EVALUATION OF RECYCLED RUBBER IN ASPHALT CONCRETE

Construction Report Highway Research Advisory Board Project HR-330 Federal Highway Administration Project DTFH71-91-TE03-IA-30

December 1991

E 70 A53 991

8HR 5 Highway Division IOWA Department of Transportation

Construction Report Highway Research Advisory Board Project HR-330

Evaluation of Recycled Rubber in Asphalt Concrete

Ву

Chris Anderson Materials Technician 4 515-239-1392 Office of Materials Highway Division Iowa Department of Transportation Ames, Iowa 50010

December 1991

TABLE OF CONTENTS

	Page
Abstract	1
Introduction	2
Objectives	2
Contractors	3
Project Location	3
Preconstruction Survey	3
Materials	4
A.R.C. Viscosities	5
Mix Design	6
Plant Operation	7
Paving Operation	8
Construction Testing	9
Cost Comparison	10
Evaluation	11
Conclusions	12
Appendices	
Appendix A - Contract & Special Provisions Appendix B - Viscosity Testing Appendix C - Lab Testing of Mix & Mix Designs Appendix D - Field Testing	13 26 31 35

DISCLAIMER

The contents of this report reflect the views of the author and do not necessarily reflect the official views of the Iowa Department of Transportation. This report does not constitute a standard, specification or regulation.

ABSTRACT

Discarded tires present major disposal and environmental problems. The recycling of those tires in asphalt cement concrete is what this research deals with. The Iowa DOT and the University of Northern Iowa (UNI) are evaluating the use of discarded tires in asphalt rubber cement and rubber chip mixes.

The project is located on US 61 between Blue Grass and Muscatine in Muscatine County. It contains four rubberized asphalt sections and control sections. One section consists of reacted rubber asphalt cement used in both the binder and surface courses, and one section, both lanes, contains a rubber chip mix.

The reacted rubber asphalt and the rubber chip mixes were laid in July 1991. The project construction went well with a few problems of shoving and cracking of the mat.

This report contains information about procedures and tests that were run and those that will be run. It also has a cost comparison since this is a major concern with the use of asphalt rubber. Evaluation of this project will continue for five years.

Three more research projects containing rubberized asphalt were constructed in 1991 and another is to be constructed in 1992.

INTRODUCTION

Discarded tires have become a major disposal problem. In the U.S. there are approximately 250 million automobile tires and about 25 million truck tires discarded every year. There are approximately three million tires discarded annually in Iowa. Since these tires do present many environmental problems, a way to recycle them has become vitally important.

In the late 1960's a method was introduced to use rubber in asphalt mixtures. It was originally used as a seal coat and a binder in hot mixes. Now field testing and evaluation has begun in Iowa using recycled rubber asphalt cement. Five projects have been selected for the testing and evaluation. There will be two different types of asphalt rubber used in this research project. There will be a reacted rubber asphalt cement referred to as asphalt rubber cement (A.R.C.). This was used in both a binder course and a surface course on a test section. It was used in a surface course with a conventional mix used as a binder in two test sections. A rubber chip mix was used and tested in one test section on this project.

OBJECTIVES

The objective of this research project is to evaluate the use of finely ground recycled tire rubber as asphalt rubber cement and recycled rubber granules in asphalt concrete pavements.

CONTRACTORS

The contractor on this project was Manatt's Inc. of Brooklyn, Iowa. Their plant was adjacent to the project. Their plant provided the conventional asphalt mix. They also laid the conventional asphalt and the rubber chip mixes.

The A.R.C. was subcontracted to Determann Construction. It was furnished by an asphalt plant at the Wendling Quarry at Moscow. The rubber chip mix was also produced at the Wendling Quarry.

PROJECT LOCATION

This asphalt rubber project was located on US 61 between Muscatine and Blue Grass in Muscatine County. The test sections are listed in Table I.

Table I

ection
ection
e
ection
ection
e

PRECONSTRUCTION SURVEY

The existing pavement was a 10 inch by 24 feet jointed portland cement concrete pavement constructed in 1957. The joints were spaced 20 feet apart. The 1988 traffic volume was 7490 vehicles per day with 17% trucks.

A crack and patch survey was conducted on the research section before construction began. The Road Rater was used to test a portion of the project in April of 1991. A few weeks after the completion of the project it was used on the entire section. These results are shown in Appendix D.

Patching was required on some areas of the project prior to the overlay.

The existing pavement showed minimal signs of distress or wear.

MATERIALS

The ground tire rubber and the rubber chips were provided by Rouse Rubber Products from Vicksburg, Mississippi. Both were delivered in 50# paper bags. Rouse had originally intended to use a GF-80 rubber or a GF-40 rubber for the ground rubber. Preliminary testing on these products concluded they could not meet specification gradation limits. Rouse then submitted a GF-35 rubber which met gradation limits and was used in the project. The gradation limits on all the materials used in this project are located in the Special Provisions in Appendix A in the back of this report. The gradations of the GF-35 rubber used in this project are given in Appendix D. The AC-5 used in the reacted rubber mixes and the AC-10 for the rubber chip and conventional mixes were supplied by Amoco Oil of Davenport.

Aggregate sources are given in Appendix C; test reports and the gradation in Appendix D.

A.R.C. VISCOSITIES

Viscosity testing for specification purposes was originated in the fall of 1990. The percents of ground rubber tested for viscosities were 5.0%, 10.0%, 15.0%, 17.0% and 20.0%. Readings were taken at 3 minutes, 10 minutes, 30 minutes and 1 hour intervals. The temperature used in the testing was $350^{\circ}F \pm 10^{\circ}F$. The viscosity testing was done using a Brookfield viscometer reporting centipoise (CP) readings. A test was also made using AC-5 with no rubber. That reading held constant at 100 CP. The readings are listed and charted in Appendix B.

The specification for the A.R.C. was 1500-4000 CP. Laboratory testing prior to mix design determined that 15% of GF-35 rubber would yield viscosities within these specifications.

During construction, viscosity testing was done at the plant by Rouse Rubber. These results are shown in Appendix D.

MIX DESIGN

Samples of all materials were obtained for preliminary testing. The job mix for all mixes used in this project are given in Appendix C.

It was recommended a field change be made in the A.R.C. binder mix at Sta. 225+75. The mix appeared dry with some cracking and shoving occurring. At that time, the AC-5 was increased .2% from 6.6% to 6.8%. Shortly after that, the gradation at the plant was completed showing it was in noncompliance. The mix design was again changed at Sta. 234+50, lowering the AC-5 .2% back to the original 6.6%. An interchange was also made at this time on the materials, increasing the 1/2" chips by 5% and lowering the manufactured sand 5%. This changed the aggregate proportions as shown in Table II.

Table II

<u>Material</u>	Original	Revised
3/4" - Limestone	45%	45%
1/2" With Chips	20%	25%
Manufactured Sand	10%	5%
Sand	25%	25%

The mix design for the A.R.C. surface mix was not altered.

There was a change made in the rubber chip mix due to high voids. This change is given in Table III.

Table III

Material	Original	Revised
Granite	25%	25%
1/2" - Limestone	45%	40%
3/4" - Limestone	15%	13%
Sand	15%	228

The lab and field densities and the difference between them along with the voids are shown in Appendix D.

PLANT OPERATION

The A.R.C. and the rubber chip mixes were both produced by a Cedar Rapids batch plant at Wendling Quarry in Moscow. The conventional mix was produced by a Cedar Rapids drum plant near the project.

The Rouse reactor was overseen by a technical director employed by Rouse. The finely ground GF-35 rubber was manually fed into a hopper on the reactor. From there it was gravity fed into the reaction chambers where it was agitated for 15 to 20 minutes. There are two chambers equipped with baffles between them so the reacted rubber asphalt flows between both tanks. It is then piped from the reactor into the regular asphalt system. There is a monitoring device that is based on the rpm's of the motor and the percent of rubber desired. The temperature of the reacted rubber AC before it was discharged into the regular system ran 300°F to 350°F. The valve and piping connecting the Rouse system to the conventional system was relatively small. This caused production to slow down, dropping it from the normal 250 ton per hour to around 150 ton per hour. Another cause for the difference could be attributed to the fact the reacted rubber runs slower once the system cools down.

The rubber chips were added to the mix by means of a hopper. The 50 lb. bags of rubber chips were placed on a platform next to the hopper. They were manually dumped into the hopper and combined with the mix. The entire mix was mixed for an additional 15 seconds before dumping it into the truck.

PAVING OPERATION

The A.R.C. binder and surface courses were laid with a Blow-Knox PF-500 Paver. They both laid similar to a conventional mix.

The A.R.C. binder appeared very dry. The contractors had trouble with shoving and cracking as it was being rolled. The mix design was altered which yielded some improvement. Determann also tried using a smaller roller but that was of no help. The next morning after traffic had been on the mat, it appeared much better. Some of the cracks had closed up and the mat had become more stable.

The appearance of the A.R.C. surface was much different than the binder. It looked more uniform with more voids. The A.R.C. seemed to lay well but it needed extra time before the rolling operation could begin. This was due to the fact the A.R.C. was laid at a higher temperature than the conventional The rubber chip mix was laid using a Cedar Rapids CR531 Paver. This mix looked much coarser and richer than a conventional mix. The contractor had problems with shoving of the mix as well as problems with it sticking to the drum of the roller. This may have been caused by the high AC content (7.6%) or another factor could have been the higher temperature of the chip mix at laydown which was 330°F.

The mix was changed before the westbound section of the rubber chip mix was laid. This was shown in Table III.

CONSTRUCTION TESTING

Samples were taken at the time of construction by UNI for the ductility tests, aging tests, tensile creep tests, and fatigue tests. The Iowa DOT obtained samples for creep and resilient modulus testing. Results of these tests will be available later.

Gradations were run on all materials at the time of construction. These appear in Appendix D.

Box samples and cores were taken by construction and materials personnel to determine densities and voids. These results are also shown in Appendix D. Post construction Road Rater and friction testing have been completed. Rut depth measurements have been completed also. These results are given in Appendix D.

COST COMPARISON

A drawback to using A.R.C. or a rubber chip mix is the higher cost. The cost of the A.R.C. and the rubber chip mixes are more than double the price of the conventional mix. On this project, the conventional asphalt cement was bid at \$155/ton while the asphalt cement (reacted rubber) was bid at \$686/ton. The contract prices of the different asphalt mixes are summarized in Table IV.

Table IV

Conventional Binder

\$17.39 AC-10 9.30 (6.0%) ===== \$26.69/Ton Conventional Surface

\$22.19 AC-10 7.91 (5.1%) ===== \$30.10/Ton

A.R.C. Binder

\$25.25 6.56% A.R.C. 45.00 ====== \$70.25/Ton \$25.25 5.72% A.R.C. 39.24

\$64.49/Ton

A.R.C. Surface

Rubber Chips \$59.32 AC-10 (7.6%) 11.78 =====

\$71.10/Ton

EVALUATION

The evaluation will consist of ductility tests, aging tests, tensile creep tests and fatigue tests.

There will also be annual friction testing, Road Rater testing and crack and rut surveys.

In addition to the standard project testing of the mix, creep and resilient modulus testing will also be performed.

This project will be evaluated for five years.

This project in Muscatine County will be tested and evaluated for the next five years along with four other projects using asphalt rubber in Iowa. Three have been completed (US 151 in Dubuque, US 218 in Black Hawk and IA 140 in Plymouth). An IA 21 Black Hawk project will be constructed in 1992.

After five years, hopefully a conclusion can be made to determine if using asphalt rubber binders and recycled rubber granules will:

- 1. Improve performance.
- 2. Extend the life of the roadway.
- Be of enough value in an environmental standpoint to compensate for its higher cost.

CONCLUSIONS

From this project the following conclusions can be made:

- 1. A.R.C. mix and the rubber chip mix can be constructed with little or no difference from that of a conventional mix.
- 2. A.R.C. pavement and rubber chip pavement appear to be in as good a condition as the conventional. Visually, there is a slight color difference in the conventional and the A.R.C. but the rubber chip mix is much darker than the other two mixes.

PAGE 14

		Project No				
		EMETER				
Letting Date _	00100	<u>BER 2. 1990</u>	Liquida	ited Damages _	\$8	50 PER DAY
Special Prov.	FHWA-1273	08/01/89,	FHWA-1273	08/01/89,	SP- 952A	10/02/90,
•	SP- 954A	10/02/90,	SS- 964	07/31/84,	SS-1006 ·	12/17/85
•	SS-1057	02/23/88,	SS-1059	02/23/88,	SS-1062	08/01/88
	SS-1083	06/27/89.	SS-1089	12/05/89,	SS-1090	12/05/89.
	SS-1091	12/05/89,	SS-1094	12/05/89,	SS-5001	03/27/90
	SS-5003	05/01/90,		08/28/90		· · ·
Date Started		Field Com	p	Cert.	Comp	·

Form 050019 4-86 H-6264

CONTRACT

NO. 32313

County <u>HUSCATINE</u> Project No. <u>F-61-4(49)20-70</u>
Type of Work _ASPH CEMENT CONC RESURFACING Miles _ 14.5180
Cost Center 611000 Object Code 891 Milepost 92-13 TD 106-76
ON U.S. 61 FROM JUST EAST OF THE E.C.L. OF THE CITY OF
MUSCATINE, EASTERLY TO JUST EAST OF THE N.C.L. OF THE CITY
OF BLUE GRASS IN SCOTT COUNTY.

This agreement n	hade and enter	ed by and between t	ne <u>IOWA DEPA</u>	RTMENT OF
TRANSPORTAT	ION	AUSTIN TURNER	. DOUGLAS SHU	LL. C. RDGER FAIR.
ROBERT H. M	EIER, SHEL	DA HERTZKE BE	ENER. SUZAN S	TEWART & CATHERINE
DUNN		· · ·		
	. E SUBSIC	IARY OF BROOK	LYN, IDWA	Contracting Authority, and

It is agreed that the notice and instructions to bidders, the proposal filed herain, the general specifications of the lowa Department of Transportation for -1984, together with supplemental specifications and special provisions, together with the general and detailed plans, if any, for said project

Contractor, for and in consideration of \$ = \$3,950,811.08, payable as set forth in the specifications constituting a part of this contract, agrees to construct various items of work and/or provide various materials or supplies in accordance with the plans and specifications therefor, and in the locations designated in the Notice to Bidders.

Contractor certifies by his signature on this contract, under pain of penalties for false certification, that he has complied with Iowa Code Section 324.17(8) (1985) as amended, if applicable.

In consideration of the foregoing, Contracting Authority hereby agrees to pay the Contractor promptly and according to the requirements of the specifications the amounts set forth, subject to the conditions as set forth in the specifications.

It is further understood and agreed that the above work shall be commenced or completed in accordance with the following schedule: START. DATE COMPL. DATE WDRK. DAYS 11/01/91 90

Time is the essence of this contract.

To accomplish the purpose herein expressed, Contracting Authority and Contractor have signed this and four other identical instruments as of the ______ day of ______

IDHA DEPARTMENT OF TRANSPORTATION

Contracting Authority

Contractor

By_

MANATTS INC. & SUBSIDIARY OF BROOKLYN, IOWA

By.

Proposal I.D. No. 901603

Contractor's No. 21 81 21 01 01

CONTRACT PRICES CONTRACT NO. 32313

County MUSCATINE

PAGE 15 Bid Order No. 49

Page No. 1

Project No. F-61-4(49)--20-70

Type of Work ASPH CEMENT CONC RESURFACING

				Unit Price		Amount	-
Line No.	tiem	and	Duantity Units	Dollars XXXX,XXX	Centa XXXX	Dollara XX,XXX,XXX	Centa XX
010	PAVEMENT SCARIFICATION	5521	SQ. YDS.		.2000	23,18	8-20
020	ASPHALT CEMENT CONCRETE, Type A surface course, Mixt. Size 3/4 IN.	24349	TONS		2.1900	>540,30	4 - 31
030	ASPHALT CEMENT CONCRETE, TYPE A BINDER COURSE, MIXJ. SIZE 3/4 IN.	30709	TONS		.3900	534,02	
040	ASPHALT CEMENT CONCRETE, TYPE A SURFACE COURSE, 3/4 IN. (RUBBER CHIPS ADDED)	153	TONS	59	3200	9,07	5.96
050	A.C.C., TYPE A SURFACE Course, 3/4 IN. (Reacted Rubber BINDER - A.C.C. Mix)	1288	TONS	2	5.2500	32,52	2-00
060	A.C.C., TYPE A BINDER COURSE, 3/4 IN. (REACTED RUBBER BINDER - A.C.C. MIX)	547	TONS	2	5.2500	13,81	1-75
070	ASPHALT CEMENT (REACTED Rubber)	138	TONS	68	6.0000	94,66	
080	ASPHALT CEMENT	. 3777	TONS	15	5.0000) . 585,43	
090	BASE, TYPE B CLASS 1 Asphält cement concrete	2071	TONS	2	3.5900	48,85	54-89
100.	BACKFILL, SPECIAL	1323	TONS	1	1.8300	°15,65	51-09
110	ASPHALT CEMENT CONCRETE, Type A Wedge, Level Dr Strength. Course	11188	TONS	. 2	0.7309		27.24
120	PRIMER OR TACK-COAT BITUMEN	30858	GALLONS		0.9500	29,31	15.1
130	BASE, CLEANING & PREPARATION DF	14.53	MILES	120	0.0000	17,43	36-01
140	SHOULDERS, GRANULAR, TYPE A	45029	TONS	1	1.6500	524,51	87.8
150	FABRIC REINFORCEMENT	1897	SQ. YDS.		3.0000	-5,42	21-00
160	ASPHALT CEMENT CONCRETE (COMPOSITE SECTIONS)	65,1	TONS	10	0.0000	6,5	10.0
170	PATCHES, FULL-DEPTH, BY COUNT	. 195	DNLY	37	5-0000	73,12	25-01
0180	PATCHES, FULL-DEPTH, BY AREA	7413.4	SQ. YDS.	7	7.8500	577,1	33.14
0190	DOWEL ASSEMBLIES	170	DNLY	7	0-0000	- 11,9	00 - 0 1
0200	PATCHES, SURFACE	200	TONS	4	0.0000	8,0	00-0
			F		· .		

Proposal LD. No. 901603

Contractor's No. 21 BL 21 OF

CONTRACT ND. 32313

Page No. 2

Project No. F-61-4(49)--20-70

County MUSCATINE

Type of Work ASPH CEMENT CONC RESURFACING

		ttem Quantity	Unit Pri		Amount	
Line No.	tiem	and Units	Dollars XXXXXXX	Cents XXXX	Dollars XX,XXX,XXX	Cen XX
210	(CONTINUED) EMBANKMENT-IN-PLACE	1308 CUBIC Y	DS 1	0.0000	13,08	30-0
220	EXCAVATION, CLASS 13, For widening	1310 CUBIC Y	DS	9.3600	12,26	51.6
230	TRENCHING & RESHAPING	5.5 STAS.	10	0.0000	55	50.0
240 .	SAN CUT	351 LINEAR	FT	1.5000	53	26.5
250	REMOVAL DE PAVENENT	191 SQ. YDS	•	3.5000	6	68.5
260	CULVÉRT, CONCRETE Entrance PIPE, 18 In. DIA.	18 LINEAR	FT 3	0-0000	54	40.0
270	CULVERT, CORRUGATED Metal Entrance Pipe, 15 IN. DIA.	12 LINEAR	FT 2	5.0000	3	00.0
280	CULVERT, CONCRETE Roadway Pipe, 24 in. Dia.	90 LINEAR	FT 7	10.0000	6,3	00.0
290	ELBDWS, CORRUGATED METAL PIPE, 24 IN. DIA.	1 ONLY	. 30	0.000	. 3	00-0
300	APRONS, CONCRETE, 18 IN.	1 ONLY	30	0000.00	. 3	00.0
0310	APRONS, CONCRETE, 30 IN. DIA.	1 ONLY		00000	4	00.1
9320	APRONS, METAL, 15 IN. DIA.	1 ONLY	. 12	25-0000	1	25-1
)330 ::	APRONS, CONCRETE, 24 IN- DIA-	1 ONLY	- 31	50.0000	.3	50.1
0340	CULVERT, CONCRETE RDADWAY PIPE, 30 IN. DIA.	24 LINEAR	FT 12	25.0000	3,0	00-
0350	CULVERT, REMOVE & RELAY Concrete Roadway Pipe, 30 In. Dia.	186 LINEAR	FT :	35.0000	6,5	10.
0360	CULVERT, CONCRETE ROADWAY PIPE, 42 IN. DIA.	ó LINEAR	FT 5	0000-000	3,0	00.
0370	CULVERT, REMOVE & RELAY Concrete Roadway Pipe, 42 In. Dia.	72 LINEAR	FT	75.0000	•5,4	00.
0350	CULVERT, REMOVE & RELAY CONCRETE RDADWAY PIPE, 48 IN. DIA.	. 90 LINEAR	FT 1	00-0000	9,0	00.
0390	CULVERT, REMOVE & RELAY CONCRETE RDADWAY PIPE, 24 IN. DIA.	186 LINEAR	FT	75.0000	13,9	50-

Proposal LD, No. 901603 Contractor's No. 21 81 21 01 01 CONTRACT NO. 32313

County MUSCATINE

PAGE 17 Bid Order No. 49

Page No. 3

Project No. F-61-4(49)--20-70

Type of Work ASPH CENENT CONC RESURFACING

Ч у ...

		them	Quantity	Unit Pric		Amount	
Line No;	item	80	d Units	Dollars XXXX,XXX	Cents XXXX	Dollars XXX,XXXX,XXX	Cent XX
0400	(CONTINUED) Removal of guardrail	425	LINEAR F	τ :	3.0000	1,27	15-00
0410	GUARDRAIL, FORMED STEEL BEAM	2350	LINEAR F	τ	8-0000	18,80	0.00
0420	GUARDRAIL, POSTS, BEAM	358	ONLY	4	2.0000	15,03	86.00
0430	GUARDRAIL, END Anchorages, Beam, RE-52	12	ONLY	35(0.0000	4,20	0-00
0440	DSJECT MARKER, TYPE 3	12	ONLY	80	0000	- 96	50-00
0450	PAVEMENT MARKINGS	2885	STAS.	16	5.9500	48,90	0.7
0460	SAMPLES	1	LUMP SUN	1672	5-0000	16,72	25.00
0470	TRAFFIC CONTROL	_ 1	LUMP SUK	45000	0.0000	45,00	0.00
0480	STABILIZING CRDP - Seeding and fertilizing	3.2	ACRES	404	-0000	1,29	2.80
0490	SEEDING & FERTILIZING	.3.2	ACRES	528	3-0000	1,6	89.60
0500	HULCHING		ACRES	- 490	00000	1,50	58-00
0510	SHOULDER CONSTRUCTION,	105.5	STAS.	200	0000	21,10	0.00
0520	EXCAVATION, CLASS 20. For rdadway pipe culvert		CUBIC . YD.	5 . 19	5-0000	20, 71	00-00
0530	SILT FENCE FOR DITCH CHECKS	. 123	LINEAR F	τ 1 1 1	3.5000	- 4	20-0(
054D	SUBDRAIN, LONGITUDINAL, (SHOULDER) 4 IN. DIA.	. 1596	LINEAR F	T, 1. Stell	5-9400	. 11,07	16.24
0550	SUBDRAIN DUTLET, Corrugated Metal Pipe, 6 IN. DIA.	10	DNLY	150	0000.0	1,50	00.00
0560	FIELD LABORATORY	1	ONLY	1000	0000	1,00	0.00
0570	MOSILIZATION	· 1	LUMP SUM	272010	0000	272,0	10-00
0580	CULVERT, REMOVE & RELAY Concreté ruadway pipe, 36 In. Dia.	108	LINEAR F	T 50	0.0000	5,40	0.00
590	CULVERT, CONCRETE Roadway Pipe, 36 in. Dia.	18	LINEAR F	T 150	0.0000	2,70	0.00

TOTAL \$3,950,811.08 LAST PAGE

PAGE 18

SP-952 Revision of SP-95

REVISED

SPECIAL PROVISIONS for REACTED RUBBER BINDER -ASPHALT CEMENT CONCRETE

F-61-4(49)-20-70, Muscatine-Scott Counties

October 2, 1990

THE STANDARD SPECIFICATIONS, SERIES OF 1984, ARE AMENDED BY THE FOLLOWING MODIFICATIONS. THIS IS AN ADDENDUM TO THE SPECIA PROVISIONS, WHICH SHALL PREVAIL OVER THOSE PUBLISHED IN THE STANDAR SPECIFICATIONS AND SP-952(New).

952A.01 DESCRIPTION.

The reacted rubber binder-asphalt cement concrete mix composition will include the incorporation of reacted asphalt cement (reacted rubber) in the mixture, using the aggregates selected by the Contractor. The volumes of ingredients in the mixture shall be in accordance with the recommendation of the supplier of the asphalt cement (reacted rubber).

The Contractor shall have a representative of the supplier be available on the proje site during the erection of the asphalt plant, during the initial production of the materials. The Contractor shall have a representative of the supplier on call for technical assistance during production operations.

952A.02 GENERAL REQUIREMENTS.

Reacted rubber binder-asphalt cement concrete mix shall conform to the requirements the standard specifications for the standard mixes as called for in the plans, the Special Provisions, and the Standard Specifications which are modified as follows.

A. Mineral Aggregate for Reacted Rubber Binder - Asphalt Cement Concrete Mix.

Mineral aggregates shall meet Type "A" quality as per the plans and specificatio except the gradation shall meet the following:

Sieve size	Percent passing
1"	100
3/4"	98-100
1/2"	76-92
3/8"	60-83
#4	40-62
#8	26-45
#30	11-24
#200	3-7

PAGE 19

SP-952A.

B. Asphalt Cement (Reacted Rubber)

The asphalt cement (reacted rubber) shall be a uniform mixture of compatible paving grade asphalt cement, ground reclaimed vulcanized rubber, and if required by the mixture design, a liquid anti-strip agent. The asphalt cement (reacted rubber) shall meet the following physical parameters when reacted at 350 ± 10 degrees Fahrenheit for 60 minutes.

Test		Requirements
Viscosity Haake, 350 ⁰ F		1500 - 4000 CP
Cone Penetration 77 ⁰ F ASTM D1191		Per job mix
Softening Point 135-200 ⁰ F ASTM D36	÷	Per job mix
Resilience 77 ⁰ F ASTM D3407	-	15% min.

952A.03 GROUND RECLAIMED VULCANIZED RUBBER.

The rubber used shall be produced from the recycling of automobile and truck tires. Final grinding of the rubber shall be accomplished with ambient temperature processes only. The use of ground rubber from multiple sources is acceptable provided the over-all blend of rubber meets the gradation requirements. The gradation of the rubber when tested in accordance with ASTM C136 using approximately 50 grams shall be in accordance with the following table.

Sieve Size	Percent passing
#10	100
#30	90-100
#50	10-90

Gradation of the rubber may be adjusted due to compatibility and reaction characteristics with the asphalt cement as required in the job mix formula.

Specific gravity of the rubber shall be 1.15 ± 0.05 and it shall be free from fabric, wire, or other contaminating materials. However, up to four percent calcium carbonate may be included to prevent the particles of rubber from sticking together.

The rubber shall be dry so as to be free flowing and not produce foaming when blended with hot asphalt cement. Not more than 1% of the particles shall exceed six times their minimum dimension.

952A.04 PACKAGING.

The ground rubber shall be supplied in moisture resistant disposable bags which weigh 50 \pm 2 lbs. The bags shall be palletized into units each containing 50 bags to provide net pallet weights of 2500 \pm 100 lbs. Glue shall be placed between layers of bags to increase the unit stability during shipment. Palletized units shall be double wrapped with ultraviolet resistant stretch wrap.

952A.05 CERTIFICATION.

The manufacturer shall ship with the rubber, certificates of compliance which certify that all requirements of these specifications are complied with for each production lot number of shipment.

952A.06 ASPHALT CEMENT (REACTED RUBBER) BLEND DESIGN

The asphalt cement (reacted rubber) shall be grade AC-5. The mixture design shall be performed by the asphalt-rubber supplier. The proportion of ground rubber shall be between 10 and 25 percent by weight of the asphalt cement.

The Contractor shall supply to the Engineer a mix formulation at least 10 days before pavement construction is scheduled to begin. The mix formula shall consist of the following information.

A. Aggregate Source Gradation Blend Percentages Mixture Gradation

 B. Asphalt Cement (Reacted Rubber) Source and grade of asphalt cement. Source and grade of ground rubber. Ground rubber percentage for the asphalt cement (reacted rubber). Temperature when added to the aggregate.

C. Asphalt Cement (Reacted Rubber) Content

D. Mix Temperature

E. Placement Temperature

F. Density Requirement - The mixture design will be based on 75 blow marshall.

952A.07 ASPHALT CEMENT (REACTED RUBBER) MIXING AND PRODUCTION EQUIPMENT

All equipment utilized in production and proportioning of the asphalt cement (reacted rubber) shall be described as follows:

- A. An asphalt heating tank with a hot oil heat transfer system or retort heating system capable of heating asphalt cement to the necessary temperature for blending with the ground rubber. If required, this unit shall be capable of heating a minimum o 3,000 gallons of asphalt cement to 375° F.
- B. An asphalt cement (reacted rubber) mechanical blender with a two stage continuou mixing process capable of producing a homogeneous mixture of asphalt cement and ground rubber, at the mix design specified ratios, as recommended by the supplier o the ground rubber. This unit shall be equipped with a ground rubber feed syster capable of supplying the asphalt cement feed system as not to interrupt th continuity of the blending process. A separate asphalt cement feed pump and finished product pump are required. This unit shall have both an asphalt cement totalizing meter in gallons and a flow rate meter in gallons per minute.
- C. An asphalt cement (reacted rubber) storage tank equipped with a heating system t maintain the proper temperature for pumping and adding of the binder to th aggregate and an internal mixing unit within the ground vessel capable o maintaining a proper mixture of asphalt cement and ground rubber.

D. An asphalt cement (reacted rubber) supply system equipped with a pump and metering device capable of adding the asphalt cement (reacted rubber) by volume to the aggregate at the percentage required by the job-mix formula.

An interlock of the asphalt-rubber binder and aggregate feed systems will not be required. The Contractor shall be required to accurately proportion the reacted asphalt cement to the mixture.

952A.08 ASPHALT CEMENT (REACTED RUBBER) MIXING AND REACTING PROCEDURE.

A. Asphalt Cement Temperature

The temperature of the asphalt cement shall be between 290⁰ and 400 degrees F. at the addition of the ground rubber, or as directed by the supplier.

B. Blending and Reacting

The asphalt and ground rubber shall be combined and mixed together in a blender unit, pumped into the agitated storage tank, and then reacted for a minimum of 45 minutes or as directed by the supplier from the time the ground rubber is added to the asphalt cement. Temperature of the asphalt cement (reacted rubber) mixture shall be maintained between 290° and 375 degrees F. during the reaction period, or at a temperature specified by the supplier.

C. Transfer

After the material has been reacted, the asphalt cement (reacted rubber) shall be metered into the mixing chamber of the reacted rubber binder-asphalt cement concrete production plant at the percentage required by the job-mix formula.

D. Delays

When a delay occurs in binder use after its full reaction, the asphalt cement (reacted rubber) shall be reheated slowly just prior to use to a temperature between 290° and 375 degrees F., and shall also be thoroughly mixed before pumping and metering into the hot mix plant for mixing with the aggregate. The viscosity of the asphalt cement (reacted rubber) shall be checked by the asphalt-rubber supplier. If the viscosity is out of the range specified in Section 952.02B of this special provision the asphalt cement (reacted rubber) shall be adjusted by the addition of additional asphalt cement or ground rubber to produce a material with the appropriate viscosity.

952A.09 COMPACTION REQUIREMENT. The Reacted Rubber Binder-Asphalt cement concrete shall be compacted to 95% of laboratory density.

952A.10 COMPACTION EQUIPMENT.

A minimum of two rollers meeting Article 2001.05B shall be furnished. Pneumatic tired rollers will not be allowed.

952A.11 METHOD OF MEASUREMENT AND BASIS OF PAYMENT.

The Reacted Rubber Binder - Asphalt Cement Concrete Mix will be measured as per the standard specification, and be paid for in tons. Asphalt cement (reacted rubber) for use in the Reacted Rubber Binder - Asphalt Cement Concrete Mix will be measured as per the standard specifications and be paid for in tons.

PAGE 23

SP-954A Revision of SP-954

REVISED

SPECIAL PROVISIONS for ASPHALT CEMENT CONCRETE SURFACE COURSE (RUBBER CHIPS ADDED)

F-61-4(49)-20-70, Muscatine-Scott Counties

October 2, 1990

THE STANDARD SPECIFICATIONS, SERIES OF 1984, ARE AMENDED BY THE FOLLOWING MODIFICATIONS. THIS IS AN ADDENDUM TO THE SPECIAL PROVISIONS, WHICH SHALL PREVAIL OVER THOSE PUBLISHED IN THE STANDARD SPECIFICATIONS AND SP-954(New).

954A.01 DESCRIPTION.

The Asphalt Cement Concrete Surface Course (Rubber Chips Added) mixtures will include the incorporation of approximately 5% #4 sieve size tire-rubber chips into the asphalt cement concrete mixture.

954A.02 REQUIREMENTS.

The Asphalt Cement Concrete Surface Course (Rubber Chips Added) shall conform to the standard mix design criteria, which are modified as follows.

A. Mineral Aggregate.

Mineral aggregates shall meet the Type "A" surface course quality as specified in the plans and Iowa DOT Standard Specifications, except the gradation shall meet the following.

Sieve size	Percent passing
1"	100
3/4"	98-100
1/2"	76-92
3/8"	60-83
#4	40-62
#8	26-45
#30	11-24
#200	3-7

B. Asphalt Cement.

Asphalt cement shall meet requirements of Section 4137 of the Standard Specifications, grade AC-10. The amount of asphalt cement required shall be within a range of 5.5% to 8.0%, based on total weight of mixture and as determined by the job mix formula.

Derees

SP-954A, Page 2

C. Rubber Chips.

Rubber chips shall be produced from the recycling of automobile and truck tires at ambient temperature. The rubber chips shall be cubical or thread-shaped, and individual rubber particles, irrespective of diameter, shall not contain more than 2% of the total to be more than 3/8" in length. The maximum allowable moisture content of the rubber chips is 2.0 percent.

The rubber chips shall conform to the following gradation requirements.

<u>Sieve Size</u>		•	Percent Passing by Weight
3/8"			100
#4			95-100
#8			8-50
#16	1.1		0-7

The rubber chip supplier shall furnish a written certification of compliance with these requirements.

954A.03 MIXING AND PRODUCTION EQUIPMENT.

The rubber chips shall be proportioned into the plant by a method which will uniformly feed the mixer within $\pm 10\%$ percent of the required amount.

A. Batch Plants.

Whole bags of rubber chips may be fed into the mixer providing the total batch weight has been adjusted so no partial bags need to be used.

The rubber chips shall not be added into the dryer with the cold feed. They rubbe chips shall be added into the aggregate after it leaves the dryer or into the mixe itself.

B. Drum-Mix Plants.

There shall be a means of accurately calibrating the continuous feed system.

Satisfactory means shall be provided to have a positive interlocking control betwee the flow of granulated rubber, asphalt cement, and aggregates.

Drum-mixing plants shall be equipped with a heat shield or other means to prever the open flame from coming in contact with the granulated rubber.

954A.04 MIXING.

The Contractor shall prepare a work plan describing the planned procedures for mixir and placing the Asphalt Cement Concrete Surface Course (Rubber Chips Added).

The rubber chips shall be mixed with the aggregate and asphalt cement for at least 1 seconds before discharge from the mixer.

The temperature of the finish mixture shall meet the requirements in Article 2 303.05 or as otherwise directed by the rubber chip supplier.

954A.05 CONSTRUCTION.

The asphalt cement concrete surface course (rubber chips added) shall be placed as specified in the standard specifications for other Type "A" asphalt cement concrete course surface mixtures, except pneumatic tire rollers will not be allowed due to possible pickup of the mixture on the tires.

954A.06 COMPACTION

Asphalt rollers and compaction procedures for the special surface course shall conform with the Standard Specification requirements and supplemented with the following.

- A. Breakdown compaction should begin immediately behind the paving machine. However, some delay may be required to prevent roller pickup.
- B. Breakdown compaction shall be accomplished using a minimum 10 ton vibratory or static steel roller.
 - A minimum 8 ton steel roller in a non-vibratory mode shall be used for finish rolling.
- C. A minimum of 10 coverages shall be made in a vibratory made. Fewer coverages can be made if it can be shown that maximum density can still be achieved. Rolling must be completed before the temperature of the mat drops below 180 ^O F., unless otherwise directed by the Engineer.

954A.07 METHODS OF MEASUREMENT.

The Asphalt Cement Concrete Surface Course (Rubber Chips Added) properly placed will be measured in tons as provided in Article 2303.27A.

Asphalt cement will be measured as provided in Article 2303.27B.

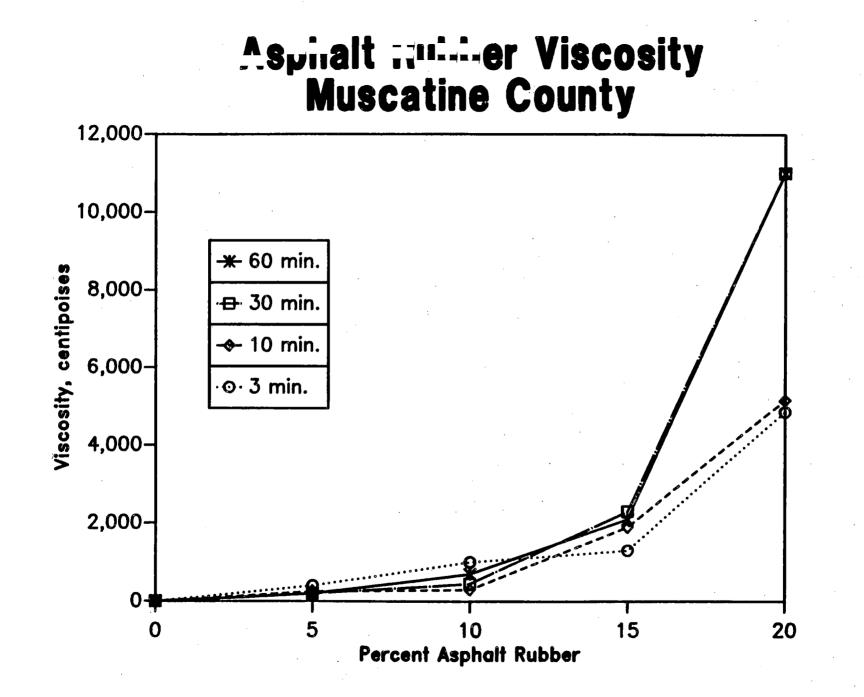
954A.07 BASIS OF PAYMENT.

For the number of tons of Asphalt Cement Concrete Surface Course (Rubber Chips Added) placed, the Contractor will be paid the contract price per ton. This payment shall be full compensation for furnishing and placing the asphalt mixture, including the rubber chips.

For amount of asphalt cement used in the work, the Contractor will be paid the contract price per ton.

Appendix B Viscosity Testing

	· · · ·	**	
AZ 1-0008 00	IOWA DEPARTMENT O OFFICE OF	F TRANSPORTATION	PAGE 27
	TEST REPORT -		· · · ·
	LAB LOCATION	- AMES	
		LAB NO:AZ 1-0	008
INTENDED USERES		•	
PROJECT NO:DEF SAMPLED BY:		SENDER NO.:	
DATE SAMPLED:	DATE RECEIVED:		REPORTED: 05/30/91
TIME FROM START TO E 30 MIN. AND 1 HR. T WAS USED TO REPORT O OF THE AC-5 WITH NO	RUBBER USED WAS 5.0%, INISH WAS 1 HR WITH RE EMP. USED WAS 350 F. I ENTIPOISE READINGS. O RUBBER WITH A READING RCENT RUBBER AND READING	ADINGS AT 3 MIN., 1 /- 10 F. A BROOKFIE NE BROOKFIELD VISCO OF 100 CENTIPOISES.	O MIN., LD VISCOMETER SITY WAS TAKEN
5.0% RUBBER			
3 MIN 400 CP @		,	
10 MIN 250 CP @ 30 MIN 200 CP @			
1 HR 200 CP @			
10.0% RUBBER			
3 MIN 1000 CP @	350 F.		
10 MIN 300 CP @			
30 MIN 450 CP @ 1 HR 700 CP @			
1 111. 700 01 6			
15.0% RUBBER			·
3 MIN 1300 CP @ 10 MIN 1900 CP @			•
30 MIN 2300 CP @			
1 HR 2100 CP @	350 F.		
20.0% RUBBER			· , · · ·
3 MIN 4850 CP @		•	
10 MIN 5150 CP @			
30 MIN OFF SCALE 1 HR OFF SCALE			
	·		


COPIES TO: CENTRAL LAB R. MONROE

DISPOSITION:

V. MARKS D. HINES

B. BROWN D. HEINS

.....

.

Plant Viscosities

July 8,	1991	A.R.C. Binder
Time	· · ·	Viscosity
9:00		1400 CP
10:30	AM	1800 CP
11:40	AM	2000 CP
1:00	PM	2200 CP
2:20	PM	2200 CP

July 9,	1991	A.R.C. Surface
Time		Viscosity
7:10	AM	2000 CP

July 10,	1991	A.R.C. Surface
Time	· .	Viscosity
7:20	AM	1600 CP
8:00	AM	1800 CP
9:05	AM	2800 CP
12:00	PM	1800/1932 CP
2:00	PM	2400 CP
2:30	PM	2200 CP

July 11, 1991 A.R.C. Surface

Time 7:30 AM Viscosity

1400/1600 CP

AB 1-0308 PAGE 30 bo IOWA DEPARTMENT OF TRANSPORTATION OFFICE OF MATERIALS TEST REPORT - ASPHALT. LAB LOCATION - AMES LAB NO....: AB 1-0308 INTENDED USE: ASPHALT BINDER PRODUCER......:WENDLING QRY PROJECT NO.....: FN-61-4 (49) -- 20-70 CONTRACTOR: MANATTS SOURCE :WENDLING ORY UNIT OF MATERIAL: RUBBER POWDER GF-35 AC-5 SAMPLED BY.....C. ANDERSON SENDER NO.:CP1-22 DATE SAMPLED: 07/08/91 DATE RECEIVED: 09/23/91 DATE REPORTED: 09/26/91 - - - -SP-1028 B. ASPHALT RUBBER CEMENT (15% BY TOTAL WGT. OF ASPHALT RUBBER MIX) APPARENT VISCOSITY, 347 F., SPINDLE 3, 12 RPM MIN 1.000 1 HR. 1100 CPS (ASTM D2669 BROOKFIELD) MAX 4.000 PENETRATION, 77 F., 100 G, 5 SEC.: 1/10 MM. MIN 50 86 MAX 100 (ASTM D5) PENETRATION, 39.2 F., 200 G, 60 SEC.: 1/10 MM. 25 MIN 25 (ASTM D5) SOFTENING POINT: DEG. F., (ASTM D36) MIN 120 125.6 RESILIENCE, 77 F.,: % (ASTM D3407) MIN 10 21 DUCTILITY, 39.2 F., 1 CPM:CM. (ASTM D113) MIN 78.5 10 TFOT RESIDUE, (ASTM D1754) PENETRATION RETENTION, MINT 96.0 75 39.2 F.: % DUCTILITY RETENTION, 39.2 F.: % MIN 50 65.0

COPIES TO:

CENTRAL LAB C. ANDERSON V. MARKS D. HINES

R. MONROE

DISPOSITION: RESULTS COMPLY WITH SP-1028

....

SIGNED: ORRIS J. LANE, JR. TESTING ENGINEER Appendix C Lab Testing of Mix & Mix Designs

MIX DESIGN PAGE 32

OFFICE OF MATERIALS TEST REPORT - ASPHALT MIX DESIGN LAB LOCATION - AMES

LAB NO....: ABD1-0140

MATERIAL..... TYPE A RUBBER CHIPS INTENDED USE....: SURFACE PROJECT NO.....: F-61-4 (49) -- 20-70 CONTRACTOR: MANATTS SIZE....: 3/4 SENDER NO.: SAMPLED BY..... DATE RECEIVED: DATE SAMPLED: DATE REPORTED: 06/25/91 PROJ. LOCATION: E.C.L. MUSCATINE TO WCL BLUE GRASS - - - - - - - - - -- - - - - -AGG. SOURCES: GRANITE - ORTONVILLE STONE, BIG STONE, MN.; 3/4 & 1/2 CR. LS - WENDLING, MOSCOW, MUSCATINE CO.; SAND -WENDLING, ATALISSA - MCKILLIP, MUSCATINE CO. JOB MIX FORMULA-COMB. GRADATION 1" 3/4" 1/2" 3/8" NO.4 NO.8 NO.16 NO.30 NO.50 NO.100 NO.200 .1 1/2" 100.0 86.0 64.0 45.0 33.0 26.0 19.0 12.0 9.0 6.1 TOLERANCE /100 : 98 7 7 7 5 2 AMNO28 A70002 A70002 MATERIAL MIX A70504 **% AGGR. PROP** 25.00 15.00 45.00 15.00 0.00 ASPHALT SOURCE AND POISES APPROXIMATE VISCOSITY POISES 0947 **%** ASPHALT IN MIX 6.50 7.50 0.00 0.00 NUMBER OF MARSHALL BLOWS 75 0 75 0 MARSHALL STABILITY - LBS. 920 760 0 0 FLOW - 0.01 IN. 19 24 0 0 SP GR BY DISPLACEMENT (LAB DENS) 2.240 0.000 2.229 0.000 BULK SP. GR. COMB. DRY AGG. 2.751 2.751 0.000 0.000 SP. GR. ASPH. @ 77 F. 1.026 1.026 0.000 0.000 CALC. SOLID SP. GR. 2.509 2.471 0.000 0.000 0.00 % VOIDS - CALC. 9.78 0.00 0.00 RICE SP.GR. . 2.357 2.331 0.000 0.000 % VOIDS - RICE 4.96 4.38 0.00 0.00 **% WATER ABSORPTION - AGGREGATE** 1.02 1.02 0.00 0.00 % VOIDS IN MINERAL AGGREGATE 23.87 25.05 0.00 0.00 % V.M.A. FILLED WITH ASPHALT 55.10 60.95 0.00 0.00 CALC. ASPH. FILM THICK. MICRONS 10.58 12.35 0.00 0.00 FILLER/BITUMEN RATIO 0.80 0.00 0.00 0.00 TEMP= 215 WT= 7300 SLOPE= 9.08 ICPT -24.25 A CONTENT OF 7.6% ASPHALT IS RECOMMENDED TO START THE JOB. 1 - CEPT = (-24.25)COPIES TO: CENTRAL LAB R. MONROE J. ADAM D. HEINS MANATTS W. OPPEDAL

MT. PLEASANT RES.

DISPOSITION:

DIST. 5

ABD1-0140

BD

SIGNED: ORRIS J. LANE, JR. TESTING ENGINEER

BD1-0125 D		OFFICE OF	OF TRANSPORTA MATERIALS	,	33
· · ·	TEST	REPORT - A	SPHALT MIX DE N - AMES	SIGN	
			LAB NO	:ABD1-0125	
MATERIAL	NDER-RUBBE -61-4 (49)	R I ZED 20-70	CONTRACTOR	· · · · · · · · · · · · · · · · · · ·	
SPEC NO	952.00 , D	ATE RECEIVED USCATINE TO	SIZE SENDER NO.	:3/4 : DATE REPORT	ED: 06/18/91
AGG SOURCES: CR. LS DRY, MUSCATINE CO; MUSCATINE CO.	 st, снірs &	MAN. SAND-	WENDLING, MOS		
					•
1 1/2" 1" 3/4" 100.0	1/2" 3/8	RMULA-COMB. " NO.4 NO. O 60.0 45.	8 NO.16 NO.	30 NO.50 NO .0 11.0	.100 NO.200 6.7 4.6
TOLERANCE /100 : 98	7	7 7	5	4	2
MATERIAL MIX A70 & AGGR. PROP.	0002 45.00	A70002 20.00	A70002 10.00	A70504 25.00	0.00
ASPHALT SOURCE AND		AMOCO			•
APPROXIMATE VISCOS		0472		_	
& ASPHALT IN MIX		4.00	5.00	6.00	0.00
NUMBER OF MARSHALL		75	75	75	0
MARSHALL STABILITY	- LBS.	1650	1537	1717	0
FLOW - 0.01 IN.		10	10	10	0
SP GR BY DISPLACEM	ENT (LAB DE		2.322	2.377	0.000 0.000
BULK SP. GR. COMB.		2.769	2.769	2.769 1.024	0.000
SP. GR. ASPH. @ 77		1.024	1.024 2.589	2.548	0.000
CALC. SOLID SP. GR	•	2.631	0.00	6.71	0.00
% VOIDS - CALC.		2.544	2.502	2.451	0,000
RICE SP.GR.		0.00	7.19	3.02	0.00
				1.22	0.00
	- AGGREGAT	TE 1.22	1.22		
% WATER ABSORPTION		TE 1.22 20.64	20.34	19.31	0.00
% WATER ABSORPTION % VOIDS IN MINERAL % V.M.A. FILLED WI	AGGREGATE TH ASPHALT	20.64 36.98	20.34 49.29	19.31 65.24	0.00
% WATER ABSORPTION % VOIDS IN MINERAL % V.M.A. FILLED WI CALC. ASPH. FILM T	AGGREGATE TH ASPHALT HICK. MICRO	20.64 36.98 DNS 6.46	20.34 49.29 8.36	19.31 65.24 10.26	0.00
% WATER ABSORPTION % VOIDS IN MINERAL % V.M.A. FILLED WI CALC. ASPH. FILM T FILLER/BITUMEN RAT	AGGREGATE TH ASPHALT HICK. MICR(10	20.64 36.98 DNS 6.46 0.00	20.34 49.29	19.31 65.24	0.00
<pre>% WATER ABSORPTION % VOIDS IN MINERAL % V.M.A. FILLED WI CALC. ASPH. FILM T FILLER/BITUMEN RAT TEM</pre>	AGGREGATE TH ASPHALT HICK. MICR(IO NP=	20.64 36.98 DNS 6.46 0.00 215	20.34 49.29 8.36	19.31 65.24 10.26	0.00
<pre>% WATER ABSORPTION % VOIDS IN MINERAL % V.M.A. FILLED WI CALC. ASPH. FILM T FILLER/BITUMEN RAT TEM W</pre>	AGGREGATE TH ASPHALT HICK. MICR(IO NP= /T=	20.64 36.98 DNS 6.46 0.00 215 7300	20.34 49.29 8.36	19.31 65.24 10.26	0.00
	AGGREGATE TH ASPHALT HICK. MICR 10 NP= /T= PE=	20.64 36.98 DNS 6.46 0.00 215	20.34 49.29 8.36	19.31 65.24 10.26	0.00

ч,

1.11

A CONTENT OF 5.7% ASPHALT IS RECOMMENDED TO START THE JOB. COPIES TO:

CENTRAL LAB	W····OPPEDAL	MANATTS
D. HEINS	J. ADAM	R. MONROE
DIST. 5	MT. PLEASANT RES.	

DISPOSITION:

SIGNED: ORRIS J. LANE, JR. TESTING ENGINEER

....

ABD1-0106 BD		OFFIC	E OF M	TRANSPOR			GE 34	
• • •	TEST	LAB LOC		HALT MIX - AMES	DESIGN	l	•	•
			•	LAB NO	:ABD	1-0106		
MATERIALTYPE A INTENDED USESURFACE								
PROJECT NO:F-61-4 (COUNTYMUSCATI	NE	20-70	• •	CONTRACT				·
SPEC NO:0952.00 SAMPLED BY DATE SAMPLED:	D,	ATE RECE	IVED:	SENDER N	10.: DA	• •	TED: 0	6/06/91
PROJ. LOCATION: FROM ECL	MUSC	ATINE TO	WCL B	LUE GRASS	5 	,		
AGG SOURCES: GRANITE- OR CR. LST & CHIPS- WENDLIN SAND- WENDLING, ATALISSA % TOTAL BINDER: 4.68 5	G, MO: , MUS	SCOW QRY CATINE C	, MUSC	ONVILLE, ATINE CO;	MN ;		· · ·	• •
JOB M	IX FO	RMULA-CO	MB. GR	ADATION				
1 1/2" 1 ["] 3/4" 1/2" 100.0 88.0	3/8	" NO.4	NO.8	NO.16 N	10.30	N0.50 N 9.8	0.100 6.4	NO.200 4.3
TOLERANCE /100 :		•						•
98 7		77	5		_ 4			. 2
MATERIAL MIX AMNO26 % AGGR. PROP. 27.00		A70002 <u>3</u> 8.00	•	A70002 10.00		A70504 25.00	0	.00
ASPHALT SOURCE AND		AMO	00					
APPROXIMATE VISCOSITY PO & ASPHALT IN MIX	ISES	047 4.0		5.00	•	6.00		· 0.00
NUMBER OF MARSHALL BLOWS		75		75		75		0
MARSHALL STABILITY - LBS FLOW - 0.01 IN.	•	9	5	1830 9		1597 10		0
SP GR BY DISPLACEMENT (L	AB DE			2.37	1.	2.378		0.000
BULK SP. GR. COMB. DRY A	GG.	2.7	/36	2.73		2.736		0.000
SP. GR. ASPH. @ 77 F.		1.0)24 595	1.02 ¹ 2.55 ¹		1.024		0.000
CALC. SOLID SP. GR. % VOIDS - CALC.		0.0		7.16		5.42		0.00
RICE SP.GR.		2.5	520	2.46	7	2.413		0.000
% VOIDS - RICE	:	7.7	78	3.89		. 1.45		0.00
% WATER ABSORPTION - AGG % VOIDS IN MINERAL AGGRE	REGAT)9 16	0.97		0.97 18.30	•	0.00
& V.M.A. FILLED WITH ASP		43.		59.4		70.36		0.00
CALC. ASPH. FILM THICK.	MICRO	NS 7.1	+5	9.57		11.69		0.00
FILLER/BITUMEN RATIO		0.0		0.88	-	0.00		0.00
TEMP= WT=		740						
•••	کده	PE 3.5	·	LCPT. (-	377)			
COPIES TO:		ATTO	•	LCP7.(ADDEN	A I		
CENTRAL LAB D. HEINS		ATTS MARKS			ADAM			
R. MONROE		T. 5		MT	. PLEA	SANT RES.		
DISPOSITION: A CONTENT C BINDER) IS JOB. TOLERA	RECOM	MENDED 7	FO STAF	RT THE				
BY FINES/BI								
	•				SIGN	ED: ORRIS	5 J. L#	ANE, JR.

SIGNED: ORRIS J. LANE, JR. TESTING ENGINEER

Appendix D Field Testing

PAGE 35

b

Temperature Chart

		July 8,	1991 A	.R.C. Bi	nder
Time	7 AM	9 AM	11 AM	1 PM	3 PM
Air	74°	76°	80°	82°	85°
A.C.	358°	358°	355°	340°	345°
Agg.		345°	340°	340°	340°
Mix		295°	300°	300°	305°
Mat		28 5°	285 °	280°	280 °

. ·		July 10,	1991	A.R.C.	Surface
Time	7 AM	9 AM	12 PM	1 PM	3 PM
Air A.C. Agg. Mix Mat	67° 355° 350° 305° 275°	70° 355° 340° 300° 280°	78° 335° 345° 305° 280°	86° 340° 340° 295° 280°	

July 11, 1991 A.R.C. Surface

7 AM	9 AM	11 AM
70°	73 °	77 °
355 °	350°	335 °
340°	300°	300 °
310°	295 °	300 °
265 °	260°	260 °
	70° 355° 340° 310°	70° 73° 355° 350° 340° 300° 310° 295°

July 22, 1991 and July 23, 1991 Rubber Chip Mix

-	EB Lane	WB Lane	· · · ·
Time	7 AM	7 AM	9 AM
Air	84 °	70°	
A.C.	300 °	300°	
Agg.	340°	320°	
Mix	325°	295°	300°
Mat	325 °	· · · · · · · · · · · · · · · · · · ·	300°

	Lab	Avg. Field	<pre>% of</pre>	Avg. %
	<u>Density</u>		Lab Density	Field Voids
Reacted Rubber Binder	2.348	2.312	98	5.7
Reacted Rubber Surface	2.422	2.352	97	5.3
	2.413	2.330	97	6.1
Rubber Chips	2.177	2.344	108	2.9
	2.147	2.323	108	3.6

Density Checks and Average Field Voids

Sieve Analysis of Combined Aggregate

Sieve	Spec.	Dist. Materials	Pla	nt Sampl	es
Size	Limit_	Gradation	<u> </u>	_2	. <u>3</u>
1"	100	100	100	100	100
3/4"	98-100	99	100	99	99
1/2"	85-99	93	95	93	92
3/8"	76-90	84	87	85	81
4	53-67	64	69	63	59
8	40-50	48	53	47	43
16		37	43	36	33
30	20-28	23	26	23	21
50		12	12	12	11
100		6.4	6.1	7.0	6.4
200	2.6-6.6	5.0	4.7	5.4	4.9

A.R.C. Binder

Sieve Analysis of Combined Aggregate

A.R.C. Surface

Sieve	Spec.	Dist. Materials	Pla	nt Sampl	es	
Size	Limit_	Gradation	_1	_2		_4
1/2"	100	100	100	100	100	100
3/4"	98-100	100	100	100	100	100
1/2"	81-95	. 89	89	89	89	89
3/8"	62-76	71	71	72	71	71
4	41-55	48	48	50	51	48
8	31-41	36	36	38	38	36
16		29	29	31	31	29
30	16-24	20	20	21	21	20
50		11	11	12	11	11
100		6.1	6.1	6.2	6.6	6.1
200	2.3-6.3	4.7	4.7	4.8	5.0	4.7

Sieve	Spec.	Dist. Ma Grada		Plant	Samples
<u>Size</u>	<u>Limit</u>		2	1	2
1"	- 100	100	100	100	100
3/4"	98-100	100	100	100	100
1/2"	79-93	85	85	86	86
3/8"	57-71	66	65	61	68
4	38-52	44	48	43	48
8	28-38	33	37	32	37
16		26	29	25	30
30	15-23	20	21	19	21
50		12	12	11	13
100		8.2	8.5	8.4	8.4
200	4.1-8.1	6.1	6.4	6.3	6.5

Sieve Analysis of Rubber Chip Mixture

Sieve Analysis of Fine Ground Reacted Rubber

Sieve Size	Ames Lab <u>Gradation</u>
10	100
30	98
50	54

Sieve Analysis of Recycled Rubber Chips

Sieve Size	Ames Lab <u>Gradation</u>
3/8"	100
4	100
8	37
16	5.7

ROGRAM NUMBER- P2220050 DMPUTER RUN DATE - 07-03-91		CE OF MATERIALS Ad Rater	TESTS		
COUNTY - MUSCATINE BEGINN	MP 96.05 YEAR	BUILT 1957	WEATHER CLEAR 185 PRETTE SIEFKEN TIME 10:45	FRED. HZ DISP %. TEST TYPE	
		ER-DEFLECTION-(MILS)	SOUTHBOUND		
M-P SENS 1 SENS 2 SEN		IL K SENS 1 SE	NS 2 SENS 3 SENS 4	S.R. SOIL K	REMARKS
	1.30 1.20 3.80	107.		4.02 125.	
93.500 #1 93.600 #1	1.30 1.10 4.02	50.	1.40 1.30 1.10	3.80 107.	
93.800	1.00 0.90 4.56	155.	1.20 1.10 0.90	0 4.27 141.	
93.900 94.000 1.40 1.30	1.30 1.20 4.02	125.	1.40 1.40 1.20	3,80 107	
94.100 94.200 1.30 1.20 94.300	1.10 1.00 4.27	141.	1.30 1.20 1.00	0 4.02 125.	
<u>94,400</u> SEC.Z 1.20 1.10 94,500	1.00 0,90 4.56	155. 1.40	1.30 1.20 1.10		
94.600 1.30 1.30 94.700 Sec.	1.20 1.10 4.27	50. 1.60	1.50 1.40 1.30		
94.800 #3 1.50 1.40	1.30 1.20 3.80 1.10 0.90 4.02	107. 1.60	1.50 1.40 1.20		
95.000 1.40 1.30 95.100 95.200 1.20 1.10	1,10 0.90 4.02 1.00 0.90 4.56	0.97	0.91 0.80 0.6		
95.300 Sec.	1.70 1.50 3.13	1.10	1.00 0.90 0.8 1.10 1.00 0.9		
95,400 #4 95,500 #4 95,600 1.30 1.20	1.10 0.90 4.27	1.20	1.10 1.00 0.9 0.91 0.83 0.6	•	
95.650 95.700 1.30 1.20	1.10 1.00 4.27	0.95 · 141. 1.30	1.20 1.10 0.9		
95.750 Sec . 1.30	1.10 1.00 4;27	141. 1,30	1.20 1.10 0.9	10 4.27 141.	•
95.850 #5 95.900 1.40 1.30	1.20 1.10 4.02	125.	1.30 1.20 1.1	10 4.02 125.	
95.950 11,.	•			· · · · · · · · · · · ·	P P
* * * * * * * * * * * * * * * * * * *	* * * * * * S.U.M.M.A.R.Y.	0 F D A T A * * * SENS3 SENS4		D% AVE. BEG. Soil K TEMP	END TEMP
DIRECTION STD. DEV. MAX.	AIN. AVE. BO% AVE.	AVE. AVE. SCI	SCI/SENS1 SR SF		74.
COUTH 0.20 1.60 (1.20 1.37 1.52 1.29 0.95 1.33 1.50 1.23	1.19 1.06 0.09 1.14 0.98 0.09	0.070 4.28 3.	77 129. 74.	74.
СОМВ	0,95 1,35 1,51 i 1,26				
* * * * * H I S T D R Y *	* * * * REMARKS: SECL- SI	UPERELEVATED CURVE, LO	SIDE. SECH- SUPEREL	EVATED CURVE, HIGH	51DE
 DATE TESTED AVE.SR AVE.SO 	*				

.

.

•

.

...........

.

		9-91 PFCI	NNING	120 0	n LAB	NO RA 1+560	e weathe	R SUNNY		FRED. HZ	30	
OUNTY - MUSC I.S. ROUTE AVEMENT TYP	61	ENDI	NG UTED MILE	. 150.0	O YEA	R BUILT. 19 E TESTED. 08-13-9	OB5	. SCHMIDT . 11:37	FRETTE	DISP % TEST TYPE		
Section	#1					TER DEFLECTION (M	II.S.)	in an				a san ya
			EASTB	OUND				BOUND				
tation ^S	ENS 1 SE	NS 2 9	SENS 3 S	ENS 4	5.R. 5	OIL K SENS	1 SENS 2	SENS 3 S	INS 4 S.R	. SOIL K	REMARKS	× : ·
30.000	1.00	0.90	0.80	0.70	5.69	182. 169.					aaaaaa aad lahada ku da la	si este este
12.000 14.000	1.10	1.00	0.90 1.00	0.80 0.90	5.29 4.66	141.						
16.000 18.000	1,10	1.00	0.90 0.90	0.80	5.29 5.29	169. 169.						1999) 1999 State (* 1997) 1997 - State (* 1997) 1997 - State (* 1997)
10.000	1.10	1.00	0.90	0.80 0.90	5.29 4.95	169. 155.						
12.000 14.000	1.20	1.10	1.00	0.90	4,95 4,66	155 <i>.</i> 141.						
16.000 18.000	1.30	1.00	0.90	0.80	5.29 6.57	169. 144.						
60.000	0.83	0.80	0.75		000000 000000000000000 000000000000000						:# #	
* * * * *		* * * *	* * * * *	* * S U M	1 M A R Y	OF DATA	* * * * *	* * * * * * ave.	* * * * * * * 80% A	* * * * * * * /E. BEG.	* * * * * * END	87 877.2
DIRECTION	STD.DE	SENS1 V. MAX.	MIN. AVE	E, 80%	AVE.		SCI SCI/	SENS1 SR		IL K TEMP	TEMP	
EAST	0.13		0.83 1.		1.03	0.92 0.82	0.09 0.	084 5.27	4.82 1	50. 9 7.	97.	
LAJI	1 01.10				·							alathica tite an a
					• • • • • •	UPERELEVATED CURVI	LOW SIDE.	SECH+ SUP	ERELEVATED	CURVE, HIGH	51DE	
	- U 1 C T	nov	1006 ACC. 2008. 5000. 5000. 5000									
		ORY *	••••	REPARING	. 3202 3	Drealletates com						
* * * * * DAT * TEST	E		0IL K 4	KERKING	. 3002 3	Breneletanes 2000				. 194		
* DAT	E		•	KLEINNY,						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
* DAT	E		•	A LOUNDA	. <u>.</u>					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
* DAT	E		•							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
* DAT	E		•							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
* DAT	E		•							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
* DAT	E		•							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
* DAT	E		•							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
* DAT	E		•							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
* DAT	E		•							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
* DAT	E		•							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
* DAT	E		•							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
* DAT	E		•							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

PUTER RUN DATE-	P2220050		•.		CE OF MAT Ad Rater			STS					
DUNTY - MUSCATINE S. ROUTE AVEMENT TYPE	E BE(61 ENI	GINNING DING MPUTED MILES	., 155.00	YEAR	NO BUILT TESTED.	RA1-5610 19 08-13-91	WEATHER OBS TIME	SCHMIDT	FRETTE	DISF). HZ (2 % (1 TYPE S	i8	
Section #2		EASTBO		ROAD RAT	ER DEFLEC	TION (MILS)		WESTBOUND		· .			
ation SENS	1 SENS 2			S.R. 50	11L K	SENS 1 S	ENS 2 5	ENS 3 S	ENS 4	5.R.	SOIL K	REMARKS	
).500 1.000 1.0	0 90	0.80	0.70	5.69	182.	0.94	0.90	0.82	0.70 0.70	5.97	140. 182.		
.500 2.000 0.9 2.500	94 0.85	0.80	0.70	5.97	183.	0.96	0.90	0.80	0.69		137.		
0.000 0.9 0.500		0.85	0.70	5.78	123.	1.00	0.90	0.80	0.70	5.69	182.		•
1.000 1. .500	10 1.00	0.90	0.80	5.29	169.	O.98	0.82	0.80	0.70	5.78	213.		
* * * * * * * * I	* * * * * * * SENS		* * S U M	MARY SENS2	OF D	A T A * * * SENS4	* * * * *	* * * * ¦ AVE.	* * * * 80%	* * * * * AVE.		* * * * ND ¦	oogenjaan in s
DIRECTION	TD.DEV. MAX.	MIN. AVE		AVE.	AVE.	AVE. SCI			SR 5.44	SOIL K		EMP 97.	
EAST WEST COMB	0.03 1.00	0,94 1.0 0,94 0.9 0.94 0.9	8 1.00	0.92 0.89 0.90	0.84 0.81 0.82	0.72 0.08	0.090	5.BC	5.70	171.		ğ7:	
•			•	•	•								
法议院主义事:《李行主义法行相法	ISTORY		KEMARAJ:	SECL+ SU	PERELEVAL	ED CURVE, LON	SIDE.	SECH- SUP	ERELEVA	TED CURVE	., HIGH SI	DE	
* DATE		•	REMARKS:	SECE- SU	PERELEVAI	ED CURVE, LOV	d SIDE.	SECH- SUF	PERELEVA	TED CURVE	. HIGH SI	DE	
* DATE	ISTORY AVE.SR AVE.	•	REMARKS	SECE- SU	PERELEVAI	ED CURVE, LO	d SIDE.	SECH- SUF	PERELEVA	TED CURVE	I, HIGH SI	DE	•
* DATE		•	KEMAKK3:	SECL+ SU	PERELEVAT	ED CURVE, LO	d SIDE.	SECH- SU	PERELEVA	TED CURVE	., HIGH SI	DE	•
* DATE		•	KEMAKK3:	SECL+ SU	PERELEVAI	ED CURVE, LO	« SIDE.	SECH- SUF	PERELEVA	TED CURVE	., HIGH SI	DE	•
* DATE		•	KEMAKKJ:	SECF+ 20	PERELEVAT	ED CURVE, LO	<i>«</i> SIDE.	SECH- SU	PERELEVA	TED CURVE	., HIGH SI	DE	•
• DATE • TESTED •	AVE.SR AVE.	•		SECL+ SU	PERELEVAT	ED CURVE, LO	d SIDE.	SECH- SUF	PERELEVA	TED CURVE	., HIGH SI	DE	
• DATE • TESTED •	AVE.SR AVE.	SOIL K *		SECF+ 20	PERELEVAI	ED CURVE, LO	d SIDE.	SECH- SU	PERELEVA	TED CURVE	., HIGH \$1		
• DATE • TESTED •	AVE.SR AVE.	SOIL K *			PERELEVAT				PERELEVA	TED CURVE	., HIGH \$1		
+ DATE + TESTED +	AVE.SR AVE.	SOIL K *							PERELEVA	TED CURVE	., HIGH SI		

RUGRAM NUMBER- P2220050 DMPUTER RUN DATE- 08-19-91	OFFICE OF MATERIALS ROAD RATER	STS	
COUNTY- MUSCATINE BEGINNING U.S. ROUTE 61 ENDING PAVEMENT TYPE AC COMPUTED MILES.	. 175.00 YEAR BUILT 19	OBS SCHNIDT FRETTE DISP	HZ
Section #3 EASTBOU Station sens 1 sens 2 sens 3 sen		BOUND	DIL K REMARKS
158.000 1.20 1.10 1.00 160.000 0.97 0.92 0.84 162.000 1.20 1.10 1.00 164.000 1.10 1.00 0.90 166.000 1.00 0.90 0.80 166.000 1.00 0.90 0.80 168.000 1.20 1.10 1.00 170.000 0.90 0.88 0.82 172.000 1.00 0.90 0.80	0.80 5.29 169. 0.90 4.95 155. 0.72 5.83 146. 0.90 4.95 155. 0.80 5.29 169. 0.70 5.69 182. 0.90 4.95 155. 0.70 5.69 182. 0.70 6.17 122. 0.70 5.69 182. 0.70 5.69 182.		
SENSI DIRECTION STD.DEV. MAX. MIN. AVE. EAST 0.12 1.20 0.90 1.05	* SUMMARYOF DATA * * * SENS2 SENS3 SENS4 BO% AVE, AVE, AVE, SCI	SCI/SENSI SR SR SOIL K	B7. 97.
* * * * * H I S T O R Y * * * * R * DATE * TESTED AVE.SR AVE.SOIL K * *	EMARKS: SECL→ SUPERELEVATED CURVE, LOW	SIDE. SECH+ SUPERELEVATED CURVE.	
			PAGE
			43
	NA DADATATATATATATATATATATATATATATATATATA		· · · · · · · · · · · · · · · · · · ·

PROGRAM NUMBER- Computer Run Date-		OFFICE OF MATERIALS Road Rater	.STS	
COUNTY- MUSCATINE U.S. ROUTE PAVEMENT TYPE		.00 LAB NO RA1-5612 .00 YEAR BUILT 19 DATE TESTED. 08-13-91	WEATHER SUNNY OBS SCHMIDT FRETTE TIME 11:37	FREQ. HZ 30 DISP % 68 TEST TYPE S1
Section #4 Station SENS 1	EASTBOUND	ROAD RATER DEFLECTION (MILS) S.R. SOIL K SENS 1 S	BOUND	I. SOIL K REMARKS
182.000 1.20 184.000 1.20 186.000 1.30 188.000 0.80 190.000 1.00 192.000 0.90 194.000 0.90 196.000 0.80 198.000 1.00 200.000 1.10	0 1.10 1.00 0.90 0 1.10 1.00 0.90 0 1.20 1.10 0.90 0 1.20 1.10 0.90 0 0.77 0.70 0.58 0 1.00 0.90 0.80 0 0.88 0.80 0.68 0 0.85 0.80 0.67 4 0.80 0.74 0.62 0 1.00 0.90 0.80	4.95 155. 4.95 155. 4.66 141. 6.76 148.		
	* * * * * * * * * * * * * * S U SENS1 D.DEV. MAX. MIN. AVE. BOX 0.17 1.30 0.80 1.02 1.17 S T D R Y * * * * * REMARK		SCI/SENS1 SR SR SD 5 0.053 5.69 5.09 1	VE. BEG. END LL K TEMP TEMP 96. 97. 97.
• DATE • TESTED A' •	VE.SR AVE.SOIL K * *			
	•			PAGE
an a				4

PROGRAM NUMBER- P2220050 Computer Run Date- 08-19-91	OFFICE OF MATERIALS Road Rater	.STS	
COUNTY- MUSCATINE BEGINNING U.S. ROUTE 61 ENDING PAVEMENT TYPE AC COMPUTED MILES	240.00 YEAK BUILL. 19	OBS SCHMIDT FRETTE DISP %	HZ.,, 30 .,., 68 YPE SI
Section # 5			
EASTBOUN	ROAD RATER DEFLECTION (MILS)	BOUND	
tation SENS 1 SENS 2 SENS 3 SENS	4 S.R. SOIL K SENS 1	SENS 2 SENS 3 SENS 4 S.R. SO	IL K REMARKS
217.000 1.30 1.20 1.10 219.000 0.86 0.80 0.72 0 221.000 1.00 0.90 0.80 0 223.000 0.97 0.92 0.85 0 225.000 1.00 0.90 0.80 0 227.000 0.88 0.82 0.74 0 229.000 0.91 0.85 0.79 0 31.000 1.00 0.90 0.80 0	.70 5.69 182. .00 4.66 141. .80 6.39 170. .70 5.69 182. .72 5.83 146. .70 5.69 182. .68 6.28 167. .67 6.12 164. .70 5.69 182. .80 5.69 79.		SECL
	5.74 143. 143. SUMMARY OF DATA * * *		• • • • • •
SENS1 DIRECTION STD.DEV. MAX. MIN. AVE.	B0% SENS2 AVE. SENS3 AVE. SENS4 AVE. SCI AVE. 1.09 0.92 0.83 0.73 0.0		EG. END EMP TEMP 97. 97.
* * * * * H I S T D R Y * * * * R	MARKS: SECL+ SUPERELEVATED CURVE, LO	W SIDE. SECH- SUPERELEVATED CURVE, H	IGH SIDE
* DATE * * TESTED AVE.SR AVE.SOIL K *	na kulan kulandu dan daka jaka kulan nun nun nungan (kulandar) kulandan seri seka		
			Anticipas esta
	The first constrained that the second second second second second		
			anaanaanaa addaadad dhar dhiriin dhirii
and the second			

.

. 把施品地。

1.4.9.4

COUNTY - MUSC U.S. ROUTE, PAVEMENT TYP	61	END I COMP	NG UTED MILE	260.0 S	XO YEA DAT	R BUILT. E TESTED	. RA1+5614 . 19 . 08-13-91	OBS TIM	THER SUN SCH	MIDT	RETTE	DIS	0. HZ P % T TYPE.	. 68		
Section	#6						507101 /M									
			EASTB	OUND	RUAU RA	MER DEFL	ECTION (MI	LS)		BOUND						
tation ⁹	SENS 1 SE	NS 2 5	ENS 3 S	ENS 4	S.R. 5	501L K	SENS 1	SENS	2 SENS	3 SEI	NS 4	S.R.	SOIL K	REMA	RKS	
42.000	1.00	0.90	0.90	0.80	5.69	182.		•		•						,
14.000 16.000	1.20 1.30	1.10	1.00	0.90	4.95	155.	4.2020-2 2 24								tirt reda	An teor
48.000	1.20	1.10	1:00	0,90	4.95	i 155. 💮										n National - National -
50.000 52.000	1.00	1.00	0.90	0.80	5.69 4.95	79. 155.	448. SI 6421. 								arrets R	
54.000	0.70	0.67	0.58	0.46	7.49	161.				•						
56.000 58.000	1.40 1.20	1.30	1.20	1.00 0.90	4.41 4.95	125. 155.										
* * * * * *	ti de la relative ≰ ★ ★ ★ ★ ★ I	* * * * *	n 🔹 🔹 🔹 🔹	* * S U N	AMARY			**************************************	* * * * *	*******	* * * *	* * * *	* * * *	* * * *	 ★★	na na Indri
DIRECTION	STD.DEV	SENSI . MAX.	MIN. AVE	. 80%	SENS2	SENS3	SENS4 AVE.	SCI SC	I/SENS1	AVE. SR	80% SR	AVE. Soil k	BEG. TEMP	END TEMP		· ·
	in an an an Allanda.							o. <i></i>		5.31			97.	97.	dahqo	
EAST	1 0.21	1.40	0.70 1.1	3 1.31	1.05	0,96			0.072		A 54				in and a co	
un usasuan hanasukan T												145.	• ·			
• • • • DATI • TESTI		DRY*	•	REMARKS:	: SECL- SL		TED CURVE.						• ·			
+ DATI	E		•	REMARKS:	: SECL- SL								• ·			
+ DATI	E		•	REMARKS	: SECL- SL								• ·			
+ DATI	E		•	REMARKS :	: SECL- SI								• ·			
+ DATI	E		•	REMARKS	: SECL- SL								• ·			
+ DATI	E		•	REMARKS	: SECL- SL								• ·			
+ DATI	E		•	REMARKS	: SECL- SL								• ·			
+ DATI	E		•	REMARKS	: SECL- SL								• ·			
+ DATI	E		•	REMARKS	: SECL- SL								• ·			
+ DATI	E		•	REMARKS	: SECL- SL								• ·			
* DATI * TESTI	E	AVE.SO	•	REMARKS	: SECL- SL								• ·			
• DATI • TESTI	E ED AVE SR	AVE.SO	•	REMARKS	: SECL- SL								• ·			
* DATI * TESTI *	E ED AVE SR	AVE.SO	•	REMARKS	: SECL- SL								• ·			
* DATI * TESTI	Ë ED AVE SR	AVE.SO	•	REMARKS	: SECL- SL								• ·			

PROGRAM NUMBER- P2220050 DFFICE OF MATERIALS COMPUTER RUN DATE- 08-19-91 ROAD RATER STS	
COUNTY-MUSCATINEBEGINNING265.00LAB NORA1-5615WEATHER SUNNYU.S. ROUTE61ENDING285.00YEAR BUILT	FREG. HZ:
Section #7 ROAD RATER DEFLECTION (MILS) EASTBOUND BOUND Station SENS 1 Station SENS 2 Station SENS 2	.R. SOIL K REMARKS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
DIRECTION STD.DEV. MAX. MIN. AVE. 80% AVE. AVE. AVE. SCI SCI/SENS1 SR SR S EAST 0.31 1.70 0.79 1.12 1.38 1.03 0.92 0.78 0.09 0.081 5.46 4.61	AVE. BEG. END DIL K TEMP TEMP 153. 97. 97.
<pre>* * * * H I S T D R Y * * * * * REMARKS: SECL+ SUPERELEVATED CURVE, LOW SIDE. SECH+ SUPERELEVATED * DATE * TESTED AVE.SR AVE.SOIL K * * *</pre>	CURVE, HIGH SIDE
	PAG
	E 47

.

. . . F.

. - 24-1, 1

PROGRAM NUMBER- P2220050 Computer Run Date- 08-19-91	OFFICE OF MATERIALS ROAD RATER	STS
U.S. ROUTE	AIO OO VEAD BUILLE IO OPE	THER SUNNY FREQ. HZ 30 , SCHMIDT FRETTE DISP % 68 E 11:37 TEST TYPE SI
Section #8	ROAD RATER DEFLECTION (MILS)	
	BOUND SENS 4 S.R. SOIL K SENS 1 SENS	BOUND 2 SENS 3 SENS 4 S.R. SOIL K REMARKS
290.000 0.80 0.77 0.68 292.000 1.00 0.90 0.80	0.58 6.76 148.	
294.000 0.68 0.58 0.52 296.000 0.78 0.68 0.62	0.46 7.67 217. 0.55 6.89 207.	SECH SECH
298.000 0.78 0.58 0.52 300.000 0.65 0.57 0.52 302.000 0.67 0.58 0.52	0:44 6:89 225+ 0.44 7.94 210. 0.45 7.75 213.	SECH SECH SECH
304.000 0.62 0.56 0.50 306.000 0.94 0.90 0.82	0.44 8.24 200. 0.70 5.97 140.	SCON
308.000 0.78 0.24 0.65	0.53 6.89 225+	
SENS1 DIRECTION STD.DEV. MAX. MIN. AN EAST 0.12 1.00 0.62 0.		
* * * * * H I S T O R Y * * * * * * DATE * TESTED AVE.SR AVE.SOIL K * *	REMARKS: SECL- SUPERELEVATED CURVE, LOW SID	E. SECH- SUPERELEVATED CURVE, HIGH SIDE
		PAGE
		48

Rut Depth Readings US 61 - Muscatine County October 15, 1991

24 3,

ιķ

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SECTION	STATION	OWT	IWT
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	130+00	.01	.02
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		135+00	.00	.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		140+00	.01	.00
Eastbound $151+00$ $.06$ $.04$ $152+00$ $.05$ $.02$ $153+00$ $.02$ $.07$ $154+00$ $.02$ $.02$ 2 $150+00$ $.03$ $.05$ Westbound $151+00$ $.03$ $.08$ $152+00$ $.05$ $.09$ $153+00$ $.05$ $.10$ $154+00$ $.03$ $.05$ 3 $155+00$ $.01$ 3 $155+00$ $.01$ $160+00$ $.08$ $.09$ $165+00$ $.06$ $.05$ $170+00$ $.07$ $.00$ $175+00$ $.01$ $.03$ 4 $185+00$ $.03$ 4 $185+00$ $.03$ $200+00$ $.01$ $.03$ $205+00$ $.05$ $.03$ $210+00$ $.05$ $.01$ 5 $215+00$ $.06$ $220+00$ $.01$ $.03$ $205+00$ $.05$ $.01$ 5 $215+00$ $.06$ $230+00$ $.01$ $.03$ $235+00$ $.05$ $.12$ 6 $240+00$ $.05$ $.02$ $245+00$ $.02$ $.01$ $250+00$ $.04$ $.06$ $255+00$ $.02$ $.04$		145+00	.02	.00
Eastbound $151+00$ $.06$ $.04$ $152+00$ $.05$ $.02$ $153+00$ $.02$ $.07$ $154+00$ $.02$ $.02$ 2 $150+00$ $.03$ $.05$ Westbound $151+00$ $.03$ $.08$ $152+00$ $.05$ $.09$ $153+00$ $.05$ $.10$ $154+00$ $.03$ $.05$ 3 $155+00$ $.01$ 3 $155+00$ $.01$ $160+00$ $.08$ $.09$ $165+00$ $.06$ $.05$ $170+00$ $.07$ $.00$ $175+00$ $.01$ $.03$ 4 $185+00$ $.03$ 4 $185+00$ $.03$ $200+00$ $.01$ $.03$ $205+00$ $.05$ $.03$ $210+00$ $.05$ $.01$ 5 $215+00$ $.06$ $220+00$ $.01$ $.03$ $205+00$ $.05$ $.01$ 5 $215+00$ $.06$ $230+00$ $.01$ $.03$ $235+00$ $.05$ $.12$ 6 $240+00$ $.05$ $.02$ $245+00$ $.02$ $.01$ $250+00$ $.04$ $.06$ $255+00$ $.02$ $.04$	•	•		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	—			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Eastbound	-	-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
Westbound $151+00$ $.03$ $.08$ $152+00$ $.05$ $.09$ $153+00$ $.05$ $.10$ $154+00$ $.03$ $.05$ 3 $155+00$ $.01$ $.00$ $160+00$ $.08$ $.09$ $165+00$ $.06$ $.05$ $170+00$ $.07$ $.00$ $175+00$ $.01$ $.05$ $180+00$ $.01$ $.03$ 4 $185+00$ $.03$ 4 $185+00$ $.03$ $20+00$ $.01$ $.03$ $20+00$ $.01$ $.03$ $205+00$ $.05$ $.03$ $210+00$ $.05$ $.01$ 5 $215+00$ $.06$ $220+00$ $.01$ $.03$ $225+00$ $.08$ $.02$ $230+00$ $.01$ $.03$ $235+00$ $.05$ $.12$ 6 $240+00$ $.05$ $.02$ $245+00$ $.02$ $.01$ $250+00$ $.04$ $.06$ $255+00$ $.02$ $.04$		154+00	.02	.02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	150+00	.03	.05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Westbound	151+00		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		154+00	.03	.05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	155+00	.01	.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		160+00	.08	.09
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· ·	165+00	.06	.05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		170+00	.07	.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		175+00	.01	.05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		180+00	.01	.03
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	185+00	.03	.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		190+00	.04	.01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		195+00	.00	.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		200+00	.01	. 03
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		205+00	.05	.03
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		210+00	.05	.01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	215+00	.06	.02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		220+00	.01	.03
235+00 .05 .12 6 240+00 .05 .02 245+00 .02 .01 250+00 .04 .06 255+00 .02 .04	· · · · ·	225+00	.08	.02
6240+00.05.02245+00.02.01250+00.04.06255+00.02.04		230+00	.01	.03
245+00.02.01250+00.04.06255+00.02.04		235+00	.05	.12
245+00.02.01250+00.04.06255+00.02.04	6	240+00	.05	.02
250+00 .04 .06 255+00 .02 .04	-			
255+00 .02 .04				
	,			

1.1534

SECTION	STATION	OWT	IWT
7	265+00	.05	.02
	270+00	.07	.02
	275+00	.01	.04
	280+00	.02	.03
	285+00	.03	.05
	290+00	.01	.01
8	295+00	.02	.01
	300+00	00	.00
	305+00	.02	.01
	310+00	.01	.03
	315+00	.01	.00

IOWA DEPARTMENT OF TRANSPORTATION

DATE: October 18, 1991

TTENTION:

O OFFICE:

REF. NO.: 435.204

ROM: Chris Anderson

FFICE: Materials - Research

UBJECT: Friction Testing on US 61 in Muscatine County from Milepost 93.96 to Milepost 97.49

Friction testing was conducted on US 61 on October 15, 1991. All testing was performed at 40 mph with standard tread (ASTM E-501-76) test tire. The results are as follows:

Section	1	Conventional Mix	Avg.	40	
Section	2	Rubber Chip Surface	Avg.	26	EB
Section	2	Rubber Chip Surface	Avg.	35	WB
Section	3	A.R.C. Surface Only	Avg.	44	
Section	4	Conventional Mix	Avg.	44	
Section	5	A.R.C. Binder & Surface	Avg.	45	
Section	6	Conventional Mix	Avg.	38	
Section	7	A.R.C. Surface Only	Avg.	42	
Section	8	Conventional Mix	Avg.	44	

CA:kmd