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INTRODUCTION 

A highway base course may be defined as a layer of granular material 

which lies immediately below the wearing surface of a pavement and must 

possess high resistance to deformation in order to withstand pressures 

imposed by traffic. 

A material commonly used for base course construction is crushed 

limestone. Sources of limestone, acceptable for highway bases in the 

state of Iowa, occur almost entirely in the Penn~ylvanian, Mississippian 

and Devonian strata. Performance records of the latter two have been 

quite good, while material from the Pennsylvanian stratum has failed on 

numerous occasions. 

The study reported herein is one segment of an extensive research 

program on compacted crushed limestone used for flexible highway base 

courses. The primary goals of the total study are: 

1. Determination of a suitable and realistic laboratory method of 

compaction. 

2. 

3. 

Effect of gradation, and mineralogy of the fines, on shearing 

strength. 

Possible improvement of the shear strength with organic and in­

organic chemical stabilization additives. 

Although the study reported herein deals primarily with the third goal, 

information gathered from work on the first two was required for this 

investigation. 

The primary goal of this study was the evaluation of various factors 
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of stability of three crushed limestones when treated with small amounts 

of type I Portland cement. Investigation of the untreated materials has 

indicated that shear strength alone is not the controlling factor for 

stability of crushed stone bases. Thus the following observations were 

made in addition to shear strength parameters, to more adequately ascer­

tain the stability of the cement treated materials: 

1. Volume change during consolidation and shear testing. 

2. Pore pressure during shear. 

The consolidated-undrained triaxial shear test was used for determina­

tion of the above factors. 
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REVIEW OF LITERATURE 

Strength of a flexible pavement is derived from distribution of a 

load over the subgrade through the subbase, base, and surface courses 

rather than by the load carrying capacity of the pavement as a whole. 

The base course is often a layer of granular material, innnediately below 

the surface course, whose function is to distribute intense surface 

loads over a large area of the subgrade. 

The primary requirement for an aggregate to be used as base course 

material is stability, which may be defined as the ability to transfer 

wheel loads to the underlying layers without permanent deformation (20). 

The stability of a granular material is dependent upon particle size dis­

tribution, particle shape, relative density, internal friction and co-

hesion (27) . 

In order to determine the effect of Portland cement on the three ma­

terials under investigation it is necessary to understand the sources 

of variation of stability in granular materials. 

Tests have shown that the chemical composition of a material has 

little to do with the shear strength of an aggregate (16). Instead, the 

shape and texture of the particles, to an equal degree, are the primary 

controlling factors affecting the shearing properties of a given aggre­

gate. A variation in any one or both of these properties has a marked 

effect on the strength of the material (16). 

The amount of material passing the No. 200 sieve and the plasticity 

of the fines have been shown to have an effect on the shear strength 
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of granular materials (17). The result of variations in the amount of 

material passing the Nao 200 was investigated by using 3/4 inch maximum 

size crushed stone and varying the amount of fines to 1, 4.5, 9, 13, and 

20%. Wi_th respect to load carrying capacities, it was found that 9% was 

optimum. Higher or lower values tended to decrease strength. The optimum 

value was found to decrease as the maximum size of the aggregate increased. 

Plastic fines act as a lubricating agent and generally result in 

larger amounts of strain for given stress conditions (17). There is a 

rapid increase in the strain required to develop given stress conditions 

as the plasticity index is increased (17). Cement contents of the order 

of two to five percent by weight usually reduce the plasticity of granu­

lar soils, having indices of the order of 10 to 15, to values of the order 

of five or less (11). 

A granular material is cohesionless but exhibits an apparent cohesion 

which has been attributed to particle interlocking (13). Volume ex­

pansion is necessary in a granular material to allow the interlocking 

particles to slide up over each other and allow deformation to occur. 

As sliding begins, the shear stress and rate of volume expansion reach 

maximum values (18). 

The effect of particle interlocking is considered to be of consider­

able importance in the frictional properties of an aggregate (13). Par­

ticle interlocking is achieved through increased density, increase of 

gravel size content and angular particle shape. The effect of1 particle 

interlock is especially significant at low lateral pressures, but is less 

pronounced as the lateral pressure increases. This condition may produce 
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an envelope of limiting shear resistance which is not a straight line 

but concave downward, particularly at low stress values (13). 

Addition of cement to a soil increases the resistance to frost ac­

tion, as well as increasing the strength characteristics. Classifica­

tion of a material as soil-cement indicates that cement content is of 

sufficient amount to resist frost action as determined by the ASTM 

Standard 0560-57 Freeze-Thaw test (2). The terms cement modified or 

cement treated are used as a prefix for any material having a cement content 

less than that required for classification as soil-cement. 

Investigations into the effects of cement treatments of crushed lime­

stones are almost nonexistent. Work has been conducted on various gravels 

which have usually been compared with untreated crushed limestone. 

The first known application of stabilization of granular material 

with cement occurred in 1915 when an interprising contractor in Sarasota, 

Florida, built a section of Oak Street by dredging shell from the bay, 

mixing it with sand and cement, using a plow and then compacting the sur­

face with a 10-ton steam roller. Speculation is that the contractor re­

sorted to this unorthodox method of construction after a breakdown of 

concrete mixing equipment (11). 

One of the most significant developments in the field of soil-cement 

was that the moisture-density relationship for soils was also valid for 

mixtures of soil and cement when compacted immediately after mixing and 

prior to cement hydration. It was found that optimum moisture content as 

determined by moisture-density test not only produced the highest density 

for a particular compactive effort but also provided sufficient water 

for cement hydration and maximum strength (11) . 
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Structural properties of soil-cement mixtures are dependent on 

several factors including the following (10): 

1. 

2. 

3. 

4. 

Physical and chemical properties of the soilo 

Cement content of the mixture. 

Moisture content of the mixture. 

Density of the compacted mixture. 

5. Age of specimens and the method of curing. 

Factors 1, 2, and 5 are of primary importance for the investigation re­

ported herein. 

In more granular soils, the cementing action approaches that of con­

crete, except that the cement paste does not fill the voids between the ag­

gregate (11). In sands, the aggregate becomes cemented only at points of 

contact. The more densely graded the soil, the smaller the voids, the 

more numerous and greater the contact areas, and the stronger the cement­

ing action. Uniform sand has a minimum amount of contact area and re­

quires more cement than well-graded granular materialso Because well­

graded granular soils generally have a low swell potential and low frost 

susceptibility, it is possible to stabilize them with lesser cement con­

tents than are needed for uniformly graded sands, silts and clays. For 

any type of soil, the cementing process is given maximum opportunity to 

develop when the mixture is highly compacted at a moisture content that 

facilitates both the densification of the mix and the hydration of the 

cement (11). 

Investigation into the shear strength of soil-cement mixtures under 

triaxial loading has been reported by Balmer (4). Results of triaxial shear 
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from laboratory tests on cylinders molded from two granular and two fine­

grain soils were presented. The range of lateral pressures used for this 

study was 0 to 60 psi. This was felt to be a realistic range for road 

or runway base materials and is probably within the range of stresses 

developed under traffic. Balmer (4) noted with granular materials that 

the angles of internal friction were relatively constant and were unre­

lated to the percent of cement used. Cohesive strength of these materials 

increased rapidly as the cement content was increased; i.e., higher in­

creases in cohesion with granular than with fine grained soils having 

the same cement contents. Air-dried specimens showed marked increases. 

in ¢and c. Balmer (4) noted that as a specimen dried, water films sur­

rounding the particles became very thin and exerted high surface tension 

forces. 

Cement content or age had little influence on Poisson's ratio for 

any of the cement-treated soils in Balmer's study (4). For granular 

soils the average value for moist-cured specimens varied between 0.10 and 

0 .20. 

FLeld tests have been conducted on granular soil-cement and cement­

modified mixtures for highway base courses subjected to freezing and thaw­

ing (1). The tests showed that the load-carrying capacities of the stand­

ard soil-cement mixtures were not adversely affected by exposure for five 

years to freezing and thawing conditions existing in the Skokie, Illi­

nois area. In contrast, the load-carrying capacities of the cement­

modified materials containing the lower cement contents were reasonably 

high after exposure for one winter, but were reduced during the 5-year 
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test period. The capacity of the cement-modified materials to support 

loads, remained significantly greater than those of the untreated soils 

of the same thickness, however. 

Granular materials containing low cement contents may be used to a 

distinct advantage over substandard granular materials in all climates, 

though their greatest advantage is in climates where freezing-and­

thawing is not severe (1). However, additional field tests are needed 

to develop specifications for the proper and effective use of these ma­

terials both in "fr.ost" and "nonfrost" regions. 
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MATERIALS 

Three crushed stones were used in this project. Each was selected 

in cooperation wi.th the Iowa State Highway Commission Director of Research, 

Materials Engineer, and Geologist, as being representative of I.S.H.C. 

approved crushed stone for rolled stone bases. 

1. 

2. 

3. 

A weathered, moderately hard limestone of the Pennsylvania Sys­

tem obtained from near Bedford, Taylor County, Iowa. Hereafter 

referred to as the Bedford sample. The system outcrops in nearly 

half of the state. Formations in this system are generally quite 

soft and contain relatively high amounts of clay. 

A hard limestone obtained from near Gilmore City, Rumbolt County 

Iowa. HP.reafter referred to as the Gilmore sample. This ma­

terial is from the Mississippian System which outcrops in a 

rather discontinuous and patchy band across the center of the 

state. Formations are quite variable but contain ledges of con~ 

crete quality rock. 

A hard dolomite obtained from near Garner, Hancock County, Iowa. 

Hereafter referred to as the Garner sample. From the Devonian 

System, this material is very uniform and has shown remarkable 

similarity through several counties. 

Having met Iowa State Highway Commission Specifications, the three 

crushed limestones were tested in the same condition that they were re­

ceived from the quarry stockpile, i.e., physical and chemical properties 

were in no way altered upon receipt. 
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Chemical and mineralogical properties of the three stones as deter­

mined by X-ray identification, measurement of pH, cation exchange capacity 

(C E.C.), and hydrochloric acid soluble and non-soluble minerals are shown 

in Tables 1, 2, and 3. Table 4 presents the engineering properties of 

each of the three materials. 

The cement used for this investigation was a Type I Portland cement 

obtained locally. 

Prior to the investigation of the shear strength of the Portland 

cement treated crushed limestones, investigations were conducted on the 

freeze-thaw durability of the treated material (14). The ASTM brushing 

loss test showed that the required cement content for classification as 

soil-cement was 5,3 and 3% by weight for the Bedford, Garner, and Gilmore 

samples, respectively. Throughout the remainder of this investigation, 

the 3% Garner and Gilmore treatments are the only series that can be clas­

sified as true soil-cement. The remaining treatments are classified as 

cement-modified material. 
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Table 1. Mineral constituents of the whole material by X-ray diffraction~( 

Stone Calcite/dolomite 
des. Calcite Dolomite Quartz Feldspars ratioa 

Bedford Pred. Small amount Trace Not ident. 25 

Garner Pred. Second pred. Trace Not ident. 1.16 

Gilmore Pred. None Trace Not ident. 

aObtained from X-ray peak intensity. 

Table 2. Non-HCl acid soluble clay mineral constituents of the whole 
material by X-ray diffraction* 

Stone Vermiculite- Micaceous 
des. Mont. chlorite material Kaolinite Quartz 

Bedford None Not ident. Pred. Poorly crystalline Large amt. 

Garner None Small amt. Pred. Second pred. Large amt. 

Gilmore None None None Pred. Small amt. 

Table 3. Quantitative chemical analysis of whole material* 

Non-HCl Non-clay mineral, HCl soluble 
soluble Non-HCl calcareous 

Stone pH CEC, clay minerals, Soluble material, material 
des. (me/100.0g) % % % 

Bedford 9 .40 10.88 10 .92 Trace 89.08 

Garner 9.25 10.60 5.70 1.03 93.27 

Gilmore 8.99 5.86 1.66 Trace 98.34 

* Representative sample was ground to pass No. 100 sieve. 
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Table 4. Representative engineering properties of crushed stone 
materials 

Textural composition, % 
Gravel (2.00 mm) 
Sand (2.00-0.074 mm) 
Silt (0.074-0.005 mm) 
Clay (0.005 mm) 
Colloids (0.001 mm) 

Atterberg limits,% 
Liquid limit 
Plastic limit 
Plasticity index 

Standard AASHO-ASTM density 
Optimum moisture content, 
% dry soil weight 
Dry density, pcf. 

Modified AASHO-ASTM density 
Optimum moisture content, 
% dry soil weight 
Dry density, pcf. 

Specific gravity of minus 
No. 10 sieve fraction 

Textural classification 

AASHO classification 

Bedford 

73.2 
12.9 
8.4 
5.5 
1.7 

20.0 
18.0 
2.0 

10.8 
128.0 

8.0 
133.5 

2.73 

Garner 

61.6 
26.0 
10.2 
2.2 
1.4 

Non-
plastic 

7.6 
140.5 

5.4 
147 .6 

2.83 

--Gravelly sandy 

A-1-b A-1-a 

Gilmore 

66.8 
23.3 
5.9 
4.0 
0.9 

Non-
plastic 

9.3 
130.8 

5.7 
140 .8 

2.76 

loam--

A-1-a 
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METHOD OF INVESTIGATION 

Program of Study 

The investigative program was established to determine the effect 

of small amounts of cement on the overall stability of the three crushed 

stone materials. The cement contents to be used were set at 1% and 3% by 

dry weight. Previous investigations in this range of cement contents for 

use with crushed limestone are quite limited. Field tests have shown that 

cement modified crushed limestone performs satisfactorily and is of con­

siderable benefit in improving frictional properties (1). 

The selected method of testing was the consolidated-undrained triaxial 

shear test. For each of the three materials, a series of six specimens 

were tested with 1% and 3% cement following 7 and 28 day curing. 

Specimens in each series were tested at lateral pressures of 10, 20, 30, 

40, 60, and 80 psi. This range of lateral pressures appears to be repre­

sentative of the conditions occurring in most base courses. 

Testing Procedure 

Moisture-density relationships obtained from standard Proctor density 

tests on the cement treated material were not used in this investigation. 

Initially several specimens were compacted at optimum moisture content 

as determined by the standard Proctor density test but it was not possible 

to achieve standard Proctor density. Moisture-density tests were then 

conducted using the vibratory compactor which resulted in a slightly dif• 

ferent optimum moisture content while achieving standard Proctor density. 
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These moisture-density relationships were then used for the preparation 

of test specimens. 

Table 5 shows the moisture-density relationships for the three ma-

terials at the two cement contents for vibratory compaction and the 

standard Proctor density of the untreated material. It is readily ap-

parent that there is little variation in density due to the method of 

compaction or the addition of cement. 

Table 5. Moisture-density relationships for three materials at two 
cement contents 

Bedford 
Opt. M .C. D .D. 

Standard Proctor 
untreated 10.9 127.4 

Vibratory 
1% Cem. 10 .2 127.6 
3% Gem. 9.7 128.3 

Garner 
Opt. D .D. 

7.6 140.5 

6.6 138.4 
5.7 135.1 

Gilmore 
Opt. M.C. D.D. 

9.4 130 .8 

9.8 131.0 
9.0 133 .5 

An adequate quantity of crushed stone to produce one specimen, plus 

300 gm. for eventual moisture content determination, was air dried, then 

placed in a sealed container until time of molding. Cement for each 

specimen was individually weighed and placed in sealed containers. 

Prior to molding, the crushed stone and cement were dry mixed by hand 

for uni.form distribution of the cement and prevention of particle degra-

dation. The necessary quantity of water was then added and hand mix-

ing was continued. Following mixing, the material was allowed to 

mellow in a moist atmosphere for ten minutes after which the material was 
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again hand-mixed and a 150 gm moisture sample removed. 

Each specimen was compacted by vibration in a four-inch diameter by 

eight-inch high cylindrical mold attached to a Syntron Electric Vibrator 

table. The material was placed in the mold in four equal layers and 

rodded 25 times per layer with a 3/4 inch diameter, rounded tip rod. A 

constant frequency of 3600 cycles/min. and amplitude of 0.368 mm were 

used with a surcharge weight of 35 lb for a period of two minutes. Pre­

vious work has shown that this method of compaction is capable of achiev­

ing standard Proctor density with a minimum amount of degradation and 

segregation of the specimen (14). The. last 150 gm of the mix was used 

for final moisture determination. 

After compaction, height of the specimens was measured while in the 

mold. They were then extruded, weighed, wrapped in two layers of Saran 

wrap and aluminum foil, and the ends sealed. The specimens were then 

cured for the required periods in an atmosphere of about 750F and near 

100% relative humidity. Prior to testing each specimen was again weighed 

and the height and diameter measured. 

The double bay testing machine used in this study was fabricated by 

the I.S.U. Engineering Shop to specifications established by the Soil 

Research Laboratory (Figure 1). Rate of deformation of specimen is 

variable from about 0.0001 to 0.1 inch/min. Axial load capacity is 

11,000 pounds per cell, and is determinable by proving rings. 

Positive and negative pore water pressures were measured with Karol­

Warner Model 53-PP pore pressure units. Change of specimen volume was 

measured by a device also developed by the Soil Research Lab, and is 

capable of precisions of near 0.01 cubic inch. 
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Fig. la. Triaxial test cell, pore pressure unit, volume change device 



-------------------

Figure 1 . Triaxial shea r testing machine 
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Specimens were sealed in a 0.025 inch thick, seamless, rubber mem­

brane with saturated 1/2 inch thick corrundum porous stones on top and 

bottom. The triaxial cell was filled with de-aired water to within about 

l~ inch of the top, prior to consolidation. A flexible line running 

from the base of the cell to the bottom of the volume change device al­

lowed flow of water between the two. Initial water level in the volume 

change device was adjusted by raising or lowering the device until the 

water level in the cell and the volume apparatus coincided with the cross 

hair in the eyepiece of the volume change device. As the specimen changed 

volume, the device was lowered or raised until the water level was again 

at the initial level. The volume change at this time was equal to the 

distance the device was moved times the interior cross-sectional area 

of the tube. 

A rate of axial deformation of 0.01 inch/min. was used for all tests, 

producing a rate of strain of approximately 0.1% per min. Readings of 

pore pressure, volume change, and axial load were taken at increments 

of 0.025 inch of axial deflection. 

In the early stages of testing, attempts were made to continue the 

test until a constant specimen volume and/or pore pressure was reached. 

It was soon noted that total deflection of more than one inch resulted in 

a ruptured membrane, loss of the specimen and rapid loading of the pore 

pressure apparatus. Remaining tests were therefore terminated at maxi­

mum of one inch deflection. 



I 
I 18 

I ANALYSIS OF RESULTS 

I Failure Criterion 

I 
Initial step in the analysis of test results was to establish a 

criterion for failure. A large number of triaxial investigations have 

I been analyzed on the basis of maximum deviator stresses, (a
1
-a

3
), as 

the condition of failure. Holtz (12) reported in 1947 that this criterion 

I of failure was valid where complete drainage can be developed during test-

I 
ing or if pore pressure is not developed within the specimen during the 

test. When pore pressure exists within a specimen, the concept is no 

I longer applicable. He proposed the maximum effective stress ratio 
al -a3 al 
--- or - as the "true" failure criterion when pore pressure exists 

a3 a3 

within a specimen during shear. I 
I 

Shearing strength of a soil, assuming only frictional resitance, is 

dependent upon the contact pressure between the soil grains. Presence of 

I pore water pressure alters the contact between grains and thus affects 

the resistance to shearing. 

I Loading of a granular soil specimen results in a volume decrease 

I 
initially, after which expansion begins, resulting in a decrease in pore 

pressure, and a corresponding increase in effective lateral pressure. The 

I increase in the effective lateral pressure results in a gain of axial 

strength even though failure may have already begun. Holtz (12) states 

I that because of this type of failure, "the maximum principal stress ratio 

I 
appears to represent the most critical stress condition of the point of 

incipient failure under variable effective axial and lateral stresses.'' 

I 
I 
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With regard to volume change, Holtz (12) made the following state-

A study of the volume change conditions during the tests in­
dicates that specimens consolidate to some minimum volume, after 
which the volume increases as loading is continued. It is be­
lieved that the minimum volume condition, or some point near 
this condition, indicates the condition of incipient failure. 
That is, the condition at which consolidation ceases and the mass 
begins to rupture. The maximum pore-pressure condition 
should occur when the specimen has been consolidated to a 
minimum volume, because at this point the pore fluid has 
been compressed to the greatest degree. 

The materials used by Holtz (12) were fine sand and sandy clayo 

Cement treated granular material used for the investigation reported here-

in did not follow the method of failure described by Holtz. After at-

taining the point of minimum specimen volume, the effective stress ratio 

continued to increase and a maximum value was achieved only after ex-

pansion had occurred. As mentioned previously, granular materials are 

capable of developing large resistances to shear by the phenomena of 

interlocking. Expansion occurs as the particles begin to slide over each 

other and as sliding just begins, the shear stress and rate of volume ex-

pansion reach a maximum value. This indicates that the difference in 

shear strength at minimum volume, and at maximum effective stress ratio 

may be an indication of the amount of interlocking within a granular 

material. 

Analysis of results reported herein will be based on both maximum 

effective stress ratio and minimum volume change as primary conditions of 

failure. Results for both methods will be compared with the untreated 

material and further justification for the minimum volume criteria as a 

condition of failure will be made. 
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Shear Strength Criteria 

The most corrnnon method of expressing the shear strength of a soil 

is by use of the Coulomb equation: 

T = c + 0 tan 0 
n 

in which T is the shear strength, c is the cohesion, 0 is the normal 
n 

stress on the failure plane, and 0 is the angle of internal friction. As 

the above equation indicates, the shearing strength is not a simple at-

tribute of the material but is a function of the normal stress. On the 

other hand, the envelope of failure described by 0 and c is a function 

of the material. The shear strength of a granular material is dependent 

upon the frictional forces developed at the contact points between the 

grains. These are a function of the effective normal stress rather than 

the total stress. The Coulomb equation modified for effective stresses 

becomes: 

T = c' + (cr - u) tan 0' 
n 

in which u is the pore pressure, c' and 0' are in terms of effective 

stress. For this investigation, the shear strength of the material was 

analyzed, in terms of ~· and c', by three methods. 

The Mohr diagram was the first method used for analyses and was con-

structed using the effective stresses obtained at the point of maximum 

effective stress ratio. It was readily evident that the results were not 

of textbook form, and that the determination of the tangential envelope 

of failure would be difficult. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 

21 

To obtain a better means of studying the stress conditions, a second 

method of analysis was used. This was a modified Mohr-Coulomb diagram 

in which ~(o1 -a3 ) was plotted against ~(cr1+03 ) at every point measured 

during testinga. The advantage of this method is that the stress condi-

tions are represented by a series of points instead of a circle, enabling 

more accurate positioning of the failure envelope. The slope of the re-

sulting failure envelope is designated as tan Cl', where Q' is the slope 

angle from horizontal, and the ordinate intercept as y. The modified 

shear parameters can be converted to ¢' and c' by using the following 

equations: 

sin ¢' = tan Q' , c' 
y 

cos ¢' 

Plotting the stress conditions to the point of failure represents a stress 

history of the material, and shows the method of stress build-up. 

The third method used, was the Bureau of Reclamation method of least 

squares. This is a mathematical process of determining the tangent line 

in terms of ¢' and c' and assumes a straight-line envelope of failure in 

that all results are on a common failure envelope. Variations in the 

strength of individual specimens tend to alter the strength parameters 

determined by this method, whereas with the m.odified Mohr-Coulomb method, 

these variations are easily noticed and the results are not affected by 

specimen variation. 

The modified Mohr-Coulomb diagram was used for visual analysis 

and determination of the validity of results. The Bureau 0f Rec-

lamation method was used for the determination of the 

a-a 1 and 03 represent the maximum and minimum effective principal stresses, 
respectively. 
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shear strength parameters. 

Specimen Variation 

During analyses of the shear strength of the cement treated crushed 

stones by means of the modified Mohr-Coulomb diagram it was observed 

that there were minor discontinuities in the failure envelopes. These 

discontinuities were initially attributed to small variations in density 

of the specimens and two methods were used to determine if such was the 

cause of the irregularities. First, additional specimens were tested 

under the same conditions of length of cure and lateral pressure as the 

initial specimens that appeared erratic. Though tested under identical 

conditions, the specimens again indicated some variations, though it was 

noticed that the amount of variation tended to decrease at the conditions 

of higher lateral pressure. 

Second, a separate study was conducted on the Bedford crushed stone 

with 3% cement and 7 day cure. The objective of this study was to de­

termine the effect, if any, of variations in density and the consolida­

tion effect of the lateral pressure. 

Effect of variations in density, within the range of standard 

Proctor density of ±2 pcf, was observed by testing several identical 

specimens at the same lateral pressure. A total of ten tests were con­

ducted at a lateral pressure of 10 psi. A plot of major principal 

effective stress against density indicated no noticeable relationship 

within the range of density used. 

The effect of the consolidating pressure was determined by consoli­

dating specimens at 80 psi, reducing the lateral pressure to 10 psi and 
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then shearing the specimen. A total of five tests were conducted in this 

manner. Maximum effective stress was unaffected but the shape of the 

stress-strain curve was altered as shown in Figure 2. 

It was felt that the variations in strength were primarily due to 

uneven distribution of cement within the specimen. It was observed during 

compaction that the fines did not always remain evenly distributed within 

a specimen. Since the cement would tend to undergo the same pattern 

of movement as the fines, an uneven distribution of fines should indicate 

an uneven distribution of cement. 

The fines in the cement treated Bedford crushed stone tended to mi­

grate to the top of each specimen and varying amounts were ejected from 

the mold. Along with the fines, a very small amount of cement was un­

doubtedly ejected, resulting in a slight reduction of the cement content 

within the specimen. The total amount of material ejected from the mold was 

not uniform (i.e., ranged from none to several grams) but tended to vary with 

each specimen. 

The Gilmore crushed stone had a migration of fines to the base of 

the mold during compaction, probably resulting in a slightly higher con­

centration of cement in the base and some deficiency at the top. The 

Garner crushed stone showed no evidence to indicate movement of fines. 

M i.gration of fines could be a result of the amount of fines and the 

moisture conditions present in the specimen(s). Garner curshed stone had 

a low optimum moisture content and therefore had less tendency to eject 

water and fines from the mold during compaction. Bedford and Gilmore 

materials had higher optimum moisture contents and therefore had a greater 
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tendency for migration of water, fines and cement during compaction. 

A possible reason for the migration of fines to the base of the Gilmore 

specimen may have been the low amount of fines present. Evidently the 

quantity of fines was not sufficient to fill the voids between the larger 

aggregates. Vibration during compaction caused movement of fines to the 

lower portion of the specimen resulting in a smooth uniform appearance at 

the base while the top of the specimen was rough and somewhat lacking in 

fines. 

The Bedford crushed stone had a larger amount of fines than the 

Gilmore with 15.6% passing the no. 200 sieve. Evidently this amount of 

fines was excessive as indicated by ejection of fines from the mold. 

Migration of the fines during compaction may not be the important factor, 

but the fact that the cement additive may follow the same pattern of move­

ment is important. A loss of fines would indicate a reduction in cement 

content whereas a concentration of fines would indicate an increase of 

cement, both resulting in potential variations in strength. 

The minor change in shear strength due to variation of individual 

specimens, however, did not account for the discontinuities in the modified 

Mohr-Coulomb diagram. Figure 3 shows the modified Mohr-Coulomb diagram for 

the Bedford crushed stone treated with 1% cement and cured for 7 days. 

The limiting envelope is shown, as well as the stress conditions for 

equal increments of strain. Specimens sheared under conditions of cr3 

10, 20, and 30 psi appear to fall on a connnon line, while the three re­

maining specimens fall on another envelope of failure. Thus, the pattern 

of stress increase appears to be the same for the first three specimens 
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while the remaining specimens follow a different pattern. 

The above mentioned conditions suggest that the specimens undergo 

some form of alteration between the conditions of o
3 

= 30 psi and o
3 

= 

40 psi. Analysis of the consolidation data indicates what appears to be 

a preconsolidation confining pressure at about 40 psi, resulting in a 

definite break in the consolidation curve. It is thus possible that 

changes resulting from consolidation have an effect on the shear strength 

of the specimen. 

Discontinuities in the modified Mohr-Coulomb diagrams did not appear 

in the same form for all conditions of material, cement content, and length 

of cure. In all cases however, the irregularities appeared to be very 

subtle. Due to the somewhat limited number of specimens tested in each 

series, it is possible only to suggest the presence of a non-linear envelope 

of failure. The remaining analysis of results assumes the envelope to be 

linear, however, and treats these minor irregularities as variations in 

specimens. 

Shear Strength 

The modified Mohr-Coulomb diagrams for the cement treated materials 

are shown in Figures 4 to 15. The envelopes of failure are for conditions 

of maximum effective stress ratio, and minimum volume for the cement treated 

material, and for conditions of maximum effective stress ratio only, of 

the untreated material. 

Failure envelopes for the Bedford stone appear to be relatively 

parallel in all cases, indicating that the angle of internal friction is in­

dependent of the amount of cement present, and the length of cure. Additional 

cement results mainly in a separation of the envelopes of the cement treated 

stone from that of the untreated material, i~dicating a change in cohesion. 
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A certain amount of sample variation will be noted in the figures, but 

most points fall on or near the envelope of failure. 

Analysis of cement treated Garner stone was somewhat difficult due 

to a large degree of specimen variation. The variation is more pronounced 

at the point of minimum volume than it is at the maximum effective stress 

ratio and may be due to the method of testing. Rate of stress increase 

was very rapid to the point of minimum volume, and it is doubtful that 

the condition of minimum volume actually occurred at the exact instant 

the load reading was taken. To accurately determine the stress conditions 

at minimum volume of the Garner it would have been necessary to con­

tinuously measure the volume change. 

Addition of 1% cement to the Garner crushed stone appears to alter 

the angle of internal friction as well as the cohesion; whereas 3% cement 

causes a large increase in cohesion with little change in the friction 

angle. 

Cement treated Gilmore stone also had a large amount of sample 

variation, but not as pronounced as the Garner. Both cement contents 

appear to affect the cohesion and angle of internal friction of the 

Gilmore. 

Shear strength parameters determined for the various conditions 

of cement content, and length of cure are presented in Table 6. 
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I Table 6. Shear strength parameters determined by least squares method 

Failure criteria 
Material and Maximum effective stress ratio Minimum volume 

treatment 0 I ' degrees c' psi 0', degrees CI' psi ' 
I 

Bedford crushed stone: 
Untreated 45.7 6.7 46.2 4.2 I 
1% cement 7-day cure 47.0 24 .2 47.9 15.9 
170 cement 28-day cure 44.6 42 .5 45.5 29.6 
3% cement 7-day cure 47.0 67.0 47.7 56.6 
3'/,, cement 28-day cure 45.3 78.7 46.0 70.5 

I 
Garner crushed stone: 

Untreated 49.2 14.2 49.5 5.6 I 
170 cement 7-day cure 54.6 21.6 53.1 9.2 
l7o cement 28-day cure 49.0 41.2 46.3 30.4 
3% cement 7-day cure 50.1 90.5 50.6 64.6 I 
3% cement 28-day cure 51.0 96.2 51.2 87.9 

Gilmore crushed stone: 
Untreated 45.l 17.1 45.5 8.9 I 

I 
1% cement 7-day cure 50.6 18.1 51.8 0.8 
1% cement 28-day cure 51.2 18.2 51.5 3.2 
3/o cement 7-day cure 48.6 57.4 49.0 43.8 
3% cement 28-day cure 50.6 64.0 51.l 52.3 
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Cohesion and angle of internal friction 

General Effect of cement treatment on the shear strength para-

meters of the three crushed stones can be more easily visualized by 

plotting cohesion with respect to the cement content as shown in Figure 16. 

Since only two cement contents were used, the points are connected 

with straight lines instead of smooth curves that may actually exist. 

It can be seen that for the Bedford material the gain in cohesion 

between the 7-day and 28-day cure periods is relatively uniform for both 

cement contents. 

Addition of 1% cement to the Garner stone appears to have 

little effect on cohesion after a cure period of 7 days. However, after 

a cure period of 28 days the cohesion is increased considerably. The ad­

dition of 3% cement to the Garner material causes a large increase in co­

hesion at 7 days cure and a further increase after 28 days cure. 

Addition of 1% cement to the Gilmore stone has only minor 

affect on the cohesion even after 28 days of curing. Increasing the 

cement content to 3% results in increased cohesion, but of a lower mag­

nitude than the other two stones. 

The relationship between cohesion and cement content is not consistent 

for the three materials indicating the possibility of varying mechanisms 

of stabilization. The effect of the cement on the three crushed stones 

can be more clearly shown in Figures 17, 18, and 19. The plots have no 

special meaning other than showing the relationship between 0' , c' 
' per 

cent cement, length of cure, and the condition of failure together, instead 

of attempting to analyze them individually. 
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As mentioned previously, granular materials tend to exhibit the 

ability to resist shear through interlocking, and the change in shear 

resistance from conditions of minimum volume to maximum effective stress 

ratio may be an indication of the degree of interlocking. The effect 

of interlocking tends to decrease at higher lateral pressures (17). 

-- -------1 

This can be shown by the fact that the difference between the stress con­

ditions at minimum volume and at maximum effective stress ratio decreases, 

as the lateral pressure increases. This variation in interlocking results 

in a slight decrease in the friction angle, and an increase in cohesion 

between conditions of minimum volume and maximum effective stress ratio. 

As may be noted from the data, it is difficult to determine the 

actual effect of the cement on the shear parameters of the materials. 

Not only are the properties of the materials altered by the cementing ac­

tion, but also by variations in moisture content, density, and gradation, 

from that of the untreated materials. To determine the effect of the bonding 

action of the cement it would first be necessary to determine the properties 

of the cement treated materials at a time of zero cure. Since this is 

not practical, an attempt will be made to determine the changes in shear 

strength between cure periods of 7 and 28 days for each of the cement con­

tents. Assuming that for a given material and cement content, the specimens 

are identical initially, the change in shear properties between 7 and 28 

days should be due primarily to the increase in strength of the cement bonds. 

Previous investigations into the effect of cement treatment on 

granular materials, have shown that cohesion increases with cement content, 
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but that the angle of internal friction undergoes little change. The 

Bedford stone appears to follow this pattern. At seven day cure, both 

cement contents show an increase in cohesion with a small increase in ~. 

At 28 day cure, the cohesion increases further, but there is a reduction 

in 0 from that obtained with the untreated stone. The results for both 

conditions of failure followed the same pattern. 

Bedford crushed stone The Bedford stone is quite porous, and the 

texture of the surface is fairly rough enabling the formation of a strong 

cement bond between the aggregate and the matrix. The coarse aggregate 

is somewhat rounded in shape, and there is a higher percentage of fines 

than in the other two materials. 

The change in stress conditions from minimum volume to maximum ef­

fective stress ratio, results in an increase in cohesion with a slight 

decrease in 0 for both the cement treated and untreated specimens, Figures 16 

and 17. The magnitude of this change appears to be constant for the varying 

conditions of cement content and length of cure. Cement tends to increase 

the interlocking action of the untreated material by bonding the fines. 

Increasing the strength of these bonds, through increased length of cure 

or additional cement does not appear to increase the degree of interlock-

ing. As the strength of the cement bond increases from 7 to 28 days there 

is an increase in cohesion with a reduction in 0. 

In summary, the addition of cement to the Bedford stone indicates 

that the cement bond tends to increase the cohesion, but has little effect 

on the shearing action within the material. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

49 

Garner crushed stone The Garner crushed stone treated with 1% 

cement at 7 days of cure has a large increase in 0 and a small increase 

in cohesion from that of the untreated material, Figure 18. After 28 

days of cure, the cohesion is increased and 0 is reduced to a value lower 

than the untreated. At a cure period of 7 days, the 3% cement treated 

material shows a large increase in cohesion with a small increase in 0 from 

that of the untreated material, and additional curing resulted in further 

increases in both cohesion and angle of internal friction. 

Visually the coarse aggregate of the Garner material has much the same 

shape and texture of the Bedford crushed stone. However, the Garner produces 

much higher densities than either of the other two stones, which is partially 

indicative of the presence of more points of grain to grain contact. The 

strength properties of any cement treated material are dependent upon 

the number of these contact points, as this is where cement bonds may de­

velop. Uniform sand has relatively few points of contact and requires 

higher cement contents for adequate stabilization. As the gradation of a 

material becomes more beneficially distributed, the cement content required for 

adequate stabilization tends to decrease. 

The variation in strength between individual specimens appeared to 

be more pronounced with the Garner crushed stone than was observed for 

the other two stones. Strength variation was not directly related to 

variations in density but may have been related to uneven distribution of 

cement within the specimen or some other form of sample variation. It was 

evident that the addition of cement had a much greater effect on the shear 

strength parameters of the Garner crushed stone than either of the other 
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crushed stones and thus, the variations in individual specimens would 

be more pronounced. 

The change in shear strength between the failure conditions of mini­

mum volume and maximum effective stress ratio for the 1% cement treated 

Garner does not follow the same pattern as the Bedford and Gilmore ma­

terials. Between these points there is an increase in both 0 and c. The 

fact that the angle of internal friction increases between these points 

cannot be explained by the information available. 

The addition of 3% cement to the Garner crushed stone tends to in­

crease interlocking as indicated by the high increase in cohesion and a 

slight decrease in ~ from conditions at minimum volume to maximum ef­

fective stress ratio. The change in strength properties between 7 and 

28 days cure, due to the increase in the strength of the cement bond, re­

sults in an increase in cohesion and an increase in the angle of internal 

friction. 

Gilmore crushed stone Gilmore stone did not react in the same 

manner as the Bedford or Garner stones, Figures 16 and 19. At the point of 

maximum effective stress ratio there was an increase in </J and c for both 

cement contents at 7 day cure. From 7 to 28 days cure, the cohesion of the 

1% cement treated material reduced slightly and had a fairly large increase 

in 0, while the 3/.. material had an increase in both '/J and c. 

The Gilmore stone is a very hard, angular material having the small­

est amount of fines of the three stones, Table 4. Untreated Gilmore 

specimens had a much greater tendency to collapse, when handled, than 
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.specimens of the other two stones, though produced a higher amount of 

cohesion, Table 6. The larger value of cohesion may be due to a higher 

degree of interlocking that the material ·can develop, as is indicated by 

the increase between the two conditions of failure, Figure 16, particularly 

at 0 and l'X, cement contents. 

It appears that cement may not function as just a bonding agent at 

points of contact between the larger Gilmore aggregate and the matrix as 

it does with the Bedford stone. Instead the cement tends to bond the fines 

together resulting in a matched or interlocked coarse material that de­

velops its strength from the interlocking rather than the bonds between 

the aggregate. To better illustrate this point, shear strength of a 

material composed of uniform spheres can be increased through the addi­

tion of smaller spheres which tend to fill the voids between the larger 

spheres and increase the effect of interlocking. The more rigid the ma­

terial in the voids can be made, the higher the degree of interlocking. 

The same is true for angular material, however it is capable of developing 

a higher degree of interlocking due to particle shape. The Gilmore stone 

is very angular resulting in very irregular shaped voids. The cement may 

tend to strengthen the fines present in the voids between the coarse 

aggregate and create rigid, coarser particles, matching the shape of the 

voids. 

The method of strength increase mentioned above can also be shown by 

the strength properties of the 1% cement treated Gilmore material at the 

point of minimum volume, Figure 19. The cohesion is reduced from 8.9 psi 

for the untreated material, to 4.8 psi and 4.7 psi for the 7 and 28 day cure 
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periods respectively. The angle of internal friction is increased from 45.5 

for the untreated material to 51.8 for the 7-day cure and 51.5 for the 28-day 

cure. 

The degree of interlocking as indicated by the increase of cohesion 

between minimum volume and maximum effective stress ratio is quite large 

as shown by the cohesion increase with a small decrease 0, Figure 19. 

The addition of 1'%. cement apparently does not result in bonding of 

the aggregate but results in bonding of the fines, increasing the angle 

of friction. Additional cement causes no further increase in 0 but re­

sults in higher cohesion. 

Pore Pressure 

Pore water pressures that develop in soil during loading are in­

dicative of the tendency for a s~turated soil structure to change volume 

with strain; i.e., negative pore pressure indicates expansion, while 

positive pore pressure indicates contraction. This condition is only 

valid when conditions of stauration or near saturation exist. A decrease 

in the degree of saturation will result in a decrease in the magnitude of 

pore pressure developed for equal amounts of volume change due to com­

pression of air in the voids. 

Figures 20 through 23 show the relationship of pore pressure to 

lateral pressure at both conditions of failure; i.e., maximum effective 

stress ratio and minimum volume. Irregularities can be attributed to 

variations in the degree of saturation. The difference between each pair 
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of curves is an indication of the amount of expansion required to develop 

the stress conditions at maximum effective stress ratio. At the lower 

lateral pressures, the difference is quite large, but tends to decrease 

with increasing lateral pressure and can be attributed to the greater 

amount of initial (consolidating) volume decrease at the higher lateral 

pressures. 

Increase in cement content generally resulted in lowering of pore 

pressures at minimum volume, and less expansion was required to reach the 

maximum effective stress ratio state. Comparison of Figures 21, 22, and 

23 with Figure 20 shows the obvious reduction in pore pressures due to 

cement treatment of the three crushed stones. However, reduction in 

pore pressure was much greater for the Bedford than for either the Garner 

or Gilmore materials. Cement probably reduces the plasticity of the 

fines in the Bedford and in turn reduces the tendency for volume de-

crease. 

Strain 

The amount of strain required to attain the failure conditions of 

minimum volume and maximum effective stress ratio are shown in Figures 

24 through 27. 

Addition of cement to a soil tends to form a brittle material; that 

is, the point of ultimate strength occurs within smaller increments of 

strain than for the untreated material. Increases in cement content 
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normally result in a corresponding decrease in the <lmount of strain re­

quired to reach ultimate strength. 

It can be seen from Figure 24 that the variance of strain between 

the conditions of minimum volume and maximum effective stress ratio is 

quite pronounced for the untreated material. Also the amount of strain 

required to achieve these conditions generally tends to increase with in­

creasing lateral pressure. 

Addition of cement to the three crushed stones tends to reduce the 

amount of strain required to achieve conditions of minimum volume and 

maximum effective stress ratio, Figures 25, 26 and 27. Increases in 

strength through incrc:.ises in the amount of cement, or length of cure, 

results in a corresponding decrease in strain. The effect of lateral 

pressure on the strain is not as pronounced for the cement treated materi­

al as for the untreated material. This is more evident for the Garner 

crushed stone than for the other two materials. 

As mentioned previously, between the conditions of minimum volume 

and maximum effect stress ratio, the specimen begins to expand which may 

result in disruption of the cement bond. Thus, as the portion of the 

strength due to the cementing action within a specimen is increased, due 

to increased cement content, or curing, there is a corresponding decrease 

i.n the amount or stc1in that can be tolerated between the conditions of 

minimum volume and maximum effective stress ratio. 

Volume Change 

The initial portion of the analysis of results was based on current 

methods of analysis of shear strength. It was felt that these forms of 
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analysis did not satisfactorily indicate the mechanism of failure. U:.;e 

of a different concept of failure in the analysis of results, has indi­

cated that shear strength only, as a means of evaluation of the overall 

stability of granular material, may result in values that are unique only 

to the method of testing, and which do not actually occur under field 

conditions. 

Evidence for this belief is suggested by the relationship between the 

major principal stress and volume change during initial phase of axial loading, 

Figure 28. With application of axial load for a given lateral pressure, 

the volume of the specimen tends to decrease, occurring almost entirely in 

the vertical direction. The specimen then reaches a point of minimum volume 

decrease after which the volume begins to increase with additional incre-

ments of strain. This volume increase must be entirely in the horizontal 

direction. During the initial portion of the expansion phase, the major 

principal stress ratio continues to increase until a point of maximum 

effective stress ratio is reached. As many investigators have indicated, 

this expansion is required to overcome interlocking and allow for the 

formation of a failure plane. 

It is felt by the authors, that this mode of failure develops only 

under conditions of constant lateral pressure such as in the triaxial 

shear test and that such conditions may not occur in the field since 

lateral pressures will increase as a result of resistance to ex-

pansion of the loaded material until a condition of limiting lateral 

support is achieved. At this point, the maximum lateral support is de­

veloped and the m<1terial fails by shearing as in the triaxial shear test. 
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Under field conditions this limiting value may be dependent upon the 

amount of restraint given by the shoulders and the surcharge adjacent to 

the point of loading, as well as the materials being utilized. 

The above mentioned form of stability is illustrated by the relation­

ship between the major principal stress and percent volume change, Figure 

28. Assume that a low lateral pressure exists in a base course material 

prior to the application of an axial load. As the load is applied, 

the base course material will deflect vertically downward, until a point 

of minimum volume is achieved. After achieving this point, horizontal 

expansion increases rapidly resulting in increased lateral support and 

increased bearing capacity. This progressive increase in lateral sup­

port will continue until a limiting value of lateral support is achieved. 

This tends to indicate that the stability of a granular material is not 

entirely a function of the shear strength, but must also be a function 

of the lateral support that can be developed, and of the expansion re­

quired to develop that lateral support. 

Another manner for the reader to visualize the above illustration 

is to assume an imaginary line tangential to the curves of Figure 28, 

beginning at zero volume change and moving up to the left towards about 

700 psi effective stress. The points of minimum volume for each lateral 

pressure condition are close to rhis line. As the axial load is applied, 

at a low lateral pressure, the stress increases to the point of minimum 

volume, lateral expansion starts, confining pressure increases and the 

process is repeated until a limiting value of confinement (dependent on 

restraint of shoulder, surcharge and type of material) is achieved. 

It is thus felt that the mode of failure in a base course is by pro­

gressive build-up of lateral support by lateral expansion of the loaded 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

700 

600 

·r-1 
Ul 
c. 

" Ul 500 
Ul 
Q) 
H 
+.I 
(/) 

Q) 

:> 
•r-1 
+.I 
u 400 (lJ 

ll-f 
ll-J 
r:rJ 

Q) 
r-f 
0.. 

·r-1 
u 
c: 

•o-1 300 H 
ri. 

H 
0 .,..., 
~ 

200 

100 

0 
-1.6 

65 

----·-0--·---
. ·-----( ·--.____ 

\ 
\ ,,,--· 

(60) 
-~ 

~. ---r--i220-:.L_) 

0 Point of 
Maximum effective 

stress ratio 

( ) Lateral pressure 

·--·Consolidated at 80psi 
sheared at lOpsi 

-1.2 -0.8 -0.4 
Volume Change, % 

I 
\ 

I 
I 

\ 

10 

/. 

0 .+0.4 

Figure.28. Major principle effective stress versus volume change for 
Bedford, 3% cement treatment, 7-day cure 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

66 

material. Prior to lateral expansion, the strength properties may be 

that of the laboratory tested material, but after lateral expansion oc­

curs, the strength properties of a given core of material are dependent 

upon the surrounding material. 

Initial compression under a small increment of strain has been re­

fered to as elastic compression because the elastic Poisson's ratio is 

less than one-half (26). As strain increases, expansion predominates, 

because the plastic Poisson's ratio may be greater than one-half (26). 

Reaction of the various specimens under load, with respect to volume 

change and axial strain, is shown in Figures 29 through 34. Initial 

slope of the curves shown, may be assumed to represent a degree of magnitude 

of Poisson's ratio. Since Poisson's ratio is defined as the ratio of 

lateral to vertical strain under axial loads, it can be shown that when 

lateral strain equals zero, volume change is equal to the axial strain 

and. the material is in a compressed state. Likewise, for a non-compressible 

material, for which Poisson's ratio is about 0.5, both the lateral and 

vertical strains are finite quantities and the volume change is near zero. 

It may be seen in Figures 29 through 34, that cement treatment of the 

three granular materials shifts the axial strain-volume change curves 

closer to the condition of zero lateral strain than with the untreated 

materials. The failure point of minimum volume is also much closer to 

this line for cement treated than for untreated materials. Thus, it can 

be seen that the amounts of both lateral and vertical strains developed 

in a treated specimen during axial loading may generally be reduced as 

compared to the untreated materials, up to the point of failure. 

For the untreated materials, the slope of the volume change-strain 

curves is much closer to the condition of Poisson's ratio equal to 0.5, 
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ind i_c;1ting that the material is undergoing a limited amount of lateral 

strain even though the volume is decreasing. The slope of the volume 

chDnge-strain curves for the cement treated materials is much closer to 

the condition of Poisson's ratio equal to zero, which can occur only when 

lateral strain is very small. Using the previous assumption that lateral 

str:.iin tends to increase lateral support, the cement treated materials have 

very little tendency to increase lateral support prior to the point of 

minimum volume due to the small amount of lateral strain developed. The 

effective stresses at the point of minimum volume should therefore be 

closely related to shear strength occurring under field conditions. 

The 1mtreated materials may tend to develop lateral strain even during 

light loadings, resulting in some increase in lateral support before the 

condition of minimum volume is reached. Thus the effective stresses at 

the point of minimum volume change, as determined under conditions of 

constant lateral pressure, may not be achieved under field conditions, but 

at least may be closer indications of potential field strength than 

lcib strengths at maximum effective stress ratio. 

Strength of cement treated crushed stone prior to minimum volume is 

primarily a function of the mixture. Strength of the untreated material 

under field conditions appears to be more closely related to the ability 

to develop lateral support than the strength characteristics of the 

material itself. 

Shrinkage cracking, that develops as the cement treated rolled stone 

base cures, could be detrimental to the strength of the base due to a 

reduction of lateral support in the region of any cracking. If the amount 

of shrink::ige is excessive, a large amount of lateral deflection would be 
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required to build up lateral support which can only occur after the 

ultinwte strength of the materia L is exceeded and the cement bonds begin 

to r:-upturc. This proct~ss could occur adj :_1cent to cracks in the base 

course and though it increases the amount of lateral support, the shear 

strength might actually be reduced. The smaller the quantity of cement 

added, however, the less the magnitude of cracking of cement treated 

crushed stone bdses. While shrinkage studies were not conducted as a 

part of this research, it is generally thought that up to 3% cement by 

d h ld 1 . k. 1 h h . . . ry weig t wou not resu t in excessive crac ing , t oug maintnining 

a much higher degree of total stability than the untreated stone. 

1 . 
Further studies are needed to substantiate this hypothesis, although 

axial expansion measurements of freeze-thaw test specimens of the cement­
treated stones by Merrill and Hoover tend to support the generality. 
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SUMMARY 

The objective of this investigation was to observe and analyze 

the effects of type I Portland cement on the stability of three crushed 

limestones. 

Specimens of the crushed stones containing O, 1, and 3% by dry 

weight of portland cement, cured for periods of 7 and 28 days, were 

tested by consolidated-undrained triaxial shear methods including 

measurement of pore water pressures and change of volume. 

Shear strength parameters of cohesion, c, and angle of internal 

friction, ¢,were determined on the basis of two failure criterion, i.e., 

maximum effective stress ratio and minimum volume. As previously indi­

cated (12), the magnitude of the difference in values of shear strength 

at the two criteria of failure may be an indication of the amount of 

interlocking within a granular material. Shear strength based on the 

failure criteria of maximum effective stress ratio is normally the greater 

due to the interlocking of particles and generally results in increased 

cohesion coupled with slight decrease in friction angle. All untreated 

materials in this investigation analyzed by the two criteria of failure 

followed the above pattern. The addition of cement in the Bedford and 

Gilmore stones resulted in similar shifting of shear parameters when 

analyzed by the two failure criteria but were of greater magnitude than 

those of the untreated. The Garner stone treated with 3% cement followed 

a similar pattern, whereas the 1% cement treatment increased both angle 

of friction and cohesion. Thus, in general, the addition of cement in 

the three crushed stones resulted in an increase in the shear 
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strength parameter cohesion, and was possibly due to an increased condi­

tion of interlocking. 

As previously noted (4), cement treatment of granular materials re­

sults in a relatively constant angle of friction, whereai cohesion in­

creases rapidly with increased cement content. However, addition of 

cement to the three crushed stones in this investigation produced vary­

ing values of shear strength p;:irameters with increasing cement contents. 

Cohesion of the treated Bedford stone increased by as much as 72 psi, 

while the angle of friction remained relatively constant, as compared 

with the zero percent cement specimens. Cohesion of the treated Garner 

stone increased nearly linearly with increase in cement content after 

28 days cure. However, ¢reduced slightly at 1% cement then increased 

at 3% cement content. Addition of 1% cement to the Gilmore stone pro­

duced relatively no changes in cohesion but increased ¢by about six 

degrees above thet of the untreated Gilmore. At 28 days cure, the addi­

tion of 3% cement in the Gilmore produced no additional change in ¢but 

significantly increased cohesion. It is felt that addition of 1% cement 

in the Gilmore may not result in a complete cementation, or bonding of 

the large aggregate, but rather in a bonding of the fines, increasing 

the interlocking frictional effects between the stabilized fines and the 

larger aggregates. 

Addition of cement to the three crushed stones reduced pore pressures 

to insignificant quantities. Change of pore pressure from failure 

conditions of minimum volume to maximum effective stress ratio may indicate 

th~ magnitude of expansion occurring during this phase of shear. Treat-
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ment of the crushed stones with cement significantly reduced the mag­

nitude of the above change and was most pronounced with the Bedford 

stone, possibly due to reduction of plasticity of the fines. 

Cement treatment reduced the quantity of strain required to achieve 

ultimate strength by either criteria of failure as compared with the un­

treated materials. Magnitude of strain at failure for all three treated 

stones was relatively independent of lateral, or confining, pressures 

but appeared to vary with cement content and length of cure, i.e., decreased 

with increasing cement content and cure period. Magnitude of strain 

at failure of the untreated stones generally increased with increasing 

lateral pressures. 

Analysis of volume change characteristics of the cement treated 

materials led to the premise that shear strength alone does not fully 

explain the behavior of a granular material under actual field condi­

tions. As the untreated materials were axially loaded, there may have 

occurred a reduction in volume as well as a small quantity of lateral 

strain. In a base course, tendency for lateral expansion may be resisted 

by the adjacent material resulting in increased lateral support. This 

suggests that stability of a granular material is not entirely a function 

of the shear strength but must also be a function of the lateral restraining 

support that can be developed and the amount of expansion required to 

achieve this support. 

The addition of cement to the three granular materials reduced the 

amount of lateral strain developed up to the point of minimum volume 

failure criteria, resulting in a potential Poisson's ratio of near zero. 

Thus the strength properties of the cement treated materials at the point 
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of minimum volume may more adequately represent field strength and 

stability conditions, than use of the strength properties at maximum 

effective stress ratios. 
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CONCLUSIONS 

Ultimate strength of a treated granular base course material may not 

be the main criterion for use in highway design. 

Stress conditions .:.it the point of minimum volume may be more closely 

related to actual field conditions than maximum effective stress 

ratio, due to a decrease of magnitude of lateral strain. 

Mechanism of stabilization resulting from the addition of cement is 

not uniform for the crushed stone materials used in this investiga­

tion. Addition of cement to the Bedford stone appears to increase 

the cohesion of the material with little effect on the frictional 

parameter. Addition of 1% cement to the Garner stone appears to af­

fect both cohesion and the angle of internal friction, while the ad­

dition of 3% cement results in a large increase in cohesion with 

little change in the angle of internal friction from that of the un­

treated material. Addition of 1% cement to the Gilmore stone has a 

marked effect on the friction parameter but little on the cohesion; 

additional cement has no further effect on the friction parameter 

but tends to increase cohesion. 

Cement treatment significantly reduces pore pressures developed in 

all three crushed stones during shear and may indicate a general re­

duction in the overall compressibility of the material. 

Amount of strain at failure decreases with increased cement content 

or length of cure. 
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Stability of an untreated granular base course may be dependent up­

on the amount of lateral restraint that exists prior to loading and 

the ability to increase this restraint through resistance to lateral 

expansion within the loaded area. Addition of cement reduces the 

amount of lateral expansion developed prior to the failure condition 

of minimum volume. Thus the stability of the cement treated material 

prior to minimum volume appears to be a function of the material 

rather than the conditions of increasing lateral support found with 

the untreated material. 

Further Investigations 

The authors feel there is a need for further research into the lateral 

deformation characteristics of granular materials through direct measure­

ment of lateral stress and strain. Of particular importance are the 

deform0tion characteristics of dynamic, rather than relatively static 

conditions of axial loading. Eventually, quantitative field tests should 

be conducted to determine the magnitude and manner of development of 

12teral restraint. Thus knowing the reaction of the material under tri­

axial static and dynamic loadings, and the manner in which the material 

res is ts lateral deformations under field conditions, a method of test 

could be developed wherein actual conditions of increasing lateral 

support occurring under field conditions might be simulated in the 

laboratory. 
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Table 7. Summary of triaxial test data for Bedford specimens with 1% cement additive 

Lateral Initial Minimum volume condition Maximum effective st~ess ratio 
pressure Moisture Dry den- al 03 Strain Volume 01 03 Strain, Volume 

psi content,% sity, pcf psi psi % change,% psi psi % change,% 

7-day cure: 
10 10.56 127.8 164.6 9.3 1. 99 -0.78 190.7 9.5 2.62 -0. 77 
20 9.63 124.2 254.7 19.8 1. 71 -0.69 268.8 20.1 2.34 -0.64 
20 9.81 127.0 234.3 19.7 1.26 -0.68 282.4 20.6 2.21 -0.12 
30 9.59 121. 3 267.2 29.7 1. 52 -0. 74 296. 7 29.9 2.74 -0.28 
30 9.04 125.8 283.8 29.5 1.41 -0.57 325.0 30 .1 2.35 -0.29 
40 9.45 122.0 311. 5 39.4 1.43 -0.69 351.6 39.8 2.66 -0.37 
40 9.67 123.9 292 .2 39.2 1. 54 -1.11 348.3 39.5 3.07 -0.73 
60 9.79 126.4 482.9 59.3 2.40 -1.03 516.1 59.4 3.69 -0.67 
80 10.40 126.3 638.5 78.4 3.54 -1.23 640.4 78.4 3.86 -1.17 

CX> 

°' 28-day cure: 
10 10.86 125.7 132. 7 9.5 1. 60 -0.64 226.6 10.9 3.85 -0.07 
20 9.97 126. 9 307.4 19.8 1. 69 -0.87 334.2 20.6 2.32 -0.43 
30 9.42 126. 3 378.6 29. 7 1.58 -1.02 410.9 29.7 2.21 -0.62 
30 9.83 125. 5 320.5 29.2 1. 54 -1.01 369.5 29.3 2.46 -0. 72 
40 9.66 126 .1 411. 3 39.7 2.06 -1.34 443.4 40.6 3.00 -0.94 
40 10.03 126.5 384.3 39.6 1.89 -1.09 442.4 39.8 2.83 -0.76 
60 9. 71 123. 4 525. 3 58.9 2. 91 -1. 69 526.0 59.0 3.22 -1. 67 
60 9.66 126. 9 432.6 59.3 1.58 -1.00 523.1 59.1 3.78 -0.48 
80 9.84 125.5 608.5 78.9 2.21 -1. 31 647.2 78.9 3.15 -1.05 
80 10.09 127.1 588.4 78.6 2.23 -1.42 648.8 78.3 3.48 -1. 28 
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Table 8. Summary of triaxial test data for Bedford specimens with 3% cement additive 

Lateral Initial Minimum volume condition Maximum effective stress ratio 
pressure Moisture Dry den- ,.. 

03 Strain Volume 01 03 Strain, Volume "l 
psi content,'/', sity, pcf psi psi % change,% psi psi % change,% 

7-day cure: 
10 9.93 127.6 369.1 9.5 0.97 -0.61 424.0 10.2 1. 29 -0.37 
20 10.12 126.8 438.0 20.0 1.07 -0 .81 482.2 20.6 1.38 -0.64 
30 10.12 126.9 480.4 30.4 1.18 -0.83 523.1 30.4 1. 82 -0.43 
40 10. 7 3 125.7 592.4 38.5 1. 50 -1.16 577. 1 38.8 2.14 -0.84 
60 10.38 126.5 650.9 59.2 1. 60 -1.14 703.8 59.4 2.23 -0.91 
80 10.06 128.4 850.8 79.7 2.08 -1. 39 876.1 7908 2.40 -1.28 

28-day cure~ 
10 10.00 123.6 422.4 10.0 o. 91 -0.66 454.1 10.6 1.21 -0.59 CX) 

-...J 

20 10.19 122.7 492. 9 19. 9 1.05 -1.06 520.7 20.6 1.36 -0.91 
30 10.13 121.6 474.6 29.7 0. 92 -1.00 512.4 30.0 1.23 -0.93 
40 9.18 122.8 595.3 39.7 1.03 -0.92 633.8 40.0 1.34 -0.82 
60 9.18 124.8 257.1 59.8 1. 75 -1.17 774. 7 60.2 2.07 -1.16 
80 11.41 123.2 805.5 78.8 2.53 -1.49 822.0 78.8 3.16 -1.40 
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Table 9. Surrunary of triaxial test data for Garner specimens with 1% cement additive 

Lateral Minimum volume condition Maximum effective stress ratio 
pressure Moisture Dry den- 0'1 ()3. Strain Volume (Jl. 03 Strain, Volume 

psi content,% sity,pcf psi psi % change,% psi psi % change,% 

7-day cure: 

10 7.68 139. 5 143.6 10.0 0.95 -0.52 244.0 11. 3 1. 90 +o.10 
20 6.70 140.4 266.9 19.7 0.95 -0.66 362.8 21.0 1. 90 -0.03 
30 7.85 141.6 280.4 29.6 0.85 -0.63 454.3 31.1 2.44 -0.13 
40 6.35 142.3 392. 7 39.5 1.19 -0.82 525.1 39.9 2.47 -0.19 
60 6.26 144.7 627.7 58.8 1. 91 -1.09 755.4 59.2 2.92 -0. 71 00 

80 6.95 142.3 677. 7 79.3 1. 67 -1.04 820.3 79.8 2.95 -0.69 00 

28-day cure: 

10 6.94 140.0 222.3 10.0 1.29 -0.57 279.9 11.1 1. 94 +o.07 
20 7.38 139. 5 249.4 19.5 0.79 -0. 52 385.1 21.4 2.08 +o.13 
30 6.60 141.8 352.8 29.3 1.31 -0.80 484.6 29.7 2.62 -0.08 
40 6.75 142.4 365.l 39.4 1.14 -0.89 528.6 40.6 2.43 -0.34 
60 6.26 140.0 545.4 59.8 1.56 -0.89 650.5 60.7 2.81 -0.44 
80 7.01 135.3 633.9 79.6 1. 50 -0.99 670.6 79.9 2 .11 -0.85 



r - - -----------------

Table 10. Summary of triaxial test data for Garner Specimens with 3% cement additive 

Lateral Initial Minimum volume condition Maximum effective stress ratio 
pressure Moisture Dry den- 01 03 Strain Volume 01 03 Strain, Volume 

psi content,% sity,pcf psi psi fo change ,lo psi psi % change,% 

7-day cure: 

10 5.89 139.5 445.1 9.7 0.14 -0.60 647.1 10.1 0.46 -0.51 
20 6.00 136.2 652.6 20.0 1.58 -0.87 652.6 20.0 1.58 -0.87 
20 5.98 138. 7 703.2 20.0 0.65 -0.68 761.2 20.5 0.91 -0.49 
30 6.14 135.5 598.4 29.8 0.69 -0.73 672.5 30.1 1.00 +o.01 
30 5.16 137. 7 613 .o 29.8 0.63 -0.81 709.6 30.1 0.94 -0.78 
40 5.71 138.4 657.6 39.9 0 .96 -0.83 748.3 39.9 1.28 +1.28 CP 

'° 60 5.55 139 .2 873.5 59.9 1.09 -1.00 918 .1 60.4 1.43 -0.90 
80 5.84 137. 7 1053.9 79.7 0. 71 -0.62 1184 .4 80.3 1.35 -0.29 

28-day cure: 

10 6.56 136.9 617.8 9.8 0.95 -0.60 623.3 10.5 1.25 -0.31 
20 5.84 137. 7 689.3 19.6 0.67 -0.85 787.3 19.7 0.98 -0.78 
30 5.89 136 .6 727.3 29.9 0 .67 -0.48 727.3 29.9 0.67 -0.48 
40 6.08 138 .9 832.0 39.2 1.10 -0.39 885.6 39.3 1.42 -0.25 
60 6.12 140.4 1142. 9 59.7 1.27 -0.51 1163. 2 59.7 1.58 -0.29 
80 5.95 137.3 1183 .8 79.2 0.95 -0.69 1206.3 79.2 1.26 -0.60 
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Table 11. Sunnnary of triaxial test data for Gilmore specimens with 1% cement additive 

Lateral Initial Minimum volume condition Maximum effective stress ratio 
pressure Moisture Dry den- :J1 C3 Strain Volume ,.. 

0'3 Strain, Volume '"'l 
psi content,% sity,pcf psi psi lo change,% psi psi % change,% 

7-day cure: 

10 7.33 131.1 84.4 9.0 1.27 -0.52 189 .1 10.5 3 .18 +o.56 
20 7.35 128.5 164.8 19.4 1.23 -0. 77 245.3 20.5 3.38 +o.14 
30 7.62 132. 6 238.2 19.0 1.81 -0.81 355.1 30.6 4.23 -0.19 
40 7.62 132 .4 329.2 38.7 1. 72 -0. 77 409.3 39.4 3.66 -0.12 
60 7.80 134.7 484.1 57.3 2.53 -1.26 560.2 59.0 4.58 -0.51 \.0 

80 7.55 131.4 578.0 78.0 2.97 -1.11 618.8 78.6 4.20 -0.97 0 

28-day cure: 

10 7.61 130.9 127.2 9.4 1.26 -0.63 106.4 10.4 1. 53 -0.19 
10 7.53 130.7 110.2 9.6 1.06 -0.57 195.4 10.8 2.65 +o.35 
20 7 .11 128.8 184.1 19.1 1.35 -0.79 250.2 19.6 2.59 -0.44 
30 7.52 129.7 227.6 29.2 1.09 -0.71 335.5 30.0 2.91 +o.31 
40 7. 77 12 9. 7 332.6 38.8 1. 94 -0.95 404.4 39.8 3.87 -0.37 
40 7.26 129.6 304.8 37.8 1. 91 -1.06 386.6 38.7 3.82 -0.73 
60 7.56 135.4 500.6 58.2 2.03 -0.95 596.7 59.2 3.68 -0.39 
80 7.95 134.0 650.7 77 .o 3.13 -1.66 694.1 77 .8 4.42 -1.45 
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Table 12. Summary of triaxial test data for Gilmore specimens with 3% cement additive 

Lateral Initial Minimum volume condition Maximum effective stress ratio 
pressure Moisture Dry den- Cii Ci3. Strain Volume Cil Ci3 Strain, Volume 

psi content,% sity,pcf psi psi % change,% psi psi % change,% 

7-day cure: 

10 7 .11 130.6 289.9 9.7 0.65 -0.65 341.9 10.7 1.28 -0.25 
20 7.35 131.8 380.1 19.2 1.06 -0.66 445.0 19.4 1.69 -0.45 
30 7.06 134.0 453.9 29.6 1.29 -0.76 549.4 30.3 2.25 -0.25 
40 6.68 136.6 520.2 39.3 1.26 -0.91 633.4 40.2 2.20 -0.47 
60 6.97 131.8 651. 7 59.2 1. 79 -1.13 687.5 59.8 2.41 -0.81 
80 7.17 133.6 796.7 78.9 1. 77 -1.25 848.1 79.0 2.68 -1.13 l.O 

I-' 

28-day cure: 

10 6.66 135.3 423.2 9.3 0.72 -0. 97 483.6 9.7 1.01 -0. 90 
20 6.93 131. 9 487.1 19.0 0.64 -0.89 536.1 19.7 0.95 -0. 72 
20 6.34 127.8 577 .3 19.9 1.02 -0.92 607.5 10.0 1. 34 -0.69 
30 7.25 128.0 432.9 29.7 0.90 -0.62 512.8 30.2 1.80 -0.30 
40 6.74 128.8 538.8 39.8 1.48 -0.99 575.8 40.2 2.08 -0.68 
40 7.46 130. 3 628.5 39.6 1.08 -0. 77 703.1 40.2 1. 72 -0.55 
60 6.87 132 .1 745.4 59.1 1. 77 -1.27 786.8 59.2 2.31 -0.93 
80 7.29 135.4 960.0 78.6 2.01 -1.45 1008.6 78.7 2.68 -1.10 
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