
Spatial Scale of Clustering of Motor 
Vehicle Crash Types and Appropriate 
Countermeasures

Final Report
April 2009 

Sponsored by
University Transportation Centers Program,
U.S. Department of Transportation
(MTC Project 2007-10)
and the Iowa Department of Transportation 
(Iowa DOT Project TS-UNI 0701)



About the MTC
The mission of the University Transportation Centers (UTC) program is to advance U.S. 
technology and expertise in the many disciplines comprising transportation through the 
mechanisms of education, research, and technology transfer at university-based centers of 
excellence. The Midwest Transportation Consortium (MTC)  is a Tier 1 University Transportation 
Center that includes Iowa State University, the University of Iowa, and the University of Northern 
Iowa. Iowa State University, through its Institute for Transportation (InTrans), is the MTC’s lead 
institution.

Disclaimer Notice
The contents of this report reflect the views of the authors, who are responsible for the facts 
and the accuracy of the information presented herein. The opinions, findings and conclusions 
expressed in this publication are those of the authors and not necessarily those of the sponsors.

The sponsors assume no liability for the contents or use of the information contained in this 
document. This report does not constitute a standard, specification, or regulation.

The sponsors do not endorse products or manufacturers. Trademarks or manufacturers’ names 
appear in this report only because they are considered essential to the objective of the document.

Non-discrimination Statement 
Iowa State University does not discriminate on the basis of race, color, age, religion, national 
origin, sexual orientation, gender identity, sex, marital status, disability, or status as a U.S. 
veteran. Inquiries can be directed to the Director of Equal Opportunity and Diversity,  
(515) 294-7612.

Iowa Department of Transportation Statements 
Federal and state laws prohibit employment and/or public accommodation discrimination on 
the basis of age, color, creed, disability, gender identity, national origin, pregnancy, race, religion, 
sex, sexual orientation or veteran’s status. If you believe you have been discriminated against, 
please contact the Iowa Civil Rights Commission at 800-457-4416 or Iowa Department of 
Transportation’s affirmative action officer. If you need accommodations because of a disability to 
access the Iowa Department of Transportation’s services, contact the agency’s affirmative action 
officer at 800-262-0003. 

The preparation of this document was financed in part through funds provided  
by the Iowa Department of Transportation through its “Agreement for the Management of  
Research Conducted by Iowa State University for the Iowa Department of Transportation,” and  
its amendments.

The opinions, findings, and conclusions expressed in this publication are those of the authors 

and not necessarily those of the Iowa Department of Transportation.



Technical Report Documentation Page 

1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. 
MTC Project 2007-10   

4. Title and Subtitle 5. Report Date 
Spatial Scale of Clustering of Motor Vehicle Crash Types and Appropriate 
Countermeasures 

April 2009 
6. Performing Organization Code 
 

7. Author(s) 8. Performing Organization Report No. 
Tim Strauss and Jeffrey Lentz  
9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) 
Midwest Transportation Consortium 
2711 South Loop Drive, Suite 4700 
Ames, IA 50010-8664 

 
11. Contract or Grant No. 

 
12. Sponsoring Organization Name and Address 13. Type of Report and Period Covered 
Midwest Transportation Consortium          Iowa Department of Transportation 
2711 South Loop Drive, Suite 4700           800 Lincoln Way 
Ames, IA 50010-8664                                Ames, IA 50010 

Final Report 
14. Sponsoring Agency Code 
 

15. Supplementary Notes 
Visit www.intrans.iastate.edu for color PDF files of this and other research projects.  
16. Abstract 
This project analyzes the characteristics and spatial distributions of motor vehicle crash types in order to evaluate the degree and scale 
of their spatial clustering. Crashes occur as the result of a variety of vehicle, roadway, and human factors and thus vary in their 
clustering behavior. Clustering can occur at a variety of scales, from the intersection level, to the corridor level, to the area level. 
Conversely, other crash types are less linked to geographic factors and are more spatially “random.” The degree and scale of clustering 
have implications for the use of strategies to promote transportation safety.  

In this project, Iowa's crash database, geographic information systems, and recent advances in spatial statistics methodologies and 
software tools were used to analyze the degree and spatial scale of clustering for several crash types within the counties of the Iowa 
Northland Regional Council of Governments. A statistical measure called the K function was used to analyze the clustering behavior of 
crashes. Several methodological issues, related to the application of this spatial statistical technique in the context of motor vehicle 
crashes on a road network, were identified and addressed. These methods facilitated the identification of crash clusters at appropriate 
scales of analysis for each crash type. This clustering information is useful for improving transportation safety through focused 
countermeasures directly linked to crash causes and the spatial extent of identified problem locations, as well as through the 
identification of less location-based crash types better suited to non-spatial countermeasures.  

The results of the K function analysis point to the usefulness of the procedure in identifying the degree and scale at which crashes 
cluster, or do not cluster, relative to each other. Moreover, for many individual crash types, different patterns and processes and 
potentially different countermeasures appeared at different scales of analysis. This finding highlights the importance of scale 
considerations in problem identification and countermeasure formulation. 

 

17. Key Words 18. Distribution Statement 
crash analysis—crash clustering—GIS—K function—spatial analysis No restrictions. 
19. Security Classification (of this 
report) 

20. Security Classification (of this 
page) 

21. No. of Pages 22. Price 

Unclassified. Unclassified. 66 NA 

 



SPATIAL SCALE OF CLUSTERING OF  
MOTOR VEHICLE CRASH TYPES AND  
APPROPRIATE COUNTERMEASURES 

 
 

Final Report 
March 2009 

 
 

Principal Investigator 
Tim Strauss 

Associate Professor 
Department of Geography, University of Northern Iowa 

 
Research Assistant 

Jeffrey Lentz 
 
 

Authors 
Tim Strauss and Jeffrey Lentz 

 
 

Sponsored by 
the Iowa Department of Transportation  

(Iowa DOT Project TS-UNI 0701),  
and 

the Midwest Transportation Consortium 
a U.S. DOT Tier 1 University Transportation Center 

(MTC Project 2007-10) 
 
 

A report from 
Midwest Transportation Consortium 

Iowa State University 
2711 South Loop Drive, Suite 4700 

Ames, IA 50010-8664 
Phone: 515-294-8103 
Fax: 515-294-0467 

www.intrans.iastate.edu/mtc 



v 

TABLE OF CONTENTS 
ACKNOWLEDGMENTS ............................................................................................................ IX 

EXECUTIVE SUMMARY .......................................................................................................... XI 

INTRODUCTION ...........................................................................................................................1 
Conceptual Overview ..........................................................................................................1 
Overview of the Analytical Process .....................................................................................2 
Project Objectives and Overview of Methods .....................................................................3 

METHODOLOGY ..........................................................................................................................4 
Statistical Method: The K Function .....................................................................................4 
Implementing the K Function: Software Tools ...................................................................4 
Methodological Issues Related to the Spatial Analysis of Crashes. ....................................5 

PROCEDURE ..................................................................................................................................7 
Preparation of the Database and Selection of Crash Types .................................................7 
Selection and Use of Software .............................................................................................7 
Management of Tabular Results ........................................................................................10 
Graphing of K Function and Related Curves .....................................................................11 
Use of K Function Results to Identify Overrepresented Locations by Crash Type ..........14 

K FUNCTION RESULTS AND ANALYSIS FOR EACH CRASH TYPE .................................17 
Summary Graphs ...............................................................................................................17 
Ran Signal ..........................................................................................................................18 
Distracted Driving ..............................................................................................................21 
Older Drivers .....................................................................................................................24 
Younger Drivers ................................................................................................................27 
Local Roads .......................................................................................................................29 
Lane Departure ..................................................................................................................34 
Impaired Driving ................................................................................................................37 
Failure to Yield Right of Way ...........................................................................................40 
Fatal and Major Injury .......................................................................................................43 
Speeding .............................................................................................................................48 

SUMMARY AND FUTURE DIRECTIONS ................................................................................51 
Sensitivity of Results to Data Quality and Analytical Procedures ....................................51 
Enhancements to the Analytical Procedure and Future Directions ...................................52 

REFERENCES ..............................................................................................................................54 



LIST OF FIGURES 
 
Figure 1. Sample crash points for K function analysis ....................................................................8 
Figure 2. K function for all crashes ...............................................................................................12 
Figure 3. K function for all rural crashes .......................................................................................13 
Figure 4. Comparison of K functions: conceptual overview .........................................................14 
Figure 5. Cumulative K function, all crashes ................................................................................17 
Figure 6. Cumulative K function, all rural crashes ........................................................................18 
Figure 7. Ran Signal crashes vs. all crashes K function comparisons ...........................................19 
Figure 8. Ran Signal crash hot spots ..............................................................................................20 
Figure 9. Distracted Driver crashes vs. all crashes K function comparisons ................................22 
Figure 10. Distracted Driver crash hot spots .................................................................................23 
Figure 11. Older Driver crashes vs. all crashes K function comparisons ......................................24 
Figure 12. Older Driver crash hot spots .........................................................................................26 
Figure 13. Younger Driver crashes vs. all crashes K function comparisons .................................27 
Figure 14. Younger Driver crash hot spots ....................................................................................28 
Figure 15. Local Road crashes vs. all crashes K function comparisons ........................................30 
Figure 16. Local Road crash hot spots ...........................................................................................31 
Figure 17. Local Road crashes vs. all crashes K function comparisons (rural only) ....................32 
Figure 18. Local Roads crash hot spots (rural only) ......................................................................33 
Figure 19. Lane Departure crashes vs. all crashes K function comparisons .................................34 
Figure 20. Lane Departure crashes vs. all crashes K function comparisons (rural only) ..............35 
Figure 21. Lane Departure crash hot spots (rural only) .................................................................36 
Figure 22. Impaired Driver crashes vs. all crashes K function comparisons .................................38 
Figure 23. Impaired Driver crash hot spots ...................................................................................39 
Figure 24. Failure to Yield Right-of-Way crashes vs. all crashes K function comparisons ..........41 
Figure 25. Failure to Yield Right-of-Way crashes hot spots .........................................................42 
Figure 26. Combined Fatal and Major Injury crashes vs. all crashes K function comparisons ....43 
Figure 27. Combined Fatal and Major Injury crash hot spots .......................................................44 
Figure 28. Combined Fatal and Major Injury crashes vs. all crashes K function comparisons 

(rural only) .........................................................................................................................46 
Figure 29. Combined Fatal and Major Injury crash hot spots (rural only) ....................................47 
Figure 30. Speeding crashes vs. all crashes K function comparisons ............................................48 
Figure 31. Speeding crash hot spots ..............................................................................................50 
 

vii 



viii 

 
LIST OF TABLES 

 
Table 1. Sample bins for K function analysis ..................................................................................8 
Table 2. Sample K function table for distracted drivers ................................................................11 
 



ACKNOWLEDGMENTS 

The authors would like to thank the Midwest Transportation Consortium and the Iowa 
Department of Transportation for sponsoring this research. 

ix 



xi 

EXECUTIVE SUMMARY 

This project analyzes the characteristics and spatial distributions of motor vehicle crash types in 
order to evaluate the degree and scale of their geographic clustering. Crashes occur as a result of 
a variety of vehicle, roadway, and human factors and thus vary in their clustering behavior. 
Some crash types are linked to roadway characteristics and problematic locations, and the spatial 
extent of such clustering can occur at a variety of scales, from the intersection level, to the 
corridor level, to the area level. Conversely, other crash types are less linked to geographic 
factors and are more spatially “random.” The degree and scale of clustering have  implications 
for the efficient and effective use of strategies (e.g., engineering, enforcement, education, policy) 
to promote transportation safety.  

In this project, the state of Iowa’s comprehensive crash database, geographic information 
systems (GIS), and recent advances in spatial statistics methodologies and software tools were 
used to analyze the degree of clustering for several crash types and the spatial scale at which this 
clustering occurs. In all, 10 crash types were evaluated for the counties of the Iowa Northland 
Regional Council of Governments (INRCOG). Results for rural crashes were analyzed 
separately when appropriate. A statistical measure called the K function was used to analyze the 
clustering behavior of crashes. Several methodological issues, related to the application of this 
spatial statistical technique in the context of motor vehicle crashes on a road network, were 
evaluated and addressed. These methods facilitated the identification of crash clusters at 
appropriate scales of analysis for each crash type. This clustering information is useful for 
improving transportation safety through focused countermeasures directly linked to crash causes 
and the spatial extent of identified hazardous roadway locations, as well as through the 
identification of less location-based crash types better suited to non-spatial countermeasures.  

 



INTRODUCTION  

Conceptual Overview 

Crashes occur for a variety of reasons and can be attributed to human, environmental 
(roadway/roadside), and vehicular factors, or to any combination of these. Some types of crashes 
may be more inherently “spatial” in their causation. For instance, problematic roadway curvature 
may lead to a clustering of run-off-road crashes at specific locations, and failure-to-yield-right-
of-way crashes may be linked to characteristics of problematic intersections. Other crash types, 
on the other hand, may be less linked to location; that is, they may have a more random spatial 
distribution. Such crash types may be less causally linked to the locations at which they occur. 
Still other crashes may be somewhere in between, more likely to occur in certain types of areas 
but not necessarily at specific spots or stretches of roadway. In the analysis of crash distributions 
and the selection of countermeasures, it is important to distinguish between crashes causally 
linked to hazardous locations and crashes that are more spatially random.  

Analyses of crashes often focus on the identification of aggregate clusters, or hot spots, at 
specific locations. However, these hot spots may contain a variety of causes or crash types 
(Anderson 2003), and different types of crashes will exhibit different spatial behavior. Another 
approach is “identifying locations with excessive numbers of crashes of a particular type rather 
than simply picking sites with the highest number of crashes. Because locations with excessive 
numbers of crashes of a particular type are good candidates for countermeasures, this approach is 
effective” (Retting et al. 2001, p. 733).  

Different spatial scales of analysis may be appropriate for different crash types. Some types of 
crashes may be problematic mainly at intersections or relatively short sections of road. For other 
crash types, problem locations may consist of either dangerous curves or longer stretches of 
dangerous road. Even longer stretches of road may be linked to other crash types, while 
neighborhoods may be the appropriate scale of analysis for still others. The key point, from an 
asset management and resource allocation perspective, is that the selection of effective and 
efficient strategies designed to address problem locations must be linked to the appropriate scale 
of the problem (Nicholson 1999; Whitelegg 1987).  

Because of the high percentage of crashes due to vehicle factors and especially human factors, as 
opposed to roadway factors, there is a strong “random” component to consider when looking at 
crash maps and trying to identify significant, meaningful clusters that can be addressed using 
strategies to alter the roadway environment. The degree and spatial scale of clustering have 
important implications for the design of appropriate countermeasures, whether site-specific 
engineering solutions, corridor- or area-wide enforcement initiatives, or more general policy 
measures. It is also important to understand the clustering behavior of crash types in order to 
better interpret crash maps. In many cases, maps of “clustered” crash types cannot be directly 
compared to maps of crash types having more random distributions and cannot be used in the 
same way to identify mitigation strategies. For instance, if a normally “random” crash type 
shows clustering in a certain location, perhaps it should receive more attention than it would 
otherwise.  
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In his discussion of the spatial analysis of crashes, Nicholson (1999) highlights the importance of 
scale and feature type and links these concepts to the design of planned countermeasures. 
“Single-site plans” address specific types of crashes clustered at one location (or a short length 
of road), “route plans” focus on longer road segments having higher than expected crash 
frequencies, and “area plans” address crashes scattered over a given area. Nicholson (1999, 71-
72) explicitly links the spatial extent of the pattern with proposed countermeasures: “The spatial 
distribution of accidents (in particular, the extent to which accidents are clustered or 
concentrated at particular sites or along particular routes, or are widely dispersed) should 
influence the choice of accident reduction plan, as the effectiveness and economic return of each 
plan type will depend on the nature and extent of accident clustering.”  

Problems (i.e., significant and worrisome spatial distributions) perceived at the site level may 
entail a different set of countermeasures than those perceived at the route or area level; that is, 
the strategies adopted—from engineering-related improvements to enforcement to planning, 
public relations, policy, and education—will depend on the scale of non-randomness identified 
in the spatial distribution of crashes. Single-site, route, and area plans can be characterized as 
“problems in search of solutions” (Nicholson 1989, p. 241). It is important to note, however, that 
not all safety improvements will be motivated by problems identified at specific locations. Mass 
action plans involve the “application of a known remedy to locations having common accident 
factors” (Slinn et al. 1998, p. 125), but not necessarily clustered at specific locations. For 
example, lane departure issues may be related generally to road curvature in rural areas. 
Identifying the proper allocation of resources across these scales of countermeasures is a key 
safety management issue (Nicholson 1989). Some types of crashes may show a high degree of 
clustering at local scales and thus may be more responsive to single-site plans. At the other end 
of the spectrum, other crash types may show little or no clustering and thus may be more 
responsive to mass action plans or non-spatial countermeasures.  

Overview of the Analytical Process  

In this project, several crash types were analyzed to assess both the degree and scale of their 
clustering. The degree of clustering, and the scale at which it occurs, was analyzed using a 
spatial statistical measure, a distance function called Ripley’s K function (Yamada and Thill 
2004; O’Sullivan and Unwin 2002). The function operates as follows: For each crash in the 
spatial distribution, the number of other crashes within a series of distances is tabulated. The 
tabulation is compared to what would happen under complete spatial randomness. The result is a 
summary graph of how clustered a given spatial distribution is (the Y-axis of the graph) at 
varying distances (the X-axis).  

Unlike point- or segment-based measures, as well as density functions and distance-based 
techniques such as nearest neighbor analysis, the K function procedure incorporates information 
across the range of all possible distances between points in a spatial distribution of events such 
as crashes. Moreover, the K function can be contrasted to other procedures that assume the 
appropriate spatial scale of analysis or require the appropriate scale as an input parameter. For 
instance, point- and segment-based measures assume that intersections or pre-defined road 
segments, respectively, represent the appropriate scale. Other techniques similarly require such 
assumptions. Density functions, for instance, require information on the search radius around 
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each point and the weighting function used to define the importance of nearby vs. distant points. 
Sliding-scale techniques require a pre-determined scale bar length and distance increment as the 
bar is moved along a linear corridor. Other clustering techniques require assumptions related to 
the minimum number of crashes in a cluster. The K function, in contrast, generates information 
specifically on the degree and scale of clustering. This information can then be used to provide 
input parameters for other spatial statistical techniques that require them.  

Project Objectives and Overview of Methods 

This project used transportation safety data, geographic information systems, and spatial analysis 
techniques to analyze the extent and scale of clustering of crash types using the Iowa Department 
of Transportation (Iowa DOT) crash database. This is a spatially referenced database of all 
crashes in the state for all locations, from local roads to Interstates. Five years of crash data were 
used, supplemented with Iowa DOT roadway data. Analysis focused on the counties of the Iowa 
Northland Regional Council of Governments (INRCOG). This region contains a wide variety of 
geographic and roadway environments. Rural areas were analyzed separately when appropriate.  

In the project, separate files for 10 crash types were prepared using the Iowa DOT crash 
database. The K function was then used to identify the degree and scale of clustering for each 
crash type in the INRCOG region, relative to the spatial distribution of crashes as a whole. For 
each crash type, the procedure identified the scale, or scales, at which the crash type was 
especially clustered. The identified distances at which this relative clustering was found were 
then used as input parameters in a process to identify the areas in which the crash type was 
overrepresented at the scales identified by the K function. Implications for the selection of 
countermeasures were also evaluated.  
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METHODOLOGY  

Statistical Method: The K Function  

The K function is a spatial statistical technique that incorporates information from all distances 
between points in a spatial distribution. As described by O’Sullivan and Unwin (2002), “The 
easiest way to understand the calculation of a K function at a series of distances d is to imagine 
placing circles, of each radius d, centered on each of the events [points] in turn…. The numbers 
of other events inside each circle of radius d is counted, and the mean count for all events is 
calculated. This mean count is divided by the overall study area event density to give K(d). This 
process is repeated for a range of values of d” (pp. 92-93). This method provides a complete 
view of clustering and dispersion across a range of distances.  

The results can be used to create a summary graph of how clustered a given spatial distribution is 
(the Y-axis of the graph) at varying distances (the X-axis). This clustering is compared to what 
would happen under hypothesized “complete spatial randomness” (CSR) conditions, the 
expected number of other points within a given distance of the average point under CSR being a 
function of the distance, the size of the total study area, and the number of points in the study 
area (Levine 2005). Conceptually, “if the area defined by a particular radius is one-fourth the 
total study area and if there is a spatially random distribution, on average approximately one-
fourth of the cases will fall within any one circle (plus or minus a sampling error)” (Levine 2005, 
p. 5.22). 

If more points are found, on average, at a given distance, then the spatial distribution is more 
clustered than expected. If fewer points are found, the spatial distribution is more dispersed than 
expected. Monte Carlo simulations can be performed, using randomly generated spatial 
distributions of points, to evaluate the statistical significance of any empirically identified 
clustering or dispersion (O’Sullivan and Unwin 2002; Levine 2005). Although normally used 
with two-dimensional (planar) point patterns (e.g., not constrained by roadways), recent research 
has addressed the generation of the K function using points on a network (Okabe et al. 1995; 
Okabe and Yamada 2001; Yamada and Thill 2004; Yamada and Thill 2007; Okabe et al. 2007).  

Implementing the K Function: Software Tools  

Several software tools are available to generate the K function in its planar form, including 
CrimeStat, ClusterSeer, and ArcGIS. The tools vary in their functionality in several ways, 
including their data input formats, data export options, graphing interfaces, and their flexibility 
in accepting input parameters (e.g., regarding the size of the study area, the option to weigh 
crashes by some measure of importance, and options to choose the number and size of “bins” 
used to summarize distances for graphing purposes).  

Fewer software options are available to generate the network K function. The Network Analyst 
functionality of ArcGIS can be used to some extent. This project primarily used SANET (Spatial 
Analysis on a Network), an extension for ArcGIS containing a set of network analysis tools, 
available from the Center for Spatial Information Science at the University of Tokyo (Okabe et 
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al. 2007; the software is available at http://ua.t.u-tokyo.ac.jp/okabelab/atsu/sanet/sanet-
index.html). The network analysis functionality of ArcGIS itself was also used, mainly in the 
earlier stages of the project.  

Methodological Issues Related to the Spatial Analysis of Crashes 

Planar vs. Network K Functions 

Several methodological issues must be addressed in any spatial analysis of motor vehicle 
crashes. First, most available statistical techniques to analyze spatial distributions, including the 
K function, are designed for other purposes and assume a two-dimensional planar world in which 
events (e.g., crimes, diseases) can occur anywhere. In transportation safety, however, crashes 
typically are constrained to a linear road network. Most significantly, this constraint affects the 
assumed “expected” degree of clustering under completely random conditions. The clustering 
behavior of motor vehicle crashes (which are normally constrained to roadways) is often 
overstated using standard spatial statistics (which assume crashes can occur anywhere). 
Techniques that ignore network constraints can falsely identify crash clustering even with 
randomly generated crash distributions (Yamada and Thill 2004). In addition, the appropriate 
scale of analyses in the identification of crash clusters can be misidentified when planar rather 
than network distances are used. To overcome the problems associated with using planar 
distances on network-constrained objects, this study uses network distances using recently 
developed analytical tools designed for this purpose.  

First-Order vs. Second-Order Effects  

In the analysis of spatial distributions, it is important to distinguish between first-order and 
second-order effects. First-order effects refer to the influence of environmental factors on the 
locations of objects in an overall spatial distribution. For instance, the spatial distribution of 
crimes is typically related to spatial variations in population or population density. The spatial 
distribution of crashes typically follows a similar pattern. Second-order effects, in contrast, refer 
to interactions in the locations of observations with respect to each other. For instance, the 
locations of a clustered set of crashes may be linked to common spatial processes, such as 
roadway characteristics. In practice, it may be difficult to separate first-order and second-order 
effects (O’Sullivan and Unwin 2002). Examples of the distinction between first-order and 
second-order effects will be shown later in this report.  

Adjusting for Traffic Volume  

A related methodological issue specifically concerns the treatment of traffic volume. Variations 
in traffic volume affect the “expected” (under complete spatial randomness) distribution of 
crashes to which empirical distributions are compared. Without an adjustment for traffic volume, 
e.g., using weights or rates, cluster identification techniques can yield the trivial result that 
crashes tend to occur on busier road segments. Conversely, the conversion of raw crash 
frequency data into crash rates can overemphasize a small number of crashes on low-volume 
roads. The current study addressed this issue in several ways, including the separation of urban 
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and rural crashes when appropriate, and a study design that used the distribution of all crashes as 
the baseline “expected” distribution, with individual crash types being compared to that baseline.  
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PROCEDURE 

Preparation of the Database and Selection of Crash Types  

Crash data used in this study came from files provided by the Iowa DOT. Data for 2001–2005 
were used for the main analysis. More recent data were used to test procedures and explore 
methodologies. The pattern of results was similar regardless of the time period used. The 
counties of INRCOG were chosen for analyzing and presenting the results of this project. The 
selection of this region helped to focus the analysis, while allowing an examination of the 
methodology in a variety of geographic contexts, from rural to metropolitan. Several crash types 
were selected for analysis, including crashes involving distracted driving, older drivers, younger 
drivers, local roads, lane departure, impaired driving, failure to yield right of way, fatalities or  
major injuries, signal running, and speeding. Separate files for each crash type were prepared for 
the counties of the INRCOG region.  

Selection and Use of Software 

Several software packages were considered for conducting the K function analysis, including 
ArcGIS, ClusterSeer, CrimeStat, and SANET. ClusterSeer had limited options for network-based 
analysis. In CrimeStat, the distance increments, or bins, used to present the results fluctuated 
according to the study area and the distribution of points, and there were limited options to 
maintain consistent bin sizes for comparison across different crash type analyses. The K function 
of ArcGIS by default uses planar distances. The network analysis functionality of ArcGIS can be 
used to generate K function values, but the process is not as convenient as using SANET, which 
was developed as an extension for ArcGIS 9.x. Therefore, SANET was chosen as the software 
platform used to generate the network-based K function for the research presented in this report.  

For a given spatial distribution of points, the SANET program compiles a count of the number of 
points falling within bins of increasing distances along a network. Figure 1 provides a simple 
example of how the program works. 
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Figure 1. Sample crash points for K function analysis 

Figure 1 shows four “crashes,” labeled A through D, with the distances between the crashes 
indicated. (It can be assumed they represent network, i.e., road, distances.) If a bin distance of 50 
distance units, say, meters, is used, then SANET compiles a count for each distance bin, as seen 
in Table 1.  

Table 1. 
Bin 
1 

Sample bins for
From Distance 

0 

 K function an
To Distance 

50 

alysis 
Observed 

0 
Cumulative 

0 
2 50 100 2 2 
3 100 150 4 6 
4 

 
150 200 6 12 

Bin 2 represents two combinations: A to C and C to A. 
Bin 3 represents four combinations: B to D, C to D, D to B, and D to C. 
Bin 4 represents six combinations: A to B, A to D, B to A, B to C, C to B, and D to A. 

 
 
The tabular results of SANET can be easily graphed in a spreadsheet package, with the “To 
Distance” column on the X-axis and the “Observed” and/or “Cumulative” column on the Y-axis.  

A few complications were encountered in practice. Most notably, computer processing times to 
generate the K function increased dramatically once the number of points analyzed exceeded 
500. With a larger number of crash points, computing the function took over 12 hours to 
complete per analysis, and in most cases the process simply crashed. In all, the data file 
contained 19,060 total crashes for the INRCOG region for the years 2001–2005. The number of 
crashes per type varied from 193 crashes (for speeding crashes) to 13,502 crashes (for local road 
crashes).  

To address this issue, the strategy was to take samples of crashes for crash types with over 
roughly 500 crashes in the database. Initially, an ArcGIS script was used to randomly select a 
subset, in this case of 572 crashes (3%), from the total of 19,060 crashes in the database. (The 
ArcGIS script required an integer percentage value to generate the sample; a value of 3% yielded 
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a sample size close to the target size of 500.) However, to improve processing times, an 
alternative procedure was developed in which the attribute table of crashes was opened in 
Microsoft Excel, a new column was added, and the RAND( ) function was used to randomly 
generate numbers. The edited and saved attribute table was then opened in ArcGIS and sorted by 
the random column. Crashes with the lowest random numbers were then selected to be the 
sample of approximately 500 crashes for that crash type. Due to the high number of “all crashes” 
(19,060), four separate samples (one with 572 crashes and three with 500 crashes) were taken, 
and the results were then averaged together. This was also done separately for all rural crashes, 
but only three random samples of 500 were taken due to fewer total crashes. A similar procedure 
was used to generate subsets for crash types greatly in excess of 500 crashes in the database. 
Note that not all crash types had over 500 total crashes. In such cases, all crashes were used. The 
graphs discussed in this report are the result of performing a network-based Ripley’s K function 
on all crashes and the subsets of crash types, using samples of the data when necessary.  

There were also issues related to the establishment of a base value to which the spatial 
distributions of specific crash types could be compared. In most applications, the K function is 
used to compare the spatial distribution of an actual set of point events to the values that would 
be generated from a randomly distributed set of points. The “expected” K function curve can be 
generated, as noted, using information on the study area, number of points, and distances. 
Alternatively, a Monte Carlo simulation can be performed to generate several, e.g., 10 to 1,000, 
randomly generated sets of points on the road network; this approach also yields measures of 
statistical significance for the empirical K function derived from the actual set of points.  

However, this technique proved to be problematic. The simpler “expected” K function curve 
requires an estimate of the size of the study area, but this does not yield meaningful comparisons 
in a network context in which the “study area” where crashes can occur is greatly constrained. 
This situation exaggerates the possible degree of dispersion in the expected K function and thus 
overestimates values of clustering using the actual crashes. In addition, the use of Monte Carlo 
simulations to estimate statistical significance was also limited, partly due to excessive computer 
processing times. Moreover, such a procedure does not adjust for first-order effects or influences 
like traffic volume, population density, street network density, etc. Randomly generated points 
that do not take first-order effects into account often simply yield the conclusion that crashes 
tend to cluster on higher volume roads.  

Several strategies to address this issue were identified and analyzed. An attempt was made to 
alter the study area size, e.g., by using buffers of roadways in GIS, to better reflect the true area 
in which vehicles could actually crash. It was hoped that this simple ad hoc adjustment could be 
used to adjust the expected K function to provide a better comparison to empirical K functions. 
This approach was only moderately successful. Randomly generated spatial distributions were 
generated to test the degree to which they corresponded to a revised “expected” (under random 
conditions) K function formula. The use of simple roadway buffers to derive study area size, 
with randomly generated spatial distributions, indicated that the revised “expected” K function 
formula still yielded results that indicated non-randomness. Further adjustments were made to 
the assumed study area size, but even the best results were unsatisfactory, the process was 
iterative and time consuming, and the optimal adjustments depended heavily on the spatial 
context (e.g., urban vs. rural) being analyzed.  
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The use of adjustments to account for first-order effects was also evaluated. For instance, crashes 
could be inversely weighted by traffic volume to give more emphasis to crashes on lower volume 
roads. Experiments with one of the programs that allowed this adjustment (i.e., CrimeStat) were 
performed. However, the results were mixed and the procedure introduced problematic issues of 
interpretation (e.g., how to interpret results based on fractional crashes or how to compare 
crashes of uneven weights). Such adjustments could also not be easily performed with the 
selected software, which had overriding advantages in network-based analyses. Also inhibiting 
the process was the issue of accurately assigning traffic volumes to crashes. The GIS databases 
did not lend themselves to easily assigning accurate values, especially for crashes associated 
with intersections.  

The strategy selected was to use the spatial distribution of all crashes as a baseline against which 
to compare individual crash types, specifically the empirical results of a K function run on all 
crashes during the study period. Specific crash types were then compared to this baseline to 
evaluate clustering or dispersion, relative to all crashes, across the range of spatial scales. Rather 
than providing a comparison to a Monte Carlo random placement of points, this method offers a 
more informative comparison, more oriented toward the intent of this project, showing how each 
particular crash type compares to crashes in general.  

Management of Tabular Results 

SANET allows the user to specify the bins into which distances can be grouped. A bin size of 50 
meters was used because it facilitated analysis at the sub-city-block level while keeping the data 
files manageable for the analysis of larger distances. The results generated by SANET, for all 
crashes in the database as well as for each analyzed crash type, were imported into Microsoft 
Excel for further analysis. Two different baseline K functions were used, one for all crashes in 
the INRCOG region, and one for only rural crashes.  

Some crash types had more than 500 crashes (and thus were represented by a sample of 
approximately 500, as discussed above), while others had fewer. Thus, there was a need for a 
way to directly compare spatial patterns across crash types. To facilitate comparison across crash 
types, the number of crashes for each type, and for all crashes, was scaled up to a value of 
100,000 in the Microsoft Excel worksheet. To use the example presented in Table 1, bin number 
2 contains 2 of the 12 possible crash pairs. Thus, the calculation performed would be (2/12) 
times 100,000, which equals 16,667 crash pairs, meaning that 16.667% of all possible crash 
interactions occurred between 50 and 100 meters of one another. A cumulative column was then 
also created to correspond to the 100,000-equivalent value across increasing distances. In the 
analysis presented in this report, crash types were adjusted up from between 193 and 572 crashes 
to 100,000 crashes to facilitate direct comparison. These comparisons were made in the form of 
ratios between individual crash types and the baseline. These ratios were then graphed on 
separate tabs within the spreadsheet file.  

Table 2 illustrates how comparisons were made between individual crash types and all crashes in 
Microsoft Excel. The first two columns contain the distances of the distance bins. The next two 
columns contain the observed number of crash pairs at the specified distance range from each 
other within the bin, and also the cumulative number across bins. In the next two columns, these 

10 



bin and cumulative values are converted to a common metric for comparison to all crashes, and 
by extension to other crash types. This comparison is calculated, in three different ways, in the 
last three columns of the table.  

Table 2. Sample K function table for distracted drivers 

From 
Distance 

To 
Distance Observed 

Cumulative 
observed 

# in bin per 
100k 

crashes 
(distracted)

# of 
occurrences 

within X 
distance per 
100k crashes 
(distracted) 

Amount of 
difference 
between 

distracted 
and all 
crashes 

Ratio of 
distracted vs 
all crashes 
based on 

100k (bin by 
bin) 

Ratio of 
distracted vs 
all crashes 
based on 

100k 
(cumulative)

0 50 50 50 65 65 17 0.352 0.352 
50 100 30 80 39 105 36 0.942 0.526 

100 150 30 110 39 144 54 0.831 0.598 
150 200 48 158 63 207 99 2.536 0.918 
200 250 44 202 58 264 117 0.469 0.798 

 
 
In the first of the three comparison columns, the difference between the crash type and all 
crashes is calculated by taking the cumulative of the 100,000-equivalent values (i.e., “# of 
occurrences within X distance per 100k crashes”) for that crash type and subtracting the value of 
the corresponding column from the database for all crashes (not shown). Negative numbers mean 
there are fewer crashes than what is expected based on all crash types. The next comparison 
column shows the ratio of the crash type values to the value for all crashes (per 100,000 crashes), 
on a bin-by-bin basis. This is calculated by taking the number in the “# in bin per 100k crashes” 
column for that crash type, dividing it by the value of the corresponding column from the 
database for all crashes (not shown), and then subtracting a value of 1. At a given spatial scale, 
i.e., range of distances, a one-to-one ratio of the crash type to all crashes indicates that both have 
the same degree of clustering (or dispersion). That is, the proportion of crashes of the given type 
within the specific distance range of each other is the same as the corresponding value for all 
crashes. Due to the subtraction in the formula, a one-to-one ratio is represented by the number 
“0.” (This method is similar to what is done in the analysis of K functions more generally.) 
Values higher than zero suggest that clustering, relative to all crashes, is occurring for that crash 
type at that distance, while lower values suggest relative dispersion. The last column is identical 
except that it uses the cumulative numbers across distance bins and is therefore useful for seeing 
overall trends.  

Graphing of K Function and Related Curves  

A K function for all crashes in the INRCOG region is presented in Figure 2. This graph strongly 
illustrates the presence of first-order effects, i.e., those related to more general influences like the 
geographic distribution of cities, towns, roads, traffic volume, population, and the like, rather 
than relationships among the points themselves. Specifically, the two distinct peaks in the “# in 
bin per 100k crashes” line of Figure 2 can be attributed to first-order effects. The INRCOG 
region is dominated by the Waterloo/Cedar Falls metropolitan area. The first peak, at a distance 
of just under 5,000 meters, or 5 kilometers, represents intra-city crashes within the two cities. 
The second peak, at about 10,000 meters, represents inter-city crashes, caused by the clustering 
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search radius becoming large enough to encompass the two cities (i.e., Waterloo crashes 
“cluster” with Cedar Falls crashes while, simultaneously, Cedar Falls crashes “cluster” with 
Waterloo crashes). Beyond about 14 km (roughly the distance from the western edge of Cedar 
Falls to the eastern edge of Waterloo), the crashes per bin drop off significantly. Other peaks are 
seen at approximately 25,000 meters, 32,000 meters, and 39,000 meters, likely as crashes in 
smaller cities are identified within the specified distances of Waterloo and/or Cedar Falls. The 
cumulative effect of these trends can be seen in the line titled “# of occurrences within X 
distance per 100k crashes,” which represents the cumulative number of crashes as distance 
increases.  

 
Figure 2. K function for all crashes 

In Figure 3, the K function for rural crashes is shown separately. The cumulative line, for the 
most part, shows a steady increase. This suggests that the influences of first-order effects are 
minimal when the influence of cities is removed. Between a distance of zero and 10,000 meters, 
the cumulative line shows a slower rate of increase. This may be due in part to the absence of 
any crashes within city limits artificially reducing the number of crashes happening in close 
proximity, since the “holes” in the analysis area where cities would be are roughly the size of the 
non-conformity in the line. 
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Figure 3. K function for all rural crashes 

The results presented in the following section use the difference between the K function graphs 
for specific crash types and the graphs for crashes as a whole (Figures 2 and 3). Thus, when 
crashes of a specific type are examined, they will not appear to be clustered unless they are 
closer to each other, at the given scale, than crashes as a whole. The analysis is based on the 
difference between the degree of clustering or dispersion of the individual crash types versus the 
“All Crashes” line shown in Figure 2 (or Figure 3 when applicable). This strategy is used to 
account for first-order effects while focusing on second-order effects. Such a comparison, while 
not a flawless solution, should largely account for first-order effects and allow for the second-
order effects to become more apparent in the graphs. 

A visual inspection of the ratio graphs reveals the distances at which clustering of a given crash 
type occurs. In the graphs presented in this report, the scale is set so that a value of zero indicates 
no clustering or dispersion (relative to all crashes), as is often done in K function analysis. Ratios 
above zero indicate that a specific crash type is more clustered than crashes as a whole at a given 
distance, and ratios below zero indicate that the crash type is less clustered (or more dispersed) 
than crashes as a whole. For example, suppose a given crash type appears on a graph as having a 
bin-by-bin ratio of 2 at distances between 100 and 150 meters. This situation means that, at that 
distance range, for every baseline crash (i.e., from “all crashes”) there are two additional crashes 
of the given crash type. In the analysis that follows, the distances at which peaks occur in these 
ratios were identified, and these distances were then used as input parameters, e.g., search radii, 
to evaluate potential locations or areas being overrepresented for a given crash type. Figure 4 
presents a conceptual overview of the bin-by-bin comparison of K functions.  
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Figure 4. Comparison of K functions: conceptual overview 

Use of K Function Results to Identify Overrepresented Locations by Crash Type  

Once the distances at which specific crash types cluster, relative to all crash types, were 
identified, this information was used to identify hot spots at the appropriate spatial scales. 
Several strategies to derive hot spots, using the input distance parameters discussed above, were 
evaluated. Network distances, rather than more simple planar, straight-line distances, were used 
to generate hot spots. Although planar distances would have resulted in a less complicated 
analytical process and faster computing times, network distances were more consistent with the 
nature of motor vehicle crashes on a network and with the network-based derivation of the input 
distance parameters. The input distance parameters were derived using the Network Analyst 
functionality of ArcGIS. The Service Area feature of Network Analyst starts at a given set of 
points (here, crashes) and builds polygons around each point extending outward up to a specified 
distance along all possible routes.  

To understand the scale at which each crash type clusters (if at all), and thereby to know the 
proper size of a hot spot analysis polygon, the K function graphs were used. Spikes in the 
number of crashes of a particular type above “expected” values were used to determine where 
clustering occurred and what polygon sizes were appropriate for the analysis. The distances at 
which potential clustering occurred are identified in the discussion of each crash type.  

With the polygons created, the next step was to identify hot spots using the polygons. This was 
done by performing a spatial join of the crash points of that particular crash type as well as a 
separate spatial join of all the crash points to the polygons. The spatial join process, given the 
number of points and generated polygons, was computationally intensive. In many cases, it 
required taking the just-appended polygons and again splitting them apart into more manageable 
sub-processes. The polygons were then again appended to one another after the spatial join 
process was complete. The final result was a set of polygons, one for each crash, with 
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information on the number of crashes of a particular type, and the number of crashes as a whole, 
at the selected network distance from each crash.  

Two main options were considered for the selection of hot spots for further analysis. Initially, 
hot spots were identified by a density value derived by taking the number of crashes for the 
particular crash type that were found within each polygon and dividing that number by the 
number of crashes as a whole also occurring in that polygon. This ratio was then used to rank the 
polygons. However, this method tended to emphasize polygons containing relatively few 
crashes, often containing only one crash that happened to be of the type being analyzed. One 
option assessed was to eliminate polygons with only one crash, since the K function is designed 
to examine second-order properties, i.e., the spatial relations of two or more points with respect 
to each other. However, this option was discarded because of the subjectivity involved in its 
implementation.  

Another approach is to identify locations with an “excessive” number of crashes of each type, 
given systemwide proportions for the crash type and the number of crash-type crashes (Retting et 
al. 2001). In the current study, this approach was used to evaluate the “excess” number of 
crashes of the analyzed crash type within each hot spot polygon. First, the expected number of 
crashes of a given type in each polygon, given the total number of crashes and the systemwide 
proportion, was calculated. (For instance, if 15% of all crashes in the database are of a given 
type, and if there are 20 crashes in a polygon constructed using a certain network distance 
around a crash, then 3 crashes within that polygon [15% of 20] could be expected to be of the 
given crash type, all else being equal.) Then, the excess number of crashes was computed by 
subtracting the expected number of crashes of the analyzed crash type from the actual value. 
This can be seen as the potential decrease in crashes if the polygon had a “normal” number of 
crashes of that type. This method incorporates both the density ratio (percentage of crashes of a 
given type) as well as the raw number of crashes. Although this method might bias the analysis 
more toward higher volume roadways, or urban areas, it also likely indicates where there may be 
more “bang for the buck” in addressing crashes of a particular type. The results presented in the 
following section focus on the “excess” number of crashes.  

The polygons were then ranked based on the number of excess crashes, and the top polygons 
were selected for mapping. In practice, often the top-ranked polygons were overlapping, 
representing a redundancy. For example, the second highest ranked polygon would be created 
around the crash located closest to the crash from which the highest ranked polygon originated. 
The two separate polygons essentially represent the same area with only a minor offset. To avoid 
going through each of the thousands of polygons, one at a time, and making a subjective 
judgment as to whether they represented the same hot spot as the prior polygon, an alternative 
method was used, which was to eliminate from consideration all polygons overlapping the 
highest ranked polygon. The highest ranked polygon not overlapping the top ranked hot spot was 
then given the second highest rank, and so on.  

This approach to eliminate overlapping polygons creates the possibility that some hot spots may 
be overlooked and not properly identified as hot spots. An example could be two distinct crash 
hot spots in close proximity to one another. There may not be any crashes shared by the two 
polygons, yet the polygon boundaries extend far enough to slightly overlap. The second highest 
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ranked of the two polygons would not be identified as a hot spot as a result. It is likely, however, 
that the hot spot would still be identified by a non-contiguous polygon centered slightly further 
from the higher ranked hot spot and would suffer little in terms of accuracy of spatial coverage 
and rank.  
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K FUNCTION RESULTS AND ANALYSIS FOR EACH CRASH TYPE  

Summary Graphs  

The cumulative K function for all crashes in the INRCOG region, 2001–2005, is shown in Figure 
5. Crashes related to signal running tend to cluster the most, while fatal crashes tend to be the 
most dispersed. To some extent, at the scale of analysis presented the figure largely depicts 
urban vs. rural orientation of crash types. The cumulative K functions for several crash types in 
rural areas (i.e., for crashes located outside incorporated cities) are shown in Figure 6. In the next 
several sections, the K functions of specific crash types are compared to the K function of all 
crashes (and, in some cases, rural crashes), clustering distances are identified, and hot spot 
polygons are discussed.  

 
Figure 5. Cumulative K function, all crashes 
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Figure 6. Cumulative K function, all rural crashes 

Ran Signal 

Ran Signal crashes are those caused by the failure to stop at locations with active traffic controls, 
specifically stop-and-go lights. This crash type was analyzed in part for the purpose of 
demonstrating the nature of the K function analysis. It was assumed that these crashes would 
experience a high degree of clustering because traffic signals are found, at specific points, almost 
exclusively in cities and some towns and generally only along highly traveled roads within these 
cities and towns. This expectation was confirmed by the graph in Figure 7. Crashes related to the 
running of traffic lights were by far the most clustered crash type analyzed.  

The bin-by-bin ratio values, as well as a moving average of these values, were used to identify 
scales at which signal running crashes appeared to be clustering more than crashes as a whole. 
Distances of 50, 150, 300, 500, and 1,700 meters were selected for polygon generation. The 
distances of 50, 150, 300, and 500 meters all had sharp increases in the ratio above expected 
values. The distance of 1,700 meters was selected to allow the capture of a general upward trend 
in the ratio between 1,300 and 1,700 meters. These values were then used as input parameters to 
identify locations and areas at the corresponding spatial scales of analysis. The number of excess 
crashes was used to identify and rank the hot spots at the various spatial scales, as explained 
above. The results are shown on Figure 8. 
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Figure 7. Ran Signal crashes vs. all crashes K function comparisons  

As distances increase above 2 or 3 kilometers, the fluctuations in the ratio can be attributed 
almost entirely to first-order effects, and in fact they probably serve as a good guide to the 
degree to which first-order effects impact other crash types. The ratio increases again around 
9,000 meters (not shown on graph) when the Cedar Falls-Waterloo intercity clustering gets 
picked up. Beyond 10,000 meters, the ratio for Ran Signal crashes falls off drastically, reflecting 
the fact fewer signals are present outside city limits. 

The variation in ratios from one 50 meter bin to the next is extreme. At distances less than 50 
meters, Ran Signal crashes are over 14 times more likely to occur than crashes in general (All 
Crashes). Yet when the bin distance is extended to instead capture crashes between 50 and 100 
meters apart, the ratio is only 2 to 1. This may be because the distance range of the bin is too 
large to capture crashes at a single intersection yet not large enough to pick up crash pairs 
occurring at two separate intersections, i.e., traffic signals are farther apart than 100 meters. 
(This up-and-down pattern of the values is similar to tests performed earlier in this project in 
which an even grid of “crashes” was produced to see how the resulting K function performed in 
different circumstances.)  

 

19 



 
Figure 8. Ran Signal crash hot spots  
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Polygons were generated for the various distances, and calculations were made for the excess 
crashes occurring within each polygon (Figure 8). While not entirely surprising, the results 
reveal that the best opportunity to reduce Ran Signal crashes is at the busiest intersections, 
specifically those at the intersections of major urban roads in and near downtown areas. On such 
roads, the higher levels of traffic and speed mean that failing to see a stop signal has a much 
greater likelihood of producing a crash. Possible remedies include those typically considered for 
intersections where red light running occurs (e.g., signalization, warning signs, and potentially 
red light running cameras). Interestingly, some of the larger polygons, using the 1,700 meter 
distance, do not have smaller hot spot polygons within them, indicating potential area-wide 
problems even if few, if any, intersections or adjacent sets of intersections appear to be 
particularly problematic. Examples include the area in southwest Cedar Falls, a largely 
residential area west of downtown Waterloo; Highway 58 north of US 20; and Highway 63 north 
of Highway 20. This illustrates the potential usefulness of considering the clustering of crash 
types at multiple scales.  

Distracted Driving 

Based on the “clustering ratio” (i.e., the ratio of distracted driver crashes to all crashes) 
consistently being above zero at the smaller distances, Figure 9 suggests that Distracted Driver 
crashes are an urban-dominated phenomenon. This is based on the fairly significant and 
consistent rate reduction beyond the 15 kilometer mark, which was denoted earlier as the extent 
of the Cedar Falls-Waterloo influence. This pattern is confirmed by the hot spot map generated 
(Figure 10). The map, however, reveals that such crashes are not limited to Waterloo and Cedar 
Falls, but are also seen significantly in the smaller outlying cities and towns.  

The most noticeable aspect of Figure 9 is the sudden peak at 200 meters before the bin-by-bin 
curve immediately returns to more normal values. In Cedar Falls and Waterloo, most “standard” 
near-square city blocks were measured to be between 90 and 125 meters per side. Waterloo, 
however, also has a significant number of “rectangle” blocks that tend to measure roughly 160 to 
210 meters on the longer axis. If distracted driving were purely an intersection problem, the 100 
to 150 meter range might also have a significantly higher ratio, but that is not the case; the ratio 
indicates only a slight degree of clustering.  
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Figure 9. Distracted Driver crashes vs. all crashes K function comparisons  

In Figure 10, the highest ranked hot spots occur at a variety of locations within populated areas. 
The top ten 200 meter hot spots occur along frontage roads, along downtown area arterial routes, 
in purely residential areas, and in areas with no road classes above local streets. While this 
analysis is able to identify several locations of concern, there are few identifiable underlying 
factors. Crash report narratives, and perhaps site visits, might help to detect the nature of any 
distracting features or situations (e.g., visual clutter, landscape features, traffic, road geometry, 
intersections) or whether the hot spots are truly random occurrences. Distracted driver problems 
are often linked to in-car activities (cell phones, radios, eating and drinking), but they seem to 
interact with the roadway or geographic environment in some way because the consequences are 
felt in specific places. Distracted Driver crashes in this study area are very much an urban 
problem. Even at the larger distances shown in Figure 10, nearly all hot spot polygons were 
centered on cities and towns. Remedies would include both reviews of identified sites, to make 
the roadway environment less distracting or more forgiving, as well as more general policies 
regarding distracting activities, e.g., using cell phones while driving.  
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Figure 10. Distracted Driver crash hot spots  

23 



Older Drivers 

Older drivers, for the purposes of this analysis, are defined as those aged 65 and above. When 
the K function was performed, there were few obvious distances at which Older Driver crashes 
significantly clustered relative to All Crashes (Figure 11). There were general increases in the 
clustering ratio at distances around 5 kilometers and 34 kilometers. The increase at 34 kilometers 
(not shown on Figure 11) is likely a first-order effect because the concentration of Older Driver 
crashes in the Cedar Falls-Waterloo area began “clustering” with some of the more populated 
surrounding cities such as Waverly and Independence. The hot spots at the 34 kilometer scale 
were not mapped because the resulting hot spot polygons would have been excessively large and 
not helpful in aiding the search for specific locations in which targeted countermeasures could be 
applied. Instead, the minor spikes in the Older Driver ratio at distances less than 5 kilometers 
were focused on. Using Figure 11, the distances of 550 meters, 3,850 meters and 4,900 meters 
were selected for closer analysis.  

 
Figure 11. Older Driver crashes vs. all crashes K function comparisons  

The identification of hot spots (Figure 12) at the three scales reveals the areas where most excess 
crashes occur, namely within cities and towns of at least 1,000 residents. Using the smallest (550 
meter) distance within the cities, the problem appears quite focused. There is a concentrated area 
within Waterloo in which four of the top ten hot spots appear, including three of the top five hot 
spots This concentration occurs near a big-box shopping district lined with a mall, fast food 
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restaurants, and home improvement, home electronics, grocery, and office supply stores. 
area, Older Driver crashes are nearly double the expected value. A hot spot in a big-box 
shopping district between Cedar Falls and Waterloo (colloquially referred to as Cedarloo) also 

In this 

appears as a “hot spot.” Slightly less severe but still a significant problem are downtown areas.  

ur. 

 

 traffic 

asures 

the 
factors is a possible option through programs specifically designed for older 

Such locations have several variables possibly contributing to Older Driver crashes. These 
locations generally feature two or more lanes in each direction of travel, as well as many turn 
lanes. There are frequent stop-and-go lights despite posted speeds of 30 or more miles per ho
In the shopping areas, turn lanes, frontage roads, and many business entrances contribute to 
creating an environment with a great deal of activity and potentially confusing situations. In
downtown areas identified with hot spots (Cedar Falls, Waterloo, Independence, and New 
Hampton), similar situations of potentially confusing roadways and a great deal of turning
also occur. The number of crashes in these locations suggests older drivers are especially 
unprepared to meet the unique challenges presented at such locations. Possible counterme
include taking f
roadway, the in
risk via human 
drivers.  

urther steps to simplify traffic flow in these areas. Besides modifying the 
volvement of a very clear demographic influence means that trying to reduce 
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Figure 12. Older Driver crash hot spots  
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Younger Drivers 

Younger drivers are defined as those aged 14 through 24. Iowa residents are eligible to receive 
their Instruction Permit at age 14. Individuals at that age are widely accepted as being the most 
dangerous demographic group of drivers. It was thought that performing a study on the spatial 
characteristics of their crashes might reveal specific locations and situations in which younger 
drivers struggle to respond appropriately when behind the wheel. 

Figure 13 reveals a peak in clustering after approximately 14 kilometers, and a drop off in 
clustering thereafter. This trend was interpreted initially as indicating that Younger Driver 
crashes are typically more urban than rural. This distance was not used to generate hot spots 
because of the computational requirements necessary given the network distances and number of 
crashes involved, as well as expected issues in interpreting hot spots using such a distance.  

 
Figure 13. Younger Driver crashes vs. all crashes K function comparisons 

At a more local level, several peaks were investigated using distances of 200 meters, 550 meters, 
850 meters, and 1,650 meters (Figure 14). Not surprisingly, the locations of several hot spots are 
associated with educational institutions, in particular the University of Northern Iowa (UNI), 
where driving exposure rates for younger drivers are high. Additional educational facilities with 
their own distinct hot spots include Wartburg College (Waverly), Hawkeye Community College 
(Waterloo), and West High School (Waterloo).  
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Figure 14. Younger Driver crash hot spots  
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Younger Driver crashes also appear to cluster in certain areas, specifically areas with 
entertainment, shopping, and employment (e.g., College Square Mall, downtown Cedar Falls), 
and major road segments to and from these areas. Younger Driver hot spot locations seem 
heavily influenced by the travel patterns of students between their places of learning and 
residence and their places of entertainment and shopping. Several of these hot spots seem to 
reflect problems with intersections, turning traffic, and business entrances. Based on these 
results, countermeasures to address Younger Driver crashes might include enforcement, 
education (especially with respect to novice drivers and complex driving situations), and efforts 
linked to younger driver travel patterns. Further analysis could focus on driver actions and the 
contributing circumstances of crashes within each hot spot.  

Local Roads 

For this study, local roads were identified by means of the definition used in the Iowa 
Comprehensive Highway Safety Plan (CHSP) (Iowa DOT 2007), a document that guided the 
determination of which crash types to include in this report. The Iowa CHSP states that local 
roads are those under the jurisdiction of Iowa’s 99 counties and 947 cities. (An alternative 
definition would have been FHWA’s functional class, which defines roads more by their 
purpose.) This includes a majority of miles of Iowa roads, as well as a majority of crashes in the 
study area. The result was the creation of a crash type with the highest number of crashes 
(13,502) in the study.  

Local Road crashes exhibited positive clustering ratios for nearly the entire span of distances up 
to 20 kilometers. The most significant and consistent clustering, however, occurred at distances 
under 5 kilometers (Figure 15). Due to the varying nature of the ratio under 5 kilometers, 
polygons were generated to examine hot spots at distances of 300 meters, 500 meters, 2,650 
meters, and 3,550 meters.  
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Figure 15. Local Road crashes vs. all crashes K function comparisons 

Mapping out the hot spots at these scales revealed (Figure 16), not surprisingly, that the greatest 
number of excess crashes occurs within Cedar Falls and Waterloo. Likely as a result of the 
definition used, which includes arterial and collector roads under the jurisdiction of the cities as 
local roads, the hot spots are centered on the intersections of major routes. With such a 
generalized crash type, the hot spots reveal little more than that most excess crashes occur where 
there are high traffic volume roads meeting. 
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Figure 16. Local Road crash hot spots  
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To better understand Local Road crashes, the entire process was repeated excluding crashes 
within city limits (Figure 17). This rural-only perspective was completed with the expectation of 
revealing dangerous roads in rural areas that may not have shown up in Figure 16 simply 
because of lower traffic volumes. The spikes at distances of 50 meters and 1,050 meters were 
selected for further analysis.  

Similar to the analysis that included urban areas, the rural-only hot spot analysis (Figure 18) 
showed that the problem areas are where collector or higher functional class roads intersect. 
(There were few enough crashes occurring in the hot spots to cause several exact ties in the 
excess crashes value, as shown on the map.) Of particular interest for this study area are the 
multiple hot spots along County Road C-57, also known as Cedar-Wapsi Road, which runs east-
west to the north of Waterloo. Nearly every intersection of this minor collector road with other 
collector level roads makes the top ten hot spots list. The crash history of these intersections 
suggests that targeted roadway improvements at these locations may be beneficial, such as 
flashing red lights mounted on stop signs, or rumble strips if it is a matter of drivers not noticing 
the stop signs. Some of the crashes may be a result of drivers misjudging the rate of speed at 
which cars on the perpendicular route are approaching. A closer analysis of the cause of the 
crashes at these intersections may reveal which action is appropriate at each particular 
intersection. 

 
Figure 17. Local Road crashes vs. all crashes K function comparisons (rural only) 
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Figure 18. Local Road crash hot spots (rural only) 
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Lane Departure 

Several fields in the Iowa DOT crash database suggest a departure from the proper lane of travel. 
The definition used in this study is based on the “MajorCause” field of the database. Four such 
possible causes were included: (1) crossed centerline, (2) run off road—right, (3) run off road—
straight, and (4) run off road—left. 

Figure 19 reveals a very distinctive clustering ratio line for Lane Departure crashes. This type of 
crash was underrepresented at distances up to 16 kilometers, the range normally associated with 
urban crash patterning. With no clustering at shorter distances, and the inability to gather much 
information from a map of hot spots at extremely large distances (covering large portions of a 
county), no hot spot map was created to correspond to Figure 19. 

 
Figure 19. Lane Departure crashes vs. all crashes K function comparisons 

However, based on Figure 19, the clustering appears to be mainly a rural problem, so an 
identical K function operation was run on Lane Departure crashes falling outside city limits. The 
resulting graph can be seen in Figure 20. Once again, very few distances cross into a positive 
ratio value, suggesting minimal clustering that is possibly as much a result of random variations 
than any real trend. Nonetheless, a hot spot map (Figure 21) was generated for several of the 
most clustered distances.  
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Figure 20. Lane Departure crashes vs. all crashes K function comparisons (rural only) 

In Figure 21, there are 16 polygons representing the 50 meter scale. Each 50 meter hot spot 
labeled with a rank of 1 has merely three excess crashes. There may indeed be problems with 
those particular locations; however, the nature of the problem is not immediately clear from 
looking at the map. All other 50 meter polygons have two or fewer excess crashes, making it 
difficult to suggest that there are truly problems at these locations rather than simply random 
fluctuations. In this case, mass action remedies may be more effective than spot improvements of 
weak hot spots.  

At a broader spatial scale, the 2,500 meter and 5,300 meter polygons are large enough to 
encompass enough crashes to be more certain of the overrepresentation of Lane Departure 
crashes. Most of these larger hot spots are centered on arterial and collector functional class 
roadways. The fact that these crashes occur on what are mainly paved roads means that fairly 
simple improvements, such as more visible white lines, wider shoulders, or shoulder rumble 
strips may provide fairly low-cost yet highly effective results in these problematic areas. Specific 
problematic roads in this study area include US 218 between Janesville and Waverly, and 
County D-48/Brandon Road, located northeast of La Porte City. 
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Figure 21. Lane Departure crash hot spots (rural only) 
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Impaired Driving  

For this study, impaired driving included only improper alcohol consumption. The use of illegal 
drugs, or the improper use or overdose of medical drugs, was not included. Only crashes 
involving a driver with a blood alcohol content over 0.08 were included in the dataset analyzed. 

The ratio line in Figure 22 fluctuates up and down along the zero line, but never rises above 0.75 
(until the distance scale is large enough to make mapping the hot spots fairly meaningless). Such 
a pattern of ratios reflects the existence of little if any real clustering at any spatial scale. A map 
was generated (Figure 23) at scales of 2,000 meters and 5,000 meters. In both situations, the ratio 
is near zero (meaning the crash clustering rate is no more or less than the expected value). These 
sizes were chosen because they typify the line as a whole and could possibly reveal where 
Impaired Driving crashes generally occur.  

While Figure 23 displays hot spots, few are truly “hot.” Using the 2,000 meter polygons, only 
two hot spots were identified as having an excess, one excess crash in each. The 5,000 meter hot 
spots were more successful at identifying problematic areas. By far, the worst single hot spot 
identified, containing over 30 excess crashes, corresponded to the areas connecting the 
University of Northern Iowa with downtown Cedar Falls and the University of Northern Iowa 
with “Cedarloo” along University Avenue. The presence of bars in both areas popular with 
students at UNI raised suspicions that students may be the cause for that particular hot spot. To 
test this hypothesis, the driver age was joined to the crash data. Out of the 106 impaired drivers 
involved in crashes found within this hot spot, 65 were less than 25 years old, and 28 drivers 
were under 21 years old. A free shuttle service from the campus area to several of the bars in 
question already exists, leaving education and stricter enforcement as the logical course of action 
to reduce crashes in that particular hot spot. Why the hot spot southeast of Waterloo exists is not 
clear. The rest of the hot spots contain fairly insignificant numbers of excess crashes, five or 
fewer in each, reflecting the weak clustering values seen throughout Figure 22.  
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Figure 22. Impaired Driver crashes vs. all crashes K function comparisons 
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Figure 23. Impaired Driver crash hot spots  
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Failure to Yield Right of Way 

Failure to Yield Right-of-Way (FTYROW) crashes are typically thought of as occurring at 
intersections, and most do. There are, however, other situations in which these crashes can occur. 
This study used all crashes with the following FTYROW designations, as identified in the Iowa 
DOT crash database: 

• At uncontrolled intersection 
• Making right turn on red 
• From stop sign 
• From yield sign 
• Making left turn 
• From driveway 
• From parked position 
• To pedestrian 
• Other 

 
Because most of these crashes are expected to be intersection-based, it was anticipated that the 
strongest clustering would occur at smaller scales. This expectation is supported by Figure 24. 
(Increases at 10 kilometer and 15 kilometer distances, not shown, also occurred, likely as a result 
of first-order effects.) The spikes in the ratio at smaller scales were mapped to produce hot spots, 
the results of which are shown in Figure 25. The distances mapped are 100 meters, 450 meters, 
and 650 meters, all of which reached a ratio value above 1 (i.e., twice the rate expected of the 
crash type).  

The 100 meter hot spot polygons highlight issues at specific intersections. As logically expected, 
more excess crashes occurred at intersections on highly traveled arterial roadways, particularly 
where lined with businesses, meaning there were high levels of traffic making turns. Once again, 
the mall and big-box shopping districts in southeastern Waterloo and the Cedarloo area, between 
Cedar Falls and Waterloo, are among the worst areas. The fact that this characteristic is shared 
with both the Older Driver crashes and Younger Driver crashes suggests a correspondence 
between these demographic groups and FTYROW crashes in these locations.  

The larger hot spot polygons, 450 meters and 650 meters, also picked up the same problem areas 
but also added new areas. Interestingly, these polygons did not highlight downtowns, but rather 
residential areas just beyond downtowns. These areas of dense residential neighborhoods, 
southwest of downtown Cedar Falls, south of Waterloo’s downtown, and just northeast of the 
University of Northern Iowa campus (see Figure 14 for the location of the campus), all appeared 
as hot spots. There are a number of possible contributing factors to this, including (1) the high-
density road network, (2) minimal traffic controls in most situations, (3) insufficient sight lines at 
intersections caused by dense on-street parking, and (4) drivers disregarding traffic control signs 
due to familiarity with the neighborhood in which they live. The appearance of different hot 
spots at different scales, highlighting potentially different problems and countermeasures, 
illustrates the importance of scale when analyzing crash patterns.  
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Figure 24. Failure to Yield Right-of-Way crashes vs. all crashes K function comparisons 
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Figure 25. Failure to Yield Right-of-Way crashes hot spots  
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Fatal and Major Injury  

Fatal and Major Injury crashes were combined in this study. Initially, an analysis was conducted 
solely on fatal crashes; however, given the relatively low number of crashes involved and their 
dispersed spatial distribution, the results were idiosyncratic. (The clustering ratio sharply 
increased and decreased in response to specific pairs of crashes being within certain distances of 
each other, and hot spots had few crashes and typically were not meaningful.) Instead, crashes 
involving fatalities or major injuries were used to analyze the spatial distribution of severe 
crashes (i.e., those that resulted in a fatality or narrowly avoided it). 

The resulting ratios shown in Figure 26 were consistently below zero, meaning that fatal and 
near-fatal crashes did not cluster and were actually dispersed beyond what was expected. There 
were, however, areas in which the ratio was closer to zero than on average. To investigate this, a 
hot spot map was produced (Figure 27) of the 50 meter distance bin. 

 
Figure 26. Combined Fatal and Major Injury crashes vs. all crashes K function 

comparisons 
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Figure 27. Combined Fatal and Major Injury crash hot spots  
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The majority of the hot spots identified at the 50 meter scale appeared where arterial or collector 
roads intersected one another. Most hot spots also occurred either outside cities or on roads 
within cities that allowed travel at 45 miles per hour or more. Those hot spots occurring outside 
the city often occurred at intersections where one route is given right of way and is allowed to 
continue at highway speeds while the other route must stop and then proceed across or onto the 
perpendicular route. When two high-traffic roads are involved, this situation results in a 
significant amount of crossing or merging traffic and exposure to possible side impact crashes 
with one of the vehicles traveling at a high rate of speed. Possible solutions vary depending on 
the road configuration. The top-ranked hot spot is at a location where traffic from County Road 
C-57/Cedar-Wapsi Road must, from a stop, either merge or cross traffic traveling at 65 miles per 
hour. One countermeasure would be to upgrade the intersection. Some hot spots, however, 
already have similar measures in place; hot spot number three has stop-and-go lights installed, 
and hot spot number six has dedicated on- and off-ramps.  

To further explore the issue of fatalities, a rural-only crash database was produced of fatal and 
major injury crashes falling outside city limits. The resulting graph can be seen in Figure 28. 
With the influence of urban areas removed, fatal and major injury crashes experienced an 
increase in clustering ratios. Three clear peaks appeared at distances of 50 meters, 1,800 meters, 
and 5,050 meters. The 50 meter distance could be explained by several fatal or major injury 
crashes occurring at the same intersections, but the other spikes did not offer any obvious 
explanations.  

Mapping the rural-only hot spots generated interesting results, as seen in Figure 29. Most of the 
top 50 meter hot spots seen in Figure 27 remained. While the locations experienced little change, 
it was the numbers behind the hot spots that show the clear differentiation. Within the hot spots 
for fatal and major injury crashes in general (urban areas included), there was a fatality or major 
injury in 14% of crashes. The same statistic for rural-only hot spots is 35% of crashes. Crashes in 
these rural hot spots were less common, but when they did happen, the odds of a fatality or major 
injury was significantly higher. In seven of the top ten rural hot spots, a fatality or major injury 
was experienced in 50% or more of crashes occurring there. These hot spots are extremely 
critical areas within the INRCOG region. The aforementioned interchange between US 218 and 
C-57/Cedar-Wapsi Road experienced five fatal or major injury crashes in the five years of data 
explored, or one serious crash per year. If that intersection were to be simply as safe as the 
“average intersection” within INRCOG, it would be expected to experience a fatal or major 
injury crash once every 3.6 years.  

In the rural-only analysis, larger polygons were also generated for 1 800 meter and 5,050 meter 
distances. The 5,050 meter polygons were too large to allow meaningful information to be 
gathered from them. The 1,800 meter hot spot sizes, however, did prove useful. Many of them 
corresponded to the locations of the 50 meter hot spot polygons, revealing the importance of 
these locations in terms of fatal or major injury crashes. There also were several new locations 
highlighted, revealing areas in which such crashes are significant not at a particular intersection, 
but along a particular short stretch of road, or revealing a combination of a problematic 
intersection and crashes along the roadway leading up to that intersection. While these crash hot 
spot locations could be revealed by the analysis, their causes are not immediately identifiable. A 
further analysis of the contributing circumstances of each crash within the hot spots, or an on-site 
inspection, may reveal further clues in these situations. 
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Figure 28. Combined Fatal and Major Injury crashes vs. all crashes K function 

comparisons (rural only) 
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Figure 29. Combined Fatal and Major Injury crash hot spots (rural only) 
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Speeding 

Many drivers often exceed the posted speed limit, and speeding likely contributes to many 
crashes. For the purpose of this analysis, however, the interest was in crashes for which speeding 
was the primary factor. These were identified by using crashes for which the Iowa DOT crash 
database recorded excessive speed as the major cause. 

Figure 30 shows a graph quite different from most others produced in this study. The ratios 
indicate that speeding-related crashes experienced some of the strongest clustering of all crash 
types reviewed in this study. The ratio also has a general increasing trend up to a distance of 
roughly 4,000 meters. The relatively low number of Speeding crashes (193), however, does raise 
some concerns about the significance of the findings. The graph indicates a fair amount of 
variation from bin to bin, but the overall trend with increasing distance remains clear. 

 
Figure 30. Speeding crashes vs. all crashes K function comparisons 

Three scales of hot spots were mapped in Figure 31. At the 4,200 meter scale, only seven of the 
polygons generated contained an excess number of Speeding crashes, of which only the top two 
(Waterloo and Evansdale) can be considered hot spots of any significance. The 200 meter and 
1,300 meter hot spots are almost entirely centered on the city of Waterloo. Most of these hot 
spots were found within residential neighborhoods. A closer inspection of the specific crash 
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locations showed that within these hot spots, the problem is often not on arterial or even 
collector streets, but on local streets within the neighborhoods. 

A possible cause for hot spots occurring at these locations, a feature relatively unique among the 
crash types analyzed, is the greater overall road environment. Arterial and collector roads are 
often engineered with wide lanes, generous shoulders, and limited or no on-street parking, which 
may make these routes relatively forgiving to individuals who choose to speed. These same 
characteristics are often not found on local streets, especially those in neighborhoods built before 
modern roadway safety engineering. Dense residential neighborhoods with many people, 
intersections, driveways, and on-street parking create many hazards. As such, a solution that 
might hold the most promise toward reducing this crash type is stricter enforcement of speed 
limits in these residential areas. 
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Figure 31. Speeding crash hot spots 
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SUMMARY AND FUTURE DIRECTIONS 

Sensitivity of Results to Data Quality and Analytical Procedures  

A number of issues arose while carrying out the research for this study. Many of these issues 
were a matter of software or hardware limitations. In each case, an alternative was found 
acceptable; in some cases, a minor loss in data quality had to be accepted in order to proceed. 
Despite the problems encountered, none of the data quality issues are believed to have had a 
significant impact on the results of this study. 

Several of the original datasets used contained positional inaccuracies, beginning with the 
crashes and road locations. As a result, the crashes did not always align perfectly with the road 
lines, which introduced a minor degree of error in nearly all distance calculations. Most errors 
were a matter of a few meters, but some crashes were up to 30 meters off the road line feature. 
Also, the road layer contained several errors that inhibited proper distance calculations when 
calculating the network-based K function. There were situations in which the lines representing 
roads would cross but not intersect where intersections actually exist. When this occurred, the 
GIS would treat the roads as if they were grade-separated. The distance of two crashes mere 
meters apart might thus be calculated as the distance required to drive around the block. This 
was corrected by using SANET’s Continuous Graph function to effectively insert intersections 
any time two road lines crossed. Doing so, however, effectively made all lines that cross in the 
data intersections, including locations where a grade separation actually exists. The error 
reduced by carrying out this correction is expected to heavily outweigh the error introduced. 

A significant data issue relates to the resources required to calculate the K function for each 
crash type. The process to compute network distances from every crash to every other crash on a 
fairly dense road network is very computationally intensive. Through trial and error, a database 
of about 600 crashes was determined to be the maximum size to run the K function procedure 
successfully and with acceptable processing times. The Local Road crash type contained 13,502 
crashes, and several others contained numbers in the thousands. To be able to calculate the K 
function, it was deemed necessary to take a random sample of crashes from each crash type that 
numbered over 600 crashes. The K function was then calculated on a sample of approximately 
500, and the graphs were produced from this sample. The exception to this was the All Crashes 
and Rural-Only All Crashes datasets. Because these were to be the basis on which all other crash 
types were to be compared, it was necessary to collect a larger sample of these large datasets 
(19,060 and 5,309, respectively). To accomplish this, multiple 500-crash random samples were 
taken and the K function computed until over 10% of the crashes were sampled. The results of 
these K functions were then averaged together to produce the overall values used for the All 
Crashes and Rural-Only All Crashes.  

Similar in nature was the lack of enough crash points for some crash types. An attempt to treat 
fatal crashes as a stand-alone group produced unreliable results, due to having too few crashes in 
the six-county INRCOG region during the five-year period reviewed. Other crash types were 
retained, but the analysis may have been affected. These include: Distracted Driver crashes 
(277), Rural-Only Fatal and Major Injury crashes (323), Impaired Driver crashes (497), and 
Speeding crashes (193).  
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An additional minor concern was introduced in the creation of the polygons for hot spot analysis. 
These polygons were generated using ArcGIS’s Network Analyst extension. In a few cases, it 
was observed that a crash occurring along a roadway was spatially referenced far enough off 
from the road network file so as to keep it from falling within the hot spot polygon (which 
conformed to the shape of the road network lines). As a result, these improperly located crashes 
could be excluded from calculations going into the “Excess” value by which the hot spots were 
ranked. It is estimated that this occurred in about 1% of all polygons generated.  

Moreover, the selection of K function distances used to generate the hot spot polygons involved 
a degree of subjectivity. These distances were based largely on the bin-by-bin values in the crash 
type vs. all crashes K function comparison lines. However, the selection of distances was also 
affected by a variety of factors, including the need to have a manageable number of hot spots to 
map, and the desire to have representation from distinct spatial scales of analysis, rather than 
having all the generated hot spots be very similar in size, in order to focus on the potential 
importance of small-scale vs. large-scale analysis. Different distances might have resulted in 
different sets of hot spot polygons and potentially different interpretations.  

Care also must be taken in the interpretation of the resulting hot spot polygons. The procedure to 
create them extends out a given network distance from all crashes to identify those crashes with 
a large excess number of crashes of a particular type within that distance. The resulting polygons 
may include side streets and other roads not truly involved in the “hot spot.” The discussion of 
each crash type involved an evaluation of the pattern of crashes within the hot spots. However, to 
facilitate display of the results, typically only the hot spot polygons themselves were mapped and 
presented in this report.  

Based on trial runs and other data experiments conducted during this study, the effect of the 
above issues on the overall results and conclusions is thought to be small. However, these 
limitations present issues for further development of the analytical procedure.  

Enhancements to the Analytical Procedure and Future Directions 

The results of the K function analysis indicate the usefulness of the procedure for identifying the 
degree and scale at which crashes cluster, or do not cluster, relative to each other. Moreover, for 
many individual crash types, different patterns and processes and potentially different 
countermeasures seem to appear at different scales of analysis. This fact highlights the 
importance of scale considerations in problem identification and countermeasure formulation. 
However, there are several areas in which the analytical procedure can be improved.  

Several methodological issues related to the spatial analysis of crashes were highlighted earlier 
in this report. The first issue concerned the use of planar (typically used in K function analyses) 
vs. network distances (more appropriate for transportation analysis). This study addressed this 
issue directly by using network distances, which generated more meaningful, and more 
interpretable, results, albeit at an added computational cost, using recently developed analytical 
tools and methods.  
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Other methodological issues were related to first-order vs. second-order effects and the question 
of what is a “random” or “expected” spatial distribution of crashes in the context of spatially 
varying population densities, network densities, and traffic volumes. The approach taken in this 
study was to use the spatial distribution of all crashes as the “expected” distribution, and then to 
compare the crash-type distributions to it. This largely worked, although the first-order influence 
of Waterloo and Cedar Falls was still important, and the urban and rural contexts had to be 
separated for analysis in several cases. A key area of study is to develop user-friendly methods to 
generate “random” spatial point distributions that take traffic volume into account for K function 
analysis. Several methods were tested during this study, and research is continuing on this topic.  

Recent methodological research has focused on developing methods to better identify cluster 
sizes and cluster locations through modified K function methods, such as “local indicators of 
network-constrained clusters,” and methods to identify clusters across different scales in a 
network (Yamada and Thill 2007; Shiode and Shiode 2009). Such research may help address the 
issues noted above concerning subjectivity and interpretation in the identification and application 
of the appropriate scale of analysis. For crash types that did not exhibit clustering, attention 
could focus on the types of locations that appear problematic rather than the specific locations, 
perhaps through examining the “clustering” of non-spatial attributes to identify groups of 
homogeneous crash types and characteristics in statistical space (Depaire et al. 2008). 

The procedure used was complex, involving both extensive database management procedures to 
create and work with the necessary data sets and several computationally intensive steps to 
undertake the analysis. Computer programming could be used to automate the database 
management procedures and facilitate computational efficiency. Work is continuing in these 
areas. The K function has been confirmed to be a useful method for analyzing the degree and 
scale of motor vehicle crash types and countermeasures, and more methodological and applied 
research is needed to further its implementation in promoting transportation safety.  
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