Hydraulic Cement Grout Testing

Final Report for MLR-89-14

August 1990

Highway Division

HYDRAULIC CEMENT GROUT TESTING

Final Report MLR-89-14

Kumari Bharil Assistant to Cement and Concrete Engineer Office of Materials Iowa Department of Transportation

Table of Contents

··	Page
Abstract	1
Introduction	2
Objective	2
Testing	3
Results	4
Establishment of Criteria	6
Conclusions	8
Recommendations	9
Appendix - Plastic Shrinkage Results	12

Disclaimer

The contents of this report reflect the views of the author and do not necessarily reflect the official view of the Iowa Department of Transportation. This report does not constitute a standard, specification or regulation.

ABSTRACT

Currently, hydraulic cement grouts are approved for Iowa Department of Transportation projects on the basis of a pullout test. However, other properties of the grouts should be evaluated. Therefore, this research was initiated to develop criteria to better evaluate hydraulic cement grouts.

Fourteen grouts were tested for compressive strength, time of set, durability, consistency and shrinkage. Tested grouts all yielded compressive strengths higher than 3000 psi at 7 days and durability factors were well above 70. Time of set and consistency was adequate. The testing showed most grouts tested shrank, even though tested grouts were labeled non-shrink grouts. For many applications of grouts such as setting in anchor bolts and as a filler, minor shrinkage is not a problem. However, for some critical applications, shrinkage cannot be tolerated. The proposed Instructional Memorandum will identify those grouts which do not excessively shrink or expand in the tests used.

Based on test results, criteria for evaluation of hydraulic cement grouts have been recommended. Evaluation consists of tests for compressive strength, time of set, durability, consistency, shrinkage and pullout test.

INTRODUCTION

Hydraulic cement grouts are currently being approved for Iowa Department of Transportation projects on the basis of a pullout test as per Instructional Memorandum 491.13. The pullout test consists of bonding a No. 6 reinforcing bar in a 4" deep, 2" diameter hole in concrete. A minimum pullout load of 9000 lbs. is required after 7 days of cure.

Grouts are currently being used for setting in anchor bolts, filling voids under base plates on sign posts and as a filler around light poles. However, if grouts on the approved list are evaluated for other properties, then they can be used for other applications such as repairing damaged light pole bases, patching structural members, high strength leveling, post tensioning of precast deck panels on segmented bridge construction and for retrofitting concrete rails.

Since Instructional Memorandum 491.13, "Inspection and Acceptance of Hydraulic Cement Grouts" is no longer being used in the manner intended when it was first developed, MLR-89-14 was initiated to revise it to better reflect current uses.

OBJECTIVE

The objective of the study was to develop new criteria to better evaluate the properties of non-shrink grouts for I.M. 491.13.

TESTING

Fourteen hydraulic cement grouts were tested for compressive strength, time of set, durability, consistency and shrinkage.

These tests were performed as follows:

- Compressive strength at plastic and high flow state as per ASTM C-109 at 6 hrs., 1 day, 3 days and 7 days.
- Time of set as per ASTM C-266.
- Durability as per ASTM C-666 part B modified. Modification is the 7 days moist cure, 100 cycles of freeze and thaw and 4"x4"x18" beams.
- Consistency test as per ASTM C-109 at plastic state and as per I.M. 375 at high flow state.
- Shrinkage at plastic state as per ASTM C-827 and at hardened state as per ASTM C-157.

Plastic or high flow states were determined by the mix consistency. Consistency was determined by the flow table or by flow cone. Mixtures with a flow between 100% to 125% on the flow table are considered to be plastic and mixtures with a flow of 10 to 30 sec. in the flow cone are considered to be high flow (fluid).

Grout mixes for each product were prepared by first placing the water in the dry bowl then grout material was added and mixed for 1 minute. After mixing, the mix was tested for flow. If the desired flow was not achieved then, additional water was added to the mix, and remixed and then were retested for flow. These

steps were repeated until the proper consistency was achieved for each grout mix. This consistency was then used for all the tests except for the durability test. The manufacturer's recommended consistency was used for the durability test.

RESULTS

The summary of results is in Table 1. All products yielded compressive strengths at plastic state well above 5000 psi at 7 days and at high flow state above 3000 psi at 7 days. Durability factors of all the products were well above 70. With the exception of Garonite, all the products yielded durability factors above 90. Shrinkage was observed on all products at hardened state. At plastic state, all products except for three (Bonsal, Sika Grout 212 and Five Star) shrank. Garonite and Quik-Rok yielded highest early strengths and fastest setting times. However, the strength gain was low for Garonite at both the plastic state and the high flow state. Strengths at 7 days were actually less than initial strengths for Garonite and Quik-Rok. Due to fast setting times, plastic shrinkage was not tested for these two products.

TABLE 1
SUMMARY OF RESULTS

TESTS

PRODUCTS

				٤	_	_								
	Crystex	Bonsa1	Sika Grout 212	Euco	Dura Grout	Sure Grip	Seal Tight 588	Five Star	Conb- extra S	Conb- extra HF	Garonite	Quik- Rok	Sure Grip Utility	Ha Ico
Comp. Strength (PSI) Plastic 6 Hrs. State 24 Hrs. 3 Days 7 Days	1580 7340 9320 10830	60 4140 7140 8510	80 5350 6380 7030	840 5450 8870 11050	150 5920 8850 9630	180 7410 8670 8380	610 6310 8250 9130	70 5080 6620 7450	4900 7180 9350 9550	420 7710 9540 10330	5460 5520 5250 5370	6500 6760 7370 8010	200 4980 6720 7970	210 8100 10290 11770
High Flow 6 Hrs. State 24 Hrs. 3 Days 7 Days	140 1830 4490 5530	Not Set 950 3160 3990	Not Set 1320 3210 4370	50 1250 3780 5010	Not Set 1150 2750 3180	30 2420 4500 4000	Not Set 1200 3470 4780	Not Set 920 2470 3560	750 3280 4970 6130	50 2330 3990 5630	4470 4290 3650 3490	6570 5990 5690 5360	20 2220 3610 3830	10 3440 6700 7690
Time of Set Initial Final	35 Min. 1 Hr. 13 Min.	35 Min. 2 Hrs. 28 Min.	31 Min. 3 Hrs. 55 Min.	29 Min. 1 Hr. 15 Min.	26 Min. 37 Min.	26 Min. 1 Hr.	22 Min. 1 Hr. 7 Min.	26 Min. 4 Hrs. 6 Min.	15 Min. 1 Hr.	22 Min. 2 Hrs.	3 Min. 6 Min.	3 Min. 5 Min.	14 Min. 3 Hrs. 15 Min.	9 Min. 48 Min.
Durability Factor	97	100	100	100	100	99	90	94	100	99	73	98	100	94
Flow Test Plastic State High Flow State	115% 16 Sec.	110% 16 Sec.	112.5% 15 Sec.	115% 16 Sec.	112.5% 18 Sec.	110% 16 Sec.	112.5% 14 Sec.	107.5% 14 Sec.	110% 16 Sec.	110% 17 Sec.	107.5% 20 Sec.	110% 20 Sec.	112.5% 20 Sec.	115% 16 Sec
* <u>Shrinkage</u> Plastic State Hardened State	27% 203%	.31% 174%	2.88% 183%	42% 165%	16% 137%	19% 193%	31% 096%	.66% 164%	31% 091%	06% 137%	 038%	 055%	16% 189%	06% 158%

^{*} NOTE: A negative sign on shrinkage value indicates shrinkage and a positive sign on shrinkage value indicates expansion.

ڻ ا

.

ESTABLISHMENT OF CRITERIA

Tests were performed on the hydraulic cement grouts so that criteria could be established to better evaluate grouts. The acceptance criteria for grouts are given in Table 2. Criteria for each test were determined as follows:

Compressive Strength - Compressive strength criteria are based upon current specifications. Iowa Department of Transportation Specifications and Special Provisions on projects where grouts are used currently specify 3000 psi at 7 days and 5000 psi at 28 days as minimum compressive strengths based on ASTM C-109. The requirements established for compressive strength are well above the specified compressive strengths.

<u>Time of Set</u> - Time of set criterion is based primarily on relative comparision between products.

<u>Durability</u> - A 90 minimum durability factor was established to ensure performance in applications subjected to water and freezing.

Shrinkage - Minor shrinkage is acceptable for many applications. However, for critical applications such as filler for prestressing tendons, non-shrink grout is required and only 2.0% expansion is acceptable by judgement at plastic state. At hardened state a maximum of .20% shrinkage was selected.

TABLE 2
ACCEPTANCE CRITERIA

Test		Appendix A & B
Compressive Streng Plastic State	<u>th</u> 1 day 7 days	3000 psi 5000 psi
High Flow State	1 day 7 days	800 psi 3000 psi
Time of Set Initial Final		1 hr. (Max.) 30 min. (Min.)
Durability Factor		90 (Min.)
Shrinkage Plastic State		Non-Shrink grout and 2.0% Max. expansion for critical application
Hardened State		.20% Max.

CONCLUSION

All hydraulic cement grouts at plastic and at high flow state yielded strengths much greater than 3000 psi compressive strength at 7 days. A minimum strength of 5000 psi has been used in the Iowa Department of Transportation Special Provisions on projects where grouts are used for critical applications such as filler for voids within stay cable system and post-tensioned tendons. Consistency, time of set and durability were adequate for plastic state. The manufacturer's literature stated non-shrink, however, the tests used in this study produced shrinkage in both hardened and plastic state for most products. For many applications, such as setting in anchor bolts, and as filler around light poles minor shrinkage is not a problem. However, for critical applications such as filler for voids in stay cable system, non-shrink grouts are required.

RECOMMENDATIONS:

Revise the acceptance section of I.M. 491.13 to read as follows:

ACCEPTANCE

Prior to being placed on the list of approved brands, one or more product per manufacturer will be evaluated by the Office of Materials. The evaluation will consist of testing the grout for strength, time of set, durability, consistency and shrinkage. Approval of products shall consist of the following:

Compressive Strengt	h ASTM C-109	A & B
Plastic State	1 day 7 days	3000 psi 5000 psi
High Flow State	1 day 7 days	800 psi 3000 psi
Time of Set ASTM C Initial Final	-266	1 hr. (Max.) 30 min. (Min.)

Durability Factor ASTM C-666 Part B Modified 7 days moist cure & 100 cycles freeze & thaw 90 (Min.)

Shrinkage Plastic State ASTM C-827

Non-Shrink grout and 2.0% Max. expansion for critical application

Hardened State ASTM C-157

.20% Max.

Annandiv

Pull-Out Test

Bond No. 6 reinforcing bar in a 4" deep, 2" diameter hole in concrete. A 9000 lb. minimum load is required after the grouting material has cured 7 days.

APPENDIX A

Approved Sources - Hydraulic Cement Grouts

М	a	n	u	f	a	C	t	u	r	e١	•

Dayton Superior Corp.

Dayton Superior Corp.

Euclid Chemical Company

Fosroc, Inc.

Fosroc, Inc.

L & M Construction Chemicals, Inc.

L & M Construction Chemicals, Inc.

Minwax Construction Products Div.

Sika

W. R. Meadows, Inc.

Brand Name

Sure-Grip Grout

Sure-Grip Utility Grout

Euco Non-Shrink Grout

Conbextra HF

Conbextra S

Crystex

Duragrout

Halco Grout

Sikagrout 212

Sealtight 588 Non-Shrink, Non-Metallic Grout

Matls. I.M. 491.13 Page 1 of 1 Appendix B

APPENDIX B

Approved Sources - Hydraulic Cement Grouts
Non-Shrink

Manufacturer

Brand Name

Five Star Products

Five Star Grout

United Products

Bonsal Construction Grout

APPENDIX

PLASTIC SHRINKAGE RESULTS

PLASTIC SHRINKAGE RESULTS

PRODUCTS

Minutes Crystex		Sika Bonsal Grout 212			Dura Euco Grout					re ip	Seal Tight 588		Five Star		Conb- extra S		Conb- extra HF		Sure Grip Utility		Ha ico			
	#1	#2	#1	#2	#1	#2	#1	#2	#1	#2	#1	% Grow #2	th [*] #1	#2	#1	#2	#1	#2	#1	#2	#1	#2	#1	#2
5	06	06	.06	.09	.06	.06	05	05	16	09	13	13	13	06	.31	.56	31	19	0	0	0	0	06	06
10	13	09	.09	.16	.34	.22	09	13	16	09	16	16	25	13	.38	.66	31	19	0	0	0	0	06	06
15	13	09	.13	.31	.97	.91	13	19	16	09	16	16	31	19	.38	.66	31	19	0	0	0	0	06	06
20	19	09	.13	.31	1.22	1.09	14	23	16	09	17	16	31	19	.38	.66	31	19	0	0	06	06	06	06
25	25	09	.13	.31	1.72	1.69	16	27	16	09	17	16	31	19	.41	.66	31	19	03	03	06	06	06	06
30	25	09	.13	.31	2.06	2.00	16	30	16	09	17	19	31	19	.41	.66	31	19	03	03	06	06	06	06
35	27	.09	.13	.31	2.22	2.13	16	33	16	09	17	19	31	19	.41	.66	31	19	03	03	06	06	06	06
40	27	11	.13	.31	2.25	2.22	17	36	0	0	17	19	31	19	.41	. 66	31	19	03	03	06	06	06	06
45	27	11	.13	.31	2.34	2.31	17	36	0	0	17	19	31	19	.41	•66	31	19	03	03	06	06	06	06
50	27	11	.13	.31	2.34	2.44	17	38	0	0	17	19	31	19	.41	.66	31	19	06	03	06	06	0	0
55	27	11	.13	.31	2.34	2.50	19	39	0	0	17	19	31	19	.41	.66	31	19	06	06	06	06	0	0
60	27	11	.13	.31	2.53	2.72	22	42	0	0	17	0	31	19	.41	.66	31	19	06	06	06	06	0	0
65	27	11	.13	.31	2.63	2.72	22	42	0	0	0	0	31	19	.34	.66	0	0	06	06	16	06	0	0
70	27	11	.13	.31	2.63	2.72	-,22	42	0	0	0	0	31	19	.13	.56	0	0	06	06	16	06	0	0
75	27	11	.13	.31	2.66	2.75	0	0	0	0	0	0	0	0	.13	.56	0	0	06	06	16	06	0	0
80	0	0	.13	.31	2.66	2.81	0	0	0	0	, 0	0	0	0	.13	.47	0	0	06	06	16	06	0	0
85	0	0	.13	.31	2.69	2.88	0	0	0	0	0	0	0	0	.06	.47	0	0	~.06	06	16	06	0	0
90	0	0	.13	.31	2.69	2.88	0	0	0	0	0	0	0	0	.06	.47	0	0	06	06	16	06	0	0
100	0	0	0	0	2.69	2.88	0	0	0	0	0	0	0	0	06	.41	0	0	06	06	16	06	0	0
110	0	0	0	0	2.69	2.88	0	0	0	0	0	0	0	0	06	.31	0	0	06	06	16	06	0	0
120	0	0	0	0	2.69	2.88	0	0	0	0	0	0	0	0	19	.28	0	0	06	06	16	06	0	0
130	0	0	0	0	2.69	2,88	0	0	0	0	0	0	0	0	19	.28	0	0	0	0	0	0	0	0
140	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0	19	.28	0	0	0	0	0	0	0	0

NOTE: A negative sign on shrinkage value indicates shrinkage and a positive sign on shrinkage value indicates expansion.