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THREE-VOLUME REPORT ABSTRACT 

The Iowa Department of Transportation (DOT) started investing in research (through both the 

Iowa Highway Research Board and the Office of Bridges and Structures) in 2003 to develop a 

structural health monitoring (SHM) system capable of identifying damage and able to report on 

the general operational condition of bridges. In some cases, the precipitous for these 

developments has been a desire to avoid damage that might go unnoticed until the next biennial 

inspection. Of specific and immediate concern was the state’s inventory of fracture-critical 

structures. 

The goal of this project was to bring together various components of recently-completed research 

at Iowa’s Regent Universities with the following specific objectives: 

 Final development of the overall SHM system hardware and software 

 Integration of vibration-based measurements into current damage-detection algorithm 

 Evaluation and development of energy-harvesting techniques 

The three-volume final report summarizes the results of this project as follows: 

Volume I: Strain-Based Damage Detection, from the Iowa State University Bridge 

Engineering Center, reviews information important to the strain-based SHM methodologies, 

details the upgraded damage-detection hardware and software system, demonstrates the 

application of the control-chart-based methodologies developed, and summarizes the results in 

graphical and tabular formats. 

Volume II: Acceleration-Based Damage Detection, from the University of Iowa Center for 

Computer-Aided Design, presents the use of vibration-based damage-detection approaches as 

local methods to quantify damage at critical areas in structures. Acceleration data were collected 

and analyzed to evaluate the relationships between sensors and with changes in environmental 

conditions. A sacrificial specimen was investigated to verify the damage-detection capabilities 

and this volume presents a transmissibility concept and damage-detection algorithm that show 

potential to sense local changes in the dynamic stiffness between points across a joint of a real 

structure. 

Volume III: Wireless Bridge Monitoring Hardware, from the University of Northern Iowa, 

Electrical Engineering Technology, summarizes the energy harvesting techniques and prototype 

development for a bridge monitoring system that uses wireless sensors. The functions and 

performance of the developed system, including strain data, energy harvesting capacity, and 

wireless transmission quality, are covered in this volume. 
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EXECUTIVE SUMMARY 

An experimental validation for an autonomous damage-detection algorithm, known as the cross 

prediction methodology, was completed on the US 30 Bridge over the South Skunk River in 

Ames, Iowa on a previous project. To validate the accuracy of the control-chart-based damage-

detection algorithm, sacrificial specimens were fabricated and damaged. To improve the damage 

detection ability of the methodology with respect to false-indication readings a statistical f-test 

was introduced. 

In this work, a complete structural health monitoring (SHM) system was finalized with hardware 

and software components. For example, the previously-used fiber-optic sensors were replaced 

with traditional strain gauge and the external communication system was upgraded to include 

automated file transfer using fourth generation (4G) cellular technology. 

A complete software package named Bridge Engineering Center Assessment Software (BECAS) 

was developed and includes multiple automated damage-detection processes including sensor 

data acquisition, strain range data reduction, and statistical control-chart-based evaluation, based 

on damage-detection methodologies. The damage detection ability was updated to include 

multiple, redundant methods including: 1) one-truck event, 2) truck events grouped by ten, 3) 

cross prediction, and 4) Fshm method. Each of these methods were investigated and then analyzed 

in terms of false-indication rate and control chart rules. 

As possibly the most intuitive damage-detection method, the one-truck event methodology 

involves the construction of control charts using the strain range data for individual truck events. 

For the truck events grouped by ten method, control charts are created in a similar way, but by 

averaging 10 successive truck passages to create a single data point. Both the one-truck event 

method and the truck events grouped by ten method had relatively low false-indication rates and 

were able to detect damage. In the cross prediction and Fshm methods, the major improvement 

was made in the use of orthogonal regression instead of traditional linear regression. Both 

methods showed a comparatively higher number of false indications than the previous two 

methods but also had significant increases in the number of true indications. 

The cross prediction and Fshm methods had a relatively large number of false indications at 

sensors in the cut-back web-gap region of the bridge. To have a better understanding of the cause 

of the false indication, the cut-back web-gap region was inspected using visual and magnetic 

particle techniques. A small crack-like indication near the cut-back web-gap region was 

identified and might be actual damage detected by the system. Further study of the false-

indication rate was conducted by removing the cut-back region data. 
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1. INTRODUCTION 

1.1 General Background 

Bridge structural health monitoring (SHM), which typically includes specialized hardware and 

software algorithms, has been widely investigated during the past two decades. Many SHM 

techniques have been proposed as a means to provide methods to increase the overall safety of 

bridges. These developments have been driven, in part, by a desire to have continuous feedback 

on system performance that provides for a more reliable and robust transportation system. In 

addition, it has been shown that periodic visual inspections may not be as reliable as desired (Lu 

2008). 

Since 2003, strain-based damage-detection algorithms for the US 30 Bridge over the South 

Skunk River in Ames, Iowa have been studied and developed by the Iowa State University 

Bridge Engineering Center. For the first generation of the damage-detection algorithm, a long-

term monitoring system was developed that included novel data management processes 

including automated data zeroing, filtering, and extrema identification (Doornink 2006). 

To improve the detection capabilities and to remove user subjectivity, two important 

advancements were made in a second-generation system. First, a powerful vehicle-identification 

system was developed and, second, the algorithm was quantified statistically. The statistical-

based damage-detection methodology, named the cross prediction method (using control chart) 

was formulated by Lu (2008). 

In 2010, an experimental validation was conducted to study the efficacy of the approaches. 

Sacrificial specimens were mounted to an in-service bridge and exposed to real traffic loads with 

fatigue cracks and thickness loss damage induced (Phares et. al 2011). The results showed that 

the damage-detection algorithm detects structural damage well. Unfortunately, a relatively high 

false-indication rate was also observed. Therefore, improvements to the algorithm were 

investigated and evaluated. The statistical f-test was proposed as a means to improve overall 

system performance (Phares et. al 2011). 

In the work summarized herein, the damage-detection process based on statistical control charts, 

using continuous strain range data, was further developed. False-indication and true-indication 

rates were more fully investigated and then compared. The previous SHM sensor system (fiber-

optic sensors) was replaced with new hardware systems (conventional resistance sensors) for 

operational verification. In addition, turnkey software was developed to control the entire 

damage-detection process autonomously. 

1.2 Objective of Research 

The objective of this research was to finalize the development of the overall SHM system on the 

US 30 Bridge including the hardware, software, and damage-detection methodology. New 

hardware (including sensor, data acquisition, and communication architecture) was configured, 



 

2 

installed, and verified operationally on an in-service bridge. Four strain-based damage-detection 

methodologies, one-truck event, truck events grouped by ten, cross prediction, and f-test, were 

investigated and compared using control chart theory. A complete software package called 

Bridge Engineering Center Assessment Software (BECAS) was developed to form an integrated 

SHM system. 

1.3 Organization of Report 

In this report, Chapter 2 reviews information important to the strain-based SHM methodologies 

and Chapter 3 details the upgraded damage-detection hardware and software system. Chapter 4 

demonstrates the application of the control-chart-based methodologies developed and 

summarizes the results in graphical and tabular formats. Chapter 5 summarizes this project and 

presents conclusions and recommendations based on all aspects of the work. 
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2. PERTINENT LITERATURE REVIEW 

This chapter, which serves as a review of relevant work to date, is divided into three primary 

subsections. The first describes what is known as the cross prediction model control chart 

methodology for detecting damage. The second summarizes previous work completed to validate 

the damage detection approaches. The third presents information related to the use of orthogonal 

regression and how that has been used in the evolution of the damage-detection approach 

discussed herein. 

2.1 Cross Prediction Model Control Chart Method 

2.1.1 Strain Data Identification 

In 2007, an SHM system for detecting damage autonomously was developed by Wipf, Phares, 

and Doornink that used strain as the monitoring metric (Wipf et al. 2007). The bridge used 

during this development is the eastbound US 30 Bridge crossing the South Skunk River in Ames, 

Iowa. The US 30 Bridge has three spans with two equal outer spans (97.5 ft each) and a longer 

middle span (125 ft), a width of 30 ft, and a right-ahead skew of 20 degrees. Figure 2.1 shows a 

basic plan view of the US 30 Bridge. 

 

Figure 2.1. Basic plan view of the US 30 Bridge 

A total of 40 fiber-optic strain gauges were installed on the bridge in 2007. A unique naming 

convention for each sensor indicates its location. For example, B-NG-BF-H represents the sensor 

located at Section B (B-), North girder (NG-), bottom flange (BF-), horizontal orientation (H). 

Full details for the sensor locations and orientations are shown in Appendix A. The complete 

monitoring system is described more fully by Doornink (2006), Lu (2008), and Phares et al. 

(2011). 

The data collection process developed includes a novel approach for data zeroing, filtering, and 

extrema identification. Data zeroing is performed to remove temperature effects and was 

accomplished by subtracting a constant temperature offset from data collected in small 

increments. Then, data filtering is conducted to obtain a data set that represents the quasi-static 

response of the bridge under ambient traffic loads. The strain data from each vehicular event are 

then decimated to just the maximum and minimum strain values. 
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To develop relationships between two sensors, target sensor (TSs), where damage might be 

expected, and non-target sensors (NTSs) are designated. The “training” process defines the 

“normal” behavior of the system with relationship limits for each sensor pair determined 

manually by an engineer. Examples of matched data from two sensors with limits are shown in 

Figure 2.2. 

 

Figure 2.2. Example of matched data from two sensors with applied limits (right) (Wipf et 

al. 2007) 

Following training, during which the limits of normal behavior are defined, subsequent truck 

events are then compared to the limits. A Pass assessment defines a point within the limits and a 

Fail assessment defines data outside of the limits. For analytical verification of this general 

approach, Vis (2007) developed a finite element (FE) model with simulated damage in 

Evaluation of a Structural Health Monitoring System for Steel Girder Bridges. His work showed 

that some natural variability existed due to truck parameters such as the number of axles and the 

transverse position of the truck (e.g., left lane or right lane). It was indicated that removing this 

variability would likely enhance damage-detection ability. 

2.1.2 Truck Parameter Identification 

To address uncertainties identified by Vis, a second-generation damage-detection algorithm was 

investigated/developed by Lu (2008) that sought to improve the approach by identifying 

important truck parameters, which would then be used to reduce the uncertainties. Truck 

parameters of interest were defined as the travel lane, number of axles, speed, axle spacing, and 

truck weight. The truck travel lane was determined from the sensor on the girder closest to the 

vehicle travel lane because it consistently produced a high peak strain and the best truck axle 

detection algorithm utilized sensors placed on the bottom of the deck near the truck wheel line. 

Truck weight could only be estimated as either heavy or light due to the difficulty in assessing 

the specific weight of each axle accurately. With the truck information determined, the algorithm 

developed by Lu utilized strain data resulting from only right-lane, five-axle heavy trucks. Lu 

(2008) also determined that strain range (i.e., the difference between the maximum and minimum 
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strain during the truck event) is a more effective means of detecting damage than using both the 

maximum and minimum strains. 

2.1.3 Control Charts 

With the strain ranges from sensor pairs, a linear prediction model was developed to predict the 

relationship between two sensor strain range pairs for multiple trucks. The residual was then 

defined as the difference between the measured strain range and the predicted strain range data 

as shown in Equation 2-1. 

        (   )                       (   )                        (   ) (2-1) 

An n × n residual matrix could then be created for each truck event. The information was 

reduced to an n degree vector, in which element i represented the residual for sensor i and was 

defined to be the combined-sum residual equal to the sum of row i minus the sum of column i for 

each truck. Sample distributions of the combined-sum-residuals are shown in Figure 2.3.  

 

Figure 2.3. Sample distribution of the combined-sum-residuals (Lu 2008) 

With the n-degree vectors, one for each truck, consisting of the combined-sum residual, 

Shewhart   control charts, typically used for process control, could be constructed as a 

strategically-defined damage indicator for each sensor by plotting the residual values versus 

truck event. As is common practice, multiple events were usually grouped together to form one 

point on these charts. In this work, a group size of 10 consecutive trucks for each point was used. 

Based on the observed normal distribution pattern in Figure 2.3, the upper control limit (UCL) 

and lower control limit (LCL) were set as shown in Equation 2-2. 

{        

        
           (2-2) 
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where   and s is the mean and standard deviation of the combined-sum residuals, respectively. A 

sample control chart is shown in Figure 2.4. 

 

Figure 2.4. Sample control chart (Lu 2008) 

Out of limit points on the constructed control charts were defined as an indication of possible 

structural damage. The probability of detection (POD), which is the ratio of number of detections 

to the total number of events, was used as a check of the sensitivity of the damage-detection 

method. 

2.2 Methodology Validation 

To validate the damage-detection algorithm with actual damage data, two sacrificial specimens, 

simulating the floor-beam web-gap region in the US 30 Bridge, were fabricated (Phares et al. 

2011). Each was integrated into the bridge in such a way that it responded to traffic loads but did 

not create a safety concern with the introduction of damage. The sacrificial specimen consists of 

two web-gaps connected by a steel plate. In this configuration, the sacrificial specimen simulates 

the double curvature bending occurring within the web-gap regions. A typical installed sacrificial 

specimen and double curvature bending phenomena is shown in Figure 2.5. 
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Figure 2.5. Typical installed sacrificial specimen and double curvature bending of 

sacrificial specimen (Phares et al. 2011) 

2.2.1 Sacrificial Specimen 1 

Specimen 1 was fabricated with a small electrical discharge machining (EDM) notch through the 

thickness of the top plate where a crack was expected when high strains and a large number of 

cycles occurred. It was found that the truck live loading strains in the specimen (and the 

corresponding real web gap) were insufficient to grow a crack in a reasonable time. Therefore, 

Specimen 1 was artificially damaged by attaching a rotary shaker to the specimen and cycling 

the specimen rapidly near its resonance frequency in the range of 60 Hz to 70 Hz. Figure 2.6 and 

2.7 show cracking in the top (left) and bottom (right) plates of the sacrificial specimen and 

information on the installed sensor array, respectively. 

   

Figure 2.6. Sacrificial Specimen 1 cracking (Phares et al. 2011) 
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Figure 2.7. Details for sacrificial specimen with sensor array (Phares et al. 2011) 

2.2.2 Sacrificial Specimen 2 

Specimen 2 was constructed identically to Specimen 1, except without an EDM notch. Specimen 

2 was vibrated to create different levels of damage occurring in the web-gap area: no crack, 1.25 

in. crack, 1.50 in. crack, and 1.75 in. crack. After each crack increment, data for heavy, right-

lane, five-axle trucks were collected for several days. A photograph of the sacrificial Specimen 2 

top web plate cracking is shown in Figure 2.8. 

 

Figure 2.8. Sacrificial Specimen 2 top web plate cracking (Phares et al. 2011) 

The cross prediction methodology described in Section 2.1 was applied to the data from both 

Specimen 1 and 2 to evaluate its effectiveness in detecting damage. The methodology worked 

quite well but results revealed relatively high false-indication rates (Phares et al. 2011). As a 

result, the authors suggested improvements to the methodology, as summarized below. 
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2.3 Orthogonal Regression and Statistical Evaluation Approach  

Using orthogonal linear regression and the statistical f-test were proposed and developed to 

reduce the relatively high false-detection rate associated with the previously-described cross 

prediction damage-detection method. It was believed that these two methods would further 

reduce uncertainties in the cross prediction methodology and, therefore, reduce the false-positive 

rate. 

2.3.1 Development of Orthogonal Regression and Orthogonal Residual 

The most common use of orthogonal linear regression is in comparing two measurement systems 

that both have measurement variations (Carroll and Ruppert 1996). In other words, the y 

measurement variation and the x measurement variation are both the same. A standard linear 

regression assumes that the x variable is fixed (i.e., no variation) and the y variable is a function 

of x plus variation. Figure 2.9 shows samples of standard linear regression and orthogonal linear 

regression. 

 

Figure 2.9. Sample standard linear regression (left) and sample orthogonal linear 

regression (right) (Phares et al. 2011) 

The vertical bars in the chart on the left represent the y-residual and the negatively-sloping line 

in the chart on the right represents the orthogonal residual. As with any linear regression, y and x 

are related linearly through the following equation: 

       (2-3) 

where b is the y-intercept and m is the slope. 

The equation for standard linear regression can be developed by minimizing the sum of the 

square of the y-residual, while the sum of the square of the perpendicular residual is minimized 

in the orthogonal linear regression. 
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√    
 (2-4) 

When the strain range data are in the first quadrant, an orthogonal residual is defined. An 

example of an orthogonal line fit and an orthogonal residual is shown in Figure 2.10. 

 

Figure 2.10. Example of an orthogonal line fit and an orthogonal residual 

The sum of square of the perpendicular residuals    (SSR) from the data points to the regression 

line are given by the following: 

    ∑   
  

    (2-5) 

Minimizing SSR results in the following (Carroll and Ruppert 1996 and Fuller 1987): 

   
  
    

  {(  
    

 )      
 }
 
 

    
 (2-6) 

       (2-7) 

where   
  and   

  are the variance of the   and   data, respectively and     is the covariance of 

x and y that can be written         in which     is the correlation coefficient. 

2.3.2 Damage Detection Approach with f-test 

The f-test is typically used to evaluate the relationship between two different data sets 

(Mendenhall and Sincich 2012). Generally, the purpose of the f-test is to quantify the amount of 

model improvement achieved by including additional variables in the prediction model by 
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comparing the sum of the square of the residual (SSR) of a reduced and a full model with respect 

to each one’s degree(s) of freedom. The full model (the more complex one), which contains 

more variables than the reduced model (the simpler one) was developed with a Z factor, which is 

an indicator variable and taken in (Phares et al. 2011) to be as follows: 

  (      )   (      ) (2-8) 

when Z is equal to zero, α1 and α3 are parameters from an orthogonal linear regression through 

the training data and, similarly, when Z is equal to one,    plus    and    plus    are the 

parameters from orthogonal linear regression through the post-training date. Z in this case 

indicates whether the data were from a training period or following the training period. One 

requirement for using the f-test is that the reduced model must be nested within the full model. 

Here the reduced model is taken as follows: 

         (2-9) 

where   and    are parameters from an orthogonal linear regression through all the data 

(training and post training). An example of orthogonal fit lines for the full and reduced models 

are shown in Figure 2.11. 

 

Figure 2.11. Orthogonal fit lines for the full and reduced models 

With the given full and reduced model, the similarity hypothesis must be tested: 

H0 (Null hypothesis):         
HA (Alternative hypothesis):            
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If H0 is true, the reduced model is statistically the same as the full model as shown graphically in 

Figure 2.12 (left) and it can be concluded that there is no damage at those two sensor locations. 

On the other hand, if H0 is rejected, which is graphically illustrated in Figure 2.12, the reduced 

model is significantly different from the full model and it may be an indication of damage. 

 

Figure 2.12. Graphical representation of rejecting H0, no damage (left) and failing to reject 

H0, damage (right) 

To quantify these results, the f-test is conducted with the null hypothesis (       ) 
showing that the reduced model is able to fit the data set statistically as well as the full model. In 

general, the F statistic is defined as follows (Caragea 2007): 

  
                  

                
 
         

       
 (2-10) 

where            is the sum of the square of the residual of the reduced model and         is the 

sum of the square of the residual of the full model as given in Equation 2-5. df is the degrees of 

freedom associated with an SSR;           and        are the degrees of freedom of the reduced 

and full models, respectively. For the case of the models in Equation 2-11: 

               

            (2-11) 

because the reduced model has two terms and the full model has four terms and n represents the 

number of truck events, that is as follows. Note that         is the sum of the squares of the 

residuals for both training and post-training data. 

                           (2-12) 

                                                (2-13) 

                                                          (2-14)   
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3. DAMAGE DETECTION HARDWARE AND SOFTWARE  

The fiber-optic sensing (FOS) SHM sensor system placed on the US 30 Bridge in 2006 and 

briefly described in Chapter 2 was removed and replaced with updated hardware and software in 

2012 as part of this project. The change in hardware from FOS to more traditional sensors was 

determined to be a more cost-effective and robust approach. All software developed as part of 

this project was developed specifically to interface with this hardware system. This chapter 

presents the system configuration including the SHM hardware and network configuration, and it 

also illustrates what a typical installation might consist of (using the US 30 Bridge as the case 

study). 

3.1 Hardware 

3.1.1 Configuration 

The SHM hardware at the US 30 Bridge installed for this work consists of electrical resistance 

strain gauges that were run through completion bridge modules 4WF120 or 4WF350 depending 

on the gauge resistance and hard-wired to a Campbell Scientific CR9000x data logger. The data 

logger used the CR9052 module and programming was completed by using CRBasic language 

from Campbell Scientific. The CR9052 cards were used specifically because they have the on-

board filtering needed when running high-speed acquisitions. This filtering helps in eliminating 

electrical noise from the signal. 

Other hardware components included a typical desktop computer, network switch, router, Sierra 

Wireless 4G cellular modem, Comtelco dual band panel antenna, and Wilson Yagi antenna. The 

data logger, network switch, desktop computer, router, and cellular modem were located in an 

environmentally-controlled cabinet at the bridge. The sensor network of electrical resistance 

strain gauges and other components are illustrated in Figure 3.1. 
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Figure 3.1. SHM system components and system architecture 

The data collected by the sensors were transferred from the data logger to the desktop computer 

via a network switch. Once the data were stored temporarily on the desktop computer, they were 

sent to the router, via the network switch, and finally to the cellular modem, where they were 

transmitted to the office server via 4G cellular communication. Note that the purpose of the 

switch is to connect the data logger directly to the computer without having to go through a 

router that is also connected to a cellular modem. By connecting the data logger directly to the 

computer, communication failures can be virtually eliminated. 

Data files were formatted as DAT files and collected every minute at a sampling rate of 250 Hz. 

Relatively new 4G cellular technology enabled files to be transferred in real time (i.e., as quick 

as the collection rate of every minute). The software controlling the data transfer involves a 

standard File Transfer Protocol (FTP) with the configuration details given in Appendix B. 
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3.1.2 Typical Installation 

The first step in designing an SHM installation is to identify the goals associated with the 

installation. Once the goals are identified, particular features of the bridge that are important for 

achieving the goals can be identified. Finally, an instrumentation plan can be created to capture 

data from these features. 

The instrumentation plan for the US 30 Bridge deployed in this work consisted of 38 electrical 

resistance strain gauges (120 and 350 ohm) and three thermocouples. An isometric view of the 

US 30 Bridge and the cross sections of interest are shown in Figures 3.2 and 3.3, respectively. 

 

Figure 3.2. Isometric view of US 30 Bridge 

 

Figure 3.3. Bridge plan view for sensor layout 

The strain gauge locations at each of the cross sections are shown in Figure 3.4. 
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a. Cross section X     b. Cross section Y 

 
c. Cross section C     d. Cross section Z 

Figure 3.4. Sensors locations within the bridge framing system 

Sections X and Z are at mid-spans given that the maximum bending strains occur near these 

locations. Section Y was chosen to be close to pier to quantify negative bending effects and 

continuity behavior. Section C was chosen to capture the web-gap strains, which are of interest 

because of the behavior in the web-gap cut-back region. Note that Section C is the same as 

Section C in the FOS instrumentation system described previously. In addition, sensors were 

placed strategically on the bottom of the deck as illustrated conceptually in Figure 3.5. 

 
a. Deck bottom sensor line 1   b. Deck bottom sensor line 2 

Figure 3.5. Sensor located on the bridge deck bottom 

The specific locations of the deck sensors were chosen to identify vehicle travel lane, axle 

number and spacing, and vehicle speed. Figure 3.6 shows a typical deck bottom sensor and a 

girder top flange sensor. 
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Figure 3.6. Deck bottom sensors (left) and sensor installation sample on top flange of girder 

(right) 

For reference, the sensor naming convention was inherited from the FOS naming convention 

(Chapter 2) and is just one method of naming sensors. In general, any sensor naming system 

should indicate longitudinal position, transverse position, vertical position, and gauge oriention. 

The sensor designation used here classfies them into the format: Section-Member-Part-

Orientation. For example, B-NG-BF-H represents a sensor installed at section B, north girder 

(NG), bottom flange (BF), with horizontal (H) orientation. The designation C-NG-WG-V 

identifies a vertical (V) gauge in the web gap (WG) of the north girder (NG) at cross section C. 

The thermocouples were placed at section X to measure the air, concrete (mid-depth of deck), 

and steel temperatures. 

3.2 Software 

For this project, the development of software that automated the damage-detection process was 

another main goal. To achieve this, all aspects of the algorithm described here and in other 

referenced publications were programmed into the BECAS using Microsoft Visual Studio 2010. 

The software developed includes components that collect, filter, and zero the collected data. 

Subsequently, individual truck passages are identified using the previously-mentioned truck-

detection algorithm. Then, the truck-event data are decimated to strain range values, which then 

proceed into the various damage-detection algorithms described in the subsequent chapter. 
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4. DAMAGE-DETECTION METHODOLOGIES 

In this chapter, various enhancements to the previously-investigated damage-detection 

methodologies using control charts are presented and investigated with actual data. The ability of 

the methodologies to detect damage and the rate at which damage is identified falsely are 

discussed. 

4.1 Overall Methodology 

As introduced in Section 2.1, the strain data reduction, which includes data zeroing for removing 

temperature effects and filtering to obtain the quasi-static response of the bridge, were studied 

extensively and validated. As part of the overall process, truck parameters were also determined 

such that only selected five-axle, right-lane trucks are used in the damage-detection approach. In 

addition, the time-domain data are converted to strain ranges for each truck event. With the strain 

range data, four control-chart-based damage-detection methods are implemented as shown in the 

flow chart in Figure 4.1: 1) strain range for a single truck event, 2) strain range for grouped truck 

events, 3) cross prediction model, and 4) f-test. Details for each of the damage-detection 

processes are presented in this chapter. 

 

Figure 4.1. Damage-detection methodology 

Generally, control charts are used for dealing with measurements and exercising control over the 

average quality of a process as well as its variability (Miller and Freund 1977). For the damage-

detection approach developed here, control charts are divided into three regions: training, testing 

and evaluation. 

The training period, where strain range data are obtained from truck events from the presumed 

undamaged structure, is used to establish important parameters such as the mean and standard 

deviation of the measurements, as discussed in Section 2.1.3, to define the normal operation of 

the system. 
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Following the training period, a testing period is utilized to evaluate the efficacy of the training 

period. 

The evaluation period is for monitoring the bridge for change in structural performance (e.g., 

possible damage). In this chapter, evaluation data are further subdivided into the following 

regions: Evaluation 1, Evaluation 2, Evaluation 3, and Evaluation 4. 

For reference, the training period consisted of 2,000 truck events and the testing period consisted 

of 1,000 truck events. The four evaluation periods represented times when there were varying 

levels of damage present in the sacrificial Specimen 2. During Evaluation 1, no damage was 

present. During Evaluation 2, a crack size of 1.25 in. was present. During Evaluation 3, a crack 

size of 1.50 in. was present. During Evaluation 4, a crack size of 1.75 in. was present. When 

implemented, the system will operate continuously during the evaluation period with 

notifications of suspected damage sent in near real-time. 

In the previous generation of the control-chart-based damage-detection methodologies, only a 

single check was used to define when a change in structural behavior had occurred (when data 

were greater than three standard deviations from the mean). Further investigation into process 

control led to the realization that some process changes may be missed by only this single rule. 

(Montogomery 1996) Therefore, additional rules were investigated, formulated, and evaluated. 

Table 4.1 summarizes the six rules considered during methodology finalization and evaluation. 

Table 4.1. Control chart rules (Montogomery 1996) and number of rule checks 

Control chart rules 

Number of  

rule checks 

#1 – One point beyond ±3s n 

#2 – Two successive points out of three points beyond ±2s n-3 

#3 – Four successive points out of five points  ±1s n-5 

#4 – Eight consecutive points on one side of the mean n-8 

#5 – Six consecutive points trending up or down n-6 

#6 – Fourteen consecutive points alternating up or down n-14 

 

Each of these rules represents a different type of change in process control. In the context of 

damage detection, the violation of any rule could be an indicator of a change in structural 

condition. 

From the perspective of a structural engineer, a false indication of damage occurs if one of the 

control chart rules is violated but there is no damage (the incorrect rejection of a true null 

hypothesis and sometimes called a type I error). For example, the circled points in Figure 4.2 are 

false indications; that is, they are points outside the control limits but, for this particular case, 

there is no known structural damage. 
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B-NG-BF-H 

Figure 4.2. Example of false and true indication in a control chart 

A true indication is defined as data points beyond the limits when there is truly damage. An 

example of true indication, in the dashed ellipse (lower right of the chart), is shown in Figure 4.2. 

After each specific damage-detection methodology is presented in this chapter, the methodology 

will be applied to cases of no damage and actual damage and evaluated with respect to damage-

detection capability and with respect to false-indication rates. 

4.2 Truck Event Control Chart Methods 

4.2.1 Methodology 

4.2.1.1 One-Truck Event Method 

With the collected, filtered, and zeroed strain range data described in Section 4.1, control charts 

can be constructed directly using the strain range for each truck event for each sensor without 

further processing (i.e., one point on the control chart represents the strain range for a single 

truck event). These control charts would therefore represent the response data in their most basic 

form. In addition, in this form, a graphical representation is interpreted easily with fundamental 

structural engineering concepts. Control charts and associated limits are constructed using the 

mean and standard deviation of all trucks in the training period. 

4.2.1.2 Truck Events Grouped by Ten Method 

Group size can be an important parameter in constructing a control chart because it affects the 

control limits and the sensitivity of the false-indication rate. For example, the larger the group 

size, the narrower the control limits; therefore, slight damage could be detected from small 

variations (Lu et al. 2010). However, at the same time, larger group sizes increase the time that it 

takes for damage to be identified. 



 

21 

The optimal group size was previously determined to be 10 for this work (Lu 2008). Similar to 

the one-truck event approach, the mean of the means and standard deviations from data for 10 

trucks (one group) are used as the chart variables. As before, the mean and standard deviations of 

the grouped strain range data during the training period are used to construct the control charts. 

4.2.2 Select Results 

The sensors listed in Table 4.2 will be used to illustrate the application of the truck event control 

chart methods for one-truck event (Section 4.2.1.1) and truck events grouped by ten (Section 

4.2.1.2) below. These sensors were selected because they are typical of all results and they 

represent diverse sensor locations that include sensors on the bridge and on the sacrificial 

specimen. 

Table 4.2. List of select sensors used to create sample control charts 

Sensor Name 

B-NG-BF-H 

B-SG-BF-H 

C-SG-BF-H 

C-SG-CB(5)-V 

C-SG-CB(4)-V 

C-NG-BF-H 

Sensor 1 on sacrificial specimen 

Sensor 4 on sacrificial specimen 

 

4.2.2.1 One-Truck Event Control Chart 

Examples of one-truck event control charts for Specimen 2 for the selected sensors are shown in 

Figure 4.3. To establish the control limits for the various rules described in Section 4.1, the mean 

and standard deviation were calculated to be as shown in Table 4.3. 

Table 4.3. Mean and standard deviations of select sensors for one-truck event method 

Sensor name Mean 

Standard  

deviation 

B-NG-BF-H 44 6 

B-SG-BF-H 103 12 

C-SG-BF-H 32 4 

C-SG-CB(5)-V 92 11 

C-SG-CB(4)-V 16 2 

C-NG-BF-H 27 4 

Sensor 1 on sacrificial specimen 100 15 

Sensor 4 on sacrificial specimen 55 8 
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a. B-NG-BF-H 

 
b. B-SG-BF-H 

 
c. C-SG-BF-H 

 
d. C-SG-CB(5)-V 
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e. C-SG-CB(4)-V 

 
f. C-NG-BF-H 

 
g. Sensor 1 on sacrificial specimen 

 
h. Sensor 4 on sacrificial specimen 

Figure 4.3. One-truck event control charts for sacrificial Specimen 2 
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To summarize the propensity for violating the rules in Table 4.1, a table was developed to 

summarize the number of times that each rule was violated during each monitoring period. The 

rule violations for the one-truck event control chart method for select sensor are summarized in 

Table 4.4 and an additional table for all sensors is shown in Appendix A. 

Table 4.4. Rule violations for one-truck event method 

Sensor Period Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Total 

B-NG-BF-H Training 9 15 93 148 7 15 287 

Testing 2 2 42 82 5 7 140 

Evaluation 1 2  15 44 1  62 

Evaluation 2 1 4 35 62 2 1 105 

Evaluation 3 2 3 19 42 1 1 68 

Evaluation 4 5 6 22 45 3 2 83 

Total 21 30 226 423 19 26 745 

Rate (%) 0.4 0.5 3.9 7.3 0.3 0.5 2.1 

B-SG-BF-H Training 1 2 147 239 5 8 402 

Testing   88 172 2 5 267 

Evaluation 1  5 52 62 2 9 130 

Evaluation 2  2 88 133 4  227 

Evaluation 3   41 87 1  129 

Evaluation 4   40 79 5 5 129 

 Total 1 9 456 772 19 27 1284 

 Rate (%) 0.2 0.2 7.9 13.4 0.3 0.5 3.7 

C-SG-BF-H Training 1 17 123 138 5 11 295 

Testing 1 6 90 143 5 1 246 

Evaluation 1 1 3 38 78  6 126 

Evaluation 2 1 7 50 133 4  195 

Evaluation 3 1 9 56 40 6 3 115 

Evaluation 4 3  68 58 1  130 

 Total  8 42 425 590 21 21 1107 

 Rate (%) 0.1 0.7 7.4 10.2 0.4 0.4 3.2 

C-SG-CB(5)-V Training 2 15 76 129 2 16 240 

Testing  5 70 103 2 2 182 

Evaluation 1 2 8  18 47  7 82 

Evaluation 2 1 3 34 72 2 3 115 

Evaluation 3 1 4 42 43 1  91 

Evaluation 4 8 37 120 198 2 1 366 

 Total 14 72 360 592 9 29 1076 

 Rate (%) 0.2 1.2 6.2 10.3 0.2 0.5 3.10 
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Sensor Period Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Total 

C-SG-CB(4)-V Training 11 33 108 141 8 18 319 

Testing  12 77 189 2  280 

Evaluation 1 8 37 55 60 7  167 

Evaluation 2 9 33 96 111 9  258 

Evaluation 3 1 4 19 53 1 1 79 

Evaluation 4 4 4 50 89 1 2 150 

 Total 33 123 405 643 28 21 1253 

 Rate (%) 0.6  2.1 7.0 11.1 0.5 0.4 3.62 

C-NG-BF-H Training 4 18 137 242 9 3 413 

Testing 1 1 68 123 1 6 200 

Evaluation 1 1  39 47 1  88 

Evaluation 2 1 8 48 88 1  146 

Evaluation 3   37 69 3 3 112 

Evaluation 4 2 1 26 64 1  94 

 Total 9 28 355 633 16 12 1053 

 Rate (%) 0.2 0.5 6.2 11.0 0.3 0.2 3.0 

Sensor 1 on  

sacrificial  

specimen 

Training  46 311 451 8 8 824 

Testing 17 129 289 322 3 4 764 

Evaluation 1  23 100 161 2 4 290 

Evaluation 2 30 174 467 608 1  1280 

Evaluation 3   24 73 1 3 101 

Evaluation 4  1 43 103 1 1 149 

 Total 47 373 1234 1718 16 20 3408 

 Rate (%) 0.8 6.5 21.4 29.8 0.3 0.4 9.8 

Sensor 4 on  

sacrificial  

specimen 

Training 1 38 300 440 8 8 795 

Testing  25 207 193 4 1 430 

Evaluation 1  2 54 104 1 4 165 

Evaluation 2 627 625 623 620   2495 

Evaluation 3 549 549 547 544 1 3 2193 

Evaluation 4 1 181 821 945 3 8 1959 

 Total  1178 1420 2552 2846 17 24 8037 

 Rate (%) 20.4 24.6 44.2 49.3 0.3 0.4 23.2 

 

Figure 4.3 and Table 4.4 show that during the training, testing, and Evaluation 1 periods (when 

there was no damage), there were a number of rule violations and the majority of those violations 

resulted from either Rule 3 or Rule 4. The rule violation rate for all sensors on the bridge were 

similar during all phases of monitoring indicating that the system was operating in a stable 

manner (also observable in Table 4.5). Once damage was introduced, the sensors on the 

specimen were collectively able to identify the damage with multiple rule violations of multiple 

types. 

For each control chart region and each sensor, the number of rule violations and rate with respect 

to the six rules are counted and calculated by the automated software, BECAS, and are 

summarized in Table 4.4. The relatively high number of rule violations from Rule 3 and 4 
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significantly affect the overall false-indication rate. Table 4.5 shows the number of false 

indications for sensors on the bridge (non-damaged). 

Table 4.5. Number of false indications for sensors on bridge (non-damaged) for one-truck 

event method 

Sensor with  

no damage 

False indications 

(Training, Testing,  

Evaluation  

1, 2, 3, and 4) 

False  

indication  

rate  

(%) 

B-NG-BF-H 745 2.2 

B-SG-BF-H 1284 3.7 

C-SG-BF-H 1107 3.2 

C-SG-CB(5)-V 1076 3.1 

C-SG-CB(4)-V 1253 3.6 

C-NG-BF-H 1053 3.0 

 

When there was real damage near the sensors on the sacrificial specimen, the true-indication rate 

can be investigated by considering the Evaluation 2, 3, and 4 regions, which are summarized in 

Table 4.6. Note that, as expected, the true-indication rate is higher for Sensor 4 placed near the 

crack than for Sensor 1 placed away from the crack. 

Table 4.6. Number of false and true indications for sensors on sacrificial specimen (near 

damage) for one-truck event method 

Sensor  

near  

damage 

False  

indications 

(Training, Testing,  

Evaluation 1) 

False  

indication  

rate  

(%) 

True  

indications 

(Evaluation  

2, 3, and 4) 

True  

indication  

rate  

(%) 

Sensor 1  1878 8.6 1530 12.0 

Sensor 4  1390 6.4 6647 52.2 

 

4.2.2.2 Truck Events Grouped by Ten Control Chart 

Examples of truck events grouped by ten control charts for Specimen 2 for select sensors are 

shown in Figure 4.4. The mean and standard deviation were calculated to establish the control 

limits for the various rules and are shown in Table 4.7. Note that the mean values are 

approximately the same as the one-truck event method but that the standard deviation is notably 

narrower because of the grouping process. 
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a. B-NG-BF-H 

 
b. B-SG-BF-H 

 
c. C-SG-BF-H 

 
d. C-SG-CB(5)-V 
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e. C-SG-CB(4)-V 

 
f. C-NG-BF-H  

 
g. Sensor 1 on sacrificial specimen 

 
h. Sensor 4 on sacrificial specimen 

Figure 4.4. Truck events grouped by ten control charts for sacrificial Specimen 2 
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Table 4.7. Mean and standard deviations of select sensors (µε) for truck events grouped by 

ten method 

Sensor name Mean 

Standard  

deviation 

B-NG-BF-H 44 3 

B-SG-BF-H 103 7 

C-SG-BF-H 32 2 

C-SG-CB(5)-V 92 6 

C-SG-CB(4)-V 16 1 

C-NG-BF-H 27 2 

Sensor 1 on  

sacrificial specimen 

100 11 

Sensor 4 on  

sacrificial specimen 

56 6 

 

As with the one-truck event methodology, a table was constructed to summarize the tendency for 

violating the control chart rules. From Figure 4.4 and Table 4.8, it is observed that during the 

training, testing, and Evaluation 1 periods (when there was no damage), there were a number of 

rule violations and that the majority of those resulted from either Rule 3 or Rule 4. 

From Figure 4.4, sensors on the bridge (non-damaged) follow control chart Rule 1 well. It was 

also found that sensors near damage (i.e., Sensor 4) show violations of Rule 1 in the Evaluation 

2, 3, and 4 regions. In Table 4.8, the methodology found significantly high numbers of rule 

violations from Rule 3 and Rule 4 and those violations affect the overall false-indication rate 

significantly. 

Table 4.8. Rule violations for truck events grouped by ten method 

Sensor Period Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Total 

B-NG-BF-H Training 1 1 21 18 4 

 

45 

Testing 

  

12 10 3 

 

25 

Evaluation 1 

  

9 3 2 

 

14 

Evaluation 2 

 

2 6 1 

  

9 

Evaluation 3 

  

6 6 

  

12 

Evaluation 4 

  

6 13 

  

19 

Total 1 3 60 51 9 0 124 

Rate (%) 0.2 0.5 10.5 9.0 1.6 0 3.61 

B-SG-BF-H Training 

 

6 36 7 4 

 

53 

Testing 

 

3 22 5 11 

 

41 

Evaluation 1 1 2 12 6 2 

 

23 

Evaluation 2 

 

6 17 3 3 

 

29 

Evaluation 3 

 

2 14 

 

3 

 

19 

Evaluation 4 

  

9 

   

9 

 Total 1 19 110 21 23 0 174 

 Rate (%) 0.2 3.3 19.2 3.7 4.0 0 5.07 



 

30 

Sensor Period Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Total 

C-SG-BF-H Training 1 9 19 22 4 

 

55 

Testing 1 6 21 5 3 

 

36 

Evaluation 1 1 2 12 6 3 

 

24 

Evaluation 2 2 4 13 3 1 

 

23 

Evaluation 3 

 

2 12 7 1 

 

22 

Evaluation 4 1 4 13 22 2 

 

42 

 Total  6 27 90 65 14 0 202 

 Rate (%) 1.0 4.7 15.7 11.4 2.5 0 5.89 

C-SG-CB(5)-V 

 

Training 

 

6 29 12 6 

 

53 

Testing 

 

2 17 5 

  

24 

Evaluation 1 1 

 

6 6 

  

13 

Evaluation 2 

  

14 6 3 

 

23 

Evaluation 3 

 

4 10 

   

14 

Evaluation 4 4 23 53 51 3 

 

134 

 Total 5 35 129 80 12 0 261 

 Rate (%) 0.9 6.1 22.5 14.0 2.1 0 7.60 

C-SG-CB(4)-V Training 4 6 9 16 4 

 

39 

Testing 

 

2 34 10 1 

 

47 

Evaluation 1 3 2 9 2 

  

16 

Evaluation 2 4 10 10 2 2 

 

28 

Evaluation 3 

  

2 

   

2 

Evaluation 4 

  

1 17 

  

18 

 Total 11 20 65 47 7 0 150 

 Rate (%) 1.9 3.5 11.3 8.3 1.2 0 4.37 

C-NG-BF-H Training 

 

6 29 31 7 3 76 

Testing 

 

4 14 4 1 

 

23 

Evaluation 1 

 

3 8 4 2 

 

17 

Evaluation 2 

 

2 10 5 

  

17 

Evaluation 3 

  

9 1 

  

10 

Evaluation 4 

  

1 9 

  

10 

 Total 0 15 71 54 10 3 153 

 Rate (%) 0 2.6 12.4 9.8 1.8 0.5 4.46 

Sensor 1 on  

sacrificial  

specimen 

Training 

 

11 35 48 5 

 

99 

Testing 2 20 41 31 7 

 

101 

Evaluation 1 

 

3 11 2 2 

 

18 

Evaluation 2 7 39 56 55 1 

 

158 

Evaluation 3 

   

10 

  

10 

Evaluation 4 

  

3 29 

  

32 

 Total 9 73 146 175 15 0 418 

 Rate (%) 1.6 12.7 25.5 30.7 2.6 0 12.18 
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Sensor Period Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Total 

Sensor 4 on  

sacrificial  

specimen 

Training 

 

10 30 67 5 

 

112 

Testing 

 

2 33 33 7 

 

75 

Evaluation 1 

  

9 2 1 

 

12 

Evaluation 2 62 60 58 55 2 

 

237 

Evaluation 3 55 53 51 48 

  

207 

Evaluation 4 2 72 91 88 

  

253 

 Total  119 197 272 293 15 0 896 

 Rate (%) 20.6 34.3 47.5 51.4 2.6 0 26.1 

 

Tables 4.9 and 4.10 summarize the number of false indications for sensors on the bridge (non-

damaged) and the number of false and true indications for sensors on the specimen (near 

damage). It was found that the true-indication rate is similar to the one-truck event method. 

Table 4.9. Number of false indications for sensors on bridge (non-damaged) for truck 

events grouped by ten method 

Sensor with  

no damage 

False indications 

(Training, Testing,  

Evaluation  

1, 2, 3, and 4) 

False  

indication  

rate  

(%) 

B-NG-BF-H 124 3.6 

B-SG-BF-H 174 5.1 

C-SG-BF-H 202 5.9 

C-SG-CB(5)-V 261 7.9 

C-SG-CB(4)-V 150 4.4 

C-NG-BF-H 153 4.5 

 

Table 4.10. Number of false and true indications for sensors on sacrificial specimen (near 

damage) for truck events grouped by ten method 

Sensor  

near  

damage 

False  

indications 

(Training, Testing,  

Evaluation 1) 

False  

indication  

rate  

(%) 

True  

indications 

(Evaluation  

2, 3, and 4) 

True  

indication  

rate  

(%) 

Sensor 1 218 10.4 200 16.1 

Sensor 4 199 9.2 697 56.1 

 

4.3 Cross Prediction Control Chart Method 

4.3.1 Methodology 

Fundamentally, the cross prediction method presented here is an adaptation of the method 

described in Chapter 2. The primary differences in the methodology are the use of orthogonal 
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regression and the simplification approach. Like the method presented in Chapter 2, truck events 

are grouped into a group size of 10. A general flow chart for the method is shown in Figure 4.5. 

 

Figure 4.5. Cross prediction method flow chart 

During training, orthogonal regression as described in Section 2.3.1 is performed for every 

combination of sensor pairs, εi and εj, where i and j range from 1 to q (number of sensors). 

Because orthogonal regression is used, the relationship between εi and εj is the inverse of the 

relationship between εj and εi. Orthogonal residuals are then calculated as previously discussed in 

Section 2.3.1 and assembled into residual matrixes (q by q) for each truck group with p (number 

of groups) of these matrices. 

[  ]  [
       
     
       

]  (4-1) 
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Standardizing the residuals are helpful to normalize the residual values that vary over a large 

range of values (Lu 2008). The process for standardizing the residual for all sensor pairs for each 

truck group is given in Equations 4-2 and 4-3: 

    
       
   

    (4-2) 

[ ]  [

       
     

       

]         [ ]   [
       
     
       

] (4-3) 

where     is the average of     for all the groups and     is the standard deviation. This process 

results in another set of q by q standardized-residual matrices and there are p of these, with one 

for each group. 

 [  ]  [
       
     
       

] (4-4) 

To further simply the standardized-residual data to a single control chart for each sensor, the 

standardized residual matrix [  ] is reduced to a set of p simplified residual vectors [ ] by 

summing each row. 

            ∑    
 
    (4-5) 

[ ]  

[
 
 
 
 
  
 
  
 
  ]
 
 
 
 

 (4-6) 

The mean and standard deviation of the [ ] residuals for all training truck groups are calculated 

and then used to set control limits. 

[ ]  

[
 
 
 
    

  
 

  ]
 
 
 
 

         [ ]  

[
 
 
 
 
  
 
  
 
  ]
 
 
 
 

          (4-7) 

For each group of 10 truck events occurring during subsequent monitoring, an orthogonal 

residual matrix is obtained by using the orthogonal regression from the training period (Equation 

4-1). The mean and standard deviation of the standardized residual (Equation 4-2) from the 
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training period are again used to calculate the standardized residuals (Equation 4-4) and, after the 

residual-simplification process, a point Ri for this group is plotted on each control chart. 

4.3.2 Select Results 

With the cross prediction method, the average of the standardized residuals are always equal to 

zero due to the standardization process. As was mentioned previously, the standard deviations 

are used to establish control limits that are applied to the various rules. Table 4.11 shows the 

mean and standard deviations of select sensors. As can be seen in Table 4.11, there was a fair 

amount of consistency in the standard deviations indicating that the standardization process was 

effective at reducing large ranges of residual values. 

Table 4.11. Mean and standard deviations of selected sensors (µε) for cross prediction 

method 

Sensor name Mean 

Standard  

deviation 

B-NG-BF-H 0 25 

B-SG-BF-H 0 21 

C-SG-BF-H 0 29 

C-SG-CB(5)-V 0 19 

C-SG-CB(4)-V 0 34 

C-NG-BF-H 0 28 

Sensor 1 on sacrificial specimen 0 26 

Sensor 4 on sacrificial specimen 0 25 

 

In Figure 4.6, R-sum values for global response sensors on the bridge (non-damaged) follow 

Rule 1 well, as data points are generally within the plus/minus three standard deviation limits. 

However, there are a large number of false indications (Rule 1) for sensors placed in the web cut-

back region of the bridge (Sensors C-SG-CB(5)-V and C-SG-CB(4)-V). In Figure 4.6h, for 

example, it would be inferred that there is damage because the R-sum values exceed the limits 

for Rule 1 in the Evaluation 2, 3, and 4 regions. 

The number of rule violations and rate with respect to all rules were determined and are shown in 

Table 4.12. A large number of rule violations are found for Rule 3 or Rule 4 as was the case with 

the strain range methods. 
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a. B-NG-BF-H 

 
b. B-SG-BF-H  

 
c. C-SG-BF-H 

 
d. C-SG-CB(5)-V 
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e. C-SG-CB(4)-V 

 
f. C-NG-BF-H 

 
g. Sensor 1 on sacrificial specimen  

 
h. Sensor 4 on sacrificial specimen 

Figure 4.6. Cross prediction control charts for sacrificial Specimen 2 
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Table 4.12. Rule violations for cross prediction method 

Sensor Period Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Total 

B-NG-BF-H Training 2 3 14 31 2  52 

Testing   8 11 1  20 

Evaluation 1   2    2 

Evaluation 2 2 4 5 3   14 

Evaluation 3   4 22   26 

Evaluation 4 4 24 70 88   186 

Total 8 31 103 155 3 0 300 

Rate (%) 1.4 5.4 18.0 27.2 0.5 0.0 8.7 

B-SG-BF-H Training 5 6 21 87 5  124 

Testing   5 13 5  23 

Evaluation 1   10 29   39 

Evaluation 2 1 10 36 42   89 

Evaluation 3    6   6 

Evaluation 4   7 69   76 

 Total 6 16 79 246 10 0 357 

 Rate (%) 1.0 2.8 13.8 43.2 1.8 0.0 10.4 

C-SG-BF-H Training 3 6 22 13 2  46 

Testing 3 8 11 6 4  32 

Evaluation 1  2 3 6 2  13 

Evaluation 2 3 10 20 24 3  60 

Evaluation 3 1 14 37 45 1  98 

Evaluation 4 5 41 85 88   219 

 Total  15 81 178 182 12 0 468 

 Rate (%) 2.6 14.1 31.1 31.9 2.1 0.0 13.6 

C-SG-CB(5)-V 

 

Training  1 12 11   24 

Testing 1 12 19 17 2  51 

Evaluation 1  2 4 1 1  8 

Evaluation 2 4 3 17 11   35 

Evaluation 3 1 2     3 

Evaluation 4 59 76 77 72 2  286 

 Total 65 96 129 112 5 0 407 

 Rate (%) 11.3 16.7 22.5 19.7 0.9 0.0 11.9 

C-SG-CB(4)-V Training 2 2 5 27 1  37 

Testing  10 25 20 2  57 

Evaluation 1 5 4 2 5   16 

Evaluation 2 8 10 12 5 1  36 

Evaluation 3   2 5   7 

Evaluation 4 1 4 34 55 1  95 

 Total 16 30 80 117 5 0 248 

 Rate (%) 2.8 5.2 14.0 20.5 0.9 0.00 7.2 
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Sensor Period Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Total 

C-NG-BF-H Training  6 16 41 1  64 

Testing   11 18 1  30 

Evaluation 1   9 16 1  26 

Evaluation 2 1   12 1  14 

Evaluation 3   7 4   11 

Evaluation 4 1 2 37 58   98 

 Total 2 8 80 149 4 0 243 

 Rate (%) 0.4 1.4 14.0 26.1 0.7 0.0 7.08 

Sensor 1 on  

sacrificial  

specimen 

Training 2 6 21 32 1 1 63 

Testing 25 47 59 58 1  190 

Evaluation 1 3 6 15 23 5  52 

Evaluation 2 7 30 42 39   118 

Evaluation 3 9 31 50 48 2  140 

Evaluation 4  3 16 6   25 

 Total 46 123 203 206 9 1 588 

 Rate (%) 8.0 21.4 35.4 36.1 1.6 0.2 17.1 

Sensor 4 on  

sacrificial  

specimen 

Training  6 31 47 6 1 91 

Testing 2 23 43 35 2  105 

Evaluation 1  3 5 12 2  22 

Evaluation 2 63 61 59 55 1  239 

Evaluation 3 55 53 51 48   207 

Evaluation 4 79 89 91 88   347 

 Total  199 235 280 285 11 1 1011 

 Rate (%) 34.4 40.9 48.9 50.0 1.9 0.2 29.5 

 

Tables 4.13 and 4.14 show the number of false indications for sensors on the bridge (non-

damaged) and on the sacrificial specimen (near damage), respectively. It was also found that the 

cross prediction method had a higher true-indication rate than either of the strain range methods. 

Table 4.13. Number of false indications for sensors on bridge (non-damaged) for cross 

prediction method 

Sensor with  

no damage 

False indications 

(Training, Testing,  

Evaluation  

1, 2, 3, and 4) 

False  

indication  

rate  

(%) 

B-NG-BF-H 300 8.7 

B-SG-BF-H 357 10.4 

C-SG-BF-H 468 13.6 

C-SG-CB(5)-V 407 11.9 

C-SG-CB(4)-V 248 7.2 

C-NG-BF-H 243 7.1 
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Table 4.14. Number of false and true indications for sensors on sacrificial specimen (near 

damage) for cross prediction method 

Sensor  

near  

damage 

False  

indications 

(Training, Testing,  

Evaluation 1) 

False  

indication  

rate  

(%) 

True  

indications 

(Evaluation  

2, 3, and 4) 

True  

indication  

rate  

(%) 

Sensor 1 305 14.2 283 22.8 

Sensor 4 218 10.1 793 63.9 

 

4.4 F-Test Control Chart Method 

4.4.1 Fshm Method 

 

Figure 4.7. Flow chart for Fshm control chart method 

A statistical test known as the f-test was described in Section 2.3.2. Here, a damage detection 

approach known as the Fshm method is presented and discussed. The Fshm method is loosely based 

on f-test concepts. The primary difference between the f-test and Fshm method is that the f-test 

required that traditional linear regression be used. The Fshm approach utilizes the more 

appropriate orthogonal regression described previously. The f-test has been further expanded by 

the Fshm approach to include control chart concepts such that condition can be tracked with time. 

     
                  

                
 
         

       
 (4-8) 

In constructing the Fshm control chart, the first 200 truck events recorded during training have 

been designated as the baseline data. These data will be the point of comparison for all 

subsequent evaluation. 
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For trucks from 201 through 2,000, groups of 200 trucks (with 150 trucks overlapping between 

groups) are compared against the baseline data using the Fshm equation. This ensures that all Fshm 

values have the same sample size (200 are from the baseline data and another 200 are for 

comparison). Collectively, this series of Fshm values are then used to establish the mean and 

standard deviations for all such evaluations made during the training period (up through truck 

number 2,000). The means and standard deviations then establish the control chart limits by 

which the various tests will be evaluated. 

With this approach, the data are evaluated via sensor pairings, much like the early portion of the 

cross prediction methodology. However, unlike the cross prediction method, no simplification is 

made and, therefore, (n
2
-n)/2 evaluations are made. This results in a very large number of 

evaluations being made after each successive passage of 50 trucks. 

4.4.2 Select Results 

To study the Fshm approach, 12 sensor pairs were selected and the mean and standard deviation 

from the training period were calculated (listed in Table 4.15) as described in the previous 

section. As expected, high Fshm values resulted for sensor pairs that included a sensor on the 

sacrificial specimen during the Evaluation 2, 3, and 4 periods indicating that damage was readily 

detected. 

Table 4.15. Mean and standard deviations of select sensors (µε) for Fshm method 

Sensor pairs Mean 

Standard  

deviation 

B-NG-BF-H vs. B-SG-BF-H 18 13 

B-NG-BF-H vs. C-SG-BF-H 4 3 

B-NG-BF-H vs. C-SG-CB(5)-V 6 6 

B-NG-BF-H vs. C-SG-CB(4)-V 6 6 

B-SG-BF-H vs. C-NG-BF-H 30 27 

C-SG-BF-H vs. C-NG-BF-H 17 12 

C-SG-CB(5)-V vs. C-SG-CB(4)-V 8 11 

C-SG-CB(5)-V vs. C-NG-BF-H 9 11 

C-SG-CB(4)-V vs. C-NG-BF-H 9 9 

B-NG-BF-H vs. Sensor 4  23 14 

B-SG-BF-H vs. Sensor 1  89 84 

B-SG-BF-H vs. Sensor 4  149 136 

 

As Table 4.16 shows, no rule violations were found for Rules 6 or 3 and Rule 4 had many rule 

violations as was observed for the other methodologies. 
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Table 4.16. Rule violations for Fshm control chart 

Sensor pairs Period Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Total 

B-NG-BF-H 

vs.  

B-SG-BF-H  

Training  2 9 14 4  29 

Testing 2 2 1 5 2  12 

Evaluation 1  1 1 5 1  8 

Evaluation 2 2 7 3 8   20 

Evaluation 3   4 4 6  14 

Evaluation 4   11 19   30 

Total 4 12 29 55 13 0 113 

Rate (%) 3.7 11.4 28.2 55.0 12.8 0.0 18.5 

B-NG-BF-H 

vs.  

C-SG-BF-H 

Training   3 1 2  6 

Testing 4 4 2 2 2  14 

Evaluation 1 2 4 6 1 1  14 

Evaluation 2 6 8 3 6   23 

Evaluation 3 4 8 9 7   28 

Evaluation 4 2 3 4 19   28 

 Total 18 27 27 36 5 0 113 

 Rate (%) 16.7 25.7 26.2 36.0 4.9 0.0 18.5 

B-NG-BF-H 

vs.  

C-SG-CB(5)-H 

Training 1 2 5 13 1  22 

Testing 3 2 1 5 2  13 

Evaluation 1  1 2 1 3  7 

Evaluation 2 3 7 5 3 2  20 

Evaluation 3    1 2  3 

Evaluation 4  1 4 12 2  19 

 Total  7 13 17 35 12 0 84 

 Rate (%) 6.5 12.4 16.5 35.0 11.8 0.0 13.7 

B-NG-BF-H  

vs.  

C-SG-CB(4)-V 

Training   6 7 23  36 

Testing 2 2 2 11 1  18 

Evaluation 1   1    1 

Evaluation 2    11   11 

Evaluation 3       0 

Evaluation 4    10   10 

 Total 2 2 9 39 24 0 76 

 Rate (%) 1.9 1.9 8.7 39.0 23.5 0.0 12.4 

B-SG-BF-H  

vs.  

C-NG-BF-H 

Training  1 10 4   15 

Testing 2 1 7 2   12 

Evaluation 1   5 4   9 

Evaluation 2  6 10 11 1  28 

Evaluation 3    5 6  11 

Evaluation 4    18 2  20 

Total 2 8 32 44 9 0 95 

Rate (%) 1.9 7.6 31.1 44.0 8.8 0.0 15.52 
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Sensor pairs Period Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Total 

C-SG-BF-H  

vs.  

C-NG-BF-H 

Training   13 14 5  32 

Testing 4 4 4 16 1  29 

Evaluation 1 1 6 8 5 2  22 

Evaluation 2 8 9 11 11   39 

Evaluation 3 7 7 11 11 2  38 

Evaluation 4   3 19 1  23 

Total 20 26 50 76 11 0 183 

Rate (%) 18.5 24.8 48.5 76.0 10.8 0.0 29.9 

C-SG-CB(5)-V  

vs.  

C-SG-CB(4)-V 

Training  3 3 3 4  13 

Testing 1 5 6 5 4  21 

Evaluation 1    2 1  3 

Evaluation 2    9   9 

Evaluation 3    11 1  12 

Evaluation 4 13 12 11 12 3  51 

Total 14 20 20 42 13 0 109 

Rate (%) 13.0 19.1 19.4 42.0 12.8 0.0 17.8 

C-SG-CB(5)-V  

vs.  

C-NG-BF-H 

Training  2 5 23   30 

Testing 2 3 1 7 1  14 

Evaluation 1  1 5  1  7 

Evaluation 2 1 7 11 11 1  31 

Evaluation 3  1 1 5 2  9 

Evaluation 4   3 11 5  19 

Total 3 14 26 57 10 0 110 

Rate (%) 2.8 13.3 25.2 57.0 9.8 0.0 18.0 

C-SG-CB(4)-V  

vs.  

C-NG-BF-H 

Training  2 4 10 5  21 

Testing 2 2  7   11 

Evaluation 1    2 1  3 

Evaluation 2       0 

Evaluation 3    11 1  12 

Evaluation 4    19 2  21 

Total 2 4 4 49 9 0 68 

Rate (%) 1.9 3.8 3.9 49.0 8.8 0.0 11.1 

B-NG-BF-H  

vs.  

Sensor 1 on  

sacrificial  

specimen 

Training   6 5 1  12 

Testing 1 3 7  3  14 

Evaluation 1 2 3 2    7 

Evaluation 2 11 11 11 5 3  41 

Evaluation 3 11 11 11 11   44 

Evaluation 4 19 17 15 19   70 

Total 44 45 52 40 7 0 188 

Rate (%) 40.7 42.9 50.5 40.0 6.9 0.0 30.7 
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Sensor pairs Period Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Total 

B-SG-BF-H  

vs.  

Sensor 1 on  

sacrificial  

specimen 

Training   7 19 3  29 

Testing 1 2 6  3  12 

Evaluation 1   1  2  3 

Evaluation 2 9 10 9 9   37 

Evaluation 3   8 4 3  15 

Evaluation 4    7   7 

Total 10 12 31 39 11 0 103 

Rate (%) 9.3 11.4 30.1 39.0 10.8 0.0 16.8 

B-SG-BF-H  

vs.  

Sensor 4 on  

sacrificial 

specimen 

Training   9 23 1  33 

Testing   1 6 4  11 

Evaluation 1    4   4 

Evaluation 2 9 10 10 11   40 

Evaluation 3 11 11 11 11   44 

Evaluation 4 19 17 15 19   70 

Total 39 38 46 74 5 0 202 

Rate (%) 36.1 36.2 44.7 74.0 4.9 0.0 15.9 

 

In Figure 4.8, Fshm values for global response sensors on the bridge (non-damaged) follow Rule 1 

well, as data points are generally within the plus/minus three standard deviation limits. However, 

as with the cross prediction method, there are a large number of false indications (Rule 1) for 

sensors placed in the web cut-back region of the bridge (Sensors C-SG-CB(5)-V and  

C-SG-CB(4)-V). 

The number of rule violations and rates with respect to all rules were determined and are shown 

in Table 4.16. A large number of rule violations are found for Rule 3 or Rule 4, as was the case 

with the strain range methods and the cross prediction method. 
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a. B-NG-BF-H vs. B-SG-BF-H 

 
b. B-NG-BF-H vs. C-SG-BF-H 

 
c. B-NG-BF-H vs. C-SG-SB(5)-H 

 
d. B-NG-BF-H vs. C-SG-CB(4)-V 
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e. B-SG-BF-H vs. C-NG-BF-H 

 
f. C-SG-BF-H vs. C-NG-BF-H 

 
g. C-SG-CB(5)-V vs. C-SG-CB(4)-V 

  
h. C-SG-CB(5)-V vs. C-NG-BF-H 
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i. C-SG-CB(4)-V vs. C-NG-BF-H 

 
j. B-NG-BF-H vs. Sensor 4 on sacrificial specimen 

 
k. B-SG-BF-H vs. Sensor 1 on sacrificial specimen 

 
l. B-SG-BF-H vs. Sensor 4 on sacrificial specimen 

Figure 4.8. Fshm control chart for sacrificial Specimen 2 
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Tables 4.17 and 4.18 show the number of false indications for sensors on the bridge (non-

damaged) and on the sacrificial specimen (near damage), respectively. The Fshm method had a 

higher true-indication rate than the strain range methods, as did the cross prediction method. 

Table 4.17. Number of false indications for sensors on bridge (non-damaged) for Fshm 

control chart 

Sensor pairs 

False indications 

(Training, Testing,  

Evaluation  

1, 2, 3 and 4) 

False  

indication  

rate  

(%) 

B-NG-BF-H vs. B-SG-BF-H 113 18.5 

B-NG-BF-H vs. C-SG-BF-H 113 18.5 

B-NG-BF-H vs. C-SG-CB(5)-V 84 13.7 

B-NG-BF-H vs. C-SG-CB(4)-V 76 12.4 

B-SG-BF-H vs. C-NG-BF-H 95 15.5 

C-SG-BF-H vs. C-NG-BF-H 183 29.9 

C-SG-CB(5)-V vs. C-SG-CB(4)-V 109 17.8 

C-SG-CB(5)-V vs. C-NG-BF-H 110 18.0 

C-SG-CB(4)-V vs. C-NG-BF-H 68 11.1 

 

Table 4.18. Number of false indications for sensors on sacrificial specimen (near damage) 

for Fshm control chart 

Sensor pairs  

near damage 

False indications 

(Training,  

Testing,  

Evaluation 1) 

False  

indication  

rate  

(%) 

True  

indications 

(Evaluation  

2, 3, and 4) 

True  

indication  

rate  

(%) 

B-NG-BF-H  

vs. Sensor 4  
33 9.0 155 73.8 

B-SG-BF-H  

vs. Sensor 1  
44 12.0 59 28.1 

B-SG-BF-H  

vs. Sensor 4  
48 13.1 154 73.3 

 

4.5 Discussion 

An objective of the current study was to develop a damage-detection methodology that 

minimizes the false-detection rate and maximizes the true damage-detection rate. Control chart 

Rule 1 seems to best characterize the damage-detection ability for all four methodologies. The 

other rules have excessively high false-indication rates and add little to the true-detection rate. 

By and large, the proposed and developed four methodologies detect damage quite well. Figure 

4.9 presents a comparison of the false- and true-detection rates. The false-indication rates are 
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calculated for sensors placed on the bridge where no damage was presumed to have occurred and 

the true-detection rates are calculated from Sensor 4 near the crack in the sacrificial specimen. 

 

Figure 4.9. False- and true-detection rates with Rule 1 

The one-truck methodology, which is the simplest to apply and possibly the most intuitive, has 

the lowest false-indication rate but also the lowest true-detection rate. The truck events grouped 

by ten is similar. The two methods (cross prediction and Fshm) that pair sensors together with 

orthogonal regression straight-line fits yield significant improvements in the true-detection rate 

with, unfortunately, an increase in the false-indication rate. 

For all methods, high false-indication rates were found from sensors (C-SG-BF(5)-V and  

C-SG-BF(4)-V) placed in the cut-back web-gap region of the south girder near the west-most 

pier. To help the research team understand the cause of the false-detections, the web-gap region 

was inspected using visual and magnetic particle techniques. 

A fatigue crack-like indication was observed as shown in Figure 4.10. As indicated in the 

photograph, a small crack may be present near the sensor. The depth of the crack is not known. 

Given there might be damage near the cut-back web-gap region, further investigation into the 

false-indication rate was completed by omitting data from the cut-back region. The results are 

illustrated in Figure 4.11. 
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Figure 4.10. Photograph of a potential fatigue crack in web cut-back region 

 

Figure 4.11. False-indication rate without cut-back web-gap region 

False-indication rates decreased for the one-truck, truck events grouped by ten, and cross 

prediction methods. However, the false-detection rate for the Fshm method did not decrease 

because rule violations remained in other non-damaged sensor pairs. Therefore, a challenge in 

future research would be to achieve the target false-indication rate of 0.3% while maintaining a 

high true-detection rate.   



 

50 

5. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

5.1 Summary 

For this project, finalization of hardware and software components for a bridge SHM system 

were investigated and completed—including a demonstration installation. The goal with this 

work was to ready a system for widespread implementation. 

An SHM monitoring system from previous work on the US 30 Bridge used fiber-optic sensors. 

In previous work, fiber-optic sensors were also placed on sacrificial specimens connected to the 

bridge that simulated the structural behavior of the bridge in the cut-back gap area. Varying 

degrees on damage were introduced into the sacrificial specimen. The data from the fiber-optic 

system were used in this work to study the performance of four automated damage-detection 

methodologies. 

Although there were many advantages of the fiber-optic sensor system, the hardware system was 

reconfigured with a traditional sensor system because it was found that a traditional sensor 

system was more cost-effective and robust. As hoped, the traditional sensor system, installed as a 

demonstration, operated without failure during the project. 

An upgraded external communication system using automated FTP with 4G cellular technology 

was integrated to transmit the collected data in real-time. BECAS, which is an automated 

damage-detection process that incorporates sensor data acquisition, strain range data reduction 

(zeroed and filtered with truck parameter identification), and statistical control charts for four 

damage-detection methodologies, was developed and implemented. 

The four control-chart-based methodologies developed and evaluated in this work are as follows: 

1) one-truck event, 2) truck events grouped by ten, 3) cross prediction, and 4) Fshm. Control 

charts utilized by the system developed are divided conceptually into three regions—training, 

testing, and evaluation—to conveniently allow for study of system operability. 

During the training period, strain range data from the undamaged structure were used to establish 

the required control chart parameters. The testing period followed and was used to check the 

efficacy of the training period. To monitor the bridge for changes in structural performance, the 

evaluation period followed immediately after training and testing and was subdivided into 

regions in this work corresponding to the varying damage levels in the sacrificial specimen. 

Six control chart rules were applied to identify changes in structural performance with time. Rule 

violations, false indications of damage in the undamaged normal structural condition, and true 

indications of damage in the sacrificial specimen, with respect to each rule, were automatically 

calculated and then tabulated. In all methodologies, a large number of rule violations were found 

for Rule 3 and Rule 4. Rules 2, 5, and 6 had fewer false indications but also very few true 

indications. 
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The one-truck event method is the most basic form of a control chart reliant upon strain range 

data without further manipulation and is created using the strain range data for each truck event 

without further processing. Similar to the one-truck event method, the truck events were grouped 

with a group size of 10. Both the one-truck event method and the truck grouped by ten method 

had relatively few false indications. Once damage was introduced into the sacrificial specimen 

during the evaluation period, both were able to detect damage but with a true-indication rate less 

than the other methods. 

In the cross prediction method, the major enhancement over a previous generation of the 

approach was in the use of orthogonal regression instead of traditional linear regression. One 

attractive attribute of the cross prediction method is that it considers each sensor’s relationship 

with other sensors. The cross prediction method had a higher number of false indications than the 

previous two methods but a significant increase in the number of true indications. 

The Fshm method is an outgrowth of a method suggested in previous work. As with the cross 

prediction method, the Fshm method uses orthogonal linear regression for paired strain range data. 

Unlike the first three methods, one Fshm control chart represents each pair. This results in a very 

large number of control charts. The false-indication rate and true-indication rate are similar to the 

cross prediction method. 

5.2 Conclusions 

Based on the completed work for this project, the following conclusions are made: 

 BECAS automates all of the components of a full SHM system successfully 

 As with all SHM methods, separating true structural performance data from monitoring 

system noise is a major challenge and, with this work, progress has been made in this 

direction by: 

o Implementation of orthogonal linear regression 

o Evolution of the Fshm method to improve true positive damage indications 

 The target false-alarm rate of 0.3% was achieved with the one-truck event method; however, 

the highest true-indication rate was achieved with the Fshm method 

 Possible damage in the cut-back region of one girder was detected by multiple damage-

detection methods 

5.3 Recommendations for Future Work 

For future work, additional work is required to obtain a damage-detection methodology that 

achieves the target false-indication rate (i.e., 0.3%) while at the same time ensuring a high true-

indication rate. 
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Preliminary work related to this improvement leads the research team to believe that this work 

should focus on reducing the effect of strain gauge reading uncertainty. This reduction in strain 

gauge uncertainty fits well in the previously-completed work aimed at decreasing uncertainty 

associated with selecting live load events meeting specific criteria. 
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APPENDIX A. SPECIFICATIONS FOR THE FIBER-OPTIC SENSORS IN THE US 30 

SHM SYSTEM 

Channel FOS Name 

Grating  

length  

(mm) 

Central 

Wavelength  

(nm) 

Sensor 

ID 

Channel 1 B-NG-BF-H 10 1517.5 1 

B-NS-BF-H 10 1522.5 2 

B-SS-BF-H 10 1527.5 3 

B-SG-BF-H 10 1532.5 4 

C-SG-BF-H 10 1537.5 5 

C-FB(SS)-BF-H 10 1542.5 6 

C-SS-WB-V 10 1547.5 7 

C-SG-CB(5)-V 5 1552.5 8 

C-SG-CB(4)-V 5 1557.5 9 

C-SG-CB(3)-V 5 1562.5 10 

C-SG-CB(2)-V 5 1562.5 11 

C-SG-CB(1)-V 5 1567.5 12 

A-NS-WB-V 10 1577.5 13 

A-SS-WB-V 10 1582.5 14 

Channel 2 D-SG-BF-H 10 1517.5 15 

D-SS-BF-H 10 1522.5 16 

D-NS-BF-H 10 1527.5 17 

D-NG-BF-H 10 1532.5 18 

C-NG-BF-H 10 1537.5 19 

C-FB(NS)-BF-H 10 1542.5 20 

C-NS-WB-V 10 1547.5 21 

C-NG-CB(5)-V 5 1552.5 22 

C-NG-CB(4)-V 5 1557.5 23 

C-NG-CB(3)-V 5 1562.5 24 

C-NG-CB(2)-V 5 1567.5 25 

C-NG-CB(1)-V 5 1572.5 26 

Channel 3 E-NG-BF-H 10 1517.5 27 

E-NG-CB(5)-V 5 1522.5 28 

E-NG-CB(1)-V 5 1527.5 29 

E-NS-WB-V 10 1532.5 30 

E-FB(NS)-BF-H 10 1537.5 31 

E-FB(SS)-BF-H 10 1542.5 32 

E-SS-WB-V 10 1547.5 33 

E-SG-CB(5) 5 1552.5 34 

E-SG-CB(1)-V 5 1557.5 35 

E-SG-BF-H 10 1562.5 36 

F-SG-BF-H 10 1567.5 37 

F-SS-BF-H 10 1572.5 38 

F-NS-BF-H 10 1577.5 39 

F-NG-BF-H 10 1582.5 40 

Channel 4 Sensor 1 5 1562 41 

Sensor 2 5 1567 42 

Sensor 3 5 1572 43 

Sensor 4 5 1577 44 
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APPENDIX B. SETTING UP FTP DATA SYNCHRONIZATION PROCESS USING 

BESTSYNC 2013 

The File Transfer Protocol (FTP) data synchronization process utilized the software BestSync 

2013 and the set up is described in this appendix. The first step is to set up an office FTP server 

with login account information including username, password, and IP address. Next, start 

BestSync and select Edit then Add Task as shown in Figure B.1. 

 

Figure B.1. BestSync startup 

Start by selecting the Folder1 magnifying glass and then select the proper Synchroniation 

Direction. In most cases, select the Folder1 to Folder2 only as shown. This transfers files from 

the remote desktop PC to the Office FTP Server only as shown in Figure B.2. 
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Figure B.2. File transfer 

Next, select the File Folder option and choose the location where the sensor data are being stored 

on the desktop computer at the remote site and finish by clicking OK as shown in Figure B.3. 

 

Figure B.3. Data storage location 
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Subsequently, select the Folder2 magnifying glass as shown in Figure B.4.  

 

Figure B.4. Folder destinations 

Choose the FTP – File Transfer Protocol option and enter the FTP Server information as shown 

in Figure B.5 and click OK. 
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Figure B.5. FTP server info 

Afterward, give the task a name and click Next as shown in Figure B.6. 

 

Figure B.6. Task name 

A backup option may be specified. However, in most cases this option will not be used so 

uncheck the Enable box as shown in Figure B.7. 
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Figure B.7. Backup option 

Next, add any specific excludes or includes. Note that this part is typically left blank. as shown in 

Figure B.8, and proceed by clicking Next. 

 

Figure B.8. Exclude or include 
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This next process involves entering a file filter if different sets of logger files are located in the 

data folder. First, uncheck the Include subfolders checkbox and check the Ignore the file if it is 

changed and less than this…. Then, enter a number of seconds to keep the sync process from 

trying to transfer files before they have been written completely from the logger. Note that this 

may take some adjustment to get the proper time limits given that it depends on how fast the 

logger is able to write files to the remote PC hard drive. Finally, check the Only scan the source 

folder to detect if files are changed… checkbox and then click Next. As shown in Figure B.9, 

this filter will only get .dat files that begin with CR9000X and the * is a wildcard option. 

 

Figure B.9. Filter files 

In the subsequent process, duplicate the checkbox settings shown in Figure B.10. The maximum 

thread number can and should be adjusted to accommodate transfer rates of the internet service 

being used. It is recommended to use 1 to 3 files maximum on 3G service and 1 to 8 files 

maximum for broadband or 4G service. Finish by clicking Next and click next for the subsequent 

window shown in Figure B.11. 
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Figure B.10. Copy options 

 

Figure B.11. Volume shadow copy 

The subsequent windows should be as shown in Figure B.12, B.13, and B.14. 
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Figure B.12. Encryption 

 

Figure B.13. Naming 
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Figure B.14. Speed control 

Depending on the data being retrieved, there are a couple of options for the timing after checking 

Service Sync... The first option is to run Real-Time Sync by checking the appropriate box as 

shown in Figure B.15. The second option is to select a rate that is appropriate to the logger data 

collection rate, such as every minute as shown in Figure B.16. 

 

Figure B.15. Schedule real-time sync option 
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Figure B.16. Schedule time option 

Next, uncheck Record the log data for the log view window as shown in Figure B.17 and click 

Next. 

 

Figure B.17. Log 

Click Finish as shown in Figure B.18. 
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Figure B.18. Application 

Save the process by clicking File, Save As as shown in Figure B.19 and Save a copy of the 

backup process in case it needs to be reloaded; otherwise, the process will need to be recreated 

from scratch. 

 

Figure B.19. Save 
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