Embankment Quality and Assessment of Moisture Control Implementation

Background

Earth embankments are designed to provide the specified elevation and stability for the performance life of the overlying pavement systems and embedded drainage structures.

Past research shows that significant variability exists in the final compaction conditions (e.g., moisture content) for embankment fills and that variability in compaction quality is largely influenced by wet Iowa fill materials and variable lift thickness control and compaction operations.

Past experimental pilot projects have been conducted in Iowa to document compaction quality using the “walk out” roller specification versus end-result alternative requirements including moisture/density control and use of dynamic cone penetration testing as a measurement of lift thickness, uniformity, and soil strength.

Comparison of in situ moisture-density measurements with laboratory Proctor compaction test results and Iowa DOT acceptance limits for Pottawattamie County Project 6 TB2
Based on the outcomes from these past research studies, the Iowa Department of Transportation (DOT) implemented a specification for contractor moisture or moisture-density quality control (QC) in roadway embankment construction that has been in use for about 10 years in Iowa on about 190 projects.

The current study set out to study the impact of the current specifications in terms of quality compaction and to identify further areas for improvement given recent advancements in compaction measurement systems and in situ testing technologies.

Problem Statement

The motivation for this project was based on work by Iowa State University (ISU) researchers at a few recent grading projects that demonstrated embankments were being constructed outside moisture control limits, even though the contractor QC testing and quality assurance (QA) testing showed all work was being performed within the control limits. This finding initiated the need for a more detailed study with testing on several active grading projects across Iowa.

Research Description

Field testing was conducted on nine active construction sites in Iowa with materials consisting of glacial till, western Iowa loess, and alluvium sand.

Drive cylinder tests were performed to determine in situ moisture content and dry density; dynamic cone penetrometer (DCP) tests were performed to determine California bearing ratio (CBR) profiles with depth.

Field test results from ISU testing were assessed if the data were within the moisture control limits (± 2% of optimum moisture content) and above the minimum relative compaction control limit (95% of standard Proctor test). The data that were available from contractor QC testing and Iowa DOT QA testing were also assessed in comparison with the ISU test results.

Finally, field test results from this project were compared with data from previous embankment research projects to assess if there was a statistically significant improvement in terms of the percentage of data within the control limits of the current specifications.

Key Findings

- For cohesive materials, QC data showed that 1% to 45% of moisture measurements were outside of the specification and 2% to 75% of density measurements were outside of the specification. QA data at two project sites showed that 56% to 69% of moisture measurements were outside of the specification. ISU testing results showed all test measurements within the moisture and density specification limits at one project site. At the remaining project sites, 12% to 62% of ISU moisture measurements were outside of the specification; and, 4% to 40% of ISU density measurements were outside of the specification.

- For cohesionless materials, the contractor QC results at one site showed that 2% of the moisture measurements were outside of the control limits. Iowa DOT QA data...
at the same site showed that 20% of the moisture measurements (11% dry of the lower control limit and 9% wet of the upper control limit) were outside of the specification control limits. ISU testing at the same site showed that 66% of the moisture content measurements were outside of the specification control limits (2% dry, 64% wet).

- Two other project sites with cohesionless materials showed 85% to 100% of the moisture measurements outside of the control limits, of which a majority of the measurements (81% to 100%) were dry of the lower control limit. One of the sites showed that all density measurements were > 95% relative compaction (RC), while the other showed 14% of density measurements were < 95% RC.

- DCP results showed that the compacted fills have relatively low and variable CBR values, about 0.6 to 8.2% for 8 in. depth and 0.5 to 8.6% for 12 in. depth.

- During in situ construction observations, discing did not effectively aerate wet fill material.

- Comparisons between the measured values by ISU and selected values by the Iowa DOT for QA showed a standard error of 2.9 lb/ft³ for maximum dry density and 2.1% for optimum moisture content. The difference in optimum moisture content was as high as 4% and maximum dry density was as high as 6.5 lb/ft³.

- For maximum dry density, AASHTO T 99 allows 4.5 lb/ft³ variation between two test results from different laboratories, while ASTM D698 allows 2.3 lb/ft³ to 3.9 lb/ft³, depending on the soil type. Results indicated that only 1 of 19 test results fell outside the allowable limits per AASHTO T 99, while 7 of 19 fell outside the allowable limits per ASTM D698.

- For optimum moisture content, AASHTO T 99 allows variation of 15% from the mean of the two test results, while ASTM D698 allows a variation of 1.5% to 1.8%, depending on the soil type. Only 3 of 26 test results fell outside the allowable limits per AASHTO T 99, while 7 of 26 fell outside the allowable limits per ASTM D698.

- Statistical analysis indicated statistically significant differences between the moisture content measurements relative to optimum (Δw) and RC measurements obtained from this project and the previous embankment research projects. The results indicated that data obtained from the current Iowa Highway Research Board (IHRB) TR-677 project had a higher percentage of data that were within the control limits for Δw and above the control limit for RC compared to all previous project phases. This suggests improvement over the previous project results.

Based on the field testing and observations documented through this project, although results show a statistically significant improvement over previous projects, QC/QA results are not consistently meeting the specification.

Implementation Readiness and Recommendations

Recommendations are detailed in the last chapter of the report along with a one-page graphic presentation (which is also on the last page of this tech transfer summary) for three proposed options for improvements to the current specifications. Briefly, the three options are as follows:

- Option 1: Enhance the current Iowa DOT moisture and moisture-density specifications in terms of differentiating the material types, developing a spatial random sampling method, and improving process control through control charts

- Option 2: Develop alternative QC/QA specifications using dynamic cone penetrometer or modulus based testing

- Option 3: Incorporate calibrated intelligent compaction (IC) measurements into QC/QA specifications by developing statistically valid field calibrations and mapping of final layers to determine areas of non-compliance

Implementation Benefits

Because the quality of embankment construction directly influences performance of the support infrastructure, improvements to embankment compaction quality will reduce cost of future maintenance and reconstruction.

References for Last Page

White, D. J., B. Larsen, C. Jahren, and J. Malama. 2007. Embankment Quality Phase IV: Application to Unsuitable Soils. IHRB Project TR-492, Center for Transportation Research and Education, Iowa State University, Ames, IA.
1. Enhancements to Current Iowa DOT Moisture and Moisture-Density Specifications

- Use material-based moisture-control limits (TR-401 Phase III report).
- Cohesionless and intergrade materials must have min. and max. moisture content limits as determined from modified relative compaction test.
- Provide training to field engineers on proper selection of Proctor tests and spatial random sampling.
- Develop and utilize software tools (e.g., ArcGIS) that can generate spatially random locations for a given work area to reduce bias in sampling and improve documentation.
- Use simple online reporting tools for field engineers to populate control charts that can be monitored by RCEs to take timely corrective actions.

2. Develop Alternative DCP/LWD (Strength/Stiffness) Based QC/QA Specifications

- MnDOT specification provides target limits for DCP, LWD, and moisture content for different materials (Siekmeier et al. 2009).
- Indiana DOT provides field acceptance criteria using DCP based on target DCP index values (Specification ITM No. 509-15P).
- White et al. (2007) provide guidance on DCP index target values for suitable, select, and unsuitable soils based on TR-492 Phase IV testing.
- Target limits can also be established through laboratory testing by conducting DCP testing directly on compacted specimens in 6 in. diameter CBR mold.
- Develop and utilize software tools (e.g., ArcGIS) that can generate spatially random location for a given work area to reduce bias in sampling.
- Use simple online reporting tools for field engineers to populate control charts that can be monitored by RCEs to take timely corrective actions.

3. Incorporate Calibrated Intelligent Compaction (IC) Measurements into QC/QA Specification

- Develop field calibration of IC measurement values with in situ measurements (dry density, moisture content, shear strength, or modulus) on a control strip or a production area. A minimum R^2 of 0.8 is required in calibration.
- Develop IC-target values (IC-TV) based on field calibrations.
- Map final pass on each layer to ensure achievement of target IC values over 80% of the area, with no contiguous areas (that are at least 3 ft wide x 50 ft long or 150 ft2 or greater area) with values < target values.

Recommended specification options for future QC/QA