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ABSTRACT

‘ﬁére and more, intégral abutment bridgeé are being used in place
of the more tradifional‘ﬁridge designs with expansionrreleases;‘ In
thié stgﬂy, states which use inﬁegral abutment bridges were surveyed
to determine their current practice in the design‘of these structures.

To study piles in integral abutment bridges, a finite element éro;
gram for the soil-pile system was developed (1) with materially and
geometfically nonlinear, two and three;&imensioﬁal beam elements and
{(2) with a nonlinear, Winkler soil model with vertical, horizontal, and
'pile tip sﬁrings. The model was verifieﬁ by comparison to several
analytical_éﬁd exﬁeiimentai gxamples.

A simplified design model for analyzing piles in integral abut-
Ment'bridges is also-présegted. Thié modellgrew from previous analyti-
éal'modeis and observations of piie behavior. Thexdesign model correctly
describe§ the eéseﬁtiél behavioral characteristics of the pile and

-conservahively predicts the‘vertical load-carrying capacity.

Analytical gxampieé are‘pfeéented to illﬁstrate the effects of
lateral displaéémenté on the ultimate load capacity of a pile. These
examples inéluﬂe friction and end~bearing piles; steel, concrete, and
tiﬁber piles;iand bénding about the weak, strong, and 45° axes for
H pilesf The éffécts'oﬁ_cyclic loading are shown for skewed and non~
skewed.b;idgés:  Thél;esults show that the éapéciﬁy of friction piles
is not:éignificantly\%ffécted by lateral displaéements, but the
capacity of-énd-bea?ing pilés is reduced. Further results show that
thejlongitudinal expansion of ﬁhe‘bridge can iniroduce a fertical pre-

load on the pile.



1. INTRODUCTION

Tfadi;ionally;‘a system of expansion jqints,.roller supports, and
other structgral releases has been provided on bridges to ﬁrevent
damage‘caused‘by thermal expansion and contraction of the superstruc-
ture with énnual tempefatgre.variations. Expansion joints usually
increase the initial‘cost_of a-bridéé and often do ncf function
properly after yeafs of servicé unless extensively maintained. Thus;
integral abutment bridges;.which have no expénsion joints, provide a
design-aiterﬁative whiéh potentially offers lower initial costs and‘
lower mainténance costs. However, since the piles im an integral abui-
ment bridée a£e.the'mo;t fléxible elements, they will be subjected to
laﬁeral movéménts as the bridge expands and contracts. ‘Determining the
maximum lateral displécement that does not cause a reduction -in- the
load-carrying capacity of ‘the piles (i.e., which does not alter the
ekiéting methods for designing the piles) is of p¥imary importanée in
defining,the maximum safe length for integral abutment bridges. Other
factors‘fo be consideréd in determihing,the allowable length fér inte~
gral abutment'briﬂggs include the axial strésses‘induced in the super-
structure ééused by‘ﬁhé partially restrained displacements of the abﬁt-'-
ménts‘and tﬁe-effects of the abutment movement on the integrity of the
approach siab'and fili;;_Thése two.effects are not considered further
in this sﬁudy; | |

| As part of this study, the highway departments using integral
dbutment bridges ﬁere‘surveyed to dgﬁermiﬁe current design‘meihods.

Two analytical methods vere developed to analyze embedded piles with



enforced horizontal displacements of the pile top: one based on a nomn-
linear finite element mo&él and the other on a simplified collapse
model. The finite element model is compared to experimental fesuits
and the simplified model to the finite element mlod_éi.; Both analytical
models can be used to predict the effect of integrallébﬁtment bridge'
movements Sn the pile capacity. Various analyticél éxémpiés are pre;

sented, representing skewed and nonskewad bridges.



2. DESIGN OF INTEGRAL BRIDGE ABUTMENTS

.Responses to previous surveys concerning the use of integral abut-
ments {2.1, 2.2] have indicated that most state highway departments
have their own.limiéationsland criteria ih designing integral abutments.
The bases of these limitations and criteria‘gre showﬁ to be primarily
empirical.

Th@ uée of iﬁtegral‘abutments in bridge design has 's¢ far been
accepfed b& 28 ététe highway departments anélthe District Construction
Offi&e of Fede;al Higﬂwéy Administration (FHWA), Region 15. This chapter
summarizesftﬁe éﬁrrent_ﬁhinking and ﬁractice‘in intégral abutment'design
by'those-statg highway departments and the Districthonétruction Cffice,
as obtéined:from a survey made as part of this.Study. A copy of the
survey questionnai;é is shown in the Appendix (Chapter 10)..

Policies on seéeral areas-fintegral abutmeﬁt design, bfidgé move- -
ment, approach slabs, wingwall_configurations'and details, and general
design_details:and gﬁidelinES*ﬂare discussgd for the representative
highwayrdepaftments of Tennessee, New York, and California, as Wellras
the FHWA. A sﬁmﬁary on current‘practice by all the 28 states and the
Distfiét Construqﬁion 0ffi¢e of FHWA, Region 15, is also given in the

Appendix.f

2.1, General Policy on Integral Abutment Design

2.1.1. Tennessee

Structures must be designed to accommodate the movements and

stresses caused by thermal expansion and contraction. Bridge designers



should not accommoda;e_these-mo#ements by using unnecessary bridge deck
expansion joints and expansion bearings, because this solution creates .
more problems than it solves; ‘Structural deterioration'attfibutable to
leaking expansion joints énd frozen expansion beérings Cbﬁé#itﬁtes major‘
bridgé méigtenance probiems. |

To eliminate the problems associated with leaking eipaﬁ#iog‘iéints
and frozen expansidn bearings, Tennes§ee’s poliéy i% to design énd
construct bridges with continuous sﬁperstructﬁres, fixed or iﬁtégral
bearings at the piers and abutments, and no'bridge'deck'expénsidn jéints
unless absolutely'necéésary.r When expénsion joints are netegsary, they
will be providéd only at abut@eﬁts [2;3}.

2.1.2. Neerork ‘

The New York Bepartment of Traﬁsportation currently has tentative
integral abutment guidelines that list the design parameters that must
be satisfied by designers if they elect to use an ihteg?al abutment
type structure. Integrai abutments are allowed on strucfures‘with.
span lengths up to 300 ft,‘provided they satisfy the‘tentafiVe.gﬁide-
lines. Span lengths between 300 énd 409 ft are'apprdved on an indivi-
dual basié. To date (March 1983) New York has not comstructed any over
300 ft.

The main concern regarding span length is the longitudinal move-
ment and the large passive preésures thaﬁ are generated as the struc-
ture expands against the cdmpacted backfill; The general bqlicy.is to
try to select a span arrﬁngement and bearing ﬁyﬁes-that‘resultAin
abproximétely qugl movements at each abutment. The'300-ft li@itation

results in movements that can safely be handled [2.4].



2.1.3. _California

Tﬁe'end diaphrégm'is treated és an integral ﬁart of the bridge
Superétrucﬁuré Frequently this dxaphragm is extended below the soffit
of the superstructure to rest directly on piles or on a footing. This
type of support is then called an "end diaphragm abutment." In California,
an end dlaphragm abutment may not be used where the roadway on the structure
is des;gned to carry storm water {2.5].

2.1.4, Fedefal‘Highway Administration

The FHWA recommends that bridges with an overall length less than
the following values should be constructed with continuous spans and,
if aﬁrestrained, have integral abutments. Greater values may be used

when experientefindicates such designs satisfactory [2.6].

Steel. . . . . . o U . . . . < . .. .. 300 ft
Cast-in4place'concrete (CIpY . . .. . . . . 500 ft
Pre- or post-tensioned concrete. . . . . . . 600 ft

2.2, Provision for Bridge Movement

2.2.1. Tennessee

The total superstructure movement should be based on the follow-

ing design parameters:

Structure Type = Temp. Range Coef..ofAExp.' Total Movement

Concrete . 25°.F - 95° F  0.0000060  0.505 in./100 ft .
Steel 0° F.-120° F°  0.0000065 0.936 in./100 ft

The tqﬁal‘movement per hundred feet is applicablé to the structure

length measured from the theoretical fixed center of the structure.



When the total anticipated movement at an abutment is less than
2 in. and the abutment is unrestrained against mngﬁegt, no joint will
be required and the superst?uéture and abutment beam will be const;ucted
integrally. A qonstruction joint shall be pfovided beiween the abutment
backwall and the approach slab. (An unrestrained abutment is one that
is free to_rotate, such as a stub abuﬁmeﬁt on one row of piles or an
abutment hinged at the‘footing with the axis of rotation being skewed
between 60° and 90° to the direction pf;movemgnt;)

Whén the total anticipated movement at an abutment is 1e$s than
1/4 in., the abutment may be constructed integrally with_the super-
structure regardless of the'support conditions. | |

When the total mbveﬁent is m&re than 1/4 in. and the ébu;ment is
restrained against movement and rotation,_an expansion joiﬁt will be
raquired.

When the total movement is greater than 1/4 in., the design
drawings should show the total required movement for each joint and
specif§ three proprietary strip seals for the contractor's selection,
Alternate details may be submitted to the Engiﬁeer for apprpval [2.3].

2.2.2. New York

Since the approach slabs are connected to the bridge slab, the
distance from end-to-end of the aPproach slab shéli bé éonsideréd thé
length for an integral abutmént structure. Thé folldwiﬁg gui&eliﬂes
apply:

| 1) Length 150 ft or less~-no provision for expansion will be

required.



2) Length over 150 ft and up ﬁo 300 ft--provision shall be
made for expénsion at the end of the approach slab. If at
‘all possible, £he span arrangement and interior bearing selec-
tion shall be such that approximately equal movements will
occur at éaeh abutﬁent.

3) VLéngth over 300 ft and up to 400 ftj«lengths in this range
shallABe approved on an indiviaual basiﬁ. Provision for
'expénsion shall be made at the end of each approach slab.

4) .Leng£hs over‘QOO-ft-—not recommended at this time [2.7].

2;2.3{‘ Califbrnia

fhérmal'movemehté are eésily aﬁsorbed by integral abutments.
Abutments of conventibnally reinforced, continuous concrete bridges of
over 400 ft in length have shown‘no-eVidence of distress even though
the end diaphragms were supported on piles. However, movement of the
abutments from shrinkage and.temperature changes results in an opening
. at the paving‘notch alliowing intrusion of water. Prestressed struc-
tures will ah?iif&,the inﬁrusiqn ?roblems because of the additional
movement-resuiting fréﬁlﬁlastic shortening [2.5]. N

HcVemént of the‘ébutments has caused maintenance pfoblems‘attribut*
able to settiement‘énd erosion of the approach fill. Because of these
‘problems, the use of the end diaphragm abutment shall be limited to the

following values unless mitigating measures are used:



Temp. Reinf. Precast cIP/
Range Steel Concrete Concrete Post Tension

80 240 ‘ 260 240 150

100 200 210 w200 130

120 160 180 170 120
These data are based on a movement rating = 3/4 in;

2.2.4. Federal Highway Administration

'Background; Thermal movements are predicted on the cold

climate temperature ranges specified in the American Association

of State Highway and Transportation Officials (AASHTO) bridge

specifications, Article 1.2.15. State standards specifying

other temperature ranges require adjustment of those values

indicated [2.6].

1)

2)

For structural steel supported bridges, Article 1.2.15

specifies cold climate'temperature range of 150° F with a

thermal coefficient of 0.0000065, resulting in a total

thermal movement of 1-1/4 in. (32 mm)‘oflmovement per

100 ft (30.5 m) of structure.

For concrete superstructures, AASHTO specifiés a cold climate

temperature range of 80° F, a thermal coefficient of 0.0000060

and a shrinkage factor of 0.0002., However, this shrinkage

effect can be reduced provided the normal construction

sequence allows the imitial shrinkage to occur prior



3)

5)

to completion of the concrete operations. Based on an

assumed‘shfinkage reduction of 50%, total aliowance for
théfh#l'énd_éhrinkagé movement in a concrete stiucture
would be'approximately 3/4 in. (19 mm) per 100 ft (30.5 m).
For prestressed concrete structures, a somewhat |

sﬁéller total movement will occur once the prestressing

shortening has taken place. IMovement of S/B‘in. (15;9 mm)

'per 100 ft (30.5 m) of structure would be a reasonable value.

This -allows for thermal movement and assumes no effect from
shrinkage and long-term creep. This value has been sub-
stantiated in the field as reasonable for normal highway

overcrossing structures.

In long pre- or post-tensioned concrete structures, long-

term crge? may occur but is normally insigaificént inso~
far as provision for movement is concerned and, there-
fore, has not been included?in 3) above.

The‘flexibility of individual substructure units.will

affect the distribution of the total movement betﬁeen

- specified joints.

Recommendations

S

Cold climate conditions. Based on the above, consider

adoption.of'Fig.'Z.l for determining the'required provision

- for total‘movemént under cold climate conditions.
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. 2) Moderate climate conditions. In accordance withlAASHTO

Article 1.2.15 use temperature ranges of 120° F (steel) and

70° ¥ (concrete) and a 20% reduction'of the above values.

2.3. Approach Slab

2.3.1. New Yprk

Approach slaBs should be 20wft~iong maximum and the end of the
approach.slab shall be parallel to the skew (30° maximum skew angle).

A tight joint should be placed directly over the baCkwéll.betWeen
the approach slab and bridge slab. -This will provide a controlled
crack location rather than allowing a random crack patté;n‘to develop.
Epoxy coated dowels.shﬁll pass through the joint and.shall be located
near the bottom of the slab. This will keep the joint tight.but still
allow the approach slab to settle without‘causing'tensiOn craékinglin
the top of the slab.

There has been considerable discussion and no agrégment on whether
the joint should be formed or saw cut. A.fdrmed coqstruction joint
would provide positive assurance that the joint would wiﬁd ﬁp exactly
where wanted and the épproach slab would always be supported on the
backwall. In many instances the approach slab is not as wide as thé
bridge slqb. In those instances the joint is U-shaﬁed and can be fofmed
neatly and eaéily. Thg disadvaﬁtage to the forméd fpint is'ﬁhat it
requires the épproach slab to be poured separate from ﬁhe b;idgé slab.

However, a saw cut joiﬁt would allow the bridge slab and aéprpach

slab to be cast in a single operation. Some concern arises as to how
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vision for expansion indicate that there is a potential for future

maintenance at these joints [2.7].

2.3.2.. Federal Highway Administration
| i 1} Approach slébé are needed to span the area immediately
behind integfal abutments to pre?ent traffib'compaction of
material where the fill is partially disturbed by abutment
mdvement. The‘épproach slab‘should be anchored with rein-
forcing‘steel,to the éupefstructure and have a minimum span
length equal to the éepth of abutmént {1-to-1 slope from the
bottom of the rear face of the abutment) plus a &*ft‘mini;
mum soil‘beéring area. A practical minimum Iength of slab
would be 14 ft. See Fig. 2.2 for details [2.6].
2) The dgsign of the approach élab should be based on the
AASHTO Specificatiﬁns for Highway Bridges, Article 1.3.2(3)
.Case B, where design span "S" equals slab length minus 2 ft.
_ é) Positivg'anchorage of intégral abutments to the super-
étructnre'is strongly recommended.
4) North Dakota provides a roadway expansion joint 50 ft froﬁ
the end of-thé bridge to accommodate any pavement growth or

‘bridge movement. This is cansidered desirable.

2.4. Wingwall Configurations and Details

2.4.1. ‘Tennessee

fThiS‘State uses No. 4 bars fér 6-ft to 7-ft wingwalls, No. 5 bars

for 7~ft to IO“ft'wingwalls, and No. 6 bars for 10-ft to 12-ft wingwalls.
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These values may be adjusted by individual design. For wingwall lengths
gréater than 12 ft, the designer will use a comprehensive analysis for
each case [2.3].

2.6.2. MNew York

Wingwalls shall be in~line or flared. U-walls will not be allowed.
U-walls were eliminated becaﬁse of design uncertainty, backfill compac-
tion difficulty, and the additional design and details that haﬁc to be
worked out for the joint betweeﬁ the wingwallé agd ébproach_élab.

‘Wingwall lengths in excéss of 10 ft shpuld be avoided. Generally,
the controlling design parameter is the‘horizbntgl-bending in the wing-
 wall at thelfascia stringer, which is caused by the large pas#i&e pres-
sure behind the wingwalls. When the wingwalls are longer than 10 ft,
aréas of steel greater than No. 11 bars at 6 in. may be required. -The
10-ft dimension is a projected dimension and should be measured along a
line perpendicular to the fascia stringer. Thus, flared wingwalls may
be longer than }0 ft providing the projected length does not exceed 10 ft.

Stem thickness shall be 2 ft minimuﬁ. Wingwalls may -be tapered to
less than 2 ft in order to reduce vertical'dead'load [2.7].-- |

On structures that have.beén designed to date, the'cohtrolling
design parameter has been horizontal bending iq the wingwall aﬁ ﬁhe
fascia girder caused by the large passive pressure hehgnd the abut-
ment. Since it is not certain what thg horizontal pressure will be,
the state has elected to use the maximum pressureg that were obtained
in the testing conducted by South Dakota State University for the South‘
Dakota Departmeﬁt of Highways back iﬁ 1973. In their testing program

they jacked against the backfill in 1/4-in. increments and measured
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_the corgequnding passive pressures in the backfill material. To
detefmine_the.hgfiéontal fressure on the wingwall, tﬁe anticipated
structure movement is calculated, and a corfesponding fassive pressure
from Soﬁth Dakota's test data is selected. This pressure is placed over
thé entire surface area of the abutment. Then the horizontal beﬁding
.moment in therwingwalls caﬁsed by the passive pressure trying to bénd

the wingwalls about the fascia stringer is calculated [2.4].

2.5. General Design Details and Guidelines

2.5.1. New York

1Y Foéundation Type

Allyinteéfél abutments shall be supported on piles. Steel H
or,Ci? piies may.be used for stfucture leﬁgths 150 ft or less.
. Only_stéel H piles shall be used for structure lengths over
150 ft. All piles shall be in one single line and shall be
oriented such that bending takes place about the weak axis of
~the pile. When steellﬁ piles are used, the web ﬁf the pile
shall be perpendiculér to the center line of the stringer

:egar&léss of the skew.

2y Goﬁétfucyipn
‘Qﬁ Steél'of'ptestreSSed conciéte superstructufes hay‘be
j uééd; -
. Oﬁiy straight stringers will be allowed.  A curved super-
strucfure.will be alloﬁea éroviding the stringers are |

straight. Curved stringers are eliminated to guard
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against the possibility of flange bucgling caﬁsed by the
stringers trying terxpand betﬁéen the réstfaihing abut-~
megts.. | | | | |

# Stringers shall be ﬁarallel to each qthér. The abutments
‘shall also be parallel to each dther, |

¢ The maximum vertical curve gradient between abutmenté
- shall be 5%. | |

. ‘Stage constrﬁction will not be allowed when integral
abutments are uysed [2.7].

2.5.2. California

1) Restraining Forces

The values listed in Table 2.1 for fé#istahce‘offered by
various end conditioné are applied at the base of the end
diaphragm to determiﬁe the proper réinf@rcemeﬂt; The values
shown do not take into account the speéial situations where
very long piles or small limber piles offer little resistance

to longitudinal movement.

2) Earthquake Forces
Provide shear keys to resiét transverse and loﬁgitudinal
earthguake forces acting on the structure. These nofmally
will be placed behind and at the ends‘qf the abutment wall
on narrow structures. On wide strﬁcturés;'additional keys
may be located in the interior. One 1/2-in. expénsipn
joint filler should.be‘specifiéd at“thé sides of.all_kgyslto

minimize the danger of binding.
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.4)
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Drainage
# No pervious material collector or weep holes are
_ feduirﬁd for_fiai slab bridges.
# Continuous pervious backfill material collector and
weep holes may be used for abutments in fills or well-

:draip¢d'cuts and at sites where a 5-ft~level berm is

sﬁeéified.

End Slope Treatment‘ Weep Hole Dischérgg‘
Unﬁrbtected berm | Directly on unprotecté&‘berm
Full slope paving On spacer or groove in paved

surface
o Continuous permeable material and perforated steel pipe
collector discharging into corrugated steel pipe over-
side drains should be used for all other abutments.
® Co¥rugated steel pipe overside drains must be coordinated
with road plans. If there is no discharge‘system and no
collector ditch, the outfall must be located away from

the toe of slope to prevent erosion of the end slope.

“@® Abutment drainage systems should be coordinated with

the slope paving.

Backfill Placement

Unless there are special scil conditions or unusual struc-

ture geometrics, the designer need not specify the method or

timing of backfill placement. Passive resistance of soil in

front of the end diaphragm offers little restriction te’

structure movement due to stressing. Nor will the active
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pressure of backfill behind the end diaphragm materially
alter the stress pattern even if the fill is completed at

one abutment before being started at the other [2.35].

2.6. Summary and Conclusions

Previous surveys concerﬁing the use of integral abutments {2.1,

2.2] have indicated that most state highway departmeﬁts have their own
limitations and criteria in designing integral abutments. fhe bases of
these limitations and criteria ére primarily empiricai. 'Tﬁenty—eight
states and the District Construction Office of FHWA, Region 15, are known .
to use integral abutments. The current thinking and practice in integral
abutment design bylthe 28 state highway departments and the District
Construction Office of FHWA, Region 15, are summarized in Part 2 of the
Appendix.

Iowa, South Dakota, and FHWA, Region 15, indicated that piling
stresses due to lateral movément are calculated_for integral abutment
bridges. Alaska and Tdaho indicated that such calculations are war-
ranted only for integral abutment bfidges that invol;e some unique
feature. The remaining states neglected piling stresses due'to‘lateral
- movement, although some.states like California reéuire some-type\of
mitigating construction detail like driving the piles into predrilled
holes.

Construction details vary widely from state to state. Pile head
fixity conditidps may be of the hinge, fixed, or partially restréined

type. Pile caps may or may not be used. Approach slabs are in some
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states tied to thé abutment with dowels and move back and forth with
the superstructure, while other states claim that an expansion joint
between approach slab and bridge slab is needed to prevent pbssible
maintenance problems. While granular material is the.most widely used
material as backfill, some states like New Mexico no lénger use speci;
fied backfill. Wingwalls may be in-line or flared. Some states like
New York do not allow U-walls because of design uncertainty, backfill
compaction &ifficuitf, and the additional design and details that héve
to Be'wofgéd out for the joint between ﬁhe wingwalls and approach slab.
New Yofk recommeﬂds avoiding wingwall lengths in excess of 10 ft.
Tennessee requires the‘designer to ﬁse comprehensive analysis if wing-
wall lengths gfeaterlthan 12 ft‘are to be used.

The maximum allowable lengths for bridges with integral abutments
~used by the diffe;ent states ére summarized in the Appendix. The length
limitations have been set for the most part on the basis of experiente
“and engineering judgment. Many of the states ﬁave been progressively
increasing length limitations over the past 30 years, primarily as a
result of tﬁe obsefvénce of satisfactory performance in actual installa-
tions. As of 1983,lth¢ length limitations for nonskewed integral
abutment bridges had_the following range: steel, 150 ft to 400 ft;

' concrete,ilSO ft to 800 ft; prestressed concfete, 200 ft to Sﬂd-ft.
Most states use the same length limitations for skewed integral aﬁut-

ment bridges.



19

3. SOIL CHARACTERIZATION

3.1. Introduction

The soil chafacferistics'in the soil-pile‘problem can be described
by three types of 5011 resistance- dlsplacement ‘curves: lateral
‘resxstance dlsplacement (p-y) curves; 10ng1tud1nal Load- -slip (f z)
curves,; and p1la ‘tip load-settlement (qwz) curves. The p-y curves:
 represent the relationship between the lateral soil pressuré against
the pile (force per unit length of pile) and‘the correspondiﬁg lateral
pile'displacemégt. The f~z curves describe the relationship between
skin friction.(force per unit 1éngth of pile) and the relative vertical
displacement between the pile and the soil. The q~£ ﬁurves describe
thé relatiogship betwaeﬁ the bearing stress at the pile tip and the Pile
tip settlement. The total pile tip force is gq times the effective pile
tip area. Figure 3.1 shows a typical soil'resistanee~displaceﬁéﬁt curve.
All three types of curves éssume the soil behavior to be nonlinear and
can be developed from basic soil parameters.

The modified Ramberg~0Osgood model (Sec. 3.2) willlbe used to
approximate each of the three types of curves. The equétions needed
for calculatlng the constants used in thls model are presented in
Sec. 3.3 for lateral behavior and in Sec 3.4 for.vertlcal,behav1or.

‘ Nuﬁerical vglues for these constants are pfesented in Sec. 3.5 for six

typipal soils.
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3.2. Model Idealization

3.2.1. Modified Ramberg-Osgood Model
The modified Ramberg~Osgood model, as shown in.Eq..(3.1) in the
form of a p-y curve, will be used to approximate the p*&, f~z, and g-z

soil resistance~displacement curves.

ky .
N PR T VR - G
u
Pu
Yy = E; (3.2)

in which

initial lateral stiffness

e
i

3
it

generalized soil resistance
P, =_ultima£e lateral soilAresistance
n = shape parameter
y = generalized displacement

This model offers certain a&van;ages over the other models and also
includes the commonly used hyﬁerbola as a special caée [3.1]. Nonlineag
behavior models for symmeﬁrical or periodic 1oa&ings haveASeen fresented
by.a number of workers [3.2-3.6]. The constants needed in Eq. (3.i)'
can be determined from equaiions ﬁresented in Secs. 3.3-an&'3.4. Fig-‘
ure 3.2 shows the modified Ramberg-Osgood curve for a typigal‘p-y curve.

Similar equations for a typical f-z curve (using fma the maximum shear

x’
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stress developed between the pile and soil, and kv’ the initial vertical
stiffness) or a typical g-z curve (using Gax’ the maximum bearing
stress at the pile tip, and kq’ the initial point stiffness) will be
used.. Figure 3.3 shows the effect of the shape parameter n on the

soil resistance-displacement behavior.

3.2.2. Cyclic Model

| Because of annual temperature changes, a bridge superstructuré
uﬁdergoes expan31on and contractlon, which in turn causes the pxles
in integral abutment bridges to move back and forth. Thus, the modi-
fied Rambergfbsgood.model must accommodate loading and unloading of
the pilé dﬁring éyclic loading. The nonliﬁeaf behavior characteristics
of plles and 50115 can be expressed by the ccncept of stress versus
straln and soxl resistance versus displacement, respectively, as shown
in Figs. 3.4 and 3.5. A modified Ramberg-0sgood cyclic model for both

symmetrical and irregular'cyclic loadings is proposed

, k(v - y.)
c
‘ 1+ c i
where
Pe
c= [+1--=5 (3.4}
Py _
and also
P, = the soil resistance at the last reversal
y. = the'soil displacement at the last reversal
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The expression for the tangent modulus is obtained by differentiating

Eg. (3.3) with respect to displacement y

C)nm
n

Figure 3.4 illustrates a typical example of this modified Ramberg-

(3.5)

Osgood cyclic model. In this figure, hysteresis loops that appear to
model the actuallbehavior of pile and soil quite well can then be
readily constructed by adopting rules presented by Pyke [3.6]. These
rules are stated as: 1) The tangent modulus on eacﬁ 1oéding reversal
assumes a value equal to the initial tangent modulus for the initial
loading curves, and 2) the shape of the unloading or reloading curves
is the same as that of the initial 10ading-cﬁrve, except that the scale
is enlarged by a factor of c¢. This is indicated in Eq.'(s.é} in which
the first term is negative for unloading ;nd positive for reloading;
the maximum and minimum values of the stress or soil fesistaﬁce are
bounded by the ultimate (referencé) stress or soil resistance.

As part of the finite eiement model to‘be‘presented in Chapter 4,
the Ramberg-Osgood cyclic model will be required to track throﬁgh'
severél loading and unloading cycles. The determination of revérsal
values for loading and unloading of each.load increment is obtained by

adopting the flow chart in Table 3.1 {also illustrated in Fig. 3.5).
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3.3. Lateral Behavior

. The lateral resiStance-displacemegt (p-y) curves are developed
usinélthe modified Ramberg-Osgood model (Eq. 3.1). The parameters
‘needéd for the modified Ramberg~Osgood equation are the initial lateral
stiffness kh’ the ultimate lateral soil resistance P> and a.shape |
parameter n. These parameters can be obtained using the équations
in Table 3.2 and the soil parameters in Table 3.3 {3.7, 3.8].

For the design.method to be developed in Chapte?‘s, the rathér
complicated variation of soil properties with depth will not be per-
mittgd. Simpler expreésions for kh and p, are needed. Fof cohesive
seils (c1qy); bothikh and P, will bé assumed to have a constant value

for all depths [3{9, 3(10]

kh 67 €y (3.6)

P

L =9 cB | | - (3.7)

For cohesionless soils (sand), both kh and P, will be assumed to vary

linearly with depth [3.7, 3.9]

| kh :'nhx . _ (3.8)
. JY ~ :

% = 1.35 | o (3.9)

.. pu' = (SYBKP)X ) ‘ (3.10)

The”value_nh is the constant of subgrade reaction. The other constants

used in the above equations are defined in Table 3.3,
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3.4, Vertical Behavio;

The load~slip (f-z) and pile tip lbad*set@lement (q-z) curves are‘
developed using the modified'Ramberg-Osgood model (Eq. 3.1). The
parameters needed-for Eq. (3.1) for the f-z curve are the initial verti-
cal stiffneés kv; the ma#imum shear stregs fmax’ and the shape param- |
eter n. These parameters can be obtained using Table 3.4 [3.7, 3.9,
3.12]. The.parémeters needed for the modified Ramberg~0sgood equation
for the g-z curve are the initial.point stiffness kq’ the maximum
bearing stress Ypax’ and the shape ?arameter n. These fa;ameters can
be calculated frdm the equations in'Table 3.5 [3.?, 3.8]..

The'factcr o in Fig. 3.6Ais use§ to obtain the SQillpile adhesion,
given the soil cohesion. Various curves have been”présented in the

literature for this wvalue [3.9]. The curve in Fig. 3f6Ais not the same

as that used in previous work {3.7]. The lower curve in Fig. 3.6 is

recommended for steel H piles over the one previously used [3.12].

3.5. Typical Soils

Soil properties and Ramberg-Osgood curve parameters are given for

six tﬁpical soil types in Tables 3.6 to 3.11 [3.7].
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4. THREE-DIMENSIONAL FINITE ELEMENT PILE MODEL

4.1. Introduction

A sﬁgte4of-the—art'mathematical model that can be used to help
evaluate the saféty'of piles in skewed bridges with integral abutments
is described herein. ‘Normélly, for a skewed bridge with integrai
ébutments subject?d'ﬁo a change in temperature, thermal movements
~caused by ﬁéﬁbérature changes in most cases include biaxial behavior
in the pile. Thﬁs, a three-dimensional behavior of soil-pile inter-
action is to be considered for all components of the system, with
‘compatibilify:éﬁd equilibrium enforced throughout.

The méthematical.modél developed in this investigation was
limited to defining the behavior of soil-pile interaction. A combina-
tion of a one-dimensional idealization for the‘piles (beam coliumn) and
an equivalent spring idealization for the soil, whiéh includes vertical

springs, lateral springs, and a point spring, are shown in Fig. 4.1,

4.2, Three~dimensional Beam Finite Element

Basiéally,-two differenﬁ approaéhes have been pursued in incremental,
nonliﬁea; finite element anélysis. In ﬁhe first, static and kinematic
variables'are réfefred to Eulerian (convected) cooﬁdinates in each
load step (Fié; 4.2). This ﬁrocedure is generaliy called the Eulerian,
‘conveéted, or mqving coordinate formulation. In this approach the
geometry of the continua is updated, and the deformatiqns are aésumed.‘
to be:infinitesimal; hence, tﬁe linear relations can be ﬁséd. The

incremental governing equations are obtained by applying the principle
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of virtual work oxr other equivalent theorems to thé continuum using
its configuration and stress at the previous step as the initial
configuration and stress f&.l].

In the second approach, which is generally called the Lagrangian,
stationary Légrangian, or total Lagrangian formulatién, all static and
kinematic variables are referred to the originai configufatign
(Fig. 4.2). The advantage of the total Lagrangian formulation is
ﬁhe ease with whiéh it handies the boundary conditions and nonhbmogénei-
ties. For large diéplacement problems, the construction of shape'func—
tions for fleﬁural problems is quite difficult and complex if the con-
vergence conditions of the finite element method are‘to be met {4.1].
As the rotations become large, a component originally along the coordi-
nate axis of the beam is no longer alomg that axis. Therefare, the
assumed shape functions in the axial (linear) and transverse (cubic)
directions are no£ compatible. This effect restricts the rotations to
moderate values.

An updated Lagrangian formulation, which reduces the efforts iﬁ
'computation for problems where the nonlinearities arise from material
nonlinearity and finite displacement and rotation, is presented here
(4.1]. 1In the updated Lagranian formulation, the coordinates rotate
and translate with the body.but do not deform with it (Fig. 4.2).

If the strains are small, this formulation linearizes the strain-
displaéement relations in terms of the deformation displaceménts rela-
tive to the element mo#ing éhord. The large displacement efféc;s‘aré
treated by traﬁsformations of dispiacemenf aﬁd fo;cé‘components betweén

- the Eulerian and updated Lagrangian coordinates. Strictly speaking, the
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Lagrangian formulation is a mixed procedure of the Eulerian and

total Lagrangian formulations.

Derivations of the beam-column element with geometrically and

materially nonlinear stiffness equations have been presented by several

investigators [4.2-4.20]). A condensed description of this approach is

given here to clarify the notation and approach used in the report.

The following assumptions have been used in this derivation:

&

The béam elements are assumed to be initially straight.

Plane éectionS‘EEmain plané after deformaﬁion.

The cross éeétibﬁ of the beam is constant and haslat least one'
plane éf symmetrf.

Shear defbrmation is not considered,

The effect of torsional‘deformation on normal strain is
negligible (unrestrained warping).

The beam-column element can undergo large rotations, but the

~ deformation within each element from the chord is restricted

C4.2.1.

to be small.

In
will be
1)
2)

Coordinate Systems
order to describe the system, three types of coordinate systems

defihgd here:

A fixed, global set of coordinates (X, ¥, Z).

Nodal coordinates (x, y, E)f—a set of nodal coordinates

) ' > > >
associated with each node that coincides with bl’ bz, and b3_
(the orthogonal base vectors), respectively, for each node.

. ~-> .
The initial orientations of the vectors bi are chosen to
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coincide with the principal directions of the cross section,

and since the vectors rotate with the node, they remain

aligned with the principal directions.

Element or local coordinates (x, vy, z)-~a set of element
coordinates associated with each element. The element
coordinates rotate and translate with the end points of the
element. The x, vy, and z axes are associated with the

. > > L, .
orthogonal base unit vectors 8y &5 and €5 respectively,
for each element. These are the updated Lagrangian coordinatées
described in the introduction to this chapter and illustrated

in Fig. 4.2.

These coordinate systems are illustrated inm Fig. 4.3. The unit

> > ‘
vectors b, and €; immediately define the rotational transformation for

‘_ any vector components between the goordinate‘s?stems. Thus, for a

vector V with global componénts (v, Vy, Vz), nodalAqoordinate com-=

ponents (Vﬁ’ V;, Vé)’ and element coordinate compoﬁents‘(vx, Vy, Vz),

the transformation between global and nodal components is given by

{x}

- i~ o t [
(VX 21 my n vV

= J ool % mp mp | {Vyp = [Tyl (ve} D)

where 2;, mi, and ni are the global components of the nodal base vector

B,
i

Similarly
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Ve £y my 7§ %%

{(eb = 3% m om [ {Wyp = Mgl{Ve) G
\Vz |25 my ng 4 1Yy
7 \ ¥

Because.of‘the orthogonality of the transformation matrices, their

inverse is equal to the transpose, so

I

[TNG}T {Vy} (4.3)

- {TEG}T {VE}l (4.4)

4.2.2. Strain-Displacement and Deformation Displacements

In the updated Lagrangian formulation, displacements are subdivided
inio rigid body displacements, which cause no strains, and deformation
displacemenis. The rigid bpdy displacements correspond exactly to the
translation and‘rotatiOn‘of the element coordinate system. The addi-
tional displacemenﬁ# needed ﬁo bring the element into its deformed
configuration .are the defhrmation displacements. Cénsider a generic .
beam—column.elemént with node I and J (or 1 and 2) as shown in
Fig. 4.4. The element has six degree_ofgfréedoms per node: three
displacements and three ;otations. The nodal displacement vectors in-
. , and d,

The positive directions are given

global and element coordinates are designated as D, to D1 to

d12’ respectively (see Fig. 4.4).

by the righthand rule. Figure 4.5
column element with global, nodal,

after Being deformed. The element

shows the three-dimensional beam-
and element coordinates before and

coordinate system (x, y, z) for the
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beam-column element is defined so that the x axis is and remains coinci-
dent with a line joining the endpoints of the élement, while the y and
z axes can be defined by a third node which lies in the pbsitive X~y
plane (K node).l In genefal, the third node translates as the average
of the two end nodes. 1In addition, it rotates about the local axis of
the beam {(x agis) an amount equal to the average of the twisting

rotations at the ends [4.21]. The deformation nodal displacements are

given by
d T X z z | :
{ d } = (AIJ, 0%, o7, 6%, oY, 02 | (4.5)
where
AIJ = eglongation
8§J = torsional deformation rotation

I 9;, B§, B; = bending deformation rotation at ends I and J

The elongatioﬁ‘is dixectly determined by

>
!

- (3t _gt) _ [0 _ 20
1J (XJ XI) (XJ XI)

it

1 [.7.0 0 0y
——————-—----2(X\D\+YD +2% D )
(2t+29)[ a7 * YpPs2 * 2a1Pes

+ (Dn)2 + (382)2 + (393)2] ‘ H (4.6)
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where

2t e .

XI = position vector of node I at time t

20 - .

XI' = position vector of node I at time O
‘30, 2t = the length of the element at time 0 and t,

respectively.
X =x2-x% b =0p

g1 = X3~ %y Dyy =Dy - Dy, ete.

In static analysis, the times 0 and t are used to represent the initial
stage and the current stage and not real time.-

For the purpose of compﬁting the relative rotations at time t;_

£

y
® 3

I’
defined by b

e?, ag, )

;i; gEi,-respectively (i'=1, 3). Element unit vectors

(x, ¥y, Z) are denoted by g;. Since the nodal vectors §§i Ei

rotate with the nodEé, the angle between %Ei and gz indicates the

, and 8¥J, nodal unit vectors for node I and J are
-and-g

magnitude of the deformation at node I. For example, the cross

t

' b 4
product of the two vectors ey

and §§1 is a vector perpendicular to the

plane which contains these two vectors. The magnitude of this vector

t
I

assumption of small deformation within the updated coordinate system,

. the bending déformation rotation 6¥ can be obtained by projecting this

is equal to the sine of the angle between Z; and b With the

: >t : ' .
vector (e§ X g§1) on the current v axis. This is illustrated in Fig. -

4.5 and the mathematical expressions are given below.

oy = G x8r)y - & - 4.7
of = @ xBr) - & (4.8)
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v . 2t 2t 2t , R
o) = (Bt x5y - & . ST (4.9)
o5 = (6] x b5,) - &5 (4.10)

The torsional deformation is found by taking the cross product of
g§2 and g§2 and projecting this vector on the current axis of the beam

(x axis). This yields

L2 o L (haD)

2>t =t

The method of updatlng the nodal and element unit vectors b b

I

and e? will be discussed later. '
The neuntral axis deformation &isﬁlacement for the beam-column

element is given by cubic shape functioms to describe bending defor-

mations and linear shapé'functions to specify axial and torsional

deformations as

R - -
ud £ o 0 0 0 0 (
o B T 0 G S I B LS S
4 ¥‘ = . _ ' | o y
Wl o o 2f(-grag?g?) o et o

d .

%) [0F 0 O o e

= [¥] {dd} | ' (4.12)
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where
£ = x/8 | . (4.13)
The ud R vd‘,‘wd neutral axial deformation displacements do not -
na’ ‘pna' "na ‘

include rigid body motion and, hence, are with respect to the element
coordinate system in Fig. 4.2 (i.e., the moving chord which éonneéts
the end points). |

| Following the usual Euler-Bernoulli beam assumptions that normais .
to the‘midline'remain straight and normal, the deformation displaceﬁent

at each point‘of the beam element may be written as

d o d

d _. 4 - 5 avna -z E)W'Ila . (4.14)
Yp TV T Y TEx ox )
d_.d _ _4

VP = Vo z¢na (4.15}
d_ d d -

Y F V¥na * Y#’na | (4.16)

From the previous assumptions, the effect of torsional deformation on
normal strain is neglected and shear deformation is not considered.
The relationship between the beam normal strains and the displacements

is

5ud d\2 dy\ 2 ‘ ‘
e u 1 v 1 ow -
R AT AT S (4.17)
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The equation is valid as long as (nglax)2 and (awi/ax)2 are large

compared to (Bugfax)z. Although this condition is similar in appeai*

ance to that of moderate rotation theories, it iS-far.less restrictive

because.vp and wp are the displacements relative to the updated eléﬁenp

coordinate x. By reducing the size of the element, vﬁ and wg can be

made as small as necessafy [4.22].

From Eqs. (4.12) to (4.17), the strain and displacement can be

related as
e= ([B] + % [Bﬁl){dd}

where

(4.

(8] = [1/2%, 0, p(6& - ), -n(§ - 4), p(6E -2) ~n(6E

o d,T T LT

[Gz] = [Os ~p, 03 "f-’l(g)’ 0, q’z(g)}
[GY} = [03 n, ""qjl(g): 0:--¢2(£): 0]
B (8) = 1 - 4E + 3¢°
U, (&) = -28 + 3¢

- ' - &
n= ﬁ » P = E‘E

(4.
(4.
(4.
(4.

(4.

(4

.‘(4

18)

- 2)]
19)

20)
21)
22) -

23)

.24)

.28)

For general nonlinear problems, the solution glgorithm (Keﬂton-ﬁaphson

method) is based upon the application of a small load increment. For
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this technique, it is necessary to relate the rate of ¢hange'of force
with displacement, that is, the tangent stiffness. From Eq. (4.18)

that rate of strain Ae can be found as

it

Ae ([BL}L.+'{BNL]){Add} - f  (4.26)

or

Ae

1}

81{ad"} o O G

Once tﬁé‘straiﬁs are known, the stresses ace computed by the cgn-
stitutive laws [4;23}; rThe nonlinear stress-strain relationship of
 the beam”matefial will be approximated by:the modified Rahberg—Osgood
cyclic modél (see Sec. 3.2.2). The.incremental stress-strain

relationship of the beam-column element is expressed as

AG = Ey Ae o _ ' (4.28)

where ET is the tangent modulus of elasticity of the stress-strain
curve.  If the thermal strains are considered, Eq. (4.28) is modi~
fied to

T) (4.29)

qu= ET(Aa ~rAa
fe = QAT o 5  (4.30)

in which

AT = temperature above an arbitrary reference temperature

2
i

= coefficient of thermal expansion
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4.2.3. Nodal Forces Computation

Using the principle of minimum potential energy [4.23], the

deformation nodal forces are found as

te9y = [ 817 o av | (4.31)
where V is the volume of the element. The deformation nodal forces
are conjugate to the deformation nodal displacements in the sense that
their scalar product yields work, so that from Eq. (4.5) it follows

that

a,T -
(9" = {&y, mpp, uy, mp, wj, m) (4.32)

The integral for the nodal forces, Bq. (4.31), is evaluated
numerically. The following definitions are made in order to obtain

the deformation nodal forces:

.= | can -  (4.33)

i A . .

M = f ozdA (4.34)

1 A .

2 = - .

M, = j;crydA _ (4.35)
1 2 2 - '

M, = - o(y® + z)da (4:36)

i 2t L; 7 _

where i = I and J denotes £ = 0 and 1, respectively, and A'réfers to
the beam cross-sectional area. The quantities obtained from Eqs. (4.33)

to Eq. (4.36) are assumed to be linear functions of §; for exaMple,



37

P(§) = (B - P& + P; (4.37)
Yeey = (MY y y

M2 () = 0 - D + i N )

M(E) = 01 - MDE + My - (4.40)

The integrals in Egs. (4.33) to (4.36) must be evaluated numeri~
cally since tﬁé éros§ section may be partially plastic. Numerical
methods are introduced to calculate the strains and stresses (which are
functions of £, n, and p) at differenh poinﬁs of the cross section.
The cross-sectional area is correspondingly divided into a number of
subelements over the depth and width as shown in Fig;'é.é. The
numbéf of layers used in two directions must be sufficient to describe
the v#riation of mdterial properties and stresses over the depth and
width. Each'subéiémenﬁ is aséumed'to have uniform material pfdperties,
and the:strain is evaluétgd at the centroid of the éﬁbelement. The
stress is'aSsuméd constant and equal to the stress Ealcuiated at the
centroid of the subelemeﬁt. | |

The deformation nodal forces in Eq. (4.31) can be compute& by

'introducing [B] from Eq. (4.27) and Egs. (4.33) through (4.40) to obtain

(69 = [ 131%0an = (a1 + () (4.41)
V' . . ‘
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where
1/2(PI + PJ)
"o
— ' )
(a) =] (4.42)
4
My
v
My
pA
My
) o | | ‘_
1 1) g% 1 [z _ 2 Y _ a¥ 1 AV _ WYV a2 - a2
(2 My + 3 MJ) 615 * 13 (HJ ”1) (9J 61) * 12(’% M) - 8y
1y - M%) ¥ +£E (6P +‘21> )eY+—2—E (-p,; - P )8Y
17 \My - My )01 * g5 (6B 7% * 5o CFp - Ppl93
1 ¥y ¥\ A% £t z ﬂt 2
Ay} = “1*5'(”.1 - My ) Oy; + gg (6Bp + 2P 6T + &5 (-Pp - POy
1 [z Z\ X 2t y gt y
1z (MJ - Mz) 015 * go ("Pp P81 *+ g5 (2B + 6P )05
N v\ X Qt | z '2t ' 2
12 (MJ - Mp )01y g (“Pp “PpI6T + &5 (2Bp + 6P )6y

(4.43)

The first term on the righthand side of Eq. (4.41) is the linear
approximation to the nodal forces and, hence, is not dependent on the
' deformation. The second term introduces the additional contribution

as a result of a deformation. The linear term
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= GJ % |
17" ot %11 (4.44)

M
‘ 2

has been a&&ed1;é Eq} (4.42), even though it does not result from
the normal axialrstfess, in which G is fhe sheafing mddulus, and J is .
ra.torsionai canstantlexpressed as é function of the element cross
section [4.20}.

The nodal forces-{f}'in the updatéd element'cgordinate system

can be obtained from the deformation nodal forces {fd} by equilibrium

‘as
T .. d | |
(51 = (R17 ¢ (4.45)
in which
- “
-1 0 0 ©0 0 0 1 0 0 0 0 o0
o © o0 -1 0 0 0 0 © 1 0 o0
0 0 1% o 1 0 0 0 —% 0 0 0
2 2
1 -1
RI=}o = o o o0 1 0o 2 o o 0 o0
2 2
0 0 1% 6 0 0 0 0 —% 0 1 o0
2t | 2
0 m%, 0 0 0 0 0 1% o o o0 1
2 ) ]

4.2.4, Tahgent Stiffness Matrix in Element Coordinate S&stem

The incremental deformation displaceménts,can be related to the
incremental displacements in element coordinates by the linearized

equation
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(ad%y = [R;] {aa} - | (4.47)

which, with Eq. (4.45), establishes the principle of contragradience.

As the chord (convected coordinates) rotates as shown in Fig.‘
4.2, the transformation matrix [RL} changes. That is, the transfor-
mation from the deformation coordinates; which are based on the rotating
chord, to the temporarily stationary updated_coordigates changes. Using
the first term of a Taylor Series, the incremental form of Eq._(&.AS)

is
fae} = (ar]” {59 + (R1T far? o (4.48)

in which {R] is the changing transformation matrix. Now, sincé the

increments are small, [R] is approximately [R] and
tary = (2R {59 + [R)T {af%y (4.49)

Equation {4.45) with [RL3 remains valid for the total force trans-
formation during the entire displacement increment, if the increment
is small. Since the assumed deformation shape functions are with
respect to the‘chord (which moves with respect t§ the updated Lagrangign‘
coordinates), the rate of qhaﬁge of the matrix [AR] is nonzero. ' If the
assumed shape functions had included the rigid bédy motion (i.e.,
polynomials with respect to the updated coordinates), [AR} would.haVe
been equgl to zero. |

The second term on the righthand side of Eq. (4.49) can be

expressed by
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[Ri]? {Afdjm [RL]T l; {AB]TlGdV + [R)" j; (81T Acav
| (4.50)
The following definitioqsaré introduced
R 1" d&y[B]T A&dv_e (lkpl + [k D) fad} | I. (A.Slé
Ry j;'tasl?cdv = [ikg;] {6} B 75
"where |
[ky] = [R)" J; (31" By (BJaV [R] s
(k] = (R1T [ fv (EBL_]TEJBW + By, 1T (B )
. {BNL}TET{BNL1>d§]{RL1 (6.56)
18" = (16,1"16,) + 16176, [R] fna} (4.55)

‘The first term on the righthand side of Eq. (4.49) can be

exﬁreségd by
ey = kgl fay 456

and will be considered later.
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" The matrix {ko} is phé conventional stiffness matrix; {kGll‘agd
[kGZ} are the initial stress matrig (or the geometric stiﬁfness matrix),‘
which depend linearlj on the defermétion nodal displacemegts;'and {kL]
represents the large displacement stiffness matrix, which depends on
quadratic terms of the deformation nodal displéceﬁénts.c The hpdated
Lagrangian strain approaéh makes the strains and rgtations in the-
element ‘system small enough (for reasonably Smallieiemént sizeg) that

[kL] can be omitted [4.18]. Equation (4.49) can then be rgduéed to

(£} = ([ky] + [k]){Ad)
= [k],{Ad} | 4.57)
where
[k,] = [kG11 + [kg,] | | (4.58)

The following definitions are made in order to 6btain'the expres-

sions for [kG]’ [kG]

(EA)y, = [ﬁ EqdA - w59)
v o[ |

(EK )T].L -£ EpzdA | | (4.60)
. |

(BK®) _..£ Eydh | a6

vy = 2 o "
E1%),, ,.i Epz’dA )
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z _ 2 ' ‘ :

E1%) qu Eqy°dA (4.63)
vz, |

€%y, = j; Epyzda | (4.64)

'where i = F aﬂd J denotes £ = 0 and 1, respectively. The quantities
obtained from Eqs}‘(4;595 to {4.64) are assumed to be 1ineér functions
of £ [similar to Egs. (4.37) to (4.40)].

- The conventional matrix stiffness is obtained‘By evaluating the

rintegrai [see Eq. (4.53)]
_ 2 T,.d : , .
k] = (R 1 (KOT IR, ] | (4.65)

{kg} ;[] [BL}TET{BL]GV ‘ | | (4.66)

Using the defini?ion of Eqs. (4.59) to (4.64) gives Eq. (4.67)
(see following pagé). :The linear term (GJ)T/Qt has been inserted
into~Eq; (4.6?),:evén ﬁhbugh it does not result from axial (normal)
strain. It shbuld be noted that for a conventional sﬁiffness matrix
thislterm is used‘ﬁq‘rESist the applied torsion.

The geometric (initial stress) stiffness matrix {kGI} is obtained
by evaluating the integral of Eq. (4.52) with the definition in

Eqgs. (4.335 to (4.36) and (4.59) to (4.64):
B T d

The explicit form 6f‘[kGI‘(:‘EkG1} + [sz]) will be shown later.



i—;(; () + 3 @m;) 0 —‘ﬁ E& )y i; %5, ;_t (E'KY)TJ ; _;% 52y,
('GiiT 0 o 0 o
i{“ (3(EIY)TI + (Ely)-T.) i’i‘ (3(E1yz)n * (EIyZ)TJ) iT: ((Ely)_'rf (EIY) TJ) ;%((EIYZ)TI * (E_IYZ)TJ) |
(61 = sym . : i;c- (3(EIZ)T1 + (EIZ)TJ) ;—% ((E;VZ)TI + (EIVZ)T;) ' iz ((EIZ)TI + (EIZ-)TJ)
% ((EIY} o 3(Er) _'FJ) ;—i ((EIYZ) oy + 3(E0) TJ)

;% ((EIZ) a1 * 3(E1°%) TJ)

(4.67)

ka3
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The geometric (initial stress) stiffness matrix [szl, as shown
in Eq. (4.56), is evaluvated as follows. By the chain rule, since

[R] changes with the displacements {d},

ti=l

12 g AT . | .
; | 3R
. [AR]I;{fd} = 2:_[53—] ad, (£% (4.69)
For the purpose of evaluating the derivative in this equation, write

(R] = [R;] [Ry] C (4.70)

~ in which [RN} is a transformation matrix due to the small rigid body

motion between the chord and the updated coordinates. From Eqs. (4.45)

and (4.70), Eq. (4.69) becomes
12 "aRﬁ"T |

_ ‘ T d, -

= 2 |sq| 84 IR £
i=1 i

e 2

ok
]

EﬂﬁgT
ad,

b E

Ad. (£} 4.71)
1 ot |

[
]

Only two terms in Eq. (4.71) will be presented here; the others
will follow a similar derivation. Consider only the terms
IBRN/del Adg_ang [SRNIBQB] ﬁdgf Consider the matrix Ier, which
forms a 3 X 3 submatrix on the diagonal of {RN} [similar to Eq.
(4.4)}. For‘a displacement d2’ the transformation between the

chord and thé;updated coordinates is (see Fig. 4.7).



1

[r

Similarly, for a

8
[ry]

If d‘2 and d8

(4.72)

(4.73) .

are small, {rN} is the sum of these two matrices. Sub-

stituting the sum of Egs. (4.72) and (4.73) iato Eq. (4.71) (1 = 2 and

8 only) gives

1ar” 2% = )T ge oy} faay

where

(® ]

[?co] =

[r ]

[ ]

[r ]

(e It

(4.74)

 (4.75)

(4.76)
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N

=l
ol

[o 1 o000 0200 0 o] (4.77)

Simiiarly;jfoi i= 3 §hd 9 (see Fig. 4.7), one obtains

feh={ 0 o o (4.78)
-1 0 0

e =0 02 o 1 |

[Q1=f0 0= 0 0 0 0 0 5 0 0 o] (4.79)

for i = 4 and 10-(see Fig. 4.7). The average twist angle is taken

as the rigid body rotation about the x axis, which gives

o 0 o
[r,J=f0 0 1 | - " (4.80)
0. -1 0
Q) = [o 00300000 20 0] (4.81)

The rate of change of IrN} with respect to dlf dS’ #6’ d7, dll’
and d12 is zero. By substituting Egs, (4.75) to (4.81), Eq. (4.71)

now becomes

i

1Rt = (R 153 Q,) + [Ry) {f}mlz + r)"15} 10, ) o

[k, ) {Ad] | | o (4.82)

The exp11c1t form of [kG} which can be obtained’ by comblnlng [kGll-

and [k 2} is glven by Eq. (4. 83) (see following page)
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where '

C, = 1— (GPI +6P;) - B, = L (n® + u®
60 - T s I g7
.. ° £ :
c, = & 5 P, +P) B, = L v, Y |
2" 60 17 g 2 7t By T Wy
et - ' 1 |
Cy =g (Bp + 5By By=f;=35 (B +Pp
_ {1 1.\ e oY
€, = (2 Mp*3 HJ)- By, = my
et "i* 7z z s
¢, =% (ys - MI) B, = (4.84)
t. . .-..
e =2 (W W 5 =
%““u(@r ﬁ) Bg = myg
.2 |
. &) ‘ -y
C; = "o~ (6Pp * 2By B, = my
.2 -
_ ) N T -
Cg = “go ~ (Pr * By - By =g
t2
.20
C, = it (2PI+62J)

9 60
.lia7§hi¢§ ;he qﬁaétifiééﬁi (1= i, 9).andBil(i§ 1, 8) result from
(kg ] ané.{szif respéctivbly. o a | |

Not all terms dfﬁtﬂe‘initiél matrix répreséntgd‘in qu:(4.83)
“are of equal importance. The téfms-which correspond to g:change in

the axial force due to the presence of initial transverse forces 31
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and B2 during a rotation relative to the element system have been
neglected.  The transverse forces are generally quite small compared
to the axial stiffness, so a-small-axial_diSplacementlwill compensate
for these changes in axial force caused by rotation ef‘sheér forces.

The stiffness matrix {kG] is ﬁot symmgtric. The unsymmetric terms
arise in [kGZ] due to the twist and bending 6f the membef'BA‘* B8 apd
the presence of an initial bending moment £°B /2, £°B,/2, £°B,/2, 9,"35/2,
ﬁt37/2,laud ﬁtBS/Z. During a moderate rotation in the‘updatgd‘system,
these unsymmetric ﬁerms wili contribute very little to tﬁe total stiff-
ness. After these terms are neglected, Eq. (4.83) becomes Eq. (4.85)

(see following page).

4.2.5. Coordinate Updating and Three-dimensional-Transformétion Matrix
The beam-column element formulations are based on the geﬂeral
incremental updated Lagrangian continuuﬁ mechanicg}equations, which.
ére briefly summarized in the previous sections. Consider the'mogion
of a beam-column élemént in a fixed Cartesian coordinate system {(global
system) as shown in Fig. 4.8. In‘Eq.,(é.QS) the incremental-equi~
librium eguations of a beam-qolumn element were derived'by first
evaluating the finite element matrices corresponding to the element
coordinate system (see Fig. 4.8), and then transforming the resulting
| matrices to the‘glcbal'0§rtesian coordinéte axes priof to the element

assemblagé process [4.}]. The finite'elementlmatriCEs correspondiﬁg
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to the element coordlnate axes are obtaxned by measurlng all statlc
and kinematic quantities in the element coordlnate system. Thus, the
transformation matrix [T ,» wWhich relates dlsplacements:measurgd in
the element system at the current configuration (at time t)} to the’
disylacements méasured in the global coordinate system, can belobtained
by a simple vecfér transformation'between the eiemént aﬁd'glbbél‘podrdi-
nate system.

As mentioned before, the unit vectors 32, g?i’ aqd ggi (i = 1,3)
must be updated for each inéremental load in order to track the element
and nodal coordinate systems. For the purpose of tracking the unit‘

2t >t > s
vectors ei, in, and b;i at the current stage, start from the initial

stage (at time 0) when the unit vectors Zg, ggi’ and ggilare the same.
After the first incremental load is applied, the incremental displace-

ments {ﬁbt} are obtained in the global coordinate system

/ \
{ADTI}
' {AD; } : | ’
e
oty = 1 R | - (4.86)
{ADBJ}
where
{ADTI} = translation at node I in X, Y, and Z directions
{ADGI} = rotation at node I in X, Y, and Z directions

At the initial stage, the thirﬁ node K is defined as a point'in
the positive x-y plane as shown in Flg 4, 8 -At the cdrrent stage,‘~

node I and J are dlsplaced to the new position X and XJ, respectively,
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R =20+ - (4.87)
iﬁ; = ig# aBE - (4.88)

,'The thlrd node (K nﬁde) tranéiates as the aferagé of the‘two end nodes.
In addltxon, 1t‘rotates about the axis of the beam on the average of the-
tw1st1ng,;9tat10ns.‘ Since the incremental dlsplacements {AD } are
assuméd‘td'bé-sméll,:ﬁhe;new‘pbsition of the K node is obtained

as -

“ﬁxmﬂ +A§t (ﬂﬁ( ;;}tl) . (4.89)
where |

L3t 30

-3 (o *Aﬁ’“) S G

is the translation term. The Small.rdtation about the beam axis is
t l-‘t‘ t e

MBgy —[2 (Aﬁe‘ + Aﬁ J) ]el o (4.91)
The 1ast‘quantity in Eq.'{4.89), in which

st _ L/t , 3t) - o .

XM”'Z(XI + %) | (4.92)
is the radius vector from the midpoint M to K.

o The dlrectlon cos1nes for the updated element unit vectors e:

. (Eq 4, 2) can now be determzned by vectoyr mechanlcs as follows
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ot
X .
>t 1 Lt t t3 :
TS 21 +m3 +nk B O
11T
-t 2>t
X X
3 = ’;T - “—f + mtj + nK | (4.94)
LT ralieat 0 (99)

=%t - f; , ete. - ' (4.96)

Each element is associated with an element coordinate system (x,y;z),
which is rotated relative to the global coordinates (X,Y,Z) by a rigid
'body motion. Incremental nodal displacements in the element and global

coordinates are related by an orthogonal transformation'
{ad} = [T]{AD} ' ' o (4.97)

where . L
[Tg]
(T ‘ . ‘

[T] = ‘EG ‘ _ (4.98)

and [T ] is presented in Eq (4. 2)

‘ o>
Now, for the nodal coordlnate system, the unlt vectors bIl an d b§1

must be updated since they rotate with the nodesm From the assumptlon
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that the incremental rotations {AD;I} and {ADEJ} are small, the incre-

mental vectors can be obtained by taking the cross product of the two

0

vectors, AﬁtGI and in, and updating

>t _ t , 320 - . _ .
by =h i+£ x by, . ‘ | (4.99)

St ¢ 20 | . S
by = “i + Aﬁ X by, :  (4.100)

These current updated vectors must be normalized to obtain the direction
cosines for the current updated unit vectors (Eq. 4.1). For the next
incrément t = 0 refers to the previous increment.

4.2.6. Tangent Stmffness Matrlx in Global Coordlnate System

The nodal forces and dzsplacement in the global system can be

related to the current system as follows:

(1 ¢e3 U O (4.101)
[Tigy SR (4.102)

(7}
@

3

The incremgntal_ﬁodal'forcés in the global system can be found as
{aF} = [1]7{af} S C (4.103)

- Substituting Egs. (4.57) and (4.97) into Eq. (4;103) yields the
tangent stiffness‘of‘the‘beam-CQIUﬁn element in the gibbal coordinate

system as

L]

(o} = K10y (4.106)

where

K1y = (117 (k] l1] | (4.105)
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4,3, 8oil Spring Finite Element

4.3.1. Soil Model Description

.The basic assumptions employed‘for the treatment of fhe three-
dimensional soil model are as follows: |
(1) Torsional soil resistance is'nqt-considered in the soil-pile
interaction [4.24].
(2) There is no coupling between the axial and Iatérél so0il
resistance. That is, the .cfefo'rmati‘qn modes for an isolated
soil épri#g ére indepéndeﬁt'of each‘q;hef.  Pérkef and Reese
{4.25} have reported that the reléﬁionshiffhetweed‘aiiai load
and-digplacementé of fhe‘soil:is not sigﬁificantly-affected:bf
the presence.of lateral deflections of the‘soil; and vice
versa. Soil behavior can thus be dividé& into axial énd
lateral parts as described in Secs. 3.3 and 3.4.
{3) The behavior of the soil at a particular depth is independent
of the séil behavior at another depth [4.26].
{4) The 1a£eral soil behavior.is assumed to be iﬁdépgndqnt in
the two orthogonal 1atera1~directioﬁs.. fhat_is,mtﬁé soil
resistance in the y-diféction is not affected by thé_Séil
resistance in the.z direction. walindepénd6n£ Iéferal
éprings‘wiil be placed in the-v ahd ildirectioﬁﬁ;i |
respectively.
The soil displacements and forces afe calcnlated on ﬁhe-basis Qf‘the

displacements in the element coordinate system as shown in Fig. 4.9.
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4.3.2. Soil Springs

If hoplinaaf behavior is‘éonsidered, the soil spring stiffness is
not a constant and instead is a function of-éisplacement. Only the
1a;eral spring eleﬁent in the y direction will be discussed here,.since
the otﬂerléoii spring would_follow thé same derivations. _Aé'discussed in .
the ﬁéévioﬁs éectidn,:the‘soil resistaﬁée'directly opposes the lateral
.disﬁlaceméﬁt in thé y direcﬁion."The lateral séil resistance pé; unit
léngth of the piléﬁﬁ'isiassumed ﬁo be linearly distribﬁﬁéd along ihe
-1pile element (Fig: 4.9). A set of p~y curves is represented by the
modified Ramberg-Osgood cyclic model (see Sec. 3.2.2). In this figure,
p, v, and kYt (the 1ate;a1 soil tangent stiffness) are in the updated
. element y dixectipn. ‘The relationship between incremental soil

resistance and displacemeﬂt can be expressed following Eq. (3.5) as

Ap. =k A ' o o ' (4.106
Py = Ky | | ( )

The-q&&ntities Ay, k_., and,py are assumed to be a linear function

yt
of &, |
‘ o [Ad, o o | ‘
Ay = [1 - &, €] l = [N_(1{Ad} (4.107)
o g | o
k. =1[1-E§, E.l{ Y } .- (4.108)
yt . . K .
. — Py ' | R
Py, =[rv-§, £] { g : - (4.109)
. b3 |
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By the principle of virtual work

{af} = [k ) fad} | S (4.110)
where
[k, 1 =«L‘ N1k [N ]dx - : . (4.111)

The explicit form of soil lateral tangent stiffness fér y motions is

1/4 kytI + ;/12 kytJ

) D12 kg + 112 K
t .
[k 1. =2

sym 112 kg 14 K

(4.112)

The total nodal forces {f} can be obtained by using the principle

of wvirtual work as
L T . . T '
{f} = f [N 1'p. dx S (4.113)
0 s” Yy o _ | .
or, explicitly, since degree-of-freedom 2 énd 8 are for the'y‘displa;ements

of the beam element,

f : 1/3 PyI + 1/6 pyJ
=gt | - O (4.114)

The tangent stiffness of the nonlinear springs for the other cases

(lateral z spring, vertical spring, and point spring) can be obtained
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in a similar‘manner (see Fig. 4.1). The matrix [k ]T represents the
tangent stszness for ‘the soil model whlch is added to the beam stiffness
[k} to form the tangent stlffness of the soil-pile interaction model.

) 4.3.3. Backwall Soil Model

"Figure 4.10 shows the backwall soil model which is considered
in integral bridgenabutménts. .Lbngitudinal bridge movements may cause
parts of the backwall to come into contact with of separate from the
soil. In the idealized.backwali soil model, it can be as'sumed thaf the
backwall soil is attached to the backwall, so that the soil spring .
propertles of the backwall soil can be treated the same as the soil

springs attached to the pile.

4.4. Basic Nonlinear Solution Techniques

In previous-sectioﬁs the finitelglement model which is used to
predict the nonlinear'béhavio; of pile-soil interaction haé been descfibed.
Thé géneré} igcremental tangent stiffness equations for the:beam column
and soil spfing elements are the ﬁajor results. In this section these
“équétions bébomé‘the basis from whiéh‘a géneral incremental nonliaéar
soluﬁion §ﬁocedure is'forﬁulated.

4.4, 1 The-incremental Lbad Teéhnique

The condltlons of equlllhrlum for a glven structure.are satisfied
by solving_the structural stiffness equations for,the unknown general-
ized (global) diSplacementsggivén a known applied loédiug.f,lﬁ'a linear
énalysis envirbnméﬁt this solution proceduré is st:aightfo:ward because

all of the stiffness parameters are constant, that is, independent of
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displacement and expressed in closed form. Thisris not the case in a
nonlinear analysis environment where the stiffness.parémeters afglthémq
~selves depeﬂdent on the state of total displacement, total stress, and |
material properties, and may not beﬂconveniently'éxpxessed_in closed
form. In this case tﬁe most suitable approach to analysié is by apply-
ing the total load in a series of small finitg~sized'incremenﬁs.. For
ea@h load incremeﬁt the resulting increment of displacement is deter-
mined from the incremental stiffness equationms where the stiffness
parameters are evaluated to reflect the instantaneous étate_éf the
total displacement,rtotal stress, and material‘characteristics that
exist just prior to the application of the 1oa§,increment."The;total
displacement after the load increment has been applied is ‘evaluated

by adding the computed displacement increment td the total displacemeﬁt
that exists prior ﬁo the applicétion of the load incremént.

This type of solution is a piecewiseiIihearfsolution, a physical
representation of which is illustrated in Fig. 4.11. This figﬁre'shows
three load-displacement (¥ - d) curves for a single degreé-of*freedom
system. Curve A represents the linear behavior which would rgsuit
by solving the governing stiffness gquation for the total ioad aﬁpliéd
in one increment; curve B is the piecewise linear solution which would
result by applying the total load in severél increments; and‘cu£ve.C
representé the exact aonlinear.behavior. It is clear §hat aé the size
of the load increment app;oacﬁes zero (or‘the numﬁer of load'inéfements.
approaches infinityj, the piecewise linear cur#guaépfqéchés ﬁﬁelﬁﬁue

curve, Since leoad increments of infinitesimal order are impossible to
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achieve,'a reasonable number of moderately sized lodad increments will

be applled

b, 4 2. Newton-Raphson Eteratlon Method '

As 1ndlcated zn F1g 4, 11, it is desxrable for the structure
-solntlon procedure to come as close to curve C with as few load incre-
ments as p0531ble to obtaln the dESIIEd analytical accuracy This can
be achxeved by employlng the Newton-Raphson method to 1terat1vely
satzsfy‘egu;llb:1um.

This apﬁroach is characteristic of the tangent stiffness technique
'where; iﬁ a given load increment, the Newton-Raphson iteration ﬁetﬁeé
is appligd so that the element nodal displaceménts are successively =
corrected'uhtil joint equilibrium is satisfied. These displacement.
corrections are computed using element taﬁgent stiffneés matrices,
which are succe351vely compated to reflect the most cnrrent state of
‘total dlsplacement total stress, and material propartles.

' Thelbasxc_cgaracpgrxstlcs of thls.techn;que a;e 111ustxated in
Fig. 4f121for a'éiﬁ#le degree~of-freedom systém which is characterized

by the following parameters:

o ele@ent stress
f ='eiemgn£ qucé
F = appiied extétnélildad
" d = element displacement (in this case for a single degree-of~
_freédom,-this islthe‘saMe as thelglébal displacement‘D)"

‘VET #Velemant materlal property parameter--the 1nstantaneous

‘-slope of the element stress- straxn relatlonshxp
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kT = kT(d,‘c, ET) the tangent stiffness-~~a funcfipn of tbtal_
element displacement d, total element stress c,land the
state of the element material p;operty parameter ET’
At a,particu%ar level of applied load, given byiFj, the t§t31
element stress is given by cj, the total element force is gi&en‘by
fj’ the total élement displacament is given by dj’ and . the current
tangent stiffgess is givén,by.ij. This state, which_ig‘indicaéed.by
point 1 on Fig. 4.12, is reached after the applicatiqn o£ sevefal-load
incremegts. | | | |
At this level of applied load,Fj, the description of the Neﬁton—.
Raphson iteration begins wiph_the application of an increment of
ekternal load AF, Tq satisfy equiliﬁrium, the following relationship

must be true: )
f. - k x Ad""‘F.l AF : | ] 4.115

Equation (4.115) is a reprgsentation of the linearized incremental
analygis wherein the structure is assumed to bqhavé line;rly during
the application of an incremental load AF. Equatio@,(q.lgsj_also.
establishes the analysis at point 2 of Fig. 4.127 This‘increment‘
of displacement Ad;, which results from the applicafien'of AF, is

computed by rearranging Eq. (4.115) and solving for Ad; as folldws:
aal =iz @ aF - £) o e

The increment of displacement is added to the previous total'hisélhée-

ment dj to form the new total,displacément
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al = 4.+ ad? ' | - (4.117)
j i .

where

="
1

the new total displacement

Note that the subscript ﬁenotes'the load increment number and the
éuperscfipt dendtes‘the iteration number within this load step.

| Th¢ ana1ysi$ is still at point 2 on Fig. 4.12, where a new
' materia1‘property pafaﬁgter E%i and a new gtate of-élement stress
oé_age computed'in.o:der‘tolreflect the-néwdisplacementd;. Since

the element stiffnessjkT is_depen&ent on 0, d, and ET;-it is recomputed

to‘réflect-c%, d%, and El. as follows:
RO RO W B

1 11 .1 | :
kpy = ko (oj, 4, ETj) | | | (4.118)
The stiffness parametér k%j ig the tangent stiffness at point 3”on the
actual load-displacement curve of Fig. 4.12. |

'The*iﬁtefnal force due to the new displacemeﬂt,d;‘and the new
state dfleieMéﬁt'étreSS o§ is computed in the fdllowing manner:

1

£f. = f(o,, d, 4.119
where .
.‘f;‘= the new total internal force

Equation {4.119) establishes the analysislat point 3 of Fig. 4.12.
At this point, equilibrium is satisfied if and only if the following

relationship is true:
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E, *AF - f; =0 - - | (4.120)

However, because of nonlinear behavior, i; is clear that equilibrium
- at point 3 is not satisfied exactly by Eq. (4f120) because Ad; and
d; were computed on the basis of the‘pievious taugént étiffnéss ij,
while £;.was.computed on the basis of the new stéta;of 0; and &;,
This established the need for a solution‘;échniqueﬂlikg_the Newton-Raphson
‘method, which attempts to mpdify f;‘in such a way as‘td‘satiéfy_the
equilibrium equation (Eq. 4.120) at the new applied load level Fj %lAF.l
Since Eq. (4‘120) is not satisfied, it is more suitably expressed

in the following form:.

AF;=FJ+M~f; R | o (4.121)
where AF; is called the residual or uﬂbalanéed force, which results
from the changing stiffness. The'Newton~Raﬁhsqn method‘thus attempts
to find an equilibrium solutioﬁ for an incremeﬁt of external load
AF, by forcing the residual AF} to be as close to zegqlgs possibl@
through a series of iteratioms.

The next step in the iteration methodlis to attain a new equi-
librium solution by assuming that the residual is applied as én

external load

It

ad . (k,}J) T (F, v aE - f;) - o (a.122)

() ™ (1)

H
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where adi.regreeents'a'new‘displacement increment, which is a displace~
ment_correctioneto'd;; ih order to adjust equilibrium to compensate for
the tesiduaif The analysis is now at point 4 of Fig. 4.12. This

A&? is-addedtod;and.a new'tptal displacement d? is oﬁtained.
‘Following the.sémeﬂprocedﬁres; One'computeé 0?; E%5, k%j, and f?. If
this iteration is convergent, then this new residual is smaller than
tﬁe previouslreéidual and the true equilibrium solution is apﬁroached.
Solutién of the dieplacement for the next load increment can proceed

by the same processes as before,

4.4, 3 Cdnvergeﬁce'triteria

If the equ111br1um is ultimately satisfied for a partlcular load:
iccrement, thxs_methqd must’result in a series of‘reelduals Wthh tend
toward zetdf‘ It_wili-be assumed that the iteration converges and -
equilibrium is satisfied when‘the most recently computed displacement
Cincrement and/or residuel is 1ess'than or equal to some user*présccibed
.tolerance [4}17}.' The convergefice criterion csed herein for.a single

degree-of-freedom is

Ad‘i+1

‘Ai' < tolereﬁce o ' {4.123)
d ’ - - -

where Ad1+1 TisltheumoSt recently computed displacement increment and
d; is the current state of total dlsplacement just before Ad1 1 is
added to form a new total dlsplacement If Eq (4. 123)-15 satisfied,

then’ the convergence is indicated, equlllbrlum is suff1c1ent1y satls—

fied, the 1terati0n stdps, and the‘analys;s proteeds to the next
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increment of applied load. _This stage of the aznalysis is indicated by.
point 6 of Fig. 4.12,

In the event that convergénce ié not satisfigd, it may be that
the Qisplacement increments are diverging, which indicatés that the
iteration process cannot find an equilibrium solution for the given
incrementlo?‘applied load.. ﬁivergence can be caused by a numerical
instability because of the stiffness changing ﬁoo rapidlylwithiﬁ'the load
incfement.‘ Ip the event of such behavior,.a smaller load increment may
pioduce more stable behavior.

On the other -hand, if the load iﬁcremeut is already reasonably
small, divergéﬁte may signify that the structural,stiffnesq is“tending
toward zevo, which indicates instability of the stfﬂﬁtu;e. In any case,
if divergence is detected, the'Newton-Raphson procésslandlthe‘total
analyéis are terminated. o

The Newton~-Raphson proceés and the total aﬁalysis are terminated
on the basis of one. additional mechanism. It is a safety mechanism
and is employed in order to prevent excessive iterations. Thus, the
iterative process is terminated and the total analysis is terminated

if the number of iterations exceeds a user-specified maximum.

4.4.4. The Complete Solution Procedure in Detail

| The basic properties of load incrementation aﬁd Newton-Raphson
iteration descrzbed 1n the preV1ous sections are comblned to form the
basis of the total nonlinear solution procedure In th1s nonllnear A
solution procedure the most current information avallable.concernlﬁg
the structure is used to calculate the 1ncremental quantltles at any

step. In other wurds, the tangent stlffness matrix at the start of
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éa;h iteration is used to estimate the next incremental quantities.
'It requireé the formatioﬁ of the element tangent'stiffness transformed

1nto global coordlnates at the start of each 1terat10n

. '} | Suppose that current { } g } ip } (M } ) {ﬂyl} {M;i},_[f;},”
.( l [ l {b l [ l ‘DJ‘ ld } {A ] and {ANLj] are given at‘the
jth increment and the ith iteration. The condition i = 1 and j = 1 is
. , L
1 ]
{bi‘,'and {ei}, the above vectors are null. To generate the i + 1

the initial stage in.the nonlinear problem. Thus, except for X

iteration by the updated Lagrangian method, the following steps will
be. followed: - |
Step 1+ Calcﬁlate the current unbalanced forces in the global

system

{Ayl+1}:

- () e

where

i

{Fj+1}. forces for j + 1 load increment
lFi}
J

Steg 2 Establlsh the current element coordlnates { ]for the

forces from previous iteration i

element” at hand by formulat1ng the transformatlon matrlx i1 from the
current globai coordlnates { I ] lX l, and ‘XKJl
Step 3&. Generate the structural tangent stiffness in current

coordlnates {X l
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(a) Esﬁablish E, at each integration point through thé-cross‘

section‘(with‘cufreﬁtVstrain;defcrﬁation);-that is; Eq. (3.5)
~ is used to caleculate ET for statié'ahd’éyélileqading.

:(b) Pgrform (EA)T, (EKY)T, CEKZ)T,-(EIy)f; (E;?)T;-and'(EIYa)T
intégrals at ea;h end from Eqs: (4.59) to (4.64). o

'(c). Determine [ki ] [from Eq. (4. 65)];*3130 with curremt -
[P } {M } ‘Myli , and {Mz x {from Eqs. (4.33) to
(4.36)] find - [k ;] from Eq. (4.85).

(d) 1Geaerate-{%51T«py addlng‘[gsj}T'(fromeq..(k,llz));

(e) Transfbrm [k%]T into global coordinates through the trans-
formation matrix [ J] (Eq. 4.98) to get [ J]T (Eq. 4. 105)

(f) Assemble [%i]T into the structural tangent stiffness
> [KE]T |

Step 4: Solve for the incremental‘displacemen;s Qith thé current

unbalanced forces

At o slgd], 1 lapitt L  (4.125)
3 ST Ty :

Step 5: Update coo#dinates and formulate [?§+1]' ‘

(a) Update coordinates for node I, J, and K from Egs. (4.87) to
(4.88). L | - | :

(b). ﬂpdate ﬁisplacémﬁﬂts,1{9§+1‘ 'D } lAD1+1]

(c) Update nod#l uniﬁvegﬁors tb}+‘} from Eqs. (A 99) tb

(4.100).
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(d) From the updated coordinates in'(g),‘find the nnit vectors
‘ e;+1l iﬁ elemenﬁ coordinate system from Egs. (4.93) to
(4 95) to formulate [%;+1].
§Eggm§; ,Calculate updated strains and stresses
‘(é) Uég thé Qﬁiﬁ-@ébﬁors lb%};} s {bigl} ,‘And {e§+;} to find
: '{dgifl}'.frc;m Eqs. (4.6) to (4.11). | |
(b)‘Comﬁuté(é§+%] from Eq. {A.lg).
. (cj_ Compute.lcj+1}.from Eq. (3.3). |
§Egg;1; ‘Compute element nodél forces in the element system
(a) Perform numerical integration ffom Egs. (4.33) to,(4.365 and
‘ u‘se Eqs. (4.42) and (4. 43) to find [AL; 1] and_[A;Li;}i] .
(b)  Compute‘ d 1} from Eq (4.41).
:(b) _Gompute { I from Eq. (4.45).
‘§EEE;§: Flnd the equ111br1um externai nodal forces in global

coordinates

tF;‘”} = z['r;”] llf?l‘] | - wue
§Egp_g: 'Test for cdnﬁergence. If not satisfied, return t§ step 1.
Otherwise,'store'these stresses and strains and go to thelnext increment
load‘{Fj+2}. Each step of this algbrithm is tangent to the load-versus-
d15placement curve,_as suggested before. The process is interpréted '

graphically in Fig,‘4.13.
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4.5. Analytical Verification

Based on the‘ﬁheory outlined'above, two cbmputgr programs (IAB2D
and IAB3D) have been developed to solve the noﬁiiﬁeér ?ilé-ééil inter-
action problems for both two- and three-diménsionalléases. A number of
exampléé have been anélyzed to establish its reliabiliﬁy. Tﬁrge é%mﬁle
problems were analyzed with the threé~dimensi0nél progfam: (a).large
deflection analysis of a shallow arch; (b) large dispiacemeﬁt, three~
dimensional analysis of a 45° bend; (c) a simple s?il-prdﬁleﬁ to check

soil nonlinearity and cyclic behavior.

4.5.1. nggg‘ﬂefiection Analysis of a Shallow Arch’
The clamped circular arch with a single statié 1oa&.at the apex
was analyzed forAbuckling using the beam~column element; as'Shown in
Fig. 4.14. The material of the arch was assumed to bé isotropic ‘
linear elastic. One ﬁalf of the arch was idealized using $ix equalrbeam-
column elements. |
This arch was also analyzed By Bathe and Bolourchi, who used 6,
12, and 18 equal beam elements and 8 six-node isoparametr;c eléments
with 2 X 2 Gauss integration [4.1]. Mallet and Berke usedlh )
"equilibrium-based" elements [4.27]. Dupuis et.ai.,[é.ZS]Ianalyzéd
the same arch using curved beam elements. In addition, the expefiment
results given by Gjelsvik and Bodner {4.29]lare‘also shown in Fig, 4m14.
Figure é.lﬁ‘shows the predicted 1oad*de£1ecﬁion curve of thé.
"arch obtained by.using IAB3D. In this analysis the use of beam~column
eléments is'quite effective, and the numerical results match:the experi-

mental results.
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4.5.2. Large‘DisplaCement Three-dimensional Analysis of a 45° Bend

The large displacement response of a cantilevered 45° bend beam
subjecféd to a concentrated end load, as shown in Fig. 4.15, was cal-
culated. The concentrated tip load israpplied in the positive Y direc-
 tion.. The maﬁerial was sssumed to se linearly elastic.

The 11near and nonllnear solution of thls curved beam.subgected
to: a t1p load was glven by Bathe and Bolourchi [4 1] by using 8 equal
stralght beam elements and 16 s1xteen*node, three dlmen51onal solid ele-
ments. Flgure 4 15 shows the tip deflectlon predlcted by ADINA u31ng
ths'two_flnlte element models [4.30]. The ADINA solutxou, cbtained with
s lafgs numSer-of elements and load steps, should be regarded as the
ﬁost co:rect answer.

The'numsrical results obtained by using the TAB3D computer'progrsm
with eight equal, straight beam*colums elements is also shown in‘Fig; 4.15.
The predicted tip deflections match with ADINA solutions. Figure 4.16
also shows the deflected shapes of the bend at various ‘load levels.

4, 5 3 5011 Problems

Several 3011 problems were analyzed to check the soil materlal nom~

1inear1ty and cycllc behaV1or. Since the vertlcal 1ateral, and point

—,sprlngs aré assumed to be similar and uncoupled only the 1ateral 3pr1ngs

are consxdered here. For. example, suppose an HP14X73 plle was embedded
below the ground as shown in Flg 4.17. The s011 responses can then

be observed'by spec;fyxng loads and displacements in the Y and Z di;ections.
Theorstical displatementsland soillresistance follow the p-y curve path.
For a specified load the dlsplacement will be obtalned from the Newton-

Raphson solutlon algorlthm. For a specmfled cyclic load and dlsplacement
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the s0il response will follow the modified Ramberg-0Osgood cyclic curves.
Figures 4.18 to 4.19 show the soil response for specified cyclic loads

in Y, Z, and YZ directions; respectively.

4.6, Two-dimensional Version.

4.6.1. Specxallzatxon from the Three d1men51ona1 Model

The -general features of the two-dlmeHS1ona1 program IABzﬁ Are
similar to the three dlmensxonal program IAB3D except it is spec1flcally
written for two-dlmensxonal prcblems, and, hence more eff1c1ent than
using IAB3D for those problems. The two- dlmens1ona1 version is different
in several ways from the program develoged in the prEV1ous report [4.24];
for example, | o |

(1) The SOii properties are assumed 1iﬁearly distributed along
the element instead of the step-W1se dlstrlbutlon

(2) The modified Ramberngsgood cyclic model 13 1ntroduced in
order to model cyclic behavior.

(3) Beam and spring elements can be.arbitrar11§ ofiéﬁted.j'

(4) Thermal stgain‘is introduced into thePstfeéé-str#in'reiatidn-
ship of the beam-column element to pefmit the ﬁherm;i expan-
sion and contractidn; | : ’ |

(5) Geometric boundafy conditions are péfmittéd to chéngé-between

1oad steps.
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As discussed in Sec. 4.2.1 and 4,2.2, three different coordinate
s}stemé are required for three-dimensional update Lagrangian formula-
tion. In the two-dimensional case,‘only'two coordinate systems are needed,

' that is, 6n1y element and giobal,coordinate systems.'.The deformation -

.,dlsplacements, {dd}T " {AIJ’ 6?, Si}, can be found as follows [4.24]:
A= —4—;1~4—— x%p, .+ ZYO + (D, ) + (@ 2] (4.121)
A JI 41 JI 52 41 52 L

: (2 +£)
0 0
‘ X Y . :
& = sin”l 252 23 - Pa'ar (4.128)
' A2
Z.p -
GI = D3 o (4.129)
z— -
.BJ = D6 o

where

o = rigid boﬂy rotation in the X-Y plane.

4;6;2.. Anaiyticai Vé;ifiégtion

_Seyefal‘ﬁﬁméricél example-problems are solved using the two~
dimensioh&i cbmputei program IAB2D. At the same time, these problems
were also solved with IABSD to confirm the valldlty of the three~d1men51onal
computer problem. As mentioned in the previous report [4.24}, a beam-
column problem and a short, thick column éroblem were first used to check
- geometric and mdﬁerigl nonlinearity, respéctively. ‘Additional problems
were intfoduced, Such as: (a) snap-tﬁrough~probiem, (bj Williams' toggle
problem, (c) two-dlmen81onal frame problem, (d) thermal problem, and

(e) 3011 problem
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4.6.2.1.  Snap-through Problem

Figure 4.20-ShOWS a simple symmetric truss with a concentrated load

at the top. This type of problem can be solved by incrementing the
"deflections (rather than loads). The'load*déflection curve is shown

in Fig. 4.20. Several positions c#n be used to check the results.

When the truss has a deflection where A equals ml.ZVin. (the truss is

in the horizontal position), the truss‘resists no;lbad. If the truss
has a deflection where A equals ~2.4 in. (the truss is ﬁelow horizontal .
by 1.2 in.), the stra1n is zero and, hence, the bar forces are zero.

If A'is greater than -2.4 1n ,» the truss members ate in tension and ‘the
load increases.

£.6.2.2. Williams' Toggle Problem

The toggle shown in Fig. 4.21, having E = 29000 ksi and A = 1 sq in.,
‘was first analyzed‘and tested by Williams {4.31]. The load-deflection
curve can be obtained by using specified load or_disylacement as shown
in Fig. 4.21.

4,6.2.3. Two-dimensional Frame Problem

A two-dimensional square portal frame subgected to two vert1c31 loads and
a small horizontal load is shown in Fig. 4.22. The theoret1ca1 buckllng
loads for the side-sway mode.ére:- ?cr (fixed base) 4605 kips; and ?ér
(hinged.ﬁase) 1170 kips [46.32]. The horizontal load is quite small
(0.001 P) but is sufficient to initiate geometrically nonlinear behavior.
The 1ead—defleétion curves for both céses {fixed base and hinged base)
are shown in Fig. 4.22. The numerical results show that the critical

load for the fixed base is 4600 ki?s and for the hinged base is 1150 kips.
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4.6.2.4. Thé;mal Problems
Several fﬁe;mai1prob1eﬁs‘were used to check'thermalistrain caused
by tempefatupé;chahges:‘ (a) éantilever beam, subjected to uniform and
grgdigﬁt tempéfétuye chaﬁggs; and (b) fixed*énd beam, subjected to uni-
form énd gradigﬁt-temperature changes; The results,“éltﬁoﬁgﬁ not shown
here, compared exaétly with theoretical solutions. |

4.6.2.5. Soil Problems

Soil models were also tested in the two-dimensional computer program, and
the results are close to the theoretical answers and the numerical results

.obtained in IAB3D.

4.6.3. . Experimental Verification

4.6;3.1,' Lb?d Iransfer in End-bearing Steel H Piles
In Ref. [4.33], fhe.incxease in the load-carrying capacity of an
1§pd—béaring pile due to load transferred to the surrouﬁding soil'by
“friétion ﬁaSwexperiﬁéntally studied, Site‘conditions, pile driving,
and instrumentation were examined. The étrain-gage readings were
analyzed to determine ﬁhe distribution of the load transferred along
the piles. The piles. were loaded and unloaded in increments to 150 kips,
300‘kips,;éSOlkips,'and.GOO kips. A plot of pile load as a funcfion of
depth is}shﬁwﬁlin Fig. 4.23. Frb@ these curves, the true elastic
shbrtening ﬁan'bé qbééined; and the fotal displécem&nts at éachrpdint of
the,pilézcan #elcalcdléted‘ﬁy adding the accumulated elastic slortening
to fhe.ohsgyﬁeﬁ fip.displﬁcements as shown in Fig. 4.24.‘ Two sets of
fez and;q~2 cﬁfveé‘(one set.for each pilg) can be constructed [4.24].
Since all thelﬁile“ioad_tests were held at the same siﬁe, the-final_

set of f-z curves was taken as the average of the f-z curves from HP |
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14x89 and HP14x117. Soil parameters for the modified Ramberg-Osgood
cyclic curves are obtained by approximately fitting the irregular
shape of the average f-z curves and q~z‘cufves.~ Tﬁé pile is subdivided
into eight-eléments of unequal-iength in order to correspond to the
experimental data given in Fig. 4.23. The load-settlement curves for -
HP14x117, both observed and predicted values, are plotted in Fig. 4.25;
The results calcuiated from the computer éolution‘(IABzﬂ}.are a fairly
good approximation to the results obtained in the experiment.

4.6.3.2. Lateral Load Tests on Drilled Piers in Stiff Clay

Two drilled piers were selected from thé laterally loaded pile
tests conducted by Bhushan et al. [4.34]. (These piles‘ﬁere'ana1§2ed
during the previous project {&.2&} by YANGS and are,fépeated-here
using the current program.)} Measurements of horizbntal ground -line
displacemenﬁs were made for two piers. Soil properties,‘as-deterﬁined
by borings at each test site, are summarized in‘Tabie 4.1. The two
piers (1 and 2 in Table 4.1) were constructed with a spacing of about
20 ft and were loaded by jacking between them. Displacements of the
piers were measured by the dial gauges located 1 ft above ground
surface. The properties of Table 4.1 are consistent with & very stiff
clay in Table 3.11. Thus, ann = 2, Ramberg-Osgood curve, was ﬁsed to
approximate the p-vy curve;r (An n = 1 curve was used in the_first project,
[4.24].) The displacements at‘the top of the piex‘a;e.plotted-;n
Fig. 4.26 (Pier No. 1) and Fig. 4.27 (Pier No. 2). A éompériSén”
between the predicted values obtained from IAB2D and the\ekperimen;al-
results éhows that the results are adequate, certainly within limits -

usually expected with this type of analysis. The error in the initial
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stiffness in'these"figures is caused by the approximation of the .
“initial slope of the p-y curves.

4.6. 3.3 Lateral Load Tests on Instxumented Timber Plles

| Lateral 1oad tests were conducted by Allzadeh [4.35] on four

instrumepped, Class B_tlmber plles at two sites approximately 1000 ft -
‘apart. The,twc‘piles‘at each test site were 7 ft apart. 7

The‘soiis at Test Site 1 consisted of ﬁ.ft of sand ang gravel
underlein by layers of clayf The'eoils at Test Site 2 consisted of a-
layer of "fat cley" over layers of silt and "lean clay." At both sites
the_elay soils had a soft to medium consistency and an ‘average shear
strengthlof~about;éGO_psf [4.35]. The timber piles used were‘ﬁﬁ—ft
‘long and Qerexsligﬁely:tapered;. Tﬁe diamete;'of the embedded pertion
of-the”biles:;éngeﬁ f%om just over 1 ft ﬁear the ground surface to
- approximateiy 0;8 ft-heer:;he pile tip. .The modulus of elasticity of
- eech pile‘ﬁés'determiﬁed-f;oﬁ'calibratiou tests (Table 4.2) [4.35].

Each oi‘the'piles'waé instrumented wiﬁh strain gauges. The two
piles at eaeh:test site were tested at the saﬁe time by jacking the
piles epart}. The loads were applied at the ground surface in incre-
ments of 5 kips up to a_maxiﬁum load ef 20 kips. The pile displace~
ments Qere‘meésured at the groundlsurface

For the analysxs of the piles using the finlte element program, the
foundat1on 30115 were taken to be a comblnatlon of the six typ1031 soil
types presented in Sec 3 5 of this. report The clay and s11t soils at
both test s1tes were assumed to be soft clay w1th average undralned
Cohe51oa Values of 620 psf at Test Slte 1 and 670 psf at Test Slte 2.

The sand and gravel layer at Test Site 1 was assumed to.be medium sand.
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A constarnt pile diameter,'eqﬁgl to the averagé diamgﬁer-aflthé ﬁpper‘
half of the embeddedlﬁortion of the file,-was-usedh;'$he ultimate
strength of the-ﬁimber was estimated to be 7230.951;{4536]fl_‘

The experimental rgsults and thg results obtained with the finite
element pfogram are compared in Figs. 4.28 to 4.30. For the smaller
loads, the results from the program for piles. 1-A and 1-B are close to
the experimental values but for the zd'kip'applied‘lpad, there is quite
a differencé (Figs. 4.23 and 4.30). The computed results were not as
close to thg experimental-résults for piles‘Z-A and 2-B.  The di;érepr
ancies are probably because of inadequate modeling of ‘the soil, which
had not been quantitatively described in Ref.‘Ih;ZAf.f

4.6.3.4. Pile Response to Axial and Lateral Loading " -

Combined axial and lateral load tests were conducted on three pile
groups and on a single pile by Stevens et'al.*{&mé?}. The experimental
data for the single pile will‘be compared-torvalues;predicted by the
finite element program. The soil profiie‘at the test sight is shown
in Fig. 4.31. The piles ére installed primarily in alluvial sands.

‘Thé friction angle, as determined from triaxial compreésion‘tests,
ranged from 38° to 41°. The blow count varied from 5 to 40 blows/ft
and the dry unit Qeigﬁt réuged from 103 to 115 pcf {4.37). The ground-
water table duriﬁg the tests was maintained at 1 ft below the‘ground‘
surface by a dewatering system. | |

A schematic diagrém of the p?ie is also shown-in.Fig.-4,31; " The
piles used in the test were untreated green Douglas fir piles. - The -
modulus of elasticity and ultimate strength of~the«timbér were taken

to be 2000 ksi and 3615 psi, respectively [4.36]. The piles had initial



79

1engths of 43 to 45 ft, butt diameters of 12 to 14 in., and tipldiam-
eters of 8.5 to 10 in. The piles were 1nsta11&d by jetting and drlvzng
to the prescribed tip elevation [4.37].

.‘The pxle groups and the 51ngle piles were subjected to four types
of testé “cyclic preloadlng, pile drxvxng effects, axial load testing,
éad CSﬁblned logd testlng. The results of the ax1al and combined load
‘tests on fhersihgié'piies will be presentgd here. For the axial load
testslthe lgé&s Qéré ap§1ied in 60 kip increments until failure. For
B the-éombiuedlload test an axial load of 60 kips was first applied to
the pile. Then a lateral load-was applied to the pile 28 in. above the
ground sufface in increments of 12 kips until failure. Thé lateral
deflection was measured 33 in. above the ground surface.

- For determining 1nput for the finite element program, the 20 ft-
thick layer of sand near the surface was assumed to be med;um sand.
The silty clay and sandy silt 1ayers were modeled éé stiff clay, and
the layer of sand near the bottom of the plle was assumed to be dense
sand. The curve parameters for each layer vere determlned from the
equatlons in Tab1e373,2,.3,4, and 3.5. A constant p;le dlametex of
11.75 in. was used for the computer analysis. Thié constant diameﬁer
is equal to the averagé diameter of the upper half of the embedded
poftioﬁrof the pile. The boundary conditions used in the computer
~ analysis are shown in Fig;‘h.Blg The loads on the pile were applied
usigg hydraulic.jacksw‘ The pile wés assumed to be pinned at the top
'of thé verticgi hydfaulic jack. The pile'cap'andihydraulic jacks were

modeled as a single rigid element.
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The results 9£ the experimental tests and the qomputep‘analysis.are
shown in Figs. 4.32 ;nd 4.33. These figures show that the results
obtained_using the finite element program are close.te the observed
values, although the finite element program does predict a lower unlti-

mate load for the axial load test.

4.6.4. Guidelines for Program Usage

The basic philosophy of the finite element method is to énalyze
a piecewise appfoximation to the structure. Sye¢ific§ily, the struc-
ture or body is-divided into finite elements; simple fuhétions, usually
polynomials, are assumed to approximate the displacements within éach
element. The greater the number of terms included in the approximation,
the more closely the exact solution is represented [4.23]. For example,
in the beam-column element the displacement fuﬁctiogs (shape functions)
are assumed to be a linear polynomial in the longitudinal directiom and
a cubic pelynomial in the transverse direction.

In the.region‘of high curvature gradients, a figer mesh is
necegsary to obtain satisfactory solutioms. F§r g beQm on an élastic
foundation, 4 tﬁ 8 elements in‘a.onewhalf wavé of‘the defiecteéA516pe
will provide satisfactory results. For elastic ?roblgms thé 1engtﬁ.of

one-half wave is n/B [4.38] where

4
4 v - | )
B" = g1 | | o | - (4130)
where
ky = the lateral stiffness of the soil
% = length of the pile
EI = the flexural rigidity of the pile
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Fbr ineléstic problems, high curvature gradients occur in the region
of a élaétic hiﬁge and .a finer mesh is required to achieve comparablé
aécuracy. The experience of the authors indicaﬁés tgat the change‘in |
“curvatﬁre“between elements should be ﬁo more fhanVO.dOOI rad./in.
Also, the mesh must bé sufficiently fine to model changing soil and
pile préperties.

 Load step sizes are controlled by the relative amount of nonlinear
beha?iof. ‘'For example, convergence can become a numerical problem in
thg‘plastic region due to the difference between loading and unloading
moduli. This problem can usually be overcome by reducing the load or
displacement increment.

Mesh size and convergence probiems are encountered in all.ﬁypes of
finite element anal&sis. Usually, these problems caﬁ be analyzed by
reducing the mesh (or load increment) size until no significant change

in the answer occurs.
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5. DESIGN HETHOD

5.1. Introduction

Oﬁe of‘thé oﬁjectives of this study was to deveLop é-simplified
design method‘for anaiyzing piles in integral abutment bridges. 'The
design method couldlthen be used to determine the maximum allowaﬁle
length for an integral abutment bridge. In the following secﬁioas a
design model will be preseﬁted aﬁd the akial, iateral, and combined
axjal~lateral Seha?ior of thermodel analyzed. From this information
the design method wili be.formulated, and examples illustrating the

use of the design method will be presented.

5.2. Design Model

The model used to describe the soil-pile system is shown in
Fig. 571(a). The model consists of only one pile. Lateral loading
group effects caﬁ bg ignored if the spacing of the piles perpendiculér
to the direction of loading is greater than 2.5 to 3 times the ﬁile
"diameter_or width {5.1, 5.2]. The pile is idealized as a beam column
with an elastic, perfectly plastic, moment-curvature relationship, as
.shown in Fig. 5.1(b). The boundary conditions at the top of the.pile
are assumed to provide lateral restraint and either zero (pinned condi-
‘tion) dr complete (fixed condition)lmoment restraint. The tip of the
'pile is assumed to be free. |

The'soil‘is idealized as three sets of springs: lateral sprinés,
vertical springs, and a point spring; The soil resistance-displacement

reiationships for the springs are shown in Fig. 5.1(c). The_design
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model assumes these relatiénships are bilineay, as opposed td the finite
element model which assumes the relationéhips are in the form of the
Ramberg-Osgood curves presented in Chapter 3. The soil parameters (the
ultimate soil resistance and the initial stiffness) used in eéch model
can be cobtained from the equations in Chapter 3. The behavior of the
present model will be analyzed in the following sections and will be-
compared with results from the finite element program degcribed in

Chapter 4.

5.3. Axial Behavior:

The assumed axial behavior of the soil-pile system‘caﬁ be approxi-
mated by the bilinear load-displacement curve in Fig. 5.2. The param-
étefs required to describe the axial behavior are the axial stiffness
Ka and the ultimate axial load Vu. Equations forrdetermining the
axial stiffness are given in Sec. 5.3.1, while eéuations for determiﬁing
the ﬁltimate axial load are given in Sec. 5.3.2.

5.3.1. Axial Stiffness

The axial stiffness of thé goil~-pile system depends on the stiff-
ness of the vertical springs kv’ the stiffness of the point spring
kq’ and the axial stiffness of the pilé AE/L.. The axial stiffness
Ka can be obtained by.analyzing a differential element of an axially

loaded pile, as shown in Fig. 5.3(b). TFrom this figure the following

differential equation can be written:

av = k_ udx ' ‘ (5.1)
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wheré V is the axial load on the pile, u is the displacement of a
~point on the pile, and x is the depth below the ground surface. The

general solution of this equation is

’ k K
’~Z - /dg _ :
u = cl'é AE + ¢.e AE . {(5.2)

with thé boundary cenditions

du

at x = 0 AE iz = -y
at x = L AE QE = -k A u
dx qge

The value A‘ig the cross-sectional area of the piie, Ae‘is the effec-
.tive pile tip area, and E is the modulus of elasticity of the pile
material. For am H pile; Ae is the rectangular area formed by the sec~
“tion depth and the flange width. ‘The values <, and <, are constants
determined from the boundary conditions. From the above equations theA
axial.stiffness of the soil-pile system Ka is obtained

\,kVAE (kqus +\}kvAE r)

= | (5.3)
a kqur + \[kvAE.s .

K, = \kAE ' (for &' >'2) - O (5.4)

The values r and s in Eq. (5.3) are coefficients from Fig. 5.4, L is

the embedded iength of the pile, and &' =V kV/AE L. A different method

of determining the load-settlement curves is presented in Ref. {5.3]."
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5.3.2. Ultimate Axial Load

There are two types of axial failure mechanisms: the slip mechanism
and the lateral meéhanism. The slip mechanism occurs wﬁen the soil
fails and the pile slips through the soil. The pile remains essentiélly
| undeformed. The lateral mechanism occurs when the pile deflécts
laterally and mobiiizes the lateral soil springs. The ultimate axial
load v, is the load agsociated with the mechanism which forms first.

5.3.2.1. 8lip Mechanism

The load capacity of the pile for the slip mechanism is equal to
the sum of the load carried by skin friction along the length of the
pile and the load carried by end bearing at the pile tip, as shown in

¥ig. 5.3(a). This load can be calculated from Eq. (S.S)ﬂ

<3
H

skin friction capacity + end-bearing capacity

H

fmax L+ Uax A (5.5)

Expressions for calculating fmax and Q.5 AT€ given in Chapter 3.

5.3.2.2. Lateral Mechanism

Failure of the soil-pile system can also be associated with lateral
movement ofrthe pile. If geometric instability was the only collapse
| consideration (i.e., no material yielding), the ultimate load would
equal the elastic buckling load Vcr. If collapse was due to plasticity
effects only (i.e., no geometric instability), the ultimate load V
would occur when a plastic hinge(s) forms and.produées a plastic mech-
anism. In general, both geometric instability and plasticity effects
are present, and collapse occurs as an interaction of these two effects.

The resulting lateral mechanism load, sometimes called inelastic
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bUCkling; ié lower than either‘the elastic buckling load or the plastic:
mechanism load me. |

This concept‘will be illustrated using the schematic example of a
_ pile shown ianig. 5.5(a). The pile is loaded with an éécentrically
applied axial ioad and has a lateral restraint, représéﬁ£iﬁg the abut~
ment, at ihe»pile head. TIdealized material properties for the perfectly
elastic case Bnd.fhe ;igid, pérfectly plastic césg are shown in Fig, 5.5(b§.
The failu;e ﬁodesland load*digplacement curves for each case are iliﬁs-
tratéd.in Figs:‘SFS(c) and (d). The failure load for the perfectly
elasﬁic Case is equal to‘tﬁe elastic buckling load for a'coﬁcentxically
loadéd pile. The eccentricity é of the loadlproduces the beam-column-
type behavior as illustrated in Fig. 5.5(d). The failure load foxlthe
rigid, perfectly plastic case is equal to the load required to for& a
| plasticrhinge in the pile. The moment at the top Mé is the full plastic
moment capacity bf the pile reduced by axial load effects. Fig. S.S(e)
shows the load-displacement curves for both of the idealized cases. |
As mentiongd eariier, both geometric and material effects interact such
that the aétual load~-displacement behavior is similar to that.illﬁs-
trated in Fig. 5.5(e). The objective of the finite element approach
described in Chapter 4 is to predict this behavior. - The design methods
described in this chapter are not intended £o have the capability of
predicting this complete curve. However, a reasonable, and cpnservétivé,
estimate to. the ultimate load Vu can be obtained using the Rankine equa-

tion [5.3, 5.47.
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Vu
e
cr

<2|<
&

= 1.0 ' y (5.6)

)

This equation combines both geometric and material instabilities {(in~
elastic buckling).

5.3.2.3. Elastic Buckling Load

The elastic chk;ing load for a pile VCr can be calculated using
nondimensional graphs developed by Davisson [5.5], Reddy an&
Valsangkar [5.6], and Toakley [5.7]. IThe design modei (Fig; 5.1a)
will be approximated by the models shown in Fig. 5.6(a) and (b) for
which the nondimensional solutions ﬁere developed. These models are
laterally supported by elastic springs with a stiffness kh'
Figure 5.6{(a) represents an initially straight pile along which no
vertical lead transfer occurs; that is, there are no vertical springs
along the pile and the pile axial load is comstant. For this case
~Figs. 5.7 and 5.8 can be uséd to obtain nondimensional buckling coef-

ficients V' and U', from which the buckling load can be calculated. For

soils with a constant lateral stiffuess kh the buckling load is given by
V= st | | (5.7)

where T is the moment of inertia of the pile and

R = relative stiffness factor
_ 4
ky

max



89

For soils with a linearly varying kh,‘the buckling load is given by

vcr.m'y-i‘%—}i : o O (5.8)
where
T = relative stiffness factor
_ > [E
"4

The boundarytcdnditions used in this section are illustrated in
Fig. 5.9. Even thougﬂ the bottom of the pile could conceivably be
idealized as laterally free, a laterally restrained boundary condition
seems to better describe the elastic buckling case. ‘Analyses with the
finite element program and Ref. [5.5] suggest that this is so hecauée
the ﬁontrolliﬁg buékling lobe forms near thé top of the pile, in the
region of tﬁe eccentricity. The theoretical elastic bucklingrsolution
implies that a freé bottom will displace laterally; £his wag ﬁot observed
in any cases. For -the top of the pile, either the pinned case or the
fixed; no translation case will be appropriate for an integral abutment
bridge. Figures'S.Y and 5.8 show the effect that boundary conditions
at the head of ﬁhe pile have oﬁ the elastic buckling ioad. ¢0nsidering
“that ;hefe‘iéfuncertainty in the buckiing analysis and that no ﬁurves
 are gi&eﬁ for the fixed, no ﬁranslation caée, it is appropriate to use

the following approximations in place of Figs. 5.7 and 5.8:
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U’ v
Pinned head 2.0 2.3 *
. (5.9)
Fixed head - 2.5 4,15

‘The values for the fixed head are taken from Fig. 5.10 for the constant

_axial 1o§d case (¥ = 0) and apply only for pi1es where Zoax OF ﬁmax are

greater than four.

The assumption that the axial load is. constant along the pile is
only true for shoft piles or for stiff end-bearing piles [5.3]. For
other piles vertical load transfer occurs along the pile as illustrated
in Fig. 5.6(b) and, therefore, the axial load varies with depth. This
nonlinear variation 6f axial ioad is schematically illustrated in
Fig. 5.6(c). The liﬁé;r variation which is assumed in order to solve
~ the governing buckling equations is also shown in Fig. 5.6(c) and given

by the equation

:vx =\](1 —ay(%)) | | (510

where VX ié the gxial 1oad at any depth x, V is the axial load at the
pile head, and ¥ is é coefficient which represents the rate of decrease
in axial load between the ?ile head and pile tip. The linear approxima-
tion matches.the actunal onlﬁ at the top and bottom. Other variations
could have been chosen, for instance, a linear variation which is
tangent to the actual variatidn at the pile head. However, the assumed
linear variation should give conservative results for the elastic
buckling load. From Eq. (5.10) the axial lﬁad at the pile tip is equal

to V(1 - §). Following the analysis in Sec. 5.3.1, the axial load at
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the pile tip is equal to the force in the point spring, that ié, k  times
the pile tip d18placemeﬁ£ from Eq._{s.ﬁ) for x = L. Equating these two

expressions for the axial load at the pile tip gives

B kA,
(1 - v = v
- kqus +VkVAE r
or, Y can be obtained by
: k Ae ‘
=1 - 4= - (5.11)

kqus +\l kvAE r

Figure 5.10 is used to obtain a set of nondimensional buckling
coefficients which take into account the axial load transfer along the
pile. These coefficients are used in Egs. (5.7) aﬂd (5.8), as before.
Figure 5.10 can only be used for piles where z___ or £ are greater

. max max
than or equal to four. As discussed for the uniform axial load case,
the-pinnedfbottom condition is appropriate. The elastic buckling load
is increased substantially by considering axial load transfer.

‘5.3.2.4. Plastic Mechanism Load

In order to calculate the ultimate load using the Rankine equation
{Eqg. (5.6}], the plastic mechanism load VP must also be determined.
_.This'is the load at which the pile collapses due to the formation of a
Iéufficient number of plastic hinges_to create a mechanism. For example,
the plasti; mechanism load for the pile in Fig. 5.5(c) is'given

by

, M!
v frod EE ‘ . (5.12)
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The pléstic moment capacity MP is reduced to M' because of the
presence of the compressive axial load. The value of Mé depends on the

cross section of the pileﬁ For a rectangle, Mé is given by [5.8]:

= ARY: |
M =M {1 -5 5.13
y
where V is the compressive axial load in the pile, Vy is the yield load

of the pile (FyA), and Fy is the yield stress of the pile material,

For H-shaped sections the feollowing approximate expressions apply

[5.9]:

Strong axis bending:

M' =M V <0.15V (5.14)
p P - y

1

<|=

Moo= 18 (1 - V>V >0.15V (5.15)
p . P y- - y
A y
Weak axis bending:

M' =M V<04V, {(5.16)
p p - y

1ioM (1 -{3\2 vV >V> 0.4V (5.17)
R Vy , y- = y

=
IS
H

The plastic mechanism load will vary for each situation depending on
the boundary conditions, geometry, and properties of the pile, and on

the properties of the soil.

5.3.3. Calibration--Axial Behavior
" Example problems will be preseanted in this section to compare the

results cbtained from the design method and the finite element program
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for problems involving the axial behavior of the soil-pile system. For
.all the examples an HP10X42 pile was used. The pile.was bent about the
weak a#islahd Qad a modulus of elasticity of 29000 ksi and a2 yield
stregs of 50 ksi. | |

The ultimate vertical load Vu is determined from a‘loqdv
displacement d£égram using the following procedures. For piles whose
1oad~disp1acemen£ curves exhibit a definité maximum load, this maximum
load is tékén as ﬁhe ultimate load. For all other piles, a line with
a‘slope of AE/L is drawn through the origin of the 1oad~displécement
curvé. A second line, which.intersects the settlementlaxis at
(0.15 + O}lb) incheé, is drawn parallel to the first line. The value
b is the diameter or width of the pile in feet. .The intersection of
. the second line and the load-displacement curve gives the ultimate
vertical load {5.10, 5.11].

To illustrate the slip mechanism, a 40-ft-long, axially loaded
pile was used. The.properties of the soil are listed in fig; 5.11 and
are typical values‘from Chapter 3 for stiff clay. The load-displacement
curve for this pile is also shown in Fig. 5.11, The axial stiffness
andlultimate vertical 1oad calculated using the design method, Egs. (5.4}
and (5.5), agree quite well with the finite element results.

The lateral mechanism, as predicted by the Rankine equation, was
;checked using the 40-ft-long, eccentrically loaded pile shown in
Fig. 5.12. TFigure 5.12(a) shows the pile with a vertical pinned support
a£ the piLe tip and with lateral-sﬁrings only (no vertical springé).
This configuration was used with values of e of 1 in. and 2 in. ‘In

Fig. 5.12(b) vertical springs were added and the vertical support at
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the pile tip removed. .For this case, e was taken as 2 in. .The soil
properties that were used are given in Table 5.1. Even though the soil
 types with parameﬁers 1/5 the values of soft clay and loose sand are
somewhét unreaiistic,lthey were used in order to check £he Rankine
equétioﬂ for a greater range of values. Note that clay is approximated
as having a uniform lateral soil stiffness, whereas sand is approximated
és lipearly varying. A large value for fmax was used for ali clay soils
" to insure that the.slip mechanism would not occur in Fig. 5.12(b).

Table 5.2 gives thé finite element results for Vu’ as well as the values
of VP and V., from the design method (Egs. 5.7, 5.8, 5.9, and 5.12),

for selected combinations of soil types (Table 5.1) and support con&i-‘
tions (Fig. 5.12). Typical load-displacement curves for the case with
verﬁipal springs‘aré shown in Fig. 5.13. These curves were obtained

by specif?ing verticai displacements at the pile head and exhibit a
typical beém*column~type behavior. The shape of the curves is as
described in Fig. 5.5(e). Notice that the descending branch of the
curves falls most rapidly for the softest soil. The Rankine equation
and the finite element results are compared in Fig. 5.14. In this
figure the curve for the pile with vertical springs crosses the curves
for the other cases, not because Vu is less, but because Vcr increases
more rapidly for this case. The Rankine equation gives conservative
results, even for the clay with parameters 1/5 those of soft clay.
However, unconservative results were obtained when a soil type with
parameters 1/50 those of soft clay was used. From Fig. 5.14 it can be
seen‘that plasticity effects tend to dominate the behavior of piles in

realistic soil types and that elastic buckling is unlikely to occur;
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that‘is,‘the points tend to be in the upper left of the figure. In
this region the finite element results are above the Rankine equation.
because the finite element program uses the average axial load in the

top element and not the axial load at the top node.

5.4. Lateral Behavior

The lateral behavior of the soil-pile system will be.approkimated
by a bilinear 1oad~diép1acement curve similar to the one shown in
'Fig. 5.2 for axial behavio;. The two parameters required to describe
the latéral behavior are the lateral stiffnesg KL and £he ultimqte
lateral load Hu; Methods for determining these parameters wili be
presented in Sec. 5.4.1 and 5.4.2, respectively,

5.4.1. Lateral Stiffnesé

The response of a pile to lateral loads can be described by the

differential equation

EI—Tm"p (5.18)

in which ah‘represents the lateral deflection of the:pile, and p repre-
sents the soil reaction on the pile (force per unit length). - The
relationship between the soil reaction and the lateral deflection is

given by

p = khAh : {5.19)
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For this study, kh-will be assumed to be either constant with depth or
linearly varying with depth. Substituting Eq. (5.19) into Eq. (5.18)
yields the differential equation for the deflection of a laterally

~ loaded pile.

4
d'a,
EI ggm =+ khAh = 0 o (5.20)

‘Various solutions for Eg. (5.20) have been obtained for free-headed
(zero moment) and fixed-headed piles, and fot soil withreither a
constant_kh or a linearly varying kh. From these Solutions, the -

lateral stiffness at the pile head K, can be determingd. For soil

with a constant kh the following two equations apply [5.12, 5.13]:

For a free-headed pile

K = Bt | (5.21)
L 3
Y R
2q

For a fixed-headed pile

KLm 3 | (5.22)

where qu‘and Ip are nondimensional coefficients from Figf 5.15 and
£ = L/R. For values of ¢ greater than five, use 2 equal to
max max max

five. For soil with a linearly varying kh, the following apply [5.14]:
for a free-headed pile

K = —= (5-23}
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- For a fixed-headed pile

Ky = 3 ' ' | (5.24)

where Ayﬁand Fy are nondimensional coefficients from Fig. 5.16 and

Z = L{T. For values of =z greater than ten, use z equal to ten.
max . max max

' 5.4.2. Ultimate Lateral Load

_The ultimate lateral load Hu on the pile depends on the plastic
moment capacity of the pile Mp, the ultimate lateral soil.resistance
‘pu,‘the eccentricity:of the load above the ground surface e, the
gmbedded‘length of the pile L, and the boundary conditions. The
five lateral failure modes that the ﬁile can undergo are illustrated
in Figs. 5.17 and 5.18. The soil reaction distribupions shown in these
figures are baséd‘on the assumption that the pile moments are sufficient
to develop fully the ultimate soil resistance Py {5.3].  Given the
soil reéction distrigutions, expressions for determining thé maximum
lateral load can be derived from statics,

Relatively short piles fail in a soil failure mode as shown in
Fig. 5.17(a) féf free—headedlpiles (no restraints), and in Fig. 5.18{(a)
for fixed-headed piles (moment restraint). TFor these piles, the soil
along their_entire length fails, while moments in the pile remain less

than the plastic moment. For the free-headed case, H can be determined

from

=
|

- 2 2
" pu(L + 2e) + P, \j(L +2e)° + L _ - (5.25)

=2
i

u 0.414 puL (e = 0) {5.26)
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for a copstant P, and from

2
: ~ L PulL , . ‘
T D o (5.27)

~ for a linearly varying Py,- The value 1 represents the value of Py at

a depth L below the surface. For the fixed-headed case, Hu is given by

-Hu = puL _ | (5.28)

<

B
o

for a constant p, and by

1

A
fad
W

&5

. for a linearly wvarying Py Intermediate length piles with a fixed head
fail im a combined soil and pile failure mode, as can be seen in

Fig. 5.18(). In this case the soil fails along the entire length of
the pile and a plastic hinge forms at the pile head. Expressions for

determining Hu are, for constant and linearly varying Py respectively

H = -p L + \/ 2pu2L2 + bt ‘ (5.30)

Lp

M
H :ip—+ (5.31)

1
[ ul

Longer piles fail in a pile failure mode. Figure 5.17(b) illustrates

this failure mode for a free-headed pile. At failure, a plastic hinge
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has formed in the pile, and all the soil above the hinge has failed.
Soil below the hinge is not activated in the rigid, perfectly plastic.

mechanism. Hu is given by

==}
i

22
w = TPye + \/pu e” + 2 puMp . (5.32)
H = ZpuMp (e = 0) (5.33)

for the comstant p, case and by

et
I

| 2 '
e + \J{0.75 p,.e) +3p M \ 2 {5.34)
2 uL2 uL2 P |

1 e -
H =2 /3 Pur, My (e = 0) | (5.35)

for the linear p, case, where LZ = ZHu/puL . Equations (5.34) and
2 .

u (}0'75 Pur,

f

(5.35) must be solved iteratively using the definition of L,. The‘
‘value p L represents the value of Py at a depth L below the surface.
Fig. 5. 18(c) represents the pile failure mode for a fixed- ~headed pile.
Two plastlc hlnggs form in the pile and the soil between the hinges

has failed. Hu is determined from

H = zxfpump , | (5.36)

for a constant P, and from

PuL M (5.37)

for a linearly varying P,
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5.4.3. <(Calibration--Lateral Behavior

Examples comparing the results from the design method with results
from the finite element program will be giveg in this section. The
pile type and pile material properties are as given in Sec. 5.3.3. The
soil properties are typical values from Chapter 3 for medium sand and
stiff clay and are given in Fig. 5.19 through 5.24. The length of the
pile will be varied to illustrate the different failure modes described
abéve.

Of thé lateral failure‘modes given in Sec. 5.4.2, the two pile
failure modes (Fig. 5.17b and 5.18c) will control for almost all practi-
cal cases. Results for these two modes are presented -in Figs. 5.19 and
5.20. These figurés show load~displacement curves for a 40-ft-long
laterally loaded pile, beﬁding about the weak axis, for both fixed-
headed agd free-headed cases. Figure 5.19 represents the case where
P, is a conétant, while Fig. 5.20 has a linearly varying P, The
lateral stiffness of the soil-pile system is also shown in both figures.
As can be seen from.the figures, there is good agreement between the
design method results and the finite element results im Fig. 5.19.
However, in Fig. 5.20 the design method gives smaller values for the
lateral stiffness and lower ultimate loads than the finite element pro-
~gram. These differences are caused by the stepwise variation of kh and
P, used in the finite element program, whereas the design method assumes
a linear variation. For both éases shown in Fig. 5.20 the design method
does give congervative results. Notice that large lateral displacements
are required to fully develop the ultimate lateral load.

Load~displacement curves for the other lateral failure modes are

given in Fig. 5.21 through 5.24., Results for the soil and pile failure
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mode (Fig. 5.18b} for an 80-in.-long pile are shown in Fig. 5.21(a) for

a constant P, and in Fig. 5.23(a) for a linearly varying P, Resuits

for the soil failure mode (Figs. 5.172 and 5.182) for a 40-in.-long pile
and a constant p, are presented in Fig. 5.21(b) for the free-headed
condition, and in Fig. 5.22 for the fixed-headed condition. The soil
failure mode with a linearly varying Py is illustrated in Fig. 5.23(b)
for the free-headed condition and in Fig. 5.24 for the fixed-headed
condition. These féur figures all show reasonably gpod agreement between
the design method results and the finite element results. As before,

the agreement for the cases with a constant-kh and P, is better than

the agreement for the cases with linearly varying parameters.

5.5. Combined Behavior

"In the previous sections the effects of separately applied axial
and lateral loads and displacements on the design model have been
discussed. Equations for stiffness and ultimate load have also been
presented. Now, the behavior due tb the combined application of these
effects will be analyzed. Specifically, the behavior due to a lateral
displacement and a vertical load at the pile head will be discussed.

As an exémple,,consider the pile in Fig. 5.25. Note that the slip
mechanism is eliminated here.by the bottom support. The pile is first
given a horizontal displacement Ah to simulate the movement of the bridge
superstructure due to a temperature change. If this movement is suf-
ficiently‘large, a plastic hinge may form near the top of the pile at a

distance LZ from the ground surface. An axial load V, representing the
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live load on the bridge, is then applied to the pile. As V increases,
a plastic hinge eventually will form in the pile even for soft soils;
The moment at the plastic hinge becomes smaller as the axial load
increases. The plastic moment M; can be calculated from Egs. (5.13)
through (5.17). The load-displacement behavior of the pile is illus-
trated schematicélly in Fig. S.S(e). -The figure, which was originally
developed for a pile with an eccentfically applied axial load, shows
the actual curve bounded by the curves for Vp and Vcr' This suggests
that the same relationship used to relate V , VP, and Vv, for axial
loading might also be used for piles with combined loading. This is
the approach that will be taken in the next section to determine the
ultimate load of a pile.

5.5.1. Ultimate Load for Combined Behavior

The combined behavior of the pile is similar to the axial behavior

described in Seg,'S.B.E in that the pile can fail either by slipping
‘through the goil or by deflecting 1ate£ally‘ The slip‘méchanism again
occurs due to failure of the soil, while the pile remains relatively
undeformed, The ultimate load for the slip mechanism is thé same as
before and is given by Eq. (5.5). The lateral mechanism occurs when

the pile deflects laterally due to the interactioﬁ of geﬁmetric in-
' stabiliﬁy and plasticity effects. Consistent with the procedure used
in Sec. 5.3.2.2, the Rankine equation (Eq. 5.6) will be used to esti-
mate the u1£imate load for the lateral mechanism. Valueslfor the elastic
buckiing load and the plastic mechénism load, which are réquired for the

Rankine equation, can be determined from the following two sections.
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5.5.2. Elastic Buckling Load

The elastic buckling load for initiélly bent columns approaches
the elastic buékling load for straight columns, providing the inpitial
imperfections are felatively‘small {5.4]. Following this same rationale,
the elastic buckling load for a pile with a lateral pile head displaceF
ment will be.calculated using the expressions presented in Sec. 5.3.2.3
for straight piles. An example demonstrating the validity of this
assumption is shown in Fig. 5.26. A 40-ft-long pile, as in Fig. 5.25,
with elastic pile and soil properties was analyzed ﬁsing the finite
elemeht program with values of Ah ofll and 2 in. As can bé'seen from
the figure, the displécements of the two piles differ somewhat, but the
critical load Vcr is the same.

5.5.3. Plastic Mechanism Load:

The plastié mechanism load VP is the load whiph causes a
compléte‘mechanism tolform assuming rigid, perfectly plastic behavior.
The value Vp will be derived using the pile shovn in Fig. 5.27. The pile
head in this figure is first displaced from point a to point b because |
of the expansion/contraction:of the bridge superstructure. This movement
Cauées a plastic hinge to form at a depth L2 below the surface.
(Remember, the pile is rigid, and perfectiy plastic!) When the.vertical
load.V is épplied, the pile head moves to point c. This results in a
second hinge forming at a distance Ll below the first hinge. It is
important to note that two plastic hinges must form when rigid, perfectly
piastic behavior is assumed. ' This does not mean that two hinges form in
the real pile at the ultimate load. In general, the second hinge forms

only at a very large displacement.
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The change in external work and internal energy caused by the pile
head moving from b to ¢ can be expressed in the following equation for

a soil with a constant P,

L 1 .1 -
Vs = Mp(ﬁl + Mp 91 + 62

NP

) +‘puL2(%) + PﬁLl(%) (5.38)

_ Simplifying and solving for V gives

4L 2
' At — ——
Mp( I 2)* Pyl

= | (5.39)
RCE)

Ll J

where £ = L1 + L2' The mechanism begins at vy equal zero, which corre-
sponds to the point VP in Fig. 5.5(e)
M! 2% P

= B _2 L.
v, 5 1+ o)t L,(L; +1,) | (5.40)

The location of the plastic hinges, that is, L, and Lé, are, in a typi-

1
cal pfoblem of this type, selected to minimize the mechanism load. This
leads to a negative value of L2 which is a physically unattractive
solution (a plastic hinge occurring at a pinned end.) In lieu of this
~ approach, each term on the right of Eq. (5.40) will be bounded by a
conkervative estimate. In the first term, Ll

than LZ' This is a small approximation since L, is usually small. 1In

is taken as much larger

the second term, L1 will be assumed to be small with respect to L2.
This is not true but is certainly conservative; that is, it gives a

lower bound to the second texm. Next, L2 will be assumed to be
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\fZMé/p;, which is the depth to the plastic hinge when there is no axial
rload as for Eq. (5.33). Equation (5.40) thereby reduces to

2M! - o
V = b (5.41)

P Ay

Similar derivations can be made for piles with linearly varying

P..-

u Due to the simplifying approximation.made, P, drops out of these

- equations for Vp. Therefore, VP for pinned-headed piles with sither
constant or linearly varying p is given by Eq. (5.41). Similarly,

for all fixed*héaded piles the following eguation .can be derived:

= B '
v, 5 | (5.42)

The effect of vertical springs on VP can be accounted £or by using
a reduced value of V in the expressions for Mﬁ {Egs. 5.13 through 5.17).
The value of V at the ﬁinge location, for example, at L2, could be used
from Egs. (5.10) and (5.11). This will result in a larger value of Mé
at the plas;ic hinges and reduce some of the conservatism in the design
method.

5.5.4, Calibration--Combined Behavior

'The examples run to check the combined behavior have configurations
ident£c31 to those in Fig. 5.12, except that the pile head is now given
a lateral displacement Ah instead of having an eccentrically applied
load. Also, oné case is run with the pile head fixed against rotation.
Ag before, a 40-ft-long HP10x42 ﬁile,'bent abéut the weak axis with a

modulus of elésticity of 29000 ksi and a vield stress of 50 ksi, is
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used. The soil properties used are given in Table 5.1. Table 5.3
-giﬁes-the finite element results for Vu’ as well as the design method
results for Vp and Vct (Eqs. 5.7, 5.8, 5.9, 5.41, and 5.42}. The Vu
values for 1/5 soft clay are very unstable. This occurs because of the
faﬁidlj descending branch of the load;displacement curve after the ulti-
mate load is reached. The Rankine equ?tion and the finite element results
are compared in Fig. 5.28. As was true for the axial load oﬁly examples,
the Rankine equation gives conservative results, althougﬁ there is.a
much wider scatter of points than for the axial load case. As described
in Sec. 5.5.3, the plastic méchanism load is conservative because of

‘the conservative esfimates used in bounding Eq. (5.40) to obtain the
simplified Eq. (5.41). The method is particularly conservative for the
case with vertical springs, that is, when the axial load varies along
the pile length.. As noted in Sec. 5.5.3, the reduced axial load at the
‘hinge locations would increase the plastic moment capacity. This cor-

rection was not used in Fig. 5.28.

5.6. Appiications of the Design Method

The bridge superstrﬁcture will expand and contract Qith changes
in temperafure. Methods for determining the change in temperature are
presented in Sec. 5.6.1 along with equations for calculating the lat-
eral pile head displacement and the maximum bridge length. Sec. 5.6.é
presents a summary of the design method developed in this chapter.

5.6.1. Actual Temperature Changes

The lateral displacement of a pile due to a change in temperature

can be determined from
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A, = O AT L /2 | | L (5.43)

‘where « is the coefficient of thermal expansion for the material in the
bridge superstructure, Lb is the length of the bridge, and AT is the
average témperéture chénge. The AASHTO. code gives values of o and AT as

0.000006/°F normal weight concrete

o =
= 0.0000065/°F structural steel
ATaVe = 60° F moderate climate, metal structures

= 75% F cold climate, metal structures
= 35°¢ F moderaterclimate, concrete structures

= 40° ¥ cold climate, concfete structures
For concrete bridges in climates similar to Iowa's, a possibly better
estimate of AT is to calculate the changé'in length from dawn on the
coldest day of the year to dawn on the hottest day of the year and
then add the estimated change in length during the hottest day of the

year. This temperature change is given in the following equation {5.17}.
AT = T1 - T2 + (T3 - Tl)/3‘ : (5.44)

where T1 is the air temperature at dawn on the hottest day of the year,
T2 is the air temperature at dawn on the coldest day of tﬁe year, and TB
is the maximum air temperature on the hottest day of the year. Another
method for determining AT, which is based on extensive empirical data,

is given in Ref. {5.18]}. The maximum length of the bridge can now be

determined from Eq. (5.43)

L= 2ﬁh

b = WAT (5.45)
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where &h is the largest lateral displacement which does not cause a
reduction in the ultimate vertical load of the pile.

5.6.2. Summary of the Design Method

In the previous sqctions of phis chapter a simplified design
method has been presented for analyzing piles in integral abutment
bridges. The purpose for develoﬁing this methqd was to predict the
change in the ultimate load capacity of a pile due to lateral pile
head displacements, and, thereby, determine the maximum allowable length
for bridges with integral abutemgnts. Two failure mechanisms are pos-
sible: the siip mechanism and the lateral mechanism. The ultimate
load for the slip mechanism can be determined from Eq. (5.5) and does
not depend on the lateral displacement of the pile. The ultimate lecad
for the lateral mechanism can be determined from Eq. (5.6). This load
does depend on the lateral displacement, since VP (Egs. 5.41, 5.42)
@ecreases with increasing Ah. The ultimate load for the pile is the
smaller of the two mechanism loads. The slip mechanism will tend to
control for friction piles with relatively small Ah values. The lateral
mechénism will tend to control for end-bearing piles and for friction‘
piles with large Ah values. As long as the slip mechanism controls,
the ultimate load in the piles will be unaffected by the Ah. If the
lateral mechanism controlg, then the design of the piles may need to
be modified in order to ﬁse integral abutments. .Anticipated values

for Ah can be calculated from equations in Sec. 5.6.1.
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6. PILE BEHAVIOR IN INTEGRAL ABUTMENT BRIDGES

6.1. -Steel Piles in Nonskewed Bridges

6.1.1. Friction and End?beating Piles
| ‘In thé previous report the ultimate ioadwcarrying capaci;y of
friction piles embedded in typical Iowa soils was studied [6.1].‘ In
'the_présent work these cases have been reinvestigated with an improved
representation of the real soil-pile interaction. As discussed in
-Bec. 3.4, the parameter o used to construct the f-z curves has been
changed (see Fig. 3.6). For very stiff flays the factor o, which isg
used to obtain the soil-pile adhesion from the given soil cohesion, has
been reduced by almost one-half. This is, presumably, more suitable
for steel H piles [6.2]. The soil aﬁd.pile models used in the ﬁre~
"vious work [6.1] did not include cyclic behavior. In the soil-pile
interaction problem, the pile will take a shape similar to the solid
line in Fig. 6.1, as the pile is subjected to the specified lateral
displacement Ah' As the vertical load V is applied, the pile deflects
as illustrated by the dashed line. As can be seen, some of the soil
.springs will be subjected to load reversals (cyclic loading). Similérly,
some of the pile moments are reversed during this loading history. With
these changes, it was decided to recalculate the pile capacities studied
in the previous work.

A typicai pile (ﬁ?lGXAE) in an integral abutment bridge with
bending about the weak axis will be analyzed by first applying a lateral
displacement (to simulate induced thermal expansion or contraction) and

no rotation (since the bridge is much stiffer than the pile) at the



110

pile top; Then a vertical load V (to simnlate the bridge load) will
be applied until failure occurs. In this manner, the effect of the
horizontal pile top displacement oﬁ the pile capacity can be observed.
Two differeﬁt pilés'are investigated: friction piles and end~beariﬁg
piies. The point spring resistance in the end-bearing piles is taken
to be large to simulate stiff rock. In the IABZD program, the total
displacement Ah is applied in increments of 0.3 in., while V is held
equal to zero. Once the total Ah is achieved (0, 1, 2, or 4 in.}, V
is increased in increments of 5 kips or 10 kips until the vertical
capacity of the pile is reached.

Results obtained by running the IAB2D program will be presented
here io show the behéviér of a2 steel H pile embedded in Iowa_soils.
(Chapter 3 summarizes the soil properties.) Sets of vertical load-
settlement curves with specified lateral displacements (see Fig. 6.1)
for a friction pile in very stiff clay and end-bearing piles in soft
clay and loose sand are shown in Figs. 6.2 through 6.4,-respective1§.
These are typical of the other cases. The ultimate loads are defined
by the tangent offset method described in Sec. 5.3.3. The nondimen-
sional forms of ﬁhe ultimate pile‘load-ratio.vu/vuO versus the specified
lateral displacemeﬁt Ah for friction piles and end-bearing piles in dif-
ferent types éf Towa soils are shown in Figs. 6.5 and Fig. 6.6, respec-
tively. The value Vuo represents the ultimate load when there is no
induced lateral displacement.

Figure 6.5 shows that a lateral movement of wp to 4 in. has no
effect on tﬁe vertical load capacity of friction piles. These results

are different from the results obtained in the previous report [6.1].
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Two primary reasons explain this difference. First, since the o factor
(adhesion/cohesion) has been reduced in the present study (Sec. 3.4),
the pile capacity, as limited by fricﬁion, has been reduced. Hence,
this slip mode will tend to control éven thoughlah may be large; The
slip moae is not affected b§ lateral dispiacements. Seéond, since the
-eyclic model was introduced- into the pile stress-strain relation, the
momeﬂt-Curvatnre relations ¢of the pile are no longer path independént.

' Figure 6.7(a‘gnd b) shows the moment~-curvature relation and path
for loading and unloading of the noncyclic [6.1} and cyclic model (cur-
rent work), respectively. The unloading paths are significantly dif-
ferent, that is, aiffErent tangent stiffnesses and moment vs. curvature

_ reSults; The~load-defiection curves will be significantly different
for these two cases. |

Figure 6.8 shows the 10ad-sett1ement curves for the cyclic and
noncyclic model in very stiff clay with a'specified lateral displace-
ment of 1 in. Notice that the collapse load for very stiff clay is
rearly the samé for both cases even though the two models trével
different 1oad~displécement curves. This observation fits a more
genefal theorem of plastic design which states that the mechanism
‘collapse load of a frame is independent of any residual stresses which
may be present in the unloaded structure, whether these are caused by
welding, imperfect. fit of members, or support settlement. In all 6f
these cases, a complete mechanism will be formed eventually [6.3]. The
theorem assuﬁeé the system has unlimited ductility. However, as illus-
trated by Fig. 6.8, the mechanism may form at quite different levels

of displacément. Hence, if the offset method is used to determine the
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ultimate load (Sec. 5.3.3), a significantly different value is obtaiﬁed
from the cyclic model than the noncyclic model. This difference was
' nb; anticipated in the previous work. Since the cyclic model and the
reduced o more realisﬁicélly represent the pile and soil behavior, the
pfesent conclusion is wvalid; that is, lateral displacements do not
affect the capacity for friction éiles in the leowa soils;'

In the end-bearing piles the failure mode is dominated by the
yield load of‘the pile. The slip mechanism does not occur. Fig-
‘ure 6.6 (a and b) shows that the ultimate load-carrying capacity of
the pile is reduced in soft clay and loose sand. Since the lateral
stiffness of the soil in soft clay and loose sand is pelatively small,
the pile is permitted to deflect laterally under vertical iqad and the
lateral failure mode'eventually develops. For the stiff soils, the
full yield load of the pile is developed before lateral motions are
permitted.

Results obtained using the design method developed in Chapter 5
are also presented in Fig. 6.5 and 6.6. As can be seen in Fig. 6.5,
for friction piles.the design method concurs with results from the
finite element program and predicts no reduction in the ultimate verti-
cal load for values of Ah up to 4 in. For end~bearing.piles in clay
(Fig. 6.6a) and sand (Fig. 6.6b)} both the finite element program and
the design methodlpredict some reduction in 1oad~carrying capacity.
Agreement between the two methods is good with the design ﬁethod
results being slightly conservative. Besides predicting a greater
relative reduction iﬁ capacity due to Ah’ as illustrated by thg non-

dimensional plots in Fig. 6.5 and 6.6, the design method also gives
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conservative magnitudes of the capacity (Fig. 5.28). The design method
and thé finiﬁe element program use slightly different expressions for
detetminimg the lateral stiffness and ultimate lateral stfength of the
soil (Sec.l3i3). This may account for some of the differences between
the results. The design method will also tend to give conservative
results Becguse‘the equation for Mé does not take into consideration
the reduction in axial load along the pile (see Séc. 5{5.3). Addi-
tionally, cénservative approximations are used to reduce Eq. (5.40) to .

Eq. (5.41).

6.1.2. Effect of Cyclic Lateral Displacemenﬁs

Two cases are presented here to illustrate the effect of cyciic
lateral displacements on pile capa;ity:' frietion piies in very stiff
clay and end-bearing piles in soft clay. These are the cases most
likely to be affected by cyclic 1oading. The specified lateral dis-
plaCemeﬁt is cyclically applied; for example, Ah ig cycled from +1.0 in.
to -1.0 in. to +1.0 in. The vertical load V is then applied.

The resultant set of vertical load<settlement curves aftér the
specified cyclic lateral displacements for a friction pile in very
stiff clay and end-bearing pile in soft clay are identical to those
shown in Figs. 6.2 and Fig. 6.3, respectively. These results shéw that
.the vertical load capacity is not significantly affected by the cyclic
1aterai displacements. The effects of cyclic behavior are not included

in the design method.

6.1.3. Effect of Pinned Pile Top
The condition at the pile top, which is embedded in thg concrete

abutment, depends on the relative stiffness of the superstructure and
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the abutmeﬁt.' The top of the pile can be assumed to be (a) fully
#estrained without rotation (fixed pile head), (b) partially restrained
allowing some degree of rotation, or (c) pinned, allowing complete
rotation freedom (pinned pile head). Section 6.1.1 has discussed the |
friction and end-bearing piles with fixed pile heads in véry stiff
glay and soft clay. The friction and end-bearing piles with pinned
pile heads in very stiff clay and soft clay will be presented here.
Figuré.6.9 shows the nondimensional forms of ultimate vertical load
ratic versus lateral specified displacements of friction and end-
bearing piles with pinned pile heads in very stiff clay and.soft clay.
A comparison of Fig. 6.5 and'Fig. 6.9(a) shows that the load capacity
of the friction pile is not affeéted by the boundary condition on-the
pile top. In both cases, ﬁhe failure mechanism is controlled by the
slip mechanism. This is not true in the case of the end-bearing pile
wiﬁh fixed and pinned pile heads. The load capacity is reduced more
in soft clay than in very stiff clay (Fig. 6.6a and Fig. 6.9b). The
failure mechanism in both cases is controliedAby the lateral mechanism,
which is affected by the number of plastic hinges (two for the fixed
case, one for the pinned) and the lateral soil resistance. The reduced
lateral resistance of.soft clay more easily permits the lateral mode.
Figure 6.9 also shows results obtained using the design method.
Both the finite element method and the design method predict no reduc-
tion in load-carrying capacity for friction piles for values of Ah up
to 3 in. The deéign method does, however, predict a small reduction
for Ah values greater than 3 in. Figure 6.9(b) for end-bearing piles

shows similar reductions in ultimate load for both the finite element
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program and the design method. One difference is that the design-
. method predicts a greater reduction in load capacity for piles in very
stiff‘clay than for piles in soft clay, whereas the finite element

program sometimes shows a greater reduction for piles in doft clay.

6.2. Nonskewed Bridge Example

£.2.1. Bfidge Studied

A.nonskeﬁed bfidge located at State Avenue over U.S.‘SQ; Sto?y
County; Ames, Iowa, was chosen to investigate thé behavior of an integrai
abu£ﬁent bridge subjected to thermal expansion and contraction.‘ Plan
and elevation views of the bridge are shown in Fig. 6.10. It is a
245-ft-long, prestfessed concrete bridge with iﬁtegral abutments and
piers. There are no expansion joints on the bridge; however, expansion
joints are located in the approaéh slab about 20 ft from each end of
the bridge.

A section through the bridge deck is shown in Fig. 6.11. Pré-
tensioned, prestressed concrete beams were used to support a poureé—iu"
place concrete deck. The beams and deck were designed to act as a
monolithic unit, even over the piers. The steel piles, Qier'cap,
diaphragﬁ, concrete beam, and concfete'deck were ali reinforced to_beu
have as a single unit. A sectién through the abutment is shown in
Fig. 6.121 The pile is oriented with its strong axis along the road-
way center line (bending about the weak éxis) and is reinforced within
the abutment cap and diaphragm to transmit the full plastic moment of

the pile (HP10x42). More details about the State Avenue bridge can
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be found in Towa Department of Transportation design sheets, File

No. 22616 and Design No. 267.

6.2.2.  Mathematical Model of the Bridge

The proposed mathematical model of the State Avenue bridge is
shown in Fig. 6.13(a). Two types of prestressed concrete beams, C30-50
and C80, are used in this bridge. A simplified two~dimensional model of
the bridge, which contains one concrete beam, a section of the abutment
and pile cap, and one pile és shown in Fig. 6.13(b), was used. The
cross-sectional properties have been calculated based upon this ideal-
.izatién. Note also tﬁat the bridge was assumed to be Smeetrical about
the midlength. Figure 6.14 shows the section through the abutment . and
the soil profile. The granular backfill is considered as dense sand.
The abutment pile was driven in an 8~ft deep, oversized hole through
the fill. Voids around the pile are assumed to still be empty. The
finite element model ié shown in Fig. 6.15. 8ix beam~column elements,
each 20~-ft long, are used to represent the concrete beam; two beam-
column elements, each 3.75-ft long, are used to represent the abutment
and pile cap; and 12 elements with unequal length are used to représent
the piié. There are no vertical soil springs along tﬁe abﬁtment and
the predrilled oversized hole. No lateral soil springs aré attached
within the predrilled oversized hole. -Soil properties based on the_.
Iowa so0ils are calculated. The temperature change is taken as -60° F
to +60° F from the construction temperature (see Eq. 5.44).

6.2.3. Numerical Results

Several cases have been investigated in order to fully understand

the behavior of the integral abutment bridges with thermal expansion
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and contraction. These are:. (a}.no thermal changes, (b) with +60° F
temperafﬁre changes; {¢) without backfill, with +60° F'temperapure
changes, (d}rwith a complete cycle of temperature changes (-60° F to
' +50° ¥), and {(e) without concrete bridge model, but with spécified
lateral diéplacements équal to the displacements in case (b). After
gach:of these loadings, a vertical load is applied at thé top of the
giie Qntil failure (Fig. 6.15).

Vertical load-settlement curves obtained by running the IAB2D
program are shcwn in Fig. 6.16. Case (e) is actually a single pile
with an abutment attached to it, vefy similar to the cases in Sec. 6.1.
It fails by the slip mechanism when the applied load exceeds the fric~
tion force of the soil springs. The rest of the cases do not fail at
this level, since the pile is'pait of the bfidge model. As the pile moves
downward, thé concrete bfidge beams.carry some load as a cantilever
type structure. Cases {a) and (b) have noticeably different ioad*
séttlement curves. In case (b) thé +60° T temperature change expands
the beams and activates the passive soil pressure behind the abutment.
(See diagram in Fig. 6.17.) Since the beam and abutment are not co-
linear, a moment M and subsequent sheaerS are introdﬁced into the
concrete beam. The shear VS, equal to abput 20 kips-in this caée,
is applied'tg the pile. In other words, the pile is subjected to a
20-kips downward load before the vertical live load is applied. From
Fig. 6.16, cases (a) and (b) do have a 20-kips difference in ﬁltimate
1qad; This is also confirmed by case (c¢), which is identical to case (b)
except the backfill is removed. In thiS‘case, the initial 20-kip pile

load is not introduced and the load-settlement curve is about the same
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as case (a)? A comparison of cases (b) and (d) shows that there is no
" difference in load-settlement curves for cyclic and noncyclic thermal

‘changes.

6.3. Stee]l Piles in Skewed Bridges

As illustrated in Fig. 6.18, pile orientations for steel H piles
in integral abutment, skewed bridges can be'classified into four types:
the web of the pile berpendiculér (Type 1) or parallel (Type 2) to
the roadwa& center line, and the web of the pile parallel {(Type 3) or
perpendicular (Type 4) to the center line of the abutment. In addition,
some states use circularrpiles (Type 5) in integral abutmgnts on skewed
bridges. In each of these types‘the pile is bending abéut its weak axis,
strong axis, or a combination of both. Bending of piles about the weak
axis was discussed in Sec. 6.1. Before proceeding to an actual bridge,
individual piles displaced laterélly about the strong axis and at 45° to
the strong and weak akis will be studied.

6.3.1. Bending about the Strong Axis

For H éiles bent about the strong axis (displaced along the weak -
axis), the analysis procedure is the same as in Sgc‘ 6.1.1, except the
pile cfoss~sectiopal properties are rotated 90°. Tﬁe two-dimensional
program IAB2D can still be used for this case. A set of nondimensional
curves of the ultimate pile load ratio (Vu/vuo) versus the specified
lateral displacement (Ah, in the direction of the weak axis), for fric-
tion and end-bearing piles in different types of Jowa soils, are showﬁ
in Figs. 6.19 and 6.20, respectively. The pile heads are fixed against

rotation in these figures.
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Figure 6119 shows that a lateral movement of up to 4 in. has no‘
effect én ;he ?ertical load capacity for friction piles.- This is not
true for end-bearing piles, since the failure mode is dominated by the
yield load of the pile. The slip mechanism does not occui, Fig-
ure 6.20(a) shows that end~bearing piles with a fixed pile head and
bending'about the strong axis have a significantly reduced ultimate
load capacity in very stiff clay. |

Figure 6.21 shows the vertical load-settlement cur#es of end-
bearing piles with fixed pile head displaced 4 in. laterally for soft
clay, stiff clay, and very‘étiff clay. These curves show that the
peak load (point of zero slope) for very stiff.clay is greater than for
stiff clay, which is greater than for soft clay. As méntioned in
Sec. 6.1.1, the peak load is not affected by the residual stress effécts,
in this case, plastic hinges formed by the lateral motion. However, as
Fig. 6.21 clearly shows, residual stresses do affect the load-settlement
curve. For the very étiff clay displacea 4 in. laterally, two plastic
hinges formed in the pile. For soft clay and stiff clay only one
plastic hiﬁgg formed. This plastic hinge formation does significantly
affect the load-settlement curve of the very stiff clay pile; the tangent
stiffness is noticeably reduced at point A in Fig. 6.21. Hence, the
ultimate load for the very stiff clay case, as determined by the offéet
displacemgﬁt, is less than for soft clay and stiff clay.

Resuits from the design method, which are also shown in Figs, 6.19

and 6.20, give conservative results, as discussed in Sec. 6.1.
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6.3.2. Friction and End-bearing Piles Bending about the 45° Axis

If pile orieﬁtations of types 3 and 4 are adopted for construction

cénvenience, the thermal expansion or contraction along the roadway
_center can be diﬁided_into components parallel and perpendicular to the
pile wéb‘(see Fig. 6.18). Thus, the piles in integral abutment skewed
bridges will be subjected to biaxial bending resulting from thermal
movement. Piles displaced at 45° from the major axes will Be énalyzed

in this section to illustrate the effect of biaxial bending. The same
1oading procedure is used as in Sec. 6.3.1, except thét the specified
lateral displacement Ah is measured in a direction 45° from the principal
-axes (see Fig. 4.17). The three-dimensional computer program IAB3D is
uséd ﬁo calculate the load capacities of friction and end-bearing piles.

For friction piles, results obtained from the IAB3D program show
that the load capacity of frictioﬁ piles is not affected by applying
the specified lateral displacement Ah (0, 1, 2, or &4 in.) in the 45°
direction for all Iowa soils, since failure is controlied by the slip
mechanism. This agrees with the results obtained from the previous
sections.

The ultimate vertical load ratio for.end~bearing piles:with
gpecified displacement ah (0, 1, 2, or 4 in.) in the direction of 45°
axis is shown in Fig. 6.22. 1In this case, the load capacity of end-
bearing piles is affected_b§ the specified movements at the top, since
failure is controllied by the lateral mechanism. It is interesting to
note that the load capacity of end-bearing piles bent about the 45° axis
is between the load capacity of end-bearing piles bent-about the weak

and strong axis (Sec. 6.1 and 6.3.1). The upper bound and lower bound
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on the load capacity of end-bearing piles can be estimated from the
weak or strong axis bending. As an expedient solution, analysis can
be accomplished by a simplified two~dimensional analysis.

The design method was not developed for the biaxial bending case.

6.3.3. Effect of Pinned Pile Top

In this section, the effect of a pin at the pile top on friction
and end-bearing piles bent about the strong axis will be demonstrated.
Piles in very stiff clay and soft clay will be stﬁdied. Results
'obtainad‘from the TAB2D show that the load capacity of the friction
piles is not affected by the boundary condition‘at the pile top. In
both cases (fixed and pinned), the failure mechanism is controlied by
the slip mechanism. This is not true in.the case of an end-bearing pile
(compare Figs. 6.20(a) and Fig. 6.23). For pinned piles displaﬁed 4 in.
laterally, the téngeﬁt stiffness of the load-settlement curve in very
gtiff clay is not réduced as significantly as it was at point A in
Fig..6.21 for fixed piles. Hence, the vertical load capacity, as deter-
mined by the offset method, is not noticeably reduced.

Also shown in Fig. 6.23 are curves developed using the design
method. Behavior similar ﬁo that describe& in Sec. 6.1 occurs. Again

the design method gives conservative answers.

6.4. Skewed Bridge'Ekample

In this section a skewed bridge with integral abutments is used
to investigate the behavior of the piles under temperature changes.

The bridge in Sec. 6.2 is used as a skewed bridge in which the skew
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‘angle is 30° (sée Fig. 6.24). The pile orientations‘are classified
into four different types as mentioned in Sec. 6.2. These four differ-
ent ;ypes'pfipile orientations, as shown in Fig. 6.18,_Qi11‘beldiscussed
here.

éinge the same bridge is used in this example, the properties of
prestressed concrete beams, abutments, piles, and séil‘profiles are
Ithe same as in Sec. 652. The mathematical model for this skewed bridge
is also similar to the one used in Sec. 6.2, except that a three-
dimensional model is.required to account for the effect of the skew.
This three-dimensional model ‘includes a.concrete beam, abutment, and
~pile. Only one—half of the bridge in this model is analyzed by taking
advéntage of the symmetry about the midline of the bridge. The global
coordinates as shown in Fig. 6.24 are selected to impose the symmetry
requirement. Rotations about the globél X-axis at the ;butments and
piers are considered to be restréined because of the diaph;agm under-
‘neath the concre£e beam,

Four types of pile orientations in the abutment are considered and
are loaded with the following cases: (a)} without thermal changes,
(b) with +60° F temperature changes, and (¢) without bridge beam andl
with Ah fqr +60°.F temperature changes. Results obtained from the
IABﬁD program show that there is no significant difference in the
load~settlement curves for different pile orientations, that is, the
load-settlement curves will not be affected by the ?ile orientations
{(see Fig. 6.25). This agrees with the results in the previous sections
which indicate that bending about weak, strong, and 45° axes do not

affect the vertical load capacity of friction piles which fail by the
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élip'mechanism.. As in the two-dimensional case, as the applied 1o;d
exceeds ﬁhe pile friction resistance, the excess load wili.be carried
by thé concrete beams as a cantilever type structure. Hence, case (a)
continues to carry an increasing load Eeyond case (c). Cases.(a) and
(E) have a noticable difference because of the pile pre-load induced
by the thefmal expansion, as illustratéd in ¥ig. 6.17. |

The deflected shape of the skewed bridge (in the plan view) after
thermal expansion is also shown in Fig. 6.24. If the soil springs
actiﬁg on the abutmeﬁt in the tangential direction, whiéh represent the
friction resistance of the backfill, did not exist, the bridge would

move toward the upper right.

.6.5. Timber and Concrete Piles

Piles are available in a variety of sizes, shapes, and materials
to suit many special requirements, including econoﬁic coﬁpetition. Piles
can be classified by the principal materials of which they consist, for
example, timbef, concrete, and steel piles. Steel H piles have been
discussed in Secs. 6;1 and 6.3; Circular timber and concrete piles
wili be inves£igated in this section.

Timber piles‘are probably the most commonly used type. Under many
circumstances, they provide dependable, economical foundations. Tﬁeir
length is limited by the height of available trees; piles 20- to 40-ft
"long are common, but longer ones cannot be obtained economically in all
areas. | |

Since concrete piles were initially used shortly before. 1900,

several types of concrete piles have been devised. Today an engineer
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may choose those best suited to a particular projebt. Concrete piles
may be dividea into two principai categories, cast-in-place and precast
piles. The cast-in-place piles may be further divided inﬁo cased and
uncased piles.

A Douglas fir timber pile and a cast-in-place concrete pilg; both
1-ft diameter and 20-ft long, will be investigated‘heref Table 6.1
shows the material properties of timber and concrete piles [6.4].

The stress-strain relationship of the timber pile can be represented
by the modified Ramberg*Osgood cyclic model. For concrete piles, rein-
forcing barslére usgd to resist the tensile force for the internal moment.
The beam eleﬁent in the current program does not have the capability of
modeling the post-cracking behavior of reinforced concrete piles. The
representation at the bond/anchorage/cracking behavior of reinforced
concrete is a complex phenomenon which has not been completely solved
by state-of-the-art methods. The scope of this projeét did not permit
incorpératioﬂ of such behavior. 1In addition, since the pile is pre-
dominately in axial compression, the compression characteristics of

the material will dominate. The compression stress-strain relation of
the éoncrete pile is idealized by the modified Ramberg-Osgood cyclic
model.

Using the same procedure as in Sec. 6.1.1, results indicate that
the vertical load capacity 6f timber and concrete friction piles Qith
fixed pile heads in six types of Towa soils is not reduced by .a lateral
movement of up to 2 in. The failure for both timber and concrete fric-
tion piles with vertical loads is by the-slip mechanism. Point bearing

timber and concrete piles are not analyzed. The results obtained using
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‘the design mefﬁod élsa show no reduction in load capacity for timber
Ugnd concrefa fr;ctiﬁn piles with lateral displacements of up to 2 in.

As describg& above, these analyses are basea upon-a‘Rambergfosgood
representation Qf the timber and concrete materials, which implieé |
unlimited ductiiity. This is not necessarily_true. Hence, the abové
conclusion tﬁat,the cgpacity of a friction pile'is unaffected by'iateral

- displacgments of up to 2 in. will bé true only if the pile ha§ the

| ductility to develop a full plastic moment and, subsequently, to behave
as a plastic hinge for the required rotations. The results of the finite
~element analysis indicate that, for a 2 in. 1ater$1 displacement, the
ﬁlaétic hinge rotation required at the top of a pile is approximately
'0.04 radians over a 24-in. length in timber and over a 1é~in. length

in concrete.
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7. SUMMARY, CONCLUSIONS, AND RECOMMENDAT IONS
' FOR FURTHER STUDY

7.1. BSummary

The states which use integral abutments in bridge design aﬁd.the
District Construction Office of the FHWA, Region 15,'Were surveyed to
determine their current thinking and practice in integral abutment
&esigﬁ. In Chapter 2 various policies are discussed for representi#e
highway departments, and a summary of current practice by all the states
and the FHWA is given in the Appendix. For most states the length
limitations for integral abutmentlbridges have beén set on the basis of
past experience and ha?e been increasing over the years as a result of
satisfactory performance in actual installations. There is not a common
set of design details nsed to implement integral abutment bridges.
| The parameters needed to describe the behavior of the soil are
given in Chapter 3. Three types of soil resistance-displaceﬁent curves
were developed: lateral, vertical, and pile tip. The parameters needed
for each curve are the initial stiffness, the ultimate soil resistance,
and a ‘shape factor. Each of these curves was approximated using a modi-~
fied Ramberg-Osgood model. This model was expanded to include cyclic
loadings. Simpler expressions for the soil parameters are presented
for use with the design method in Chapter 5. Six typical Jowa soils
were identified,

| An algorithm based upon a nonlinear finite element procedure was
developedlto study'the soll-pile interaction in integral abutment

bridges. The finite element idealization consists of a one-dimensional
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idealization for the pile and nonlinéar sprinés for the foundation.
Incremental finite elements with an updated Lagrangian formulation. and
material nonlinearities were used. For the purposeé‘of treating afbi-
trary iarge rotations, node orientations were described by unit vectors.
Deformations were defined by the orientation of these vectoré relative
to a rigid body element coordinate system which is along the beam chord.
The total deformation nodal forces were evaluated by numerical integra-
tion through the cross section. Explicit forms of the tangent stiff-
neés in the element coorjinaté system are presented, Updating-of the
elementAcoordinates in three dimensions is also Qéscribed. The numeri-
cal techniques available for the solutions of the nonlinear equations
are reviewed, and the incremental and iterative techniques used in the
study are discussed in detail. Two computer programs (IABBD and IAB2D)
have been developed to solve the nomlinear soil-pile interaction
problems for both three- and two-dimensional cases. A number of

. experimental and analytical examples have been anaiyzed to establish
their reliability.

A simplified design model for analyzing piles in integral abut-
ment bridges is presented ipn Chapter 5. Tﬁis model grew from previous.
analytical modéls and observations of pile behavior. The pile is
described in terms of its axial behavior, lateral behavior, aﬁd
combined axial-lateral behavior. The axial behavior was controlled by
. one of two failure mechanisms: -the slip mechanism which occurred when
the éoil failed with the pile‘slipping through the soil and the lateral
mechanism which occurred when the pile deflected laterally under verticél

load. Several types of lateral behavior could occur, depending upon the
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size of pile, the soil properties, the length of the pile, and the
boundary conditions. For the combined behavior, either the slip
mechanism or the lateral mechanism would‘again control.l‘The slip
mechanisﬁ was not affected by lateral displacements. The'Rankiﬁe equa-
tion, which utilized the elastic buckling load and the rigid, perfectly
plastic mechanism load, was used to determine the ultimate load for the
lateral mechanism. The design model was compared with the finite element
model results. The design model correcﬁly describes the essential
behavioral characte:istics of the pile and conservatively.predicts the
vertical load-carrying capacity. One limitation of the design model
was thaﬁ only éne type‘of s0il could be used throughout the pile depth;
that is, layered soils could not be used. |

In Chapter 6 many analytical examples are presented in which a
pile wés given a lateral displacement to simulate the bridge expansion.
A vertical load was then applied until féilure occurred. These examples
showed that for the caées studied in Towa soils, friction H piles e#peri-
enced no decrease in 1oad—carrying capacity for lateral displacements
up to 4 in. This was true whethér the pile was bent abput the strong
axis,_weak axis, or 45°% from either axis. This was also true for timber
and concrete piles displaced up to 2 in. Ali of theSelcases failed by
the slip mechanism. However, end-bearing piles did show significant
“reductions in 1oad-carryinglcapacity for éimilar lateral displacements
and for bending about all three axes. These cases failed by the laterél
mechanism. Other examples sho#ed that the cyclic behavior had no effect.
Examples with skewed and nonskewed bridges showed no effect on the pile

capacity since these piles were friction piles. However, the longi-
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tudinal expansion of the bridges introduced a preload on the pile which

reduced the effective pile capacity.

7.2. Conclusions

The ultimate load capacity for friction piles was not affected by
lateral displacements of up to 4 in. for H piles and up ﬁo 2 in. for
timber and concrete piles. This conclusion differs from that obtained
in the previous study because a smaller value for the soil-pile adhesion
was used, and because cyélic effects were included. However, the ulti-
mate load capacity was significantly reduced for lateral displacements
greatef than 2 in. for end«beéring H piles.

A vertical preload was introduced on the pile by the thermal expan-
sion of the bridge as it pushed the abutment against the backfill.

The lgad capacity of the pile was thus effectively reduced,

The maximum allowable length for bridges with integral abutments
thus depends én whethér the piles are friction br.end bearing, as
well as on the properties of the soil and piles. Methods for deter~
mining the allowable length are presented in this report. These
methods showed that the current length limitationlof 265 ft for bridges
" with integral abutments is conservative.

It is important to note that the allowable lengths,determined‘
using the design ﬁethod were based on the structural integrity of the
piles only. Other factors, notably the effects of the abutment move-
ment on the approach slab and fill and the effects of the induced

axial stresses in the superstructure, must also be considered. While
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these factors havé a relatively small effect on shortér bridges, as

longer bridges with integral abutments are built these problems'will

become of greater importance.

1)

2)

3)

D

5)

6)

7.3. Recémmendations for Further Study

A scale model of a pile in an integral abutment bridge could be

set up and tested in the laboratory. The experimental‘results can

be cﬁmpared‘to the results obtained from the analytical and

simplified design hethods.

An actual bridge could be instrumented to monitor thermal move-
ments and piling stresses during temperature changes.

A study of the backfill and the apbroach slab under cyclic

thermal movements would detefmine the most suitable type of
approach slab to be used with the integral abutment type of
bridges. |

The design method could Be‘refined by including the'éffects‘of
axial ;dad transfer and differing soil types in the calculation

of the plastic mechanism load.

A study of the effects of the pile preload caused by the thermal
expansion of the bridge is needed.

The effects of the abutment movement on the approach slab and fill
and the effects of the induced axial stresses in the superstructure

need further consideration.
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PART 1. INTEGRAL ABUTMENT BRIDGE QUESTIONNAIRE

1. Do you routinely calculate the change in the load-carrying capacity
of the piles due to lateral movement of the integrél abutment?
Are the piling stresses due to the lateral movement calculated?

Please explain the method(s) you use.

2. How do you determine what maximum length to use for bridges with

integral abutments?

3. Do you have a design manual or design example for integral abut-
ment bridges that we could stpdy? (If so, we would appreciate

receiving one copy.)

4. Please include any other information you have concerning the

analysis and design of integral abutment bridges in your state. -

.Please note that the intent of the survey
.is to document current procedures and not
to criticize any one method. If any infor-
mation pertaining to design examples or
manuals is wished to remain confidential,
please let us know.

Please return to: Lowell Greimann
416 Town Engineering
Towa State University
Ames, Iowa 50011



Part 2, Summary of Design Assumptions and Recommendations by the'Diffe}gnt States

Design Consideration Design Assumptions and Details
Criteria. for Maximum

Piling Stresses Due Length for Bridges

L1

to Lateral Movement with Integral Pile - Pile 8 . Back
State are Calculated Abutments Head Cap Approeach Slab ' - Fill Comments
Alaska Only for long bridges On the basis of experi- Hinge -—- No Granular Bridges with integral abutments
T ence ’ . material . may be constructed with spread
Steel: < 300 ft footing or pilings. As longer
Concrete: < 400 ft bridges without expansion joints
Prestressed: < 416 ft are found to be without problems,
the length limit has increased
© to 400. ft for concrete bridges.
Arizona No On the basis of experi- Hinge No Tied to abutment Cohesive
ence with dowels and material
Steel: < 253 ft moves back and
Concrete: < 330 ft forth with super-
Prestressed: < 404 ft structure
California Piles are driven On the basis of experi- Partially - -Pervious
into pre~diilled ence restrained
holes, and stresses Steel: < 240 ft
due to lateral move- {oncrete: < 260 ft'
ment are neglected Prestressed: < 150 ft
Colorado Neo On the basis of exper- Hinge o For bridge length Grapular No problem in skew; use pre-
ience > 200 ft, use drilled oversized hole.
Steel: < 200 ft approach slab
Concrete: < 400 ft
Prestressed: < 400 ft
Connecticut No On the basis of exper- Fixed - C e As of May 1983, only ocne
ience ] integral abutment has been
Steel: < 200 ft ‘ designed and constructed.
Concrete: < === The design of this 245-ft-
Prestressed: < --- long two-span continuous -
- bridge was based upon
information received from the
South Dakota Department of
Fransportation.
Georgia No Based on total amtici- Free trams- No Expansion joint Roadway Integral abutments have been
pated lateral movement lation, between approach £i11 used only at sites where steel
of < 2 in. free slab and bridpe # Piles are suitable. The
Steel: < 300 ft rotation, slab steel H Piles are placed such

roller that they bend about theix

Concrete: <£ 600 ft
weak axis.

Prestressed: < ---




Part 2. Continued.

besign Consideration

Piling Stresses Due

Criteria for Maximum
Length for Bridges -

Design Assumptions and Details

to Lateral Movement with Integral Pile Pile Back )
State are Calculated Abutments Head Cap Approach Slab Fiil- . Comments
Tdaho Oply for those that  Based upon FHWA guide- Hinge Rigid Expansion joint Free drain~ Assume that passive earth
involve some unique lines and the state's pile cap specified between ing pressure at abutments tends
feature that would own experience rigid pavement and  granular to restrain movement and reduce
warrant such calcu- Steel: < 200 ft approach elab; ne material deflections from calculated '
lations Concrete: < 400 ft special treatment values. Skewed three-span
Prestressed: < 400 ft specified for steel girder bridge with inte~
flexible pavement gral abuiment was built;
rotational forces from lateral
earth presence on end wall
caused failure in pier anchor
bolts on exterior girder.
Indiana Ko Steel: < --- Hinge Embed 20-ft. approach Select Only vertical piles are used
Concrete: < 150 ft piles slab integrally granular with integral abutments. When
Prestressed: < --- only 1 ft attached to bridge fill bridge skew > 30°, length limit
into the for concrete bridges is < 100 ft.
cap Integral abutments have been
used for many years with Bo
atverse experiences. On longer
bridges the integral compec-
tion is eliminated, substituting
a neoprene bearing pad or expan-
sion device, use alternating
vertical and battered piles in
the cap and still neglect
lateral forces on the piles.
Iowa Yes Based on an allowable Fixed Neglect Neglect Roadway Conservative design.
bending stress of 55% f£i1l -

of yield plus a 30%
overstress. Moment in
pile found by a rigid

frame analysis consider-

ing relative stiffness
of the superstructure
and the piling.

Analysis shewed that

allowable pile deflection

was about 378 in.

Steel: < ===
Concrete: < 265 ft
Prestressed: < 265 ft

Assume
piles to be 10.5 It and
neglect soil resistance.

/Y1



Part 2. Continued.

Design Consideration Besign Assumpfions and Details

Piling Stresses Due

Criteria for Maximum
Length for Bridges

ture

to Lateral Movement  with Integral Pile Pile Back
State are Calculated Abutments Head Cap Approach Slab Fill Comments
Kamsas No Based on experience Hinge Pile caps Use slab support at Backfill Have used integral abutments
Steel: < 250 £t-300 ft not used backwall and pave~ compaction for cast-in-place bridge struc-
Concrete: & 500 ft ment rests on slab  has settle- tures for many vears and have
Prestressed: < === with about 30 ft ment just.  encountered no difficulties.
: from end of wear- off end of Expect to increase length
ing surface bridge limits im the future.
Kentucky Ko Steel: < --- Fixed or —— No special treat~ Special Piles are placed in holes
Concrete: < 300 ft partially ment with flexible granular prebored for a distance of
Prestressed: < 300 ft restrained pavement backfill 8 ft below bottom of pile
specified cap. A
Missouri No Based on experience of Hinge On extreme  --~- Roadway Require a minimum of 15 ft
Missouri and other skews (£40°), fill pile length to permit flexure
states {(mainly use shear of pile. ‘
Tennessee) key on
Steel: < 400 ft bottom of
Concrete: < 400 ft pile cap
Prestressed: < 500 ft to prevent
lateral
movement of
pile cap
- Montana No Based on experience Hinge - Not fized to Granular < 30° skew
’ and engineering abutment material -
judgment
Steel: < 300 ft
Concrete: < 330 ft
Prestressed: < 300 £t
North Ko Steel: < 350 ft Fixed Abutment Assume approach Select < 30° skew
Dakota wall is slab has no effect gramnular
’ piie cap ' material
and is
reinforced
ta resist
bending
below
superstruc-

6%1



Part 2. Continued,

Piling Stresses Due

. Design Consideration

Criteria for Mawimum
Length for Bridges

Design Assumptions and Details

to Lateral Hovement with Integral Pile Pile Back .
State are Calculated Abutments Head Cap Approach Slab Fill Comments
Nebraska No Based primarily on past Hinge ——- - Select < 15° skew

experience and recom- granular Procedures for determining

mendations from other £ill piling numbers are the same

agencies as for conventional abutments.

. Bteel: < 200 ft The pilings are rotated to

Concrete: < 300 ft provide bending about weak

Prestressed: < 300 ft axis. Presently only steel
H piles are used in integral
abutments and alsc substantial
anchorage between the girder
apd the abutment are provided.
Wings on integral abutments
are not attached to the
abutment in order to reduce
resistance to rotation. This
is accomplished by using a
bond brezker between the
abutment and wing and designing
the wing as a stand-alone
structure.

New Mexico No -—- Partially ——- © Used om some Bo not use Have built bridges with up to
restrained bridges and not specified 15° skew; skew angle neglected.
or fixed on others backfill

: ‘ anymore
New York Ko Steel: < 300 ft — - Approach slab Granular ¥ew York State has temtative
Concrete: < =-- should dbe 20 ft fill behind dintegral abutment bridge design
Prestressed: < 400 ft long maximum and backwall. guidelines that list the design
- the end of the apd wing- - parameters that must be
approach slab shall walls satisfied.
be parallel to the
skew. Construction
joint provided
between approach
slab and bridge
slab
Chio Yo Based on experience and Hinge Pile cast Tie approach slab Grapular 0il country pipelines pot used
engineering judgment in pile to abutment material in integral abutments because
Steel: < 300 ft cap 2 ft they are stiffer than H piles

Concrete: < 300 fu
Prestressed: < 300 ft

about weak axis. Integral
abutment bridges built only
with zerp skews.

ney



Part 2.

Continued.

Design Consideration

Piling Stresses Due

Criteria for Maximum
Length for Bridges

Design Assumptions and Details

to Lateral Movement -  with Integral Pile Pile Back
State are Caleculated Abutments Head Cap Approach Slab Fill Comments -
Oklahoma Ro- Based on allowable Partially -— ——— - Integral .abutments only with
: lateral movement of restrained zero skews. .

8.5 in. .
Steel: < 200 ft
Concrete: < 200 ft
Prestressed: < 200 ft

Oregon No Based on engineering Hinge Pile cast Approach slab tied Granular ——
judgment. Length in pile to pile cap
varies depending on cap 1 ft
Yocation in state.
Steel: < ===
Concrete: < 350 ft
Prestressed: < 350 ft

South Yes - Fixed -—- Tied to bridge to Graoular ———

Dakota prevent erosion : ’

of shoulder

Tennessee Ko Based on experience Hinge -— Construction joint  Granular’ No bridge. deck expansion
Steel: < 400 ft - : between abutment joints are to be provided
Concrete: < 800 ft backwall and unless absolutely necessary.
Frestressed: < 800 ft approach slab

Utah Ko Steel: < 300 ft Hinge -—- Expansion joint - Granular Steel piles used primarily
Concrete: £ =-- between approach through granular material
Prestressed: < 300 ft slab and bridge slab over bed rock.

Virginia No Steel: < 242 ft Hinge or Uniform Ko approach slab’ Use 1.5 £t Max skew, 10%; relatively
Concrete: < == fixed width and of perous small movement at each abut-
Prestressed: < 454 ft parallel backfill abutment (* 3/8 in.). '

to bridge with 0.5 in.
skew diameter

pile under-
drain
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Part 2.

Continued.

Design Consideration

Piling Stresses Due

Criteria for Maximum
Length for Bridges

‘Design Assumptions and Details

Back

to Lateral Hovement with Integral Pile. Pile ) .
State are Calculated Abutments Head Cap Approach Slab Fill Comments
Vermont No Steel: < 150 ft Partially Rigid Approach slab ¥o special < 30° skew
Concrete: < =--- restrained pile cap anchored to treatment -
Prestressed: < ==~ . or fized © abutment
Washington No Mainly based on past Hinge Designed Approach slab Granular —
experience as cross attached to abut- backfill,
Steel: --- beam on ment with allow- earth pres~
Concrete: < 400 ft - simple ance for expansion  sure applied
Prestressed: < 400 ft supports : normal to
- abutment
Wisconsin Yo Steel: < 200 ft Fixed Designed Designed for verti- Granular < 30° skew for slabs;
Concrete; < 300 ft as rein- cal load only g 15° skew for prestressed
Prestressed: < 300 ft forced or steel girders
continucus
bean over
pilings
Wyoming No Based on various Plastic Assumed to  ~-- Granular ———
studies, reports, etc. hinge be a mass
Steel: < 300 ft attached
Concrete: < 500 ft to end of
Prestressed: < 300 ft girder
THWA, Yes Steel: < - Hinge or Pile cast e Pervious -
Region 15 Concrete: . < 270 ft partially in pile
restrained cap 1 ft

Prestressed: < 300 ft

[
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11, TABLES
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Table 2.1. Design restraining forces.

Abutment Ty?e

Design Longit.

Force (Service Level)

End Diaphragm
End Diaphgram
End Diaphragm
‘End.Diaphragm

End Diaphragm

on
on
on
on

on

Cast In Drilled Hole Piles
Concrete Driven Piles
45~Ton Steel Piles
Neoprene Strip or Pads

Rollexs

o,

W
These values

#*25 kips per pile
%20 kips per pile
*15 kips per pile
15% of dead léad4

5% of dead load.

are for the design of end diaphragm only.
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Table 3.1. Flow chart for &etarmining the reversal values
of loading and unloading.

<0 . i >0
4 _

e, 418 %, P41 = Fc,i
O, i+l =94 | o 9, i+1 = %, i
Rt J 80

' Ci+1 T &y
Ll
UNLOADING LOADING

THE CONVERGED STRAIN OF THE PREVIOUS INCREMENT 1,

THE CONVERGED STRESS OF THE PREVIOUS INCREMERT i,

€c,i = THE REVERSAL STRAIN OF THE PREVIOUS INCREMENT 1,

O¢,i = THE REVERSAL STRESS OF THE PREVIOUS INCREMENT i,

Ei+1i = THE UPDATED STRAIN OF THE CURRENT INCREMERT i+1,

Ui+1j = THE UPDATED STRESS OF THE CURRENT INCREMENT i+1,

®c,i+1 = THE UPDATED REVERSAL STRAIN OF THE CURRENT INCREMENT §+1
9¢,i+1 = THE UPDATED REVERSAL STRESS OF THE CURRENT INCREMENT i+1,

K

5
o

i
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Table 3.2. Parameters for p~y curve.

Case _ » o 1 {use lesser value) kh\
Soft clay ' 1.0 P, = QCUB
(8tatic logd) '
o P
p = (3 + %~ X b .2 x) ¢ B -
u u ySO
Stiff clay 1.0 P, = 9cuB
(Static load)
P
pu:(3+~c—1x+9~§x)c}3 4
u Y50
Very stiff clay 2.0 P, = Sc B
{(Static load) ' : P
. y:3+clx+2i70x)cB 21.1
b u y50
Sand | 3.0 P, T ¥X [B(k ~ka}+ xk_tanotanf + '%ng
{Static load) P p ‘

xkotanﬁ(tan¢ - tanu)J
_ 3 2 -
p, = ¥ [kp + 2K’k tang _ka]B

Note: For notations refer to Tabhle 3.3,
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Table 3.3. Soil parameters for Table 3.2.
Parameter Evaluation
€50 From laboratory triaxial test, or use
= '0.02. for seft clay
=-0.01 for stiff clay
= 0.005 for very stiff clay
(Ax1a1 strain at 0.5 times peak stress dlfference)
s Undrained cohesion indicated. for an unconsolidated,
undrained laboratory test
B Pile width
CY Effective unit soil weight
X Depth from soil surface
¢ Angle of internal friction
= 2 o4 9
kp = tan {(45° + 2)
- 2 o . 9
ka = tan” (45 2)
ko =1 ~ sing
o = % for dense or medium sand
= g for loose sand
o e Q
8 45° + 5
J = 200 for loose sand
= 600 for medium sand
= 1500 for dense sand
Y50 Displacement at one-half ultimate soil reaction

I

2.5 BESO for soft and stiff clay

2.0 BSSO for very stiff clay

1t
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Table 3.4, Parameters for f-z curve.

Case : n fmax kv
H Piles Others
. ' 10£
Clay 1.0 The least of: The lesser of: max
- (Static load) z,
2(d+bf)cu Rgca
2(d+2bf)ca Egcu
2(dcu+bfca)
Sand 1.0 0.02N(2(d+2bf)) 0. 04NE (k1£) 1Ofmax
{Static load) -(klf) & _

@ = Shear stremgth reduction factor (see Fig.'3.6)
¢ = Undrained cohesion of the clay soil

= 97.0N + 114.0 (psf)

e, = Adhesion between soil and pile
= oc {(psf)
N = Average standard penetration blow count
z, = Relative displacement required to develop fmax

= O.alin. {(0.033 ft) for sand
= 0.25 in. (0.021 ft) for clay
2 = Gross perimeter of the pile (ft)
d = Sectioﬁ depth of H pile or diameter of pipe pile (ft).

b, = Flange width of H pile (ft)
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159

5. Parameters for q-z curve.

Case n Upax kq
Clay 1.0 ¢ 1 nax
(Static qase) u ' Ze
Sand’ 1.0 8N (ksf) - D nax
(Static case) cort e
Ncorr = Corrgcted‘staﬁdard penetration test (SPT) blow count at depth
of pile tip

= N (uncorrected) if AN <15

= 15 + 0.5(N-15) if N> 15
¢, = Undrained cohesion of the clay soil

= 97.0N + 114.0 (?gf)
z, = Relative displacement required to dévelop Uax

= 0.4 in. (0.033 ft) for sand

= 0.25 in. (0.021 ft) for clay
N = Average standard penetration blow count
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Table 3.6, Soillproperties and curve parameters for loose sand.

Range of Values

) Typical
Lower Bound Upper Bound Value
Soil Properties:
Blow count, N 4 10 5
Unit weight, y (pef) 90 - 125 : 110
-Angle of friction, ¢ 28° ‘ 30° 30°
P~y Curve Parameters:
n 3.0 3.0 3.0
p, (k1D 0.10x% + 0.22Bx 0.16x> + 0.33Bx 0.14x% + 0.29Bx
for x € 218 for x < 238 for x €238
2.3Bx 4.0Bx 3.5Bx
for x » 21B for x > 23B ‘ for ¥ > 23B
o, (ksf) _ 3% 19x . - 16x
f-z Curve Parameters:
S i.0 ' 1.0 1.0
1£)*
£oax (k1f)* 0.4 1.0 0.5
'kv (kaf)* . 120 300 150
g~z Curve Parameters:
a : 1.0 ' 1.0 1.0
Upay ST . 32 80 | 40
kq (kef} 970G 24,000 12,000

5
These values are for z HP10xX42 pile,

B

pile width (£t).

1

x = depth from scil surface (ft).
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Table 3.7. Boil properties and curve parameters for medium sand.

Rappe of Values

3 .
These values are for a HP10X42 pile.

Typical
Lower Bound Upper Bound Value
Soil Pro?grties:
Blow count, N 10 30 15
| Unit weight, y (pcf) 110 130 120
Angle of frictiom, ¢ 3p° 35° 35°
p-y.Curve Parameters:
n 3.0 ‘ 3.0 3.0
Cp, (K1D) 0.18x% + 0.29Bx 0.33x% + 0.44Bx 0.31x% + 0.41Bx
for x < 18B for x < 218 for x € 21B
3.5Bx. 7.6Bx 7.0Bx
for x > 18B for x > 21B for x > 21B
kh (ksf) 49x ‘ 58x% 53x
f=z Curve Parameters:
n 1.0 ' 1.0 1.0
%*
fmax (k1f) 1.0 3'0. 1.5
kv (ksf)* 300 900 450
g~z Curve Parameters:
n 1.0 1.0 1.0
g, (ksE) 80’ 180 120
kg (keE) 24,000 55,000 36,000




Table 3.8. Seil properties and‘curve-parameters for dense sand.

Range of Values

Typical
Lower Bound Upper Bound Value
Soil Properties:
Blow count, N 30 50 30
. Unit weight, vy (pcf) 110 140 130
Angle of frictiom, ¢ 35 40 40
p-y Curve Parameters:
on 3.0 3.0 3.0
p, (Kif) 0.28% + 0.38Bx 0.35x% + 0.61Bx 0.51x% + 0.57Bx
for x < 21B for x < 27B for x < 27B
6.4Bx 15Bx 14Bx
for x > 21B for x > 27B for x > 278
kh (ksf) 120x 160x 140%
f-z Curve Parameters:
n 1.0 1.0 1.0
fmax (k1f)# 3.0 5.0 3.0
k, (kst)* 900 1500 900
g~z Curve Parameters:
n 1.0 1.0 1.6
Lrax (ks£) - 180 260 180
kq (kef) 55,000 79,000 55,000

%
These values are for a HP10x42 pile.
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Table 3.9. Soil properties and curve parameters for soft clay.

Range of Values

Typical
Lower Bound Upper Bound Value
Soil Propérties:
Blow count, N ' 2 4 ‘ 3
Unit weight, y (pcf) 90 110 100
Undrained cohesion,
ey (psf) . 375 . 750 405
H
p-y Curve Parameters:
n o ' ' 1.0 1.6 1.0
p, (KLf) ‘ '3.4B ox 6.88 or 3.6B or
(se lesser wvalue) 1.1B+0.098x+0.19x 2,3B+0.11Bx+0 . 38x 1.2840.10Bx+0. 20x
(ksf) 67.5 ox 135 or 73 or
{use lesser value) 23+1.8x+3.8%/B 4542.2B47 .5%/8 . 246:42x+4 . 1x/B
f-z Curve Parameters:
i _ 1.0 1.0 1.0
fmax (k1£)* 1.24 2.26 1.34
kv (ksf)% . _ 590 1080 640
q-z Curve Parameters:
n ‘ - ‘ 1.0 ' 1.0 1.0
Q. (ksE) ‘ ' 3.4 6.8 3.6
ke, (kef) ‘ ' 1600 3200 1700

“These values are for a HP10X42 pile.
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Table 3.10. Scil properties and curve parameters for stiff clay,

Range of Values

Typical
Lower Bound Upper Bound Value
Soil Properties:
Blew count, N . 5 17 : 15
Unit weight, y (pef) 115 135 120
Undrained cohesion,
e, (psf) . 1506 3000 1569
p~y Curve Parameters:
n 1.0 1.0 o 1.0
2, (k1f}) ' 148 or 278 or 148 or
(ise lesser value). 4.53+0.}23x+0.75x 9.0B+0.14Bx+1.5x% 4,78+0.128%+0,78x
(kaf) 540 ox 1080 ox 560 or
{use lesser value) 180+4., 6x+30x/B 360+5. 4x+60%/B 190+4.8x+31x/B
f-z Curve Parameters:
n 1.0 1.0 ’ 1.0
| £}
fmax {(k1£) 3.71 3.73 . 3.86
kv (ksf)* . 1770 1780 1850
g~z Curve Parameters:
n ' 1.0 1.0 1.0
yax . {ksf) : 14 27 . 14
kq (kcf} 6400 13,000 6700

E3

These values are for a HP10x42 pile.
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Table 3.11. 'Soil preperties and curve parameters for very stiff clay.

Range of Values

- Typiéal
Lower Bound ‘ Uppexr Bound Value
BSo0il Properties:
Blow count, N 18 50 50
Unit veight, y (pcf) 120 140 130
Undrained cohesion,
R {psf) 3000 6000 5000
p-v Curve Parameters:
n 2.0 2.0 2.0
p. (klf) 27B or 54B ox 458 or
(use lesser value) 9B+0, 12Bx+6x% - 18B+0, 14Bx+12x 158+0. 13Bx+10x
kh;(ksf} : . 1350 orx 2700 or 2250 or
(i#se lesser value 450+6x+300%/B 900+7x+600x/B 750+6. 5x+500x/B
£=2 Curve Parameters:
n. 1.0 1.0 1.0
. ‘
£y (KLE) 3.73 . 7.47 6.22
k, (ksf)* 1780 3560 . " 2960
g-z Curve Parameters:
n _ 1.0 1.0 1.0
Inax (ksf) 27 54 45
ky (kef) 13,600 26,000 21,000

7 —
These values are for a

HP10X42 pile.
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Table 4.1. Soil characteristics.

Avg. Undrained

Pier Site Soil  Total Unit 3 Shear Strﬁngth €50 Depth
No. No. Type Wt.--1lbs/ft l1bs/ft % fr
1 A Sandy 130 5500 0.96 0~9
Clay
(cL -
CH)
2 B Sandy 130 . 4750 0.72 0 ~16
Clay

(cr)
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Table 4:2.  Modulus of elasticity for timber piles.

Test Site Pile Average Modulus of Elasticity, E(ksi)
1 C1-A ‘ 2000
1-B | 2500
2 . . 2-A 1900
| 2-B | 2000%

ok,

W
Assumed, as no calibration test was made on this pile.
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Table 5.1. Soil properties used to check the lateral mechanism (see
Chapter 3 for notation).

Soil Types‘

k

h, Py kv. " ln

(ksi) (k/in) (ksi) (p-v) (£-2)
Very stiff clay 15.6 3.75 20.06 2.0 1.0
Soft clay | 0.5 0.24 4,10 1.0 1.0
1/5 Soft clay 0.1 0.05 0'8?' 1.0 1.0
Dense -sand 0.0840x 0.0104x 3.0 1.0
Loose sand 0.0095x 0.0058x 3.0 1.0
1/5 Loose sand 0.0019x 0.0012x 3.0 1.0




Table 5.2. Tabulated values for the plastic mechanism load VP, the

elastic buckling leoad Vcr’ and the ultimate load from

finite element results Vu'

Soil Types

1/5 soft clay

v v v (k)
P cr u
(k) (k) (finite
: element)
very stiff clay 480. 11352 534
e = 1" . soft clay 480. 2036 47?
- (see Fig. 5.12(a)) ‘ _ '
: 1/5 soft clay 480. 909 350
very stiff clay 384, 11352 446
soft clay 384. 2036 396
e = 2" 1/5 soft clay 384. 309 285
(Fig. 5.12(a))
dense sand 384. 5260 441
loose smand 384, 2201 415
1/5 loose sand 384, 1156 373
e = 2" very stiff clay 384. 18787 478
(w/vertical .
springs) soft clay 384. 3370 421
(Fig. 5.12(b))
384. 320
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Table 5.3. Tabulated values for the plastic mechanism load Vp, the

elastic buckling load V__, and the uitimate load V. for
. A cr u
combined loading.

Soil Types o or Vu(k)
(k) (k) (finite
: ‘element)
very stiff clay 539. 11352 580
Ah = 1 in. soft clay 539. 2036 537
(see Fig. 5.25) ' '
‘ 1/5 soft clay 539. 509 437
very stiff clay 480. 11352 564
soft clay 480. 2036 483
Ah = 2 in. 1/5 soft clay 480. 909 357
(see Fig. 5.25)
dense sand 480. 5260 590
loose sand 480 . 2201 548
1/5 loose sand 480, 1156 485
= 2 in. very stiff clay 539. 14190 602
(see Fig. 5.25 '
w/fixed soft clay 539. 2545 538
pile head) ‘
1/5 soft clay 539. 1136 458
= 2 in. very stiff clay 480. 18787 740
{(#/vertical
springs, no soft clay 480, 3370 584
support at
pile tip) 1/5 soft clay 480. 1504 500
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Table 6.1. Material properties of timber and concrete piles.

Piles ” Modulus of Elasticity Yield Stress
ksi T ki
Douglas fir timber pile | 2000 7.5

Concrete pile : 4300 4.0
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12. FIGURES
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2000

1500

1000

500

EFFECTIVE STRUCTURE LENGTH (FEET)

0 1 | | l |
0 4 8 12 16 20 24
MOVEMENT REQUIRED (INCHES)

 Fig. 2.1. . Effective structure length versus movement required
for cold climate conditions.
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APPROACH SLAB | 14" MIN,

Fig. 2.2.

BEARING

AREA

Approach slab

ANCHORING

detail (FHWA).
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PsF.q |

¥z

Fig. 3.1. Typical soil resistanceﬂdispiacement‘curve,

e b — e e

[

y

Fig. 3.2. Typical p-y curve with Ramberg-0sgood constants.
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1.0+ L ,- — s
: i //:,f”' i
/j/ //'
S o7
0.8} ,.,// I —
4 / et s
Q-: 1 / . . /// -
= 0° yo
/,./ n = e
‘ . w1 = 10
0.4} /.-/ ——
/" ——a— } = 3
/" i ]S 1
0.2r
4
6.0 ‘ ] I I i | i i L.
- 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
| | ¥y, |

Fig. 3.3. Nondimensional form of the modified Ramberg-Osgood equation.
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Py o

INITIAL
LOADING CURVE

Fig. 3.4. Hysteresis loops in accordance with modified Ramberg-Osgood
cyeclic model with n = 1.0,
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- 3

(0,55)  (oistdseinn?)

PATH 1
PATH 2
(Ui+1j’€é+1j)
{oc,i+5¢, )
: il

PATH 1: {Qc’i+i T e,
Oc,i+1 ¥ Yc,i

PATH 2: {Ec,'i+1 = €4
%,i+1 T i

" Fig. 3.5. The determination of reversal values for loading and
unloading.
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1.00
0.75f¢~

0.501

0.25p~

AVERAGE CURVE FOR
CONCRETE AND
TIMBER PILES

AVERAGE CURVE
FOR STEEL PILES

4 L | L

O.OqLO

0.5 1.0 1.5 2.0 2.5 3.0
cy (ksf)

Figure 3.6. Reduction factor o [3.11].
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»- Y

N
~M“*Nf§ Pe CTIOS
“Mugmﬁg.
- VERTICAL SPRING
“vaﬁfg
*nmh\§§

2

b ]

T

LATERAL SPRING —_—"1" |

IN.Z DIRECTION gf"

POINT SPRING /%,

]

N\

X

Fig. 4.1. A combination of a one~dimensional idealization for the

piles‘and‘an equivalent nonlinear spring idealization for
the soil.
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gt

LAGRANGIAN COORD.

Fig. 4.2. Nonlinear finite element analysis approaches: (a) Eulerian approach; (b)
Lagrangian approach, (c¢) updated Lagrangian approach.
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Fig. 4.3. .Ceordinate systems and nomenclature.
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7 |
Fig. 4.4.(a). Three-dimensional beam-column element, global degrees
of freedom. ‘ . ‘

-

z
Fig. 4.4.(b). Three-dimensional beam-column element, element
(local) degrees of freedom.



Fig. 4.5.

Three-dimensional beam—column element before and after being deformed.

81
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Fig. 4.6 (a). Element layering for two-dimensional analysis.
(b). Element layering for three-dimensional analysis.
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(trat
> [(CONVECTIVE)

y ‘
8 ot |
* (UPDATED)

JtHat

Fig. 4.7. The rate of change of the‘transformation matrix with
respect to the nodal displacements {d}.
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IMAGINARY
RIGID LINKAGE

Fig. 4.8. The coordinate updating of K node in three-dimensional
beam-column element.
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Fig. 4.9. External and internal forces and dis@lacements acting
: on the pile element.
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LATERAL SPRINGS

IN y AND z DIRECTI:Q,,H”S;;

“,,/’

(b)

Fig. 4.10 {(a). Idealized backwall soil model in integral
bridge abutments. -
(b). p-v curve for backwall soil model in
element y direction.
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( INCREMENTAL
LOAD)

|—Ad-—>] (INCREMENTAL DISPLACEMENT) .

Fig. 4.11, Piecewise linear solution for a single degree-of-freedom
system.
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J
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T | AF 5
3 T
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J— - ‘l’; /
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fJ | d,D
F
Y -d
dj Fm-—Adjlah+ngfé

Fig. 4.12. <Characteristics of Newton-Raphson iteration in a simple
' one-degree-of~freedom.



193

F
'y
KT3
Fsx1
! » l AFj3
FJ / o AFij T
For 1KT 4
J KTl .
‘ AFjl
Fyk L
AFj
a3
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D Dl .2 =D
J i Y

Fig. 4.13. Increment-iteration or mixed procedure in a multi-degree-
‘ of-freedom structure (Newton-Raphson solution of the
equation F = £{(D}).
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Fig. 4.14. Large deflection analysis of shallow arch under concentrated
ipad.
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Y
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FIXED END——y _ R = 100.0 IN.
I ; 7 X v = 0.0
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by
z |
Z“ . Ilii
} 1" ! '
0.6 BEAM CROSS-SECTION
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Fig. 4.15. Three-diméensional large deflection analysis of a 450
' circular bend.
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Fig. 4.16. Deformed configuration of a 45° circular bend.
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Fig., 4.17.

SOIL PROPERTIES:
p-y CURVE -
kyt = kzt = 8.333 KS1
n=3.0
Py = 16.666 KPI

HP14x73 pile used to check soil response.



198

Py =lPZ'='1000 KIPS 12,04

+ CYCLIC LOADS: 0.0 KIPS
- - 1000.0 KIPS
~-1000.0 KIPS

1000.0 KIPS

2.0
Y,Z, IN.

-12.0p—

p, KPI

Fig. 4.18. Soil response for cyclic loads in Y, Z directions.



YZ
CYCLIC LOADS:
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0.0 KIPS
1000.0 KIPS

1000.0 KIPS

Fig.
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Fig. 4. 24, Relationship between tip movement and load.
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Fig. 4.28. Load~deflection curve for piles 1-A and 1-B.
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Fig. 4.29. Load~deflection curve for piles 2-A and 2-B.
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Fig. 53.2. Axial load-displacement curve for the design model.
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Fig. 5.3. (a) Vertical load on the pile is carried by skin

friction and end bearing, (b) Element of pile under
axial loading.
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Fig. 5.5. Example illustrating lateral mechanism: (a) schematic
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Fig. 5.5. Example illustrating lateral mechanism (con't): (d)
load-displacement curves for each case, (e) load-
displacement curves for the pile.
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Fig. 5.6. Design model used for calculating the elastic buckling
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vertlcal lead transfer, {e) variation of axial load
with depth. HNote: lateral soil support is not shown.
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Fig. 5.7. Nondimensional buckling coefficient versus length
for constant ¥k, [5.5] (see Fig. 5.9 for boundary
conditions).
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223

)
ol
%

o oo o smem a
. ety o
-

. . \
(a) ' (b) (e} (d) -

Fig. 5.9. Boundary conditions for elastic buckling load Vers

For all cases the lower boundary condition is
pinned. The upper boundary condition for each case is

(2) free, (b) pinned, (c¢) fixed, no translation,
A{d) fixed, translating.
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Fig. 5.10. Effect of skin friction on the buckling load for (a)
constant lateral soll stiffness, (b) linearly varying

lateral soil stiffness [5.6, 5.7] (see Fig. 5.9 for boundary
conditions).
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Fig. 5.12. Diagram of pile configurations used to illustrate
' the lateral mechanism.
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Fig. 53.14. Comparison of Rankine equation and finite element -
results for wvarious soils.
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Fig. 5.21. Load-displacement curves representing (a) soil and
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' mode for a fixed-headed pile (constant py).
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Fig. 5.24. Load-displacement curve representing the soil failure
mode for a fixed-headed pile (linearly varying p,).
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Fig. 5.25. Example of a pile‘with a lateral displacement and
vertical load at the pile head.
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‘Fig. 5.26. Comparison of elastic buckling loads for piles with
different A values.
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Fig. 5.28. Comparison of Rankine equation and finite element
results.
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Fig. 6.1. Pile deflected shapes (a) after a specified displacement
Ay, (solid line), (b) applied vertical load V in case (a)
(dashed line).
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Fig. 6.2. Vertical load-«settlement curves with specified lateral displace-
ments, Ah (0, 1, 2, 3, 4 in.) for very stiff clay (friction pile).
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Fig. 6.6(a). Nondimensional forms of ultimate vertical load ratio
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soils (end-bearing pile).
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Fig. 6.7(b). Idealized moment-curvature relation and path for
cyclic model.
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Fig. 6.17. Free body diagram of the concrete beam and abutment.
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Fig. 6.18. Pile orientations in the integral abutment on
skewed bridge.
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Fig. 6.21. Load-settlement curve for soft clay, stiff clay, and very
stiff clay (end-bearing piles with fixed pile heads bending
about strong axis).
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Fig. 6.25. Load-settlement curve for all pile orientations.






