angled partitions are known as Swazy fishways.

The Tainter gate at the west end of the dam was flanked by reinforced concrete walls that extended several feet above the crest of the dam, allowing the gate to be raised above the upstream pool level during flood periods. A Tainter gate is a radial gate composed of a curved metal plate with the convex side facing upstream. This design allows the force of the water to help open and close the gate. 25 Radial arms connect the downstream face to a single pivot point on each sidewall. The gate is raised and lowered by means of a cable connected to a hoist located above the gate. The hoist mechanism in the Quaker Mill Dam was manual rather than motorized. It consisted of a large hand-crank connected by a series of gears to a drum around which the cable was wound. At the time the hoist was removed in 2017, only the cable and hand-operated wheel were modern, having been installed by the present owners. 26 A concrete catwalk extended across the top of the gate to provide access to the hoist. A concrete spillway extended downstream from the Tainter gate to the bedrock ledges that line the river.

An additional component of the dam was a series of concrete wing walls that extended from the west wall of the Tainter gate. One extended north along the river bank to the stone abutment of a former bridge, while the second extended southwest along the south slope of the hill to the west of the pond. These walls were removed in 2017 together with the rest of the dam.
Why was the Dam Unique?

The Quaker Mill Dam exhibited several features that were unusual. These include the hollow construction with interior chambers; the monumental concrete fishway; and the single Tainter gate with manually operated hoist. No comprehensive surveys of dams in Iowa have been conducted that identify the number of dams in the state that exhibit each of these features, but the combination was unusual, and possibly unique in the state. To demonstrate the distinctiveness of the Quaker Mill Dam, an attempt was made to identify all extant dams in Iowa with similar features. Dams with hollow construction cannot be identified readily based on their exterior appearance, so the investigation was limited to dams with large concrete fishways and Tainter gates. The number of dams with hollow construction is not known, but only one other dam in Iowa—the Mitchell Mill Dam built in 1925 in Mitchell, Mitchell County—is described in the records of Iowa’s State Historic Preservation Office as having hollow construction like the Quaker Mill Dam.27

The table below lists all extant dams in Iowa known to retain a concrete fishway or Tainter gate as of July 2017. The list is based on a comprehensive survey of lowhead dams in Iowa compiled by the Iowa Department of Natural Resources (DNR) in 2010.28 Dams included in the DNR list that were sufficiently large to be comparable to the Quaker Mill Dam were investigated further through aerial photographs and street-level photographs available online to determine which were known or likely to have either a large concrete fishway or floodgate.29 As a result of this survey, a total of 24 dams were identified as likely to have features comparable to the Quaker Mill Dam. On-site visits to 23 of these dams were conducted in June and July 2017. The results of the survey are summarized in the table below.

It was found that, as of July 2017, only three other extant dams in Iowa had large concrete fishways. A fourth fishway, located on the Iowa River Power Company Dam in Johnson County, was smaller and narrower than the others, so it did not qualify as a monumental fishway, but it was the only other intact fishway observed during the field survey. All of the fishways for which a type could be determined were of the Swazy type.

Tainter gates were found to be slightly more common than concrete fishways on Iowa dams. Seven extant dams were found that exhibit this feature, although all have multiple gates rather than the single gate on the Quaker Mill Dam. Only two—the Iowa Falls Dam and Lakehurst Dam—are similar to the Quaker Mill Dam in that they feature both a concrete fishway and one or more Tainter gates. The Market Street Dam in Ottumwa has a total of nine Tainter gates, including one separated from the others on the north side of the powerhouse, as well as one bascule gate. In all cases, the Tainter gates are powered by electricity rather than manually powered. The majority employ moveable hoists on rails, although two dams—Rutland Dam and Market Street Dam in Ottumwa—appear to have one stationary hoist per gate. Another dam that formerly had Tainter gates—the Fort Dodge Hydro Dam in Fort Dodge, Webster County—reportedly had a backup manual hoist.30 The Tainter gates and hoists from the Fort Dodge dam have been removed since the time it was recorded. The Quaker Mill Dam therefore appears to have been unique in Iowa both for its small number of Tainter gates (one rather than multiple) and for its use of an exclusively hand-powered hoist.

Iowa Dams Sharing Notable Features with Quaker Mill Dam

<table>
<thead>
<tr>
<th>Name</th>
<th>River</th>
<th>Location</th>
<th>County</th>
<th>Feature(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center Street Dam</td>
<td>Cedar River</td>
<td>Cedar Falls</td>
<td>Black Hawk</td>
<td>4 Tainter gates</td>
</tr>
<tr>
<td>Independence Mill Dam</td>
<td>Wapsipinicon River</td>
<td>Independence</td>
<td>Buchanan</td>
<td>large concrete fishway</td>
</tr>
<tr>
<td>Iowa Falls Dam</td>
<td>Iowa River</td>
<td>Iowa Falls (southeast side)</td>
<td>Hardin</td>
<td>large concrete fishway; 3 Tainter gates</td>
</tr>
<tr>
<td>Iowa River Power Company Dam</td>
<td>Iowa River</td>
<td>Coralville</td>
<td>Johnson</td>
<td>small concrete fishway</td>
</tr>
<tr>
<td>Lakehurst Dam</td>
<td>Maquoketa River</td>
<td>Maquoketa (1 mile west)</td>
<td>Jackson</td>
<td>large concrete fishway; 6 Tainter gates</td>
</tr>
<tr>
<td>Market Street Dam</td>
<td>Des Moines River</td>
<td>Ottumwa</td>
<td>Wapello</td>
<td>9 Tainter gates</td>
</tr>
<tr>
<td>Mitchell Mill Dam</td>
<td>Cedar River</td>
<td>Mitchell</td>
<td>Mitchell</td>
<td>2 Tainter gates</td>
</tr>
<tr>
<td>Red Rock Reservoir Dam</td>
<td>Des Moines River</td>
<td>Pella (1.5 miles southwest)</td>
<td>Marion</td>
<td>5 Tainter gates</td>
</tr>
<tr>
<td>Rutland Dam</td>
<td>[West Fork] Des Moines River</td>
<td>Rutland</td>
<td>Humboldt</td>
<td>2 Tainter gates</td>
</tr>
</tbody>
</table>
Recreation at the dam during the early 2000s. Left: swimmers climbing through the fish ladder. Right: fishing below the dam. Both images courtesy of Doug Hawker.

Hot Days and Fresh Fish—Recreation at the Dam

Fishing, Hunting, and Trapping

The Maquoketa River around the Quaker Mill Dam and the pond to the north long served as a recreational area. Along with swimming, boating, and picnicking, outdoor enthusiasts at Quaker Mill have enjoyed fishing, hunting, and trapping. The area’s reputation grew during the twentieth century, especially after local entrepreneurs began developing the area around the pond as a pleasure resort in the 1930s.

The excellence of the Maquoketa River for fishing was maintained by the regular stocking of the river both above and below the dam. This was done irregularly before the 1930s, and with increasing frequency from the 1930s to at least the 1970s. In some cases, the fish were provided by a government fishery such as the one in Guttenberg. In other cases, the Maquoketa River was stocked with rescued fish that had been trapped in ponds formed in other river channels when drought conditions lowered their water levels. During the middle decades of the twentieth century, the river near the Quaker Mill Dam was stocked at various times with many types of fish, including largemouth bass, smallmouth bass, red-eye black bass, rock bass, bluegills, black crappies, catfish, walleyes, and northern pike. In 1940, seven-year-old John Scheel of Manchester caught a walleye in his first attempt at fishing. The newspaper at the time observed that the walleye was “a most unusual species of fish for this section.” Willard Hawker, the present owner of the Quaker Mill Dam, recalls that one species of bass, the striped bass, was common in the river below Manchester, but never appeared as far upstream as the Quaker Mill Dam.

A fish survey of the Quaker Mill Pond in 1973 revealed that some largemouth bass, white crappies, and catfish were in the pond, as well as many carp and suckers.

In addition to stocking the river with game fish, the state fish and game commission also occasionally rid the river of undesirable fish. During the Great Depression, a crew from the state fish and game commission seined the river between the Quaker Mill Dam and the dam in Manchester for undesirable fish. The 800 pounds of carp, quillbacks and sunfish that were collected were given to those on poor relief. The river was also occasionally lowered to remove “soft fish” or “rough fish,” undesirable fish that interfere with breeding of game fish.

Duck hunting was also a popular pastime at the mill pond. The Manchester area is part of the Mississippi Flyway, the most heavily used corridor in the United States for migratory waterfowl, so duck hunting here has traditionally been good. At one point around the 1960s, there were six or eight large floating duck blinds in the pond, each owned by a different family. Each blind could fit up to six people side by side. In 1958, Manchester teenager Calvin Robinson, who bagged five “king sized” blue geese at the pond, explained his success by saying “they kept flying over.”

The area around the dam has also been beneficial for trappers. Willard Hawker recalls that when he was a boy in the 1940s, he trapped muskrats and occasionally mink around the dam. He got two to three dollars each for the muskrats, and a dollar an inch for the minks.
Notes
1 For more on the history of the Quaker Mill and the associated dam, see Carlson 2015.
2 Western Historical Company, pp. 389, 478-479, 483, 558-559; Barnes, p. 6; Carlson 2012a, p. 4.
3 Western Historical Company, pp. 511-512; Waterloo Evening Courier 1922a, p. [16].
4 Cedar Rapids Sunday Republican 1902, p. 17.
5 Thomson, pp. 25-70.
6 Thomson, pp. 35-36.
7 Waterloo Times-Tribune 1910, p. 8; 1911, p. 3; Cedar Rapids Evening Gazette 1911, p. 12.
8 Manchester Press 1914, p. 1.
9 Stateh, p. 9; Manchester Democrat 1914a, p. [5]; 1914b, p. 1. Several newspaper sources confirm that Samuel T. Holdren of Earlville was the contractor, but no other source has been found that mentions Albrow in connection with the dam.
10 Manchester Democrat 1914c, p. 1.
11 Monticello Express 1916, p. 1; Waterloo Evening Courier 1917a, p. 8; 1917b, p. 2; 1919, p. 2; 1920, p. 10.
12 Monticello Express 1917, p. 1; Waterloo Evening Courier 1918, p. 2.
13 Manchester Democrat 1922a, p. 1.
15 Iowa Electric Company 1922a, p. 1; Manchester Democrat 1922b, p. 1.
16 Iowa Electric Company 1922a, p. 1; 1922b, p. [4]; 1922c, p. [4]; 1922d, p. [4]; 1922e, p. [4]; 1922f, p. [4]; 1922g, p. [4]; 1922h, p. [4]; 1922i, p. [3]; 1922j, p. [4].
17 Waterloo Evening Courier 1922b, p. 5; Dubuque Times-Journal 1922, p. 11.
18 American Contractor 1922, p. 61; Leonard 1922:614; McCoy Directory Co., p. 554; Carlson 2015, p. 7.
19 Doug Hawker 2015a; Willard Hawker 2015. The chambers can be seen in photographs of the dam's interior taken in 2002 and of the demolition of the dam taken in 2017. These photographs are in the possession of Doug Hawker of Manchester, with copies available at the Office of the State Archaeologist, Iowa City. The photographs are not sufficiently comprehensive to reveal the exact number of chambers, but the number was at least eight and almost certainly no more than ten.
20 Doug Hawker 2015a; Willard, Marcia, and Doug Hawker 2017.
22 Doug Hawker 2015.
24 Frizzell, p. 128.
25 Richardson and Vogel, p. 23.
27 Biedermann.
28 Iowa Department of Natural Resources.
29 Current and historical aerial photographs were available on Google Maps (www.google.com/maps/) and the Iowa Geographic Map Server (ortho.gis.iastate.edu/), while street-level views were available from a variety of sources, including Google Maps and numerous individual photographers. All web sites were accessed in late May and early June 2017. Thompson and Vogel, p. 23.
31 The Telegraph-Herald 1940, p. 9.
33 The Oelwein Daily Register 1973, p. 3.
34 The Telegraph-Herald 1934c, p. 7.
35 The Telegraph-Herald 1941, p. 17; Waterloo Daily Courier 1968, p. 11.
37 The Cedar Rapids Gazette 1958b, Section 4, p. 6.
38 Willard, Marcia, and Doug Hawker 2017.
40 The Telegraph-Herald 1923a, p. 5.
41 The first use of this name discovered during the research for the present report was in July 1934; see The Telegraph-Herald 1934b, p. 4. Heggenburg was advertising the area using this name by 1935; see Postville Herald 1935, p. 5. The Telegraph-Herald 1935, p. 11.
42 UNGs; Iowa State University Geographic Information Systems Support and Research Facility.
43 The Telegraph-Herald 1933b, p. 9; 1939, p. 22; The Cedar Rapids Gazette 1939, Section 4, p. 5.
46 Wollert, p. 20.
48 Waterloo Daily Courier 1958, p. 18.
49 Kinney, p. [8]; Murray, p. 218.
50 Raddi, p. 1B; Love 2013, p. 7A.
52 Iowa State University Geographic Information Systems Support and Research Facility; Willard, Marcia, and Doug Hawker 2017.
53 Love 2008, pp. 1A, 14A; Love 2009, pp. 6A; Love 2013, pp. 1A, 14A.
54 Love 2013, pp. 1A, 7A; Wagner et al., pp. 12, 19, 129, 171, 178.
55 Hoogeveen; Top Grade Excavating.
57 Waterloo Evening Courier 1929, p. 3.
58 The Telegraph-Herald 1938a, p. 10.
60 The Cedar Rapids Gazette 1958b, p. 2.
62 Schmidt 1920, p. 401.
63 Solie 1989, p. 3.

References Cited
American Contractor
1922 The American Contractor, August 5, 1922.
Barnes, Suzanne
Biedermann, W. R.
Bulletin-Journal (Independence, IA)
Carlson, Richard J.
2012a Iowa Site Inventory Form for the E. W. Hoag Grist Mill and Electric Light Plant Dam, Manchester, Delaware County, State Inventory Number 28-00655. Copy on file, State historic Preservation Office, State Historical Society of Iowa, Des Moines.
2012b Iowa Site Inventory Form for the Littleton Dam, Buchanan County, State Inventory Number 10-00603. Copy on file, State Historical Preservation Office, State Historical Society of Iowa, Des Moines.
2015 Iowa Site Inventory Form for the Quaker Mill Dam, State Inventory Number 28-00702. Copy on file, State Historic Preservation Office, State Historical Society of Iowa, Des Moines.
Cedar Rapids Evening Gazette (Cedar Rapids, Iowa)
1911 The Cedar Rapids Evening Gazette, February 23, 1911.
Cedar Rapids Gazette (Cedar Rapids, Iowa)
1939 The Cedar Rapids Gazette, July 9, 1939.
1954a The Cedar Rapids Gazette, April 18, 1954.
Cedar Rapids Sunday Republican (Cedar Rapids, Iowa)
1902 Cedar Rapids Sunday Republican, December 7, 1902.
Cox, Clarence
1953 Waterloo Sunday Courier (Waterloo, Iowa), July 12, 1953.
1968 The Cedar Rapids Gazette (Cedar Rapids, Iowa), January 1, 1968.
Dubuque Times-Journal (Dubuque, Iowa)
Ducks Unlimited
Evening Gazette (Cedar Rapids, Iowa)
1919 The Evening Gazette, October 16, 1919.