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Dynalllics of Highway 
Bridges 

Part I. Forced Vibration of Continuous 

Highway Bridges 

In the design of highway bridges, the 'static live load is multiplied by 
a factor to compensate for the dynamic effect of moving vehicles. This 
factor, commonly referred to as an impact factor, is intended to provide 
for the dynamic response of the bridge to moving loads and suddenly ap
plied forces. Many investigators have published research which contra
dicts the current impact formula 1 • 4 • 17 • Some investigators feel that the 
problem of impact deals not only with the increase in over-all static live 
load but that it is an integral part of.a dynamic load distribution problein 2:

1
• 

The current expanded highway program with the large number of 
bridge structures required emphasizes the need for investigating some of 
the dynamic behavior problems w.hich have been generally ignored by 
highway engineers. These problems generally result from the inability of 
a designer to predict the dynamic response of a bridge structure. Many 
different investigations have been made of particular portions of the over
all dynamic problem. The results of these varied investigations are inevi
tably followed by a number of unanswered questions. Ironically, many of 
the unanswered questions are those which are of immediate concern in the 
design of highway bridges, and this emphasizes the need for additional re
search on the problem of impact. 

Nature of the Investigation 

This investigation is a study of the dynamic magnification of static 
load, commonly referred to as impact, resulting from the vibrations pro
duced by a vehicle traversing the length of the bridge. More specifically, 
the purpose of this investigation is to correlate the response of actual con
tinuous highway bridges under the effects of moving vehicles with vibra
tion theory. The problem is then to determine by means of experimental 
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data, the important parameters affecting bridge vibration and to develop 
thereby a theoretical correlation of these parameters. 

Theoretical. The fundamental problem of vibration is the deter
mination of the natural modes and frequencies of a given vibrating system 
and the characteristics of the forcing function. Since the natural fre
quency depends on the restoring force and mass of the system, it is evident 
then that the size, stiffness, and initial conditions will determine the nat
ural mode of transverse vibratory motion of a beam. The vehicle, which 
causes the forcing function, is partly a sprung mass and partly an un
sprung mass. The actual vehicle is a very complicated vibratory system, 
but in this study its effect has been simplified as much as possible. The 
effect of the vehicle which has been assumed to predominate as the forcing 
function for the vibration of bridges is the cyclical repetition of the axles. 
This cyclical repetition is defined as the frequency of passage of the axles 
determined by the ratio of the velocity of the vehicle to the axle spacing. 

Experimental. The experimental investigation was designed to de
termine if the simplications made in the theoretical impact analysis are 
justified in the application of this theory to actual structures. In this ex
perimental work the impact was determined at midspan of a single span 
highway bridge and in the outer and inner spans and at the interior sup
ports for three types of continuous four span highway bridges. The bridge 
structures investigated are as follows: 

1. A simple span bridge with six postensioned prestressed concrete 
beams 100 ft long constructed to act compositely with a reinforced con
crete roadway. The roadway is 30 ft wide with a 3 ft safety curb on 
both sides. 

2. A fully continuous structure, 220 ft long with four aluminum 
stringers constructed to act compositely with a reinforced concrete road
way. The roadway is 30 ft wide with a 3 ft safety curb on both sides. 

3. A fully continuous composite structure 240 ft long and very simi
lar to the previous bridge but with four steel wide flange stringers. The 
reinforced concrete roadway is 28 ft wide with a 3 ft safety curb on 
both sides. 

4. A continuous reinforced concrete roadway 24 ft wide with a 2 ft 
safety curb on both sides supported by six pretensioned prestressed con
crete beams in each of the four spans. The ends of the simple span beams 
were encased by a cast-in-place diaphragm at the piers. The continuous 
roadway slab, constructed to act compositely with the stringers, and the 
pier diaphragm result in a relatively continuous 198.75 ft bridge. 

The types of bridges chosen give a wide range of the various para
meters involved in vibration. The aluminum stringer bridge is outstand
ing in that it allows a comparison of the effect of a lighter material with 
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a smaller elastic modulus in a structure similar in its other aspects to the 
steel stringer bridge. The continuous pretensioned prestressed concrete 
bridge resembles the other continuous bridges except that it is only par
tially continuous in its action. 

The mass per -unit length is nearly equal for the three continuous 
bridges. To investigate the effect of a variation in the mass per unit 
length, the much heavier postensioned prestressed concrete bridge was 
studied. Also these bridges provide a number of variables in their struc
tural qualities which may affect structural damping. This characteristic, 
the damping, is important theoretically since it provides an upper limit 
for the amplitude of forced vibration and might determine the maximum 
amount of impact for that structure. 

DEFINITIONS AND NOTATIONS 

Definitions 

Impact factor. The impact factor used herein, is the ratio of the dif
ference between the dyl)amic and static effect of a vehicle to the static 
effect. It is therefore the fractional increase in the static live load, in this 
case the vehicle, which is required for the static live load to produce an 
effect equivalent to that of the dynamically applied live load. 

" Free vibration. Free vibration is that periodic motion which takes 
place when an elastic system moves under the action of no external forces 
or damping. The forces acting on the system during its motion are de
pendent only on the motion itself. 

Natural frequency. The frequency of a free vibration is called th·e 
natural frequency of the elastic system. The elastic system used herein 
is the bridge_ structure itself. 

Loaded natural frequency. The loaded natural frequency is the fre
quency of free vibration of a system, in this case the loaded bridge struc
ture, when the mass of the loading vehicle is included in the system. This 
frequency is a function of the position of the vehicle. 

Forcing function. The forcing function is an externally applied time
dependent disturbance acting on the structure to produce a time-depend
ent motion. 

Forced vibration. When the vibration results from the application 
of an external time-dependent disturbance it is called a forced vibration. 

Modes of vibration. An elastic system can generally perform vibra
tions of different modes. The mode of vibration is the shape of the vi
brating beam and is classified by the number of nodes subdividing the 
length of the beam. 

Resonance. When an elastic system is acted upon by an external 
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periodic forcing function having the same frequency as a natural fre
quency of the system, it is in a state of resonance. 

Notations 

A,B,C,D,F,H 
E 
f 
rL 
f (x, t) 
g 
I 
K 

KE 
k 
L 
M 
m 
N 
n 
nb 
p 
PE 
p 
PL 

r 

s 
s 
t 
T 
v 
w 
w 
x 

x 
y 

Constants; evaluated by initial conditions 
Modulus of elasticity 
Natural frequency in cycles per unit of time 
Loaded natural frequency in cycles per unit of time 
A function of position and time 
Acceleration due to gravity 
Moment of inertia 
Frequency parameter, / p2m/EI 

4~ 
Kinetic energy 
Ratio of span stiffnesses, Ezl2L1/Eil1L2 
Length of span 
Mass of the load 
Mass per unit length of span 
Number of cycles 
Any whole number 
Damping coefficient 
Oscillating load effect of a smoothly rolling load 
Potential energy 
Natural circular frequency of undamped vibration 
Natural circular frequency of undamped vibration of 
the loaded structure 
Ratio of the horizontal coordinate to the length of the 
span, x/L 
Spacing of the vehicle axles 
Stress 
Time 
A function of time 
Velocity 
Weight of the load 
Frequency of the forcing function 
Horizontal coordinate; a distance measured in the 
direction of the length of the span 
A function of the horizontal coordinate 
Vertical ordinate; deflected displacement due to the 
static live load 
Vertical ordinate; deflected displacement due to the 
dynamic live load 
Phase angle 
( coth KL-cot KL) 
( cosech KL - cosec KL) 
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PREVIOUS INVESTIGATION 

Bridge Vibration 

The problem of bridge vibration came of age when heavy loads and 
high speeds became prevalent in railway transportation. In 1847 'a ~ritish 
Royal Committee was appointed to inquire into the conditions to be ob
served by engineers in the use o{ii;on in structures exposed to violent con
cussions and vibrations. The committee conducted an extensive series of 
laboratory tests at the Portsmouth . dockyards23

• A member of the com
mittee, Professor R. Willis, attempted to simplify the analytical work by 
omitting the inertia of the bridge and considering only the mass of the 
moving load. This allowed Professor Willis to consider the deflection of 
the beam to be proportional to the force exerted on the beam by the 
moving load. The deflection could then be calculated by the equation of 
static deflection: 

Y= 
Rx2 (L-x) 2 

3EIL 

where the force R exerted by the moving load is 

p dzy 
R=P---. 

. g dt2 

(1) 

(2) 

The equation of the path of the point of contact of the rolling load with the 
beam becomes 

f v2 dzy l ( x2(L-x)2 l 
\ l - ;- dx2 ) ( 3EIL ) 

(3) 

An exact solution of this equation was obtained by G. G. Stokesrn by means 
of a power series. However, an approximate solution can be obtained by 
putting the equation of static deflection at zero velocity into the right hand 
side of this equation. Accordingly, the dynamic deflection is 

Y<1 = y ( 1 + v
2 

PL ) (4) 
g 3EI 

where the additional term in the parentheses is the impact factor and is 
usually very small. Therefore t!J.e dynamic effect ~n this case is negligible. 

The next theoretical approach was made by considering the mass of 
the bridge and disregarding the mass of the traversing load. This was in
vestigated by A. N. Kryloff12 in 1905 as the problem of a constant force 
traversing a single span beam with a constant vefocity. In 1922, the prob
lem of a pulsating force was investigated by Professor S. P. Timoshenko"', 
and the same result was later reached by a somewhat different method by 
C. E. Inglis10

• 
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The first published solution considering the mass of the load and the 
mass of the bridge was by H. H. Jeffcott in 1929 11

• The general equation 
was written 

d4y 
EI--+ 

dx• 

d2y f(x, t) d2y' 
m -- = f(x,t) - --

dt2 g dt2 
(5) 

where y' is the deflection under the load. An iteration procedure was used 
to obtain a solution in which it is implied that the effect of the accele1 a
tion force is always small compared with that of the applied load. The 
first approximation is found by disregarding the acceleration term and 
solving the equation. The next step is to substitute the first solution into 
the original equation in the previously disregarded term and solve the 
resulting equation. This process is shown to converge to the exact solu
tion for a particular case. However, the general convergence of the meth
od was not discussed. Since then H. Steuding1 8 has shown that in some 
cases the iteration method used by Jeffcott does not converge. 

A very comprehensive study was presented by Professor C. E. Inglis10 

in 1934 entitled "A Mathematical Treatise on the Vibrations in Railway 
Bridges". This study, supported by experiments, considers the various 
types of railway loadings on simple span bridges. The traversing load is 
expressed in the form of a harmonic series. The convergence of the series 
is discussed and it is found that only the first two or three components 
have any real practical importance. 

Using the differential equation of motion 
d4y d2y 

EI-+ m - = f(x , t). (6) 
dx4 dt2 

Professor Inglis uses the forcing function 
i = OO 

2W ' in-vt h ·x 
f (x, t) "' sin-- sin--

// L L L 
i = l 

(7) 

for the case of a moving force of constant speed and magnitude. This 
function is equivalent to a series of stationary but alternating sinusoidal 
loads. The solution of the differential equation for this forcing function is 

y 

i=OO 

2WV "'-"'-

7r4EI // 

i = l 

where a= J: 

in-x 
sin-

L 

6 

i27r
2

at l sin--
L2 

(8) 
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vL 
and /.t -

The solution was also found for a moving alternating force and a moving 
alternating force associated with a moving mass. A solution of the type 

;;X 

y = f(t) sin-
L 

(9) 

was used in all cases. Furthermore a harmonic series was used to rep
resent the loads in all the solutions and in some solutions only the primary 
component of the harmonic series was considered. These simplifications in 
the analytical work were justified by Inglis io. Jl. ix because " ... the main 
object of this treatise is the analysis of the oscillations due to hammer
blows and the evolution of formulae for computing dynamic deflections and 
the bending-moments and shearing-forces induced tl:iereby". This treatise 
marks a turning point in the engineering approach to the problem of impact. 

In 1937, A. Schallenkamp1c presented a rigorous solution of the prob
lem of bridge vibration considering the mass of both beam and load. The 
lateral vibration produced by the external disturbing forces are represent
ed by a series, which 'for a beam with simply supported ends becomes 

i=OO 

' y(x, t) = ) 
/ 

i=l 

bx 
Q i (t) sin -- . (10) 

L 

Using the expressions for potential and kinetic energy together with the 
equations of Lagrange, Schallenkamp obtained _a nonhomogeneous second 
order linear differential equation in terms of qi ( t) ( i = 1, 2, ... ) . The 
solution of this problem seems to indicate that the contribution of the mass 
is of relatively little importance in bridge.vibration. 

In 1955, the problem of bridge vibration was studied by H. S. Suer"0
, 

who assumed that the bridge, again a simple span, could be represented by 
a single degree of freedom system. He therefore considered only the first 
mode behavior of the bridge. In addition, the vehicle was treated as a 
single degree of freedom system for which a solution was obtained in the 
form of two simultaneous differential equations in terms of the deflection 
of the bridge and the absolute position of the sprung mass and their deriv
atives. These equations were then solved by a digital computer. Excel
lent experimental correlation of this solution wa_s ob1'.ained by choosing the 
initial position and velocity of the mathematical model of the vehicle to 
agree with the experimental load variation curves of the: actual vehicle. 

The forced vibration of a continuous two span beam has been investi
gated by G. Ford5 • The load traversing the beam was simplified · by ne-
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glecting its mass. To idealize the assumptions made in the analysis, a 
model was built which had negligible damping, complete freedom to rotate 
at the supports, and a uniform cross section. The main purpose of the in
vestigation was to determine the number of natural modes which must be 
considered in a theoretical study in order to obtain a fair agreement with 
observed results. The analytical procedures of Timoshenko2 1 and Schal
lenkamp16 were used and the shape functions were obtained for the various 
individual modes of vibration. The summation of these components for 
all possible modes was then considered on the basis of superposition, and 
the experimental correlation was made. 

Many experimental studies have been made in attempting to correlate 
the dynamic action of a bridge with theory or to try and isolate the most 
significant parameters in this action. A very important contribution in 
this respect is the Highway Research Board Bulletin 124. In this bulletin 
Biggs and Suer1 have reported some of the experimental tests which pro
vided a basis for the analytical work of Suer20 described previously. The 
significance of the various dynamic effects on the vibrations of highway 
bridges was investigated by Professor C. F. Scheffey". Again the effect 
of the smoothly rolling mass was found to be negligible. Scheffey 17• p . 29 

concluded that " ... the effects of the oscillating single load was found to 
become more and more pronounced as the frequency of the span approach
es the frequency of the vehicle", and that " ... the superposition of the ef
fects of a number of axles in phase is a most difficult problem to treat 
quantitatively on the basis of presently available data". A comparison of 
the measured deflections and stresses in two continuous plate girder 
bridges was reported by R. C. Edgerton and G. W. Beecroft4 • This experi
mental investigation concluded that the effect of the roughness of the 
bridge deck greatly influenced the measured impact. J. M. Hayes and J. 
A. Sbarounis8 studied the vibration of a three span continuous I-beam 
highway bridge. The effect of the load on the natural frequency of the 
bridge and the effect of the composite action of the I-beams are presented 
in this study. The various vehicles used in this experimental program had 
quite a varied axle spacing. The recorded amplitude of vibration seemed 
to correlate very well with this parameter. The correlation was made, as
suming the bridge to have a single degree of freedom, with impact as a 
function of the amplification factor normally associated with forced vibra
tions. G. M. Foster and L. T. Oehlern attempted to correlate the dynamic 
deflection with the stringer depth to span ratio for a number of simple 
span roller-beam and plate-girder bridges. The damping coefficients of 
these bridges and of a continuous plate girder bridge are presented. A re
view of the analytical and experimental model studies on the highway 
bridge impact problem at the University of Illinois was presented by T. P. 
Tung, L. E. Goodman, T. Y. Chen, and N. M. Newmark22

• The analytical 
study was made by a numerical step-by-step integration of the equations 
of motion. The study made by Tung et al. includes the effect of the road .. 
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way uneveness and camber and also the unsprung part of the load. The 
dimensionless parameters which directly influence the _calculations were 
reduced by some simplifications to five. 

Weight Parameters : 

Wt. of unsprung part of vehicle 
Ri == ---·------

Wt. of bridge 

Wt. of sprung part of vehicle 
R" - ----------

Wt. of bridge 

Wt. of vehicle 
R == ------

Wt. of bridge 

Stiffness Parameter 

Natural frequency of vehicle 
p. == -------------

Natural frequency of bridge 
Speed Parameter 

Velocity of vehicle 
a == ----------

2 (Length of span) (Natural frequency of bridge) 

A good correlation· was made of the model study results of a single axle 
vehicle traversing a single span bridge with the analytical solution obtain
ed by a di'gital computer. A. Hillerborg0 has shown that using only two of 
the five dimensionless parameters considered by Tung et al., the third 
weight parameter R a11d speed parameter a, the impact of an idealiz.ed un
sprung single concentrated mass can be predicted by method of Inglis10

• 

The theoretical dynamic increment or impact is shown for both moment 
and deflection, but th.e experimental correlation is shown only for moment. 

It is interesting to note that of the many facets to the problem of 
bridge vibration, the damping constant of the bridge is nearly always neg
lected in the simplifications of the analytical solutions. This is done even 

. though the effect of damping will limit the maximum amplitude of stress 
. or impact when the resonance condition is obtained between the forcing 
function and the structure. For a continuous bridge this resonance con
dition might be obtainable by a single unsprung mass traveling at a speed 
in which the application of the load in each span corresponds to the natural 
frequency of the structure. A condition of resonance is certain to occur 
when the mass is mounted on springs. This may not occur often in prac
tice because of the difference in natural frequencies, but the situation 
should not be overlooked. A condition of resonance is also obtainable when 
the frequency of passage of the axles of a vehicle correspond to the re
sonant vibratory motion of the structure. This problem does not readily 
lend itself to analysis by the Inglis10 method for moving loads of constant 
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magnitude, and yet the problem is not one of a moving alternating load. 
This is the problem for which a theoretical analysis has been derived in 
this investigation and correlated with experimental results. 

Impact Factors 
In 1859 August Wohler began a series of tests in which steel and iron 

specimens were subjected to alternating or varying stresses. It was found 
that failure occurred at a much lower stress than would have been observed 
for a static test. This emphasizes the problems inherent in dynamic load
ing. These results started the subject of the fatigue of metals. The first 
of the fatigue stress formulas was devised to fit the experimental data of 
Wohler. This rule was given by the formula 7 

Failure stress= s. I 1 + --- (11) 
I ( Su+s. ) Minimum stress in member ] 

L \ s. Maximum stress in member 

where S. = endurance limit and Su = static ultimate stress of the material. 
The endurance limit was considered as the maximum tensile stress for 
which the material could resist an indefinite number of repetitions. The 
results of Wohler's tests were used by bridge engineers to formulate the 
allowable stresses in members subjected to varying stresses. The resulting 
formulas were intended to reduce the allowable stresses to account for the 
effect of fatigue. The actual formulas used were derived from this rule 
by substituting a value for s_ and Su and incorporating a suitable factor 
of safety. The formula was intended to reduce the allowable working 
stress as the stress range over which the material is worked increases. 
Thus the important part of this type of formula is the controlling variable 
which is the ratio of the live load stress to dead load stress. Because the 
reduction of stress using this type of formula involves a trial-and-error 
procedure in the design of members, a simplification was evolved which 
applies the controlling variable to the loadings. Therefore instead of re
ducing the stress to account for the effect of fatigue, the loading was in
creased. This was done by first simplifying the controlling effect as a 
percentage based on a ratio of live load stress to the live load plus dead 
load stress, or 

Sr. 

SL+ SD 
where Sr. is the live load stress and S0 is the dead load stress. This can be 

rewritten as 

1 

1 + SD1SL 

where the ratio S
0
ISL is considered a function of the length for similar 

types of structures. This formula, with a value of L/ 300 for the function 
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of length, was introduced in 1894 and was used in the United States, 
Canada, Great Britain, and India to increase the static load and conse
quently account for the fatigue effect of the variation of stress due to re
peated loads. The re:rfoated load provision has since become accepted as 
a method of providing'for live load impact and is called an impact factor. 
This error in terminology has resulted in abuse and confusion by engineers 
of a rule intended as a precaution against fatigue failures. In this in
vestigation, the impact factor refers only to the effect of the load and is 
specifically a function of the amplitude of forced vibration of the bridge. 

THEORETICAL INVESTIGATION 

Free Vibration 

General theory. One important parameter in the.response of an elas
tic system to the action of a forcing function is the ratio of the frequency 
of the forcing function to the natural frequency of free vibration of the 
system. Therefore, in this study of the forced vibration ·of highway 
bridges, the natural frequencies and their corresponding modes of vibra
tion will b_e considered first. 

The differential equation governing the free vibration of a beam of 
constant E, I, and m is found by using the elementary theory of mechanics. 
This equation is 

a·•y 
EI - = -force per unit length 

ax·1 
(12) 

where the force in this case results from the inertial forces and is a func
tion of both x and t. Then, using d' Alembert's principle for the loading 

a~y 

force per unit length = m - . 
at2 

(13) 

Combining these results, the differential equation of motion for the lateral 
vibration of a beam becomes 

o''Y (J2y 
EI-+m-=0 

OX4 ot2 
(14) 

which must be satisfied at all points along the beam. _The solution of thiR 
partial differential equation may be assumed to be of the form 

y = X(x)T(t). (15) 
Then equation 14 can be written as 

EI d·1X 

mX dx4 T dt2 
(16) 

Since X is only a function of the position and T is only a function of time. 
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the left hand side of equation 16 can be equal to the right hand side if and 
only if they are both equal to the same constant. For T to be harmonic, 
the constant must be positive, say +P 2

• Therefore the ordinary differential 
equations in X and T are 

d•X 
K•X = 0 (17) 

dx• 

+ p 2T = 0 (18) 
dt2 

I mp" 
where the frequency parameter K = 4 /--- . The natural frequency 

V EI 

of vibration in cycles per unit of time is obtained by dividing the natural 

/El 
circular frequency p = K2 / - by two pi. In terms of the frequency 

Vm 
parameter K, the natural frequency is 

p K 2 I EI 
f=-=- /-. (19) 

2" 2" V m 

The value of K is determined from the solution of the shape function X 
which in turn depends on the conditions for the span. 

The general solutions of equations 17 and 18 are of the form 

X = F sin Kx + C cos Kx + H sinh Kx + D cosh Kx (20) 

T = A sin pt + B cos pt (21) 

where C, D, F, H are constants to be determined by the geometrical 
boundary conditions and A and B are constants to be determined by the 
initial conditions. 

Continuous beams with constant E, I, and m. The method used here 
in the general theory of the lateral vibration of continuous teams is an 
extension of the original work of E. R. Darnley2 on the vibration of 
rotating shafts. 

The determination of the natural frequency of multi-si::an beams is 
found by using equations 20 and 21 with the conditions at the ends and at 
the supported intermediate points. The boundary conditions on X result in 
a shape function for each span and the initial conditions result in a time 
function T which is the same for all spans. The conditions at the ends and 
at the intermediate supports of the continuous beams are the following: 

1. At the simply supported end, the deflection and the bending mo
d"y 

ment are zero; y = 0, and EI - = 0. 
dx2 
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2. At an intermediate support the deflection is zero, and the slope 

dy d"y 
a,nd the bending moment are continuous; y = 0, and - and EI - are 

dx dx~ 

continuous. 

Taking the origin of coordinates at the left end of each span, the gen
eral equation giving the value of the shape function for the nth span, con
sidering the deflection at the left end equal to zero, will be of the form 

X 11 = C0 (cos Kx 11 - cosh Kx 11 ) + Fn sin Kxn + H 11 sinh Kxn. (22) 

The equations expressing the end condition of a zero deflection and the 
continuity conditions of slope and moment at the interior supports are 
respectively, 

Cn (cos KLn - cosh KLn) + Fn sin KLn + Hn sinh KLn = 0 (23) 

-C 11 (sin KL11 + sinh KLn) + F" cos KL" + Hn cosh KLn = Fn+l + Hn+1 
(24) 

C11 (cos KL 11 + cosh KLn) + F 11 sin KL 11 - Hn sinh KLn = 2Cn+1 (25) 

Adding equations 23 and 25 results in 

C11 cos KLn + Fn sin KL11 = Cn+l 

and subtracting these equations results in 

Cn cosh KLn - Hn sinh KLn = Cn+l . 

(26) 

(27) 

Dividing by the coefficients of F 11 and H 11 and subtracting equation 26 
from equation 27 gives 

F n + Rn = Cn ( coth KLn) - cot KLn) - Cn+i ( cosech KLn - cosec KL,,) 
(28) 

This operation assumes that sinh KL and sin KL are not zero. This is 
important in applying the following results, because the fundamental fre
quency of a simple span or a continuous beam of equal span length is 
KL="' in which case sin KL is zero. 

Using the notation: 

coth KLn - cot KLn = </>n 

cosech KLn - cosec KLn = if;n 

the following equation is obtained : 

F n + Hn = Cn<{> n - Cn+l i/Jn • 

(29) 

(30) 

(31) 

In a similar manner, the equation for the next intermediate support can be 
written 

F n+l + Hn+l = Cn+1</> n+l - Cn + 2ij; n+l • (32) 

Combining equation 32 and equations 26 and 27 in terms of F,1 and 
Hn, respectively, gives 

13 



C ( . KL + . h KL ) Cn +l - Cn cos KLn KL 
- n SIU sm 11 + . KL cos " 

Sill II 

+ -Ci:-•1 + C" cosh KL 11 h KL C C (3 sinh KLn cos II= 11 +1fn+l - n +Zofn+i. 3) 

Using the notation given in equations 29 and 30 and simplifying gives the 
general solution for the differential equation of the shape function for the 
nu interior support. This equation can be written as 

(34) 

for each intermediate support, thus giving a system of equations for a con
tinuous beam of n spans. The frequency equation may be found, as shown 
below, by forming a determinant of the coefficients. 

Three span bridge. The determinant for the three span continuous 
bridge is given below and evaluated. 

[
ft+ </>2 "12 l 

"'" cp2 + </>3 J 
or 

= (f1 + cp2) (cp2 + cp:i) - .p/ = 0. (35) 

For the case of equal end spans, this reduces to 

f 1 + <P2 = + "'" . (36) 

The first root of this transcendental equation was determined for various 
ratios of lengths and the results are shown in figure 1. The curves shown 
in figure 1 can be used to find the value of K, the frequency parameter, for 
determining the first mode of natural frequency for a three span structure 
with equal end spans. Caution should l::e used, however, because extra
polation beyond the limits of the graph could be erroneous. Further, it 
should be pointed out that the relationship expressed in the figure is not 
linear as some writers seem to indicateL;. Moreover, if the ratio of L/L2 
becomes less than 0.5, that is, if the middle span length exceeds twice the 
outer span length, the possibility of this mode of vibration occurring de
creases, and instead a higher mode with a nodal point at the middle of 
t,he center span probably would occur. 

Pour span b?·idges. The continuous !::ridges studied experimentally 
have four spans. The application of this theory to four span bridges will 
be studied for application later to the experimental data. The determinant 
for a four span bridge is given below and evaluated. 

"12 0 
cp2 + cp3 "13 
.Ps cp3 + cp4 

] = (cf>, + cpJ (cp2 + f:i) (cp3 + q,,) 

+ <f/ (cp, + q,,,) + f2 2 (cf>, + cp34) = 0. (37) 
Once again considering a symmetrical structure in which the span lengths 
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are simplified by L1 = L., and Lz ·= L:i as generally used to help, optimize 
the. distribution of bending moments in highway bridges, the frequency 
equation degenerates to 

and 

c/>1 + c/>2 = 0 (38) 

4.0 

3.5 

3.0 

2.6 

2.0 
BRIDGE 

0.6 0.7 0.8 0.9 1.0 

SPAN RATIO (L1 /L2l 

Fig. 1. The effect of the span ratio on the first root of the 
frequency equation of a three span bridge. 

(39) 

Equation 38 represents a mode of vibration of a four span bridge w}1ich 
is antisymmetrical about the center support, and the roots of this equation 
give the odd modes of vibration of the. structure. Equation 39 represents 
a mode of vibration of a four span bridge which is symmetrical about the 
center support, and the robts of this equation give the even modes of vi
bration of the structure. In ·general, for an interior span of a continuous 
bridge, the odd modes correspond to the modes of vibration of a simply 
supported beam, and the even modes correspond to the modes of vibration 
of a fixed end beam. For the end spans of the Gontinuous beam, the odd 
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modes are as before, but the even modes of vibration correspond with the 
modes of vibration of a beam with one end fixed and the other end simply 
supported. The first root of equation 38 has been determined for various 
ratios of lengths (figure 2). By means of figure 2 the value of KL and 
hence the first mode of natural frequency can be obtained for any ratio of 
lengths, within the limits of the curve. 

The roots of the frequency equations are obtained in the form of KL, 
where L is the span length. In general, as in figures 1 and 2 which con
sider only span ratios, it is more convenient to determine the natural fre
quency by 

(KLn) " 
f =---

4.0 

/Bl 
/v m 

5.5 •·----

3 .0 

2.5 

·~·----. -------. . ~ KLY 
/" 

/ • 
2.0 

t. L1 i Lt ~ L2 t. L1 

BRIDGE 

0.6 0.7 0.8 0.9 1.0 

SPAN RATIO ( L1 I L2 l 

.f 

Fig. 2. The effect of the span ratio on the first root of the 
frequency equation for a four span bridge. 

(40) 

where KL is a root of a frequency equation. The value of KL can be ob
tained from figures 1 or 2, depending on the number of spans in the struc
ture. The curves shown in each figure give identical values of K, since 
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each value must be divided by the respective length L. An observation· 
.can be made here using the first mode of natural frequency curves in fig
ures 1 and 2. Reducing the ratio of lengths has the effect of reducing the 
value of K if the sum of the lengths remains the same. Therefore, for 
any given total length, considering E, I, and m constant, the more irreg
ular the span lengths are, the lower the natural frequency of the structure 
becomes. 

Continuous beams with variable E, I, and m. The previous analytical 
work has been carried out under the assumption that E, I, and m are con
stant throughout the length of the bridge.- However, this may not be true. 
In the usual continuous highway bridge structure the section of the longi
tudinal stringers is increased by the composite action at the middle of the 
spans and by the cover plates at the interior supports. In this type of 
highway bridge the moment of inertia of the stringers and cover plates at 
the interior supports is approximately the same as the moment of inertia 
of the composite slab and stringer at the middle of the spans. This leads 
to simplified analysis of live load effects which assumes that the moment 
of inertia is constant throughout the length of the bridge. This assump
tion, however, has been shown to be incorrect for the few continuous high
way bridge structures comprehensively studied experimentally' 5 • More
over, the variation in the moment of inertia depends on the unknown 
amount of composite action exhibited by the slab and stringer. For this 
reason, variations in the moment of inerita aiong the length of the bridge, 
due primarily to cover plates at the interior supports, will be disregarded 
and the moment of inertia at the center of the spans will be used in the 
analytical work. This simplification has some merit because of the way 
in which the inertial forces and the fuI).damental mode of vibration occur. 

In the lateral vibration of a beam, the largest inertia forces occur 
near the center of the span. Mon:over, when the continuous bridge is 
vibrating at its first mode of vibration it has a point of conterflexure -at 
or near the supports. Therefore, the effect of the difference in the mo
ment of inertia, as a measure of the stiffness, at or near the supports 
would have a very slight effect on the restoring force of the bridge. The 
variations in the moments of inertia near the supports, therefore, will 
have a minor effect on the first mode of vibration. 

The preceding concerns the variation in the moment of inertia in any 
particular span. If, however, the variation from span to span is due to a 
changing slab thickness or· changing stringer size, the restoring force in 
each span might be very much affected. This problem usually results from 
an abrupt change in the rolled section at a splice or an abrupt change in the 
size of flange of a built-up plate girder. · 

This problem will be studied analytically by assuming a constant but 
different moment of inertia and ma~s per unit length in each span. . The 
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mathematical model will be set up with the origins at each end and at the 
center of a symmetrical four span bridge. The problem reduces to the 
solution of equation 20 for each span and equation 21 for the entire struc
ture. The value of p which yields the natural frequency will be the same 
for both spans, however the parameter K will differ for each span. There
fore the frequency parameters are written 

m,p" 
K\ 

Ell1 
(41) 

and 
mzp" 

K4 2 = (42) 
E2l2 

The general solutions of the shape function equations for each span are 

X1 =Fi sin K1X1 + C1 cos K1X1 + H, sinh K,x, + Di cosh K,x1 (43) 

X2 = F" sin K2X2 + C2 cos K2X2 + H2 sinh K2X2 + D" cosh K2X2 (44) 

Applying the conditions that the ordinate is zero at the origins, equations 
43 and 44 give 

X, = C' 1 sin K,L, rsin K1x1 sinh K1X1 l 
---- I 

Lsin K1L1 sinh K,L, J 
(45) 

r sin K2X2 sinh K2X2 l 

l - I 
sin K2L2 sinh K2Ld 

(46) 

The continuity conditions of bending moment and slope are, E,1 1 

dx2
, 

d2X2 dX2 dX, 
= E.,L -- and -- = -- . Applying the equality of bending moments 

- - dx22 dx2 dx1 

gives 
f sin K,L, + sinh K 1L1 J 
lsin K,L, sinh K1L1 

r sin K2L2 sinh K2L2 J 
1----+---
L sin K2L2 sinh K2L2 

or 

Eil,K21C'1 sin K1L1 = Ezl2K22C'2 sin K2L2. (47) 

Then equating the slopes and substituting for C'2 from equation 47 yields 
the equation 

[cos K1L 1 _ cosh K1L 1 J -E 1I 1K1 l cos K2L2 cosh K2L2 ] 
---- (48) 

sin K1L1 sinh K,L1 Ezl2K2 J sin K2L2 sinh K2L2 
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By reducing and using the previous notation in equations 29 and· 30, this 
equation becomes very similar to the previous frequency equation for a 
symmetrical fo!lr span bridge. This equation becomes 

E1I1K1 

E)"K2 
</>1 = - --- (49) 

Substituting the value of K1 and K2 from equation 41 and 42 into equation 
49, yields 

./ miE 3il 3
1 

cf>, = - 4 I c/>2. (50) 
V m2E 3 21 3

2 

If the span stiffnesses and masses per unit length are the same, the factor 

/ m 1E",l\ 
4 I 

V m2E\l32 
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Fig. 3. The effect of span stiffness on the first root of ~~:::. 
frequency equation of a four span bridge. 
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reduces to unity and this equation becomes exactly like the previous fre
quency equation 38. 

(51) 
It is seen therefore that the frequency equation derived, which includes 
the effect of a constant but different E, I, and m in adjacent spans, is ap
plicable only to the odd modes of vibration. This, of course, includes the 
most important which is the first mode. 

Since relatively small differences in the mass per unit length of ad
jacent spans are usually found in practice and because the mass ratio only 
affects the factor by the fourth root, this effect will probably be very 
small. Thus the mass ratio was taken as unity, and the effect on the natural 
frequency of the different stiffness ratios of the outer and inner spans of 
a symmetrical four span bridge was obtained. The effect is shown by 
plotting the frequency parameter against the ratio of stiffness (figure 3). 

Live load effect on natural frequency. The natural frequency of vi
bration varies as the position of the mass of the live load changes in each 
span. The effect of adding this concentrated mass is a reduction in the 
m.tural frequency of the structure by an amount depending on the posi
tion of the mass. This change in natural frequency results in a variation 
in the coincidence of the frequency of the forcing function and the fre
quency of the bridge. 

It is important, therefore, to study this change in frequency by a pro
cedure in which the effect of the position of the vehicle can be easily de
termined. A method well adapted to this type of study is the energy 
method. This method is based on the law of conservation of energy which 
requires that, provided damping is negligible, the sum of the kinetic energy 

KE and the potential energy PE must be a constant. Thus 

KE + PE = constant. (52) 

Because of the periodicity of vibratory motion, the displacement will be a 
maximum when the velocity is zero, and the displacement will be zero 
when the velocity is a maximum. Since the sum of the energies is a con
stant, equation 52 can be written 

KE =PE KE =PE (53) 
--rnax -max -·max -max 

In a flexural vibratory system with simple harmonic motion the maximum 
potential energy of the system is given by 

( L 
J_>E max = ( 1/2) J O 

(d"X I 
EI l-- I 

dx2 
) 

"dx 

and the maximum kinetic energy of the system is given by 
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KE 
--max 

where the simple harmonic motion is defined by 

y = X sin (pt - a) . 

(55) 

(56) 
By equating the maximum kinetic and potential energies, the resulting 
energy equation for the natural frequency is 

f L 
(d

2

x ) E I Zdx 
0 dx2 

p2 (57) 

J 
L 

m X 2 dx 
0 

When the vibratory system includes a number of spans, the kinetic and 
potential energies are determined for the entire structure. The resulting 
energy equation for the natural frequency of vibration becomes ' 

f ~1 
Eil1 ( d

2

X )1dX1 + ( L
2 

E 2I2 ( d
2

X . ) 2dX2 + ... 
o dx2 ) o dx2 

p2 -

where the subscript denotes the span for which the function applies, 

The application of this relationship is made by assuming a configura
tion of the vibratory system. This configuration is then used to deter
mine the kinetic energy and potential energy of the system and therefore 
to find the natural frequency of vibration. 

The solution obtained by this method will always be higher than the 
exact solution. That is, as the assumed shape of the vibratory deflection 
curve approaches the actual shape of the vibratory deflection curve, the 
value of the natural frequency will decrease as it approaches the exact 
value. For this reason the energy solution is called an upper bound solution. 

The approximate shape of the vibratory deflection curve is often as
sumed to be the same as the dead load deflection curve. The application 
of this assumption to an indeterminate structure might be erroneous. This 
would result because the static effect of the dead load of a continuous beam 
causes a downward deflection in all the spans. However, vibratory mo
tion, alternating deflections of the spans will occur for the fundamental 
mode of vibration. · If the live load deflection curve is used instead of the 
dead load curve, the curve becomes different for each position of the load. 
This complicates the analysis and does not increase the accuracy of the 
solution, since the effect of the -mass of the beams has been omitted. To 
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overcome the lack of a known vibratory deflection curve, an arbitrary 
polynominal solution could be used with the degree of the polynominal de
pending on the conditions available for the determination of the constants. 
This procedure has been applied to the vibration of symmetrical single 
span rigid frames14. This can also be extended for the effect of a concen
trated mass at the center of a symmetrical three span continuous beam. 

Using a similar procedure for a symmetrical four span continuous 
structure, the general polynomial deflection curves, in terms of the shape 
function X, assumed for the outer and inner spans are respectively, 

X1 = L, (A + Br + Cr2 + Dr3 + Fr') (59) 

X2 = L2 (A' + B'r + C'r2 + D'r3 ) (60) 

where r is taken as the dimensionless ratio x/L, for the first span and 
x/L2 for the second span. Then the following conditions are used for the 
evaluation of the constants. The notation y1 (1) is the deflection in the 
first span at r = 1 and a prime indicates a derivative with respect to x. 

Deflection conditions : 

y,(O) =0; Y1(l) =0; Y2(0) =0; Y2(l) =0; Y2(2) =0. 

Continuity conditions: 

Y'1(l) = Y'2(0); EI1Y"1 (1) = EI2Y"2 (0); EI,y"1 (0) = 0. 

Symmetry conditions: 

Y'2(0) = Y'2 (2). 

These conditions will restrict the vibratory deflection curve to an alter
nating movement in adjacent spans which is antisymmetrical about the 
center of the structure. The symmetry conditions imposed on the interior 
span could have been 

El2Y"2 (1) = 0, 

and a similar result would have been obtained. 

The application of the end conditions to the polynomial for the first 
span yields the following equations: 

Y1(0)=0 
EI1y"1 (0) = 0 
y,(1)=0 

A=O 
C=O 
B+D+E=O 

Applying the conditions on the polynomial assumed for the second span 
gives: 

A'=O 
B' + C' + D'=O 
2B' + 4C' + SD'= 0 

The continuity conditions give the following: 
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y'i ( 1) = y' 2 ( 0) 
y' 2 ( 0 ) = y' 2 ( 2) . 
E,I1Y"1 (1) = E2I2Y"2 (0) 

where 

k=---
Eil1L2 

B + 3D + 4E=B' 
4C' + 12D'= 0 
3D + 6E - kC' = 0 

All the coefficients were found in terms of D'. The resulting vibratory 
deflection equations have the arbitrary amplitude constant D' taken as 
unity. These equations are 

X1 :-- L1 [-(2+k)r + (4+3k)r3 
- (2k+2)r•] 

X2 = L 2 . [ 2r - 3r2 + r 3
] 
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Fig. 4. A comparison of the effect of the span ratio on the 
first root of the frequency equation by approximate and 
exact methods. 
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Substituting these equations and their derivatives into the energy fre
quency equations gives 

EoL 
p 2 = 7560 _-_-_ 

mzL'. 

r i.6 I k + 1.2 + o.6k = 1 

I miL3
1 

-- (124 + 95k + 19k2
) 

L m2L3
2 

l 
I 
I 

I 
+ 48 J 

(63) 

The natural frequency can be obtained by dividing the natural circular 
frequency p, from equation 63, by two pi. In this operation only the 
energy of the structure was considered, therefore the solution should ap
proach the natural frequency with no live load. 

Comparing the values of natural frequency obtained from equation 63, 
for different ratios of lengths, with those of the exact method (figure 4) 
suggests that a better assumption for the deflection curve might be made. 
Obtaining a better polynomial solution is doubtful because the elimination 
of the coefficients depends on the number of conditions imposed on the 
vibrating structure, and a minimum number of conditions were used on 
the previous polynomials. If a higher degree polynomial is used, the great
er number of conditions required for the determination of the coefficients 
would, in general, restrict the deflection curve even more, thus increasing 
the error in the solution. For this reason a different type of dynamic 
deflection curve might not only improve the accuracy of the natural fre
quency but also provide an insight into some types of forced vibration analy
sis which require assumptions as to the shape of the deflection curve. The 
second deflection curve chosen for this case is a sine function. The equa
tions are 

X1 =A sin n,x1 

x" = B sin n 2x2 

(64) 

(65) 

Taking the origins of coordinates at the left end of each span, the con
stants are evaluated using the following conditions: 

Deflection conditions: 

y, ( 0) = 0 ; y 2 ( 0) = 0 ; y i ( L,) = 0 ; y 2 ( L2) = 0. 

Continuity conditions: 

y', (L1) = Y'2 (0) ; E1l1Y"1 (Li) = E2I2y", (O). 

The application of these conditions gives the following equations: 

Y1 (L,) = 0 n1 = 7T/ L, 
y" (L.) = 0 nz = 7TI L2 
y', (L1) = Y'2(0) A= -(L/L2)B. 

Using these results the vibratory deflection equations with the ampli
tude constant B taken as unity become 

24 



1fX1 

X, = - (L1/L2) sin -
L, 

7rX2 

X2 =sin-
L2 

4.75 

4.2S 

[KL I} 

1. L1 

4.00 

3.7S 

3.SO .. 
0.6 

SPAN RATIO L 1 / Ll 

.L L2 i L2 

IQRIDGE 

8 
EXACT/ii? 

0.7 0.8 

.. 0.6 

t L1 ·~ 

• 

0.9 
STIFFNESS RAT.10 Ea I.1 I E1 X1 

(66) 

(67) 

... 

Fig. 5. A comparison of the effect of the stiffness ratio on the first root 
· of the fffciuency equation by approximate and exact methods. 
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Substituting these results obtained from an assumed sine curve and their 
derivatives into the energy equation gives 

r Eil1L2 l 
I + 1 I E?L I E2I2L1 

p2 _ ~1 --~I I (68) --- " 

l11eL2 4 I {Li') 3m1 I 
11-1- + 11 
L ~L2} m2 J 

From this equation the natural frequency can be found as previously noted. 
A comparison of the natural frequency as determined by the exact solution 
and by both energy methods, the polynomial solution and the sine func
tion, are shown in figure 4 for various ratios of lengths but constant stiff
ness and mass. 

A comparison of the effect of the variation in stiffness from span to 
span as determined by the exact equation and by two energy equations is 
shown in figure 5. The ratio of mass was taken as unity. 

It has been found that the deflection curves derived from the sine 
function give good results for the unloaded natural frequency even when 
the ratio of lengths becomes irregular. The sine curves also have a tenden
cy to give an even better answer when the stiffness of the longer span in
creases in proportion to the stiffness of the smaller span for the more ir
regular lengths. This correlation indicates that the assumed sine curve 
should give better results than the polynomial curve when the live load is 
placed on the span. This is especially true if the mass of the live load is 
small compared with the mass of the bridge. In the usual highway bridge 
this is often true as shown by the bridges tested in this study. 

The effect of the live load mass is easily accounted for in the energy 
frequency equation. The equation was found by equating the maximum po
tential energy to the maximum kinetic energy. The maximum potential 
energy is a function only of the deflection curve and therefore the ad
ditional live load mass does not change the numerator of the equation. The 
maximum kinetic energy, however, will change considerably as the maxi
mum velocity of the live load mass changes. The velocity of this mass de
pends on the position of the mass in the span and on the deflection curve. 
Thus, for any one deflection curve the denominator of the frequency equa
tion will change, for the addition of live load, by the term 

My" 

where y is the deflection under mass M. The frequency solution for the 
structure including live load mass then has the general form 
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(69) 

M X2 + 
(L, 
I m1 (X, 2 ) dx, + ... · 

J 
0 

The subscript denotes the span for which the function applies and X is a 
function of the position of the mass M. 

Using the vibratory deflection curves obtained from the sine functions, 
the frequency equations for the mass of the load in the outer and inner 
spans respectively of a symmetrical four span bridge are 

r Eil1L2 
+ 1 

Ezl2 

l 
Ezl2L1 

p2L = 7T4 ----
m2Lz°' 

m (Lr (L,r M 
iiX1 1 l . 

- - + 1 + sin2 --
m2 Lz L" mzL2 L, 

(70) 

and r E,I1L2 l + 1 
E"I" E2I2L1 

P"' ii·1 I j "L = 
mzL2• I m, ( L, \ 3 M 7TX2 l- -I + 1 + sin2 

mz \ Lz) mzL2 Lz 

(71) 

It is interesting to note,that the form of the energy frequency equation 
suggests that the effect of a number of live load masses at different posi
tions on the structure can be superimposed by adding the inverse square of 
the circular frequency of each · 

1 1 1 1 1 1 
+ + + + ... (72) 

p.,2 

where Pn 2 is the circular frequency of the nth load. This procedure has a 
limitation in its accuracy due to the original assumption that the dynamic 
deflection curve does not change due to the live load. Therefore, there is 
an increase in error as the amount of live load increases. 

The reduction in natural frequency for use in the correlation of the 
experimental data ·was determined by first computing the ratio of the 
loaded frequency to the unloaded natural frequency using the energy fre
quency equations 68, 70 and 71. This gives the equation. 
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+ 1 

(73) 

+ 1 + (Li J 
2 M 

Lz m2L2 L, 
sin2 

for the mass of the load in the outer span of a four span continuous high
way bridge in which the outer and inner spans are equal respectively, that 
is L, = L. and Lz =La. This also gives the equation 

/(Li.)a m
1 + l Ir: ~ 

J m 1 ( L 1 ) 

3 

M 7TX
2 

- - + 1 + sin2 

mz Lz m2L2 L2 

(74) 
f p 

for the mass of the load in the inner span of the same symmetrical four 
span continuous highway bridge, the ratio thus found was then applied to 
the theoretical natural frequency as determined by the exact solution pre- · 
viously derived. The results of this procedure make the best use of the 
two methods of vibration analysis presented herein. 

, For the simple span the substitution of an assumed sine deflection 
curve into the energy frequency equation and the subsequent ratio of the 
reduction in the natural frequency is used by Inglis10 and has the form 

f p J 
1 

2M 
1 + - sin2 

mL 

(75) 

L 

Equations 73 and 74 were used to determine the change in the natural 
frequency of continuous bridges with different span ratios for vari9us posi
tions of the live load mass, and this reduction in frequency is shown in 
figure 6. The mass ratio shown is the ratio of live load mass to the dead 
load mass of the entire inner span. 

Forced Vibration 
Assumptions and discussion. The analytical solution of the equations 

of motion for the forced vibration of an elastic system depends on the type 
of forcing function causing the motion. The assumptions made concerning 

. the type of forcing function representing a moving vehicle on a highway 
bridge generally result in the use of a moving force or mass freely mounted 
on springs or harmonically oscillating as it traverses the bridge. Usually 
a single load with one degree of freedom is used when the force or mass 
is spring mounted. A more complicated loading assumption is made by 
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considering both the sprung mass, made up of the vehicle body, and the 
unsprung mass of the axles and springs. 

A vehicle is a complex system made up of a chassis suspended on 
springs and connected to either the front or rear axles, which are mounted 
on balloon tires. The compressibility of the balloon tires might allow the 
axles to be considered as sprung masses also. Thus a vehicle can be con
sidered as three separate masses, each with six degrees of freedom. This 
system could be simplified by using only the most important motions, but 
the primary quantities governing the simplest of motions can vary consid
erably from vehicle to vehicle. Some investigators have shown that the 
random vibration of the vehicle often coincides with the harmonic vibration 
of the bridges, even though this vibration is not a resonant frequency of 
the vehicle15 • Other researchers indicate that the force required to initiate 
springing action in the vehicle is great enough that only the springing of 
the tires needs to be considered over most of the span11

• A very complete 
analytical study has been made using a computer for a step-by-step solu
tion of the equations of motion for a series of smoothly rolling loads on 
simple spans1 3

• This research added a great deal of qualitative data for 
interpreting the effect of the various parameters on bridge vibration. It 
was found that at certain speeds the effect of the individual axles would 
accumulate and at other speeds would interfere with each other, thus vary
ing considerably the impact caused by the group of axles. These results 
mark a significant change in the concept of highway bridge impact. A very 
significant change, however, is in the assumptions required for the ana
lytical solution of this problem. The solutions of lnglis10 , for example, 
which found the effect of the smoothly rolling forces and masses to be in
significantly small, considered the loading as a sine series in which usually 
only the first term is used. It would be difficult to study the effect of two 
relatively closely spaced axle loads when each load is represented mathe
matically by a sine curve extended over the length of the span. Thus the 
primary problem in this analytical study is the determination of a forcing 
function which will form a series of impulses representing the repetitive 
action of a series of axles rolling across a bridge. 

The two significant parameters of this forcing function are the magni
tude and the frequency of the forcing function. The magnitude of the 
forcing function is assumed herein to be a function of the oscillation in the 
structure resulting from the response of the structure to a smoothly rolling 
load of constant magnitude. The frequency of the forcing function is 
assumed to be the frequency of repetition of the axles of a vehicle tra
versing the bridge. 

The analytical work of Inglis, although it does not touch on this prob
lem, does offer a great deal of insight into a solution. 
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General theory 
Inglis incorporates the use of a Fourier sine series for the representa

tion of the various loadings. A concentrated load W at section x . a, is 
expressed in the form 

i = (X) 

~ 
2W "' i"a i7TX 

/sin sin (76) 

L / L L 
i=l 

The deflection resulting from this load function provides a basis for some 
simplification of this load function. The static deflection can be determined 
by using elementary mechanics. The deflection curve must satisfy the 
relationship 

i= CX) 

d•y 2W "' EI "' i"a i7TX 

dx• L / sin-· - sin (77) 

/ L L 
i=l 

When the load is near the center of a simple span, the static center line 
deflection is obtained approximately by using only the first harmonic com
ponent of the load series. The resulting static deflection is 

2WL3 

Y=-- 1 
-i4 EI 

2WL3 WL3 
(78) 

48.7EI 

Therefore, by using only the first harmonic component of the 1°ad, a very 
close approximation to the exact values of WL3/48EI is obtained. Thus, 
only the first harmonic component was used by Inglis for most of the solu-
tioo. . -

The above calculation for deflectiQn was made with the assumption 
that the elastic curve of the beam is free to rotate at the support, which 
is the elastic curve of a simply supported beam. The exactness of this 
solution for deflection is a result of the small difference between the simple 
beam deflection curve for a concentrated load and the deflection resulting 
from the first component of the harmonic representation of load, a sine 
curve. Therefore the type of solution which results in a sine deflection 
curve is applicable to a simply supported beam, but it requires some justi
fication before it can be applied to a continuous beam. However, to do this· 
it is only necessary to consider the computations for natural frequency by . 
the energy method. It has been shown in figure 5 that the assumed sine de
flection curve gives a very good approximation in determining the first 
mode natural frequency. This indicates the closeness of the sine curve to 
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the exact theoretical first mode of vibration curve of a continuous beam. 
In addition, the reduction in natural frequency resulting from the mass of 
the loading vehicle on the bridge, figure 6, seems to agree with the experi
mental reduction. Therefore, the type of first mode does not change ap
preciably due to the live load mass. Therefore, in the analysis of the forced 
vibration, the shape function X will be represented by a sinusoidal curve. 
The solution of the partial differential equations of motion may then be 
taken as 

7l'X 
y = T(t) sin (79) 

L 

To represent a moving load, the distance that the load travels is taken 
as vt, where v is the velocity of the load and t is the time required for the 
load to traverse the distance a. The series representing the moving load 
of constant magnitude then takes the form 

i= 

bvt b·x 2W "'> 
L / 

7i--1~-

sin -- sin -
L L 

(80) 

A more revealing form of this series can be made by making the substitu-

v 
tion z = -, resulting in 

2L 

i = co 
''W "'----
,. "' L /sin 

/ 

i7l'X 
i27l'zt sin-. 

L 
(81) 

This form of the series indicates that the effect of a moving concentrated 
load is equivalent to a series of stationary but alternating loads whose 
forcing frequency is z. 

Moving loads of constant magnitude 

The oscillations produced in a beam by a moving load of constant 
magnitude is found by solving the differential equation of motion, equation 
6. with the proper forcing function equation 7 or 81. The solution of this 
problem by lnglis10. p. 27 is shown in equation 8. Using only the primary 
component of the load function, this equation becomes 
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sin 
L 

1 
-( 2~f r (sin 2"zt -(~) sm 2"ft) 

2Lf 

v 

(82) 

Due to the practical limitations of speed, the term -- in the denom-
2Lf · 

ator is negligible in comparison with unity and can be ignored. Therefore 
the equation for this motion can be written 

I 

2WL' f "x ( V ) "X ] 
yd= -- I sin - sin 2r.zt - --· sin 2"ft sin -

7r4EI L L 2Lf L 
(83) 

Using the first term in the parenthesis with z replaced by its value of v /2L 
and the distance vt taken as L/2, the static deflection is obtained. The 
second term then is the amplitude of oscillation of the beam which is super
imposed on the static deflection curve, and can be written 

-- --1 sin 2;rft sin (84) 
2WL" (. v l "x 

"•EI 2Lf) L 

The maximum variation or oscillation in the beam deflection is therefore 

Y<1 - Y v 
(85) 

y 2Lf 

The right hand side of equation 85 is equivalent to a· variation in a station
ary load W of 

p 
(86) 

w 
The use of this equivalence allows the repetitive motion of a series of axles 
to be represented by a stationary load whose frequency of application is 
determined by the repetition of the axles and whose magnitude of oscilla
tion is v /2Lf or P /W. 

Repetition of axles 

The frequency of the impulses representing the passage of axles is 
given by 

v 
w = (87) 

s 

where s is the spacing of the axles and v is the velocity of the vehicle. The 
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harmonic oscillation which is assumed to represent the repetition of axles 
is then taken as 

P sin 2r.wt. (88) 

The differential equation of motion used in the forced vibration 
analysis will include the effect of damping. The damping effect will be 
taken as a resistance to the transverse vibration per unit length of bridge 
equal to 

dy 
4-rrnbm -. 

dt 

The differential equation of motion including damping is then expressed by 

a4y ay a2y 
EI - + 4r.nbm - + m- = f(x, t) (89) 

oX4 at ot2 

The harmonic forcing function f(x, t) for the repetition of axle impulses is 
represented by the first harmonic component of the load series and includes 
the effect of the mass of the load. The forcing function is written 

f (x, t) = __:_ [ P sin 2r.wt - M 
02Y.] sin r.x 

L W L 
(90) 

where y is the vertical deflection of the mass. As discussed previously, the 
solution of this partial differential equation may be taken, as shown in 
equation 79, as 

r.X 
y = T(t) sin-. (91) 

L 

Moreover, since the loading is equivalent to a stationary but harmonically 
alternating load, the vertical deflection of the mass is considered only a 
function of time, therefore 

y = T(t). (92) 

Applying equations 91 and 92 to the partial differential equation of motion 
for this case and rearranging, results in the equation 

EILr.4 dT d2T 
T + 4r.nbLm - + (Lm + 2M)- = 2P sin 2r.wt. (93) 

L4 dt dt2 

Further rearranging of this equation yields 

d2T + 4r.nb r 1 ] dT + 
dt2 2M dt 

ll+-
mL 

mL4 
T= 

34 



2P 
sin 2 .. wt 

mL + 2M 

where, from equation 75 

r 1 l fL 2 

l 2M 1' = f 2 

1 +-
mL J 

(94) 

(95a) 

and from the natural frequency equation for a simply supported beam 
EJ,,4 

-- = p2 = 4,,2f2. 
mL4 

Substituting equations 95a and 95b into equation 94 gives 

d
2
T (fL

2
) dT 2P - + 4,,nb - - + 4r.2fL 2T = sin 2,,wt. 

dt2 f 2 dt mL + 2M 

(95b) 

(95c) 

The particular solution for T (t) in this differential equation will be of the 
general form 

TP = A sin 2rrwt + B cos 2rrwt (96) 

where T" is the particular solution for T(t). Substitution of this general 
solution into equation 95c and equating the coefficients of the sine and co
sine terms on both sides of the equation gives 

2P 

mL + 2M 

[s.'n,w ::'] A + [4.'f,' - 4,'fL' - 4,'w'] B 

Solving these two equations for A and B gives 

0. 

( 1 ~) 
2P fL 2 

A 
(mL + 2M) 4rr2fL2 

( w2 )2 ( 4nb2w2 

) 1 - fL2 + f4 

2P 
( 2::w) 

B-
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( w
2 

\2 ( 4nb
2

w
2 

) 

1 - -J + fL2 f4 
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It is convenient to reduce this particular solution by using the trigonomet
ric identity. 

A sin 2"wt + B cos 2"wt = D sin(2"wt - a) (101) 

\vhere 

I B 
D / A 2 + B 2 and tan a = 

'I A 

Thus the particular solution can be written, by using equations 79, 99, 100, 
and 101, as the following 

7TX 

sin (2"wt - a) sin 
2P L 

YP (102) 

(mL + 2M) 4r.2fLc 
/( 1 

~ 12 + ( 2nb w
2 12 

+ 
'I \ fL2 

) \ f 2 
) 

where yp is the particular solution of equation 89. The first term on the 
right hand side of equation 102 can be expressed in the following form 
with the help of equations 95a and 95b 

(103) 
mL 2P 2P w 2WL3 P 

(mL + 2M) 4"2
f1,

2 mL "4EI W 

Writing equation 102 in terms of the static deflection in equation 103 re
sulting from a stationary load W, gives 

7TX 

sin (2"wt - a) sm 
2WL3 P L 

yp --- (104) 

r.'El w j[ 2 

)2 
1 + :; J + ( 2n;~

2 

J2 
This equation represents the forced vibration or the particular solution of 
equation 89 with the forcing function defined by equation 90. The com
plete solution of the equation of motion, equation 89, is the sum of a com
plementary solution and the particular solution. The general form of the 
complementary solution is a free oscillation of the type 

Ye 

where f L is the loaded damped frequency and is equal to 
b 

3G 

] 

7TX 

27Tf t sin -
Lb L 

(105) 
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Using the conditions that y = 0 when t = 0 and dy/dt = 0 when t 
= 0, the complementary solution can be evaluated. The complete solution, 
the complementary plus the particular, is given by 

r 
sin (2,.wt - a) l 

2WL' p -e -Q(w/fd sin 2,.f\ t \ . ("x) 

y, + y, ,•EI W l JG_ :: )2 + ( 2::w )2 j sm L(lOG) 

. ( fL
2 

) where q = 2,.nb r;- t. The first and second terms in the numerator 

of the brackets represent the particular and the complementary solutions 
respectively. The complementary solution varies as a function of the damp
ing. Consequently it dies out as the load passes along the bridge, the ratio 
of successive amplitudes of oscillation being · 

e-2,.nb (fL2/f~). 

By the time the load has reached the center of the bridge, the frequency of 
the bridge vibration corresponds with the frequency of the particular solu
tion. The complementary solution has then been significantly reduced so 
that its effect will be disregarded. Therefore the maximum amplitude of 

this vibration occurs near the center of the span, when the term r sin (2,.wt ,.x] l 
a ) sin L is a maximum, and is defined by 

[ 
2WL

3
] 

,.•EI 

P/W 
(107) 

Since this deflection occurs as· a result of the oscillations of a stationary 
live load W, it is in effect the dynamic variation of the elastic curve about 
the static deflection position of this curve. Therefore, the impact factor, 
as previously defined, for the maximum amplitude of vibration is the ratio 
of this amplitude to the static deflection. By replacing the ratio P /W by 
the oscillating load effect v /2Lf, this impact factor can be written 

v/2Lf 
(108) 
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All of the simplifications used to arrive at this result are based on the 
assumption that the dynamic deflection curve of a continuous bridge is 
sinusoidal. Therefore in applying this to a continuous structure, the length 
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L in the oscillating load term will be taken as the length of a simple span 
bridge with a natural frequency equal to the natural frequency of the con
tinuous bridge. Thus, the equivalent length Leq is 
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L"<I = 7r. (109) 
(Kk) 

The impact factor (equation 108) closely resembles the amplification 
factor normally associated with forced vibrations. The ratio v / 2Lf in the 

Ill ll :m: [ 1p1ri,..1nfGt 
- S1ct ion1 

...... ....... oM'·J" 

n~: ~o~o--+---+--+-+----+-~~~~-+-~--i--+-----T-~ 

j' ~~: __ ~: __ _._·--+----'-----'----'----'~:--+---~:--~-~~--'---~--~---'--~ 
~ ,.,, ...... ~.· -------~'"'-'--'~~----"_·· ·_· -~-----~=~~-------~~~~---i 

0 ;; :: 0 0 : 

: ~ : :; :; . :; a a 

0 ;; 0 :: ;; 0 :: 

c .. ;.... S1D tJ~t" • ll'·t" 

...... 
.•.. , .. 

11'. o' .. .... I 

I ...... .r ....... { ...... I I I I 

...... · , •.• 1,.. ....... 

l"t•MI COfil(lt(T( SlAI 

·. ··• ·· ... . :: 

. ' 
''"~ .. . 10 .. 1° , ... . 

•.. .. 

.. 
11"9'1,..' wu 
IS"•\.".- .. t . 

. ..•. 
Jl'-0 ° 

Fig. 8. Details of continuous aluminum stringer bridge. 

i DI 

. .. •. 

numerator represents the amount of the load effective in the forcing func
tion as the driving force, and is evaluated from the oscillations produced 
in a beam by a single moving load of constant magnitude. These oscilla-

39 

J e1S'·t"•41'.a" 

...... 



tions, although they result from a load of constant magnitude, are similar 
to those of an oscillating driving force. The effect of these oscillations will 
be increased if a repetition of axles occurs with the moving load of con
stant magnitude and if these axles are in phase with the oscillating load. 
The phase difference between these two effects is not considered here since 
it is possible for the oscillating load effect and the repetitive axle effect 
to occur together at many different positions in a continuous structurP. 
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Instead, these two effects are considered to be in phase, thus g1vmg an 
upper boundary impact factor for the forced vibration of bridges by the 
optimum combination of the repetition of axles with the oscillating effect 
of a smoothly rolling load. 
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EXPERIMENTAL INVESTIGATION 

The bridges tested in this research are part of the interstate highway 
system around Des Moines, Iowa. They have all been built within the last 
five years and are similar to the type of bridge being built in Iowa's pri-
mary and interstate road system. The approaches to these structures are 
paved and there is a smooth transition to the bridge roadway. One factor 
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Fig. 10. Details of partially continuous prestressed concrete bridge. 

used in selecting the bridges was the uniformity of their actual roadway 
profile. All of the bridges tested are constructed of longitudinal stringers 
designed to act integrally with a reinforced concrete roadway slab. How-
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ever, a variety in this general type of structure was desirable to determine 
the limitations of the theoretical forced vibration approach presented 
herein. The variety was obtained by selecting three continuous bridges in 
which different materials were used to fabricate the longitudinal stringers. 
The mass per unit length is approximately the same in these bridges. A 
simple span bridge with a mass per unit length approximately double that 
of the other structures was also tested. 

Simple span prestressed concrete bridge 

The simple span bridge investigated has six postensioned prestressed 
concrete beams and a span of 100 ft. The stringers are designed and con
structed to act compositely with the reinforced concrete roadway slab. The 
roadway is 30 ft wide with a 3 ft safety curb on both sides (figure 7). 
This structure is one span of a seven span bridge carrying westbound traf
fic on Interstate 80 over the Des Moines River north of Des Moines, Iowa. 
Each span of this bridge is isolated from adjacent spans by a one inch 
expansion joint. 

Continuous aluminum stringer bridge 

This structure is a 220 ft continuous four span bridge with four alu
minum stringers which act compositely with a reinforced concrete road
way. This bridge has a 30 ft roadway with a 3 ft safety curb on both sides 
(figure 8). It carries traffic on Clive Road over Interstate 35 northwest 
of Des Moines, Iowa. 

Continuous steel stringer bridge 

This 240 ft continuous four span structure is very similar to the pre
vious bridge except for the longitudinal stringers. The four steel strin
gers act compositely with a reinforced concrete roadway which is 28 ft wide 
with a 3 ft. safety curb on both sides (figure 9). This structure carries 
the traffic on Ashworth Road over Interstate 35 west of Des Moines, Iowa. 

Partially continuous prestressed concrete bridge 

This four span bridge is 198.75 ft long with a 24 ft roadway. The 
reinforced concrete roadway slab is continuous over the interior supports 
and has a 2 ft safety curb on both sides. In each of the four spans there 
are six pretensioned prestressed concrete beams. The ends of the simple 
span beams are encased by a cast-in-place diaphragm at the piers. These 
pier diaphragms plus the continuous roadway slab, which acts compositely 
with the stringers, result in a relatively continuous bridge structure 
(figure 10). This structure carries traffic over Interstate 35 at the Cum
ming Interchange southwest of Des Moines, Iowa. 

The Test Vehicles 
The vehicle effect has been simplified as much as possible in the 

theoretical analysis. The only parameters which are considered to be af-
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fected by the vehicles are the forcing function and the loaded frequency 
of the bridge. The forcing function is a function of the axle spacing and 
the velocity of the vehicle, and the loaded frequency of the bridge is a 
function of the ratio of the mass of the vehicle to the mass of the bridge 
span. The other variables of the loading vehicles, and there are many, 
were disregarded. 

Vehicle A. Vehicle A is an International L-190 van type truck 
(figure 11). This truck used to check the Iowa State Highway Commis
sion scales has a wheel base of 14 ft 8 in and a tread of 6 ft. It weighs 
40,650 lbs with 31,860 lbs on the rear tandem axle. The forced vibration 
resulting from this vehicle at any velocity, has two possible frequencies; 

S IDE VIEW REAR VIEW 

Fig. 11. Vehicle "A". 

that is, this vehicle could have the forced vibration frequency determined 
by the passage of the individual axles in the tandem rear axle, in which 
the forcing frequency is v / 4, or it could have a frequency determined by 
the passage of the front and rear axles, in which the forcing frequency is 
v/ 14.67. In the latter the axle spacing has been taken as the distance to 
the center of the rear tandems. 

Vehicle B. Vehicle B is a tandem axle, International VF-190 truck 
tractor pulling a 36 ft Monnon flat bed trailer (figure 12). The tractor 
has a wheel base of 13 ft 1 in and a tread of 6 ft. The trailer wheel base 
is 23 ft, and the tread of the trailer wheels is 6 ft. The total weight of 
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this vehicle is 73,500 lbs, with 32,900 lbs on the trailer tandem axle and 
31,700 lbs on the tractor tandem rear axle. This vehicle has three effec
tive axle spacings, and therefore the forced vibration resulting from t his 
vehicle for any given velocity has three possible frequencies. These three 
frequencies are v / 4 resulting from the individual axle spacings of the 
tractor and trailer tandem axles, v / 13.08 resulting from the tractor wheel
base axle spacing, and v / 23 resulting from the trailer wheelbase axle 
spacing. For the tractor and trailer wheelbase, the axle spacing has been 
taken as t he distance to the center of the tandems. 

~ 
I e'-o" 
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Fig. 12. Vehicle "B". 

Instrumentation 
To determine the dynamic effect of the vehicles, the static and dy

namic bridge moments were computed from the strain measured at the 
extreme bottom fiber of each stringer. To measure the strains, standard 
SR-4 strain gages were used. The types of SR-4 ·gages used were A-1, 
A-5, and A-9. The resistance to the ground of the SR-4 gages used on the 
steel and aluminum girders was as follows: The A-1 gages 100,000 to 
1,000,000 ohms. The A-5 gages 500,000 to 1,000,000 ohms. The A-9 
gages have approximately a six inch gage length and were used to record 
the strains in the concrete girders. 

The strain readings were recorded by a Brush universal amplifier 
(BL-520) and a Brush direct-writing recorder (BL-274). This equipment 
produces a continuous record of strain for which the time base can be 
varied by the speed of the recording paper. The speeds available vary 
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from 1 to 250 mm per sec. For a check of the time base as determined 
by the speed of the paper, a one second timer was used to actuate an event 
marker on the edg~ of the record. The Brush Universal amplifiers have a 
number of attenuator settings which vary from 1 microinch per inch of 
strain per attenuator-line to 1,000 microinch per inch of strain per at
tenuator-line, and therefore allow a wide choice of amplification of the 
strain. The power for this Brush recording equipment was obtained from 
a 10 KW Onan motor generator. 

Location of strain gages 

The strains were measured in all the stringers at the c~nter line of 
the single span bridge and in the outer and inner spans and at the interior 
supports for the continuous bridges. This allowed the impact to be evalu
ated at all the sections of maximum bending moment for the entire length 
of the bridge structures. Because the continuous bridges are symmetrical· 
about their center interior support it was necessary to instrument only one 
half of these bridges with strain gages. 

Experimental sections. The experimental sections instrumented for 
the evaluation of the bridge moments are described below and shown on 
the elevation view of each respective bridge plan. 

I. Section I is located at a point four-tenths of the outer span from 
the end support for all the four span continuous bridges. Section I for the 
simple span prestressed concrete bridge is at the middle of the span. 

II. Section II is located at the middle of the interior span for the 
continuous steel stringer and aluminum stringer bridges. In the partially 
continuous four span prestressed concrete structure, section II was offset 
1 ft 6 in toward the center interior support to eliminate the effect of a 
transverse diaphragm at the middle of the interior span. 

III. Section III is located at the first interior support of the con
tinuous bridges. To eliminate or reduce any effect which the reaction 
diaphragms might have, section III was offset from the center line of the. 
reaction toward the exterior span, one foot six inches, and one foot eight 
inches, for the aluminum stringer, the steel stringer, and the prestressed 
concrete stringer bridge. 

IV. Section IV is located at the center interior support of the con
tin.uous bridges. This section is offset from the center line. of the reac
tion a distance equal to the offset of section III for each respective con
tinuous structure. 

All of the bridges were instrumented at each of the above sections 
with an SR-4 strain gage at the center of the bottom flange, or the extreme 
lower fiber of each stringer. 

Experimental neutral axes. To obtain the moments required to eval
uate the impact, the. section moduli or relative section moduli of the string-
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ers was required at the sections where the strains were measured. The 
effective section of the steel and the aluminum stringers vary considerably 
depending upon their cross section, due to cover plates or variable flanges, 
and the proximity of the curbing to the outer stringers. These changes in 
cross section result in large changes in the moments of inertia and section 
moduli from one section to another. The actual section moduli and mo
ments of inertia of the longitudinal stringers were determined experi
mentally by obtaining the position of the neutral axis of the longitudinal 
stringers. Since the bridges are symmetrical about their lateral and longi
tudinal center lines, it was necessary to instrument only one quadrant of 
each bridge for the determination of the position of the neutral axes of 
all the experimental sections used to evaluate impact. To obtain the neu
tral axis five SR-4 strain gages were positioned on each stringer. One 
gage was located at the center of gravity of the longitudinal stringer, and 
the other four gages at the extreme fibers and the quarter points of the 
stringer. The locations of the neutral axes were then used to determine 
the amount of concrete slab which acts compositely with the stringers. 
The entire roadway slab thickness was used in these calculations. The 
moment of inertia was then determined using the necessary amount of 
slab. A modular ratio of 10 was used for the steel stringer bridge and a 
ratio of 3.33 was used for the aluminum stringer bridge in these calcula
tions. However, once the position of the neutral axis is known the mo
ment of inertia is independent of the modular ratio used. 

In both of the prestressed concrete stringer bridges, the lateral spac
ing of the stringers is much smaller and the cross sections of the stringers 
do not vary along the beams. Moreover, the magnitude of the strains in 
the web and upper flanges of the prestressed concrete stringers were so 
small as to make the determination of a neutral axis very uncertain. 
Therefore, the section moduli of the longitudinal prestressed concrete 
stringers were assumed to be equal at each section investigated. It was 
found that in the steel and aluminum stringers, in which the experimental 
neutral axes were determined, that the actual variation in the section 
moduli made very little difference in the impact since the impact is a dif
ference in moments or a relative difference in the recorded strains. Thus 
the assumption made in the prestress concrete bridges will not appreciably 
affect the results regardless of the exact section moduli. 

Experimental Procedure 

Performance of the tests. The impact resulting from the action of 
the loading vehicles has been derived analytically. To experimentally de
termine the dynamic effect, the impact, static tests were first performed 
by the loading vehicle creeping across the bridge with the motor idling. 
The maximum moment in the bridge cross section and the longitudinal 
position of the vehicle was computed. This was used as a base for the 
evaluation of the results of the dynamic tests. The dynamic tests were 
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then conducted at vehicle speeds beginning at approximately 10 mph and 
increasing by increments up to the maximum attainable speed. The maxi
mum dynamic moment was obtained in the cross section for the vehicle in 
approximately the same longitUdinal position as the maximum static mo
ment. The dynamic and static tests were performed along four different 
lanes on the bridge roadway, two lanes for each direction of travel with 
orie lane corresponding to the highway lane and the other lane at the longi
tudinal center line of the bridge. For each assigned lane, the left front tire 
of the v~hicle was guided along a painted stripe indicating the lane on the 
bridge roadway. During the runs a variation to one side or the other of 
the painted stripe was never more than one and one-half inches. 

Pneumatic tubes were placed across the bridge roadway at the center 
line of one exterior support and at the center line of the center interior 
support for the continuous bridges and. at the center line of both exterior 
supports for the simple span bridge. The signal produced when the vehicle 
tire passed over this tube activated an event marker on the strain record. 
Knowing the chart speed and the distance between tubes, the average ve
hicle velocity was computed. These event markers on .. t.be strain record 
also enabled the longitudinal position of the vehicle to be determined at 
any time. 

The testing of the continuous aluminum a_nd steel stringer bridges was 
divided into two series for both test vehicles due to the limitation of the 
number of channels of Brush recording equipment. Sections I and III 
were tested in one series and sections II and IV in the second series. Both 
vehicles A and B were used in the dynamic testing of these bridges. The in-; 
creased number of stringers in both the prestressed concrete bridges ne
cessitated one series of tests for the test vehicle for each experimental sec~ 
tion. Only vehicle A was used in the dynamic testing of these bridges. 
At each test section the strain . was measured at the extreme lower fibe1 
of the stringers. In each series of tests the vehicle made four static runs. 
one in each lane, and sixteen or twenty dynamic runs, four or five in each 
lane, depending on the maximum speed obtainable for the particular struc
ture. A continuous strain time record was obtained for each run. Each 
strain record, therefore, contains a continuous recording of the outer fiber 
strains for the stringers at the test section, an event marker trace for the 
longitudinal location of the vehicle an'd vehicle spe~d, and a time base with 
a one second interval. 

Data reduction. The test record shown in figure 13 is a typical 
dynamic strain record showing the variation of the outer fiber strain as a 
vehicle moves across the bridge. · The static strain time curve has been 
superimposed on the dynamic strain time curve and is indicated by a dot
ted line. This record was obtained from a stringer at section I of the 
simple span prestressed concrete stringer bridge with vehicle A traversing 
the bridge at 38.4 feet per second. 
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The maximum static bridge moment is obtained by summing the mo
ments in all the stringers computed from the maximum static strains. 
Similarly, the total maximum dynamic bridge moment is determined by 
summing the dynamic moments in all the stringers computed from the 
maximum dynamic strains. The dynamic effect, or the impact, of the ve
hicle was then evaluated from the moments as the ratio of the difference 
of the total dynamic and static bridge moments to the total static bridge 
moment. 

1 = Frequency at maximum moment 
T 

Fig. 13. Typical strain record. 

The passage of the front axle and each individual axle of the tandems 
over the pneumatic tubes is clearly shown by the vehicle location trace. In 
effect, the vehicle is moving from left to right, and this trace indicates the 
time each individual axle crosses over the center line of the exterior 
supports. 

The upper event marker, used as the time base, indicates time in one 
second intervals. This time base was used for determining the vehicle 
speed and the frequency of bridge vibration. The frequency of vibration 
of the bridge at maximum moment was determined by using the maximum 
peak-to-peak period of vibration indicated by the T in figure 13. 

The amplitude of the residual vibration which continues after the ve
hicle has gone off the bridge was very small in this run. This was the 
usual case for the concrete stringer bridges; however, the amplitude of 
residual vibration for the steel and aluminum stringer bridges was usual
ly much larger. The unloaded natural frequency of the bridge and the 
bridge damping was evaluated from this residual vibration. 
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RESULTS AND DISCUSSION 

Natural Frequencies 

First mode of vibration. The general theoretical method employed 
to determine the natural frequencies of continuous bridges assumes that 
the stiffness, the product of E and I, is constant throughout the length of 
the bridge. This solution is applicable for most steel stringer and pre-. 
stressed concrete stringer bridges since their cross section usually remains 
constant except for the usual cover plates near the interior supports of the 
steel bridges. As discussed previously, the effect of increased stiffness at 
the piers, due to cover plates, should not appreciably affect the first mode 
of vibration. However, the alumnium bridge has a different value of EI 
in each span in addition to the increased stiffness at the piers. Thus a 
solution was obtained for this bridge which takes into account the large 
change in stiffness of the various spans but is applicable only for the first 
mode and higher odd modes of vibration. 

Table I. Natural frequencies. 

Bridge 
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L2 
E

2
I
2
(1b-in

2
) 

El 11 

E212 

2 
(lb-sec ) 

m2 (inz) 

ml 

m2 
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fexper. (cps) 

ftheo. 
£ 
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Aluminum 
stringer 
bridge 

68.75 

0.60 

185. lxlo
10 

0.615 

0.924 

0.989 

3.40 

3.825 

3.97 

0.964 

Steel Continuous Simple span 
stringer concrete concrete 
bridge stringer stringer 

bridge bridge 

67.50 56.25 100.0 

0. 777 0.766 

213.4xlOlO 197.8xlo
10 · 1. 609xlo

10 

1. 0 1. 0 

0.889 0.889 1. 721 

1. 0 ~ 1. 0 

3.399 3.408 3.1416 

4.34 6.06 3.34 

4. 57 7.80 4.26 

0.951 0.78 0.784 
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The solutions of the frequency equations yield values of KL from which 
the natural frequencies are determined. Values of KL can be obtained 
from figures 1, 2, or 3, since these figures graphically represent the first 
mode solution of the various frequency equations. The natural frequency 
is then found by using equation 40, 

(KL2) 2 /E)2 
f= /-

27TL22 V mz 

Values of KL2 of 3.400, 3.339, and 3.408 were determined analytically for 
the aluminum, steel, and continuous prestressed concrete bridge respec
tively. The natural frequencies resulting from these values of KL are com
pared with the experimentally obtained natural frequencies in table 1. 
Also shown in this table are the parameters of the various bridges which 
are required for the determination of the resonant frequencies. The mo
ment of inertia used in the stiffness parameter EzI2 is the moment of iner -
tia of the entire cross section at section II of the various continuous bridges 
and includes the sidewalk curb. For the simple span bridge, the solution 
of the frequency equation yields a value for KL of n" which is given in 
most tests on vibrations21 • The first mode of natural frequency obtained 
for this bridge is compared with foe experimental value in table I. A 
modular ratio, the modulus of elasticity of the stringer over the modulus 
of elasticity of the reinforced concrete slab, of 3.44, 10, and 1.25 was used 
in the aluminum, steel and both concrete bridges respectively. Thus the 
modulus of elasticity of the reinforced concrete roadway slab and the pre
tressed concrete stringers were taken as the value used in design for each 
case; this probably accounts for most of the error in the theoretical fre
quency determination of the prestressed concrete stringer bridges. It was 
observed during the experimental testing that the natural frequency of 
the bridges reduces more than theory indicates it should when a vehicle 
first enters the bridge span. However, once the vehicle is on the bridge 
the reduction in natural frequency, as the vehicle position changes, is 
similar to the theoretically calculated value; but it is very difficult to 
measure accurately. 

Higher modes of vibration. The first mode of vibration was usually 
found to be prevalent in controlling the response of the bridges to the 
forcing function of the axles. This was true in most cases and at experi
mental sections III and IV where the first mode, or higher odd modes, 
have the least effect. However, an outstanding exception occurred in the 
case of the aluminum stringer bridge. In this structure the experimental 
impact at section IV, the section at the center interior support, was found 
to be a function of a higher mode of vibration. The resonance condition 
in this case is a function of the second mode. This is the first root of the 
even mode frequency equation for a four span symmetrical bridge ( equa
tion 39), and corresponds approximately to the vibration of the beam with 
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both ends fixed. Therefore, it is reasonable to assume that this vibration, 
when it occurs, will result in the largest dynamic increase in moment at 
the supports. The theoretical second mode solution was found by using 
equation 39, which was derived by assuming a uniform cross section. This 
equation was used because the increased accuracy of a special solution in
cluding the effect of the change in stiffness of each span would be insig
nificant when compared to the large change in stiffness near the piers due 
to the increase in cross section of the aluminum stringers at that point. 
The value of KL~ for the second mode is 4.345, which yields a vibratory 
frequency of 6.25 cycles per second. This theoretical mode frequency 
agrees closely with the measured frequencies occurring while the vehicle 
is on the inner spans vibrating the bridge at its second mode. However, 
this frequency could not be compared with an experimental unloaded nat
ural frequency because this mode of vibration occurred only when the ve
hicle was on the inner span. 

Effect of the vehicle. The loaded natural frequency is applied in the 
determination of the natural frequency of the brige which occurs when 
the vehicle is on the span. This value of loaded natural frequency will 
control the resonance condition of the frequency of the vehicle forcing 
function with the natural frequency of the bridge. This resonance condi
tion has the greatest effect on the amount of impact ~hen the vehicle is 
near the position of maximum moment. 

The reduction in natural frequency due to the mass of the vehicle has 
been theoretically determined ; and although it could not be correlated .w_ith 
the experimental reduction, due to the diff,iculty of measuring it, it is 
desirable that the effect of the vehicle mass be taken into account. This 
effect can be considered either by the total effect of the individual axles or 
by the effect of the entire mass at its center of gravity. If the effect of 
each axle is ' aetermined individually, the over-all effect of the vehicle is 
different than if the mass of the entire vehicle is placed on the bridge at 
one point. The actual vehicle, although applied to the bridge by means of 
several axles, is usually made up of a rather concentrated mass. For this 
reason vehicle A was used as a concentrated mass. The truck and trailer, 
vehicle B, was made up of large concrete blocks representing the load and 
located directly over the tandem axles of the truck and trailer. Therefore 
for this loading, the individual effect of the truck tractor and the trailer 
was found when the center of gravity of the truck tractor and the center 
of gravity of the trailer axles were at the center of the span. 

The different lengths of the spans in the continuous bridges result in 
a different loaded natural frequency for the load in each span. Therefore 
in the correlation of the experimental and theoretical impact, an impact 
curve is obtained for the loaded frequency as each span is loaded. More
over, since the truck tractor and trailer of vehicle B was used separately, 
the reduction in frequency is different for each part of the vehicle. All of 
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the various values of loaded frequency will have an individual impact 
curve determined by equation 108. To reduce the number of these closely 
spaced curves and to simplify the presentation of the impact data, only 
two curves are shown for the reduction in natural frequency. These curves 
are for vehicle A and the truck tractor of vehicle B in the outer and inner 
spans. These two loads have the same effect on the reduction in frequency 
since their masses are within 0.1 % of each other. These various theore
tical loaded natural frequencies obtained for the vehicles in the outer and 
inner spans are 98.0 5-'o and 94.9 %, 97.1 % and 95.2 %, and 96.6 % and 94.6 % 
of the unloaded natural frequencies of the continuous aluminum, steel, and 
concrete stringer bridges respectively. The loaded natural frquency of 
the simple span bridge is 95.3 % of the unloaded natural frequency for 
vehicle A at the center of the span. 

Forced Vibration 

Forcing function. In the determination of impact, the frequency of 
the forcing function of the vehicle has been taken as the cyclical repetition 
of the axles. This cyclical repetition is determined by the frequency of 
passage of the axles across the bridge. This action of the axles might be 
interpreted as the forcing of a nodal point across the structure by each 
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Fig. 14. Frequency of forced vibration of simple span concrete bridge 
for Vehicle "A". 

axle. Therefore for the fundamental mode of forced vibration with no 
higher harmonics, the spacing of axles will be one wave length of the 
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bridge vibration. The solution obtained for the differential equation of 
motion of a beam subjected to this forcing function consists of two parts, 
the complementary solution and the particular solution. The complemen
tary solution represents the free vibration of the beam and the particular 
solution represents the steady state forced vibration occurring after the 
complementary solution has been reduced to an insignificantly small part 
of the total vibration. This steady state forced vibration, the particular 
solution, has the same vibratory frequency as the forcing function. There
fore, in the cases in which only the particular solution is applicable, that 
is, when the complementary solution has been reduced significantly, the 
frequency of the vibratory motion of the structure should correspond to 
the frequency of the forcing function. To determine the applicability of 
this concept, it must be shown that the forcing frequency of the axles is 
predominant in the forced vibration of the bridge, or that the response of 
the bridge is similar to that of a steady state forced vibration. The fre
quency of vibration of the structure was determined at the time the ve
hicle was producing the maximum moment. This value of frequency was 
obtained by using the one or two cycles of vibration at the maximum ampli
tudes of vibration. It was found in this experimental work that ·the nat
ural frequency of the structure was prevalent as the vehicle entered the 
bridge, and further, that this natural frequency more nearly corresponds 
to the computed value than to the experimental value of natural frequency 
obtained when no vehicle was on the bridge. As the vehicle approached 
the position of maximum moment the frequency became approximately 

. equal to the frequency of the forcing function (figures 14 to 18). Since 
there were two different forcing frequencies available for vehicle A and 
three different forcing frequencies available for vehicle B, there were .a 
number of different frequencies which could be used as the Jrequency of 
the forcing function. However, only one axle spacing was ptedominant in 
determining the frequency of the forcing function. This is readily shown 
in figures 14 to 18 in which the frequency of the bridge at maximum mo
ment is shown as a function of the velocity of the vehicle. Variations in 
this result from the tendency of the bridge vibration to remain near the 
resonant frequency of the structure at higher speeds where the forcing 
frequency is impressed by the axle spacing of the vehicle wheelbase. 

An exception to the well-defined forcing frequency of the velocity 
divided by the axle spacing occurred in the continuous prestressed con
crete bridge (figure 19). This structure was constructed by placing a con
tinuous reinforced concrete roadway over four spans of simply supported 
prestressed concrete beams. Unlike the other bridges tested, this bridge 
does not have a point bearing to allow free rotation at the supports and it 
is not fully continuous. The interior supports have a fifteen inch rein
forced concrete diaphragm resting on an 11/32 inch preformed fabric 
bearing pad. These diaphragms encase the ends of the beams at each 
interior support and combine with the roadway slab to make the structure 
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partially continuous. The exterior supports have approximately sixteen 
inches of the end of the beam resting on similar 11/32 inch bearing pads. 
The effect of the large flat bearing surfaces at the supports heavily damps 
the vibration of the continuous bridge. These bearings also cause a cer-
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Fig. 19. Frequency of fo1 ced vibration of continuous concrete stringer 
bridge fo1· Vehicle "A". 

tain amount of fixity at each support, thus further complicating the vi
bratory system. Moreover, the pier diaphragms acting with the continu
ous reinforced concrete roadway slab allow only the negative moments to 
be transmitted across the piers or interior supports. Positive bending at 
the piers is eliminated due to the tension in the bottom fibers of the pier 
diaphragms. These diaphragms are not reinforced to resist tension in 
that direction. Therefore it is very difficult to establish a well defined 
vibratory system in such an incongruous structure. This is exemplified 
in figure 19 by the random vibration of the structure at the maximum 
moment which results from the passage of vehicle A. For this reason, the 
application of the forced vibration theory presented herein for the deter
mination of the response of this structure to the forcing function of the 
repetition of axles has very little significance. 

Impact. The impact as determined herein is a function of the ampli
tude of forced vibration. The derivation of the theoretical impact was 
made by assuming that the forcing frequency of the axles was predomi
nant in producing the impact. The denominator of the theoretical impact 
factor is a function of the ratio of the forcing frequency to the loaded nat
ural frequency of the structure and the ratio of the damping factor to the 
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unloaded natural frequency of the structure. The numerator of this im
pact factor is a function of the ratio of velocity to the length of the span. 
Therefore since the forcing frequency is the ratio of the velocity of the 
vehicle to the axle spacing, the magnitude ?f the theoretical impact will 
depend upon the velocity, axle spacing, length of span, loaded natural fre
quency, unloaded natural frequency, and the damping factor. 

The damping factor was obtained experimentally from the decreasing 
amplitude of the residual vibrations. To experimentally determine this, 
the amplitude of displacement Y of the strain time curve is measured at 
time t 0 and at a later time tN which is N cycles later. The ratio of these 
amplitudes Y0 /Y" is a constant, for viscous damping and 1/N times the 
natural logarithm of this ratio is called the average logarithmic decrement. 
This quantity therefore does not depend on the way the damping was de
fined in the original equation of motion and thus is often used as the meas
ure of the damping capacity of a structure. The average logarithmic de
crement is then given as 
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The damping capacity of each bridge will be given in terms of the average 
logarithmic decrement. 
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Simple span prestressecl concrete bridge. The correlation of the ex
perimental and theoretical impact for the postensioned prestressed con
crete bridge is shown in figure 20. The experimental impact values de
termined at the center line of the simple span (section I) are shown with 
the theoretical impact curves obtained by equation 108. A loaded natural 
frequency which is 95.3 % of the theoretical natural frequency of 3.34 
cycles per second was used in determining the theoretical impact curves. 
The average logarithmic decrement for this bridge is 0.0916. The result
ing amount of damping did not affect the theoretical curves except at re
sonance. Therefore for the portion of the impact curves shown in this 
figure, the effect of the damping is insignificant. Resonance occurs when 
the ratio of the forcing frequency or the frequency of the repetition of 
the axles to the loaded natural frequency of the structure is one. This 
condition occurs two times for vehicle A. The individual axles of the tan
dem rear axle unit acting individually cause a resonance at the smaller 
velocities, and the front axle combined with the tandem rear axle acting 
as one unit cause resonance at the larger velocities. The impact increases 
as the ratio of the forcing function to the loaded natural frequency ap
proaches one. The experimental impact values agree with the theoretical 
impact curves which, as previously discussed, yield an upper limit of im
pact for the assumptions made in the derivation. The maximum vehicle 
velocity limited a complete investigation of the wheelbase resonance 
condition. 

Continuous aluminum stringer bridge. The experimental and theo
retical impact for this structure is shown in figures 21 to 24. The theo
retical curves show a good agreement with the experimental impact values. 
As previously discussed an additional resonance occurred in this structure 
when the bridge was excited at its second mode of vibration by the indi
vidual axles of the tandem rear axle unit. This condition is most prominent 
at the center interior support. A correlation of the theory presented herein 
for the upper limit of the wheelbase resonance condition was not obtained 
due to the limited velocity of the vehicles. Similarly, the resonance con
dition of the trailer wheelbase could not be investigated. A loaded natural 
frequency of 98.0 % and 94.9% of the theoretical natural frequency of 3.825 
cycles per second was used for the outer and inner span resonance curves 
respectively. The average logarithmic decrement for this bridge is 0.050. 
The resulting amount of damping did not affect the theoretical curves 
except at resonance. The maximum values of impact written as a percen
tage vary from 20.6-31.9 % and 19.1-20.8 % for vehicles A and B at the 
positive and negative sections respectively. Moreover it should be noted 
that the resonance condition of the individual axles of the tandem rear 
axle unit cause an experimental impact almost as large as the resonance 
condition of the vehicle wheelbase at higher velocities. Therefore the 
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resonance effect of the repetition of axles is· important at the slower 
speeds. ~ 

Continuous steel stringer bridge. The correlation of the experi
mental and theoretical impact for this bridge is shown in figures 25 to 
28. More experimental impact values lie outside the theoretical impact 
envelo1)e in this bridge than in the previous bridges. The greatest dis
crepancy occurs as the resonance condition is approached from the left 
side of the figure. That is, the large number of experimental points out
side the theoretical envelope at velocities lower than the resonance velo
cities might result from the loaded natural frequency of the bridge being 
smaller than the value used to obtain the impact curves. A smaller loaded 
natural frequency would move the theoretical curves to the left in these . 
figures. However, the theoretical curves shown still qualitatively describe 
the variations in the experimental impact. There is no indication in this 
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Fig. 25. Impact for steel stringer bridge at Sections I and II for Ve-
hicle "A". . 

structure of any higher modes of vibration. Moreover, not enough experi
mental data was obtained for a good evaluation of the resonance condition 
of the individual axles of the tandem axle unit with the first mode of vibra
tion. Therefore, the experimental impact values for the· tandem axles were 
smaller than those obtained by the resonance condition for the vehicle 
wheelbase. Also, a large enough velocity was not obtained for the trailer 
wheelbase to cause a resonance condition. The maximum values of impact, 
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...--------------------------- - ---- - --···- - -

written as a percentage, vary from 44.1-26.5% and 22.8-39.2% for vehicles 
A and B at the positive and negative sections respectively. A loaded natural 
freque:ri.cy of 97.1 % and 95.2% of the theoretical unloaded natural frequen-

THEO .· EXP. 
SECTION ill O 

•40 , SECTION .rl O 

.30 ' t I I 
I I 
l • 00 

.20 
I 0 

I 0 

.10 

I 7 • • I ~ 0 
0 

l . ~ • 
0 I • I 0 • 
~ 0 

0 0 
-/ 

o-6 
10 20 JO 40 50 60 70 

VELOCITY ( V' ) FT . / SEC. 

Fig. 28. Impact for steel stringer bridge at Sections III and IV for 
Vehicle "B". 

cy of 4.34 cycles per second was used for the outer and inner span in;ipact 
curves respectively, The average logarithmic decrement of this bridge is 
0.062. This amount of damping did not affect the theoretical curves except 
at resonance. 

' 

Partially continuous concrete stringer bridge. The correlation of the 
experimental and theoretical impact for this bridge is shown in figures 29 
and 30. A loq,ded natural frequency of 94.6% of the theoretical unloaded 
natural frequency of 6.06 cycles per second was used to obtain ·this curve. 
The curve for the vehicle on the outer span is not shown since it is just to 
the right of this curve similar to those in the previous figures. This curve 
includes the effect of damping, which was considerably larger for this 
structure than for the previous structures. The average logarithmic decre
ment of the residual vibration of this structure is 0.406. This amount of 
damping results in a reasonable upper limit for the impact curves of 
0.298 for the resonance condition caused by the individual axles of the 
tandem axle unit. Since there is not enough experimental impact data at 
the velocity corresponding to this resonance condition, this upper limit 
could not be verified. The experimental impact values show some agree-
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TEST RESULTS 

Composite section 

The neutral axes of the stringer cross sections were determined at the 
four experimental sections shown in figures 8, 9 for the aluminum and 
the steel stringer bridges. Once the neutral axis was obtained, the amount 
of slab necessary to balance the various experimentally located neutral 
axes was determined. The moments of inertia were then computed. A 
modular ratio of 10 was used for the steel stringer bridge and a ratio of 
3.33 was used for the aluminum stringer bridge. It should be noted, 
however, that when the position of the neutral axis is known the moment 
of inertia js independent of the modular ratio used. 

Since the bridges are symmetrical about their lateral and-longitudinal 
center lines, only one quadrant of each bridge needed to be instrumented 
to determine the position of the neutral axes of all the experimental sec
tions. A cross section of the aluminum and steel stringer bridges at sec
tions I, II, III, and IV are shown in figures 34 and 35 respectively. These 
figures show the composite moments of inertia, section moduli, and the 
slab effective in the composite section. 

The neutral axes results are not intended for a complete analysis of 
the variations in cross section along the entire length of the bridges. They 
do show, however, that the actual composite cross section varies greatly 
at different sections along the bridges as indicated in previous research.21 

- . ·. 
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Load distribution 

Static live load. The distribution of load in a slab stringer bridge is 
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Fig. 36. Static load distribution for aluminum stringer bridge at sec
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not readily analyzed by an exact method, but some theoretical methods 
which offer a convenient means of determining the amount of the live load 
distributed to eac:h longitudinal stringer have been proposed25. 2s. 2s. How
.ever this part of the report includes only the presentation of data w~th no 
attempt to correlate the data to any theoretical results. 
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--- - -· -- --- - - --- - - - --------------

The two vehicles used in this experimental study are very similar to 
the type of vehicle loading used in the design of primary and interstate 
bridges. Moreover, since these vehicles are similar to each other, except 
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for the trailer axles, the experimental load distribution is presented only 
for vehicle A. The experimental load distribution is determined by using 
the individual moment in each stringer as a percent of the total moment 
in the bridge cross section. This procedure gives the percentage of the 
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total live load distributed into each stringer if the moment diagrams for 
all the stringers are identical in shape. This assumption is used in the 
design of this type of bridge structure. The live load moments in the 
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stringers were obtained from the measured live load strains, from the 
modulus of elasticity for the stringers, and from the section m,oduli for the 
composite cro~s sections. The percentage load distribution for the alum-
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inum, steel, and concrete stringer bridges are shown in figures 36 through 
45. 

The effective composite sections for t he prestressed concrete br idge 
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stringers were not evaluated, and therefore the percentage load distribut10n 
for this bridge is based on the assumption that the section moduli of the 
various stringers at each cross section are equal. In the prestressed con
crete stringer bridge, only the two positive moment sections I and II were 
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analyzed for load distribution. However, for the aluminum and steel 
stringer bridges the load distribution is shown for both the positive and 
negative moment sections (sections I, II, III, and IV). 
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Dynamic load. The dynamic response of the bridges tested was ob
tained by moving load tests. These moving load tests were performed on 
four test lanes, two for each direction of travel for vehicle speeds begin-
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L 

ning at approximately 10 mph and increasing by increments up to the 
maximum attainable speed. The data from the continuous strain time 
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records obtained was reduced as before to obtain the maximum moment in 
each longitudinal stringer for the vehicle in approximately the same longi
tudinal position as the maximum static moment. 
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L 

From these data the dynamic load distribution was obtained for the 
vehicle traveling in the experimental lanes at different speeds. The distri-
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------- ---------- -·--·-·-··· 

i;ution of load to the longitudinal stringers, as obtained from the moments, 
for the vehicle traveling on the e'xperimental lanes at various speeds is 
shown in figures 46 through 53 for the aluminum and steel stringer bridges 
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at the positive and negative experimental sections, sections I, II, III, and 
IV. The bridge cross section and the vehicle position is shown at the top 
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of the graph. Each point 6f the graph indicates the load distribution for 
a different speed. The solid line indicates this dynamic load distribution, 
and the dotted line represents the value obtained from the static tests at 
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the same section. The static load distributions are the same as the values 
shown previously. Since these result_s are typical of the comparison obtained· 
for the other bridges tested, and since this correlation has been previously 
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presented21 , the comparison of dynamic and static load distribution is 
shown only for the aluminum and steel stringer bridges at all the experi
mental sections. 
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------ - ---------

Influence lines., for the stringers 

The use of the static load distribution curves is facilitated by the 
construction of· influence lines for the percentage load in each stringer. 
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To obtain these influence lines the static load distribution values were 
averaged for the symmetrical stringers which correspond with the loading 
of symmetrical lanes. For example, the value from one outside stringer 
with the load in lane 2-S is averaged with the value from the other outside 
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stringer with the load in lane 2-N. These average values were then plotted 
to correspond with the center line of the vehicle. The resulting influence · 
lines (figures 54 and 55) indicate the percentage of a unit vehicle distri-
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buted to each respective stringer by the ordinate 'corresponding to the 
center line of the vehicle. The influence lines presented are only for the 
positive moment sections (section I and II). -
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Table V. Impact for aluminum stringer bridge 
at sections I and III for vehicle B. 

Run Velocity Impact Frequency· 
(fps) I IIIb of vibration-

a ,e (cps) 

2W-10 14. 1 - . 094 .198 3. 3 
2W-20 20.3 . 049 . 072 4.2 
2W-30 35.26 .051 . 138 3. 3 
5W-10 14.98 .10 . 11 3.3 
5W-12 14;89 .191 . 209 3.4 
5W-20 25.98 . 101 .088 6.0 
5W-30 36.2 .169 . 102 3.6-8.4 
5W-40 37.3 .156 . 03_6 10.0 

2E-10 13.42 .054 .202 3.0 
2E-20 27.5 . 077 . 07 5.3 
2E-30 42.3 .053 0 4. 1 
2E-40 45.6 . 10 . 122 3.5 
5E-10 17.05 .05 . 179 3.65 
5E-20 26.42 . 102 . 111 6.25 
5E-30 39.3 0 . 121 3.8 
5E-40 49.1 . 16 . 19 3.3 

Table VI. Impact for aluminum stringer bridge 
at sections II and IV for vehicle B., 

Run Velocity Impact Frequency 
(fps) Ilb !Vb IV of vibration 

,e c,e (cps) 

2W-10 11. 79 0 .091 .025 2.8 
2W-20 21. 46 . 131 .089 .039 5.5 
2W-30 34.5 . 106 .014 . 14 3.7 
5W-,.-~O 11.59 . 03 .041 .042 3. 3 
5W-20 24.6 . 10 . 12 . 03 5.0 
5W-30 35.5 .128 .034 . 112 3.8 

2E-10 11. 38 . 058 . 072 .025 3.5 
2E-20 24.57 . 139 .146 . 039 5.2 

/ 2E-30· 34.6 . 138 .24 .14 3.2-7.2 
5E-10 11. 59 .043 .062 . 072 2.8 
5E-20 22.44 . 135 .03 .038 5.0 
5E-30 33.9 .032 . 106 . 088 6.5 
5E-40 45.5 . 17 .174 . 069 3.9 
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Table VII. Impact for steel stringer bridge 
at sections I and Ill for vehicle A. 

Run Velocity Impact Frequency 
{fps) I Illb of vibration 

a {cps) 

3N-10 15.3 . 092 .008 3.64 
3N-20 26.6 .063 .076 6.3 
3N-30 41.4 0 .123 3. 5 
6N-10 14.6 • 039 .003 3.8 
6N-20 26.6 .015 0 5.9 
6N-30 39.8 .04 .003 3. 1 
6N-40 41. 6 0 . 061 3.7 

3S-10 13.5 .08 .01 3.33 
3S-20 26.1 . 073 0 5.8 
3S-30 39.5 .26 .112 3.3 
6S-10 12.4 .018 0 3.7 
6S-20 26.1 .052 0 5.6 
6S-30 38.0 0 .11 8.6 
6S-40 55.5 .04 .118 4. 1 

Table VIII. Impact for steel stringer bridge 
at sections II and IV for vehicle A. 

Run Velocity Impact Frequency 
(fps) IIb !Vb of vibration 

(cps) 

3N-10 14.85 .03 .18 3.7 
3N-20 27.66 .045 .102 5. 1 
3N-30 38.95 .075 .148 4.8 
6N-10 13.19 .075 . 14 3.85 
6N-20 27.19 .039 5.8 
6N-30 39.5 .088 .159 3.2 
6N-40 51. 35 .095 .138 4. 1 

3S-10 13.44 .058 .056 3.33 
3S-20 26.4 .075 .092 7.7 
3S-30 38.2 .151 . 12 3.2 
6S-10 13.25 .021 .125 3.33 
6S-20 25.32 .068 . 10 6.3 
65-30 41.4 . 278 .168 3.45 
6S-40 53.3 ,443 . 228 3.45 
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Table IX. Impact for steel stringer bridge 
at sections I and III for vehicle B. 

Run Velocity Impact Frequency 
(fps) I I IIIb .of vibration 

a,e ll· f ,e (cps) 

3N-10 10.2 0 0 0 2.8 
3N-.20 24.0 . 03 .052 ; 06 5.5 
3N-30 33.33 . 198 .062 . 11 3.3 
3N-40 44. 1 .056 .087 .145 4.2-2.5 
6N-10 11. 8 .048 . 14 . 145 2.9 
6N-20 26.54 .049 .042 .058 5.2 
6N-30 37.5 . 10 . 021 .238 3.2 
6N-40 43. 15 . 02 .062 ,253 2, 1 

35-10 8.51 .0016 0 .041 2.9 
35-20 24.22 .036 .035 .079 5.2 
35-30 42.85 . 151 . 12_1 . 12 3. 1 
35-40 55.55 . 123 .083 .152 2.5 
65-10 7.01 . 054 .04 .045 2.2 
65-20 23.6 .031 '. 0375 .05 5.0 
65-30 41. 2 .146 .105 .09 3.8 
65-40 51. 7 .. 059 . 12 .069 2.3 

Table X. Impact for steel stringer bridge I . 
at sections II and IV for vehicle B . 

. ./ \ 

Run Velocity Impact Frequency 
(fps) nb lib, f IVb,e !Vb, f of vibration 

,e (cps) 

3N-10 15.45 .073 .156 .26 0 3.4 
3N-20 26.65 .04 .002 6.7 
3N-30 45.0 .039 0 ; 39 087 3.6 
6N-10 12.69 .038 .106 .063 .049 2.8 
6N-20 25.0 0 .066 .085 .079 5.5 
6N-30 37.5 .095 .088 . 19 :003 3.6 
35-10 12.45 0 .038 .122 .10 2.9 

35..:20 26. l . 021 .026 .062 .065 5.8 
35-30 40.3 . 02 . 153 .048 0 3.4 
35-40 55.8 • 21 . 218 .247 . 21 2.5-5.0 

.' 
, 

65-10 13.9 .062 . 103 .05 .062 3.3 
65-20 25.4 . 04 .029 .05 .OS 6.2 
65-30 41. 0 . 096 . 115 .062 . 135 3.4 
65-40 54.8 . 187 .:266 .048 .238 2.5 
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Table XI. Impact for continuous concrete 
stringer bridge at section I for 
vehicle A. 

Run Velocity Impact Frequency 
(fps) I of vibration 

a (cps) 

ZN-10 15.83 .018 3. 3 
ZN-20 28.4 .029 8.0-10.0 
ZN-30 41. 4 .048 12.5 
5N-10 14.4 .089 3.5 
5N-20 29.0 .oz 
5N-30 41. 4 0 6.4 
5N-40 54.0 .03 3.3 

25-10 16.85 .143 3.5 
25-20 28.38 0 5.5 
25-30 40.0 .108 
55-10 15.9 .058 3.5 
55-20 32.02 .035 4.8 
55-30 41. 4 .105 12. 0 
55-40 51. 15 .006 8.3-12.0 

Table XII. Impact for continuous concrete 
stringer bridge at section II 
for vehicle A. 

Run Velocity Impact Frequency 
(fps) lib of vibration 

(cps) 

ZN-10 15.0 . 131 4.0-9.0 
ZN-20 26.8 .05 8.0 
ZN-30 39.4 0 4,5 
ZN-40 54.5 .10 4.5-9.1 
5N-10 14.8 0 4 •. 0-9. 0 
5N-20 29.6 0 
5N-30 42.0 .054 3.5 
5N-40 55.1 .oz 4.5-9.0 

25-10 15.4 .109 3.33 
25-20 28.4 .051 
25-30 38.5 .00 7.7-7.3 
25-40 49.6 .049 4.5-9.0 
55-10 15.75 • 10 3.33 
55-20 28.4 .069 8.0 
55-30 41. 0 .038 3.8 
SS-40 50.0 0 4.5-9.0 
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Table XIII. Impact for _continuous ·concrete 
stringer bridge at section III for 
vehicle. A. 

Run Velocity Impact Frequency 
(fps) IIId III of vibration 

b (cps) 

2N-10 14.5 . 10 .131 4.0-3.33 
2N-20 25.56 0 .056 10.0 
2N-30 39. 1 .119 .078 12.0-17.0 
2N-40 51. 6 . 10 0 9.0-16.7 
5N-10 14.6 .046 .091 3.45 
5N-20 28.8 .00 
5N-30 41. 0 . 113 .091 3.8-4.2 
5N-40 51. 4 . 16 0 4.5 

2S-10 16.3 . 104 . 131 
25-20 24.3 .043 6.1-11.7 
2S-30 39.4 0 0 12.0 
2S-40 50.4 . 122, "10 4.5-9.0 
5S-10 
5~-20 30.3 0 0 
5S-30 49.9 .048 . 011 4.0-4.5 
5S-40 49.68 .071 . 011 

Table XN. Impact fo;- continuous concrete 
stringer bridge at section N for 
vehicle A. 

_Run Velocity Impact Frequency 
(fpi:;) !Vb IV of vibration 

c (cps) 

2N-10 13.2 0 .02 3.6 
2N-20 24.2 3. 65. 
2N-30 42.0 . 395 .408 3.?5 
2N-4o 55.0 . 51 . 50 4.8-8.0 
5N-10 12.9 . 107 .118 3.7 
5N-20 28.8 .088 .093 7.9 
5N-30 40.6 . 588 . 541 3.7 
5N-40 54.0 . 48 . 33 7.8 

2S-10 16.5 .02 3. 55 . 
2S-20 26.1 3.6 
2S-30 39.0 .46 . 267 3.7 
2S-40 49.6 . 29 .243 7.8 
5S-10 1 7. 1 .079 .08 3.6 
5S-20 29.2 .049 8.3 
5S-30 39.4 . 559 . 437 3.7 
55-40 49.6 . 1 75 .032 7.2 
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