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INTRODUCTION 

The greater part of the state of Iowa is covered by a surficial 

bianket of geologically young glacial drift and loess. Consolidated 

materials suitable for use as coarse aggregate for road building purposes 

are not, therefore, easily obtainable • 

For several years the Iowa Engineering Experiment Station has 

conducted research aimed at developing ways of stabilizing the surficial 

blanket materials and making suitable low-cost roads from them. The 

glacial drift and loess deposits were investigated first because of their 

greater aerial extent. Preliminary stages of this investigation have 

been completed for most areas of the state, and this investigation has 

been directed toward the materials of fluvial origin underlying the 

flood plains of the rivers of Iowa. 

The present study differs from previous studies in many aspects. 

The physical properties to be determined remain the same; but methods 

of classifying, mapping and sampling alluvial deposits had to be developed. 

Unlike glacial drift or loess deposits which may vary little or predictably 

both with depth or horizontally, deposits produced by fluviatile action 

are complexly interwoven and extremely variable both horizontally and 

vertically, especially in the upper few tens of feet, Another contrast 

between this and previous studies is the nature and rapidity of trans­

formations which may act to fundamentally change an alluvial deposit. 

A stream such as the Missouri River is a dynamic agent and is constantly 

·cutting on the concave banks of bends and scouring its channel bed while 

actively depositing on convex banks and during floods. 
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The primary purposes of this investigation are: 

1) To delineate flood plain deposits with different geologic 

and engineering properties. 

2) To provide basic data necessary for any attempt at stabilizing 

flood plain deposits • 

Iha alluvial valley of the N•issouri River adjacent to Iowa was chosen 

as the logical place to begin this study. The river forms the western 

boundary of the state for an airline distance of approximately 139 miles; 

and the flood plain varies from a maximum width of approximately 18 miles 

(Plates 2 and 3, Sheets 75 and 75L) to approximately 4 miles near Crescent, 

Iowa (Plate 8, Sheet 66). The area studied includes parts of Woodbury, 

Monona, Harrison, Pottawattamie, Mills, and Fremont counties in Iowa and 

parts of Dakota, Thurston, Burt, Washington, Douglas, Sarpy, Cass and 

Otoe counties in Nebraska. Plate l is an index map of the area under 

consideration. 

LITERATURE REVIEW 

Streams 

During the past thirty years many major revisions have been made 

in what had been considered substantiated ideas of stream processes, 

landform development and sedimentation. Only in recent years, however, 

have ideas been advanced to explain the origin and development of flood 

plains and various other alluvial valley features. Those publications 

on the phases of stream action necessary for a better understanding of 

the nature and processes of stream erosion and deposition will be 
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discussed. For basic background on stream activity, the interested reader 

is referred to various papers by Gilbert (14), Hjulstrom (16) and Rubey (24). 

During the latter half of the 19th Century and early 20th Century, 

an American School of Geomorphology evolved and developed many of the 

early concepts of stream action which have remained little changed until 

the present time. 

The first of these concepts was proposed by Powell (23) in 1875 and 

augmented by Dutton (8) in 1882. Powell introduced the idea of a limiting 

level of land reduction which he called "base level", defined as being 

a level below which lands cannot be eroded by subaerial processes. Powell's 

original statement is not clear as to whether he envisioned two or three 

types of base level. He defined sea level as the grand or ultimate 

level of land reduction but considered also "for local and temporary 

purposes, other base levels of erosion which are the levels of the beds 

of the principal streams which carry away the products of erosion". 

Under this concept, the level to which the Missouri River could erode is 

the level of the Mississippi River at the point where the Missouri enters 

the Mississippi. The Mississippi is, in turn, controlled by the level 

of the Gulf of Mexico. Local or temporary base levels could exist 

on both streams where they cross such features as hard-rock barriers 

or enter lakes. 

The second fundamental concept to come from this early American 

School of Geomorphology was the concept of the graded stream. Davis (7), 

in 1894, building on the ideas of Gilbert (13), suggested that "a stream 

in the condition of balance between degrading and aggrading might be 

called a graded stream". Kesseli (17) in 1941, questioned the validity 
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Plate 1. Index map Missouri River Valley adjacent to Iowa. 
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and usefulness of the concept of grade and suggested that it should 

mean only a stream characterized by an absence of rapids and waterfalls. 

Mackin (22), in 1948, restated and clarified the concept in the following 

form: 

A graded stream is one in which, over a period of years, 
slope is delicately adjusted to provide, with available dis­
charge and with prevailing channel characteristics, just the 
velocity required for the transportation of the load supplied 
from the drainage basin. The graded stream is a system in 
equilibrium; its diagnostic characteristic is that any change 
in any of the controlling factors will cause a displacement of 
the equilibrium in a direction that will tend to absorb the 
effect of the change. 

Straub (31), in 1935, discussing the influence of bed load of 

tributary streams upon the regimen of the Missouri River, noted the 

change in slope of the Missouri caused by the entrance of the Platte 

River with its heavy sand and gravel bed load. Whipple (34), in 1942, 

calculated the mean low water slope of the Missouri for a 31 mile 

segment above the mouth of the Platte River and compared this with the 

mean slope of a 44 mile segment below the mouth of the Platte. He noted 

an increase of .5 foot per mile in the lower segment. Mackin (22) 

ascribes this type of change to the ability of a graded stream to 

accomodate itself to the transportation of increased load supplied at 

any point, usually by an increase in slope. This increase in slope is 

not only necessary in order to transport the load supplied ,but also 

to compensate for the loss of efficiency to transport due to the change 

in the regimen which the ~dssouri undergoes below the mouth of the 

Platte. 

In 1899, Davis (5) introduced the concept of the "geographical 

cycle" in discussing the evolution of land forms. Lobeck (21) later 
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discussed this same cyclic sequence under the more appropriate heading 

of the "geomorphic cycle". 

Davis (6), in 1909, published a series of essays in which he traced 

the evolution of a landscape through three stages which he termed "youth, 

maturity and old age". During each of these stages, stream valleys and 

streams themselves have particular features which are indicative of the 

progress in regional landscape evolution. Davis' work led to a systematic· 

classification of landscapes and to the development of a genetic method 

of land form description. 

Alluvial MLrphology 

Alluvial land form ori$in and description, however, was largely 

neglected in these early papers. The origin of broad flats of very 

low relief (flood plains) extending sometimes many miles from the river 

and bounded by valley escarpments was formerly attributed by Gilbert (13~ 

and Davis (6) to lateral corrasion during maturity and old age when 

the stream no longer possessed the energy to cut downward. Fenneman (9) 

considered the alluvium under flood plains to represent only a thin 

veneer resting on a laterally planed bed-reek surface. 

During the late 1930's and early 1940's the first concentrated attempt 

to describe and classify alluvial land forms was initiated with the investi­

gation of the alluvial valley of the lower Mississippi River. Many of 

the techniques and concepts developed in that investigation were adopted 

or used with little modification during the present study. 

In 1938 9 Fisk (12), from detailed borings in the alluvial valley 

of the lower Mississippi, found that the valley fill was many times 
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deeper than the present maximum depth of scour. He also found that the 

bedrock surface beneath the alluvium, far from being level, exhibited 

considerable topographic complexity. Fisk attributed the uneven bedrock 

topography to a preceding stage of slow valley cutting during a period 

of lower sea level accompanying glacial advance. This was followed by 

relatively rapid alluviation during deglaciation and rising sea level 

until grade was reached and the modern flood plain surface formed. 

Leighton and Willman (19), however, suggest exactly the opposite sequence 

of events, i.e., alluviation during lowering sea level and valley cutting 

during rising sea level. Fisk (11), using terminology employed by 

Russell and Howe (28), described the process by which the deep fill of 

alluvium accumulated as being the result of "alluvial drowning0
• 

Although this manner of origin for a major alluvial fill such as 

that of the lower Mississippi seems valid, considerable controversy 

exists as to the controlling force(s) of stream erosion and deposition 

on streams farther from the sea. Thornbury (33) suggests that the upper 

part of a pro-glacial stream may be subject to erosion during rising 

sea level accompanying glacial retreat and deposition during accumulation 

of glacial ice and concordant lowering of sea level. 

Two classifications of alluvial deposits merit discussion. Happ 

~ .21.· (15), in 1940, introduced a classification based on particle 

size and manner of origin. They recognized slx types of materials 

which may accumulate on the flood plain of an alluvial stream. These 

were: 1) channel fill deposits, which are primarily bed load materials; 
• 

2) vertical accretion deposits, composed of suspended load materials; 

3) flood plain splays, a term applied to materials left on the flood 

I 
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plain by floods; 4) deposits of lateral accretion, or materials deposited 

along the insides of stream bends; 5) lag deposits, or coarse materials 

left by sorting in the stream channel; and 6) colluvial deposits, con­

sisting of the products of slope wash and downslope movement under the 

influence of gravity. 

Fisk (11) subdivides the alluvial section in the lower Mississippi 

Valley into graveliferous deposits and nongraveliferous deposits. The 

graveliferous deposits are concentrated at the base of alluvial fill 

and progressively grade upward into finer sands, silts and clays of the 

nongraveliferous unit. Fisk (10), in a discussion of the upper fine­

grained alluvial deposits, further subdivides this unit into those of 

the meander belt region and those of the backswamp or "flood basin" 

region. Each of these natural subdivisions can be separated from the 

others on the basis of geomorphic and/or sediment analysis. Those of 

the meander belt region are further subdivided into point bar deposits, 

abandoned channel fills, and natural levee deposits. These natural 

subdivisions form the basis of the classification adopted for use in the 

present study. The methods and techniques used to outline particular 

deposits are primarily geomorphic in nature; and their application 

requires the use of large scale, small contour interval, topographic 

maps and aerial photographs. The final verification of the exact 

mechanical composition of most alluvial deposits depends, however, on 

field sampling, the control of which should rest on prior study of 

topographic maps and aerial photos if the maximum desired information is 

to be obtained. 
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The correct evaluation of alluvial geomorphic features and their 

corresponding deposits rests on a basic understanding of stream processes. 

Many of the broader concepts have been introduced in the works of Fisk, 

previously discussed. Russell (25, 26, 28), in a series of papers dealing 

with alluvial morphology, discusses in some detail the various controlling 

forces which act to determine whether a stream meanders or braids. 

In recent years, the United States Geological Survey has published 

a series of Professional Papers presenting analytical relationships 

between various controlling factors responsible for stream development. 

Leopold and Wolman (20), in 1957, concluded that different channel 

patterns observed in nature result from the adjustment of several 

variables toward the establishemnt of a quasi-equilibrium in the channel. 

Braiding was found to be one of the many channel forms adopted by streams 

in an attempt to reach quasi-equilibrium and does not necessarily indicate 

an excess of total load. They found that the mechanics which may lead 

to meandering operate in straight channels and that: 

There is a continuum of natural stream channels having dif­
ferent characteristics that are reflected in combinations of 
values of the hydraulic factors. 

Wolman and Leopold (35), in 1957, concluded that overbank deposits 

are relatively insignificant in the total quantity of material underlying 

a flood plain. They suggest that the reasons for the relatively small 

quantity of overbank deposits are related to the high velocities which 

may occur in overbank flow and to the fact that the highest concentration 

of materials being carried by the stream does not necessarily correspond 

to the overflow stage during a particular flood. 
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Engineering Geology 

The engineering classification of soils used in this report is the 

revised Public Roads System or Highway Research Board System as adopted 

by the American Association of State Highway Officials (1) (A.A.S.H.O 

Designation: ~145-49). Unless otherwise indicated, the particle size 

classification used is that of the American Society for Testing Materials 

(2) (A •. S.T.M. Designation: D422-54T) and the American Association of 

State Highway Officials (1) (A.A.S.H.O. Designation: Ml46-49). The 

grade limits used by these two classifications are sand 0.074 to 2 mm. 

diameter, silt 0.005 to 0.074 IT".m. diameter, and clay less than 

0.005 mm diameter. 

Additional information as to the engineering classification of · : 

alluvial soils may be found in the Soil Survey of ~11onona County, Iowa (29). 

GEOMORPHOLCGY 

General Description of the Missouri River Basin 

The Missouri River Basin comprises an area of approximately 

529,000 square miles (31). Situated between the meridians 90°W and 

114°W and the parallels 37°N and 50°N, the basin is a diamond or 

lens-shaped area having a length of approximately 1400 miles in a north­

westerly direction and a breadth of about 680 miles. Figure 1 is an 

index map of the Missouri River Basin. 
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The basin is bounded on the west by the Continental Divide, on the 

north by a Canadian divide separating it from the Hudson Bay drainage, 

on the east by a low divide separating Missouri and Mississippi drainage, 

and on the south by the Ozark Uplift and an east-west ridge across central 

Kansas. 

The upper Missouri River Basin lies in the Rocky Mountain System 

physiographic division whereas the middle and lower portions of the basin 

are in the Interior Plains and Interior Highlands divisions. The seg­

ment of the Missouri River Basin which is of importance to the present 

study ·lies entirely within the Central Lowland province of the Interior 

Lowlands division. 

The principal and longest tributaries of the Missouri enter chiefly 

from the right. Streams entering from the left are relatively short and 

drain only about one-quarter of the total drainage area of the Basin. 

Topographically, the Missouri River Basin is an asymmetrical trough with 

the west limb extending much farther away from the main stem and rising 

to a much higher elevation than the east limb. 

Missouri River 

The Missouri River is the longest river in the United States and 

the principal stream of the Missouri River Basin. Beginning at the 

junction of the Jefferson, Madison and Gallatin Rivers at Three Forks, 

Montana, the Missouri flows 2,546 miles (31) to its confluence with the 

Mississippi near St. Louis, Missouri. From the head of the river to 

the mouth, the Missouri River drops 3,627 feet, giving it an unusually 

high average gradient for so large a stream. Table 1 (modified from 



Figure 1. Index map, Missouri River Basin. 
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Table 1. Missouri River low water slope data.* 

Locality 

Head of River 

Head of "Long Pool" 

Great Falls (foot of 
"Long Pool" ) 

Foot of "The Great Falls" 

Portage Coulee 

Fort Benton, Montana 

Foot of "Cow Island" 

Williston, North Dakota 

Bismarck, North Dakota 

Bad River, Fort Pierre, S.D. 

Chamberlain, South Dakota 

Running Water, South Dakota 

Sioux City, Iowa 

Plattsmouth, Nebraska 

Nebraska City, Nebraska 

Rulo, Nebraska 

Kansas City, Missouri 

Boonville, Missouri 

Hermann, Missouri 

St. Charles, Missouri 

Mouth of River 

Elevation 

4,026.0 

3,333.6 

3,311.6 

2,898.8 

2,758.8 

2,615.8 

2,282.0 

1,828.0 

1,621.5 

1,414.2 

1,324.5 

1,202.8 

1,000.6 

941.9 

910.0 

841.7 

720.2 

568.9 

484.9 

421.9 

398.5 

* Modified from Straub (31, p. 734.) 

Slope in 
feet 

per mile 

4.27 

0.44 

4.81 

2.57 

1.04 

0.76 

0.75 

0.85 

0.94 

0.94 

0 •. 00 

1.23 

0.97 

.0.83 

0.82 

0.82 

0.84 

0.84 
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Str2ub, p. 734) contains low water slope data for selected reaches from 

the head of the river to the mouth. The high gradient and nature of 

the drainage basin coupled with a relatively high velocity of flow, cal­

culated by Suter (32) as being 2 to 3 miles per hour during low stage 

and 10 miles or greater during flood, allows the Missouri River to carry 

the tremendous load which has earnt~d it the title "Big Muddy". 

Above the Milk River (1,866 miles above the mouth), the Missouri 

has an average gradient of 2.6 feet per mile and is considered to be 

a stable nonalluviating river (31). From the Milk River and to the 

mouth of the Missouri, the average gradient is 0.88 feet per mile; and 

the Missouri assumes the characteristics of an alluvial stream. At 

Sioux City, Iowa, the average annual sediment load is 140,000,000 tons 

(4). From Sioux City to the mouth, the annual sediment load increases 

to about 270,000,000 tons. The average annual discharge increases from 

about 22 million acre feet at Sioux City to 52 million acre feet at · 

the mouth, and the average sediment concentration in grams per liter 

(parts per thousand by weight) decreases from 4.7 to 3.8. Suter (32), 

in 1881, calculated the minimum total sediment carried in susp~nsion 

past St. Charles, Missouri, during 1879 as being 5,508~229,008 ~ubic 

feet, enough to annually cover a square mile area to a depth of almost 

200 feet. He concluded that the total sediment in transport would 

approximately double both figures. 

From Sioux City to the mouth, the sediment load consists of 20 

to 30 percent fine sand and 70 to 60 percent silt and clay according 

to the American Geophysical Union size classification (4). Of the 

finer fraction, 20 to 30 percent is clay sized material. The median 
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particle diameter of the sand in transport is O.l millimeter, and the 

bulk of the total load is composed of quartz. 

The Missouri River follows an alternating series of east to south­

east trends along the course of its flow toward the Mississippi. The 

general trend of east to southeast flow is broken in the uppermost 

reaches of the river where the stream follows a general northward trend. 

Through Montana and to the margin of the mid-continent glaciated area 

in North Dakota, the river flows almost due east. From this point to 

40 miles west of Yankton, South Dakota, the river flows southeast, 

paralleling the margin of the interior glaciated region. The Missouri 

then continues eastward to near Sioux City, Iowa. At Sioux City the 

Missouri again makes a near right-angle bend and flows southeastward 

across the dissected till plains of the Central Lowlands. From Kansas 

City, Missouri, the ri~er flows almost due east to its junction with 

the Mississippi. 

The Missouri River flows in a deep valley cut below the general 

level of the surrounding country. It begins in an area underlain by 

Miocene rocks and successively cuts through Pre-Cambrian, Cretaceous, 

Tertary and Cretaceous rocks to a point near Onawa, Iowa. From this 

point to its junction with the Mississippi, the Missouri crosses rocks 

of Pennsylvanian, Mississippian, and Ordovician age. Straub (31), from 

analysis of the stratiqraphy and structure of the basin, concludes that 

it is generally of synclinal nature. 

Glacial drift, loess, or bedrock may be found forming the valley walls 

along the reach of the Missouri River adjacent to Iowa. Where drift or 



16 

loess forms the bluffs, the valley is conspicuously wider than where 

bedrock is present. In the northern part of the\8lley, Sargent Bluff 
3 

(Plate,z; Sheet 75L) is a prominent salient underlain by bedrock. From 

Sargent Bluff southward to Loveland, Iowa (Sheet 67L), the valley widens 

and glacial drift or loess forms the adjacent bluffs. The marked narrow-

ing of the alluvial valley from Loveland to near Thurman, Iowa (Sheet 61), 

is accompanied by a gradual rise in bedrock from near flood plain level 

to a maximum of 90 feet above flood plain level (elevations determined 

by hand leveling and aneroid) near Plattsmouth, Nebraska (Plate 9, Sheet 

62). South of Plattsmouth bedrock elevation decreases, until south of 

Thurman, Iowa, glacial drift or loess forms the bluffs; and the valley 

widens. 

The width of the valley and general configuration of the valley 

walls are apparently controlled primarily by regional or local structural 

trends modified by stream activity. As a general rule, it would seem 

that extreme valley width is correlated with the existence of drift or 

loess bluffs. Whether the drift or loess deposition was controlled by 

structure or pre-depositional topography is not known. The general 

narrowness of the valley and straightness of the bluff line except for 

very sharp reentrants from Loveland, Iowa, to Thurman, Iowa, may be 

related to the reported existence of subdued structural trends of which 

the Thruman-Wilson anticline is an example (3). 

Evidence that the Missouri River modified the bluff outline can 

be seen on Plate 10, Sheet 60, where the present course of the river has 

impinged against the west bluff. Similar reentrants may be found all 

up and down the length of the alluvial valley. Many of these reentrants 
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have a radius of curvature similar to that of the modern river but are 

many miles from it. This and the large number of faceted spurs indicates 

that the Missouri River has flowed, at one time or another, over the 

entire flood plain. 

Tributary streams may also modify the bluff line by cutting reentrants 

on a·much smaller scale. This is well illustrated on Plate 5, Sheet 72L, 

where both the Little Sioux and Maple Rivers have cut into the bluffs. 

Another factor in modifying the bluff outline is the building of 

alluvial fans by the miriad of small tributaries issuing from the 

adjacent, badly disected, easily eroded uplands. Figure 2 is a longi­

tudinal cross-section of the valley and fan of Arcola Creek (Plate 5, 

Sheet 72L). The slope of the fan was calculated to be about 70 feet 

per mile, and anarcuatearea with a radius of approximately one~half 

mile is covered by fan deposit. Holes 56, 57, and 58 were bored into 

the fan, did not penetrate the maximum thickness of fan deposit; but 

in Hole 57, farther down the slope of the fan, material identified as 

being of flood plain origin was penetrated at the elevation of the sur­

rounding flood plain. Hole 58 was bored off the margin of the fan and 

was in flood plain material. 

The segment of the Missouri Valley from Yankton, South Dakota 

(Sheet 83), to Rulo, Nebraska (Sheet 54), includes the area studied 

during the present investigation. The river in this segment and between 

here and the mouth flows on an alluvial fill calculated by Suter to vary 

from 70 feet to over 100 feet thick. In no place does the river touch 

bedrock except where it has cut against valley walls. 

0 



Figure 2. Longitudinal cross-section of Arcola Creek fan. 
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Table 2 and Figure 3 contain data on the low water slope, flood 

plain gradient and sinuosity ratio for seven reaches of the Missouri 

River between Yankton and Rulo. These data are significant in portraying 

the general nature the modern Missouri River and changes in it since 

1890. 

During this interval of time, the Missouri has decreased in length 

by a little over 63 miles. This has resulted from a combination of natural 

processes and artifical cut-offs to improve navigation. A stream may 

shorten its length by either a chute-type or neck-type cut-off. In the 

first, the stream enlarges a swale of its point bar during flood and remains 

in this swale during lower stages because of the gradient advantage gained. 

In the second or neck-type cut-off, the downstream arm of a meander loop 

is prevented from migrating as fast as the upstream arm, and the inter­

vening neck becomes breached. The neck-type appears to be the more common 

cut-off in older river courses whereas modern cut-offs are more commonly 

of the chute type. Hole 10, Plate 3, Sheet 75L, is bored into the channel 

fill associated with a neck-type cut-off whereas Blue Lake, Plate 4, Sheet 

72, is an example of the chute type cut-off. 

The sinuosity of a reach is the ratio of thalweg length to valley 

length and is used as an index indicating the type of channel pattern 

associ2ted with a particular reach of a stream. Reaches with a sinuosity 

greater than or equal to 1.5 are designated ·as meandering, less than 1.5, 

straight, and braided when the flow is divided around relatively stable 

islands. 

Comparison of 1890 and 1946 sinuosities reveals some important dif­

ferences between the present stream and the unmodified one. In all 



Figure 3. Slope profiles of the Missouri Valley 
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Table 2. Missouri River low water slope, flood plain gradient and. sinuosity ratioQ 

Location River miles Sinuosity Floodpplain Stream slope 
ratio gradient 1946 mileage 

From To 1890 1946 1890 1946 feet elevation feet 
per mile per mile ____ ... 

Yankton, s. D. Sioux City, Ia. 92.0 85.9 1.53 1.43 1.31 .94 

Sioux City, Ia. Onawa, Ia. 66.0 ~5.8 1.91 1.33 1.36 .98 

Sioux City, Ia. Crescent City, Ia. 135.0 116.8 1.61 1.42 1.30 .88 

Onawa, Ia. Crescent City, Ia. 71.0 71.0 1.49 1.44 1.26 .82 

Crescent City, Ia. Plattsmouth, Neb. 32.0 29.0 1.45 1.32 1.27 .58 I\) ...... 

Plattsmouth, Neb. Hamburg, Ia. 43.0 43.0 1.28 1.28 1.49 1.24 

Hamburg, Ia. Rulo, Neb. 66.0 60.0 1.48 1.:11 .Lil .L..91 

515.0 451.5 1.56 1.39 1.35 .82 
total total avg. avg. avg. avg. 

·--·.-,.w--
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instances, the 1890 sinuosity ratio is greater than or equal to the 1946 

ratio. In 1890 all reaches, with the exception of the one immediately 

below the Platte River, had a sinuosity greater than or equal to 1.5 and 

so could be called meandering. The most sinuous reach in 1890 was between 

Sioux City and Onawa, Iowa, whereas in 1946, it was between Onawa and 

Crescent City, Iowa. The apparent anomaly can probably be explained 

by the degree to which both reaches were altered to improve navigation. 

Mileages and elevations of 1946 were used in calculating flood 

plain gradients and water surface slopes. The increase in both flood 

plain gradient and stream slope below Sioux City and Plattsmouth can be 

attri~1ted to the entrance of the Big Sioux and Floyd Rivers at Sioux 

City and of the Platte at Plattsmouth. In general, there is a direct 

relationship between flood plain gradient and stream gradient. In the 

segment above Plattsmouth, however, the general relationship is reversed. 

The flood plain gradient increases slightly whereas the stream gradient 

continues to decrease. This relationship may be attributed to sedimenta­

tion in the channel of the lviissouri due to the "darruning" influence of 

the Platte. 

The important tributaries of the Missouri River from Yankton,to 

Rulo are the Jamest Big Sioux, Floyd, Little Sioux Maple, Soldier, Boyer 

and Nishnabotna Rivers from the left bank and the Platte River from the 

right. The James River, which is one of the longest left bank tributaries 

of the Missouri, has a very low average gradient (0.6 feet per mile) and 

adds little to the total load of the Missouri. The Big Sioux River, with 

an average gradient of 1.6 feet per mile, adds a significant quantity 

of sand as well as silt and clay to the Missouri. The remaining left 
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bank tributaries have average gradients ranging from 1.6 feet per mile 

for the Little Sioux to 4.5 feet per mile for the Nishnabotna. The 

load of these streams consists principally of silt and clay derived from 

the surrounding loess covered hills. The total overall effect of the 

left bank tributaries does not significantly alter the Missouri. 

One unique feature of the tributaries south of the Big Sioux is 

their parallelism. All flow in a general southwesterly direction and 

enter the Missouri Valley at an angle 25 to 30 degrees east of north. 

The prevalence of this particular trend might indicate bedrock control 

of these streams. 

The Platte River, with a drainage basin over 900 miles long and an 

average gradient of 7.1 feet per mile, enters the Missouri River about 

25 miles south of Omaha, Nebraska. The bed load of the Platte and con­

centration (per unit volume of water) of the suspended load are near 

or equal to that of the Missouri at Omaha. The influences of the 

heavy load of the Platte is twofold. The increase in slope of the 

Missouri has already been discussed. The second prominent change is in 

the regimen of the Missouri. Above the mouth of the Platte, the Missouri 

is a typical meandering stream with many bends and flow confined to one 

channel. The Missouri below Plattsmouth has a broad, irregular, sandy 

channel obstructed by many bars and relatively fewer bends. These 

features, including the steeper slope, indicate a regimen intermediate 

between meandering and braided for the river. Figures 4 and 5 illustrate 

1eaches of the river above and below the mouth of the Platte. 

~-~ --------



Figure 4. Aerial mosiac of the Missouri River and flood plain 
area above the mouth of the Platte River. 





Figure 5. Aerial mosiac of the Missouri River and flood plain 
area below the mouth of the Platte River. 
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Missouri River Valley in Iowa 

The valley of the Missouri River parallels the western boundary 

of Iowa for an airline distance of approximately 139 miles. The valley 

trends in a general south-southeast direction and is composed of an 

upper wide segment, a middle narrow segment, and a lower segment inter­

mediate in width. The maximum width of the valley is 18 miles in the 

northern segment, and the minimum width is 4 miles in the middle segment. 

The valley width ranges from 5~to 7 miles in the lower segment. 

The bedrock floor of the Missouri Valley trench lies at varying 

depths below the level of the surrounding uplands. A thickness of alluvium 

ranging from 70 to 156 feet fills the lower portion of the trench. The 

upland area rises from 200 to 300 feet above the flat upper surface of 

the alluvial fill. The maximum known depth of the Missouri trench below 

the surrounding upland is approximately 450 feet. 

Alluvial Morphology 

For convenience, a three-fold division of the Missouri River can 

be made, an upper segment including the valley between Sioux City and 

Crescent, Iowa; a middle segment, between Crescent and Plattsmouth, 

Nebraska; and a lower segment, between Plattsmouth and the southern Iowa 

border. These subdivisions have geomorphic significance in that their 

boundaries correspond to those of the valley subdivisions based on valley 

width. 

To facilitate discussion, the flood plain area of the Missouri 

Valley may be considered to consist of three distinctive geomorphic 

areas. These areas are 1) channel belt, 2) meander belt, and 3) flood 

basin. Figure 7 is a sketch indicating the geomorphic areas and 



27 

Figure 6. Surface characteristic attributed to wind reworking 
of sand near Payne, Iowa 

Figure 7. Sketch indicating stratigraphic relationships and 
geomorphic areas of the alluvial valley. 
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general stratigraphic relationships across the Missouri Valley. 

Each of the three longitudinal subdivisions of the Missouri 

Valley has varying amounts of channel belt, meander belt, and flood 

basin in them. The margins of these areas are indicated by heavy 

black lines on the base maps. 

Sioux City To Cresce!li 

With the exception of the Sargent Bluff salient (Plate 3, Sheet 

75L), glacial drift or loess forms the adjacent bluffs along this 

segment of the alluvial valley. The surrounding uplands rise to 

concordant highs 200 to 250 feet above the general flood plain 

level. A terrace-like feature occurs below the uplands and forms the 

right valley escarpment of the modern river from Tekamah, Nebraska 

(Sheet 69), to Omaha, Nebraska. 

Traverses A-A', B~B', and C-C' cross the Missouri Valley in the 

upper, middle and lower parts of the Sioux City to Crescent segment. 

Plates 2 and 3, 4 and 5, and 6 and 7 are maps of the alluvial deposits 

in this segment; and Figures 8, 9, and 10 show the mechanical composition 

of all samples along each traverse. 

The alluvial deposits of the Missouri Valley are the modern Missouri 

River bars of the channel belt area, the point bars, filled channels and 

undifferentiated deposits of the meander belt area, and the flood basin 

area deposits. 

The following discussion treats in more detail the geomorphic 

distinction between channel belt, meander belt and flood basin areas and 

the geornorphic expression characteristic of each type of alluvial deposit. 



29 

Plate 2. Alluvial geology, Sheet 75. 
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Plate 3. Alluvial geology, Sheet 75L. 
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Figure 8. Columnar sections showing mechanical composition 
with depth, traver se A-A'. 
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Plate 4. Alluvial geology, Sheet 72. 
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Plate 5. Alluvial geology, Sheet 72L. 
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Figure 9. Columnar sections showing mechanical composition 
with depth, traverse B-B'. 
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Plate 6. Alluvial geology, Sheet 68. 
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Plate 7. Alluvial geology, Sheet 68L. 
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Figure 10. Columnar sections showing mechanical composition 
with depth, traverse c-c'. 
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Channel belt area. The channel belt area is that portion of the 

alluvial valley adjacent to the modern river. It includes all the 

area traversed by the river since the 1890 course was surveyed and the 

point bars and river bars of the modern river. This is the area of the 

most rapid erosion and deposit~n and also of the most uniform type of 

material. 

The most important processes active in the channel belt are channel 

migration and bar building. Channel migration is accomplished by under­

cutting the stream bank on the outside or concave side of a bend. Con­

temporaneous with or causing the cutting is bar building on the inside 

or convex bank. The rate of bank recession and thus of bar b~ilding 

depends primarily on the nature of the bank and bed materials, the 

river stage, and the channel alignment. 

In the upper segment of the valley, the channel belt area ranges 

from 1 to 3 miles wide. This is generally about evenly bisected by the 

present course of the river but may occur with the river nearer one 

margin than the other. The general nature of the channel belt area 

and its relationship to the meander belt and flood basin areas are 

well illustrated on Plate 2, Sheet 75. 

Missouri River b~rs. The principal geomorphic features of the 

channel belt area are point bars and modern channel bars of the Missouri 

River. These are collectively mapped under the designation of Missouri 

River bars. On topographic maps, these geornorphic features commonly 

appear as areas of irregular relief mapped as being sandy and covered 

with a dense growth of willows. The point bars appear as concentric 

ridges and swales within modern channel bends. The channel bars appear 
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as tear-shaped, flat topped areas which gradually taper downstream. A 

chute or low swale may lie in back of the channel bar and between it 

and the bank line. If this chute contains water during low stages and 

the bar is stabilized by a growth of willows, it may be considered to 

be an island. 

On aerial photos, the point bars may be identified by concentric 

bands of light colored material composing the ridges separated by darker 

colored materials filling the swales or chutes. Channel bars or islands 

commonly appear as light colored areas if not covered by vegetation and 

dark areas if growth of willows has occurred. Figure 11 shows the 

geomorphic expression of typical Missouri River bar deposits. 

The principal type of material in the channel belt area is sand. 

Scattered, irregular patches of gravel may be present where local sorting 

has taken place. Where willows have acted as obstructions to the flow 

of water, varying thicknesses of fine-grained topstratum may occur. 

The fine-grained materials are principally silty sands and silty clays. 

This same material may also be in the swales or chutes and as a thin · 

blanket deposit over the ridges. 

Meander belt area. The meander belt is an area where the record 

of past Missouri River activity is indicated by abandoned channels and 

associated point bars. Continued migration of the channel has lead to 

the abandonment of former courses by chute or neck type cut-offs. These 

abandoned channels and associated point bars then become partially 

filled or masked by fine-grained topstratum deposited during flood and 

are the principal geomorphic features of the meander belt area. 
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The width of the meander belt including the channel belt varies from 

5 to 13 miles in the upper segment. Near the lower boundary of the upper 

segment (Plate 8, Sheet 66), the meander belt area occupies almost the 

entire flood plain. 

The boundaries of the meander belt are the outermost recognizable 

meander scar or point bar and the channel belt. Most commonly meander 

belt features lie between the channel belt and flood basin areas. South 

of the Sioux City Municipal Airport (Plate 2, Sheet 75), however, the 

river has cut into the flood basin area; and the channel belt is marginal 

to the flood basin area. 

Point bars. The point bars of the meander belt area are different 

from those of the channel belt area with respect to both geomorphology 

and sediffient. In point of origin, however, they are exactly the same 

and represent the accretion deposits of a migrating rr.eander. 

Most point bars of the meander belt have been masked by varying 

thicknesses of interbedded silty sands and clays. Irregularities in the 

accretion topography have been smoothed by deposition. In general, 

meander belt relief decreases with distance from the river and age of 

the channel remnants. Older channels near the outer margin of the meander 

belt are indicated only by a low swell marking the concave bank of a former 

meander. 

Point bars inside modern meander loops co~monly reach elevations 

comparable to the highest elevation of the surrounding flood plain but 

never exceed this elevation. From the center of a buried point bar the 

fine-grained topstratum increases in thickness toward the channel proper. 
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Figure 11. Geomorphic expression of Missouri River bars. 

Figure 12. Typical point bar and channel fill, traverse A-A' 

• 
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Point bar deposits appear on aerial photographs as areas of lighter 

colored material surrounded by an arcuate band of darker material marking 

the old channel. Figure 12 shows the typical geomorphic expression of a 

point bar and associated channel fill. Organic matter and topographic 

position apparently determine this relationship. The point bars are 

topographically higher than the old channel floor which, being lower, tends 

to act as a container for runoff water during heavy rains. The permeability 

of most channel fill deposits is relatively low, and water may stand in the 

old channel for a long time. Channel fill deposits commonly accumulate in 

a reducing environment whereas, at best, point bars are only intermittently 

exposed to the same environment. 

Channel fills. The geomorphic expression and nature of the deposits 

in abandoned channels 3re controlled by the type of stream which occupied 

the channel and the type of cut-off responsible for abandonment. Missouri 

River abandoned channel patterns are essentially those of a meandering 

stream. The average radius of fileander loops turning through an angle 

greater than 180° in 1890 between Sioux City and Crescent was approxi­

mately 5500 feet, and the range in radius was from 4000 to 6000 feet. 

Well developed meander features were concentrated in the upper two seg­

ments. Abandoned meander loops have a radius averaging slightly less 

than those of the 1890 channel. Modern (1946) meander loops which pass 

through an angle greater than 180° are exceedingly rare due to artificial 

cut-offs and other forms of channel improvement. The average radius of 

those present ranges from 4000 to 7000 feet. As much as five to eight 

miles of a former river course have been abandoned due to a single 

natural or artificial cut-off. 
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The average width of abandoned channel ranges from 1500 to 3000 

feet. The 1946 channel had an average width of approximately 1000 feet. 

Whipple (34) states that the 1930 channel width between Rulo and Sioux 

City had narrows considerably less than 1000 feet and a mean usable 

width of 3,650 feet. 

Chute cut-offs, which form as the result of enlargement of a point 

bar swale or chute, develop slowly and result in the gradual abandonment 

of the meander loop. Because of the small angle of divergence between 

the old channel and the new one, reduction in flow through the old loop 

is slow and results in deposition of the coarser fraction of the stream 

load. The upper arm gradually becomes narrowed and eventually choked 

by deposition of sand, and the old course is completely abandoned. Neck 

cut-offs, in direct contrast to chute cut-offs, result in rapid abandon­

ment of the old course. Relatively rapid silting of the upstream and 

downstream arms takes place, and an ox-bow or cut-off lake is formed. 

Deposition in the upper and lower extreniities of neck cut-offs may form 

"clay plugs" whereas generally only the lower arm is filled with fine­

grained material in chute out-offs. 

Channel fill deposits occupy arcuate areas with width and radius 

of curvature comParable to those of the modern river prior to 1930. 

Modern channel fills generally have topographic expression characterized 

by a relatively flat area between the gentle slip off slope of the point 

bar and the steeper slope of the concave outer margin. Theo nl y relief 

along most filled channels is a gradual rise toward the upper and lower 

extremities as a result of greater deposition there. This is also indi­

cated by the position and shape of most ox-bow lakes. They generally 
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occur near the point of maximum curvature and are about evenly distributed 

around it. 

Individual channels fill and lose their identity by a process called 

"channel deterioration." This results from sedimentation during floods 

and by slope wash during rainstorms. Agricultural activities have also 

obscured old channel boundaries. During floods the old channel acts as 

a settling basin for materials carT.ied by the river. Fine-grained materials 

are deposited in the channel as a result of the checked velocity of flood 

waters when they enter the basin and from suspension when quiet water 

prevails after withdrawal of flood waters. The distribution of fine­

grained material in a channel fill depends on the position of the former 

thalweg in the channel. In general, the thickest. portion of the fill 

will also correspond to this thalweg position. 

Undifferentiated deoosits. Within the meander belt area, some 

point bar and channel fill deposits become masked by overbank materials 

deposited during flood, or by tributary channel patterns. Plates 2, 4 

and 5, Sheets 75, 72 and 72L contain extensive areas of undifferentiated 

deposits. 

Areas mapped as including undifferentiated deposits have some of 

the geomorphic characteristics of abandoned channels and some of point 

bars. These areas commonly appear on topographic maps as areas of 

irregul2r relief of a smaller scale than that characterizing channel fills 

or point bars. The relief commonly consists of low swells or swales which 

coalesce and divide and eventually die out. On aerial photos these areas 

are represented by lighter colored materials with interfingering channels 

of dark material. 
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Flood basin area. The flood basin area is that portion of the flood 

plain between the outer boundary of the meander belt or channel belt and 

the valley wall. In general, this is an almost featureless lowland 

between two areas of distinctive relief. 

The width of the flood basin area ranges from approximately 12 miles 

south of Sargent Bluff (Plate 3, Sheet 75L) to a maximum of 1 mile near 

the lower part·of the upper segment where the meander belt occupies most 

of the flood plain area. 

The flood basin is largely devoid of distinctive relief features. 

The only features present are those due to flood distributary patterns 

or associated with channel patterns of smaller tributary streams. Until 

the area along the Missouri River was ditched and tiled, the land was 

largely unsuitable for agriculture because of its swampy nature, 

Flood distributary patterns generally do not develop sufficient 

relief to be indicated on topographic maps. On aerial photographs they 

are indicated by a series of alternating light and dark linear trends 

of which the area shown in Figure 13 is an example. The darker areas 

represent low swales which coalesce and divide and generally become 

broader in a down valley direction. The lighter areas are low, broad 

swells which may rise as high as one to two feet above the floors of 

intervening swales. In this particular linear trend, the transverse 

distance between swales ranges from 50 to 250 feet. The entire pattern 

is concentric around the channel fill penetrated in Hole 10, Plate 3, 

Sh<:?et 75L. 

The flood basin area comprises a greC:tter portion of the alluvial 

valley in the upper segment than in the middle or lower, To be strictly 



Figu:re 13. Surface features on natural levee and flood distributary areas, 
traverse A-A'. 
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analogous to the flood basins in the Lower Mississippi Valley, this 

area should be bounded by the natural levees of the meander belt area 

and the valley wall. The five foot contour interval of available topo­

graphic maps reveals little direct evidence of pronounced natural 

levees associated with many reaches of the Missouri River. In general, 

however, cross-valley profiles do rise toward the river; and aerial 

photographs along the meander belt margin reveal an area of lighter 

sediments lying in a concentric band around some older channel fills. 

Figure 14 shows the general nature of cross-valley profiles,and Figure 

13 shows the surface expression of a natural leavee deposit along 

traverse A-A'. As a mappable unit, however, natural levees are not 

differentiated and are included in the flood basin deposits. 

Some of the more important tributaries of the Missouri River adjacent 

to Iowa enter the alluvial valley in this upper segment. These may flow 

for long distances down valley before reaching their confluence with the 

Missouri. The tributary pattern outlined on Plate 3, Sheet 75L, can be 

continuously traced on southward to the vicinity of Hornick, Iowa (Sheet 

74L). At Hornick it becomes dissected by the tributary pattern of the 

West Fork of the Little Sioux River, but discontinuous remnants of it may 

be followed as far south as Little Sioux, Iowa (Sheet 70L). This tribuaary 

channel pattern is one of the older geomorphic features in the alluvial 

valley. It apparently represents a former course of the combined Big 

Sioux and Floyd Rivers which was abandoned when the Missouri occupied 

the channel which truncates it at its upper end. At one time, the entire 

flow of the upper reach tributaries with the exception of the Boyer River 

may have been carried to the Missouri by this Big Sioux-Floyd channel. 



Figure 14. Topographic profiles across the Missouri Valley 
illustrating the gradual rise in flood plain elevation 
from the bluffs to the river. 
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Tributary stream patterns are highly individualistic and have 

characteristic dimensions determined by the combination of hydraulic 

variables found in each stream. The combined Big Sioux-Floyd channel, 

previously discussed, has a width of approximately 300 feet, a depth 

of about 8 feet, and a channel pattern characterized by relatively long 

straight reaches separated by sharp irregular bends. Little Sioux and 

Maple River channels (Plate 5, Sheet 72L) are 30 to 50 feet wide and 

10 to 15 feet deep. Their channel patterns, however, are exceedingly 

crooked with very sharp bends and few straight reaches. 

Flood basin deposits. The deposits of the flood basin area include 

the material deposited by the Missouri during floods, tributary channel 

deposits, and alluvial fans. ~issouri flood deposits are the most 

abundant and widespread whereas tributary channel and alluvial fan 

deposits are only locally important. 

Tiibutary channel and alluvial fan geomorphic expression have 

already been discussed. The remaining flood basin deposits show either 

natural levee surface expression or are characterized by being largely 

devoid of significant differences in relief. Natural levee deposits 

occur as low ridges around the outside margin of an abandoned channel. 

They occur only in the Sioux City to Crescent segment, and in many 

places cannot be identified as such even in this area. Thus the 

surface expression of flood basin area deposits is that of a flat, 

featureless, plain. 

Crescent to Plattsmouth 

The middle segment of the Missouri Valley is the narrowest part 

of the valley adjacent to Iowa. The flood plain is from 4 to 5 miles 
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in width and the average stream gradient is 9.58 feet per mile. 

Bedrock begins to rise from near flood plain level at Crescent and 

forms the lower section of the valleywall along the length of this 

segment. The higher glacial drift or loess mantled uplands rise to 

concordant highs 250 to 300 feet above the general flood plain level. 

Meandering in the middle segment of the Missouri Valley is restricted 

by the narrowness of the alluvial valley despite the lower average 

gradient. This is indicated by the 1890 sinuosity ratio which decreases 

from 1.61 in the upper segment to 1.45. 

The Missouri River maintains most of the characteristics described 

in the upper segment of the alluvial valley. It generally flows along 

the right valley wall and makes several sharp meander bends. The 

average radius of these bends is 5000 feet and the average channel width 

is approximately 1750 feet. 

fily_via,l morpholoqy and_flood plain deposits, The alluvial morphologh 

and geomorphic expression of flood plain deposits in this segment are 

similar to those of the upper segment. Tr verses D-D' and E-E' cross the 

alluvial valley near the upper and lower boundaries of the Crescent to 

Plattsmouth segment. Plates 8 and 9 are maps of the flood plain deposits 

along these traverses and Figure 15 shows the mechanical composition 

of samples from each flood plain depesit. 

The channel belt in this segment ranges from 0.5 to 1.5 miles in 

width. Modern Missouri River point bars are the most common channel belt 

feature as the river is almost free of channel bars or islands. The 

meander belt ranges from 3 to 4 miles in width and may extend from bluff 

to bluff. The flood basin area is notably narrow along most of this 
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segment. Alluvial fans extending out from the bluffs form a greater 

portion of flood basin deposits along this segment than along the upper 

segment. 

Plattsmouth to south Iowa boundarv 

The lower segment of the alluvial valley of the Missouri River 

adjacent to Iowa ranges from 5 to 7 miles in width. In the upper part 

of the lower segment, bedrock overlain by glacial drift and/or loess 

forms the adjacent bluffs. In the middle and lower parts of this 

segment glacial drift or loess forms the entire bluff section. The 

surrounding upland hills rise to concordant highs 225 to 275 feet above 

the general flood plain level. 

The Platte River exerts a controlling influence on the character 

of the Missouri River in this segment. Both the suspended load and 

bed load af the Platte are coarser than those of the Missouri and are 

equal in amount to those of the Missouri at Omaha (31). The sinuosity 

of the Missouri River ~creases and its flood plain and stream gradients 

increase in response to the heavy load of the Platte. The average width 

of the stream channel increases and the average depth decreases as flow 

becomes divided around channel islands. 

The alluvial morphology and deposits of this segment of the alluvial 

valley also refl~ct the influence of the Platte on the regimen of the 

Missouri. The average width of abandoned channels increases to approxi-

mately 2500 feet and they occupy arcuate areas with a radius of curvature 

ranging from 6000 to 8000 feet. Partially filled abandoned channels show 

distinct relief as in-channel bars stand 2 to 3 feet above the average 
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Plate 8. Alluvial geology, Sheet 66. 
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Plate 9. Alluvial geology, Sheet 62. 
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Figure 15. Columnar sections showing mechanical compositions with 
depth, traverses D•D', E-E' and F-F'. 
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elevation of the channel floor. Cut banks along the outside of bends 

are commonly from 4 to 8 feet high and point bars rise to an elevation 

3 to 5 feet higher than that of the channel fill. 

Alluvial morpholooy and flood olain deposij:._$. Traverses E-E' and 

F·F' cross the alluvial valley near the upper and lower boundaries of 

the lower segment. Plates 9, 10 and 11 are maps of the alluvial deposits 

along these traverses and Figure 15 shows the mechanical composition for 

samples along each traverse. 

The channel belt along this segment ranges from 1 to 2 miles in 

width. A large number of Missouri River bars and islands characterize the 

geomorphic expression of the channel belt area. The meander belt ranges 

from 5 to 7 miles in width and, in many places, occupies almost the 

entire flood plain area. The flood basin area is characteristically 

lacking in relief features with the exception of alluvial fans and is 

generally less than a mile in width and may be entirely absent. 

The alluvial deposits also reflect the change in the regimen of 

the Missouri. Sand occurs closer to or on the surface in channels and 

fine-grained topstratum is thinner both on point bars and in the flaod 

basin. This is reflected both in bore holes, many of which penetrated 

the fine-grained material, and in the relatively smoothness of stream 

bends which indicates that the stream had little difficulty cutting 

its channel. 

The sand on the surface in both the channel belt and the meander 

belt areas may be reworked by wind. Figure 6 is a view of an extensive 

area of the flood plain near Nebraska City, Nebraska (Sheet 59), in 

which the distinctive surface features are the result of wind erosion 



Plates 10··11. Alluvial geology, Sheets 60 and 60L. 
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and deposition. These areas can be recognized by their irregular topo­

graphic expression and show up on aerial photos as mottled light and 

dark areas. 

SAMPLING METHODS AND PROCEDURES 

Field Phase 

Prior to the first field season, topographic maps and aerial 

photographs of the Missouri River adjacent to Iowa were secured from 

the Omaha District of the Corps of Engineers. Using the air photos, 

the alluvial deposits were identified and outlined on the topographic 

maps according to the techniques employed by Fisk (11). The topographic 

maps will serve as base maps for this and subsequent reports. 

The first phase of the field investigation involved checking the 

validity of the mapping techniques and selection of traverse areas for 

detailed sampling. Six areas, about equally spaced along the length of 

the valley, were selected primarily because they exhibited well defined 

alluvial deposits. The index map of the alluvial valley (Plate 1) shows 

the general location of these traverse areas. 

With the selection of the traverse areas completed, the next step 

was to determine bore-hole locations. In the meander belt area where the 

greatest variation in deposits occurs, bore holes were so placed as to 

sample as many of the different deposits as extensively as possible. 

Bore holes were spaced at one mile intervals across the flood basin 

except where deposits of minor tributaries were investigated. 
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Laboratory Phase 

The laboratory tests performed on these samples are those necessary 

to determine the engineering classification of the alluvial deposits. 

Mechanical analyses were performed on all samples to determine 

the size frequency distribution of the constituent particles by the 

hydrometer and sieving method (A.S.T.M. Designation: D 422-54T) as the 

dispersing agent. The fraction retained on the No. 200 sieve was then 

dry sieved through the following nest of sieves: No. 20, No. 40, No. 60, 

No. 100, or No. 140, and No. 200. 

The textural classification of each sample was then determined 

according to the textural classes of the U. S. Bureau of Public Roads 

(30) (Figure 16). 

Determination of the soil-water consistency and engineering classi­

fication was done on selected samples by laboratory personnel according 

to the following procedures: 

1) Liquid limit (A.S.T.M. Designation: D 423-54T) (2). 

2) Plastic limit (A.S.T.M. Designation: D 424-54!) (2). 

3) Plasticity index (A.S.T.M. Designation: D 424-54!) (2). 

4) Engineering classification: Bureau of Public Roads (30). 

Qtiring the course of this investigation, 71 holes were bored and 

227 samples taken. Borings were done by hand auger to a depth of thirty 

feet and by continuous flite power auger to a depth of sixty feet. A 

general description of the material found as to particle size, color, 

texture, and oxidation state was kept and the depth of the water table 

recorded. Point samples or composite samples were taken whenever signifi­

cant changes in these properties were observed. The samples were then 
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Figure 16. Textural classification chart for U. S. Bureau of Public 
Roads. 
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placed in cloth bags and transported back to the laboratory for further 

analysis. 

PRESENTATION OF DATA 

The data to be presented in this report consists primarily of those 

necessary to determine the engineering classification of the different 

alluvial deposits. These have been discussed with respect to their 

geomorphic expression and mechanical composition so far as this composi­

tion was important in determining the surface expression of some deposits. 

The following discussion treats in more detail the specific characteristics 

and engineering behavior of each type of alluvial deposit. 

Alluvial Sequence and Engineering Classification 

Briefly, the alluvial fill consists of two major units, a substratum 

of sands and gravels and a topstratum of fine-grained material. The 

physical characteristics of the upper fine-grained unit permis a further 

subdivision of this portion of the alluvial fill into deposits of the 

point bar, channel fill and backswamp environments. In the rrBander belt 

area, some deposits could not definitely be delineated as channel fills 

or point bars and have been mapped as masked or undifferentiated channel 

fill and point bar material. Within the flood basin area natural levee, 

tributary stream and alluvial fan deposits may be important locally. 

Substratum sands and oravel~. 

The sands and gravels of the substratum unit compose the major portion 

of the alluvial fill, Deep borings in the valley reveal that this unit 
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ranges from 70 to over 100 feet in thickness and grades from gravels and 

boulders near the base to predominantly sand near the top. Samples from 

60 foot holes bored during the course of this investigation show increasing 

median particle diameters with increasing depth. 

Generally the substratum materials found near the top of the unit 

consist of a relatively clean, fine to medium sand. Above the water 

table, the material is commonly oxidized to a red-brown color and contains 

discrete particles of CaC03 disseminated throughout. Below the water table 

and particularly below channel fill topstratum, the sand is in a reducing 

environment and is a black to gray color. 

Quartz is the most abundant mineral found in substratum sand samples. 

It is generally poorly rounded to angular, the difference apparently cor­

related with grain size, the finer sand grains being better rounded than 

the medium and coarser grains. Other minerals occurring in a significant 

amount are feldspars and a dark mica. Scattered lenses of gravel occur 

and commonly consist of fragments of crystalline rocks. 

The boundary between substratum and topstratum is corrmonly marked 

by a transition zone indicating some mixing of the two units during 

deposition or during sampling. However, this boundary is easily recognized 

during borings by the transition from fine to coarse-grained material. 

Mechanical analyses of all samples reveal that topstratum samples invariably 

have a median particle diameter less than or equal to 0.074 ~m. whereas 

substratum samples have larger median particle diameters. 

Materials of the substratum unit occur at varying depths with respect 

to the surface of the fill throughout the alluvial valley. Within the 
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channel belt area, substratum sands occur at or near the surface. The 

most modern point bars within the rreander belt also have sand exposed 

at the surface. Twenty-five feet o fine-grained topstratum have been 

found overlying substratum sands in some channel fills, and this figure 

is probably exceeded in others. In the modern river, depths of scour 

to a maximum of 60 feet* have been recorded, and depths to 30 feet 

are common. Channel fill topstratum thus could accumulate to this thick-

ness. Point bars, because of their higher topographic position, com-

monly have less topstratum over substratum than may be found in channel 

fills. The thickness of topstratum over point bars increases with 

distance from the river and a maximum of 20 feet was penetrate_d in 

one point bar hole near the meander belt margin. The top of the 

substratum under point bars generally reflects the original swell and 

swale relief. The swales, being topographically lower, may be expected 

to have greater thicknesses of topstratum in them. Deposition in the 

swales gradually results in reduction of the surface relief of a point 

bar until, as the margins of the meander belt are approached, they 

may be essentially flat. In the flood basin area, depths to substratum 

reach the maximum observed during this investigation. Several holes 

reached the substratum at depths from 36 to 42 feet. 

The preceding discussion of the general nature of the substratum 

distribution and depth below the surface of the fill will apply to the 

entire valley. As has been discussed, however, thickness of topstratum 

over substratum below the Platte River are generally less than the above 

* Hub8r, R. L., Corps of Engineers, Omaha, Nebraska. Data on depths of 
scour. Private corrrr~nication. 1959. 
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Figure 17. Range in cumulative curves for 31 point bar topstratum 
samples and percent of samples in each textural class. 

Figure 18. Range in cumulative curves for 15 point bar substratum 
samples and percent of samples in each textural class. 
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figures. The distribution of topstratum below the Platte does conform to 

the general relationships developed above. 

Point bar deposits 

The deposits of the point bar environment include the silts and 

clays of the topstratum, and the sands of the substratum. Figures 17 

and 18 show the range in cumulative curves and percent of samples in 

each textural class for point bar topstratum and substratum samples. 

The greatest concentration of samples is in the clay and silty clay 

textural groups. Invariably, samples containing significant percentages 

of sand occur near the base of the topstratum. 

Topstratum samples are generally gray to black to red in color, 

the difference being correlated with organic matter content and oxidation 

state. Organic matter is usually concentrated in the upper few feet of 

fill. Locally this is also the zone of oxidation. The water content of 

most point bar topstratum deposits is relatively low, and the position 

of the water table is usually below or near the boundary between top­

stratum and substratum. 

Point bar substratum samples are usually gray to red anci exhibit 

crossbedding. Thin lenses of gravel occur throughout the deposit, and 

silt or clay lenses are found in the upper few feet of the substratum. 

Approximately 67 percent of substratum samples fall into the sand 

textural class. The Trask sorting coefficient indicates that these are 

usually well sorted. 

Table 3 shows the engineering classification of selected point bar 

samples. Where considerable thickness of topstraturn overlies a point 



Table 3. Point bars 

Sample Sample Liquid Plastic Plasticity Percent Engineering Remarks 
Number Depth Lirni t Limit Index Clay- Soil Classification 

Sand -· --
Hl-Sl 0-7.5' Non-Plastic 2-98 A-3(0) substraturr. 
H3-Sl 0 ,.., 

-L 28.4 26.4 2 25-25 A-4{8) topstratum 
H4-Sl 0-1' 23.0 19.5 3.5 23-08 A-4(8) topstratum 
H4-S2 2-6' 30.5 29.·4 1.1 14-22 A-4(8) tops tr a tum 
H9-Sl 0-3.5' 68.5 28.6 39.9 68-00.4 A-7-5{20) tops tr a tum 
Hl2-Sl 0-4 1 76.2 29.2 47.0 77-00.4 A-7-6(20) tops tr a tum 
H23-Sl 0-7.5' Non-Plastic 1-91 A-3(0) substratum 
H27-Sl 0-7.5' 76.2 27.2 49.0 72-00.4 A-7-6(20) topstratum 
H32-Sl 0-2.5' 32.7 22.3 10.4 21-20 A-4(8) topstratum °' (J'I 

H38-Sl 0.1.0' 66.4 26.1 40.3 69-00.3 A-7-6(20) tops tr a tum 
H39-S2 1-41 Non-Plastic 2-65 A-2-4(0) tops tr a tum 

substratum 
H41-Sl 0-6' Non-Plastic o.5-96 A-3(0) substratum 
H42-Sl 0-3' 72.8 26.3 46.5 61-03 A-7-6(20) topstratum 
H44-Sl 0-11' 71.0 25.2 45.8 70-01 A-7-6(20) topstratum 
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bar, the upper portion generally classifies A-7. The typical material 

of this group is a plastic clay soil which exhibits high volume change 

between wet and dry states and is generally elastic in nature. The 

A-7-5 sub-group materials are especially subject to elastic deformation 

whereas the A-7-6 sub-group is generally subject to extremely high volume 

changes. The group index of A-7 soils ranges from 1 to 20. Higher values 

indicate the combined effect of high liquid limits and plasticity indices 

and increased percent of fines. The percentage of clay in point bar 

topstratum ranges from 12 to 80 percent and the average for all point 

bar topstratum samples is 44 percent. 

The lower few feet of point bar topstratum vs usually a transition 

zone where mixing of topstratum and substratum has taken place. Missouri 

River bars and modern point bars in the meander belt with thin topstratum 

over them have this zone of mixed materials at the surface. Generally 

this material may be classed in the A-4 engineering soil group. The 

typical material of this group is a moderately plastic silty soil. The 

percent of silt in point bar topstratum of this group ranges from 50 to 

69 percent, and the average of point bar transition zone samples is 60 

percent. 

The substratum sand which underlies the alluvial valley surface 

and occurs at the surface in the channel belt area and in some modern 

point bars commonly is an A-3 engineering soil. The typical material 

of this group is a fine to medium sand with limited amounts of coarse 

sand and gravel. The percent of sand in substratum samples ranges from 

58 to 98 percent, and the average of all substratum samples is 84 percent. 
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Small quantities of silt generally comprise the remainder of substratum 

samples. 

Channel fill deposits 

Channel fill deposits consist of varying thicknesses of interbedded 

clays and silts underlain by substratum sand. The topstratum of channel 

fills is usually blue to black in color and contains abundant organic 

matter. Modern channel fill material accumulates in ox-bow lakes which 

eventually become filled above the level of the water table. Fluctuation 

of the water table then results in the upper portion of a fill developing 

a mottled color because of alternating oxidizing and reducing conditions. 

The lower few feet of fill may become compacted into a very tenacious 

blue clay because of the weight of the overlying material. 

Figures 19 and 20 show the range in cumulative curves and percent 

of samples in each textural class of channel fill topstratum and sub­

stratum samples. A number of textural classeas are represented in channel 

fill topstratum, but almost 84 percent of samples fall into the clay 

textrual class. The difference in the amount of clay sized material 

in point bar topstratum and channel fill topstratum is illustrated by 

the difference in average of the median particle diameters of the two 

deposits. The average of the median particle diameter of point bar 

topstratum samples is well within the silt range whereas channel fill 

topstratum samples have median particle diameter near the lower boundary 

of the silt range. Because of the high water content of channel fill 

deposits, samples of topstratum and substratum material may become mixed 

because of flowage into bore holes. This probably explains, in part, 
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the concentration of substratum samples in the sandy loam textural class 

and the variety of textural classes in topstratum samples. 

Table 4 shows the engineering classification of selected channel 

fill samples. Because substratum samples are generally non-plastic 

A-3 materials and can easily be recognized as such, very few samples 

of them have been run for purposes of engineering classification. 

Channel fill topstratum samples generally classify A-7. The percent 

of clay in these samples ranges from 27 to 82, and the average percent 

of clay in all samples is 62 percent. This represents an increase of 18 

percent over the average percent of clay in point bar topstratum samples. 

1llliiiJferentiated deposits 

Within the meander belt area, some point bar and channel fill 

deposits have been masked by materials deposited during floods. These 

point bar and channel fill deposits are extensive in scme areas and 

have been mapped under the designation of masked channel fills and point 

bars. The characteristics of the deposits found in these areas are 

similar to those of the previously described channel fills and point 

bars. Figures 21 and 22 show the range in cumulative curves and percent 

of samples in ~ach textural class for masked channel fill and point 

bar deposits. The average median particle diameter of topstratum 

samples is between that of channel fill and point bar topstraturn. 

Substratum sands have an average median particle diameter slightly 

larger than that of surrounding substratum material. 

Table 5 gives the engineering classification of selected undif­

ferentiated samples. As in channel fill and point bar samples, most 
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Figure 19. Range in cumulative curves for 60 channel fill topstratum 
samples and percent of samples in each textural class, 

Figure 20. Range in cumulative curves for 15 channel fill substratum 
samples and percent of samples in each textural class. 
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Table 4. Channel fills. 

Sample Sample Liquid Plastic Plasticity Percent Engineering Remarks 
number depth limit limit index clay- soil 

sand classification 

H5-Sl 0-4' 70.7 22.3 48.4 72-00.2 A-7-6(20) tops tr a tum 
H5-S4 8-9' 41.1 23.0 18.1 42-01 A-7-6( 11) tops tr a tum 
H6-Sl 0-6.5' 75.0 30.0 45.0 81-00.2 A-7-5(20) tops tr a tum 
HS-Sl 0-3.5' 80.6 29.8 50.8 72-00.2 A-7-6(20) tops tr a tum 
HlO-Sl 0-3.5' 76.2 29.4 46.8 79-01 A-7-5(20) tops tr a tum 
Hll-Sl 3-12' 75.3 30.5 44.8 81-00.5 A-7-5(20) tops tr a tum 

"clayplug" 
Hll-S4 20-25' 79.6 27.2 52.4 75-00.8 A-·7-6(20) tops tr a tum 

"clayplug" 
H21-Sl 0-2 1 63.2 23.0 40.2 62-01 A-7-6(20) tops tr a tum 
H22-Sl 0-5.5' 73.3 24.9 48.4 72-:00.4 A-7-6(20) tops tr a tum ....i 

0 
H24-Sl 0-4' 76.6 25.9 50. 7 68-00.4 A-7-6(20) tops tr a tum 
H26-Sl 0-11 1 Non-Plastic 1~87 A-1(0) substratum 
H28-Sl 0-3.5' 84.5 29.5 55.0 72-00.1 A-7-6(20) topstratum 
H29-Sl 0 --· - { 73.8 26.5 47.3 76-00.2 A·-7-6(20) tops tr a tum 
H31-S2 2.0-7 1 80.4 31. 7 48.7 82-02 A-7-5(20) topstratum 
H33-Sl 3.8-6.8' 91.3 31. 7 59.6 36-20 A-7-6(20) tops tr a tum 
H34-S2 1.0-1. 7' 90.2 31.5 58.7 83-02 A-7-6(20) tops tr a tum 
H34-S5 3-7' 33.0 21.9 11. l 27':'17 A-7-5(9) tops tr a tum 
H36·Sl .5-10' 80.3 27.2 53.1 71-03 A-7-6(20) topstratum 
H40-Sl 0-1.0' 74.6 30.4 44.2 66-02 A-7-5(20) tops tr a tum 
H43-Sl 0-4' 66.8 23.5 43.3 57-19 A-7-6(20) topstratum 
H46-Sl 5-12' 77.4 38.9 38.5 65-03 A-7-5(20) topstratum 
H47-Sl 0-7' 69.2 26.5 42.7 65-02 A-7-6(20) topstratum 
H48-Sl 0-5 1 49.2 20.7 27.5 42-11 A-7-6( 18) tops tr a tum 
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Figure 21. Range in cumulative curves for 10 undifferentiated top­
stratum samples and percent of samples in each textural 
class. 

Figure 22. Range in cumulative curves for 11 undifferentiated 
substratum samples and percent of samples in each 
textural class. 
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Table 5. Undifferentiated. 

Sample Sample Liquid Plastic Plasticity Percent Engineering Remarks 
number depth limit limit index clay- soil 

sand classification 

H30-Sl .5-4.5' 8-30 A-4(8) tops tr a tum 
natural levee? 

H35-S2 1.2-7.0' 81.0 27.2 53.8 74-02 A-7-6(20) topstraturn 

H52-Sl 411 -8 1 87.0 29.6 57.4 81-02 A-·7-6(20) tops tr a tum 

H53-Sl 0-14' 83.3 26.4 56.9 72-06 A-7-6(20 tops tr a tum -.J 
I\.) 



73 

undifferentiated samples classify A-7. Hole 30 is located near the cut­

bank of an abandoned channel and the material sampled probably represents 

a natural levee deposit associated with the Horseshoe Lake channel. This 

material is similar to the overbank topstratum on the surface of some 

Missouri River bars and modern point bars with thin topstratum in that 

it is predominantly silt and classifies as A-4. 

Flood basin deposits 

The deposits of the flood basin area are most extensive in the 

upper and wider segment of the alluvial valley. These deposits mask 

older strata and consist of interbedded laminated clays and silty clays 

and minor amounts of silty and clayey sands. 

Flood basin deposits represent the slow accumulation of flood water 

sediments in low basins marginal to the meander belt area. They commonly 

have organic matter contents as large or larger than that of most 

channel fills. Characteristically, these deposits have a reddish-brown 

to gray color and are commonly mottled. The mottled appearance is 

attributed to fluctuations of the water table and alternation of reducing 

and oxidizing conditions. Flood basin topstratum will generally contain 

less water than channel fill topstratum but more than point bar topstratum. 

Small calcium carbonate and iron concretions resembling ''pipe stems" 

are cor.monly scattered within the deposit. The distribution of the 

carbonate concretions is apparently related to texture and permeability. 

Some clay lenses or bands within a more permeable material have a zone 

of concretions near the upper boundary. Iron oxide concretions are 

commonly cylindrical with a small hole along the axis and may be scattered 

throughout the backswamp material. 
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Fioures 23 and 24 show the range in cumulative curves and percent 

of samples in each textural class for selected flood basin topstratum 

samples. The substratum of the flood basin area is similar to that 

previously discussed. 

Flood basin topstratum samples are represented in more textural 

classes than any other major deposit. The biomodal distribution of samples 

is attributed to the inclusion of alluvial fan and natural levee deposits 

in the fiood basin sample data. All silty clay loam samples are from 

locations near the valley margins or on natural levees. The greatest 

concentration of flood basin samples, as in .other major deposits, are 

in the clay textrual class. Silty clays and combinations of clay and 

sand comprise the remainder of the samples. As in the point bar and 

channel fill deposits, samples containing significant percentages of sand 

generally occur just above the substratum boundary in the lower few feet 

of topstratum material. The amount of clay in flood basin topstratum 

samples ranges from 16 to 90 percent. The average clay content is 

approximately 46 percent. The average of the median particle diameters 

places ~e median particle size well within the silt range but smaller 

than that of point bar topstratum samples. Excluding the silty clay 

loam samples, the average of the median particle eiameters decreases 

to.0090 mm., coarser than channel fill topstratum samples but finer 

than point bar topstratum samples • 

The substratum which underlies flood basin topstratum is similar 

to that of adjacent areas. The majority of samples again fall in the 

sand and sandy loam testural classes. The average of the median 
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Figure 23. Range in cumulative curves for 71 flood basin topstratum 
samples and percent of samples in each textural class. 

Figure 24. Range in cumulative curves for 14 flood basin topstratum 
samples and percent of samples in each textural class. 
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particle diameters is comparable to that of undifferentiated deposits 

and greater than that of channel fill or point bar substratum. The 

median particle diameter of modern river sands is closer to that of the 

point bar and channel fill substratum materials. Two possible explana­

tions exist for this observation. Either the river was capable of 

carrying coarser material during the time ~hen it occupied the flood 

basin area or more samples from deeper depth intervals were used in 

computing the average of the median particle diameters in the flood 

basin and undifferentiated areas. 

Table 6 contains the engineering classification data for selected 

flood basin samples. As in other eeposits, the A-7 engineering soil 

group contains the majority of topstratum samples. 

Natural levee, tributary channel and alluvial fan depssits. In 

the upper and middle divisions of the alluvial valley natural levee 

deposits are locally important and can be recognized. These consist 

of a ridge-like mass of clays, silty clays and sands deposited by 

overbank flow along stream channels. They may be recognized in the 

alluvial valley by their position marginal to an old channel and by 

their characteristic slope away from the river or abandoned cha11nel. 

The natural levee shown in Figure 13 rises to approximately seven feet 

above the surrounding flood basin area and slopes away from the associated 

channel fill with a gradient of approximately 1.6 feet per mile. 

Natural levee deposits will generally be graded, with the coarsest 

material occurring near the crest and finer materials found at greater 

distances from the crest. Most natural levee samples have enough clay 

in them to fall in the clay textural class. However, enough silt and 
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Table 6. Flood basin. 

Sample Sample Liquid Plastic Plasticity Percent Engineering Remarks 
number depth limit limit index clay- soil 

sand classification 

--
Hl3-Sl 0-9' 69.6 21.5 44.5 65-01.4 A-7-6(20) tops tr a tum-

natural levee 
Hl4-Sl 2-4' 37.6 22.4 15.2 31-11.6 A-6(10) topstratum 
Hl5-Sl 0-8.5' 58.6 22.0 36.6 55-04.3 A-7-6(20) tops tr a tum-

tributary channel 
Hl6-Sl 0-3.5' 74.9 25.9 49.0 67-02.4 A-7-6(20) topstratum 
Hl7-Sl 0-9.5' 91.0 30.b 61.0 83-01.1 A-7-5(20) tops tr a tum ...J 
Hl8-Sl 0-0.5' 76.9 36.6 40.3 72-02 A-7-5(20) topstratum ...J 

Hl9-Sl .5-3' 40.9 25.7 15.2 26-:01 A-7-6(11) topstratum-fan 
H20-Sl .5-10' 36.7 25.9 10.8 25-02.4 A-6(8) topstratum-f an 
H25.,·Sl 2-7.5' 44.3 26.4 17.9 27-01.1 A-7-5(12) topstratum-fan 
I-i37-Sl 0-10' 63.3 25.3 38.0 54-01.3 A-7-6(20) tops tr a tum 
H45-Sl 12-301 65.0 25.3 29.7 66-09.3 A-7-6(20) topstratum 
H54-Sl 0-12 1 67 .1 25.0 42.1 55-01.2 A-7-6(20) topstratum 
H55-Sl 0-24' 46.3 25.4 20.9 32-01.3 A-7-6(13) tops tr a tum 
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sand may be found in some samples to affect the engineering classification. 

Hole 14 of Table 6 is an example where the common A-7 engineering soil of 

most deposits has been replaced by an A-6 soil in a natural levee deposit. 

The deposits of tributary streams may be important locally in the 

upper and middle divisions of the valley. The engineering classifications 

of these samples will usually place them in the same soil group as sur­

rounding topstratum materials. However, the percent of clay sized 

material is usually less; and the percent of water may be higher, especially 

in tributary channel fills. 

Alluvial fan deposits may be significant in the flood basin areas 

of the entire alluvial valley. These generally have topographic expres­

sion and can be recognized by such and by their distribution around the 

mouths of small tributaries. The material of fans is always a silty 

clay loam and can be differentiated fro~ topstratum Missouri Valley 

deposits by its oxidized red-brown color. This material also generally 

fits into the A-7 engineering soil group. However, enough silt may 

be present to change the engineering class to an A-6. Hole 20, Table 6 

is an example. Enough coarse material may be present to lower the group 

index. Hole 19 and Hole 25, Table 6 illustrate this observation • 
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DISCUSSION 

Alluvial Morphology and Valley Fill Development 

With the discussion of alluvial morphology and deposits completed, 

we are now in a position to give certain interpretation to the available 

data. 

In retrospect, the alluvial valley of the Missouri River consists 

of a wide flat alluvial plain underlain by a thick deposit of clays, 

silts and sands and separated from the adjoining uplands by abrupt 

valley escarpments. The overall characteristics of the valley of the 

Missouri River when viewed in two dimensions are such that the descriptive 

term "old age" as defined by Davis may be applied. The connotation 

denoted by "old age" is flat-floored valleys with slowly moving streams 

in them surrounded by low hills. The uplands adjacent to the Missouri 

Valley, however, are distinctively different from this picture; and 

instead of exhibiting "old age" characteristics, might better be placed 

in the "late youth" or "early maturity" stage of landscape evolution. 

The Missocri Valley thus represents an "old age" feature in the midst of 

a "late youth" to "early maturity" landscape. Logically now, one might 

ask why and how such dissimilar relationshpss chance to occur. 

The first ahd most obvious clue indicating at least the nature of 

the deviation from the traditionally Davisian concepts is the boundary 

separating valley from uplands. In all cases, this is topographic un­

conformity represented by abrupt escarpments leading directly to con­

cordant upland highs. The second clue is furnished by the nature of 
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the alluvial valley and fill itself. From deep borings by the Corps of 

Engineers, the bedrock surface has been found to lie at a maximum depth 

of 156 feet below the flat alluvial plain and to exhibit as much as 55 

feet of local relief. The thickness of alluvium far exceeds the maxi­

ffiUm depth of scour of the modern river and so precludes the formation 

of a flat valley floor by this stream. The thickness and coarsemess of 

the substratum sands and gravels require that they be deposited by an 

aggrading stream carrying an excass amount of coarse-grained material. 

Since it has been indicated that the alluvial fill resulted from 

valley aggradation (i.e., alluviation), the next question is why the 

Missouri alluviated. Two contrasting ideas have been introduced in the 

literature review. From the data available at the present time, it 

appears that the concept of alluvial drowning due to rising base level, 

as introduced by Fisk and Russell, better fits the observed facts. That 

the most recent event in the alluvial valley history has been or is 

alluviation is indicated by the stratigraphic relationship observed 

dt~ring borings along the longitudinal profile of the Arcola Creek fan 

(Figure 2). Here material identified as being of fan origin occurs at 

depths below the average elevation of surrounding alluvial valley material. 

The chronology suggested by Leighton and Willman and applied by Thornbury 

to inland glaciated regions seems completely untenabl~ 

That streams should down cut during rising base level accompanying de­

glaciation seems to have two processes, both of which should result in 

alluviation, acco~plishing exactly the opposite. If the present time 

can be counted as part of a period characterized by deglaciation, then 
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the Missouri River should presently, or in the most recent geologic 

time, have left a record indicating a degradational episode. Such is 

not the case • 

Alluvial Geology and Engineering Behavior 

The deposits of the Missouri Alluvial Valley may be characteristically 

described as consisting of an upper A-7 unit underlain by a transitional 

A-4 unit and a basal A-3 unit. Although the majority of near-surface 

deposits have the characteristics of an A-7 engineering group soil, dif­

ferences in other properties affecting engineering behavior require 

subdivision of this material. As these proP,erties vary directly with 

alluvial environments of deposition, delineating these environments becomes 

extremely important if maps of alluvial geologic deposits are to have 

engineering significance. Kolb and Shockley (18) discuss at some length 

the engineering characteristics of Mississippi Valley deposits which 

require that they be mapped as being significantly different for engineering 

purposes. Many of these same characteristics have been noted in similar 

deposits of the Missouri Valley and will be discussed here. 

For most engineering projects, the thickness and distribution of 

fine-grained topstratum will materially affect constTuction practices and 

procedures. The thickness and distribution of these materials has been 

shown to vary within the alluvial valley and within different deposits. 

Fine-grained material is thinner and has less aerial distribution near 

the river than in the meander belt and flood basin areas. Point oars 

will commonly have less topstratum over them than will occur in associated 

channel fills, and flood basin deposits will commonly be composed of a 
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thicker fine-grained topstratum unit than either point bars or channel fills. 

Several properties of topstratum material 1':".ay affect its suitability 

for stabilization or as a foundation unit •. These are water content, organic 

matter content, and oxidation state. Point bar topstratum would generally 

be better material for rr1ost engineering purposes than channel fill or 

flood basin topstratum because of its lcw organic matter content, rela­

tively less saturated condition, and generally coarser nature. Channel 

fills would generally be the least desirable as an engineering material 

because of the high water and clay content characteristic of most of these 

deposits. The upper few feet are also relatively high in organic matter. 

Flood basin area deposits are relatively high in clay content and also 

contain the highest percentage of organic matter. These deposits tend 

to be better compacted and to have lower water content than do channel 

fill deposits. 

Stabilization of Alluvial Deposits 

It might be said that within or adjacent to the alluvial valley 

varying types of material and conditions warrant attempts at stabilization 

using a variety of techniques. Granular or mechanical stabilization might 

well be tried in the upper and lower segments of the valley where extensive 

deposits of gravel have been noted in the adjacent bluffs and Platte River 

Valley. If necessary, deposits of gravel may be located at depth below 

the valley surface and may be used. Within the valley proper, extensive 

sand, silt, and clay deposits occur at the surface and stabilization 

using combinations of these easily available materials is feasible. For 

higher class roads, cement or bituminous stabilization might be tried 

using available sand. 
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Stabilization of in-place clay sized material using lime might be 

attempted in almost any segment of the valley. 

A number of different environments and types of material may occur 

in close proximity within the alluvial valley. An opportunity thus exists 

to test the applicability of stabilization methods under naturally occurring 

conditions ranging from oxidizing to reducing environments, high to low 

organic matter, and high to low percentagesof fines. 
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