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INTRODUCTION 

The AASHO specifications for highway bridges require that in de-

signing a bridge, the live load must be multiplied by an impact factor for 

which a formula is given, dependent only upon the length of the bridge. 

This formula is a result of August Wohler's tests on fatigue in metals, 

in which he determined that metals which are subjected to large alternating 

loads will ultimately fail at lower stresses than those which are subjected 

1 · · 1 d I · f l b . . 1, 4, 5, 6, 8, 16 on y to continuous static oa s. t 1s e t y some investigators 

that this present impact factor is not realistic, and it is suggested that 

a consideration of the increased stress due to vibrations caused by vehicles 

traversing the span would result in a more realistic impact factor than 

now exists. Since the current highway program requires a large number 

of bridges to be built, the need for data on dynamic behavior of bridges 

is apparent. Much excellent material has already been gathered on the 

subject, but many questions remain unanaw~red, This work is designed 

to investigate further a specific corner of that subject, and it is hoped 

that some useful light may be shed on the subject. 

NATURE OF THIS INVESTIGATION 

Specifically this study hopes to correlate, by experiment on a small 

scale test bridge, the upper limits of impact utilizing a stationary, oscil

lating load to represent axle loads moving past a givenpol.nt. The exper-

iments were performed on a small scale bridge which is located in the 

basement of the Iowa Engineering Expe1·:!.ment titation. The bridge is a 
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25 foot simply supported span, 10 feet wide, supported by four beams 

with a composite concrete slab. It is assumed that the magnitude of the 

predominant forcing function is the same as the magnitude of the dynamic 

force produced by a smoothly rolling load, which has a frequency de

te.rmined by the passage of axles. The frequency of pas sage of axles is 

defined as the speed of the vehicle divided by the ax~e spacing. Factors 

affecting the response of the bridge to this forcing function are the 

bridge stiffness and mass, which determine the natural frequency, and 

the effects of solid damping due to internal structural energy dissipation. 
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DEFINITIONS AND NOTATIONS 

DEFINITIONS 

Impact Factor 

Impact factor, as used herein, is the ratio of the difference between 

the dynamic and static effect of a vehicle to the static effect. It is, 

therefore, the fractional increase in the static effect of a vehicle on a 

bridge due to the vehicle moving on the bridge. 

Free Vibration 

Free vibration is the periodic motion of an elastic system when 

moving under no external forces or damping. The only forces acting 

to cause the motion are the internal potential energy of the system and 

the dynamic force due to the acceleration of the mass of the system. 

Natural Frequency 

The frequency at which an elastic system vibrates during free vibra

tion is termed the natural frequency of the system. 

Loaded Natural Frequency 

The frequency at which an elastic system vibrates when loaded with 

an external mass is termed the loaded natural frequency of the system. 

Forcing Function 

The forcing function is an externally applied, time dependent force 

acting to cause motion in an elastic system. 

Forced Vibration 

The vibration which takes place in an elastic system when subjected 

to a forcing function is termed the forced vibration of the system. 
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Resonance 

The condition which is brought about in an elastic system by applying 

a forcing function which has a frequency identical to the natural frequency 

of the system is termed resonance. 

NOTATIONS 

A, a, b, c, D 

E 

f 

f o 

f L 

g 

I 

k 

L 

M 

m 

n 

nb 

p 

c .... 

s 

t 

v 

Arbitrary constants to be assigned later 

Modulus of elasticity 

Applied frequency of forcing function in cycles per 
second 

Natural frequency in cycles per second 

Loaded natural frequency in cycles per second 

Acceleration of gravity 

Moment of inertia 

Frequency parameter = ~I 

Length of span 

Concentrated mass 

Mass per unit length 

Frequency of passage of axles in cycles per second 

Damping coefficient 

Oscillating load effect of smoothly rolling load; the 
static load which would be required to produce the 
same effect as the difference between dynamic and 
static effect due to a load smoothly rolling or sta
tionary on beam respectively 

Section modulus as determined to bottom fiber of beam 

Spacing of vehicle axles 

Time 

Velocity 



w 

\V 

x 

y 

YD 

Ys 
y 

a 

~ 

E 

"' 
ct> (x, t) 
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Concentrated load 

Loading function 

Horizontal distance along a beam 

Deflection of a beam 

Dynamic deflection of a beam 

Static deflection of a beam 

Deflection of a concentrated mass on a beam 

Acceleration 

Phase angle between components of dynamic force 

Unit strain 

Denotes function 

Function of distance and time 
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HISTORY 

The problems concerned with impact due to loads traversing a 

bridge primarily involve determining what time dependent forcing 

functions are predominant in vibrating the structure, and what the re-

actions to these functions are. A partial list of forcing functions for 

highway bridges is: (1) effects of smoothly rolling loads, (2) effects 

of the spring action of a vehicle, (3) effects of rough floors or uneven 

approaches causing vehicle impact on the structure, (4) effects of im-

pact caused by vertical oscillations of the bridge imparting dynamic 

force to the moving mass of the load, and (5) effects of oscillations 

produced by the repetition of axles across any one point. These ef-

fects or the combination of them have been investigated rather recently 

b 1 . . 1, 4, 5, 6, 8, 16 I l h . l . y severa investigators • n genera t e1r cone us1ons 

have agreed in considering the basis for the present AASHO specifica-

tions to be unrealistic; however, the reasons backing up these con-

clusions have not always b1Jcn in agreement. J> . .lthough these investi-

gations are of a fairly recent nature, the over-all problem of impact 

stress due to moving loads started as early as the mid-19th century 

when a British Royal Committee sought "to illustrate by theory C'.nd 

experiment the action which takes place under varying circumstances 

. . ·1 b "d .,18, p. 326 in iron rai way ri ges • A member of the committee, 

Professor R. V" illis, simplified the analytic approach to the problem 

by neglecting the inertia of the bridge itself. With the mathematical 

assistance of another member of the committee, G. G. Stokes, Pro-

fessor Willis derived a formula for deflections due to a rolling load 



.. approximated by 

V z PL\1 
11 + \ g 3EI/ • 
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(1) 

in which the term to the right within the parenthesis is the impact factor 

which is so small as to make the difference between dynamic and static 

deflection negligible. 

A theoretical approach considering only the mass of the bridge 

was used around the turn of the century by A. N. Kryloff, and other 

authors 
14

• 
15 

have discussed the problems of an oscillating force. In 

1929 H. H. Jeffcott considered both the mass of the load and bridge. His 

general equation of motion was 

EI a4y + m a2y = tP (x, t} - q, (x, t) a2y 
ax4 atl g at2 ' 

(2) 

where q, (x, t) is the forcing function and i is the vertical position of the 

load. The development of this equation marked a milestone along the 

road to understanding dynamic loading, for this equation i_ncorporated all 

of the more important parameters involved in the problem of forced vi-

brations in bridges. The previous attempts had made assumptions which 

were not realistic. 

After these earlier investigations, a very complete study was made 

in which various types of forcing functions were considered in the form 

of a Fourier series, and their effects were related to railway bridges. 

This theoretical work, supported by experiment, gave insight into the 

general problem of vibration in railway bridges. 

Investigations into bridge impact were limited at first to railway 

bridges. As motor vehicle transportation increased, the need for 
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similar studies in highway bridges became apparent due to the differences 

in railway and highway bridges, as well as the difference in predominant 

factors of _the forcing functions produced by motor vehicles and locomo

tives passing over these bridges. The earlier investigations of railway 

bridges supplied the background for the study of reactions to various 

forcing functions, 'so that the main problem of the highway bridge inves-

tigator is to determine what forcing functions of motor vehicles are pre-

dominant. Since many variables contribute to the forcing function of 

motor vehicles, and since these variables are not standard among different 

vehicles, the task has not been an easy one. 

A good collection of material on the subject of highway vibrations 

can be found in the Highway Research Board Bulletin 124. In this bulletin 

the effects of moving heavy loads on five simply supported bridges were 

1 
reported • The maximum amplitudes of vibration varied from 18 to 40 

percent of the static deflections. The most important factors influencing 

the vibrations of the bridge were reported as the dynamic characteristics 

of the vehicle itself. The speed of the vehicle had little correlation to 

the impact. Those vehicles which were spring suspended produced lower 

amplitudes of vibrations than the same vehicles which were rigidly con

nected to the axles. Scheffey
10 

considered the effects of three factors: 

(1) smoothly rolling loads, (2) deck irregularities, and {3) repetition 

of loads near resonance, as major factors in producing dynamic deflec-

tions in highway bridges~ He found that the effects of shock due to deck 

irregularities were greatest for short-span bridges and decreased as 

the span length increased, while the effects of repetition of loads increased 
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with the increase in span length. As was the case with other investigators, 

he found that the dynamic effects due to smoothly rolling loads were not 

sufficiently large to cause concern~ Edgerton and Beecroft 
4 

investigated 

the effects on two three-span continuous plate-girder bridges. The 

main members of the superstructures of these bridges were two plate-

girders running under the extremities of the roadway. It was concluded 

that the dynamic deflections were smaller than allowed for in present 

AASHO specifications except for the case of the unloaded girder when the 

load moved across in an outside vehicle lane. This phenomenon, he con-

eluded, warranted further study, as it was the first instance this occurrence 

had been noted. Haynes and Sparounis
6 

investigated a three-span contin-

uous highway bridge and studied the problem of a repetition of axles. 

Their conclusion was that the natural frequency of bridges should be de-

signed so that it is always greater than the frequency of passage of axles 

defined by the ratio of axle spacing to vehicle speed. Tung, Goodman, 

Chen, and Newmark
16 

studied the problem considering: (1) a smoothly 

rolling load, (2) a smoothly rolling sprung mass, and (3) a rolling 

sprung mass oscillating with some definite amplitude. Their theoretical 

considerations resulted in five dimensionless parameters which were 

seen to influence the calculations. These parameters could be reduced 

to the following: 

Weight parameters: 

R = Vi't. of unsprung part of vehicle 
1 Wt. of bridge 

R = Vvt. of sprung part of vehicle 
2 Wt. of bridge 



Wt of vehicle 
R3 = wt: of bridge 

Stiffness parameter: 

12 

_ Fundamental period of bridge 
µ - Fundamental period of vehicle 

Speed parameter: 

_ One-half the fundamental period of bridge 
a - Time for vehicle to cross span 

After correlating the test results to a digital computer solution of the 

problem, the five parameters cited above were shown to be definitely 

controlling in the dynamic variation of deflection. 

Linger8 has investigated the effects of the frequency of passage 

of axles from which he derived a theoretical upper limit of impact. His 

experimental work checked his impact formula on two continuous bridges, 

one partially continuous prestressed concrete bridge, and one simply 

supported prestressed bridge. Linger was not able to investigate the 

upper limits of impact due to the fact that his test vehicles could not 

gain sufficient speed. The nature of his theoretical investigations, how-

ever, suggest that his forcing function can be represented by a stationary, 

oscillating load. In this work this approach has been utilized in investi-

gating the upper limits of impact as derived by Linger. 
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THEORETICAL ANALYSI$ 

LOAD FUNCTIONS 

In his treatment of loads, Inglis 
7 

used a Fourier series of the 

form 

i = CX) 

w=) 

h-r 
. i7Tx 

wi smL 

to represent any condition of loading. Applying the fundamental principle 

of mechanics which states 

d4 
w = EI4, 

dx 

the differential equation describing any loaded beam becomes 

i - CX) 
4 ----

EI d y - " -:4 - / 
dx . 1 1 = 

(3) 

d2 
If the boundary conditions of a simply supported beam, y and~ are 

dx 
zero when x = 0 and L = 0, are applied, the solution takes the' form 

L4 
i = 00 

> 
W. i1Tx 1 

y=~ A sin-y;-• 
1T EI 

i = 1 
1 

(4) 

For various loading conditions in a simply supported span Inglis 

evaluated w. and demonstrated that in most cases considered the first 
l 

term of the series gives sufficient accuracy for evaluating the load 

function. Consider, for example, a load:!. distributed along the length 

of the beam from x = 0 to x = L. If we consider the identity 



t 0 
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. C11'X . i11'Xd 1 lL f (i-c)7rx 
sm -y:-s1n-y;- x= z cos L -

t 
0 

(i+c)7Tx 
cos L dx 

1 fi . (i-c)7Tx 1 . (i+c)7Tx -J· 
= 27r l3i-c) sin L - (i+c)s1n L . ' 

it can be concluded that if~ is a whole number, which it is in the case of 

the assumed Fourier series, then ~he above de!inite integral is zero ex-

cept for the case when i = c, in which case it is equal to 

t sin 2 i7Tx dx = .!. 
L 2 /

L f1 2i7rxJ L - cos-y;-
o 

L 
=2· 

It is therefore seen that 

(Lr·~ 
Jo i = l 

and 
2 fL 

wi = L 
lo 

. i7rx l 
wismyl 

_i 

. i11'xd 
W Sl~ X • 

L 
dx = T wi 

dx 

(5) 

(6) 

(7) 

Consequently, using equation (7) we ca:::1 evaluate the various coefficients 

w.. Where w is a uniform load from x = 0 to x = L, evaluation of the 
1 

various coefficients gives the following results: 

w =[ Zw 1 L 11'X 
-, L 

2w [-1-1] 4w 
- - cos-,,_ I = -- =-

1 L j 11' L 'iT 11' 
_1 0 



21Tx 
cos

L 
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r 0 

= 
w 
1T 

[ l 
·1· L ·-

w = '!::!! - ~-cos~;rx J = - ~:!: j-1-11 3 L 377 i... :,·r. 
- - 0 - -

4w 
- 31T. 

The remaining coefficients can be deduced readily from the above calcu-

lations for w 
1

, w 
2

, and w 
3

• 

If we consider a uniform load on the simply supported span between 

the limits x = a to x = b, and let the quantity (b-a) become infinitesimally 

small, then a concentrated load W = w(b-a) will be able to be represented 

by a Fourier series. 

First consider the case of (b-a) equal to some definite length. It is 

then apparent that 

. i1Txd 2w 
w s1n-y:- x = i 1T 

= ~w j cos i1Ta - cos iL?rb I 
111' • L 

L 

4w r . (b )i1T . (b ) i11" I 
= i1T" I sin +a ZL sin -a ZL : , 

i... J 

and the load distribution takes the form 

i = 00 

4w ' 1 . (b ) i1T . (b ) i1T . i7rx T ) rnn +a 2L sin -a 2L sm L . 
.,..i_=-.....1-

(8) 

For the case of a concentrated load_W, ~approaches 2_ as a limit and (b-a) 

approaches zero as a limit. In this case W = w{b-a). The load distribution 

as taken from equation (8) becomes 



or 

or 

i = 00 

16 

. i7Ta {b-a)i7T . i1Tx ~ 
sm L- . - ZL- sin L , 

~ 

4w \ {b-a)7T . i7Ta . i1Tx 
1T / z'L sm L sm L , 

2W 
L 

.:.----.--
i = 1 

i = 00 

> 
i = 1 

. i7Ta . i:-rx 
sin·-- sin--. 

L L 

From equation (3), 

4 
EI 

d y _ 2w "\ 
~--dx L ~/ ____ 

i = l 

i = CX) 

. i7Ta . i7TX 
sm-L sm-y:-. 

(9) 

The solution of the above equation has been demonstrated by Inglis to be 

i = 00 

2WL3 ~ 1 . i17a . i7Tx 
y = 4 L_ A sin L sm L . 

EI i = l i 

(10) 

The validity of equation (10) can be demonstrated by comparing results 

obtained from it with the known deflection of a simply supported beam 

due to a concentrated load W. The central deflection of a simply supported 

. WL3 
beam due to a central load W is 

48
EI, whereas the deflection using only 

the first term of equation (10) is 
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FREE VIBRATION 

From d'Alembert's principle, it is known that the inertial effect 

on a vibrating beam of constant cross section is ma, where~ is the 

mass per unit length of the beam, and a is the downward acceleration at 

any given section a distance x from the end of the beam. If gravity and 

damping effects are neglected, then the equation of motion is 

or 

a4 
EI-:--!= -ma, 

ax 

a4 
EI~+ ma = O. 

ax 

2 m a4 2 a2 
Letting k = EI' we have~ + k -::-l- = O. 

ax at 

( 11) 

( 12) 

Assume a solution in the form y = cp (t) sin ~, and consider the boundary 

dz 
conditions of a simply supported beam, which are y and Y

2 
equal to zero 

- dx 

when x = 0 and L = O. By differentiating and substituting the assumed 

solution into the equation of motion, it can be seen that 

4 2 
'IT ,i.. (t) . 'ITX + k2 d </> (t) . 'ITX Q -:4"' sin- sin-= • 
L L dtz L 

Therefore, cp (t) = A
1 

sin 27Tf
0

t 

if 
. 'IT ' 1 ) 2 /- =__,,. 
I_ k L~ 

A solution of the equation of motion is therefore 

A . 1TX . 2 f y = 1 sm L sm 1T 0t, 

(13) 

(14) 

where f0 is known as the fundamental frequency, and the right side of the 

equation describes the fundamental mode of vibration. Other frequencies 
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and modes can be obtained in a similar manner by assuming solutions to 

the basic equation of motion to have the form y = cp (t)sin i~x, which will 

yield solutions in the form 

A . i7Tx . 2. 2 f t y = 1 sm L sm i 7T 
0 

, ( 15) 

in which the value for.!_ gives the number of the mode of vibration and the 

natural frequencies for the higher modes of vibration will be i 2£
0

• 

If there is a mass M concentrated at a point x = a on the beam, the 

natural frequency of vibration will be reduced, and this loaded natural 

frequency can be computed in the following manner. A downward acceler

d2y 
ation of the mass M produces a· corresponding dynamic force M - 2 . 

dt 
According to equation (9), the primary harmonic component of this force is 

2 2M d y . 7Ta . 1TX 
-y;- -:-z- sm L sm L , 

dt 

and the basic equation of motion becomes 

4 2 2 
EI 

a y a y ZM a y . 1Ta . 1Tx 
--,i- + m---..,- = -- ---.,- sin- sin- . 
ax'± ate. L ati::. L L 

Again assuming a solution in the form y = cfi (t) sin 7Z' , 

a2y _ d<b 2(t) 
it is evident that a;z- - dt2 

. 1/'a 
s1nL, 

which results in EI.; <P (t) i-·rr, + lM sin2 1Tal d
2 

<f> (t) = o, 
L . L L - dtl 

from which is obtained ¢ (t) = A sin 2 7T fL t 

- 71"
2 I EI --

and 21Tf L - :-z-v ZM . 2 7Ta 
L m+-sm -

L L 

_ 1TZ v EIL 
- J!- M + 2M 

G 
• T"1Ta I 

sm L 

(16) 

( 17) 
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where MG repre$ents the mass of the beam. Comparing equation ( 17) 

with equation (13) shows that the addition of a concentrated mass will 

lower the natural frequency. 

FORCED VIBRATION 

The problem of bridge vibration and the impact factor derived there

from will naturally depend on the type of forcing function. In the case of 

highway bridges there are many types of forcing functions which will 

cause impressed vibrations, as has been mentioned previously. In his 

treatment of the subject, Linger
8 

has considered the effect of rolling loads 

with a frequency of the repetition of axles across any given point as the 

primary factor in the forcing function. Because of the limitations of speed 

and axle spacing as compared with bridge length and natural frequency, the 

upper limits of the theoretical impact curve could not be verified exper

imentally. By utilizing a practical forcing function to represent the fre

quency of passage of axles, this work possibly can shed some light on the 

upper limits of impaet. 

Linger suggested that a concentrated stationary, but alternating 

load could be used to represent his forcing frequency of passage of axles. 

To justify this substitution, it will be necessary to investigate both the 

effects produced by a stationary altexnation load, and those produced by 

the repetition of axle loads. In determining the effects of the alternating 

load, refer to the work of Inglis, though the derivation of impact due to 

a passage of axles must necessarily come from Linger, who received a 

great deal of insight for his investigations from Inglis. 
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Effects of stationary alternating lo~ 

Given an oscillating load on a simply supported span defined by 

i = 00 

W
_\ -; 

i = l 

' i11'X ' 2 ft wi sinL sm 1T J 

where f is the number of oscillations per second, the differential equation 

of motion, neglecting gravity and damping forces, is 

4 2 i=oo 

EI a y a y "' . i1rx . 2 f 
74 + m ~ =) wi smL sm 1T t. 
Bx Bx i = I 

Assuming the particular solution has the form 

i = 00 

,- A . i1Tx . 2 f 
y = ) sin L sin 1T t 1 

i = l 

and differentiating and substituting into the equation of motion, 

or 

- i 4
1T 

4 2 2 -, 
A El --::-r-- - 411' f m = w. , 

L i -' 
4 w.L 

l 

= 1T 4EI 

Since from equation ( 13) 

2 
EI1T _ f 2 
4mL4 - 0 

the above can be expressed as 

( 18) 



or 

4 
w.L 

A = _1 ____ 2 __ 

1T
4
EI (i

4 -~) 
f 

0 
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A solution to the differential equation of motion becomes 

i = 00 4 
~ w.L 

y= L_ 1 

i = 1 -1T-4E-I ~-i 4-_ -=::.:--2-) 
· i7Tx · 2 ft sin -r;- sin 1T • ( 19) 

The complementary function, which is a part of the complete solution to 

the differential equation ( 18) is the solution of the equation 

4 2 
EI a y +ma y 

ax4 ax2 = 0 ' 

the solution of which has been demonstrated previously to be 

A . i1TX . .2 
2 

£ y = sin L sin i 1T 
0 

t . 

The complete solution of equation (18), therefore, is given by 

i = co 4 

) 
w.L 

y= _i _,__ 

..,_i -=--1- 4Er(·4 £
2 

) 
sin iL7Tx -sin 27Tft - !..__Z sin2i 27Tf t -, • 

i f 0 

1T i ---z 
f 

\ 0 

-· 0 J 
(20) 

The negative sign within the brackets was a result of satisfying the initial 

conditions of y = 0 and dy = 0 when t = O. For the case of a concentrated 
. dt 

1 d ~ir • • • 1 Z'vV . i?Ta d h d fl . oa ~ at a section x = a, w i is equiva ent to L sin L an t e e ection 

due to a stationary oscillating load is given by 

2WL3 
y = 4 

tr EI 

i = 00 

\ 
) 
i = l 

. i71'a , i1TX 
sm r:- sin r;-

. 4 £2 
l - -:7 

f 
0 

(21) 



22 

Moving loads of constant magnitude 

The problem of moving loads has been approached by letting the 

distance from the end of the beam to the load at any time be equal to:::!• 

where! is the velocity of the load, and!. is the time for the load to travel 

the distance 7 • Using the Fourier series, then, this load can be repre-

sented by 

. i?Tvt . i?Tx 
i = 00 

2W °"I\ 
T/ sm r:;- sin L"" . 

""i -=._,,..l-

v 
If lL = f, then the load function takes the form 

i = 00 
2W <z: 
T/ ..,..i_= ____ l_ 

. i'l'TX . 2" ft sin -y:- sin i7T , 

and the differential equation of motion becomes 

a4 a2 zw 
EI~+m~=-L 

ax ax 

i = 00 

\ 
~ 

. i?Tx . 2· f sin -y:- sin i7T t • 

(22) 

(23) 

(24) 

Using only the first harmonic component of the forcing function, recalling 

equation ( 18), and considering the load to be near the center of the span, 

the solution is 

- [.2WL3-jl sin~ 
Y- 4 --~ 

1T EI f
2 

1 - -:-7 
f 

0 

. f v or since = ZL, 

. 7TX 

[ 
2W J sm-y:-

y = 4=: 
1T EI 1 - ( ~Lf /\ 

\ 0 

(25) 

(26) 
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Practical limitations on speed suggest that the term ~Lf will be 
0 

very small in comparison with unity, and its square will be even smaller; 

2 
hence the factor 1 - (~Lf ) , for the first harmonic component of the load 

\ 01 

function, will be unity. To demonstrate this, consider a span of 120 feet 

v 1 
and a velocity of 120 feet per second (82 mph). Therefore, 

2
L = 2· It 

would be reasonable to assume a natural frequency for a span of this length 

of around 6 cycles per second. Using the above values, the value for 

v 1 1 
2Lf =TI' and the square of this would be 144 • This is sufficiently small 

0 

in comparison with unity to be disregarded. The second term within the 

brackets of equation (26) is then the dynamic deflection of the bridge 

centerline, and 

(27) 

The first term in the brackets is the static centerline deflection, which is 

superimposed upon the dynamic deflection. As defined, the impact factor 

of a smoothly rolling load would then be ;Lf • Since the rolling load of 
0 

constant magnitude increases the deflection of the beam over the same 

static load, this impact factor, ~Lf , which is associated with a smoothly 
0 

rolling load, can be equated to the ratio of a load P divided by the station-

ary load"'!!._, where P is defined as the oscillating load effect of a smoothly 

rolling load. P is, therefore, equivalent to the static load which, when 

placed at the center of the span, would be required to produce the same 

deflection as the maximum dynamic component of a smoothly rolling 

load W. Hence 



v p 
~=w. 

0 

:i<.:ffect of the passage of axles 
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(28) 

Given a spacing between axles of..'.:• and a vehicle speed!• the fre

quency representing the passage of axles over any given spot is 

v n=-. s 
(29) 

The forcing function representing the repetition of axles is 

P sin 27Tnt • (30) 

If the damping effect is taken to be 47Tnbm ~i and the effect of the mass of 

the vehicle is taken into consideration as a part of the forcing function 

a2-
equa1 to - M d sin 7Z', the differential equation of motion will be 

at 

8
2 l Psin27Tnt - M-:-i-

at 
..... ....J 

• 1TX 
sin -T- , 

L 
(31) 

where y is the vertical deflection of the mass of the load. As with previous 

solutions, that for equation 31 will take the form 

y = cf> (t) sin 7Z' . (32) 

Considering that the forcing function is equivalent to a stationary vibrating 

load, y is a function of time only. Hence 

y=</>(t). (33) 

Differentiating equations {32) and {33) and applying to equation (31), 

4 
EI7T ,1, (t} + 4 7T d cfl (t) 
4"' nbm dt 

L 
+ d 2 ¢ (t) _ 2P . 2 t 2M d 2

ct> (t) 
m z - L sin 7Tn - L 2 , 

dt dt (34) 

EIL1T
4 

<P (t) + 47Tn Lmd ¢ (t) + rlLm + 2M] d
2 

cf> (t) = 2Psin27Tnt, 
L

4 b dt .. z 
dt 

or 
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or ~ r1 2Ml cJ> (t) + 41Tnb [·1 ZM··1 
mL I 1 + lm 1 + lm I 

l.. - -I 

d</>(t) d
2

cJ>(t) + --:......:....:. 
dt dt2 

2P = mL+ZM sin21Tnt. (35) 

Referring to equations (13) and (14), and putting this load near the center 

of the bridge so that a = ~ , 

f 2 
L __ 1_..._....-----...--- = _1_._,...,. 
-f 2 -

1 
ZM . 2 ?Ta 

1 
ZM • 

0 +rm sm L +Im 

(36) 

Also from (13) 

4 
411' = 4 2£ 2 • 
mL 4 11' o 

(37) 

Applying equations (36) and (37) to equation (35) and rearranging, 

I 2) dz </J (t) fL d </> (t) 2 2 2P . 
dtz + 4ir"b (£T dt + 4ir fL ~ (t) = mL+lM sm lirnt. (38) 

0 . 

According to Linger, the particular solution to equation (38) is of the 

form 

cf> (t) = A sin21Tnt + B cos 211'nt • (39) 

Differentiating equation (39) and substituting into equation (38) 

(40) 

and (41) 
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from which 

and 

2P 
A= 2 l 

(mL+2M)411 f L 

0 B _ 2P 

- -(m_L_+-2M-) 4_11_,,2 ..... fL-z- ~-:; ) 2 (4nb2n
2 

). 
1 - -:-z + -4..---

f f . 
L o . 

Utilizing the trigonometric identity 

A sin21Tnt + 2 cos 21Tnt = D(sin 211nt - 13 ). 

in which 

I 2 2 
D =\/A + B and 

B 
tan 13 = A , 

it can be determined that the particular solution to equation (38) is 

2P 
sin (21Tnt - 13) sin T 

y =-----.....--
1 (mL+2M) 41T 

4
£L 

2 

(42) 

(43) 

(44) 

(45) 

Recalling equations (36) and (37), the first term on the right hand side of 

equation (45) can be put into a more convenient form as follows: 

2P ~L_\ 2P 1W) 2WL
3 

P 
(mL+2M) 41T 4£L 2 \mLJ = 4112mL£0 2 l.w = 1T 4EI w . (46) 

Therefore, 
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2WL3 P 
y. = --..--

1 7T4EI W 

sin (27Tnt - ()} sin 7Z' 
(47) 

(;2 2) 2 + CY2) 
'L· \o 

1 + 

This equation is only the particular solution to the original differ-

ential equation (38). The complementary solution must be added to equation 

(4 7) to arrive at the complete solution. According to Linger, the general 

form of the complementary solution has the form 

where f L is the loaded damped frequency and 
b 

f = \ Ii -"bfL j . 
Lb \/ £2 

. 7TX 
smL 

(48) 

The proper boundary conditions are y = 0 and dy = 0 when t = O, and 
dt 

the complete solution is then 

where 

f 2 
L 

q = 2 7Tnb -::-z- t • 
£ 

0 

sin (27Tnt-!3}-e-q ~ sin27TfL t 
L b • 7T'X s1n-y; , 

I (49) 

_I 

The complementary solution is a function of damping, and it will be-

come
0
insignificant as the load traverses the bridge in such a way that the 
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:ratio of successive amplitudes will be 

e -21Tnb [fLYfo 2 J. 
In the case of a load traversing a bridge, Linger has shown that the fre-

quency of the bridge is that of the particular solution by the time the load 

has reached the center of the bridge; hence, for the purposes of this in-

vestigation the complementary solution is insignificant and can be dis-

regarded. In representing successive moving loads by a stationary 

oscillating load, the complementary solution will cease to be effective at 

the time a steady state oscillation is reached; and it can again be disre-

garded. The effective deflection due to passage of axles is then defined 

by the particular solution, or equation (47). The maximum value of this 

deflection, assuming that the frequency of passage of axles coincides with 

the frequency due to the moving load effect, and that they are in phase, 

is given by 

2WL3 
y - -----

- 11' 4EI 

p 
w· 

(50} 

For moving loads Linger has replaced the quar..tity -~ by its equivalent 

v ZLr and, dividing by the static deflection, arrived at the impact factor of 
0 

· IF= 

v 
2Lf 

0 

{,~ 2 2 (2 2 

-\ I i - ~) + ~)\. ! f 2 
\ f 

I L \ 0 
' . 

(51) 
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Since the object of this investigation is to examine and correlate the upper 

limits of this theoretical impact factor to actual tests, the expression will 

be more useful using ~instead of ~Lf • Not all of the variables in equa
o 

tion (51) are independent when the effect of passage of axles is obtained 

with a stationary oscillating load. Since ;Lf =.;. and n = :, determin
o 

ation of s and.! will necessarily cause~ and the ratio ~r or ;Lf to be 
0 

known for any given bridge. The assumptions used throughout the deriva-

tions considered the deflection to be on the lateral centerline of the span 

when the load is at the center. These assumptions are valid and are the 

critical conditions in a simply supported span. 
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TEST EQUIPMENT 

TEST BRIDGE 

The experimental data were gathered by performing a series of 

tests on a 25 foot small scale bridge in the basement of the Iowa Engin

eering Experiment Station. The bridge has been built to one-third scale, 

though it cannot be classified as a true model due to some changes made 

for test purposes. The roadway width is ten feet and is supported on 

four simply supported wide flange beams. The deck is a 2 l /2 inch con

crete slab. Shear lugs welded to the tops of the beams insure composite 

action between steel and concrete. The main reinforcement is of number 

5 smooth wires spaced on 2 inch centers. Two of every three wires are 

bent up over the supports for negative reinforcing, and a third wire 

runs across the slab near the top for each of these two. Number 5 wires 

on 7. 7 inch centers near the bottom provide the longitudinal reinforcement. 

To facilitate testing, a grid was painted on top of the bridge. Starting 

at the south end of the bridge and proceeding longitudinally to the north, 

the grid lines are numbered every foot from one to twenty-five. .Starting 

at the east side of the bridge and proceeding west, the grid lines are 

spaced at approximately ten inches and are lettered from A through M 

{figure 1). The grid location G-12 l /2 identifies the center of the bridge. 

The grid location J-6 l /4 is at a point one-quarter of the width from the 

west side of the bridge and one-quarter of the length from the south end 

of the bridge. Load locations in the future will refer to these grid coor

dinates. Pertinent bridge properties are given in table I. The static 

properties have been experimentally verified by Caughey and Senne 
3 

•. 
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Table I. Properties of test bridge* 

I/. of beam, in 4 

EI of beam, 109 lb-in 

Section modulus, in3 (bottom) 

Natural frequency (cps) 

Loaded natural frequency (cps) 
(700 lbs at G-12-1/2) 

Loaded natural frequency (cps) 
(970 lbs at G-12-1/2) 

Theo. 

10.25 

9.71 

9.56 

Int. 

379 

11. 14 

35.8 

* - 3 p. 11 In part from ::>enne and Caughey ' 
I 

Exp. 

10.00 

9.03 

8.20 

r Composite beam all steel section with n = 8. 

Ext. 

256 

7.52 

25.9 

STRAIN MEAEURING AND RECORDING EQUIPMENT 

% DifL 

2.5 

7.5 

16.6 

The response of the bridge was measured with the use of eight 

type A-1 SR-4 strain gages cemented to the center of the bottom flange 

of each of the four stringers. The strain gage locations were on each 

stringer at the center of the bridge, and at the south quarter point 

longitudinally. The recording devices were two 4 channel Brush direct-

writing recorders (BL-274) in conjunction with eight Brush Universal 

amplifiers (BL-520). Due to the relatively good temperature control and 

the short duration of each test run, temperature compensating gages 

were not used. 
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OSCILLATOR 

The apparatus used to produce the stationary oscillating loads on 

the bridge was a rotating eccentric weight device (figure 2). The force, 

F, in pounds produced by such a rotating weight in any one direction is 

given by the equation, 

F 2 . = mew s1nc.u t, 

where m is the mass of the eccentric weight in pounds mass, ~ is the ec-

centricity of the center of the eccentric mass in feet, ~ is the rotational 

velocity in radians per second, and.!_ is the time in seconds. The device 

was constructed so that two equal eccentric masses rotated with the same 

frequency in the same plane, but in opposite directions, in phase ver-

tically, but 180 degrees out of phase horizontally, so that the horizontal 

component of the oscillating force was canceled and the vertical com-

ponent was reinforced. The device was operated by a one horsepower 

variable speed motor. The eccentric weights were threaded on shafts 

so that their eccentricity could be varied at will, and were provided with 

locking screws so that they would not slip during operation. A curve 

was drawn, relating mass eccentricity and 'rotational frequency for a con-

stant oscillating force. This enabled the oscillator to be operated at 

various frequencies while maintaining a constant force. The speed of 

the oscillator was controlled by so adjusting the variable speed control 

on the motor as to make a radially drawn chalk line on the oscillator 

drive pulley appear stationary when an electronic strobotac, set to the 

proper frequency, was focused on the chalk line. A permanent record 

and check on this frequency was obtained by operating an event marker 

on the oscillograph by a set of contact points, which in turn were operated 
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by a can attached to one of the rotating shafts on the oscillator. In this 

way the event marker was operated once for each revolution and could 

be compared against the time base which was controlled by the speed 

of the graph paper in the oscillograph. This time base was further 

checked by a one-second tic applied to the graph paper by a one-second 

event marker. In evaluating the data, this check on frequency proved 

invaluable, because the frequency at which the stroboscope operated was 

consistently 50 to 60 rpm faster than indicated. Not only would this 

error have produced false frequencies on the resulting data, but the 

applied oscillating force would have been in error also. The frequency 

used in evaluating the data was that frequency which was recorded on the 

graph paper, and the applied oscillating force was subsequently corrected, 

using the proper frequency. 

TEST TRUCK 

The test vehicle for the moving load portion of the test was simu

lated by dual tandem wheels (figure 3). Weight was added to the basic 

frame of the "truck" concrete blocks loaded into the tray on top of the 

frame. The blocks were centered so that their weight was evenly dis

tributed to each of the two axles. The total weight of the truck and blocks 

was 970 pounds. 



• 

SIDE VIEW 

Figure 3. Test vehicle . 

2'-112" 

FRONT VIEW 
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EXPERIMENTAL INVESTIGATION 

STATIONARY DYNAMIC TESTS 

The primary purpose of this test was to investigate the upper limit 

of impact due to a repetition of the rolling load effect with the frequency 

of passage of axles as derived by Linger. To this end, the stationary 

oscillating load was applied to the bridge near the center of the span. 

The reasons for this were threefold: (1) the derivation of the impact 

formula was such as to invalidate representing the frequency of pas sage 

of axles by a stationary alternating load unless the load was placed near 

the center of the span, (2) the most se~rere impact occurred when the 

load was near the center of the span, and (3) the loaded natural frequency 

as used by Linger was considered as that loaded natural frequency when 

the moving load was in the center of the span. For similar reasons the 

strain, which is directly proportional to the deflection, was measured at 

the lateral centerline of the bridge only. Other tests were run, utilizing 

the strain recordings from the south quarter point of the bridge and po

sitioning the oscillator closer to the ends of the bridge; but these other 

tests were designed to point out a problem previously given little consid

eration in the investigation of impact due to moving loads. Specifically 

they were to demonstrate the effect of frequency of oscillation on load 

distribution to the stringers. For tests correlating experimental data to 

Linger's impact, four locations were chosen for applying loads. These 

were G-9-3/8, G-12-1/2, J-9-3/8, and J-12-1/2. These locations 

were chosen because they were at the center and one-eighth of the length 

of the bridge from the center longitudinally, and on the centerline and 
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one-quarter of the width from the centerline laterally. Due to a slight 

camber of the bridge the oscillator could not be set flat on the slab and 

still be stable. For this reason the oscillator was set up on three 

supports which made the oscillator stable at all times (figure 2). The 

position of the three supports was determined by operating the oscillator 

in various positions under the device. Due to the unbalance of the motor 

on one side, the best dynamic results were gained from placing the 

supports in this position. This had the effect of concentrating the load 

on three supports instead of over the area of the oscillator base, which 

in fact was more in keeping with the theoretical considerations. It 

made the problem of placing the load at exactly the grid location desired 

much more difficult, but this was not a serious problem because the 

test was designed to compare oscillatory load effects with static load 

effects. To this end it was sufficient to insure that the oscillator was 

set at the same spot for both the static and dynamic tests. 

The dynamic tests were conducted by varying the frequencies of 

oscillation while maintaining the same applied force. Since the most im

portant effects, those which would approach the upper limits of impact, 

would be gained by applying frequenc~es near the loaded natural frequency; 

the range of frequencies including the loaded natural frequency was always 

investigated. The weight of the oscillator was 700 pounds, and the dy

namic force which was applied by the oscillator was designed to be 70 

pounds. As has been mentioned, the oscillator frequency was generally 

greater than was intended, but the transmitted force was adjusted ac

cordingly. 
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Figure 4. Over-all view of bridge , oscillator, and recording devices. 
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STATIC TESTS 

The static load was applied to the oscillator at rest by means of 

an hydraulic jack (figure 5). The jacking was done against wide flange 

beams supporting. the floor above. A Baldwin SR-4 load cell which had 

been calibrated previously was placed between the jack and the oscillator 

to determine the static load applied. Large static loads were applied so 

that the readings on the Brush recorders would not be unduly affected by 

temperature changes throughout the loading time. This was necessitated 

because of the lack of temperature compensating gages. After each load 

test the applied load was returned to the value of the initial load, and 

the strain readings were effectively returned to zero. A load-strain 

diagram was then drawn for each stringer from data thus obtained. 

MOVING LOAD TESTS 

There was difficulty in trying to propel the simulated "trucks" 

across the bridge and perform moving vehicle tests on the test bridge due 

to crowded conditions. Since there were no roadways leading off the 

bridge, it was necessary to stop the vehicle abruptly. Fortunately there 

was a ten-foot bridge built at the north end of the 25-foot bridge which 

was sufficient to enable the "truck" to be pushed onto the test bridge. 

The relatively short distance traversed by the "truck" enabled this initial 

velocity to be sustained until it was abruptly stopped by ropes attached 

to the 11truck 11 and the ceiling beams near the north end of the bridge. 

The velocity of the "truck" was measured by a photoelectric cell at mid

span. A four-foot shield which interrupted a beam of light to the photo

electric cell was attached to the "truck". The photoelectric cell operated 
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a relay which in turn operated an event marker on the oscillograph. 

The velocity of the vehicle could then be determined by dividing four 

feet by the time in seconds that the event marker was engaged. The 

speed of the vehicle was determined in this manner. In all moving load 

tests, the vehicle was directed along the center of the bridge. 

Since the speed of the test vehicle could not be varied greatly be-

cause only human motive forces were used, the more important results 

of the moving load tests were looked for in the area of impact due to 

obstructions on the test bridge. For this phase of the tests, a piece of 

angle iron giving a one-quarter inch vertical obstruction was placed at 

various locations on the span to give an idea of the size of impact due to 

uneven approaches or obstructions on the bridge floor. 

DETERMINATION OF DAMPING COEFFICIENT 
AND NATURAL FREQUENCY 

Since the successive amplitudes of free vibration are given by 

e (-z~~ :~z) 
the damping coefficient, nb, can be evaluated by measuring successive 

amplitudes of strain on the strain-time records and equating them to the 

value given above. Thus if the amplitude when t = 0 is Y 
0

, and the am

plitude N cycles later is Y N' a total decrease over the period will be 

given by Y 
0 

/Y N' which will produce 

log e 

Y0/
1
Y fL

2 

. N = 21Tnb ~. 
f 

(52) 
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The average decrement. which is commonly known as the average log-

rithmic decrement is then given by 

2 
1 y I fL 
W loge o y n = 21T~ T • 

Since the damping coefficient was evaluated from strain records com-

piled when the bridge was vibrating freely and without a load. fL = f, 

hence 

The value found for this bridge was nb = O. 0131, which becomes negligible 

for any consideration in evaluating test results. The method employed 

in obtaining free vibrations in the bridge structure was to suspend a 

person from the stringers of the floor above the bridge. This person 

would then set the bridge in oscillation by striking it with his feet, and 

immediately lift himself off the bridge. The strain records from these 

tests were also used in determining the various loaded natural frequencies 

as well as the natural frequency of vibration and damping coefficient. 
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DATA ANALYSIS 

ANALYSIS OF STATIONARY DYNAMIC TESTS 

The data recorded by the oscillograph due to the stationary os

cillating loads was only the dynamic portion of the strain in the stringers 

(figures 6, 7). The static deflection had been zeroed out before the tests 

were begun. For each test the applied frequency had been determined by 

measuring the distance between ten oscillations as recorded by the event 

marker, and this distance was converted to time by comparison with the 

time tic on the one-second event marker. The applied frequency of 

oscillation in cycles per second could then be found by dividing the ten 

oscillations by the corresponding time. In all this frequency corresponded 

to the frequency of vibration, indicating that the bridge vibrations had 

reached a steady state condition. The applied frequency of oscillation 

had been found to be greater than that which had b·~en indicated on the 

strobotac, and a revision of the dynamic force applied was necessary. 

Since the force applied was directly proportional to the square of the fre

quency, and since the eccentricity of the weights had been set so that at 

the frequency set on the strobotac the dynamic force would be 70 pounds, 

the actual force was found by multiplying 70 pounds by the square of the 

ratio of the applied frequency to the frequency set on the strobotac. The 

resulting applied dynamic loacis all fell within the range of 79 to 92 pounds. 

Now the resulting amplitude of vibration, as indicated by the mea

sured strain on the bottom of the stringers, must be added to the static 

deflection to obtain the total deflection. Since the deflection for any 

stringer is directly proportional to the strain under a given loading con-
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dition, the following analysis will be in terms of deflection, although the 

actual measured quantity is strain. Only half the amp!itude of the dynamic 

deflection can be properly added to the static deflec';ion, because during 

half the period of vibration the beam is subjected to negative moment; 

that is, it is concave downward. For this reason the half 2.v.plitude of 

vibration was divided by the corrected appl.ieC. dynamic lead to give a dy-

namic deflection per unit load, which will be called Yn. It is valid to ex

press the dynamic deflection in terms of u!lit load, be(;ause in vibration 

analysis all other factors being equal, the deflectim·1 o.f an elastic system 

is directly proportional to the applied dynamic force. This is stated 

mathematically by equation (45). From the static load tests a similar 

deflection per unit load was obtained and this deflection will be called 

y 5 • The total deflection, y T' of any one stringer is then given by the sum 

(53) 

Since this impact factor was defined as 

(54) 

it can be seen that the measured unit impact factor, due to unit loads can 

Yn 
be expressed as - • This unit impact factor must be corrected for the 

Ys 

assumed loads applied by any theoretical axle spacing and speed, however, 

to be compared with the impact equation derived by Linger. Since the 

force causing the dynamic part of the deflection is assumed to be caused 

by P, as given by equation (30), the total dynamic deflection is given by 

PyD. The total static deflection is likewise caused by the weight of the 
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load W, and is given by the quantity vVy c • The actual measured imj:>act 

factor is then given by the quantity 

p Yn 
w· Ys 

..., 

(55) 

and the correction factor for obtaining the impact factor is seen to be 

P h. h · · 1 t v s· th · .,,- f · W , w ic is equ1va en to ZLf • ince e quantity t.d_, 
0 

:i..s a cor..stant 
0 

for any given bridge, the correction factor is a functicm of t~-:.e vehicle 

speed. 

second. 

The value of 2Lf for this test bridge in see::: co be 500 feet per 
0 

These tests were performed with a station'.l:..·7 load, end a con-

cept of velocity seems at first glance to be sadly lacki::ig. If a theoretical 

axle spacing is chosen, an associated velocity is forthcoming from equation 

(29) so that 

V = sn • - (56) 

For this test then, fictitional axle spacings were chosen so that when 

multiplied by the applied frequency for any test run, a corresponding 

velocity was obtained. Axle spacings were chosen in such a way that the 

quantity ~Lf would always be small, and the value for W would always 
0 

be 700 pounds. In this way the loaded natural frequency would be correct 

for the actual load of the vibrator. In light of the considerations, the ex-

perimental impact factors were then determined by multiplying the unit 

Yn b . f . sn R impact, - ' y a correction actor, soo· esults are compared between 
Ys 

this impact factor and the theoretical curve for various axle spacings 

(figures 9-12). 
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ANALYSIS OF MOVING LOAD TESTS 

The axle spacing of the test 11truck11 was, of course, set at 17 

inches. The velocity could be taken directly off the oscillograph record 

by dividing four feet by the time in seconds the event marking pen was 

engaged. The test impact was determined by noting the maximum de-

flection of the os cillograph pen, subtracting the static loc..d pen deflection, 

and dividing this result by the static load pen deflect;_on (figure J.O). 

This procedure agrees with the definition of irr..p1ct c.i.f2 defined. 

ANALYSIS TO DETERMINE DYNAMIC 
LOAD DISTRIBUTION 

A comparison of the dynamic load distributio::-i as opposed to static 

load distribution is shown in figures 13 to 22. To arrive at the various 

percent distribution figures, the following analysis was employed. 

Since the moment in any stringer is a measure of the load carried by the 

stringer, an analysis of the moment in the four bridge stringers at any 

one cross section of the bridge would be indicative of the load distribution 

to the stringers at that cross section. The moment-stress relationship 

is given by stress =~where Mis the moment and~ the section modulus. 

Stress is proportional to strain within the proportional limit, which is 

proportional to unit strain, !_, for any given length. Therefore, 

E (57) 

or 

Se u= M • (58) 

The section modulus of the inside two stringers is greater than the section 

modulus for the exterior two stringers {table I). If SE is the exterior 
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stringer section modulus, and s
1 

is the interior section modulus, the ratio 

s 
I 'S':- = 1. 38. If the measured strain in the interior stringers is multiplied 
E 

by 1. 38, then 

M TOT AL o= e 1 + 1. 3 8e 2 + 1. 3 Se 3 + e 4 = D 

where the subscripts 1, 2, 3, and 4 refer to the four stringers respec-

tively, beginning on the east side of the bridge and progressing to the 

west. The percent of the load distributed to each stringer can then be 

found by 
E 1 

%1=1J 

1. 38E Z 
%2 = D 

1. 38E 3 
%3 = D 
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RESULTS 

The main objective of this work was to determine the correlation 

between Linger's theoretical impact formula and observed experimental 

impact within the upper regions of the theoretical curve. In addition it 

was hoped that information relating to the dynamic load distribution could 

be obtained. 

Due in part to the effects of dynamic load distribution, the test 

appears scattered (figures 9 to lZ). Theoretically the stationary oscillator 

eliminates the problem of getting the frequencies due to a smoothly rolling 

load and due to a repetition of axles in phase at resonance; however, 

other difficulties are encountered. The experimental data coincides with 

the theoretical data reasonably well in the regions other than at resonance, 

and as the theoretical curve approaches resonance the experimental data 

becomes farther removed from the theoretical (figure 8). This is true 

for frequencies greater than resonance; however, it is not nearly so pro

nounced for the experimental data at frequencies lower than the resonant 

frequency. The shape of the theoretical curve can be changed by changing 

the damping factor, and the damping coefficient used in all the theoretical 

curves in this work was negl~gible. Possibly a large part of the differ

ence between theory and test may be accounted for by considering a more 

realistic approach to damping. In determining the damping coefficients 

for the bridge, an equivalent viscous damping was used. Since structural 

damping is proportional to the amount of displacement, it is feasible to 

assume that in the region near resonance the damping coefficient would 

take on a significant value. The effects of this increased damping would 



• 

52 

be to bend the theoretical curve closer to the observed values, which 

are the result of considering the total moment in all four stringers at 

the mid-point due to a dynamic load at the center of the bridge (figure 8). 

This represents the condition most nearly in accord with the assumptions 

made in the derivations of the impact formula. The two most important 

assumptions were that the structure under consideration was a simply 

supported beam with negligible width as compared to its length, and 

that the first term of the Fourier series representing a concentrated 

load gives very good approximation to a true concentrated load when both 

load and deflection are near the center of the beam. 

The test impact as measured in individual stringers can be compared 

with the theoretical impact (figures 9 to 12). The results are well 

scattered from the theoretical curve, indicating that a closer look at the 

derivations might be in order. It would seem that the assumption that 

a bridge can be simulated by one beam might cause serious error for 

various reasons. In the first place, the nature of a bridge is such that it is 

loaded eccentrically. That is, traffic lanes are usually even in number, and· 

the loads are applied along lines other than the longitudinal centerline of 

the bridge. Though the distribution of static loads to the stringers is 

fairly well understood, little is known about the dynamic load distribution 

to the stringers. The effects of a dynamic load transferred through a 

spring system with damping are not the same as the effects due to an 

equal static load applied through the same medium. The slab on a bridge 

certainly is analogous to a spring system with internal damping, and 

loads applied through this medium can be considered as applied through 



53 

a spring system with damping. But if the damping is very small the 

dynamic effect will be the same as the static effect for all practical 

purposes. There may also be a torsional effect which could play a 

large part in the dynamic load distribution. With an eccentric dynamic 

load on the bridge, a torsional vibration could be set up. This torsional 

effect would be greater or less, depending on how close the impressed 

frequency was to the natural frequency in torsion.· 

The effects of dynamic loading, shown in figures 13 to 22, repre-

sent the percent of the total moment taken by each of the four stringers 

at the center and south quarter point of the bridge respectively due to 

oscillating loads applied at those points. The torsional effects should 

be most predominant on the series of tests run with the oscillator pur-

posely located in an eccentric position. The distributive nature of the 

results, indicate that the effect is directly opposite to what would be 

expected from torsion (figures 13 to 17). Up to a point, as the frequency 

increases, the percent of the load distributed to the stringers 3 and 4 

decreases, and the percent of the load distributed to stringers 1 and 2 

increases. If the bridge were vibrating torsionally in phase with the 

impressed oscillating load as well as laterally, stringers 3 and 4 would 
take increasingly larger percentages of load; and strin.gers 1 and 2 should 
take increasingly smaller pe:rcentages of load. It might be pointed out 

that at higher frequencies ther~ is very little pattern to the load distribu-

tion among the stringers. Many of the patterns that have been set up 

break down around 10 cycles per second, which is in the region just above 

the unloaded natural frequency of the bridge. A very definite beat appeared 

on the strain record within these frequencies. The beat was more pro-

nounced in the stringers on the west and receded in the stringers located 
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more to the east. In other words, stringer 4 usually showed more than 

did stringer 1. 

Although the load was positioned precisely in the center of the 

bridge when loading on the G grid line, the static distribution of moment 

in the stringers showed that the force acted a little to the east of center. 

Generally speaking, the same "reverse torsional" effects were seen in 

the series of tests along the G grid line (figures 18 to 22). That is to 

say, those stringers which received the greater share of the load under 

static loading, received proportionately less as the frequency increased. 

The effect was not so pronounced, but a study of the graphs indicates that 

this is true generally. 

Although no real conclusions can be drawn from figures 13 through 

22., they· are interesting in that they.point out the complex nature of dy

namic distribution of loads. In this light, then, it seems that the impact 

factors previously derived which are based on dynamic reactions in 

beams might be found in error due in large part to the nature of dynamic 

load distribution when they are experimentally tested on actual highway 

bridges. 

Figure 23 gives a graphic representation of experimental impact 

as related to Linger's formula. There seems to be a fair collaboration 

in that the mass of plotted points falls near the theoretical curve; however, 

there is still a rather large dispersion. The small range of velocities 

is due to the fact that only manpower was available to propel the simu

lated "truck", and this kept the speed of the vehicle relatively low. A 

correlation between this actual truck axle spacing and a fictional axle 

spacing applied to the stationary oscillator was not obtained because the 
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oscillator frequencies were too high. Had the oscillator frequency 

corresponded to the frequency set on the strobotac, a comparison would 

be possible; however, the error in the strobotac frequency prevented 

this. The impact was increased as much as three times its normal value 

when the truck was pushed over a small obstruction in the bridge. As 

would be expected, this impact was greatest when the obstruction was 

placed in the center of the bridge. This indicates that conditions which 

cannot be completely anticipated in theory or tests must somehow be taken 

into account. The truck used in this test was not spring mounted, how

ever, and this results in a larger impact than if it were spring mounted 
1

• 

Deviation from the theoretical impact as derived by Linger was 

rather large and unpredictable when individual stringers were considered 

by themselves, though when considering the bridge as a whole, the corre

lation was much better. It is interesting to note that the impact which ex

ceeded the theoretical curve in most occurred in those stringers on the 

opposite side of the bridge from where the load was located
4

• The 

stringers having the greatest impact are those which are able to withstand 

the greatest impact, or those which take the least static load. 

A more accurate determination of the effects of damping on bridge 

structures would provide a much better correlation between theory and test 

when considering the bridge as a whole. To consider impact effect on 

individual stringers, however, would require a better knowledge of dy-

namic distribution. 
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RECOMMENDATIONS FOR FURTHER STUDY 

As is often true in research, more questions are raised than are 

answered. This work has not been different in this aspect. Some specific 

investigations which could prove beneficial in their results are the following. 

( 1) V· hat are the factors affecting dynamic load distribution in 

bridge spans, and how are these factors related to the resulting stresses 

in bridge members? Because of the very complex nature of this. question, 

it seems that the best approach would be to use an empirical method of 

attack. 

(2) What is the correlation between impact as determined by a sta

tionary oscillating load and moving vehicle loads on the same bridge? 

Tests could be performed on actual highway bridges so that the problem of 

moving a vehicle across the bridge, which was present in this study, 

would be solved. 

(3) V!hat is an effective method for determining the coefficient of 

solid damping in bridge structures? If an impact factor is to be based on 

bridge vibrations, it would be necessary for a designer in an office to 

have a relatively rapid method of designing. or checking a coefficient of 

solid damping other than experimenting on the bridge he is designing. 

The damping factor will certainly play a large role in determining a 

maximum impact, and any knowledge gained in this area would be very 

helpful. 
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