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CHAPTER 1. GENERAL INTRODUCTION
Overview

The Iowa Department of Transportation (Ilowa DOT) has struggled with the problem of
fatigue in steel girder bridges for many years. Many of lowa’s 908 steel girder bridges have
been in service for more than 30 years and signs of age are beginning to appear. Sixty-three
of those bridges are considered by the lowa DOT to be fracture critical. Approximately 55
percent of the fracture critical bridges have been developing fatigue cracks in the girder webs
at connections with the diaphragms, especially in interstate bridges. Engineers are most
concerned about bridges with large average daily traffic loads, such as interstates, because of
the large loads and frequency of load cycles. In the 1980s, the lowa DOT began installing a
drilled hole retrofit at the terminus of the fatigue cracks in an attempt to slow the propagation
of the cracking by changing the stress concentration at the crack tips. This retrofit has not
always been successful in controlling fatigue cracking. The failure could be the result of two
scenarios. The hole may not have been drilled at the actual crack terminus due to difficulty in
visually locating this point or the stress cycles created in the web may be too great to be
controlled by the drilled hole retrofit. The result for both is continued crack growth.

Regardless of the cause of continued cracking in steel girder bridges, the lowa DOT
sanctioned research on a different retrofit to replace drilling. In the 1990s, research was
conducted at lowa State University on a new retrofit based on reducing the cause of the
fatigue cracking in the webs of multiple steel girder bridges, rather than controlling the
symptom by drilling. This retrofit was based on an understanding of the response of the
bridge superstructure to traffic loading. Researchers concluded that cracking in the webs near
the diaphragms is primarily the result of forces transferred to the girders by the diaphragms.
Differential deflection of the girders with varying traffic loads creates a resisting force in the
diaphragms because of the rigid connection with the girders. This force acts directly on the
girder webs and causes out-of-plane displacement. Over time, the out-of-plane displacement
results in fatigue cracking, especially in bridges with greater and heavier traffic loading.

Given this information, the new retrofit consisted of loosening the bolts at diaphragm/girder
connections to relieve the force generated by the diaphragms and differential deflection of
the girders. Loosening the bolts in the diaphragm/girder connection allows the diaphragms to
rotate with the differential deflection instead of bending the web. Two-girder bridges with
floor beams experience the same type of web cracking; however, the bolt loosening retrofit is
not a suitable solution. In anticipation of fatigue cracking, in the early 1980s a bolted angle
retrofit was used on a bridge on Interstate 80. Two angle pieces were used to connect the
stiffener to the top flange at a floor beam connection in a negative moment region where
fatigue cracking had occurred. This retrofit was tested as a portion of the retrofit research;
however, the bulk of the study involves multiple steel girder bridges with diaphragms.

Testing of the retrofit was carried out through short-term field testing of K-type and X-type
diaphragm bridges [1,2]. Test bridges were instrumented with strain gages and displacement



gages. Load tests were completed on the bridge before and after the bolts were loosened in a
sample diaphragm area. Following testing, the bolts were returned to the tight condition.

The results from these tests showed that the bolt loosening retrofit reduced strain and
displacement in the web gap a considerable amount; however, several questions were raised
about the implementation of this retrofit on in-service bridges. These include how effective
the retrofit is on other types of diaphragm bridges, what the long-term effects of the retrofit
on the superstructure are, and how the stability of the girders is affected by loosening the
diaphragms. These questions led to the current research at lowa State University involving
the bolt loosening retrofit. This research focused on determining the viability of
implementing bolt loosening as a practically applicable retrofit for web gap fatigue cracking.
This report presents the changes in bridge response before and after the retrofit was installed,
highlighting the cause and effect of the retrofit on strain and displacement of the girder webs.

Field testing was performed on an [-beam diaphragm bridge and a channel diaphragm bridge
to study the effect of the retrofit on other types of diaphragm bridges. Long-term field testing
was completed on an X-type diaphragm bridge, which was part of the 1990s research to
study the effect of the retrofit over time. In addition to the retrofit data, new methods of
continuous remote monitoring were developed as a result of the long-term research. These
new methods will prove to be important in lowa’s future endeavors into health monitoring of
bridges.

Stability of the loose bolt bridges was not directly addressed by field test in this research.
However, American Association of State Highway and Transportation Officials (AASHTO)
design specifications were consulted regarding girder stability on the bridges and were found
to be sufficiently stable without the diaphragms. However, further research should be
performed on this subject. The data collected will be used by other researchers at lowa State
University in the future to prepare in-depth finite element models (FEMs) of the bridges,
which will be used to further support the effectiveness and safety of this retrofit.

Literature Review

Each chapter of this report contains a discussion of relevant previous research and related
references. A general review of steel girder bridge literature and heath monitoring literature
is included here.

Steel Girder Bridge Literature Review

A literature review of past research involving steel girder bridges was completed prior to
field testing. This provided insight into the cause and location of fatigue cracking
investigated by other researchers, as well as retrofit methods in use. Bridge health monitoring
and remote monitoring were also reviewed to prepare for the long-term testing.



Wipf et al. and Khalil performed the initial research on the bolt loosening retrofit at lowa
State University in 1998 [1,2]. The investigation was based on loosening the bolts in sample
bridges across the state of lowa. Bridges with K-type and X-type diaphragms, or cross
frames, were used in load testing of the retrofit. Field test data were collected with trucks of
known weights before and after a portion of the diaphragms were released. Data from these
tests showed a reduction in the strain in the web gap fatigue area following implementation
of the retrofit. Data from these tests were also used to calibrate FEMs created for the bridges.
These models were used to study the global effects of cracking in the webs on the bridge.
The results of this research demonstrated that the retrofit reduced strain and displacement in
the fatigue-prone exterior web gaps by at least 48 percent. The bolt loosening retrofit was
found to be an effective method of reducing the out-of-plane displacement and strain in the
web gap, thus reducing or eliminating fatigue cracking in web gaps.

Fisher et al. [3-7] developed the retrofit currently in use by the lowa DOT. Fisher’s work on
steel bridge fatigue addresses many typical failure locations, including the web gap due to
out-of-plane deformation. Fisher, in conjunction with Keating [8], suggests that holes
approximately 1 inch in diameter drilled at the terminus of each fatigue crack will control
further cracking. In some cases this retrofit is sufficient to stop cracking, as long as the hole
is properly drilled at the crack terminus and the web is provided enough flexibility following
cracking to relieve strain in the web gap. If the web does not have enough movement other
methods are suggested for permanent repair. These can range from a bolted stiffener/top
flange connection to a removal of the diaphragms in cases where AASHTO permits.

Cousins and Stallings et al. [9-14] have conducted considerable research in the area of
diaphragm removal in cases involving fatigue in the web gaps. New requirements in the
AASHTO bridge design manual allow for more freedom in lateral bracing, which has
permitted this type of research. The primary scope of the research focused on load
distribution factors. Tests were completed to determine the magnitude of load distribution
performed by the diaphragms. Results revealed that the girder with the highest strain during
load tests with the diaphragms in place increased 5 to 15 percent when the diaphragms were
removed. Cousins and Stallings suggested that this was an insignificant amount when
compared to conservative bridge rating calculations.

Azizinamini et al. [15,16] completed calculations involving stability of multiple girder
bridges with the diaphragms removed. Removal of the diaphragms in the negative moment
region removes lateral torsional buckling support of the compression flange. The positive
moment region has continuous support from the integral concrete deck. Azizinamini’s work
determined the strength of the girders without the lateral bracing using the AASHTO design
manual. Bridges with three spans of between 100 and 200 feet with no skew were studied.
Calculations showed that the bridges under consideration had sufficient stability in the
negative moment region so that compression flange bracing could be removed. Azizinamini’s
research focused on common dimension multiple girder bridges. The results suggest that
calculations on other similar bridges will verify that the diaphragms in the negative moment
region are not necessarily needed for stability of the structure.



Miki et al. [17] and Zwerneman et al. [18], as well as Stallings, have studied fatigue cracking
in locations outside the web gaps due to forces in the diaphragms. Cracking can occur in the
stiffener plate, the diaphragm, connector plates, and welds. The location of the cracks
discussed in their research outline other fatigue problems that can develop relative to
diaphragm connections. For example, Miki’s work evaluated stiffeners that are welded to the
top flange, which typically protects the web gap from fatigue damage. Numerous other crack
locations have developed in the stiffener plate in response to this welded connection.

Health Monitoring Literature Review

Chajes and Shenton et al. [19,20] completed research on bridge condition assessment. Data
were collected from bridges under normal traffic loading to develop an accurate strain
history. This information was then used to develop a predicted fatigue life of the structure.
To collect behavioral data, a bridge monitoring system was installed on site. Instrument
Sensors Technologies produced the data acquisition system (DAS), and Intelliducer strain
transducers from Bridge Diagnostics, Inc., were used to instrument the bridge. A NEMA 4
enclosure was installed at the bridge to protect the system from weather and vandalism. The
battery power source used was ideal for use in remote locations, and a data record trigger
allowed the system to monitor inputs and record a burst of data when the selected trigger
channel exceeded a preset threshold.

Aktan et al. [21] also performed research featuring a remote monitoring system. The research
was based on the structural identification of a truss bridge; however, the data acquisition
method used is applicable in many situations. The monitoring system was installed at the
bridge site in a powered environmental enclosure and continuously monitored the bridge.
The bridge was instrumented with anemometers, accelerometers, strain gages, and
inclinometers. Small portions of data were acquired at different times of the day, and as data
were collected from instrumentation, a video camera collected visual data to help in
interpreting results. This system was connected to a laboratory by a modem. Future plans
feature installing a high-speed internet connection. The remote location of the system with
telephone connection to the laboratory is a great benefit of this system.

References

1. Wipf, T.J., and L.F. Greimann, A. Khalil. Preventing Cracking at Diaphragm/Plate
Girder Connections in Steel Bridges. lowa DOT Project HR-393. Ames, lowa: Center for
Transportation Research and Education, lowa State University, 1998.

2. Khalil, A. Aspects in Nondestructive Evaluation of Steel Plate Girder Bridges.
Dissertation. Ames, lowa: lowa State University, 1998.

3. Fisher, J.W. Fatigue and Fracture in Steel Bridges, Case Studies. New Y ork: John Wiley
and Sons, 1984.



10.

11.

12.

13.

14.

15.

16.

Fisher, JW., B.T. Yen, and D.C. Wagner. “Review of Field Measurements for Distortion
Induced Fatigue Cracking in Steel Bridges.” Transportation Research Record, No. 1118,
1987, pp. 49-55.

Fisher, J.W., and P.B. Keating. “Distortion-Induced Fatigue Cracking of Bridge Details
with Web Gaps.” Journal of Constructional Steel Research, Vol. 12, 1989, pp. 215-228.

Fisher, J.W. Fatigue Cracking in Steel Bridge Structures: Executive Summary. Advanced
Technology for Large Structural Systems, Report No. 89-03. Bethlehem, Pennsylvania:
Lehigh University, 1989.

Demers, C.E., and J.W. Fisher. 4 Survey of Localized Cracking in Steel Bridges 1981 to
1988. Advanced Technology for Large Structural Systems, Report No. 89-01. Bethlehem,
Pennsylvania: Lehigh University, 1989.

Keating, P.B. “Focusing on Fatigue.” Civil Engineering, Vol. 64, No. 11, 1994, pp. 54-
57.

Cousins, T.E., and J.M. Stallings. “Calculation of Steel Diaphragm Behavior.” Journal of
the Structural Division, Vol. 102, No. ST7, July 1976, pp. 1411-1430.

Stallings, J.M., and T.E. Cousins, and T.E. Stafford. “Effects of Removing Diaphragms
from Steel Girder Bridge.” Transportation Research Record, Vol. 1541, 1996, pp. 183-
188.

Stallings, J.M., and T.E. Cousins. “Fatigue Cracking in Bolted Diaphragm Connections.”
Proceedings of the 15th Structures Congress 1997 Portland, Vol. 1. New York: ASCE,
1997, pp. 36-40.

Stallings, J.M., and T.E. Cousins. “Evaluation of Diaphragm Requirements in Existing
Bridges.” Proceedings of the 15th Structures Congress 1997 Portland, Vol. 2. New Y ork:
ASCE, 1997, pp. 1494-1498.

Cousins, T.E., and J.M. Stallings. “Laboratory Tes